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SUMMARY

There are emerging requirements for high accuracy multi-DOF actuators in
numerous applications. As one of the novel motors capable of multi-DOF
manipulation, permanent magnet spherical motors (PMSMs) that can provide
continuous and dexterous motion in one joint have been widely studied for their
advantages in structure and energy efficiency. The demands to bring forward the
performance of PMSMs for precision applications have motivated this thesis to
develop a closed-loop orientation control system with high accuracy and bandwidth.

Unlike traditional control methods for PMSMs, which rely on explicit orientation
feedback, a new control method (referred to here as direct field-feedback control or in
short DFC) directly utilizing the magnetic fields for feedback have been developed in
this thesis. Because magnetic field measurements are almost instantaneous and the
need for real-time orientation estimation is eliminated in DFC, the system sampling
time is greatly reduced. Meanwhile, several field-based methods have been developed
for the major components in the DFC system and each component can be processed
independently and concurrently with the magnetic field measurements. The parallel
computation further improves the system bandwidth and also reduces accumulated
error. The DFC system has been experimentally implemented and evaluated. The
results show excellent control performances in terms of accuracy and bandwidth.

To facilitate the design and analysis of the DFC system, several new algorithms
have been developed, which include the modeling and computing of magnetic fields
as well as forces and torques, an analysis of bijective relationship between orientation

and magnetic fields, and a method for calibration and reconstruction of the rotor

X1v



magnetic field in 3 dimensional space. These algorithms not only enable the
implementation of the DFC system for a PMSM, but also benefit the PMSM studies
in design, modeling and field-based sensing.

While the immediate outcome of this research is a control system for PMSMs,
this new control method can be applied to a broad spectrum of electromagnetic

motion systems.

XV



CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Recent advances in intelligent flexible manufacturing, robotics and bio-medicine
have necessitated the further development of multiple degree-of-freedom (DOF)
actuators with continuous and smooth motion, high accuracy as well as volumetric
torque capacity. In modern manufacturing industries, the trend to downscale
equipment for manufacturing products on “desktops” [1] has motivated the
development of platforms capable of performing various machining tasks. One
typical example is a micro-factory system [2] as shown in Figure 1.1(a), which
consists of a high speed spindle cutter and a multi-DOF rotational stage. The position
and/or orientation of a work piece mounted on the stage can be adjusted and the work
piece can actively cooperate with the feeding motion of the cutter in order to
accomplish complicated machining. It is required that the actuator driving the stage
can offer dexterous motion in negotiating the orientation of the work piece. Figure
1.1(b) shows a live-object handling system [3] which presents another example where
such multi-DOF actuators are desired. In this system, live-objects (such as birds)
transferred from a prior conveyor are separated and re-orientated by the drums
(equipped with flexible fingers) so that the birds can be individually delivered to the
shackling line. As the body sizes of the birds vary, it is desired that the drums can tilt
while they rotate so that the fingers are adaptive to the body variations in this process

where the smooth cradling is essential to minimize injury. There are also a variety of



industrial applications, such as robotic joints (as shown in Figure 1.1c¢) as well as
stereoscopic active vision systems (as shown in Figure 1.1d), where multi-DOF

orientation must be achieved rapidly, continuously and uniformly.

High speed
spindle cutter

Multi-DOF
rotational stag

(a) Micro-factory [2]

|

(b) DLR Hand Arm System [4] (c) Active vision tracking
Figure 1.1 Applications of multi-DOF actuators

Existing multi-DOF actuators usually achieve multi-DOF motion through
serial/parallel connected single-axis motors with external gearing. Driven by the

stringent accuracy and tolerance requirements, various forms of parallel mechanisms



with three or more single-axis motors were proposed; for example [5-7]. These multi-
DOF mechanisms are generally bulky and lack of dexterity. A number of novel
actuators have been developed. Among these are the ball-joint-like spherical motors
capable of providing multi-DOF motion in a single joint. The spherical motors can
provide continuous multi-DOF motion without external gearing mechanism and thus
can eliminate unwanted frictions and singularities in conventional multi-DOF
actuators. Permanent magnet spherical motors (PMSMs) with relative large torque-to-
inertia ratio have attracted much research attention because they are structurally
simple for precision operation with rapid and continuous responses. The tradeoff,
however, is the need to develop a real-time feedback control system for precisely
controlling the orientation of the spherical motors.

Traditional closed-loop control systems for PMSMs depend on external
orientation sensing systems. Firstly, like control systems for most motion systems,
the control law is derived using the error between desired and measured
position/orientation; secondly, in order to realize the desired torque derived by the
control law, the torque characteristic vectors (TCVs) which relate the current inputs
of EMs to the applied torque on the rotor are determined with an orientation-
dependent model. However, a multi-DOF orientation system is usually computational
demanding or requires complicated external structures. Moreover, the dependence of
control law and TCV computations on the orientation requires in sequential
computations. Therefore, the feedback of orientation sensing in traditional control

systems has affected the sampling rate and accuracy.



As the conversion media between the mechanical and electrical energy in
electromagnetic motors (including spherical motors), the magnetic field existing in
the motors has direct relationship with the orientation and magnetic force/torque and
thus can be utilized in developing a control system. Meanwhile, the magnetic field are
invariant to environmental factors (such as pressure, light, temperature efc.) and can
be measured instantaneously with sensors (like hall-effect sensors) of low costs and
small footprints. Therefore, a novel control method that directly utilizes the magnetic
field measurements as feedback is desired as a solution to the sampling rate and
accuracy issues (due to feedback of explicit orientation) in traditional control systems

for PMSMs.

1.2 Prior and Related Works

The following review of the prior and related publications is organized in three
parts. The first part reviews the development of spherical motors. Next, sensing
systems for detecting orientation of multi-DOF motion systems are investigated. The
last part summarizes the control methods applied for spherical motors in previous
studies.

1.2.1 Spherical Motors

Spherical motors take a number of forms which include induction[8-11], direct
current (DC) [12, 13], stepper [14, 15], variable-reluctance (VR) [16, 17], and
ultrasonic [18, 19] motors. Many spherical motors are based on the principle of
electromagnetism. The earliest form of electromagnetic spherical motor is spherical
induction motor, and the concept was first introduced by Williams and Laithwaite [8].

Davey et al. [9] then analyzed the magnetic field and torque of this spherical



induction motor. Vachtsevanos and Lee [10] later proposed a three-DOF spherical
induction motor for a robotic wrist. Although the induction spherical motor generates
torques in three dimensional spaces, it is difficult to apply in practice because of its
mechanical complexity and stator winding design. Foggia et al. [11] designed an
induction type motor capable of rotating around three independent axes; experimental
results showed significant noise and a rather long response time of five seconds.
There are also spherical motors based on the principle of DC drive developed by
Hollis et al. [12] and Kaneko et al. [13] respectively, which could offer orientation
and/or translation motion.

With the wide availability of high-coercive rate-earth permanent magnets (PMs)
at low cost, electromagnetic spherical motors with PM poles have been developed for
a variety of applications because of their advantages of energy-efficiency and low
mechanical wear (brushless motors). The basic concept of a spherical stepper, which
has a relatively simple and compact design, was originally proposed by Lee et al. [14,
15]. The spherical stepper offered a relatively large range of motion (£45°) and
possesses isotropic properties in motion. Chirikjian et al. [20] designed a spherical
stepper motor and developed a commutation algorithm for the spherical stepper
Lee [21] extended the design concept of a spherical stepper to that of a variable
reluctance spherical motor (VRSM) such that high-resolution motion can be achieved
with a relatively small number of rotor and stator poles. A spherical wheel motor
(SWM) was proposed by Lee and Son in [22, 23], which achieved control of 2-DOF
inclination of continuous spinning rotor shaft. Several researchers had proposed

spherical motors with different designs targeted for a variety of applications: A



spherical motor that can achieve two or three DOF motion with the spherical rotor
entirely made of magnetized rare-earth magnets was developed by Wang et al.[24];
Week et al. [25] developed a spherical motor with high stiffness and low friction;
Yan [26] , Xia [27] and Wang [28] have also recently reported and developed
spherical motors in similar concept.

In addition to the electromagnetic spherical motors, ultrasonic spherical motors
have also been studied by several researchers. For instance, Shigeki et al. [18]
proposed a spherical motor that uses ultrasonic vibrations of the rotor to generate
torque to cause desired motion. Amano et al. [19] developed a 3-DOF ultrasonic
actuator with three sets of piezoelectric elements in the stator. Two bending
vibrations perpendicular to each other and a longitudinal vibration can be excited
independently with three separate electrical ports. The spherical rotor was revolved
on all three axes by the combination of these vibrations. The ultrasonic actuators have
the advantages of high resolution and low power consumption, and the disadvantages
such as complex fabrication and instability due to the wear of frictional material.

1.2.2 Orientation Sensing Systems

Traditional control systems for spherical motors rely on orientation sensing
systems. In [29], orientation measurements of a ball-joint-like motor was achieved by
multiple single-axis encoders with an external mechanism to mechanically decouple
the motion into three independent directions. The motion-constraining mechanism
introduces additional inertia and friction; the former limits the bandwidth of the
PMSM while the latter is a primary cause of physical wear and tear. Inclinometers,

accelerometers and other inertia/gyroscopic sensors offer an alternative means to



measure the orientation and position through direct attachment to the moving body as
it is done in aircrafts and Unmanned Aerial Vehicles (UAVs) [30]. However, the
installation of these sensors not only introduces additional inertia and dynamical
imbalance to the system but also requires constrictive bridging connections for power
and measurement transmission. To overcome these problems, several non-contact
orientation sensors such as optical [31] and vision-based [32] sensors have been
developed. However, these sensors either require a specially treated surface or have
relatively low sampling rate. More recently methods utilizing the magnetic-field
measurements of the moving rotor PMs have been reported by several researchers. As
compared to its other non-contact counterparts, magnetic sensors do not require “a
line of sight” and permit sensing across multiple non-ferromagnetic mediums. In [24],
Wang et al. derived the 2-DOF rotor orientation in close-form using the analytical
results of the magnetic field. In [33], inverse computation of the rotor position was
achieved using a nonlinear optimization algorithm to minimize the deviation between
measured and modeled magnetic field (using a single dipole analytical model). This
approach was relatively slow, high in complexity and requires a good initial guess of
the parameters. A similar methodology was adapted in [34] for a decoupled multi-
axis translational system. Lee and Son used the distributed multi-pole (DMP) model
[22] to characterize the magnetic field of a single PM and designed a magnetic field-
based 2-DOF orientation sensor using methodically placed sensors [35]. Lee and
Foong [36, 37] developed a field-based method which used an artificial neural
network (ANN) as a direct mapping for orientation determination. This method

allowed the determination of the 3-DOF orientation directly from measurements of



the existing magnetic field of rotor PMs. Magnetic field offers a stable and accurate
solution to orientation estimation in the above-mentioned methods. However, due to
the complexities and nonlinearities in the inverse computation in these methods, the
sampling rate of the field-based algorithm must be comprised to some degree in order
to achieve high accuracy, which adversely affects the performances of the resulting
control systems using these sensing systems for feedback.
1.2.3 Control Methods of Spherical Motors

Motivated by the growing requirement of precise operation for multi-DOF
manipulation, significant research efforts have been focused on the closed-loop
orientation control of spherical motors. Lee et al. presented the dynamic of a VR
spherical motor in [15] and formulated a reaction-free control strategy based on the
principle of magnetic levitation in [16]. They also derived a maximum torque formula
and used a loop-up table based nonlinear scheme for online optimization of current
inputs. Lee et al. [29] developed a robust back-stepping controller to compensate for
imperfect modeling and computational approximations. The performance was
evaluated experimentally against a classical PD controller. However, the external
mechanism for orientation measurement introduced large inertia and friction to the
system and restricted the accuracy as well as the bandwidth of the control system.
Wang et al. [38] used magnetic field sensors to detect the 2-DOF rotor orientation
and experimentally investigated a PID controller for closed-loop orientation control in
2-DOF. In [23], Lee and Son proposed a method for decoupling the continuous
spinning motion and the inclination of spinning shaft and A control method was

presented which incorporated an open-loop controller for spinning motion and a



closed-loop controller for 2-DOF inclination of the spinning shaft. Other than
classical PID controllers, modern control methods have also been applied on spherical
motors. Xia [39] applied a fuzzy controller and a neural network identifier to identify
the uncertainties in a spherical motor and simulation results showed self-adaptive
ability and strong robustness. Similar strategy was also proposed by Li [40] on a
spherical stepper motor.

Other than the multi-DOF control law, the development of a closed-loop control
system also requires a torque model which is used to determine current inputs based
on the desired torque derived from the control law. Lee et al. [15] developed torque
model of a VR spherical motor and the permanence-based torque model was further
investigated theoretically by Pei [21] wusing finite element methods, and
experimentally investigated by Roth [29]. In [29], a closed-form torque model was
also formulated that used curve-fitting functions to estimate torques based on the
relative positions between PMs and EMs and an inverse torque model to find the
optimal current input minimizing the total input energy from desired torque was
presented. Similar methods were also used in [28] and [41]. Even though the
magnetic torque in a spherical motor is dependent on both magnetic fields and
orientation, the torque models in the above-mentioned studies were all formulated in
terms of orientation due to the complexity and implicit relationship between magnetic

fields and torque.



1.3 Problem Description

Figure 1.2(a) and (b) present two typical PMSM designs. As shown in both
designs, a PMSM is composed of a rotor (with embedded PMs) and a stator that
houses a set of electromagnets (EMs). Both PMs and EMs have their radial

magnetization axes passing through the motor center.

Stator
(a) Schematic of a PMSM [42] (b) CAD model of a PMSM [22]

Figure 1.2 Conceptual designs of PMSM

Mathematically, a PMSM can be modeled as a combination of two subsystems,
rotor dynamics and torque-current relationship. The equation of motion of the PMSM
can be derived using Lagrange formulation which is given by

[M]g+C(q,q)q+g(qQ) =T (1.1

where q is the orientation; [M] is the inertia matrix; C(q,q)q is the centripetal and

Coriolis torque vector; g is the gravitational torque vector; and T is the total torque on
the rotor applied by the EMs on the stator. The detailed derivation of the dynamic

model of a PMSM can be found in the appendix (Appendix A).
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The torque applied by the /" EM can be characterized by the Lorentz force

equation [43]:

Tj:—ijJ.er(Bxdl) (1.2)

where i is the current flowing through the EM and dl is the unit vector along current
direction vector; r is the vector from the rotation center to the field point; B is the
magnetic flux density at the field point; V' is the volume of the coil winding. The
torque is proportional to the current input and the coefficient vector referred here as

the torque characteristic vector (TCV) can be characterized with:
sz—Ier(Bxdl)sz/ij (1.3)
The total torque is the summation of the individual torques contributed by each EM,

which has the form

T = [Ku (1.42)
where [K]=[K, .. K, .. K] (1.4b)
and u=[i, .. i, .. iyl (1.4¢)

where Ng is the total number of EMs. Since there are more current inputs than the
mechanical DOF, an optimal current vector minimizing the total input energy [29]

can be found for a given torque using
u=[K]'([K][K])'T (1.5)

(1.4a) and (1.5) are the forward and inverse torque models of a PMSM.

Figure 1.3 presents the basic components of a PMSM control system. The major
challenges involved in an orientation control system for a PMSM are two folds: 1) the
control law determines the desired torque (control effort) required to track the desired
orientation based on the feedback information, 2) in order to find the optimal current
input to realize the desired torque determined by the control law, the TCVs must be

11



computed in real-time at any orientation and the optimal current input can be found
by (1.4c). Traditional control systems rely on orientation feedback for deriving both
desired torque and TCVs. For the above-mentioned drawbacks of using explicit
orientation feedback in real-time control systems, it is desired that the magnetic field

measurements are directly utilized for orientation control.
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It is obvious that the magnetic field of the rotor PMs measured by a sensor
installed in the stator is a function of the rotor orientation. For a certain range, the
error between the desired and actual orientation can be uniquely characterized by the
error between the desired and actual magnetic fields at the sensor point. Since the
magnetic field measurements are much easier and faster to acquire than the multi-
DOF orientation, it is desired to replace the error of orientation with the error of

magnetic fields in the control system.

14 Objective and Major Challenges

The objective of this research is to develop a new control method to improve the

performances in terms of accuracy and bandwidth of the multi-DOF orientation
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control system by directly utilizing magnetic field measurements for feedback in real-
time. The major challenges to achieve the objective are summarized as follows.

The domain of a given set of sensors (where the bijective relationship between the
orientation and the measured magnetic field exists) must be determined. Also, the
relationship between the errors of orientation and magnetic field measurements must
be studied such that controller parameters can be properly chosen (since the direction
and magnitude of the error in a control law will affect the system stability and
performances). The relationship between the rotor orientation and the magnetic field
can be explored by investigating their partial derivatives. As shown in later chapters,
the bijective domain can be determined by locating the non-zero determinant of the
Jacobian matrix (consisting of partial derivatives of magnetic field with respect to
orientation).

While the bijective domains for a given set of sensors only correspond to a
portion of the entire working space of a PMSM, a multi-sensor network completely
covers the workspace with connected bijective domains of multiple sensor sets is
introduced so that the DFC system can switch measurements from different sensor
sets in the entire working space. The boundaries of the bijective domains are well-
defined with respect to magnetic field and are also used as switching criteria among
different sensor measurements.

The TCV of an EM depends on both rotor orientation and rotor magnetic field, as
can be seen in (1.3). Existing models and methods for estimating TCVs are generally
based on rotor orientation or position. Although explicit models to compute the TCVs
with scattered magnetic field measurements are difficult to find, a direct mapping

characterizing the relationship between TCVs and magnetic field measurements can
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be established, which eliminates the explicit orientation for real-time TCV estimation.
Meanwhile, models (like ANN) that only requires algebraic computations well suits
real-time applications.

There are also practical issues including both hardware and software problems
that are important in developing the DFC system for a PMSM. These issues will be

elaborated in later chapters.

1.5 Thesis Outline

The remainder of the dissertation is outlined as follows.

Chapter 2 presents the DFC system and compares it with conventional control
systems for PMSMs. A 1-DOF example illustrates the process and identifies the key
issues in developing a DFC system. New algorithms for realizing the major
components of the DFC system are presented and numerically investigated in the
context of multi-DOF orientation control.

In Chapter 3, methods for modeling and computing the magnetic fields as well as
forces and torques are presented. These methods allowing closed-form solutions have
greatly reduced the computational time and have been validated with experimental
data. These new methods not only facilitate the development of the DFC system, but
also benefit the design and analysis of spherical motors.

Chapter 4 starts with numerical simulation of the static loading capacity of a
PMSM. The maximum current inputs are investigated for given specifications. The
major components of the DFC system are numerically analyzed on the PMSM and
the control responses are simulated. The simulation results offer theoretical basis and

insights for the implementation of the DFC system in Chapter 5.
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In order to relate the motion trajectories (in terms of rotor orientations) to the
corresponding magnetic fields as command inputs of the DFC system, the magnetic
fields of the rotor PMs must be precisely calibrated. Chapter 6 presents new
algorithms for calibrating and reconstructing the rotor magnetic field in three
dimensional space. With these new algorithms, the experimental procedures are
greatly simplified while reducing the calibration time and accumulated error. The
calibration and reconstruction results with the new algorithms are compared with
experimental data and the results show good match.

Based on the numerical investigation of Chapter 4, the DFC system is
implemented on a PMSM test-bed in Chapter 6. The control performances of the
point-to-point as well as trajectory-tracking motions are experimentally evaluated and
the controlled orientation is verified with a commercial gyroscope which operates
independently of the control loop. The results show excellent performances in both
transient and steady states. The comparison of the sampling rates of the DFC system
and the gyroscope acquisition system indicates the capability of the DFC in
improving the system bandwidth.

Finally, Chapter 7 summarizes the contributions of this research as well as some

future works that can extend and enrich the studies of PMSMs.
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CHAPTER 2

DIRECT FIELD-FEEDBACK CONTROL

2.1 Overview

In this chapter the direct field-feedback control (DFC) method for controlling the
orientation of PMSMs is presented. The major components of this new method is
described and compared to traditional control systems for PMSMs. A 1-DOF example
illustrates the process and identifies the key issues in developing a DFC system.
Algorithms for realizing the major components of the DFC system for multi-DOF

applications are presented and numerical illustrations are provided.

2.2 Control System Description

This subsection begins with comparing the proposed DFC system against with a
typical traditional control system for PMSMs. This is followed by a 1-DOF example
for illustrating key components of the DFC.

2.2.1 Comparison of Control Systems

Figure 2.1 compares a conventional orientation-dependent control system against
the alternative solution based on the DFC system on a PMSM. In Figure 2.1(a), the
control law determines the desired torque T4 in order to track an orientation input qq
based on the error eq between the desired and measured orientations. The TCVs
(included in the matrix [K]) are computed through an orientation-dependent model.
The optimal current vector u to realize the desired torque can be found using (1.5).
This approach relies on explicit orientation feedback. To assure accuracy, the

orientation estimation often requires large amount of computation resulting in long
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time delay. Meanwhile, the serial computation (orientation then TCVs) also leads to
error accumulation. Both the time delay and accumulated errors have an adverse

effect on the overall control performances.
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Figure 2.1 Comparison of control systems

The DFC method is shown in Figure 2.1(b), where the controlled magnetic flux
density (MFD) vector Bs is composed of the MFDs for specified sensors (installed on

the stator) at any orientation q. The sensor index vector S contains the indices of the

specified sensors. Bg; is composed of the MFDs of S atq,; and has the same

dimension as Bs (equal to the mechanical DOF of the system). As illustrated in the
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diagram, Bs, can be obtained for any q, with the forward B-model and S. The control

law of the DFC system utilizes the error eg between B, and Bgs to determine T,. The

control parameters are dependent on S. Meanwhile, the TCVs can be estimated
directly from the MFD measurements, in parallel with the computations involved in
the control law. The embedded field sensing system (as shown in Figure 2.1b)
determines S based on the present orientation and pre-stored information and selects

the components of Bg from the raw MFD measurements B.

With the direct feedback of measured MFD, an explicit orientation feedback is
not required in the real-time control system and the computation efficiency is greatly

improved in two aspects:

e The acquisition of the MFD measurements requires much less time than that of
the orientation measurements.

e Because the control law and TCV estimation can be independently obtained from
measured MFD, and B, from the forward B-model independently of the control
loop, the DFC system permits parallel processing of these three components in

real-time computation.

As a result, DFC has a potential to dramatically improve the sampling rate and

accuracy of the closed-loop PMSM orientation control system.

It is worth emphasizing that since a direct correspondence only exists between the
orientation and the MFDs of the rotor PMs, the MFDs of the EMs (when supplied
with current inputs) acquired by the magnetic sensors concurrently with the rotor

MFDs must be compensated. The MFD compensation of the EM (in the embedded
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field sensing system) will be elaborated in Chapter 6 and the MFD (denoted by B or
B with subscripts) in the following discussion specifically refer to the MFDs from
rotor PMs.
2.2.2 Illustrative 1-DOF Example

The DFC system is best illustrated with the following example. Figure 2.2 shows
a 1-DOF model consisting of a PM and a pair of stationary EMs. The PM is fixed
with the rotor free to rotate in the YZ plane. When current flows into the EMs, a
torque (perpendicular to the YZ plane) is generated causing the rotor to rotate with an
angle @ . The equation of motion is given in (2.1), where the resultant torque applied
on the rotor is the summation of the individual torques contributed by each of the

EMs as shown in (2.2):
Jé+b9:TX (2'1)

Ty =[ky kel[w ] =[K]u (2.2)

where ky; and ky, are the TCVs (one-dimensional in this case) of EM; and EM,; and

u; and u, are the current inputs of EM; and EM,.

31.75mm

6.35mm

PM
31.75mm

9.53mm

Figure 2.2 1-DOF model
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A. Sensor configuration and MFD characteristics

As an illustration, we consider three magnetic sensors (So, S;, S; in Figure 2.2) for
measuring the MFDs of the rotor PM. Figure 2.3(a, b) show the MFD components at
So, Si, S; against @ in normal (B, along the radius in YZ plane) and tangential (B,
tangent to the radius in YZ plane) directions, where the MFDs are computed from the

negative gradient of the analytical magnetic potential [43]

y (~(VeM)(R—R") , ((Men)(R-R")
B, :i‘_ﬁj dv +i‘—7[j ds 2.3)

[R-R'f [R-R'[
where n is the unit surface normal, R'(x’, y', z') and R(x, y z) are the interested and
field point; M is the magnetization of the PM. Figure 2.3(c) shows the normal and
tangential MFDs at Sy. As shown in Figure 2.3(c), the entire range can be divided into
three domains (I'y, I',, I'3) and in each domain B; and @ are bijective (one-to-one and
onto). The bijection can be analyzed by the derivative of B; w.r.t 6. As shown in
Figure 2.3d), dB/d@ is strictly positive (in I';) or negative (in I'y, I'3), which implies

the monotonic relationship between B; and @ in each bijective domain.
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Figure 2.3 [llustration of MFD and bijective domains
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Figure 2.3 (Continued)

B. Control law of DFC
For a specified domain, control law with MFD feedback takes the form:
Ty, =k,e,+k.e, (2.4a)
where e, =B,—B (2.4b)
where B,; and B, are the desired and actual tangential MFDs corresponding to the
desired rotational angle 6, and actual rotational angle 6 respectively. InT'; (i =1, 2, 3),
ep 1s related to the error of the rotational angle ey as follows:
e;=B,—-B =a(0,-0)=age, (2.5)
In (2.5), a; is the slope of a line segment connecting points (6, B;) and (6, B;) on the
B~curve as shown in Figure 2.3(¢c) in I';. It can be seen that g; is not constant and in
each domain a; has the same sign as dB/d6. Substituting (2.5) into (2.4a), the
auxiliary control law in terms of eygcan be obtained:
T, =ke,+kié, and (2.62)

where k,=ak, and k; =ak, (2.6b)
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For the dynamic system (2.1), it can be seen that as long as k) and £ in the auxiliary
control law (2.6) are positive, the system is stable. As the sign of a; is known (same
sign as dB/d6) for a specified domain, the gains in DFC control law (2.4) can be

selected such that k) and are positive and thus the stability is ensured. As bijection is

ensured in each bijective domain, when the controlled variable B, converges to By, 6
will also converge to ;. The signs of a; are summarized in Table 2.1. Since @ is

unavailable for the DFC system, the bijective domains are defined in terms of the

MFDs, which are also summarized in Table 2.1.

Table 2.1 Domain characteristics (B, =112mT)

F1 FZ F3
a1<0 (12>0 (13<O
B,<B, ,B <0 B, > B, B,<B, ,B >0

C. Estimation of TCVs
To realize the desired torque (7x;) determined by the control law (2.4), the TCVs

in (2.2) must be computed for determining an optimal current input vector u that

minimizes the total input energy:

T
u=[u, u,|'=—=2_1k, k[ 2.7
T, e =7

The TCVs can be computed using (1.3) as functions of 6. Although there is no
explicit model for computing TCVs directly from MFDs, the correspondence between
B; and TCVs can be used with ¢ as intermediate variable. For each 6, the

corresponded TCVs and B; are graphed in Figure 2.4 (a) and (b) in each bijective
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domain (denoted by the solid lines). Note that the TCVs in I'5 are symmetric to those
in I';. A spline-fit function can be obtained which allows for the estimation of the
TCVs directly from MFDs. The TCVs (estimated using the spline-fit function) are

compared with numerical results in Figure 2.4(a, b) where the mean absolute error

(MAE) for all the sampled points is 2.4 x10°Nm.
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Figure 2.4 Ilustration of TCVs against MFDs

D. Closed-loop control simulation

The response of the DFC system (with parameters given in Table 2.2) was
simulated where 6, followed a trajectory given by:

6, = 6,sin(nt / 2),where g, =14 (2.8)

Figure 2.5 shows a portion of B; from each sensor and each of which corresponds to a
bijective domain (I'; of each sensor). As the DFC method can be applied in any
bijective domain, the system can operate in the entire rotational range by switching

feedback B, from different sensor readings. The switching criteria defined in terms of

the normal MFDs are shown in Figure 2.5, where the selected bijective domains of all
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sensors have overlaps to avoid singularity at the switching points. The signs of a; of
each sensor are the same as shown in Table 2.1. For each 6,, the desired MFDs for a
selected sensor can be obtained using curve-fit functions acquired from the analytical
results as shown in Figure 2.3(b). Figure 2.6(a, b) show the MFD response along
with the sensor switching sequence and the corresponding time response of 6. As a’s
are positive for all sensors, the PD gains of the DFC as shown in Table 2.2 are set to
be positive so that the PD gains of the auxiliary control law (2.6) are positive assuring
the stability of the system. It can be seen that as B, follows B, the rotational angle 6
also tracks the desired trajectory closely. In the simulation, the TCVs are estimated
directly from the MFDs using the above-mentioned spline-fit function and the
optimal current inputs computed using (2.7) are shown in Figure 2.6(c). Due to the
discrepancies where the estimated and actual TCVs as well as the resultant current
inputs computed based on the estimated TCVs, the desired torque determined by the
control law (2.4) and the resultant torque applied on the rotor are different. The
results are compared in Figure 2.6(d). As the differences in torque can be
compensated in the closed-loop control system, it can be seen that the effects of

discrepancies due to the TCV estimation error are almost trivial.
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Figure 2.5 Sensor domain switching criteria
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Table 2.2 Simulation parameters

J b m*h k, kq
0.1‘[0 O.IT() 0.5 70 3 70 0.2 70
701 a non-dimensional constant, and to = 0.2.
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Figure 2.6 Simulation responses

2.3 DFC For Multi-DOF Orientation Control

Based on the above illustration, the key issues as well as the solutions in
developing a DFC system for controlling the orientation of multi-DOF motion are

presented.
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2.3.1 Determination of Bijective Domain

As DFC system is to drive the error between Bs and Bg, (as shown in Figure 2.1a)
to zero, the bijective domains (in which the MFDs and orientations are bijective) must
be found for feedback sensing. This will ensure that when the control system drives
Bs to Bgs, the rotor will reach to the desired orientation q; which uniquely
corresponds to Bg,.

The bijection between the magnetic fields and the position/orientation of motions
systems has been widely studied [37, 44]. Due to the complexities of magnetic fields
and the fact that it is more important to uniquely determine the position/orientation
from magnetic field measurements for many sensing applications, methods that can
characterize the bijective domains analytically have not been found. Bijective
relationship is usually reduced to subjective relationship in previous studies about
position/orientation sensing applications. As the DFC can be only applied in bijective
domains, there is a need for a method for finding the bijective domain analytically.

Without loss of generality, fis defined as a function that matches q to Bs:

Bs =1(q) (2.9)
According to the implicit function theorem [45], for any q, B e R", f is bijective (and
invertible) in a neighborhood around q if

J =det([J])] _, #0 (2.10)

In (2.10), the Jacobian matrix J has the form

J{af% } ,where i, j = 1,2,...N @.11)
9,

where B; and g; are the i™ and j™ components in Bs and q respectively; N equals to the

dimension of Bg (or q).
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As explicit forms for f and J usually cannot be found for many circumstances, the
bijective domain can be determined numerically. The bijective condition (2.10)
requires that the Jacobian matrix is nonsingular. For numerical implementation, two
alternative conditions which use the determinant and condition number to eliminate
singular Jacobian matrix can be used in order to avoid the incorrect determination due

to the errors of numerical approximations:

A: r={q| |/ e} (2.12)

B: F={q| x(J)< 7} , where x(J)="m 2. 13a, b)

In (2.12) and (2. 13), ¢ and y are positive constants; x(J), omax and omin are the

condition number, the maximum and minimum singular values of the Jacobian

Numerical Illustration

In order to illustrate the method for determining the bijective domain, the model

presented in Figure 2.2 is extended into 2-DOF.

N4

(a) Isometric view (b) Plane view

Figure 2.7 2-DOF model for numerical illustration
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As shown in Figure 2.7, EMs 1 and 2 (3 and 4) are located in YZ (XZ) plane. At
the center of each EM, a magnetic sensor for measuring the normal MFD (B,) is
mounted; and an additional sensor is placed in the middle. All sensors are at the same
distance from the rotation center. For simplicity, the subscript in B, is omitted in the
following discussion. The rotor consisting of one PM can move in 2-DOF with 6, ¢
representing the rotation angles about X and Y axes respectively. The goal here is to

find the bijective domains for the sensors.

The MFD readings of the sensors are simulated using (2.3) for each orientation in
the range —15" <(8,¢) <15°. The radial components of the MFD from Sy, S; and S5 are

shown in Figure 2.8. Due to symmetry, the MFDs of S, and S4 are similar and not

graphed.
So
-10 a 10
& (deg)

= =

[ak) =1}

=) =
Sl = S3 =

10 0 10 ) 10 0 10
& (deg) & (deg)

Figure 2.8 B, from Sy, S1, S5 (unit: T)
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Since the rotor has 2-DOF, two sensor measurements (from a total of five sensors)
are required at any orientation to establish the bijection. In order to visualize the
relationship between the MFD and the orientation, Figure 2.9 displays 6 and ¢
(reversely) in terms of By (B, of Sp) and B; (B, of S}). It can be seen that the MFD
vector (B, B1) and (6, ¢) are not bijective in the entire range because there are more

than one (6, ¢) corresponding to each (By, B)).

20
20
® - 20
02 0.2
0.1
B.(T) 0 B, (M
0 0 1
B, (M B, (T)
Figure 2.9 0, ¢ w.r.t MFD
Here, the Jacobian matrix for any MFD vector (B,, Bp) is
GB/ 0B,
00 o¢p
Jop = (2.14)

G‘B/ 0B,
06 o¢
Figure 2.10 shows the variations of the Jacobians of (By, B;) and (B3, Bs) w.r.t 8 and

@, where the values are normalized with

Jop = mean‘Ja’b‘ (2.15)
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The dotted lines in Figure 2.10 represent the contours where J,, =J, ,, which

implies that the regions enclosed by the contours are the bijective domains for (So, Si)

and (83, Ss) respectively according to (2.12), where ¢ = .7a,b .

15
2
= o
) 0 B 0
-2
= -15
-10 0 10 -10 0 10
& (deg) 9 (deg)
(a) Jo, /‘70,1 (b) Ji4 /j3,4

Figure 2.10  Jacobians of (So, S1) and (S3, S4)

2.3.2 Control Law of DFC and Control Parameter Determination

The PD control law of the DFC with MFD feedback takes the form:
T, =K,e, +K,¢, (2.16a)
where e, =By, — By (2.16b)

In a bijective domain, the orientation error can be characterized in terms of the MFD

error eq which has the form:

ey = Ae, (2.17a)
where A= [ai]} ,i,j=12,..n (2.17b)
and €, =q,—9q (2.17¢)

30



Although the elements of A are not constants, a; is bounded by 0B,/dq, in each

bijective domain [46]. The auxiliary control law obtained by substituting (2.17a) into
(2.16a) is
T, =K}e, + K¢, (2.18a)
where K, =K,A, K|, =K A (2.18b,c)
For the rotor dynamics as given in (1.1), the system is stable and the states will
converge to the desired orientation as long as K’, and K/ in the auxiliary control law
(2.18a) are positive definite (proof can be found in Appendix B). As the ranges of the
values of a’s in A are known (bounded bydB,/dq;), the elements in Kp can be
selected such that K/, is positive-definite. Similarly, the Kp can be determined in the

same way to assure the stability of the system.

Numerical Illustration

The 2-DOF as shown in Figure 2.7 is used for illustration. MFDs from (S, S)) are
used to illustrate the process of deriving the DFC control law in a bijective domain.

The errors and the A matrix in (2.16), (2.17) and (2.18) are:

e, = [eBl eBJT , €, = [eg e¢]T , A= {am aoz} (2.19a,b,c)

ay  ap

where a1, aiz, azi, ax are bounded by 0B,/06,0B,/0¢,0B,/00,0B, /04 respectively.

Figure 2.11 shows the variations of the four partial derivatives and the maximum and

minimum values within the bijective domain (with the contours representing the
boundaries). Due to symmetry, the results are only shown for 0° < ¢ <15". The gain

matrices of the auxiliary control law are:
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K =K A= kplaOI kplaOZ
i : kpZall kp2a12

(2.20a)

k k
K’ =KDA={ a1%o1 d1a02:| (2.20b)
kpa,  kga,
h K {k"‘ 0}KA [k““ O} (2.20c,d)
where = , = .20c,
" 0 kp2 ° 0 kd2

For any x#0,

2 2
k +k k .a.+k a
<KA>=k[+(—” +[kﬂan—( st + Ky ] >0 (221)

2kpla01 4kpla01
if

kpla()l >0 (2223)

(Ko, + ka0,
a a

and k ,a, —~—2——2) 5 (2.22b)
P

4kp1a01

Therefore, K/ is positive definite as long as (2.22) is satisfied. Similarly, the

elements in K, can be also selected so that K/, is positive definite and the system

stability can be assured.

15
10
5
0
-10 0 10
a(deg) aideq)
(a) 0B,/06 <€ (—0.003,-0.0005) (b) 0B,/ 0¢ €(-0.001,0.003)
x10°
15 0 15
= 10 -1 = 10
5 S i 0
s 5 2 25
N = 3 0 |
-10 0 10 -10 0 10
& (deq) g (deg)
(c) 0B, /06 €(—0.0001,-0.003) (d) 0B, /0¢ € (-0.003,-0.0005)

Figure 2.11  Illustration of partial derivatives in bijective domain of (So, S1)
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2.3.3 Extension of DFC with Multi-sensor Approach
As the DFC method can be applied within any bijective domain, it can be
extended to a larger region formed by connecting bijective domains of different
sensor sets, where controlled MFD vector Bs switches measurements from different
sensors. The neighboring bijective domains that form the connected domain must
have overlapped regions so that there is no singularity when the switching happens.
Since the bijective domains found using (2.12) or (2. 13a, b) are in orientation
space, the domain boundaries must be converted into MFD space since the orientation
information is not available in real-time. This enables the control system to identify
the bijective domains solely from measured MFDs. For circumstances where the
boundaries of the bijective domains are difficult to define explicitly in MFD space,
alternative domains (Q’s) satisfying the following conditions can be found:
e O must be completely enclosed by a bijective domain so that the bijective
relationships still hold in Q.
e The Q boundaries can be defined explicitly in terms of MFDs and be used as

switching criteria when Bg switches from different MFD measurements.

Numerical Illustration

In the 2-DOF model as shown in Figure 2.7, the bijective domains of all MFD
vectors were found using (2.12) and Figure 2.12 depicts the bijective domains of four
MFD vectors. It can be seen that the connected bijective domains completely cover
the entire range of motion. Moreover, the overlaps of neighboring domains ensures
that there are no singularities on the boundaries where Bs switches from different

MFD vectors.
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As it is difficult to find explicit forms for describing the boundaries of the
bijective domains as shown in Figure 2.12, alternative MFD-defined domains can be
found. Figure 2.13 shows the regions (colored areas) defined by MFDs where the
contours (denoted by the dashed lines) represent the boundaries of the bijective

domain of (S, S1) and (S3, S4). Due to symmetry, the results are graphed in half of the
range (for 0° <@ <15"). It can be seen that each MFD-defined region is completely

enclosed by one bijective domain. Therefore, DFC can be applied in these MFD-

defined regions.

4 (deg)

5 10 -5 5 10 15

0
0 (deg)
Figure 2.12  Bijective domains of sensor sets

(J,, =2.8x10°,7,, =2.8x10°,7,, =9.5x107,7,, =1.8x10)

¢ (deg)

|J0,2| 2Jo,

B, >0.0008,B, >0.025
B, <0.008

0
-15 -10 -5 0 5 10 15
6 (deg)

Figure 2.13  Domains defined in orientation and MFD spaces
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2.3.4 Field-Based TCV Estimation

Once the desired torque is determined by the control law, a direct mapping that
allows estimation of TCVs from the MFDs is derived using an artificial neural
network (ANN) without the need of explicit orientation information in the DFC
system. As shown in Figure 2.14, the network parameters can be obtained through the

Levenberg-Marquardt supervised back propagation training algorithm.

Hidden Layer
Input Layer

Output Layer

Figure 2.14 ~ ANN structure

Numerical lllustration

In the 2-DOF model (Figure 2.7), the TCV of EM, (K, = [kx, kiv, kiz]) computed
using (1.3) are shown in Figure 2.15 (a-c) as functions of € and ¢. Meanwhile, the
MFDs of the rotor PM for each orientation can be computed using (2.3) at each
sensor, where MFDs from Sy, S;, S; are shown in Figure 2.8. For each (6, ¢), the
corresponding MFDs and TCV are paired and an ANN (with 1 hidden layer and 10
nodes) was trained with a total of 14641 sample pairs. The inputs, outputs as well as

the ANN parameters are shown in Figure 2.16. The estimated results are compared
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with the analytical results and the errors are shown in Figure 2.15(d-f) and the

maximum errors for each component are less than 5%.

-10 -
.

20

10 0
d -
8 (deg) 20 ¢ (deg) ¢ (deg) -20 -20 8 (deg)
(2) Kix (d) Error of Kix
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0 .
2.
002{ 0
0041
20

20

5 .

\ 0
¢ (deg) -20 -20 8 (deg) ¢ (deg) -10

-20 8 (deg)
(b) K1y (e) Error of Ky

x10

001,

-0.01

0

-10

4 (deg) 10 5 (deg) b (deg) 20 20 g (geq)

(c) Kiz (f) Error of K7
Figure 2.15 TCVs and estimation errors with ANN
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B=|B,| | : VK, =y
Bs t N _. / ] klz

| B, | : 1 hidden layer of 10 nodes ,."

Figure 2.16 ~ ANN simulation parameters

2.3.5 Transition of Control Law between Neighboring Bijective Domains

When the controlled MFD vector switches from different sensor measurements,
the desired torque determined by the control law is subject to an abrupt change. It is
important that the output of the control law to certain extent retains continuity when

the switch happens. Without loss of generality, a PID control law takes the form:

T,=T,+T,+T, (2.23a)
where T,=K,e, T,=K,¢, T, =K,[eds (2.23b,¢,d)

where Kp, Kp and K| are the gain matrices; and e is the error of any physical states.
While the first two terms in (2.23a) only depend on present states, the integral term
depends on both the present states and the history of the past states. Therefore, if the
integral term is necessary for the target dynamic system, the integral torque must be
accumulated from the beginning. As the control parameters must be adapted when the
controlled MFD vector switches from different sensor measurements, the integral

term of (2.23a) for the DFC system can be updated using:

4 t
T, = K(,J)LO ey di+...+ K(,,,.)jm ey dt+... (2.24)
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where e, is the error of the i™ controlled MFD vector used in the switching history of
the DFC; K, is the corresponding integral gain matrix; and (¢, #;) is the time

interval that the /™ controlled MFD vector is used as feedback in the DFC system.

2.4 Conclusion

We have presented a new control method which utilizes the magnetic field
measurements for direct feedback. The major components of the DFC system for
multi-DOF motion were presented and illustrated with numerical examples. This
method eliminates the explicit orientation information in real-time control and allows

for parallel processing of the major components in real-time control loop.
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CHAPTER 3

MAGNETIC FIELD AND FORCE/TORQUE MODEL

3.1 Overview

The design and analysis of a PMSM as well as the development of its control and
sensing systems requires large amount of computations on magnetic fields as well as
forces/torques. Conventional methods for analyzing magnetic fields and
forces/torques involve surface or volume integrals and thus it takes enormous
computational time during design and analysis process. The interest to develop
alternative techniques for magnetic field and force/torque analysis has led to the
distributed multi-pole (DMP) method [22] that computes the 3D magnetic field of a
PM in closed form. Using the DMP method, the effects of PM geometrical
parameters on the torque performance of a spherical wheel motor (SWM) [47] were
investigated. A practical method to further lower the time needed to compute the
Lorentz force is to reduce the volume integral to a surface integral; for this, a method
to derive an equivalent single layer (ESL) model to approximate the magnetic field of
a multi-layer (ML) voice coil was proposed in [35]. While the ESL model is time-
efficient for calculating Lorentz forces, the modeling error however increases with
coil thickness, particularly within the core. For applications where compact coil
designs play an important role to achieve high torque-to-volume ratios, a more
accurate yet efficient analytical solution for predicting the magnetic field and force of

an EM is desired.
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We offer here an improved method to derive an equivalent permanent magnet
(ePM) such that the magnetic field of the original multilayer EM can be characterized
by a distributed set of multi-poles (DMP) model [48]. This ePM method complements
the procedure discussed in [22] where focuses have been on the modeling of PMs to

analyze their effects on the forward torque model.

3.2 Distributed Multi-Pole Model for EMs

The process of modeling a multilayer EM as an ePM involves finding an
equivalent magnetization M in terms of the current density J and geometry of the

EM. The magnetic flux density created at R'(x', y’, z") to the field point R(x, y z) is

given by the Biot-Savart law:

Jx(R—R'
B,, :&I%V 3.1)
479 |R—R']

v

where 4, is the free space permeability. For a PM, the magnetic flux density can be

calculated from the negative gradient of the analytical magnetic potential [43]:

B, :ﬂj-—(VoM)(R—R')dV+f_;I(Mon)(R—R')dS 32)

4z |R-R'f IR-R'[
where n is the unit surface normal. Unlike (3.1), the calculation of Bpy does not need
the cross product of J and R -R'vectors. Equations (3.1) and (3.2) provide the basis
for deriving an ePM for the multilayer EM. The interest here is to seek the field
solution outside the physical region of the electromagnet, particularly near its
boundary along the magnetization axis. The procedure is best illustrated through an
example.

3.2.1 Cylindrical EM

Cylindrical PMs and EMs are commonly used in motion systems. Some analytical
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and experimental results are also available for model validation. They are used here
for clarity to illustrate the DMP modeling procedure. Figure 3.1(a) and (b) show the
geometry of the cylindrical EM and its corresponding ePM (with the same / and a,).

The current density of the EM is given by (3.3):

J(r)=0,0<r<a,

J =J(r)e,where
J(r)=J,a,<r<a,

(3.3)

and g; and a, are the inner and outer EM radii.

8]
ry

Nonmagnetic 4 1

a a,
(a) Multilayer EM (b) ePM

Figure 3.1 Multilayer EM and Equivalent PM

From (3.1), the z-component of the EM flux density can be calculated:

BEMZ(X,Y,Z)_LHT p(p—XcosO—Ysin0)dodZ'dp o
) :

mJ(112)  4xy [(X—pcosé‘)2 +(Y - psin@)* +L2(Z—Z')2]3/2

-

where (X,Y,Z)=(x/a,,y/a,,2z/1); p=r/as; a,=aia, ; and L=1/(2a,). A general

closed-form solution to (3.4) is not available. To investigate the effect of the aspect
ratios (a, and L) on Bgm, for actuator design, we numerically integrate (3.4) at

z=l/2+¢ along the radial direction, where ¢ is a positive number. The results are
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graphed in Figure 3.2. In Figure 3.2(a), the values are normalized to Bgmy, Or the

value of Bpm; at (0, 0, Z=1+2¢/l), given in (3.5):

Bowo _ il 1HP ), L(fjln (+p, )@, +p.)
ﬂOJau ar + pif l (l + pu+ )(ar + Ioif)

p,. =A% (¢/1) +a? ; and

o= \/ 4(1+&/1)’ +a* . When &/l<<1 or near the physical boundary,

(3.5)

where p,, =42 (/1) +1; p()7=\/4L2(1+g/l)2+1;

o+

Bivio i 1+v1+417 (3.6)
ﬂoJl/z(S/IHO a, +ya +4r
12 ‘ ‘
---------- —a=02L=1
l .s® r
——a=02L=05
0.8} . -a=02L=025
% r
= 06! ---2=08L=1
Q. —a =08,L=05
s 04r
=94 N V..
o
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r/a0
(a) Radial distribution of Bz,
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(b) Effect of a, (L=0.5) (d) Effect of a,
Figure 3.2 Effect of @, and L and on Bgyz (¢/1=0.01)
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Some observations can be made in Figure 3.2:

e As shown in Figure 3.2(a) and (b), Brwm linearly decreases from q; to a, along the
radial direction. When 0.25 < L <1, Bgy, 1s relatively uniform inside the air core.
Bewmyo increases with coil thickness (or smaller a,) for the same a, and / implying
that thicker coils have higher magnetic fluxes (proportional to the area under the
curve).

e Figure 3.2(c) shows that the drop in Bgyrp 1s approximately linear with a,. Bgaso,

however, increases exponentially with L and approaches a constant for a given a,,

Figure 3.2(d).

3.2.2 Equivalent Magnetization of the ePM
For a cylindrical PM, M is zero outside the physical boundary wherer >a, . This

and the above observations suggest that the magnetization of the ePM takes the form

M@r)=M, 0<r<a,
M(r)y=M,-J(r—a,), a,<r<a,

M= M(r)e, where { (3.7)

where M) is an integral constant to be found by comparing (3.1) and (3.2). Since the
cylindrical ePM has a maximum along its magnetization, we find M, from
By, = Bpy, at (0,0,//2+¢&). Substituting (3.7) into (3.1) and noting thatVeM =0,
the first term on the right side of (3.3) disappears, and the second term can be written

as:

By _ By +i[](ao_ai)_M0:| ¢ _l+€ (3.8)
uJl 2 p 2 Ji p,.a, p,a,

M, can now be determined by equating the last term of (3.8) to zero such that

Bpm=Bemzo. As the factor involving the independent variable ¢ is not always zero,
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M(r)=J(a,—a;). Hence, the equivalent magnetization M graphically illustrated in

Figure 3.3(a) is given by (3.9):

M(ry=J-(a,—a;,), 0<sr<a,
M=M(r)e, where (3.9)
M(ry=J-(a,-r), a,<r<a,
M) ‘ i Pxy.2)
M, Z

AN

. Boundary of

the physical
ai a, r ‘ magnet
(a) Equivalent M (b) Dipole distribution [22]

Figure 3.3 DMP model of a Magnet

Since J is uniform throughout the entire volume of an EM, substituting (3.9) into

(3.2) yields:
Juo ~(VeM)R-R") g r(Men(R-R))
ds
B,, I R-RT I R-RT (3.10a)
where M=M/J (3.10b)

Once the ePM is found with the equivalent magnetization (3.10b), the EM can be
modeled using a distributed set of multi-poles (DMP). For a cylindrical PM, the
DMP consists of k circular loops of n equally spaced dipoles parallel to the

magnetization vector as shown in Fig. 3.3(b). The loops (each with radiusa;) are

uniformly spaced:
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Ejzaoj/(k+1)atz=iz/2,whereOSjSk (3.11)

The flux density at point P(x, y, z) generated by a PM or an EM can be computed

using:

k
=&zm i i (3.12a)

_IkN i N (3.12b)

ij+

J=2N,-I/c (3.12¢)

where R;+ and R;. are the vectors from the source and sink of the j dipole on the i
loop to P respectively; [ is the current flowing in the EM; Ny and ¢ are the number of

turns and the cross-section area of the winding. The procedure of deriving the

parameters (k, n, [ and m;) can be found in [22].

33 Dipole Force/Torque Model

Two methods commonly used in calculating the forces between stator EMs and
rotor PMs of a spherical motor are the Lorentz force equation and the Maxwell stress
tensor [43]. These methods require solving the magnetic field and computing a
volume or surface integral to derive the force model. As general closed-form
solutions are not available, the volume or surface integrals are often solved
numerically.

An alternative method to compute the magnetic force is the Lorentz force law in
analogy to that on an electric charge as illustrated in Figure 3.4, where we define a
dipole (with strength m) as a pair of source and sink separated by a finite distance.

The force F and torque T acting on the dipole can be written (in analogy to that on a
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stationary electric charge by the Lorentz law) [49] as
F= ,uom[HR+ —HRf] (3.13a)
T=um[R, xH, —R_xH, | (3.13b)
where u is free space permeability; Hr+ and Hg_ are the magnetic field intensities

acting on the magnetic source and sink of the dipole respectively; and the subscripts;

and R and R_ are the corresponding distances from a field point.

Figure 3.4 Force on dipoles

With both the PMs and EMs are modeled using DMP, the magnetic forces on the
system can be calculated using the Maxwell stress tensor method or the dipole force
equation. Unlike the commonly used Lorentz force equation and the Maxwell stress
tensor method, the dipole force equation (replacing integrations with summations)
dramatically reduces computation time. As will be shown, the closed form dipole
model is an efficient way to compute the inverse torque model of an over-actuated
system, especially for PMSMs [48] where a large number of stator EMs and PMs are

involved.
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3.4 Numerical Validation

We validate the DMP derived for a circular EM by comparing the magnetic field
distribution and force computation against known solutions. The results are given in
Sections 4 and B followed by discussions in Section C.

3.4.1 Validation of Magnetic Field Computation

As a basis for model validation, we numerically integrate the exact integral (3.4)
for the flux density of a multilayer (ML) EM so that the DMPgy model and the ESL
approximation can be compared. Since the ESL model is singular at the surface, we
plot B, and B, along the radial direction at z=//2+¢ with e=0.5mm, and B, along the z
axis for the thick EM in Figure 3.5. Table 3.1 lists the dimensions of the EM, and the

values of the parameters defining the ESL and DMPgy models.
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Table 3.1 Simulation parameters

1000 turns, #28 wire, 1A Current
ML: a, =15.88mm, a,=0.3, L=0.3.
ESL: Jd,=120.1A/mm, a=12mm
DMPyy: n=16, k=6, 1 /1 = 0.442
m; (HA/m): 1.476, 0.547,1.618, 1.644, 1.654, 1.325, 0.592

3.4.2 Validation of Magnetic Force Computation

We compute the magnetic force between a PM and an EM for two test setups
shown in Figure 3.6. Published experimental force data [50] (numerically validated
with a mesh free method in [51] ) are available for comparison. In the following

computation, the PMs are modeled as DMPpy [22] with the parameters summarized

in Table 3.2.

1.524mm D Size Large Small
- g ﬁ a, (mm) 1.981 0.767
_ 1 a, 0.7693 0.48
Jecesesses pormanent || . L 0.385 0.48
21 (e d |\ magnet || & Coil res. (Q) 57 32
ST Wire length (m) 3 1.68

| 5 Y Coil: 280 turns of #47 wire; Current=0.05A
F—" a, (mm) 1.499 0.8
- L, 0.533 0.508

127mm—y Samarium-Cobalt magnet; 1yMy=1.02 T

Figure 3.6 Experimental setup [50] and parameters

Three different methods for modeling the magnetic fields and forces are
compared:

Method I computes the force using Maxwell Stress Tensor.

1 1
F:qudC where Fz—(B(Bon)—EBZnJ (3.14)

Hy
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and C is an arbitrary boundary enclosing the body of interest; and n is the normal of
the boundary interface. (3.14) requires the total field B (contributed by both the PM
and EM) to compute the force by the surface integration. As a basis for comparison,

the B-field of the multilayer EM numerically computed using (3.1).

Method II calculates the Lorentz force exerted on the current carrying EM
F=—¢Bxldn where I ={p.Jds (3.15)

where n is the unit current direction vector; and S is the cross section of wire. Since
the current density vector J is directly used in the calculation, only the B-field of the
PM is needed in the Lorenz force equation (3.15). The multilayer EM is replaced with
the equivalent single layer (ESL) model [35] (with equivalent current density J., wire
diameter d,,, and coil radius a.), which reduces the volume integral to a surface

integral.

Method Il uses the dipole force equation in analogy to that on a stationary electric

charge by the Lorentz law to compute the net force acting on the PM.

The net force is simply the summation of the individual forces on the dipoles that

characterize the PM:

Juozl:m lem (R,, -R,, +R,, -R_, | (3.16)
i J

whereR, | =(R, -

3
_Rs/i‘ whereR, (R, )is the i (/'th) pole location of

the rotor (EM;); the signs, (+) and (-), stand for the source and the sink of the dipole;
n, and ng are the number of dipoles of the PM and EM; and m,; (my) are the pole
strength of the i () dipole pair in the rotor (EM)). The EM is modeled as DMPg.
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The parameters for the ESL model and the DMPgy are summarized in Table 3.2.
The magnetic fields of the large and small coils are given in the left and right columns
in Figure 3.7, where B; is plotted along the z axis; and B. and B, are plotted along the
radial direction at z=[/2+¢ with ¢=0.5mm. The computed forces F are compared
against published experimental data F,,, in Figure 3.8. Table 3.3 compares the time

required to compute 26 data points in Figure 3.8(a) using a computer with Quad Core

2.66GHz CPU and 8GB RAM.
Table 3.2 Simulation parameters

Parameters Large Small
PM nk, 7/1 6,2,0.314 6,2,0.3122
DMPpy m; (WA/m) 1.65,0.02, 3.8 0.43,0.02, 1.07
EM (ESL) Jedyy (WA/mm) | 22.75 38.98

a. (mm) 1.8168 1.456
EM nk, /1 12, 8,0.7661 8,3,0.7441
(DMPgn) m; (nA/m) 0.236, 0.177, 0.366, 0.567, 1.354, 1.758, 3.32,

0.751,0.914,1.032, 1.28, 0.312| 1.661
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Figure 3.8 Computed forces and experimental data
Table 3.3 Comparison of computational times
Method 1 11 11
Computation Time (sec) 106.03 21.53 0.0625
3 Discussions of Results

Some observations on Figures 3.6, 3.8, 3.9 and Table 3.3 are discussed as follows:

Unlike the ESL model where the equivalent current density J. is determined from
the 2D magnetic field, the equivalent magnetization M of the ePM is derived

using the complete 3D integral. As shown in Figures. 3.6 and 3.8, the DMPgy
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modeled flux densities agree very well with the solutions to the exact integral
(3.4) for both thin and thick coils. The ESL model provides a reasonable
prediction of the z-component flux density, but discrepancies from the exact

solutions increase with coil thickness (or smaller a; /a,).

e The Maxwell stress tensor in Method I can be computed using the DMPpy and
DMPgy;, which yields the same solution to the dipole force equation in Method
III. However, unlike the Maxwell stress tensor method or the Lorentz force
equation (with the ESL approximation) that require numerical computations of a
surface integration, the dipole force equation (replacing integrations with
summations) is in closed-form dramatically reducing computation to 0.0625sec as

compared in Table 3.3.

e As shown in Figure 3.8, the Maxwell stress tensor and the dipole force equation
(or Methods I and III respectively) agree very closely with published
experimental data while the ESL model (that reduces the volume integral of the
multi-layer EM to a surface integral of a single-layer coil) overestimates the

computed forces as expected.

3.5 Illustrative Numerical Simulations

With EMs and PMs modeled as DMP, the dipole force model is an efficient way
to compute the magnetic for the design of electromagnetic systems that involvs a

large number of EMs and PMs.

Observations in Figure 3.2 suggest that both small @, and L (for a given a,) have a

significant effect on the increase in the z-component magnetic fluxes, and hence on
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the compact design of a spherical motor. The effect can be illustrated with the
example in Figure 3.9 and Table 3.4, where two pole sizes of a PMSM are compared.
Similar to the force model (3.16), the magnetic torque between EMs and PMs can

be computed using dipole force model with the DMP models of EMs and PMs, which

has the form:
T= i—‘;zm lem [(Rw R, xR, -(R , R, )x RJ (3.17)

Design 1 (D1) simulates the torque between the rotor PM and stator EM of the
SWM [47] where L>] while Design 2 (D2) models that with the same outer radius
R,=76.2mm. In D2, both the PM and EM have a much smaller L of 0.2 and 0.3
respectively and as a result, the rotor PM (embedded in the “socket”) has a 1.4 time
larger rotational radius than that of D1. The EM in Table 3.1 is used for D2 and

repeated here for ease of comparison.

Design 1 (D1) [47] Design 2 (D2)

Figure 3.9 Comparison of design parameters (R,=76.2mm)
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Table 3.4 Parameters used for stator and rotor poles

Design 1 (D1) [47] Design 2 (D2)
R, =37.5mm R;=52.75mm
PM: a,=6.35mm, L=1, y,M,=1.27T a,=15.875mm, L=0.2, u,M,=1.27T
DMPpyi: | =2, k=6,1/1=0.7519 n=10,k=4,1/1=03
m; (LA/m): 10.64, 1.68, 37.7 m{pnA/m): 33.5,24.5, 57.6, 52.0, 276.1
EM: a,=9.53mm, a,=0.5, L=1.33, a,=15.88mm, a,=0.3, L=0.3,
# of turns =1050 # of turns =1050
DMPey: | n=12, k=4, 1/1=0.807 n=16, k=6, 1 /1=0.442
m;(uA/m): -0.152, 0.448, 0.395, 0.515, mi(uA/m): 1.476, 0.547, 1.618, 1.644,
0.0563 1.654, 1.325, 0.592

Common parameters: 29AWG, I = 1A, gap = 0.5mm, R,=76.2mm

The effects of the pole size on the magnetic torque are compared in Figure 3.10
that plots the torque as a function of y (the separation angle btween the magnetzation
axes of PM and EM). As compared to D1 in Figure 3.10, D2 offers 2.4 times higher
maximum torque, and converts 3.6 times more mechanical energy (represented by the

area under the torque —displacement curve).

0.2 w
—— D1
— D2
0.15¢ 1

o
a

o
o
a

Torque(Nm)

-0.05 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120
y (deg)

Figure 3.10  Effect of pole geometries on actuator torque
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3.6 Conclusion

We have presented a new, time-efficient method for modeling a multilayer EM as
an equivalent PM such that the magnetic field of the EM can be characterized using a
distribution of multi poles (DMP). The advantage of modeling the PM and EM using
DMP has been illustrated through a force computation. Unlike other commonly used
methods that often require to calculate a time-consuming numerical (volume or
surface) integral to derive the force, the dipole model replacing integrals by

summations computes magnetic forces in closed form.

The dipole models have been validated by comparing results against exact field
solutions and published experimental force data, which show excellent agreement.
The simulation comparing the pole sizes suggests that thick coils (or small a,) with
small L play an effective role to achieve high torque-to-volume ratios, and thus are

important in applications where compact coil designs.

Although the method has been discussed in the context of a cylindrical EM
(where some analytical and experimental results are also available for model

validation), it can be extended to EMs other customized shapes.
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CHAPTER 4

NUMERICAL INESTIGATION OF A THREE-DOF PMSM

4.1 Overview
In this chapter, the performances of the static loading as well as DFC method are
numerically investigated based on a CAD model of a 3-DOF PMSM [48] with the aid
of the DMP model as well as the dipole force model for analyzing the magnetic field

and force/torque.

4.2 System Description
Figure 4.1 shows a CAD model of a PMSM [48] developed at Georgia Tech,
where the PMSM consists of a rotor (with embedded PMs) supported by a ball
bearing on the stator that houses a set of electromagnets (EMs). Both PMs and EMs
have their radial magnetization axes passing through the motor center. The EMs are

air-cored and the entire structure (except for the PMs) is non-magnetic.

Ball Joint Bearing

Stator

Permanent
Magnet (PM)

Rotor
%Electromagnet
(EM)

Figure 4.1 CAD model of a PMSM
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The coordinate systems are defined in Figure 4.2(a), where XYZ is the stator

frame (stationary); xyz is the rotor frame; the Euler angles (roll-pitch-yaw) (a, 3,7 )

describes the rotor orientation in as:

q:[a’ﬁ’y]T (41)

(a) Stator and rotor coordinates and (b) Spherical coordinate in rotor
orientation (y’ and x’’ are intermediate axes) (stator) frame

Figure 4.2 Coordinate systems of PMSM

The locations of the PMs and EMs as well as the magnetic sensors for measuring
the MFD are defined with spherical coordinates. As shown in Figure 4.2(b), 6,¢,r
(©,0,R) represent the spherical coordinates in xyz (XYZ) frame. The magnetization
axes of the PMs or EMs can be characterized by a vector pointing from the origin to
the center of each PM and EM. The centroids are defined in terms of spherical
coordinates (as shown in Figure 4.1b) in rotor frame (for PMs) and stator frame (for

EMs) respectively, which have the following forms:

Cpyy = Ry [cos@sing, singsing, cosd,]’ (4.2a)

58



Cpy = Ray [cosd)j sin®; sin®;sin®, cos@j.]T (4.2b)

where i and j are the indices of the PMs and EMs. The parameters are given in Table
4.1. It is worth noting that the adjacent PMs have alternating magnetizations and the
magnetization of each EM is dependent on the instantaneous current direction
flowing in the EM. A magnetic sensor for measuring the MFD is fixed in the stator

frame and the sensor is placed such that measuring axes are along the ©,®,R
directions. The location of a sensing point of and the unit vectors (€g,€, ¢, ) of the

measuring axes are defined in stator frame:

C,, =R, [cosCDp sin®, sin® sin®,  cosO, T (4.3a)

Cop = [cos ©,cos®,  cos®,sin®,  —sin @p]r (4.3b)
. T

€op = [—smq)p cos®, 0} (4.3¢c)

€pp = [sin ©,cos®, sin® sin®,  cos @p]T (4.3d)

where p is the sensor index. The parameters describing the sensor locations are given
in Table 4.1. For each sensor, the MFD measured by the p’h Sensor is:
B,=(B,,B,0,B,x) (4.4)
Due to the symmetric configuration of the rotor PMs, the magnetic sensors for
measuring MFD of the rotor PMs are only placed in half of the sphere. Also, the 24
EMs are grouped in series into pairs leading to a total of 12 electrical inputs (Table
4.2), which are placed symmetrically about the motor center. The operating range of

this design is:

225 <a,f<22.5 and -0 < y <+oo (4.5)
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Table 4.1 Locations of PMs, EMs and sensors

PM (in Xxyz) EM (in XYZ) Sensor(in XYZ)
Index 1tol12 13t0o24 | 1to8 9tol6  17to24 1to8 9to 16 17to0 24
0(©) (deg) 105 75 116 64 0 116 64 0
. . . . 45(G-17) . , )
#(D) (deg) |30(;-1) 30(j—13) |45(j—1) 45(G-9) 1225 22.5(G—1) 22.5G-9) 22.5(G-17)

Rpy = 67.9mm, Rgy, = 56.8mm, Rg= 56.4mm

Table 4.2 Current input configuration of the EMs

i1=i3=u; is=io=us [17=1i21= Uy
=114~ U; I6=110=Ug 118=1i22=Uj
[3=i15=u;3 [7=111=uUy [19=123=U]
[4=116=Uy I§=i12=Ug 120=124= U2

4.3 Static Loading Investigation

When the table is loaded (such as a work piece), the rotor of the three-DOF
orientation stage is subjected to an external torque T, (Figure 4.3), where the center

of gravity coincides with the rotation center.

T;zxt = rxmloadg (46)

Figure 4.3 Schematic of the external loading
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Statically, the torque acting on the rotor is equal to the external torque. The
interest here is to simulate the maximum current inputs required meeting a specified

torque over the entire operating range given in (4.5).

With the DMP models of the PMs and EMs, the magnetic torque of the PMSM
can be computed with the dipole force model (3.13b); and the TCV can be derived

from (1.3) and (3.13b),

Npxn,

K =223 m>m (R, ~R, xR ~(R, +R_ xR 47)
‘ T3 4 o e i i=Spt i-Sp- i

3
whereR, . =(R, -R_)/|R_ —Rsi‘ whereR, (R, )is the i™ (™) pole location of

the rotor (EM)); the signs, (+) and (-), stand for the source and the sink of the dipole
respectively; n, and ng are the number of dipoles of the PM and EM respectively; Np
is the total number of the PMs; and m,; (m,;) are the pole strength of the i™ (™) dipole
pair in the rotor (EM;). Since the EMs are paired (as shown in Table 4.2), the TCV

matrix has the form:
KZ[(K1+K13)’ (K2+K14)’ T (K20+K24):| (4.8)

The required current inputs for a desired torque can be computed using inverse torque
model (1.6). The parameters used in simulating the inverse torque model (1.6) with
the component K; given by (4.8) are given in Table 4.3 and D2 in and Figure 3.9 and
Table 3.4. Figure 4.4 shows the current profiles of each of the current inputs required
maintaining the external torque. Each point represents the maximum current

magnitude for the orientation(«, f, 0 <y <360"). Except near the boundary, most of

the required currents are within 3A. The statistics of the EM required inputs are
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summarized in Table 4.4 suggesting that the maximum current required is less 3.4A

for the specified load (and rotor weight) of 10kg.

Table 4.3 Simulation parameters
Myeaa (kg)  h,(mm) Rotor Mass (kg) Moment of inertia (kg-m®)
8 64.8 2.03 1,=7.97x107, I,,=1,,=5.89x10">

B(deg) 20 (deg) B(deg) « (deg)

Figure 4.4 Current inputs in each stator EM
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p (deg)

Figure 4.4 (Continued)

Table 4.4 Statistics of current magnitudes (unit: A)

Ui

1 2 3 4 5 6 7 8 9 10 11 12

Max
Mean

334 334 335 335 335 335 335 335 245 218 218 245
1.31 128 130 128 131 128 130 128 1.06 1.05 1.05 1.06
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4.4 Numerical Investigation with DFC

Here, the DFC method is numerically investigated based on the PMSM (Figure
4.1) where the PM and EM parameters are given by D2 in Figure 3.9 and Table 3.4.
4.4.1 Bijective Domains

The MFD of the rotor PMs can be computed using the DMP model at the sensor
measuring points and the bijective domains corresponding to certain sensor
measurements can be determined using (2.12) where the Jacobian is derived
numerically with respect to the orientation. Due to the periodicity of the rotor PM
placement (Figure 4.5), the following discussion focuses on domain A with the
following range within which the results are sought in the entire working space:

A:-225<a,f<225,-30° <y <30° (4.9)

o000~
| |
|

1105 AV ——‘—— ——‘/\/
|
SN

-300 0 30
(330°) b —»

Figure 4.5 PM locations in rotor frame (spherical coordinate)

As an illustration, the MFDs for the following MFD vectors are simulated

Bsi = (Bair, Bor, Bior ) (4.10a)
Bsu = (B13r, Bor, Biir) (4.10b)
where the sensor indices are given in Table 4.1. The Jacobians are computed for each

MFD vector using (2.10) and (2.11). Figure 4.6(a) and (b) show the bijective domains
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determined by (2.12) of Bg; and Bgj respectively. Here the critical value ¢ in (2.12) is

set to be the mean absolute values (Jy) of the Jacobians over the entire range in each

case, which are shown in Figure 4.6. The red and blue volumes in Figure 4.6

represent the bijective domains of Bg; and Bg; respectively. For visual illustration, the

Jacobians for Bg; and Bgy are graphed at =0 in Figure 4.7 (a, b), where the red and

black dotted lines represent the boundaries of the bijective domains. It can be seen

that the bijective domains of each MFD vectors are scattered and correspond to

different ranges in A |

v (deg)

o (deg)

0
o (deg) 20 20 B (deg)

- -20+
X 0\/6-20
0 =20 20
0 0

20 -
B (deg) * aweg

(a) Bsy.Jo = 460mT?/deg’ (b) By, Jo = 86mT*/deg’

205"/
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Figure 4.6 Bijective domains of different MFD vectors
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Figure 4.7 Jacobians and bijective domains of different MFD vectors at g =0
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The individual bijective domains in Figure 4.7(a, b) can be connected to form
larger domains to enable the DFC to apply in a larger range. As the boundaries of the
bijective domains are difficult to define explicitly with MFDs, domains with easy
boundary conditions in terms of the MFDs and completely enclosed by the bijective
domains can be found. Figure 4.8 (a, b) display the MFDs of B;r and Bjsr
respectively with the boundaries of the bijective domains of Bg; and Bgy
superimposed on the figures. For simplicity, the MFD and bijective domains were

only graphed in the following range:

—15 <a,y <15, =0
Figure 4.9 depicts the boundaries of the bijective domains (I"’s) and the MFD-defined
domains (€2’s) where the boundary conditions of the {2’s are shown on the right. Note
that there are two isolated regions for I and Q of Bg; and they are denoted by “+” (for
0>0) and “-” (for a>0) respectively. It can be seen that each MFD-defined domain is
enclosed by a bijective domain. These MFD-defined domains can also form a larger
domain where bijections are ensured. Therefore, the DFC method can be applied in
this connected domain by switching the controlled MFD vector from Bg; and Bgp
while the switching criteria are the boundary conditions of the MFD-defined domains.
The overlapped areas in the connected domain ensure that the system does not have

singularities on the boundaries since the bijection is satisfied on either side.
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Figure 4.9 MFD-defined domains and bijective domains

Similarly, the bijective domains of other MFD vectors can be found. Figure 4.10
roughly summarizes the MFD vectors and their bijective domains covering A . Note
that the squares are only for illustration and do not represent the exact boundaries of
the bijective domains. The MFD vector coverage can be repeatedly extended to the

entire work space of the PMSM as shown in Figure 4.10.
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Figure 4.10

4.4.2 Control Parameter Determination of the DFC System
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MFD vector selection in the entire working space

Following the DFC control law given in (2.16), the PD control law of this 3-DOF

system has the form:

where

The gain matrices of the auxiliary control law (2.18a) are

kplall

K, =K,A=|k,a,

kp3a31

kga,

K), =K,A=|k,a,

kyas,
k, 0 0

where K,=0 k£, 0K,

0 0 k,
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kp1a12
kp2a22

kp3a32
kg a.,
kyyay
kysas,

Kay
=0

P

kp2a23
kp3a33j
kg a,
kyyay;

k353 i

0

k lalﬂ

0

(4.11a)

(4.11b)

(4.12a)

(4.12b)

(4.12¢,d)



In (4.12a, b), a; is bounded by B, /dq;. Table 4.5 summarizes the maximum and

minimum values of the partial derivatives within the bijective domain (with the

contours representing the boundaries). For any x#0,
x (K,A)X = x A+ x, B+ x.C + x,%,D + x,x,E + x,x,F (4.13)
where A=k, a,, ,B=k,ay,,C=ka;;,D=k,a, +k,a,,E=k,a, +k,a;,
F =k a5, +k,a,,.
For D-E-F>0and D,E,F#0 (4.14a,b)

(4.13) can be rewritten in the form:

x"(K,A)x
2
4.15a
= £x1+ £x2+\/£x3 +(A—£jxlz+ B—E x§+(C—£jx3 ( )
2F 2F 2D - 2F 2F 2D ) -

which is strictly positive if

4> PE g DF o EF
2F 2F 2D

(4.16 a,b,c)
Therefore, (4.14) and (4.16) together can be used to determine if the PID gain
matrices of the DFC system will make the PID gain matrices of the auxiliary control
law (4.12a,b) positive definite, which insures the system stability and convergence.
Note that (4.14) and (4.16) are only sufficient conditions for gain matrices of the
auxiliary control law being positive definite and analytical solutions for (4.14) and
(4.16) cannot be found. However, one can still use (4.14) and (4.16) to check the
stability and convergence for any specified values or values in a specified range for

the gain matrices of the DFC system. The elements in Kp can be determined in the

same way.
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Table 4.5 Element value ranges of the Jacobian matrices for Bg; and Bgjin T’
Jacobian matrices Element value ranges (mT/deg)
1.1s%g10.9 —1.6£%S1.6 —17.33%97.3
oa 0 oy
OB, OB, OB,
28<I M <28 —6.1<—£<-43 -109<—£<109
J (Qs1) da op oy
—5.8S%£5.8 —5.93%9.9 4.0s83ﬂ315.9
oa op oy
1.13%310.9 —1.6£%£1.6 —17.3s%sl7.3
oa 0 oy
OB, OB, OB
Qg1 D8< ™ <8 —61<—£<-43 -109<—£<109
J (Qs1) oa op oy
—s.sg%ss_g —5.93%9.9 —15.93%3—4.0
oa op oy
—6.1£%£—2.1 —3.53%33.5 —21.63%91.6
da op oy
J (Qsir) —2.7S63J32.7 —6.1S(3BJS—2.1 —lO.6SaBJS10.6
oa 0 oy
—3.8S%S4.9 —3.9£%S4.8 —17.7S%S—3.9
oa op oy

4.4.3 Simulation of TCV Estimation with ANN

As introduced in Chapter 2, the ANNs can be used to offer a direct mapping for
estimating TCVs using MFD measurements. Since the TCV of an EM is dependent
on the magnetic fields enclosing the EM, the inputs of an ANN for TCV estimation
are selected be to be the MFD measurements from sensors that are close to the EM.
As an illustration, the TCV of EM,7 (K;7) and the MFD at 7 sensor measurements are

computed with (3.12a) and (4.7) in the entire working space. Figure 4.11 (a) depicts

the relative positions of the EMs and the sensors surrounding EM;7. An ANN (with 1

hidden layer and 10 nodes) was trained with the computed data (16200 samples). The

inputs, outputs as well as the ANN parameters are shown in Figure 4.11(b).
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Figure 4.11 = ANN parameters, EM and sensor configurations

As a comparison, the components of K;; are estimated with the trained ANN
while the rotor follows a trajectory that is given by

a=10"sint, f=5"sint, y =5, t€[0,27] (4.17)

The estimated results are compared against the analytical results computed using (4.7)

in Figure 4.12. It can be seen that the results show excellent agreement. The inputs of

the ANNs (with the same structure) for each EM are summarized in Table 4.6.
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Figure 4.12  Analytical and ANN-estimated results
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Table 4.6 ANN inputs for TCV estimation
EM indices ANN inputs

1,13 Bir, Bor, Boar, B17e, Bi7o, Bi7r, Bisr
2,14 B3r, Biir, Bisr, B1oe, Bioo, Bior, Baor
3,15 Bsg, Bi3r, Baor, B21e, B21v, Bair, Baor
4,16 B7r, Bisr, Bar, B2ze, B23o, Bisr, Bar

5.9 Bir, Bor, Baar, B170, B170, B17r, Bisr
6,10 B3R, B1ir, Bisr, B19e, B1oo, Bior, Baor
7,11 Bsr, Bi3r, Baor, B21e, B21v, B21r, Boor
8,12 B7r, Bisr, Bar, B2ze, B2o, Bisr, Bar
17,21 B17e, Bi1a, Bi7r, Bisr, B19e, B1oo, Bior
18,22 B19e, B1ow, Bior, Baor, B210, B210, B21r
19,23 Bsie, Ba1o, Bair, Baor, B2ze, B2, Basr
20,24 Bi7e, B170, B17R, B24r, B230, B23o, Basr

4.4.4 DFC Closed-loop Control Simulation

The response was simulated with DFC method when a,f follows the trajectory

given in (4.17) and y changes from the initial state 0 to 5° at 0O.lsec. In this

simulation, the desired torque was determined by the DFC control law where the

controlled MFD vector switched from Bg; and Bgy given in (4.10). The system states

went through three different MFD-define domains and the switching criteria are

shown in Figure 4.9. The PD gains in each MFD-define domain are:

Qg+

QSI- .

40 0 0] 2 0 0

K,=| 0 —48 0|K,=|0 -3 0
0 0 16] 0 0 05

40 0 0] 2 0 0

K,=| 0 —48 0 [,K,=l0 -3 0
0 0 -6 0 0 -05
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30 0 0 15 0 0
Qg1 : K,=| 0 =34 0|K,=| 0 -2 0
0o 0 -5 0 0 -05

Figure 4.13 exhibits the desired and controlled MFDs and the switching sequence
of the controlled MFD vector in the domains Qg;:, Qg;. and Qg Figure 4.14 shows
the simulated orientation and it can be seen that the rotor orientation follows the
desired orientation closely. The TCVs were estimated with the trained ANNs and the

optimal current inputs obtained from (1.5) are shown in Figure 4.15.

\ \ \ \ \
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t (sec)

Figure 4.13  MFD response

73



20

o (deg)

B (deg)

-10 I I I I
0

10

y (deg)
o ol
N

— %% ——q
_5 | | | |
0 0.2 04 0.6 0.8 1
t (sec)
Figure 4.14  Orientation response

g 2| ]
2 i
3
£ jﬁ;‘,/
= X— —
9 _
5
O |

0 0.2 0.4 0.6 0.8 1

t (sec)

Figure 4.15  Current Inputs: u;~u;;

4.5 Conclusion

In this chapter we have numerically investigated the static loading capacity as
well as the DFC system on a PMSM based on the magnetic field and force/torque

models presented in Chapter 2. The dipole force model was utilized in the static
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loading simulation and the results showed that the PMSM can statically support a
loading of 10kg with maximum current inputs at 3.4A. The of dipole force method
characterized by its close-form solutions significantly improves the torque
computation efficiency. This method, as well as the DMP methods for EMs and PMs,
will greatly benefit the design and analysis of PMSMs.

Based on the CAD model of a PMSM, the major components in developing the
DFC system were investigated. An in-depth study on the bijective domains shows
that the bijection between the orientation and magnetic fields can be analytically
characterized using the Jacobians. ANNs were trained and the simulation results show
excellent match between the analytical results and ANN-estimated TCVs. The DFC
method was simulated and the results show good control performances on the PMSM

in 3-DOF motion.
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CHAPTER S
MAGNETIC FIELD CALIBRATION AND RECONSTRUCTION

FOR MULTI-DOF PMSMS

5.1 Overview

In this Chapter, the model characterizing the relationship between the rotor
orientation and MFDs is established through calibration, which provides a direct
correspondence between the rotor orientation and MFDs. To avoid a large amount of
measurements, calibration time, and error accumulation in the measurement setup
(due to the long and uninterrupted operation) that may affect the calibration accuracy,
a new method for reconstructing the 3-D rotor magnetic field from 2-D measurements
is presented. This new method has greatly reduced the required measurements as well
as the accumulated error. The reconstruction results acquired using the new method is

compared with experimental data.

5.2 PMSM with Embedded Field Sensing System

Figure 5.1 shows a PMSM prototype which consists of a rotor (embedded with
PMs) and a stator (housing EMs). The rotor consists of 12 PM assemblies with each
piece including an aluminum angled plate as shown in Figure 5.1; and two PMs (with
opposite poles) secured in the recessed wholes of the plate.

Figure 5.2 exhibits the stator with a hybrid field sensing system for measuring the
magnetic fields. The field sensing system consists of two types of sensors: single-axis

hall-effect sensors (Allegro, A1302, as shown in Figure 5.2b), and the modified three-
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axis sensor as shown in Figure 5.2(c). The latter is constructed by attaching a single-

axis sensor on a two-axis sensor (Melexis, MLX91204).

MFS-3A Modified
3-axis

Three-axis

(d)

Figure 5.2 Stator with embedded sensors

The single-axis sensors (that are smaller in size) are installed in the center holes of
the EMs. As shown in Figure 5.2(b), a single-axis sensor is attached to a screw (that
is secured to the center hole of an EM) so that its measuring axis aligns with the

radius of the stator. Existing commercially available three-axis magnetic field
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sensors, such as Ametes MFS-3A (Figure 5.2d), usually have bulky size or such as
GMR and AMR sensors that have a very small sensing range. Figure 5.2(d) shows
that the modified three-axis sensor is relatively compact in size. Also, the sensing
range of each component can be adjusted by using different sensors in an assembly.
The measuring points of both single-axis and three-axis sensors are at the centroids of
the sensors. Figure 5.3 displays the sensor locations and configurations. The detailed
sensor measuring points as well as numbering are the same as in Table 4.1. It is
worth noting that all sensors are attached (and tangent) to a spherical surface of the

stator, where all the centroids of the sensors located as given in Table 4.1.

Figure 5.3 Sensor configuration (A: three-axis, o: single-axis)

5.3 Reconstruction of Rotor Magnetic Field

The 3-D reconstruction of the rotor MFD is accomplished by means of the
installed sensors for a given orientation (a, f, y). The reconstruction (Figure 5.4)
which includes 2-D MFD measurement and real-time extension from the acquired 2-

D data into 3-D, can be summarized in the following steps:
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Step I: 2-D data acquisition.

The MFD is scanned along longitude and latitude directions (0 and ¢ directions as
shown in Figure 4.2b) of the rotor surface. The 2-D MFD data is stored in terms of €
and ¢ with respect to the rotor frame:

B, = B,(0.)%, + B,(0.)¢, + B (0., 5.1)

In (5.1), €,,¢,,¢€.are the unit vectors at (6, ¢, ) in the rotor frame in spherical

coordinates:
é, = [cos@cos¢ cosfsing —sin H]T (5.2a)
é,=[-sing cosg o' (5.2b)
é =[sinfcosg sinfsing cos 9]T (5.2¢)

Step II: Coordinate transformation.
At any orientation (a, S, y), the position of the p™ sensor (Sp) can be transformed
into the rotor frame. The spherical coordinates of S, in stator frame (0,, @, R,) and

in rotor frame (6, ¢,, 7,) can be characterized with a rotation between their Cartesian

coordinates:
cosg,sind, cos® sin®,
sing,sind, |= [R] sin® ,sin®, (5.3a)
cosd, cos®,
where [R]=[Rot(y)]-[Rot(f)]-[Rot(x)] (5.3b)

The spherical coordinates of S, in rotor frame can be obtained by solving (5.3a). It is
worth noting that the radius (distance from the measuring point to motor center) of

remains constant during rotation and is not included in (5.3a). The directions of the

measuring axes of Sy (€,,€,,,€, ) can be also transformed into the rotor frame:

éﬁp = [R]é@)p’éaﬁp = [R]E‘Dp’érp = [R]éRp (5.4a,b,c)
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Step I11: Data interpolation

With the spherical coordinates of S, in rotor frame obtained in Step II, the three
components (B,,,B,,,B,) at S, can be interpolated using the stored 2-D MFD data

acquired in Step I; and the total MFD at S, is:

By, (. 7) = B,(0,.,), + B,(0,.8,)¢, + B.(0,.4,)C. (5.5)

Step IV: 3-D reconstruction
For a specified orientation (a, f, y), the MFD components along the measuring
axes of S, can be obtained from the dot products of the total MFD with the directions
of measuring axes of S, (€,,€,,,€, acquired in (5.4), which have the form:
ng(a,ﬂ,}/) BSp : éﬁp

B®p(a’18’7) = BSp'éf/ﬁp (5-6)
BRp(aﬂﬂﬁy) BSp'érp

@9 @ @
: B}_ . ¥ |‘\ 8( :¢)

_____ s
2-D . \ B.O
experimental | 1 IB_; ‘_L // +(6:9)
acquisition: ! . . . v B.(0.9)
___________ T s AR S TS,

; i N
;i P R 7 ok (gp’ép”p] E '
5 '3 I \ I
2 1(@op-Cape@ ):!--__H_.‘ /1(2,,.8,,.¢ )i
extension: .\ "Gp>Tdp> Rp_= L L A M !!I

By, (a.B.7) B, %, / By, =B;(6,.9, )_ea
BQ’p(as ﬂr :’,:' = BS_D X éop ™ Iv - Bﬁ(ep‘ ¢‘D )ea
B, (a.B.7)| |Bg-€,| N +B,(6,.9,)%,

Figure 5.4 3-D reconstruction process for MFDs of S,
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The measurements of the 2-D rotor MFDs can be recorded by either scanning the
rotor surface with a moving sensor or by incrementing the rotor motion with fixed
sensors. This research focuses on the latter method because the acquired data can be

used for both sensor calibration and rotor MFD reconstruction.

5.4 Sensor Calibration

The reconstruction of the rotor magnetic field requires precise information about
the actual sensor locations (including the positions of the measuring point as well as
the sensor orientation to compensate for the misalignments and inaccuracies during
installation.

5.4.1 Sensor and PM Properties
Per the above descriptions about the sensor installation, the following

assumptions can be made:

e The placement of of the rotor PMs is accurate and the positions as well as the
orientations of each PM embedded in the rotor match the design specifications as
given in Table 4.1.

e The magnetic field of each PM is axis-symmetric about its magnetization (center-
axis). However, the magnetization strength of each PM may vary.

e The actual and designed locations of S, can be characterized by Figure 5.5. The
actual (S) and designed (S") positions of the sensor differ by &®and &0 in ® and
@ directions (in stator frame), as shown in Figure 5.5.

e Sensor surfaces are tangent to the stator sphere so that the R axis of each sensor is

along the radial direction of the PMSM. For the three-axis sensors, the difference

between the actual and designed orientations of a sensor can be characterized by a

twist angle 7, about the R axis (as shown in Figure 5.5).
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The relationship between the actual measuring axes (é,,,€,,and é€,,) and the

designed measuring axes (&,, ,é,,and é,,) of S, can be described using (5.7a-g):

€y =COST, - Eq, +SINT, - &y, (5.72)

€y, =COST, &y, —SINT, &, (5.7b)

Cy, = Cp, (5.7¢)

where é(:)p: [cos O,cos®,  cos®, sin®, —sin®, ]T (5.7d)
t . T

o= [—sm ®, cos®, O] (5.7¢)

Er, :[sin®p cos®, sin®, sin®, cos@p]T (5.79)

and 90" < 7, < 90° (5.7g)

It is worth noting that the designed measuring axes in (5.7d-f) depend on the
actual positions of the measuring point and the twist angle can be found only after the

actual sensor positions are determined in the sensor calibration process.

iS’(@',(D ',R"): Designed measuring point
S(®,®,R): Actual measuring point
P Eép,é;p,é;ep : Designed measuring axes

| €g,»€q,>€x, . Actual measuring axes

é,, and ¢, pointing outwards
€op

Figure 5.5 [Nustration of the desired and actual sensor locations of S,

In order to facilitate the calibration, some properties about the magnetic field of
the rotor PMs are studied.
Figure 5.6(a) shows the results of the normal and tangential MFD of a rotor PM

computed using (3.12a) where the PM parameters are given in Figure 3.9 (D2). The
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measuring point (S) and measuring axes are illustrated in Figure 5.6(b), where A is
the separation angle between the sensor and the magnetization of the PM. As shown
in Figure 5.6, for both the normal (B,) and tangential (B;) components, the MFDs
vanish dramatically when || gets larger and the values are smaller than 2% of the

maxima of B, and B; respectively when |/| is larger than30°(denoted by the dashed

lines).
300 : _
|l ___ B i "fl;ll\l/l[" ”
I t]
200 - f/—‘\\ I B I B,
/D N ——
100 | EARY
! )
.r" ‘\\.q__‘
0 - . ff ———
I 5 I
\ !
-100 | ' ' |
Y |
-200 ! |
-30 0 30 50
A (deg)
b) Normal and tangential MFD (unit: T a) Illustration of measuring point
8 gp

Figure 5.6 MFDs of single PM

Figure 5.7 depicts the relative positions of rotor PMs, where the line segments and
the numbers in between represent the separation angles between the magnetizations
of neighboring PMs. Due to the alternating configuration of rotor PMs, only 6 PMs
(of total number of 24) are shown. To facilitate visual illustration of the rotor MFDs,
Figure 5.8 graphs the simulated rotor MFDs with respect to the rotor frame which are
computed with (3.12a). In order to mimic the real situation, the simulation takes into
account the variations of the magnetization strengths of the PMs and the parameters

are given in Table 5.1.
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Figure 5.7 Relative positions of PMs
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Figure 5.8 Simulated MFDs of rotor PMs (colors represent magnitudes of normal
MFDs, streamlines represent directions of tangential MFDs)

Table 5.1 Simulation parameters of PM magnetization strengths (1M, = 1.465T)

PM index 1 2 12 13 14 24

Magnetization strength | 1.IM, 1.05My, 1.2M, 0.95M, 1.15M, 1.1M,

Based on the above-mentioned properties of the PM MFDs, observations from

Figures 5.7 and 5.8 are discussed as follows:

e As seen in Figure 5.7, the separation angles between a PM and any of the

neighboring PMs are greater or equal to30". Therefore, in the small region around
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the center of one PM, the effects of other PMs can be neglected. As the maximum
(or minimum for PM with opposite magnetization) of normal MFDs appears at
the center of a PM (as shown in Figure 5.6), the local extremes of normal MFDs
correspond to PM centers, as shown in Figure 5.8.

e Figures 5.6 and 5.7 show that the separation angles between any point (denoted

by the dots in Figure 5.7) of a line segment connecting two PMs with opposite

poles and the centers of the other PMs are larger than30°. Therefore, the
tangential MFDs on these line segments are strictly along these lines since the

effects of the other PMs are negligible.

5.4.2 Calibration of Sensor Locations

The sensor locations can be calibrated using the acquired 2-D MFD
measurements (with rotating rotor and fixed sensors) and the sensor calibration
process for §, can be summarized in the following steps based on the above-
mentioned assumptions and observations.
A. Calibration of measuring point positions

Since the local extremes in the normal component of MFDs reveals the positions
of PM centers, the local extremes of Bz (normal component) in measured 2-D MFD
from §, reveals that the measuring point of S, aligns with one PM center after the
rotation where the rotational angles correspond to the indices of local extremes of By
in the 2-D data sets. For the local extremes in By that corresponds to the i PM

(PM,), we have:

[AIX=Y, (5.82)
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C,.Cy, S,C,+C.S,8, S,5,-C,.8,C,

yi~ai pi=ai yi'~ ai Pi~ ai
Where [A,] = _S;/icﬁi C;/iCai - SyiSﬁiSai CyiSai + SyiS/ﬁCai (58b)
S Bi _CﬁiSai C,Bicai
Xz[cosd)p sin®, sin® ,sin®, cos@p]T (5.8¢)
Y, =[cos¢sin€, singsind, cos6,] (5.8d)

In (5.8a), [A/] is the rotation matrix with Euler angles of («,,f,,7,) corresponding to
the indices at the local maxima in DS; or DSy;; 6,4 are the spherical coordinates of

PM; in rotor frame (given in Table 4.1); and C and S represent cosine and sine
respectively. The X containing the actual positions of the S, sensor can be solved with

pseudo-inverse with all PM centers by locating the local extremes:

X=(ATAA'Y (5.9a)
Al Yl
where A= A and Y = Y (5.9b)

The position of S, can be obtained using:
{@ﬂz{ acos(X;) } (5.10)
Q, atan(X,/ X))
where X; X, X; are the first, second and third components of X.
B. Calibration of sensor orientation
For sensor calibration, the mid points of each line segment (denoted by the circles

in Figure 5.7) are selected. It can be inferred that the tangential MFDs at the mid

points on the horizontal line segments (HLS’s) are along the direction of ¢, ; and the

tangential MFDs at the mid points on the vertical line segments (HLS’s) are along the
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direction ofée, . For the mid-point (denoted by O in the following discussion) of the

K™ line segments, the tangential MFD with respect to the stator frame is:

B, .([Rk]T g¢k), for points on HLS 511
dla

thk =

B, -([Rk]r € ), for points on VLS

where [R,]=[Rot(y,)]-[Rot(B,)]-[Rot(,)] (5.11b)

In (5.11), 6, and ¢, are the spherical coordinates of Oy in the rotor frame, which can

be obtained by taking average location of two neighboring PMs of Q. The PM

locations are given in Table 4.1. («,,/f,,7,)are the Euler angles corresponding to the
indices of the mid points. Meanwhile, the tangential MFD measured by S, at O is:
B, = B8, + By, (5.12)
where B, and B, are the measured MFD components at Q. Substituting €, and &,
with (5.7), and comparing the right-hand-sides of (5.11a) and (5.12), yields:
[AA,]XX =YY, (5.13a)

where AA, = I:B(BkéC:)p + B(I)ké.(;)p B@ké('bp - Bcbké;)p] (5.13b)

B, -([Rk]T €y ), for points on HLS
and YY, = , (5.13¢)
B, ‘([R,{] égk), for points on VLS~

XX=[cosrp sinrp]T (5.13d)

B, =+/Bo, + B3, (5.13¢)

With the captured mid points, the vector XX including the unknowns can be solved
using pseudo-inverse in the form:

XX = (AATAA)AATYY (5.14a)
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AA, YY,
AA=| * |and YY=|
where AA, an YY, (5.14b)
r, can be found using (5.15):
Tp:tan’l(XXl/XXz) (5.15)

where XX; and XX, are the first and second components of XX.

5.5 Experiment and Result Discussions

The 2-D MFD measurements are experimentally acquired by leading 2-DOF
rotations on the PMSM rotor. The 2-D MFD measurements are first utilized to
calibrate the sensor locations. With the calibrated sensor information, the 3-D
calibration is conducted by extending the 2-D MFD measurements. The results are
experimentally validated.

5.5.1 Experimental Setup

Figure 5.9 shows the experimental setup for acquiring the rotor MFDs of the
PMSM presented in Figure 5.1. As shown in Figure 5.9, a shaft is secured with the
rotor and two rotary guides each driven by a stepper motor lead the shaft and the rotor
to rotate about X and Y axes. A third stepper motor is secured to the other end of the
rotor shaft and leads the rotor to spin about z axis. On all three axes, pulleys and
timing-belts (with a gear ratio of 10:1) were employed to enlarge the resolutions. The
resolutions of each axis are given in Table 5.2. While the Euler angles of the rotor
increment on each axis, the MFDs are recorded by the magnetic sensors as shown in

Figure 5.2.
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Stepper Motor and

Timing Belt (z axis)
PMSM with =
Embedded Guides

Sensors

Timing Belt (X axis) Timing Belt (Y axis)
Figure 5.9 Setup for 3D Calibration

Table 5.2 Rotational resolutions
X Y z
Resolution (deg/step) 0.54 0.54 0.18

5.5.2 Experimental Results and Discussion

Two sets of 2-DOF MFD data were acquired where the orientation in each case is

characterized by:
Data Set I (DS)): a=0°,-20.16"< £ <20.16°,0" < y <360’ (5.16a)
Data Set II (DSy): £ =0,-20.16 < <20.16°,0° <y <360° (5.16b)

Three MFD components are stored in terms of rotor orientation. For S, the MFDs are

stored in the forms:
DS I By, = B, (B.7), By, = By, (B, 7), By, = By, (B, 7) (5.17a)

DS II: B@p = B@p(a’y)DB(I)p = B(Dp(aiy),BRp :BRp(a’}/) (5-17b)
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As an illustration, Figure 5.10 shows the MFD components acquired by S}7 in DS;

and the locations of S;71s calibrated below.
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Figure 5.10  Acquired MFD of S;7 (unit: mT)

A. Sensor Calibration
In order to find the actual position of S}7, the PM centers must be located based on

the B, component of the measurements. According to the observations from Figure

5.6, the PM centers can be found by locating the local extremes. However, in order to
avoid the sensor noise and outliers in the acquired data, along with the fact that the By
component of each PM dominate the neighboring area around its center, the contours
are tracked in the small neighboring areas around each PM centers and the locations
of the centers of the tracked contours are marked as the PM centers. Figure 5.11
shows the tracked contours in the measured Bz component of S;; (as shown in Figure

5.10). For clarification, a portion is zoomed.
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Figure 5.11  Located PM centers

As shown in Figure 5.11, the blue contours are composed of points with Bz equal
to a threshold value. Due to the variation of the magnetization strength in each PM,
the local extremes are not the same. Therefore, the threshold values are chosen to be
95% of the local extremes. Due to the fact the Bz component is axis-symmetric about
each PM magnetization, each contour should form a circle. As shown in Figure 5.11,
the red lines represent circles fitted with the points on each contour and the red points
are the centers of the fitted circles. For each PM, the orientation (f,y and a=0 in this
case) corresponding to the center approximated by locating the center of the fitted
circle, as well as the spherical coordinate of this PM in the rotor frame (Figure 4.2)
can be substituted into (5.8a) and the actual position of S;7 can be solved using (5.9a)
and (5.10).

When the orientations corresponding to each PM center are located, the

orientations corresponding to the mid-point of two neighboring PM centers can be
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also found (by averaging the index of neighboring PM centers). These values as well
as the spherical coordinates of these center points in rotor frame (derived using the
spherical coordinates of the PM centers given in Table 4.1) can be substituted into

(5.13a) and the twist angle (7,,) of Si7 can then be solved with (5.14a) and (5.15).

Similarly, the actual position and the twist angle of each sensor can be found with the
same procedure and Table 5.3 summarizes the results. It is worth noting that it is only

necessary to find the twist angles for three-axis sensors.

Table 5.3 Calibrated sensor information (unit: degrees)
Measuring point position (desired * discrepancy) Twist angle
Sensor Index ® o) -
P P P

1 0 + 1.29 116 + 1.52 n/a
3 45 + 270 116 + 0.62 n/a
5 90 + 1.42 116 + 1.17 n/a
7 135 +  3.65 116 + 1.06 n/a
9 0 + 3.36 64 - 029 n/a
10 225  + 419 64 - 005 -4.19

11 45 + 373 64 + 121 n/a
12 675 + 021 64 - 151 -0.92

13 90 + 0.14 64 + 1.04 n/a
14 1125 + 0.19 64 - 121 -3.99

15 135 + 221 64 - 0.17 n/a
16 1575 + 1.79 64 - 313 2.90

17 0 + 293 90 + 099 -3.35

18 22.5 + 2.81 90 + 098 n/a
19 45 + 1.85 90 + 096 -5.18
20 675 + 133 90 + 123 n/a
21 90 + 1.08 90 + 1.23 2.11
22 1125 + 0.02 90 + 1.16 n/a
23 135 + 291 90 - 037 -2.37
24 1575 + 243 90 + 050 n/a
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B. Conversion of acquired data into rotor frame
The acquired 2-D MFD measurements using the above setup are in terms of the
Euler angles. However, the 3-D calibration (as shown in Figure 5.4) requires that the

2-D data is stored in terms of the spherical coordinates of the rotor frame(8,¢) . The

transformation can be completed with the calibrated sensor information.

For any measured point in the acquired data sets, the spherical coordinates (&, @)

of the rotor frame can be obtained by solving the equations:

cos¢sin @ cos® sin®,
singsin @ =[R] sin® ,sin®, (5.18)
cosd cos®, '

where the rotation matrix is defined in (5.3b) and the Euler angles correspond to the
indices of the measured point. The normal and tangential components in terms of

(6, @) can be obtained from the acquired measurements:
B.(0,9) = B;,(a. B.7) (5.19a)
B,(0,4) = By, (@, B,7)éq, + By, (., B,7)ey, (5.19b)
Since the tangential MFDs are with respect to the stator frame, the directional vectors

of é, and é,can be transformed into the rotor frame and components along ¢ and ¢

directions can be obtained from dot products of the tangential MFD with the

transformed directional vectors of €, and ¢, respectively:

B,(6.)=B,(6.9)-([R]Z,) (5.20a)

B,(6,9)=B,(6,9)-([R]¢,) (5.20b)

Figure 5.12 graphs the MFDs with respect to the rotor frame transformed from the

MFD measurements from S;7 in DS;.
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Figure 5.12  Rotor MFDs w.r.¢ rotor frame (unit: mT)
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. 3-D extension and simulation

Using the 3-D reconstruction method (Figure 5.4), the MFDs of S} are computed

as an illustration. The results are compared with experimental results where the rotor

orientation follows the trajectory:

a=54",0=-54,0 <y <360 (5.21)

Figure 5.13 compares the results obtained from the 3-D calibration and the

experimental data. It can be seen that the results show excellent match in all

components. The errors of MFD components are graphed in Figure 5.14. The

percentage absolute mean errors (PAMEs) of three components defined in the

following are computed, which are 2.69%, 2.88%, 2.54% respectively.

mean(|Err|)

PAME =
max(|X |)
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5.6 Conclusion

In this chapter, a new method for calibrating the 3-D rotor MFDs is presented.
This method only requires 2-D measurement of the MFDs distributed on the rotor
surface and 3-D rotor MFDs can be extended from the measured 2-D MFDs with
calibrated sensor information. The sensor locations were also experimentally
calibrated with the same 2-D MFD measurements. With the resolutions given in
Table 5.2, each data set takes up a total of 225K samples while a 3-D data set
acquired by rotations on all three axes at the same resolutions require 101M samples.
This new method has greatly reduced the total number of sampling points required in
a 3-D calibration and the calibration time as well as the accumulated error is
dramatically reduced. The reconstructed 3-D MFDs were compared with

experimental data and the results showed good match.
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CHAPTER 6

EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Overview

This chapter presents results of an experimental investigation based on a
prototype DFC-based PMSM system. Two experiments were conducted; point-to-
point response of the rotor orientation; and continuous motion of the rotor orientation
to follow a trajectory. The control performances of the experiments are evaluated
with a commercial gyroscope which operates independently of the control loop.

In order to isolate the MFDs of the rotor PMs, the MFDs generated by the
energized EMs must be compensated. The relationship between the EM MFDs and
the current inputs are studied and the parameters for compensating the EM MFDs in
the DFD system as well as other un-modeled parameters are experimentally

calibrated.

6.2 Experimental Setup and System Calibrations

This session begins with the description of control experiment setup along with its
components, and is followed by the calibration of the parameters.
6.2.1 Experimental Setup

Figure 6.1 presents the experimental test-bed consisting of the PMSM, the
embedded field-sensing system presented in Chapter 5, controller, current amplifiers

and gyroscope (as a separate orientation sensing device for verification).
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Field sensing system

Figure 6.1 Experiment test-bed

A. PMSM with weight-compensating regulator

The rotor of the PMSM is essentially an inverted pendulum and becomes
inherently unstable when no current input is supplied. A weight-compensating
regulator (WCR) is incorporated in the PMSM as shown in Figure 6.2. The WCR
consists of two circular PM rings (RI and RII as shown in Figure 6.2) arranged such
that the rotor is supported angularly against gravity by distributed repulsive PM

forces, which tend to maintain it at its equilibrium.

Iron shielding disk

Circularly

distributed PMs

Figure 6.2 PMSM with WCR
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B. Controller and 1/0

The controller is featured with an NI-cRIO9025 (800MHz) processor, two NI-
9205 A/D modules (32 channels, 16-bit resolution, +10V input range), and an NI-
9264 D/A module (16 channels, 16-bit resolution, +10V output range). The control
user interface was programmed using Labview FPGA, which allows communication

between PC and the real-time processor.

C. Current amplifier

The current amplifiers transform voltage signals from the controller to currents as
control inputs to the EMs of the PMSM. The linear current amplifiers (Figure 6.1)
provide stable and smooth current amplification with ripple current less than SmA;
because of the low noise-to-signal ratio in the magnetic field readings, it has been
chosen for this magnetic-field-based application. The on-board closed-loop circuit
(PD control) allows fast and accurate current tracking. The voltage-to-current gain of

each channel is 0.5A/V.

D. Orientation sensing device for verification

The DFC system does not require orientation feedback; for verification, a 3-axis
gyroscope (ST LYPR540AH) is attached to the rotor for measuring the orientation.
The gyroscope measures the angular velocity in terms of roll-pitch-yawl motion. The

rotor orientation is obtained by integrating the angular velocity with a low-pass filter.

The specifications and parameters of the components are listed in Table 6.1.
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Table 6.1 System parameters

Rotor PMs: N52, D31.75mm x L6.35mm
Stator EMs: D31.75mm x L9.525mm, core dia. 9.25mm, 775 turns
PMSM Rotor mass: 1.99kg

Rotor Inertia: /,, =1, =6.26x 10%kg -m*,1_=823x10"kg -m’

PMs in RI: N42, D9.525mm x L9.525mm

WCR PMs in RII: N42, D9.525mm x L12.7mm

gain: 0.5A/V, maximum ripple current: SmA,

rrent amplifier :
Current amplifie maximum current: 3A

Model # Features
Processor NI cRIO 9025 800MHz
Controller A/D NI 9205 32 channels, 16bits, =10V
D/A NI 9264 16 channels, 16bits, =10V
Magnetic field A1302 1-axis, sensitivity: 13V/T
Sensor sensor MLX91204 3-axis, sensitivity: 25V/T
gyroscope ST LYPR5404AH 3-axis, sensitivity: 3.2mV/dps

6.2.2 Calibration of EM Magnetic Field

As the DFC system utilizes the MFDs of rotor PMs as feedback, the MFD of each
EM must be subtracted off from the physically measured MFDs. Since the EMs and
the sensors (installed on the stator) are stationary, the MFDs generated by an EM at
the sensor locations are proportional to the supplied current. The PM MFDs at the p”
sensor (S,) can be obtained by negating the EM MFDs from the total MFD

measurements, which has the form:

Ng
B,=B, — c, U, (6.1)

j=l0p
In (6.1), ¢, 1s a constant representing the ratio of MFD generated at S, over the "
current input. Note that the EMs are symmetrically placed about the motor center;
each current input will energize two EMs which are connected in series. The
correspondence of current input and the EM indices can be found in Table 4.2.

The constants ¢’s can be experimentally calibrated in the following process:
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a) Record the MFDs of all sensors while incrementing the current input of an EM.
b) c¢’s can be approximated by fitting the slopes of the current-MFD lines.

c) Repeat this process to each EM.

Figure 6.3(a) shows the MFDs measured by all sensors when the 9™ current input
(u9 flowing into the 17" and 21" EMs) changes from -1A to 1A where the slopes (¢’s)
are denoted in the figure. Figure 6.3 (b) is a plan view showing the positions of the
EMs relative to the sensors (as well as the configurations) surrounding EM;7. It is

worth noting that there are no sensors installed surrounding EM3;.

60

40
20+

068

> | | EM1
-40 ¢ X ‘09,rest|<1.52 | —{-= g; A

B (mT)

00) 05 0 05 1 ’ . :
Current (A) A: three-axis, o: single-axis
(a) Sensor measurements for ug from -1A to 1A (b) Hlustration of EM and
(unit of the slopes: mT/A) sensor configurations

Figure 6.3 Effect of current in EM; on MFDs of all sensor points

Two observations can be summarized from Figure 6.3(a):

e The MFDs generated by the EMs only have effects on the sensors close to the
energized EMs. When EM;; and EM;, are energized, the sensor measurements
except for S;7, Sis, Sio (close to EM;7) have very small variations when the

current input changes. The magnitudes of the other slopes are less than 3% of

C9 18R
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e The tangential MFDs (® and ® components) generated by the EMs have very

small effects on all sensor measurements when the current input changes. It can

be seen from Figure 6.3(a) that c9 13r is much larger than the other slopes.

The calibration was conducted on each EM and Table 6.2 summarizes all

calibrated ¢ values. In the following control experiments, the constants ¢’s with an

absolute value smaller than 0.5 are neglected (treated as zeros) in order to reduce real-

time computations.

Table 6.2 Calibrated values for constants ¢’s (unit: mT/A)
Sensor Current inputs (;)
1 2 3 4 5 6 7 8 9 10 11 12

1R -56.46 -1.82 -041 -0.24 -0.10 -0.68 -0.54 -1.09 -140 -0.44 -0.59 -1.37
3R 1.42 59.29 1.01 0.22 0.39 0.90 0.52 034 -0.82 -0.80 0.50 0.21
5R -024 -0.94 -5630 -1.04 -033 -0.23 -0.14 -0.29 -0.39 -1.70 ~-1.25 -0.46
7R 0.17 0.31 1.37 5554 -0.34 0.23 0.50 0.63 0.39 049 -0.75 1.66
9R -0.05 -0.48 -0.45 0.30 -57.98 022 -0.79 -0.86 -1.57 -0.39 -0.24 -1.32
100 0.12 -0.12 0.00 -0.04 0.11 -0.81 -0.07 -0.07 -1.19 -0.06 0.00 -0.08
10D -0.04 -0.07 0.07 -0.12 -3.43 3.34 0.09 0.02 -0.22 -0.17 -0.06 0.13
10R 0.25 -0.09 0.10 0.19 6.46 5.95 0.27 0.04 -2.19 -0.27 0.07 -0.26
11R -045 -0.97 -0.28 -0.21 0.36 -60.11 021 -033 -133 -1.25 -0.59 -0.38
120 0.03 -0.11 0.09 -0.04 -0.03 0.31 0.12 -0.03 -0.08 -0.85 -0.06 -0.01
120 -0.07 0.03 0.05 -0.06 -0.09 -3.11 3.46 0.12 0.15 -0.05 -0.16 0.06
12R 0.08 -0.06 0.20 0.01 0.24 5.92 6.34 025 -021 -1.65 -0.21 0.03
13R -0.28 -0.40 -0.09 -0.31 -0.41 0.27 -57.40 -0.00 -0.57 -1.23 -122 -0.17
140 0.02 -0.05 0.09 -0.10 -0.04 -0.03 025 -0.12 -0.01 -0.08 -0.87 0.06
140 -0.09 0.06 -0.03 -0.05 -0.04 -0.08 -3.31 3.63 0.08 0.12 -0.05 0.14
14R -0.13 0.04 023 -0.11 0.08 0.19 6.91 6.65 0.14 -023 -1.73 0.32
15R -0.88 -0.39 -032 -0.52 -066 -0.30 -0.21 -57.79 -0.78 -0.40 -1.36 0.63
160 -0.03 -0.02 0.04 -0.09 -0.10 -0.03 -0.01 0.19 0.07 0.00 -0.06 0.80
160 -3.26 0.01 -0.09 0.01 -0.09 -0.10 -0.16 -2.86 0.08 0.02 0.06 0.02
16R -6.50 0.10 0.05 -0.15 -0.14 -0.06 0.25 6.97 0.34 0.00 -0.32 1.88
170 0.86 -0.06 0.02 -0.06 -0.78 -0.06 -0.03 -0.08 0.13 0.00 0.01 -0.05
17® 0.05 -0.12 0.05 -0.10 -0.07 0.09 0.03 0.07 -1.61 -0.07 -0.08 1.31
17R 2.19 -0.26 -0.04 0.21 2.20 022 -0.04 -034 -4.18 -0.13 0.08 -3.79
18R 1.32  -0.55 0.59 0.42 1.64 1.29 1.07 1.11 59.08 -0.08 0.36 -0.02
190 0.86 -0.06 0.02 -0.06 -0.78 -0.06 -0.03 -0.08 0.13 0.00 0.01 -0.05
190 0.05 -0.12 0.05 -0.10 -0.07 0.09 0.03 0.07 -1.61 -0.07 -0.08 1.31
19R 2.19 -0.26 -0.04 0.21 2.20 022 -0.04 -034 -4.18 -0.13 0.08 -3.79
20R 043 -0.43 2.24 0.61 0.45 1.22 1.56 0.57 -0.01 57.10 -0.07 0.74
210 0.03 -0.08 096 -0.06 -0.02 -0.05 -0.89 -0.10 -0.01 -0.16 0.19 -0.01
210 -0.06 0.09 0.11 -0.12 -0.05 -0.11 -0.05 0.11 0.08 143 -1.75 0.09
21R -0.05 -0.32 2.18 -0.31 -0.02 0.17 2.29 026 -0.11 -3.88 -4.33 0.06
22R 0.53 0.74 1.39 -0.72 0.24 0.70 1.48 1.45 0.35 -0.11 57.99 0.77
230 0.06 -0.03 006 -0.76 -0.10 -0.03 -0.09 -0.91 -0.01 -0.01 -0.12 0.24
230 -0.08 0.08 -0.09 0.10 -0.09 -0.03 -0.10 -0.00 0.08 0.09 1.48 1.36
23R -0.30 -0.03 027 -192 -0.27 -0.03 0.33 2.70 0.12 -0.10 -4.21 3.92
24R -1.27 -028 -061 -147 -130 -0.39 -0.32 0.63 0.12 -0.53 -0.70 -57.52
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6.2.3 Restoring Torque Calibration of the WCR

Figure 6.4(a) shows the experimental setup for calibrating the restoring torque of
the WCR (generated by repulsive forces of the PMs), where a sliding block is placed
on a beam attached to the rotor. An alignment pin passing through rotor diameter and

the motor center enables that the rotor can only incline in the XZ plane.

(a) Experimental setup (b) Schematic
Figure 6.4 Experimental setup for torque calibration of WCR

The schematic Figure 6.4(b) illustrates the calibration procedure, which neglects
the bearing friction. The restoring torque equals to the gravitational torque of the
sliding block at each equilibrium:

T(0)=m,gl cos@+m,, g(lcosd+hsinO) (6.2)

In (6.2), m, and my,,q are the masses of the rotor and the sliding block respectively; /.
is the distance from the rotor mass-center to the motor center. The length / from the
center of the sliding block to the center of the beam and the inclination angle 6
measured by an inclinometer at each equilibrium are recorded. Computed using (6.2),

Figure 6.5 presents the results of the restoring torque as a function of #. The
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parameters used in the experiment are summarized in Table 6.3. It can be seen that
the restoring torque increases as the inclination angle increments and the restoring
torque is zero at € = (. As a result, the rotor tends to maintain at its equilibrium

position (€ = 0) when there is no external torque and all the EMs are not energized.

15

T (Nm)
o

-1.5 ‘ ‘ ‘
-20 -10 0 10 20

0 (deg)

Figure 6.5 Restoring torque of the WCR

Table 6.3 Experiment parameters

m, = 2.02kg, mjpeq = 158.8g, h = 107mm, /, = 9.23mm

6.3 Experiment and Result Discussions

With the numerical analysis of the DFC system presented in Chapter 4, the DFC
system is implemented on the PMSM test-bed. The control performance of the DFC
system is evaluated for both step response and trajectory tracking of the rotor
orientation. Since the initial and final states as well as the intermediate states are
within one bijective domain in the step response, the controlled MFD vector is

consistently composed of same measurements. For the trajectory tracking
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experiment, the controlled MFD vector switches from two different MFD vectors and
the states go through three different domains.

For both experiments, the rotor orientations are measured by the gyroscope for
verification. The DFC system and acquisition system of the gyroscope operate
independently; the sampling times are compared in Table 6.4. Note that the sampling
time of gyroscope is purely used for orientation estimation while the sampling time of

the DFC system corresponds to the time consumed for the closed loop.

Table 6.4 Comparison of sampling times
DFC system Gyroscope
Sampling time 4ms 12ms

6.3.1 Step Response
The PMSM is commanded from the initial orientation (0°,0°,0°) to the state
(-0.6°,0.5°,-1") . Since initial and final states are within same bijective domain, the
controlled MFD vector is set to be:
Bs = [B13r, Bor, Biir] (6.3)
The desired MFDs corresponding to the initial and final orientations are obtained
through the 3-D calibration process presented in Chapter 5 and illustrated in Figure

5.4. The PID gain matrices used in this experiment are:

4 0 0
K,=| 0 -25 0|, K, =002K,, K,=24K, (6.4)
0 0 -8
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Figure 6.6 shows the MFD responses of the components of the controlled MFD
vector when the command changes at 0.1s. It can be seen that the system is stable
and the components of controlled MFD vector converge to the desired values in less
than 1sec. Figure 6.7 shows the responses of Euler angles acquired by the gyroscope.
It can be seen that as the components of the controlled MFD vector converges to the
desired values, the Euler angles also converge to the desired orientation. The
parameters characterizing the performances of the results graphed in Figure 6.7 are

summarized in Table 6.5.
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Figure 6.6 Step response of MFD (BS = [B[3R, BQR, B”R])
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Figure 6.7 Step responses of Euler angles
Table 6.5 Step response parameters
Euler angle Overshoot (deg) Settling time (sec) Static error (deg)
a 0.12 0.18 0.002
S 0.13 0.19 0.006
¥ 0.26 0.18 0.009

6.3.2 Trajectory Tracking Application

In this experiment, the PMSM is commanded to continuously track a series of
desired orientations which guides the end effector (laser pointer fixed to the rotor) to
track a trajectory. As shown in Figure 6.8(a), the laser pointer is fixed to the rotor and

where the gyroscope is also attached to record the orientation for verification. Figure
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6.8(b) illustrates the schematic of the experimental setup, where the laser beam
projects a point (P) on the planar screen. A camera is placed on the other side of the
screen to capture the projection trajectory. The desired trajectory is a closed semi-

circle (semi-circular arc and diameter) on the planar screen.

. Camera
L ) Screen
. ._ﬁ' Laser pointer \ [%
R _hGyroscope
) ! :"

il

N PMSM
_amd

(a) PMSM with laser pointer and (b) Schematic of the experiment setup
gyroscope

Figure 6.8 Experiment setup

In Figure 6.8 (b), the XYZ and xyz denote the stator and rotor coordinate frames.
uv is a 2D coordinate of the screen plane. The XZ plane, screen plane and the camera
sensor plane are parallel; the line connecting the rotor center and the origin of the uv
coordinate is perpendicular to all three planes; D is the distance between the screen
and the XZ plane; the laser beam is parallel to the y axis of the rotor frame; and 4 is
the distance from O to C (interception of the laser beam and z axis).

For any point (X,Y,Z) with respect to the stator frame, the line equation of the

laser beam (which passes the C and is parallel to y axis) has the form:
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X—-hS,  Y+hC,S,  Z-hC,C,
-SC, C,C,~S,S,S, C,S,+55,8,

(6.5)

where a,f,y are the Euler angles and S and C represent sine and cosine respectively.
The projection which is the interception of the laser beam and the screen can be found

by substituting the equation of the screen (Y = D) to (6.5), which have the form:

D+hC,S)HS C
X:—( #5)5, L+hS,
C,C,-S,5,5,
Y=D (6.6)
D+hC,SHYCS +S585.S
7 =LHESNES 5550 e o
C,C,-S,S,8,

The coordinate of P can be transformed from the stator frame to the screen frame:

D+hC,S,)S,C
u=x =, ﬂ“)7ﬂ+h%

C,C,—5,8,8S,
,_(D+hC,S)(C,S,+5,5,S,)

L=+ hC,C,
c,C,-S,5,S,

(6.7)

v =

The objective is to lead the laser beam to track a closed semi-circle starting from
the origin which is the projection of the laser beam on the screen when the rotor
orientation is (0, 0, 0). The origin on the screen is located at

(u, v)=(0, h) (6.8)
The desired trajectory illustrated in Figure 6.9 can be divided into three trajectory
sections (TS I, TS II and TS III), which can be defined in parametric form as shown
in Figure 6.9. Substituting the coordinates of trajectory obtained from Figure 6.9 into
(6.7), the desired rotor orientations can be solved. As the rotor orientation has 3-DOF
while the trajectory is defined with 2-DOF, the unique solutions can be obtained in

this experiment with a constraint = 0.
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Figure 6.9
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[lustration of desired trajectory (R=50mm, s = wt, @ is the speed)

The desired MFDs corresponding to the desired orientations can be acquired by

following the steps shown in Figure 5.4. Throughout the entire trajectory, the

controlled MFD vector switches from two MFD vectors as shown in (4.10) and three

different MFD-defined domains. The MFD-defined domains as well as the switching

criteria (or boundary conditions) are shown in Figure 4.9. The PID gain matrices in

each MFD-defined domain are:

-QSH .

2 0 0 0.033 0 0 (60 0 0
=0 -08 O0|,K,=f 0 -002 O |,K,=0 27 0
0 0 1.6 0 0 0.04 10 0 &
0 0 0.033 0 0 60 0 0
-08 0 [,K,=| 0 -0.02 0 [LK,=0 27 0
0 0 -16 0 0 —0.04 10 0 -84

110



-2 0 0 -0.006 0 0 66 0 0
Qg : K,={0 -1 0|, K,= 0 -0.03 0 |,K,=| 0 -225 0
0 0 -2 0 0 —0.05 0 0 -S54

The parameters used in this experiment are summarized in Table 6.6.

Figure 6.10 compares the components of the reference and the actual controlled
MFD vector where the switching sequence is denoted by the color bars. It can be seen
that the controlled variables track the reference MFD components closely. Figure
6.11 shows the transient response in the dashed box graphed in Figure 6.10. It can be

seen that there is a time delay of about 12ms in the actual response.

Table 6.6 Experiment parameters

D =537mm, &= 105mm, ® = 0.25rad/s

o 50 1 Reference
E o [T
A 50 | -1 Actual
0 5 10 15 20 25
t (sec)

Figure 6.10  MFD response
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Figure 6.11  Time delay in MFD response

The desired Euler angles and the actual Euler angles (measured by the gyroscope)
for the entire trajectory are compared in Figure 6.12. It can be seen that the rotor
follows the desired orientations closely. The switching sequence (color bar) is
superimposed in Figure 6.12 and it can be seen that there is no oscillation when the
switching happens. The errors of the Euler angles are shown in Figure 6.13 and the
maximum and mean absolute errors are summarized in Table 6.7. The current inputs
are shown in Figure 6.14 and it can be seen that the maximum current is less than

0.5A.

0 5 10 15 20 25

t(sec)

Figure 6.12  Orientation response
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Figure 6.13  Orientation errors of a, f, y (unit: deg)

Table 6.7 Tracking errors

Maximum absolute error Mean absolute error
o. (deg) 0.1465 0.0412
B (deg) 0.0925 0.0529
¥ (deg) 0.0877 0.0422
ErTprojection (mm) 0.88 0.32
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Figure 6.14  Current inputs
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The projection of the laser beam on the screen was captured by the camera and
the coordinates were approximated by locating the centroids of the bright spots in the
binarized images of the captured frames. Figure 6.15 compares the desired trajectory
and the trajectory of the captured projection on the screen. It can be seen that the
trajectory formed by the projection of the laser beam match the desired trajectory
very well. The maximum and mean absolute errors of the projection trajectory are

also summarized in Table 6.7, where the error in each trajectory section is defined as:

u,—u, IS1
Errprojection = R N u2 + (V - h)2 ’ TS II (69)
u,—u, TSI
where u, can be found in Figure 6.9.
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Figure 6.15  Desired trajectory and the actual projection on the screen
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6.4 Conclusion

The control performances of the step response as well as the trajectory tracking of
the DFC system were experimentally investigated on the PMSM test-bed. The DFC
system enables rapid and accurate response of the rotor orientation of the PMSM. The
multi-sensor network enables the DFC system to apply in regions larger than
individual bijective domains. Also, results show that the DFC system can transit
seamlessly in different domains. A comparison of the sampling times of the closed-
loop DFC system and the gyroscope (for only orientation estimation) implies that the
DFC system is superior in terms of the computational efficiency to traditional control

systems that require orientation feedback.
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CHAPTER 7

CONCLUSION AND FUTURE WORKS

7.1 Accomplishments and Contributions

While the immediate contribution of this thesis is a new method for closed-loop
orientation control of multi-DOF PMSMs, the results and other new methods derived
in this research have potential applications in many other electromagnetic motion

systems. The specific contributions include the following:

A.  More efficient control method

The DFC method eliminates the need of explicit orientation feedback. For a
multi-DOF system, external orientation systems usually introduce unwanted friction
and/or inertia, which lead to low sampling rate in conventional PMSM control
systems. The magnetic field measurements are much less demanding for both
hardware and software; and the direct feedback of magnetic field measurements in
closed-loop control greatly improves the computational efficiency. By allowing
parallel processing of the control law and TCV estimation, this new control method
further reduces the system sampling rate and accumulated errors due to the serial
computations in conventional control systems, which dramatically improves system
stability and accuracy. This new method provides a novel perspective for control
which allows complete independence between sensing and control, not only in the

real-time operation but also during design process.
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B.  Analytical method for determining the bijective relationship between orientation
and magnetic field

The bijection between orientation and magnetic field has been discussed. The
Jacobian provides an analytical and straight-forward way for studies concerning the
magnetic inverse problems [52, 53]. This method is of great importance in locating
the bijective domains of certain sensor sets in design process of the DFC system.
Potentially, it will also have profound effects for the development of field-based
orientation sensing systems of PMSMs. As multiple positions/orientations share a
common field measurement value in a non-bijective relationship, it is clear that
without bijection, associating an arbitrary field measurement with a unique position is
difficult. Previous studies about field-based orientation sensing methods usually
utilize sensor redundancy to ensure bijection leading to excessive sensor installations,
signal acquisition, and processing channels. By analyzing the bijective domains of
sensors installed at different locations with Jacobian in the design process, the

unnecessary sensor installations can be greatly avoided to a large extent.

C. Force/Torque related estimation based on magnetic field

This thesis also offers a direct TCV estimation method using magnetic field
measurements. Analytically, the TCV of an EM can be computed by integrating
functions of the magnetic fields enclosing the EM, which is however not practical for
real-time system because large amount of computation is needed. Orientation-based
estimation methods have been developed and applied in many PMSM studies but

these methods require explicit orientation information in control. This thesis
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introduced a new method which avoids the above difficulties in TCV estimation by
building direct mappings from magnetic field measurements of scattered measuring
points to the TCVs. The ANN provides a proficient and relatively accurate mapping
method and an efficient algorithm for real-time computation. This method not only
provides immediate means for parallel processing of control law and TCV estimation
in a DFC system, but also shows the feasibility of field-based force/torque estimation
as an alternative of force/torque sensors in a variety of motion systems, such as

traditional sing-axis motors, or linear and spherical motors.

7.2 Future Works

The studies in this thesis has extended the research of PMSMs in the aspects of
control and sensing. The outcomes are encouraging and the future research works are

summarized as follows:

A.  Further improvements of the control system in accuracy and sampling rate.

The DFC method on the orientation control of a PMSM has overcome several
limitations of traditional control methods that depend on explicit orientation sensing
and serial computation. The performances of the DFC system can be further enriched
in terms of the accuracy and bandwidth in three aspects:

e Optimization of a multi-sensor network: As the bijective domains depend on the

sensor locations, it is desired to have an optimal multi-sensor network with a

smallest number of sensors (each with a bijective domain corresponding to the

maximum range), which enables the DFC to work in the entire operational range.
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B.

This will reduce computational time and associated signal processing, and thus
hardware cost.

Model-based TCV estimation: Although ANN is an efficient mapping method for
TCV estimation using measured magnetic fields, the accuracy is hard to predict
due to the lack of certainties in the intermediate process of ANN. It is desired that
the TCV of an EM can be modeled in close-form as a function of some distributed
field measurements on the EM such that the accuracy can be predicted and
controlled by changing the number of distributed field measurements.

Distributed hardware implementation of parallel processing. The DFC system
introduced in Chapter 6 was implemented on a high performance processing unit.
Even though the components permitting parallel computing (such as control law
and TCV estimation) runs concurrently, the interferences are still obvious. An
alternative and more efficient way is to implement the computations on relatively
low-cost distributed processing units; For example, the ANN for the TCV
estimation of each EM can be implemented on a DSP processor. The sampling
rate will be further lowered and the system stability as well as accuracy can be

improved.

Torque (force) estimation and control

Modern manufacturing industries nowadays require motors with not only high

precision, but also with intelligence and adaptively. Many applications (like chip-

mounter in MEMS industry) require torque (force) sensing and control in addition to

position sensing and control. Current method for torque (force) sensing requires
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expensive force and torque sensors, which not only needs modifications of the end
effector but also affects the transient performances of the motion systems. As the
external torque (force) applied by objects can be estimated using the exerting torque
(force) of the motors and current states, and the exerting torque (force) depends on
the TCVs and current inputs, it is possible estimate external torque (force) directly
from magnetic field measurements. Meanwhile, as the output of the control law of the
DFC system is torque, it is easy to apply torque constraints or commands in the

control algorithms. The force control can be applied in a similar way.

C. PMSM for haptic applications [54]

Haptic or tele-operational devices, which have the capabilities to provide realistic
force/tactile feedback to human operators in a virtual environment, play an
increasingly important role in training stages in many fields. PMSMs which provide
smooth and continuous multi-DOF motion in one joint have significant potentials in
haptic applications. ~ The continuous multi-DOF orientation allows flexible
manipulation by human operator and the motion command can be converted to
control object in target space for up to 6-DOF with an orientation-to-translation
reconfiguration. As currents flow through the EMs, a 3-DOF torque can be generated
providing “haptic feel” to the human user.

Physically, the PMSM has three-DOF of rotational motion but can be configured
to operate in two modes to achieve two independent sets of (rotational and

translational) motion in the target space (as shown in Figure 7.1):
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Rotational mode: The PMSM can be directly used as an integrated rotational motion-

sensor and torque-actuator. The three-DOF rotational motions are defined as:

@ B 7] =lsa oB <7 (7.1)
where the constants, {j, {; and {3, can be tuned to meet specific needs; and the
prime denotes the coordinates in virtual environment (similarly hereinafter).
Similarly, the PMSM can simulate physically the torque feedback from the virtual
target by directly applying Lorenz torques on its rotor in real time enabling the
user to have the haptic feel. The three torque components have the form (with

constant #;, 172 and 73):

T

(7. 7, 5] =[nt, I, o] (7.2)

Translational mode: The PMSM can also be configured in translational domain such
that the user’s rotational motion on the rotor is interpreted into translational
displacements. By the same token, the force feedback from the virtual target is

actuated as torques on the rotor enabling the user to have an equivalent haptic

experience:
[ v Z] =[éa &8 T (7.30)
T o A A T
[Ta Ty TJ :[771FY’ nFy 773sz] (7.3b)

where¢,,¢,,¢,and 7,,7,,7,are constants.
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Figure 7.1 [lustration of position and torque commands for a two-mode
configuration

By switching between these two modes, the PMSM is capable of two independent
sets of three-DOF motions in the target space providing sensible force/torque
feedback to the user in real time.

A two-mode PMSM haptic device will be able to cooperate with both virtual
simulation environment (for training and design) and remote manipulation of real
objects (tele-operation). The performances of the PMSM for both circumstances will

be investigated.
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APPENDIX A: DYNAMIC MODEL OF A PMSM

The dynamic model of a PMSM can be derived using Lagrange formulation.

For any orientation represented with xyz Euler angles (a, f, ), the rotation matrix
from XYZ to xyz (stator and rotor frames respectively as shown in Figure 4.2a) can be
obtained as:

c,C, 5,C,+CS,S, S5,-C5,C,

[R]= [Ry][Rﬂ][Ra] = —SyCﬂ Cyca —SySﬂSa CySa +SySﬁCa (A.la)
s, -C,8, ,C,
10 0 c, 0 -8, c, s,
where [R,]1=]0 C, S, [,[R,]={0 1 0 |[,R =|-S, C, 0] (A.lb,c,d)
0 -s, C, s, 0 C, 0 0 1

In (A.1), S and C represent sine and cosine respectively. The angular velocity of the

rotor is

@=al +pJ'+ 7k =(aC,Cp+ BS, )T +(-aS,Cy+ BC,)j+(aS, +7)k  (A2)
where (17,],];), (?,7,]?) and (I,J,K) represent the unit vectors of the orthogonal
axes of xyz, x'y'z'and XYZ frames (as shown in Figure 4.2a) respectively. The

kinetic energy can be obtained as:
T, = G@TI@J = %(Ilo‘(zC; +1B+1,6°S;+ 1,77 + 21ao':y'Sﬂ) (A.3)

where the inertia matrix

I 0 0
I=/0 I, 0 (A4(A.3)
0 0 7

123



In (A.3), I, = L., I, = I=1,,. The virtual displacement vector can be represented using:
67 = Sal +Bj'+Syk =(5aC,C,+5BS, )i +(BC, —5aS,Cy)j +(0aS,+5y )k (A.5)
Thus the generalized force can be derived using
Q=T-67=(I,C,C, - T,5,C, +1.8,)0a +(TS, +T,C,) B + T.0y (A.6)
where T, T, T. are the components of the total torque applied by the EMs w.r.¢ the
rotor frame.

Neglecting the frictional torque of the bearing, the Lagrange formulation has the

form:

d(oT) oT oV
dt

ﬁ_q',- 2 T3 o, (A7)

In (A.7), the potential energy V=0 because the center of mass coincides with the
rotation center; i = (1, 2, 3); (91, ¢2, ¢3) = (0, B, 7); and Q;, O», O3 are the coefficient
terms of da, Jf, oy in (A.6) respectively. Therefore, the equations of motion derived
using (A.7) have the form:

[M]q+C(q.q)q +g(q) =T (A.8a)

1Co+1,S, 0 IS,
where [M]= 0 I, 0 |, (A.8b)
1,8, 0 I,
21,688,C,+1,B7C,—21,65C,S,
Cq.q)q=| 14°C,S,—-1,6°CyS,—1,67C, (A.8¢)
1,65C,
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cc, -s¢, S,TT.
and T=| §, ¢, 0|7, (A.8d)
0 0 1

z

In (A.8a), g(q) = 0 (since center of mass coincides with the rotation center).
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APPENDIX B: STABILITY ANALYSIS

For the rotor dynamic (A.8) and the PD control law, same as (2.18a),
T=K}e, +K)¢, (B.1)

let the Lyapunov function be the virtual mechanical energy having the form:

= 2(a MIq+ €] K e, (B.2)
Meanwhile, the conservation of energy can be written as

——(q"[M]q)=q¢"-T (B.3)

where the left hand side is the derivative of the kinetic energy; and the right hand side
represents the power input of the motor. Since the inertia matrix [M] in (A.8) is
symmetric positive definite, the time derivative of the Lyapunov function can be
obtained, along with (B.3) and that, as:

l1d

pold
2 dt

(4 1M1G) - (€K e, ) (B.4)
Since q, =0 at the equilibrium state, substituting (B.1) and (B.3) into (B.4), yields:
V=—4"IK,]q (B.5)
Therefore, as long as the control matrices K', and K/, in (B.1) are positive definite, V'
> 0, andV < 0. Meanwhile, since’ =0 implies thatq = 0; along with (A.8a), (B.1)

and (B.3), Vis identically 0 only if e, =0. Therefore, the system is stable and

converges to the desired state.
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