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SUMMARY 

Electromechanical modeling efforts in the research field of vibration-based energy 

harvesting have been mostly focused on deterministic forms of vibrational input as in the typical 

case of harmonic excitation at resonance. However, ambient vibrational energy often has broader 

frequency content than a single harmonic, and in many cases it is entirely stochastic. As 

compared to the literature of harvesting deterministic forms of vibrational energy, few authors 

presented modeling approaches for energy harvesting from broadband random vibrations. These 

efforts have combined the input statistical information with the single-degree-of-freedom 

(SDOF) dynamics of the energy harvester to express the electromechanical response 

characteristics. In most cases, the vibrational input is assumed to have broadband frequency 

content, such as white noise. White noise has a flat power spectral density (PSD) that might in 

fact excite higher vibration modes of an electroelastic energy harvester. In particular, 

cantilevered piezoelectric energy harvesters constitute such continuous electroelastic systems 

with more than one vibration mode. 

The main component of this thesis presents analytical and numerical electroelastic 

modeling, simulations, and experimental validations of piezoelectric energy harvesting from 

broadband random excitation. The modeling approach employed herein is based on distributed-

parameter electroelastic formulation to ensure that the effects of higher vibration modes are 

included. The goal is to predict the expected value of the power output and the mean-square 

shunted vibration response in terms of the given PSD or time history of the random vibrational 

input. The analytical method is based on the PSD of random base excitation and distributed-

parameter frequency response functions of the coupled voltage output and shunted vibration 

response. The first one of the two numerical solution methods employs the Fourier series 
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representation of the base acceleration history in a Runge-Kutta-based ordinary differential 

equation solver while the second method uses an Euler-Maruyama scheme to directly solve the 

resulting electroelastic stochastic differential equations. The analytical and numerical simulations 

are compared with several experiments for a brass-reinforced PZT-5H cantilever bimorph under 

different random excitation levels. In addition to base-excited cantilevered configurations, 

energy harvesting using prismatic piezoelectric stack configurations is investigated. 

Electromechanical modeling and numerical simulations are given and validated through 

experiments for a multi-layer PZT-5H stack. After validating the electromechanical models for 

specific experimentally configurations and samples, various piezoelectric materials are compared 

theoretically for energy harvesting from random vibrations. Finally, energy harvesting from 

narrowband random vibrations using both configurations are investigated theoretically and 

experimentally.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation  

Vibration-based energy harvesting for low-power electricity generation has been heavily 

researched over the last decade [1-5]. The motivation in this research field is due to the reduced 

power requirement of small electronic components, such as the wireless sensor networks used in 

passive and active monitoring applications. The ultimate goal is to enable autonomous wireless 

electronic systems by recovering the waste vibrational energy available in their environment so 

that maintenance requirement for battery replacement and chemical waste of conventional 

batteries can be minimized. Among the basic transduction mechanisms that can be used for 

vibration-to-electricity conversion (electromagnetic, electrostatic, piezoelectric, and 

magnetostrictive conversion methods as well as the use of electroactive polymers [6-16]), 

piezoelectric transduction has received the greatest attention due to the high power density and 

ease of application of piezoelectric materials [4].  

The existing electromechanical modeling efforts of vibration-based energy harvesting 

using piezoelectric and other transduction mechanisms have mostly focused on harmonic 

excitation at resonance. A variety of electromechanical models and energy harvester 

configurations have been investigated for energy harvesting under harmonic excitation. Closed-

form solutions for power generation and vibration response of harvesters are generally available 

in the literature. However, ambient vibrational energy often has broader frequency content than a 

single harmonic and in many cases it is entirely stochastic. As compared to harmonic vibration, 
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random vibration processes involve more complicated frequency information and statistical 

properties.  

Among the limited studies on piezoelectric energy harvesting from random vibration, 

many are pure experimental studies or pure numerical simulations. Very few authors presented 

modeling approaches and most of them use single-degree-of-freedom (SDOF) energy harvester 

models. As an alternative to SDOF modeling and analysis efforts, in this thesis, a distributed-

parameter electroelastic model is employed. The motivation for distributed-parameter modeling 

emerges from the fact that broadband random vibrations may in fact excite higher vibration 

modes of an electroelastic energy harvester, which can be significant for a configuration with 

lightly damped higher modes. Based on the distributed-parameter electroelastic model, analytical 

solutions of the expected electrical power output as well as shunted vibration response of the 

harvester are obtained. In addition, two numerical solutions are developed and experiments are 

performed to validate the solutions.  

In the literature of energy harvesting from random vibrations, most authors assume 

broadband random vibration (such as ideal white noise) as the energy source. Therefore, this 

thesis starts with the assumption of broadband random excitation as vibrational input, and then 

considers band-limited random vibrational input, with the motivation to develop analytical and 

numerical solutions to predict the coupled responses of the system.  

The two energy harvester configurations investigated in this thesis are cantilevered 

bimorph and multilayer stack, which are two most popular piezoelectric energy harvester 

configurations.   
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1.2 Research Objectives 

The objective of this research is to theoretically and experimentally investigate 

piezoelectric energy harvesting from random vibrations of based-excited bimorph cantilevers and 

axially loaded multilayer stacks. To this end, the goals in this thesis can be summarized as 

follows: 

 Development of both multi-mode and single-mode frequency-domain analytical and 

time-domain numerical solutions for the expected electrical power output and mean-

square shunted vibration response of cantilevered energy harvesters in response to 

random base excitation   

 Development of analytical and numerical solutions to predict the expected power in 

response to random axial loading of multilayer piezoelectric stacks 

 Investigation of the effects of higher vibration modes on the expected power output and 

shunted vibration response in the cantilever case 

 Experimental validation of the analytical and numerical solutions through experiments at 

various excitation levels  

 Experimental validation of the solutions for both broadband and band-limited random 

excitations  

 Comparison of various piezoelectric materials in terms of their energy harvesting 

performance under broadband random excitation  
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1.3 Outline of Thesis 

In Chapter 2, the background and literature review of electromechanical modeling efforts 

of energy harvesting from broadband random excitation are provided, and the significance of this 

research is discussed. After that Chapters 3 and 4 present piezoelectric energy harvesting from 

broadband random vibration using cantilevered bimorph and multiplayer stack, respectively. In 

each of these two chapters, electroelastic models are summarized, analytical solutions, two 

numerical methods, and experimental validations are discussed. Comparisons of various 

piezoelectric materials in terms of their random power generation performance are also provided 

at the end of both chapters. Chapter 5 provides the validations of the analytical and numerical 

solutions under band-limited random vibration for cantilevered bimorphs and multilayer stacks. 

Finally, the last chapter discusses the conclusions and provides recommendations for future work 

in this field. 
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CHAPTER 2 

BACKGROUND AND SIGNIFICANCE 

2.1 Existing modeling efforts of energy harvesting from random vibrations 

Most of the existing electromechanical modeling efforts on vibration-based energy 

harvesting have been based on the assumption that the vibrational input is deterministic, as in the 

typical case of harmonic excitation of linear and nonlinear energy harvesters at or around 

resonance [6-16]. Closed-form expressions of for generation and optimality conditions have been 

well developed by several authors for deterministic forms of excitation [17-20]. These efforts 

contribute to the design and performance evaluation of linear and nonlinear energy harvesters 

under harmonic excitation.  

Harmonic excitation is a simple and rather idealized representation of real-world ambient 

vibrations. In many cases, ambient vibrational energy is non-harmonic or entirely stochastic with 

broad frequency content (Fig. 1). As compared to the literature of harvesting deterministic forms 

of energy, rather few research groups have investigated energy harvesting from random 

vibrations and employed different electromechanical models. Typically, the excitation source is 

assumed to be ideal white noise, which is a broadband random signal that has a flat power 

spectral density (PSD) in frequency domain.  

  

(a) (b) 
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Figure 1 (a) A three-span multi-girder steel bridge in Roanoke, VA; (b) the accelerometer 

attached on the bridge; (c) measured acceleration (from NIST report [40]) 

 

Single-degree-of-freedom (SDOF) modeling is the most commonly used approach in the 

theoretical exploration of energy harvesters driven by broadband random excitation. Halvorsen 

[21] derived closed-form expressions for the power output, optimal load, and proof mass 

displacement based on linear SDOF modeling, and verified the resulting expressions by solving 

the Fokker-Planck equation. The results were also compared with those obtained from the same 

model under harmonic excitation and differences were reported. Adhikari et al. [22] also used a 

linear SDOF model to describe the stochastic dynamics for the fundamental vibration mode of an 

energy harvester. Analytical expressions of the harvested power and optimal load were derived, 

and illustrated using numerical examples. Scruggs [23] investigated the optimal control of a 

linear energy harvester network for increased power flow to a storage system under random 

excitation.  

Daqaq [24] considered hardening stiffness in the SDOF formulation for electromagnetic 

energy harvesting and concluded that the monostable Duffing oscillator did not provide an 

enhancement over the typical linear oscillators under Gaussian white and colored random 

excitations and contemporaneous experiments by Barton et al. [25] for electromagnetic energy 

(c) 
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harvesting provided consistent results. Based on SDOF modeling, Cottone et al. [26] and 

Gammaitoni et al. [26] suggested that carefully designed nonlinear oscillators could potentially 

outperform the linear ones under noise excitation for both bistable and monostable 

configurations. 

Ferrari et al. [27] numerically studied a bistable SDOF energy harvesting system under 

broadband random excitation by using the Euler-Maruyama method. Litak et al. [28] numerically 

simulated a bistable piezomagnetoelastic energy harvester (introduced by Erturk et al. [29]) 

under Gaussian white noise and observed a positive correlation between standard deviations of 

the random excitation and of the voltage output. In particular, they [28] focused on the potential 

of exploiting “stochastic resonance” in energy harvesting, as formerly discussed by McInnes et 

al. [30] through another SDOF representation. Ali et al. [31] developed a linearized SDOF model 

for broadband random excitation of bistable piezomagnetoelastic energy harvesters. They 

showed that there existed a cut-off standard deviation of the input excitation below which the 

power output was very low. Daqaq [32] gave a theoretical study on the response of an inductive 

SDOF bistable energy harvester to white and exponentially correlated Gaussian noise. For 

Gaussian white noise excitation, the exact probability distribution function was expressed in 

order to obtain a closed-form expression of mean power output.  

Nguyen et al. [33] studied a wideband MEMS electrostatic energy harvester using a 

lumped-parameter model. They experimentally compared the PSD of voltage output for different 

levels of broadband random inputs. They also examined the relationship between the output 

power and PSD of excitation in addition to providing finite-element simulations. Some research 

groups also utilized SPICE, a numerical circuit simulator, to simulate the harvested energy in 

response to random vibrations [34-36]. Tvedt et al. [37] also considered broadband vibration 
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excitation when they investigated the nonlinear behavior of an electrostatic energy harvester 

along with the effect of bias voltage.  

 As another common piezoelectric configuration, piezostack has been employed in many 

harvester designs. Stack-based energy harvesters have been mostly investigated under 

deterministic excitation in the existing literature. The applied mechanical load on the harvesters 

are often considered to be harmonic as in the following examples. Goldfarb et al. [46] analyzed a 

piezoelectric stack under harmonic mechanical load using a lumped parameter model and 

derived the expression of power efficiency. The results were validated experimentally by 

performing frequency and resistance sweeps. Maximum power generation was claimed to occur 

at low frequency which was several orders of magnitude below the resonance frequency of the 

stack. The power efficiency also had a weaker dependence on resistance than frequency. 

Feenstra et al. [47] designed an energy harvester that employed a mechanically amplified 

piezoelectric stack and converted the dynamic tension in the backpack strap to electrical energy. 

It was reported that a mean power of approximately 0.4mW was generated for a 220N load. As 

an alternative of a conventional flex-tensional piezoelectric transducer, which might result cracks 

in piezoelectric element, Li et al. [48] designed a flex-compressive mode transducer that used 

two piezoelectric stacks and two bow-shaped elastic plates. They derived the expression of 

power generation under resonance driving conditions and reported that a maximum power of 

14.6mW was harvested under a 1g peal-to-peak excitation at the transducer’s resonance 

frequency.  
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2.2 Significance of the current research 

As compared to the literature of energy harvesting from deterministic vibrational source, 

typically harmonic at resonance, very few authors have investigated random vibrations and most 

of them employed SDOF models. Since broadband random excitation might excite lightly-

damped higher vibration modes of the harvester, in this research, a distributed-parameter 

electroelastic model is used. The expected power output and mean-square shunted vibration 

response are expressed in terms of the excitation PSD and the electroelastic frequency response 

functions (FRFs) in the analytical solution. After that, the numerical electroelastic solutions are 

presented based on two separate approaches. The deterministic approach represents the 

excitation history in terms of its Fourier series expansion to use in the first-order electroelastic 

equations for a Runge-Kutta scheme while the stochastic approach directly employs an Euler-

Maruyama scheme to solve the resulting first-order stochastic differential equations. 

Experimental results are then presented to validate analytical and numerical predictions. 

Electrical power generation and its shunt damping effect at different random vibration levels are 

investigated.  

The analytical solutions and numerical simulations are proved to be effective tools to 

predict the power generation and shunted vibration response of the harvesters under both 

broadband and band-limited random vibrations. Although computationally slower than the 

analytical solutions, the two numerical simulations are also shown to be useful tools when 

handling stochastic input. With these established mathematical tools, different piezoelectric 

materials can be compared and optimized in terms of their energy harvesting performance under 

random excitation.   
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CHAPTER 3 

BROADBAND RANDOM EXCITATION OF  

A CANTILEVERED BIMORPH 

3.1 Distributed-parameter electroelastic modeling 

Figure 2 shows symmetric bimorph piezoelectric energy harvester configurations excited 

by base motion in the form of translational displacement, ( ),g t  with superimposed small 

rotational displacement, ( ).h t  The wires originating from negligibly thin and perfectly 

conductive electrode pairs covering the surfaces of the piezoceramic layers are connected to a 

resistive electrical load (
lR ). The distributed-parameter electroelastic formulation summarized in 

this section is based on the Euler-Bernoulli beam assumptions [11, 38]. Therefore, the energy 

harvesters considered herein are assumed to be thin structures so that the shear distortion and 

rotary inertia effects are negligible (we note that Refs. [38, 39] present modeling of piezoelectric 

energy harvesters with moderate thickness). As a consequence, the tensorial form of the linear 

piezoelectric constitutive equations can be given in the plane-stress form as 

1 111 31

3 331 33

E

S

T Sc e

D Ee 

    
    

    
                (1) 

where 1T  is the stress component, 3D  is the electric displacement component, 1S  is the strain 

component, 3E  is the electric field component, 3-direction is the poling direction (z-direction in 

Fig. 1), and 1-direction is the axial direction (x-direction in Fig. 1). In addition, 31e  is the 

effective piezoelectric stress constant, 11

Ec  is elastic stiffness component (Young’s modulus) at 

constant electric filed, and 33

S  is the permittivity component at constant strain and an over-bar 
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denotes that the respective parameter is reduced for the plane-stress conditions. Thus, for a 

beam-like thin cantilever, the plane-stress elastic, piezoelectric and dielectric parameters can be 

given in terms of the 3-D electroelasticity components as 

11 111/E Ec s , 31 31 11/ Ee d s , 
2

33 33 31 11/S T Ed s                 (2) 

where 11

Es  is the elastic compliance at constant electric field, 31d  is the commonly referred 

piezoelectric strain constant, and 33

T  is the permittivity component at constant stress. Note that 

the substructure material is typically an isotropic metal.  

 

 

Figure 2. Bimorph piezoelectric energy harvester configurations under base excitation: (a) series 

and (b) parallel connection of the piezoelectric layers. 

 

The governing linear electroelastic equations of a bimorph piezoelectric energy harvester 

(Fig. 1) in the physical coordinates are [11, 38] 

 

4 5 2

4 4 2

2

2

( , ) ( , ) ( , ) ( , ) ( ) ( )
( )

( , )
( )

rel rel rel rel
s m

b
t

w x t w x t w x t w x t d x d x L
D c c m v t

x x t t t dx dx

w x t
m M x L

t

 




     
            


  



 (3) 

(a) 

(b) 

 

( )v t  

 

( )v t  
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3

2

0

( , )( ) ( )
0

L

eq rel
p

l

w x tdv t v t
C dx

dt R x t



  

                                         (4) 

where ( , ) ( ) ( )bw x t g t xh t   is the effective base displacement as the excitation input, ( , )relw x t  

is the vibration response (transverse displacement of the neutral axis relative to the moving base 

at position x and time t), ( )v t  is the voltage response across the external resistive load, D is the 

bending stiffness of the beam, m is the mass per unit length of the beam, mc  is the external 

damping coefficient (mass-proportional damping), sc  is the internal damping coefficient of the 

composite structure (stiffness-proportional damping), tM  is the tip mass, 
eq

pC  is the equivalent 

capacitance of the piezoceramic layers,   is the electromechanical coupling term in the physical 

coordinates, and ( )x  is the Dirac delta function. The electromechanical coupling term is 

31 ( ) / 2p se b h h    if the piezoelectric layers are connected in series and 
31 ( )p se b h h    if the 

piezoelectric layers are connected in parallel (where b is the width of the layers, 
ph  is the 

thickness of each piezoceramic layer, and sh  is the thickness of the substructure layer). Likewise 

the equivalent capacitance is 33 2eq S

p pC bL h  for series connection and 332eq S

p pC bL h  for 

parallel connection (where L is the overhang length). 

If the vibration response (relative to its moving base) in the physical coordinates is 

expressed in terms of the mass-normalized eigenfunctions (mode shapes), ( ),r x  and the modal 

coordinates, ( )r t , for the rth mode such that 

1

( , ) ( ) ( )rel r r

r

w x t x t 




                 (5) 
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where the eigenfunctions are obtained from the undamped and electromechanically uncoupled 

problem [11, 38], then, following the analytical modal analysis procedure [40], the 

electromechanically coupled ordinary differential equations in the modal coordinates are 

obtained as 

2( ) 2 ( ) ( ) ( ) ( )r r r r r r r rt t t v t f t                       (6) 

1

( )
( ) ( ) 0eq

p r r

rl

v t
C v t t

R
 





                  (7) 

Here, an over-dot ( )  represents differentiation with respect to time, r  
is the modal mechanical 

damping ratio, r  
is the undamped natural frequency (close to the short-circuit resonance 

frequency, 
sc

r , for the light mechanical damping condition: 1r ), r  
is the modal 

electromechanical coupling term, and
 

( )rf t
 
is the modal mechanical forcing function which 

depends on the forms of ( )g t  and ( )h t .  

 

3.2 Steady-state response to harmonic excitation and electroelastic FRFs 

If the motion of the vibrating base in Fig. 1 is harmonic of the form 0( ) j tg t W e   and 

0( ) j th t e  (where 
0W  and 

0  are the translational and small rotational displacement amplitudes 

of the base, respectively,   is the excitation frequency, and j  is the unit imaginary number), 

hence ( ) j t

r rf t F e  , the steady-state voltage response ( ( ) j tv t Ve   where V is the complex 

voltage) of the cantilevers shown in Fig. 1 can be given as [11, 38]  
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2 2
1

2

2 2
1

2
( )

1

2

j t

r r

rj t r r r

eq r
p

rl r r r

j F e

j
v t Ve

j
j C

R j







    




    











 
 

 
 




             (8) 

Here, the modal electromechanical coupling ( r ) and the equivalent inherent capacitance (
eq

pC ) 

terms for the series and parallel connections of the piezoceramic layers are given in Table 1 

(where ( )r x  is the derivative of ( )r x with respect to x).  

 

Table 1. Modal electromechanical coupling and equivalent capacitance terms for the (a) series 

and (b) parallel connection cases. 
 

 

(a) Series connection 

r  
31( ) ( ) / 2p s re h h b L  

eq

pC  33 2S

pbL h  

(b) Parallel connection 

r  
31( ) ( )p s re h h b L  

eq

pC  332 S

pbL h  

 

In Eq. (8), the modal mechanical forcing term due to base excitation is 

2 2

0 0

0 0

( ) ( ) ( ) ( )

L L

r r t r r t rF W m x dx M L x x dx M L L      
   

      
   
             (9) 

The electromechanically coupled vibration response of the energy harvester beam (relative to its 

moving base) at steady state is then 
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2 2 2 2
1 1

( ) ( ) ( ) ( )
( , )

2 2

j t

r r r r r r

rel

r rr r r r r r

f t v t x F V x e
w x t

j j

   

         

 

 

        
   

           (10) 

which includes the effect of piezoelectric shunt damping due to the ( )rv t  term, where ( )v t  is 

given by Eq. (8). Using Eqs. (8) and (10), it is possible to define electroelastic FRFs. 

If the base is assumed to be not rotating ( ( ) 0h t  ), i.e. 0 0   in Eq. (9), but translating 

with
0( ) j tg t W e  , the modal mechanical forcing function becomes 

2

0 0r r rF W A                    (11) 

where 0A  is the base acceleration amplitude and r  is a modal forcing parameter: 

0

( ) ( )

L

r r t rm x dx M L                   (12) 

One can then define the multi-mode voltage output – to – base acceleration FRF and the vibration 

response – to – base acceleration FRF as follows: 

2 2
1

2

0

2 2
1

2( )
( )

1

2

r r

r r r r

j t
eq r
p

rl r r r

j

jv t

A e j
j C

R j



 

    
 




    











 
 

 
 




          (13) 

2 2
10

( ) ( )( , )
( , )

2

r r rrel

j t
r r r r

xw x t
x

A e j

    
 

    





   
 

                       (14) 

The foregoing exact analytical solutions are typically truncated (in the simulations) after taking 

sufficient number of modes (M modes) to represent the system dynamics in a given frequency 

range such that 
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2 2
1

2

2 2
1

2
( )

1

2

M
r r

r r r r

M
eq r
p

rl r r r

j

j

j
j C

R j

 

    
 




    







 


 
 




           (15) 

 
2 2

1

( )
( , )

2

M
r r r

r r r r

x
x

j

    
 

    

  
 

              (16) 

If the energy harvester beam is excited close to a natural frequency, i.e., 
r  , the 

contribution of all vibration modes other than the rth mode can be ignored in the summation 

terms of Eqs. (15) and (16) as an approximation. One can then establish the single-mode voltage 

output – to – base acceleration FRF and the vibration response – to – base acceleration FRF as 

follows: 

  2 2 2
ˆ( )

1 2

l r r

eq

l p r r r l r

j R

j R C j j R

  
 

       




   
          (17) 

 
  2 2 2

1 ( )
ˆ( , )

1 2

eq

l p r r

eq

l p r r r l r

j R C x
x

j R C j j R

  
 

       




   
          (18) 

where a hat (^) denotes that the respective expression is reduced for a single vibration mode 

(mode r) only. It should be noted that the foregoing single-mode relations are valid for excitation 

frequencies in the vicinity of the respective natural frequency only (
r  ). Typically, the 

fundamental vibration mode is of interest (hence 1r  ) and the single-mode FRFs become 

  
1 1

2 2 2

1 1 1 1

ˆ( )
1 2

l

eq

l p l

j R

j R C j j R

 
 

      




   
          (19) 
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 
  

1 1

2 2 2

1 1 1 1

1 ( )
ˆ( , )

1 2

eq

l p

eq

l p l

j R C x
x

j R C j j R

  
 

      




   
          

(20) 

 

3.3 Broadband random excitation: analytical solution 

We consider the base excitation to be Gaussian white noise-type random signal, which 

has a constant PSD of 0S . That is, the input PSD covers the entire frequency band with constant 

amplitude. Using this property of the excitation along with the electroelastic FRFs summarized 

in the previous section, the analytical solution for the expected (mean) power can be derived.  

Recalling that the electrical power output is simply 2 ( ) / lv t R , the expected value of the 

power output is 

 
20( ) ( )

l

S
E P t d

R
  





                (21) 

Therefore, the multi-mode analytical solution for the expected power output is obtained from 

 

2

2 2
10

2

2 2
1

2
( )

1

2

r r

r r r r

eql r
p

rl r r r

j

S j
E P t d

R j
j C

R j

 

    





    















 


 
 





          (22) 

which is the exact representation considering the entire spectrum of excitation and all vibration 

modes of the harvester. 

For a compact and closed-form representation, the single-mode solution of the expected 

power (for the fundamental vibration mode) is estimated from 
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 
20ˆ ˆ( ) ( ) ( )

l

S
E P t E P t d

R
  





  
               (23) 

Employing Eq. (19) in Eq. (23) yields 

  

2

0 1 1

2 2 2

1 1 1 1

ˆ( )
1 2

l

eq
l l p l

S j R
E P t d

R j R C j j R

  


      






  
     

          (24) 

Using the integration tables [41], Eq. (24) can be reduced to 

    

2 2

0 1 1

2 2 2

1 1 1 1 1 1 1

ˆ( )
2 1 2

l

eq eq eq

l l p l p l p

S R
E P t

R R C R C R C

  

      
  
      

 

        (25) 

which is analogous to the SDOF derivations given by Halvorsen [12] and Adhikari et al. [13]. 

Equation (25) excludes all vibration modes other than the fundamental mode in calculation of the 

expected power. This single-mode approximation leads to a simple estimate for the optimal 

electrical load (
*

lR ) for the maximum power output: 

 
*

*

2 2 2

1 1

1ˆ( ) 0
( )

l l

l
eq eq

l R R p p

E P t R
R C C 


    
  

           (26) 

Back substitution yields the following expression for the single-mode estimate of the optimal 

expected power output: 

*

2 2 2 2 2

0 1 1 1 1

2 2 3 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

( )
ˆ( )

4 4( ) ( 4 ) ( )l l

eq eq

p p

eq eq eq eq eqR R

p p p p p

S C C
E P t

C C C C C

    

        


  
 

   
       (27) 
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Note that, when computing analytical solutions (particularly the multi-mode solution) by 

performing the frequency-domain integration numerically, the frequency range is set to be 

[ , ]   such that  

 
20( ) ( )

l

S
E P t d

R





  


 
              

(28) 

where   is large enough to ensure the coverage of  major vibration modes contributing to the 

power output given the input PSD.   

 The multi-mode solution for the mean-square value of the vibration response (in the 

displacement form) relative to moving base at point x is  

22

0( , ) ( , )relE w x t S x d  




                  (29) 

yielding 

 
2

2

0 2 2
1

( )
( , )

2

r r r

rel

r r r r

x
E w x t S d

j

    


    

 



       
            (30) 

The single-mode approximation for the fundamental vibration mode is  

2
2 2

0
ˆˆ( , ) ( , ) ( , )rel relE w x t E w x t S x d  





                    (31)  

Using Eq. (20) in Eq. (31) yields 

2 2 2 2 2

0 1 1 1 1 12

2 2 2 3 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1

( ) ( ) 2 1
ˆ ( , )

2( ) 2 4 2

eq eq

p l p l

rel eq eq eq

p l p l p l l

S x C R C R
E w x t

C R C R C R R

     

         

                    

(32) 
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from which the optimal electrical load (
**

lR ) of maximum shunt damping is obtained as  

 
 **

2 **

1 1

1
ˆ ( , ) 0

1 2
l l

rel l eq

l pR R

E w x t R
R C 




      

           (33) 

Back substitution leads to the minimum mean-square vibration response for the electrical load of 

the maximum shunt damping: 

**

2 2

0 1 1 12

2 2 2 2

1 1 1 1 1 1

2 (1 ) ( )
ˆ ( , )

( 4 4 )l l

eq

p

rel eq eqR R
p p

S C x
E w x t

C C

   

     


     

           (34) 

In the experiments, it is common practice to measure the velocity response (rather than 

displacement) of the cantilever relative to the fixed reference frame (rather than moving base). 

Therefore, it is useful to modify the theoretical vibration response to predict the velocity 

measurement rather than post-processing the experimental data. The multi-mode solution for the 

mean-square velocity response at the free end of the bimorph is given by  

2
2

0( , ) ( , )modifiedE w L t S L d  




                            (35) 

where ( , )modified L   is the absolute tip velocity FRF that can be obtained by modifying the 

relative tip displacement-to-base FRF, ( , )L  , [10,24]: 

1
( , ) ( , )modified L j L

j
   


               (36) 

Due to the first term in Eq. (36), the velocity FRF tends to infinity around 0 Hz as a singularity. 

Therefore a small frequency range of [ , ]   is excluded in the integration of Eq. (35) to give  
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2 2
2

0 0( , ) ( , ) ( , )modified modifiedE w L t S L d S L d

 

 

     




      
         

(37) 

where 1  . Physically, this is well justified in the experiments since the shaker (excitation 

source) does not emulate motion at zero frequency (rigid body motion) and the neighborhood of 

0 Hz is indeed excluded in the excitation signal. Using Eq. (20) in Eq. (36) yields single-mode 

solution for the modified absolute tip velocity FRF, and substituting the latter into Eq. (37) yields 

single-mode solution for the mean-square tip velocity response. 

 

3.4 Broadband random excitation: numerical solutions 

3.4.1 Fourier series-based Runge-Kutta solution 

 The first numerical solution approach treats the given time series of the excitation in a 

deterministic fashion through its Fourier series representation. The excitation is then combined 

with the first-order equations for the numerical solution of the electroelastic response in time 

domain.  

The electroelastic state variables for the rth vibration mode are extracted from Eqs. (6) 

and (7) as [38] 

(1) (2) (3)( ),  ( ),  ( )r r r ru t u t u v t                       (38) 

where (1)

ru
 
is the modal displacement, (2)

ru  is the modal velocity, and (3)u  is the voltage output. 

Then the governing differential equations in the modal coordinates are expressed in the first-

order form using 2 1M   equations as 
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(2)(1)
11

(2)(1)
22

(2)(1)

(2) (2) 2 (1) (3)
1 1 1 1 1 1 1 1

(2) (2) 2 (1) (3)
2 2 2 2 2 2 2 2

(2) (2) 2 (1) (3)
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         (39) 

where ( )a t  is the random base acceleration in the transverse direction ( ( ) ( )a t g t ) and the 

solution is truncated after M modes. Note that three initial conditions are required for the state 

variables (we assume zero initial conditions in the simulations). 

The random base acceleration history is represented as a deterministic input by using its 

Fourier series representation: 
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where T is the length of the time history of base acceleration, 0p  is its mean value, while kp  and 

kq
 
( 1,2,...k   are positive integers) are the Fourier coefficients given by 
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In the Fourier series representation, the number of terms N is half of the total data points in the 

base acceleration history and 0p  is negligible for time typical acceleration data of ambient 

vibrations (hence zero mean value is assumed hereafter: 0 0p  ). Note that the foregoing 

representation and the resulting solution are strictly valid for the time interval of [0, ]T  only. 
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Equation (39) is then treated as a set of ordinary differential equations (ODEs). The computation 

is carried out by using an ODE solver, such as the ode45 algorithm in MATLAB that uses an 

explicit Runge-Kutta formulation.  

The time histories of the voltage output and modal velocities are obtained from the 

system of electroelastic ODEs. If the acceleration history has zero mean value, it is known that 

the response forms also have zero mean value. Thus the expected value of power output can be 

computed by using  

 
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where v  is the standard deviation of the voltage response. 

Having obtained the modal coordinates, the tip velocity relative to moving base can be 

computed using 
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(43) 

Once again, comparison with the experimental results requires obtaining the absolute tip velocity 

response (relative to the fixed reference frame). Therefore, the velocity of the moving base is 

first computed from the base acceleration history by analytically integrating Eq. (40) and 

assuming 0 0p   (zero mean value for the base acceleration): 
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Superposing the time history of the base velocity to the relative tip velocity, the absolute tip 

velocity is obtained and its mean-square value can be calculated using  

2 2 2

0

1
[ ( , )] ( , )

T

wE w L t w L t dt
T

               (45) 

where w  is the standard deviation of the absolute tip velocity of the cantilever. 

 

3.4.2 Euler-Maruyama solution 

An alternative approach for the solution of Eq. (39) is to treat the problem as a set of 

stochastic differential equations (SDEs) and to use the Euler-Maruyama method [42] as done by 

Ferrari et al. [27] and Litak et al. [15], among others, for the SDOF problem, which is extended 

to cover multiple vibration modes here.  

The voltage output and modal velocities are approximated by using Euler-Maruyama 

scheme [42]: 
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where dW is the increment of Wiener process and is approximated as  
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( )dW a t dt                 (47) 

Since the Euler-Maruyama method requires a very fine time increment, the original time 

history of excitation input ( )a t  is interpolated using a much higher sampling frequency of about 

1 MHz (as compared to the original sampling frequency of 2560 Hz in the following 

experiments). The interpolated acceleration history is then checked to ensure that its standard 

deviation and mean remain the same as the original history. Following the Euler-Maruyama 

scheme, after obtaining the time histories of voltage and modal coordinates, the expected value 

of power output can be computed using Eq. (42), and the time history of tip velocity relative to 

moving base can be computed using Eq. (43). In order to obtain the absolute tip velocity (relative 

to the fixed reference frame), we again use the Fourier series representation of the velocity of the 

base, as done in previous section. The base velocity is also interpolated (and checked for its 

mean and standard deviation) and then superimposed to the relative tip velocity, and the mean-

square value of the absolute tip velocity is calculated using Eq. (45). 

 

3.5 Experimental validation 

3.5.1 Experimental setup and cantilevered bimorph 

A brass-reinforced PZT-5H piezoelectric bimorph (T226-H4-103X by Piezo Systems 

Inc.) is employed for the model validation experiments. In the experimental setup (Fig. 3), the 

bimorph is clamped at one end (shaker side) and free at the other end. The bimorph cantilever 

(Fig. 4a) is composed of two PZT-5H layers (with thin nickel electrodes covering the transverse 

faces) bracketing a brass layer as shown in the close-up side view photo of Fig. 4b and its basic 



26 
 

properties are listed in Table 2. The brass layer provides the electrical conductivity between the 

inner electrodes of the oppositely poled PZT-5H layers, and therefore the configuration employs 

the series connection of the piezoelectric layers (Fig. 2a). An accelerometer is attached on the top 

surface of the aluminum clamp and the clamp is attached onto the armature of an 

electromechanical shaker. Since the clamp is assumed to behave like a rigid body in the 

frequency range of interest, the accelerometer measures the base acceleration, ( )a t . A laser 

vibrometer measures the tip velocity in the lateral (vertical) direction. A resistor box is connected 

to the electrode terminals of the bimorph and voltage across the electrical load is measured for 

several resistance values ranging from the short-circuit to open-circuit conditions. Three input 

channels of the data acquisition system are used. The first channel (the reference channel) 

records the acceleration processed by a signal conditioner, the second channel records the 

voltage measured across the resistive load, and the third channel measures the tip velocity 

measured by the laser vibrometer.  
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Figure 3. Details of the experimental setup: (a) computer with data acquisition software; (b) 

accelerometer on the clamp mounted to the armature of the shaker; (c) piezoelectric bimorph 

cantilever; (d) laser vibrometer; (e) signal conditioner; (f) resistor box; (g) shaker; (h) power 

supply/amplifier; and (i) data acquisition hardware. 
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Figure 4. (a) Close-up view of the brass-reinforced cantilevered bimorph shown in Fig. 3c and (b) 

its side view displaying the thicknesses of piezoelectric and substructure layers. The brass layer 

provides the electrical conductivity between the inner electrodes of the oppositely poled 

piezoelectric layers. 

 

Table 2. Geometric and material properties of the PZT-5H bimorph cantilever used in 

experiments  
 

 Piezoceramic  

(PZT-5H) 
Substructure (brass) 

Length [mm] 27 27 

Width [mm] 3.2 3.2 

Thickness  [mm] 0.258 (each) 0.115 

Mass density  [kg/m
3
]

 

7500 9000 

Elastic modulus [GPa] 60.6 105 

Piezoelectric constant [C/m
2
] -16.6 – 

Permittivity constant [nF/m]

 

25.55 – 

 

 

 

(a) (b) 
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3.5.2 Experimental validation of electroelastic FRFs 

Prior to the broadband random vibration experiments, low-amplitude chirp excitation 

tests are conducted for the purpose of obtaining the linear electroelastic response FRFs of the 

system. Figure 5 shows that the analytical voltage and tip velocity FRFs are in very good 

agreement with the experimental results for a set of resistors ranging from short-circuit to open-

circuit conditions. Note that the base acceleration in these FRFs is given in terms of the 

gravitational acceleration, g = 9.81 m/s
2
. Close-up views around the fundamental vibration mode 

are also displayed in these figures, verifying the accuracy of the distributed-parameter model in 

predicting the shift in the fundamental resonance frequency with changing load resistance. Recall 

that the analytical multi-mode FRFs are due to Eqs. (13) and (36) for the voltage and the absolute 

velocity response, respectively. The modal mechanical damping ratios of the first and the second 

modes covered in the experimental measurements are obtained as 0.64 % and 0.75 %, 

respectively, i.e., 1 0.0064   and 2 0.0075  . It is important to note that these are the purely 

mechanical damping ratios in the absence of electrical (shunt) damping. Typically, it is 

convenient to identify these damping ratios in short-circuit or open-circuit conditions if 

conventional methods (half-power points, logarithmic decrement, etc.) [40] are to be used 

instead of electromechanical identification expressions in the presence of finite shunt resistance 

[19].  
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Figure 5. Experimental validation of the electroelastic FRFs: (a) voltage and (b) tip velocity 

FRFs of the PZT-5H bimorph for a set of resistors. Solid lines are the analytical predictions and 

dots are the experimental measurements. 

 

The extension of the analytical FRF simulations to cover the frequency range of 0-10 kHz 

(hence the first three vibration modes) is shown in Fig. 6, where the damping ratios for mode 3 

as well as higher modes which are outside the range of 0-10 kHz are calculated by using the 

identified damping ratios of the first two modes in the proportional (Rayleigh) damping 

equations [38, 43]. Having validated the electroelastic FRFs of the system, broadband random 

excitation experiments are conducted next. 

 

(a) 

(b) 
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Figure 6. Analytically obtained (a) voltage and (b) tip velocity FRFs of the PZT-5H bimorph for 

a set of resistors in the frequency range of 0-10 kHz. 

 

3.5.3 Broadband random excitation 

In the random excitation experiments, the base excitation is intended to cover a broad 

range of excitation frequencies to be as close to white noise as possible within the limitations of 

the electromechanical shaker and other hardware. A sample of time history of acceleration in a 

broadband random excitation test is shown in Fig. 7 along with its PSD. Several experiments 

(not discussed here) show that the PSD of base acceleration is fairly flat up to 3 kHz (which 

covers the first two vibration modes of the harvester) and gradually decays above this value due 

to device (mainly shaker) limitations although the software used in signal generation is 

theoretically capable of feeding signal input up to 20 kHz.  

(b) 

(a) 
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Figure 7. (a) A sample of time history of the measured random base acceleration (approximate 

PSD:
21.7(m ) /Hzg ) and (b) its PSD for a broad frequency range. 

 

A resistor sweep from 500   (close to short-circuit condition) to 1 M  (close to open-

circuit condition) is performed. In each set of experiments, base acceleration, voltage output, and 

tip velocity are recorded for 3.2 seconds. For each resistive load, the test is repeated five times. 

From Eqs. (42) and (45), the expected (mean) power and mean-square tip velocity are computed. 

The same experimental procedure is repeated for three different excitation levels send to the 

shaker. While the data acquisition system (SigLab) extracts the PSD of base acceleration, we 

also estimate this PSD from the time history using the Welch method in MATLAB, which is a 

commonly used algorithm in PSD estimation. A sampling frequency of 2560 Hz is used in the 

estimation. Shown in Fig. 8 are the experimentally extracted PSD (from the data acquisition 

(a) 

(b) 
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system), the estimated PSD based on the Welch method, and the averaged PSD for the base 

acceleration history shown in Fig. 7.  

 

Figure 8. PSD of base acceleration shown in Fig. 7 extracted directly from the data acquisition 

system, estimated using the Welch method, and averaged based on the Welch estimate.  

 

In the analytical solution, the base excitation is assumed to be ideal Gaussian white noise 

with a constant PSD, 0S . In order to obtain the constant value of 0S , the relatively flat portion of 

the Welch estimate is used and an average value is extracted. For instance, using the Welch 

estimate shown in Fig. 8, we identify 
2

0 1.7(m ) /HzS g  for the base acceleration history given 

in Fig. 7. This estimation is performed for the time history of base acceleration in each of the 

tests and the mean values are obtained. As shown in Fig. 9 for 70 different time series for each 

PSD level (14 different resistors and 5 time series at each level), it can be concluded that the 

shaker generates excitations with good consistency in the base acceleration PSD. Therefore, it is 

reasonable to use the mean PSD in the analytical solution for all resistance values while the 

individual time histories are used in the ODE-based and SDE-based numerical solutions toward 

predicting the expected value of the electrical power and mean-square value of the shunted 

vibration response.  
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Figure 9. PSD values estimated from the Welch algorithm for all tests at three base excitation 

levels (
21.7,  3.8,  and 7.8 (m ) /Hzg ) along with the average PSD values at each level (a total of 

210 different time series). 

 

3.5.4 Expected value of the electrical power output  

At each level of base excitation, the experimental measurements are plotted and 

compared against the analytical and numerical predictions. An example case is given in Fig. 10a 

for the excitation PSD level of 
21.7(m ) /Hzg . Very good agreement is observed between the 

experimental results and model predictions (both analytical and numerical). The difference 

between single-mode and multi-mode analytical solutions is due to the effect of higher vibration 

modes considering the lightly damped nature of the second vibration mode (see Fig. 5). Both 

numerical solutions employ only the first vibration mode to minimize the computational time 

while the analytical solutions can easily include several vibration modes (10 modes are used in 

the simulations). The analytical solutions use the frequency-domain integration range of [-10 

kHz, 10 kHz], i.e., 10  kHz in section 3.3. It is also important to note that, in the analytical 

predictions, an average value of PSD is used for all resistors. However, in each of the numerical 

simulations, the respective time history of base acceleration is directly employed as the input.  
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Consequently, at each value of electrical resistance, the Fourier series-based ODE solution and 

the SDE solution based on the Euler-Maruyama method (as well as the experimental 

measurements) have five different data points in Fig. 10a. Note that, one can easily take the 

averages of the experimental and numerical data points of five separate random data series at 

each resistor to simplify Fig. 10a to Fig. 10b for clarity. 

 

Figure 10. Comparison of the analytical and numerical simulations of mean power output with 

the experimental measurements for a set of resistive loads showing (a) five experimental and 

numerical data points at each resistor and (b) only average values for clarity (PSD level of base 

acceleration:
21.7(m ) /Hzg ). In the legends, the Fourier series-based ODE solution is denoted by 

FS-ODE while the SDE solution based on the Euler-Maruyama scheme is denoted by EM-SDE.  

 

The analytical predictions, numerical simulations, and experimental measurements for 

three levels of base acceleration PSD are plotted in Fig. 11a (and the version based on averaging 

the numerical and experimental data points at each resistor is shown in Fig. 11b). The base 

excitation levels are represented in terms of their averaged PSD values following Fig. 9. Both the 

analytical and numerical predictions of the expected power exhibit very good agreement with the 

experimental results. The multi-mode analytical solution more accurately predicts the 

experimental results around the optimal resistance region at each PSD level. It should be noted 

that the horizontal axis is in logarithmic scale and the optimal electrical load in the single-mode 

(a) (b) 
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and multi-mode analytical predictions are substantially different although the amplitude-wise 

difference is relatively small.  

  

Figure 11. Comparison of the analytical and numerical simulations of mean power output with 

the experimental measurements for a set of resistive loads at different PSD levels of base 

acceleration (
21.7,  3.8,  and 7.8 (m ) /Hzg ) showing (a) five experimental and numerical data 

points at each resistor and (b) only average values for clarity. In the legends, the Fourier series-

based ODE solution is denoted by FS-ODE while the SDE solution based on the Euler-

Maruyama scheme is denoted by EM-SDE. 

 

 In addition, a hybrid solution which uses the information of analytical FRFs of the system 

and the experimental PSD is computed. Recall Eq (28), instead of taking PSD of base excitation 

as a constant, 0S , the PSD measured directly by the data acquisition system is employed.   

 
2( )

( ) ( )
l

S
E P t d

R






  



 
              

(48) 

Where ( )S  is the PSD of the base acceleration measured by the data acquisition system, 

[ , ]  is the frequency boundary of the PSD, and ( )  is the voltage output – to – base 

acceleration FRF. Figure 12 presents the comparison of this solution and the experimental results, 

and very accurate predictions of this solution are observed. The purpose of presenting this 

(a) (b) 
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solution is to demonstrate that given any PSD of a random excitation and the FRFs of an energy 

harvester, its power generation can be accurately predicted using Eq (48).   

 

Figure 12. Comparison of the experimental results and a hybrid analytical solution of mean 

power output for a set of resistive loads at different PSD levels of base acceleration 

(
21.7,  3.8,  and 7.8 (m ) /Hzg ). 

 

3.5.5 Mean-square value of the shunted vibration response  

The single-mode and multi-mode analytical, numerical, and experimental results of the 

tip velocity at excitation level of 
21.7(m ) /Hzg  are compared in Fig. 13. As in the case of power 

generation, the analytical and numerical simulations of the tip velocity response match very well 

with experimental results. The mean-square of vibration response is observed to be relatively 

insensitive to the higher-mode effects. Comparisons across different excitation levels are 

summarized in Fig. 14 with very good predictions particularly around the optimal loads of the 

maximum power output and minimum vibration response.    
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Figure 13. Comparison of the analytical and numerical simulations of mean-square shunted tip 

velocity with the experimental measurements for a set of resistive loads showing (a) five 

experimental and numerical data points at each resistor and (b) only average values for clarity 

(PSD level of base acceleration:
21.7(m ) /Hzg ). In the legends, the Fourier series-based ODE 

solution is denoted by FS-ODE while the SDE solution based on the Euler-Maruyama scheme is 

denoted by EM-SDE.  

 

 

  

Figure 14. Comparison of the analytical and numerical simulations of mean-square shunted tip 

velocity with the experimental measurements for a set of resistive loads at different PSD levels 

of base acceleration (
21.7,  3.8,  and 7.8 (m ) /Hzg ) showing (a) five experimental and numerical 

data points at each resistor and (b) only average values for clarity. In the legends, the Fourier 

series-based ODE solution is denoted by FS-ODE while the SDE solution based on the Euler-

Maruyama scheme is denoted by EM-SDE. 

  

(a) (b) 

(a) (b) 
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 Furthermore, the hybrid solution which uses analytical FRFs of the system and the 

experimental PSD is computed. By replacing the constant PSD,
0S , with the actual PSD, ( )S  , 

measured directly by the data acquisition in Eq (35), we obtain   

2
2 ( , ) ( ) ( , )modifiedE w L t S L d   





    
            

(49) 

Where ( )S  is the measured PSD of the base acceleration, [ , ]  is the frequency boundary of 

the PSD, and ( , )modified L  is the tip velocity – to – base acceleration FRF. Figure 15 presents 

the comparison of this solution and the experimental results, and shows that this solution can 

predict results very well.  

 

Figure 15. Comparison of the experimental results and a hybrid analytical solution of mean-

square shunted tip velocity for a set of resistive loads at different PSD levels of base acceleration 

(
21.7,  3.8,  and 7.8 (m ) /Hzg ). 

 

The maximum expected power output and the minimum mean-square tip velocity 

response versus input PSD are plotted in Figs. 16a and 16b, respectively. We recall that the 

analytical solutions for the expected power and mean-square tip velocity are due to Eqs. (21) and 

(35), respectively, where the proportionality of the left hand side (mean power or mean-square 
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tip velocity) to the input PSD is evident for the case of white noise excitation since the 
0S  term 

can be taken outside the integral.     

 

Figure. 16. (a) Maximum expected power output and (b) minimum mean-square shunted tip 

velocity at different levels of base acceleration PSD exhibiting linear dependence between the 

maximum expected power, minimum mean-square tip velocity, and base acceleration PSD. 

 

3.6 Comparison of various piezoelectric materials  

In this section, a theoretical case study of energy harvesting from broadband random 

excitation is presented for various piezoelectric materials: PZT-5H, PZT-8, PMN-PZT, PMN-

PZT-Mn. The piezoelectric bimorphs share the same geometric properties with the bimorph 

investigated in the previous section and the same brass layer is assumed (see Table 2). The 

relevant material properties are given in Table 3 [44,45]. 

PZT-5H is a soft ceramic with larger piezoelectric strain constant ( 31d ) and smaller 

mechanical quality factor ( mQ ) whereas PZT-8 is a hard ceramic with smaller piezoelectric 

constant and larger mechanical quality factor. PMN-PZT is a soft single-crystal with larger 

piezoelectric strain constant and smaller mechanical quality factor compared to PMN-PZT-Mn, 

which is a hard single crystal. It is assumed that the entire mechanical loss of each bimorph is 

(a) (b) 
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due to its mechanical quality factor. Therefore, the dissipative effects of external damping and 

clamping conditions are assumed to be identical (and negligible) so that the active materials can 

be compared under the same conditions by considering their internal mechanical loss only. The 

damping ratio of the fundamental mode (
1 1/ 2 mQ  ) for each cantilever is given in Table 4. The 

same damping ratio is assumed for the higher vibration modes of the respective cantilevers. First, 

the analytical FRFs are generated, and then expected power and mean square of tip velocity are 

computed. The broadband random excitation is assumed to be ideal Gaussian white noise.  

 

Table 3. Elastic, piezoelectric, and dielectric properties of the materials (
31 31 11/ Ee d s , 

2

33 33 31 11/S T Ed s   ). 

 

 PZT-5H PZT-8 PMN-PZT PMN-PZT-Mn 

31d [pm/V] -274 -97 -718 -513 

11

Es [pm
2
/N] 16.4 11.5 62.0 42.6 

33 0/T   3400 1000 4850 3410 

31e [C/m
2
] -16.7 -8.4 -11.6 -12.0 

33

S [nF/m]

 

25.5 8.0 34.6 24.0 

mQ

 

65 1000 100 1050 
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Table 4. Mechanical damping ratio for the fundamental vibration mode of each bimorph 

cantilever. 

 

Cantilever type 
1 1/ 2 mQ   

PZT-5H 0.77 % 

PZT-8 0.050 % 

PMN-PZT 0.50 % 

PMN-PZT-Mn 0.0476 % 

 

3.6.1 Electroelastic FRFs 

The analytical FRFs of four different piezoelectric materials are plotted in Figs. 17-20. Due 

to its larger elastic compliance, the PMN-PZT bimorph and PMN-PZT-Mn have lower resonance 

frequencies. Bimorphs made of hard materials PZT-8 and PMN-PZT-Mn have lighter damping, 

which results in sharper peaks at resonance.  
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Figure 17. (a) Voltage – to – base acceleration FRFs and (b) tip velocity – to – base acceleration 

FRFs of the PZT-5H bimorph for a set of resistors. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 
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Figure 18. (a) Voltage – to – base acceleration FRFs and (b) tip velocity – to – base acceleration 

FRFs of the PZT-8 bimorph for a set of resistors. 

 

 

 

 

 

 

 

(a) 

(b) 
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Figure 19. (a) Voltage – to – base acceleration FRFs and (b) tip velocity – to – base acceleration 

FRFs of the PMN-PZT bimorph for a set of resistors. 

 

 

 

 

 

 

 

(a) 

(b) 
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Figure 20. (a) Voltage – to – base acceleration FRFs and (b) tip velocity – to – base acceleration 

FRFs of the PMN-PZT-Mn bimorph for a set of resistors. 

 

3.6.2 Expected value of the electrical power output 

As shown in Fig. 21, PMN-PZT-Mn generates the largest power output from broadband 

random excitation, and it is followed by PZT-8, PMN-PZT, and PZT-5H. The maximum power 

PMN-PZT-Mn can generate is about 70% higher than the maximum power PZT-5H can 

generate. Following the same order, PMN-PZT-Mn has the largest flat region around the optimal 

resistance whereas PZT-5 has the narrowest region. Hard ceramic and single-crystal bimorphs 

are less sensitive to variations in the external load resistance, which might be preferred if the 

electrical load is not exactly known in the application. It is particularly important to note that the 

(a) 

(b) 
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performance difference between the materials is not by an order of magnitude (unlike harmonic 

excitation at resonance investigated by Erturk and Inman [38] for the same materials).  

 

Figure 21. Expected power output for bimorphs made of different piezoelectric materials (from 

broadband random excitation). 

 

3.6.3 Mean-square value of the vibration response 

 As far as the vibration response is concerned, the PMN-PZT-Mn and PZT-8 bimorphs 

exhibit the largest vibration attenuation (in the optimal resistance region) relative to their 

respective short-circuit vibration levels. This indicates that PMN-PZT-Mn and PZT-8 have larger 

shunt damping effect due to power generation from broadband random excitation (Fig. 22).    

 

Figure 22. Mean square value of tip velocity for bimorphs made of different piezoelectric 

materials. 
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 Combining the observations obtained from Figs. 21 and 22, one can conclude that hard 

ceramics perform better than soft ceramics while hard single crystals perform better than soft 

single crystals. In addition, hard ceramics (PZT-8) can outperform soft single crystals (PMN-

PZT). Importantly, there is no substantial (i.e., order of magnitude) difference between the power 

outputs of the hard ceramic and single-crystal bimorphs. That is, bimorphs made of all four 

materials (soft and hard ceramics and crystals) result in power outputs on the same order of 

magnitude for the same broadband random vibrational input.   

 

3.7 Conclusions  

Analytical and numerical solutions, and experimental validations of piezoelectric energy 

harvesting from broadband random vibrations using cantilevered bimorphs are presented based 

on a distributed-parameter electroelastic model. The analytical solution uses the combination of 

distributed-parameter electroelastic FRFs with the input power spectral density (PSD) while the 

numerical solutions treat the random base excitation problem in two separate approaches 

deterministically and stochastically. The deterministic approach represents the base acceleration 

history in terms of its Fourier series expansion to use with the first-order electroelastic equations 

in an ordinary differential equation (ODE) solver while the stochastic approach directly employs 

an Euler-Maruyama scheme to solve the resulting first-order stochastic differential equations 

(SDEs). The expected (mean) piezoelectric power output and the mean-square vibration response 

forms are investigated for a broad range of resistive loads spanning from the short-circuit to 

open-circuit conditions. The shunt damping effect associated with random piezoelectric power 

generation is also reported. The analytical as well as ODE-based and SDE-based numerical 

predictions exhibit very good agreement with the experimental measurements taken for a brass-
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reinforced PZT-5H piezoelectric energy harvester. The analytical and numerical solutions are 

further validated for different PSD levels of random excitation. It is observed that the expected 

power and mean-square vibration response depend on the input (base acceleration) PSD linearly. 

It can be concluded that the analytical and numerical solutions presented in this chapter are 

effective tools for predicting and optimizing the performance of cantilevered piezoelectric 

harvesters under broadband random excitation.  

Based on the analytical solution, the effect of higher vibration modes is also investigated 

and it is concluded that lightly damped higher modes can alter the expected power curve 

(primarily the optimal load) if the PSD of input vibration covers high frequencies as in the case 

of white noise excitation.  

Through theoretical studies, bimorphs made of four piezoelectric materials PZT-5H (soft 

ceramic), PZT-8 (hard ceramic), PMN-PZT (soft single crystal), PMN-PZT-Mn (hard single 

crystal) are compared for power generation under broadband random excitation. It is found that 

hard ceramics and single crystals outperform their soft counterparts. In addition, hard ceramics 

(PZT-8) can outperform soft single crystals (PMN-PZT). However, the power output levels are 

on the same order of magnitude unlike the case of resonant excitation from harmonic input.   
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CHAPTER 4 

BROADBAND RANDOM EXCITATION OF A MULTILAYER STACK 

4.1 Electroelastic modeling  

 Figure 23 shows a multilayer stack piezoelectric energy harvester configuration under 

pressure ( )p t . The electrodes are connected to a resistive electrical load (
lR ). Following the 

analytical modal analysis procedure, the governing ordinary differential equation is obtained as 

33

1
( ) ( ) ( )eq eff

p

l

C v t v t d Ap t
R

 

   

                         (50) 

where eq

pC  is the equivalent capacitance, ( )v t  is the voltage output of the system across the 

electrical load, 33

effd is the effective piezoelectric constant, 
l

R
 
is the external resistive load in the 

circuit, A is the cross-sectional area, ( )p t is the axial pressure (thus ( ) ( )F t Ap t
 
is the force 

exerted on the stack configuration), and ( )p t is the time derivative of the pressure. 

             

 

Figure 23. Schematic of a multilayer piezostack used for energy harvesting under random 

excitation. 

 

 If the pressure on the stack in Fig. 23 is harmonic of the form 0( ) j tp t p e   (where 0p  is 

the amplitude of the pressure,    is the frequency and j  is the unit imaginary number), hence, 
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the steady-state voltage response is ( ) j tv t Ve   where V is the complex voltage that can be 

derived as 

33

1

eff

o

eq

p

l

d j Ap
V

C j
R









                    (51) 

The voltage output – to – pressure input frequency response function (FRF) can be defined as 

33( )
( )

1

eff

j t
eqo
p

l

d j Av t

p e
C j

R




 



 



                  (52) 

The peak value of electrical power ( ( )P t ) harvested using the stack under harmonic loading can 

then be expressed as 

22

33

2 2 2

( )
( )

1

eff

o l

eq

l p l

d Ap RV
P t

R C R




 


                 (53) 

The optimal electrical load ( *

lR ) for maximum power output can be derived as 

*

* 1
( ) 0

l l

l eq

l pR R

P t R
R C 




  


              (54) 

Back substitution into Eq. (53) leads to the following expression for maximum power output:  

*

2 2

33
max

( )
( )

2l l

eff

o

eqR R
p

d Ap
P P t

C




                    (55) 
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4.2 Broadband random excitation: analytical solution 

If we consider the axial pressure on the piezoelectric stack to be Gaussian white noise-type 

random signal, then it has a constant power spectral density (PSD) of S0. That is, the input PSD 

covers the entire frequency band with constant amplitude. Using this property of the excitation 

and electroelastic FRF summarized in the previous section, the analytical solution to the 

expected (mean) power can be derived.  

Recalling that the instantaneous electrical power output is simply 2 ( ) / lv t R , the expected 

value of the power output becomes [38] 

20( ) ( )
l

S
E P t d

R
  





                                                                (56) 

Therefore, the analytical solution for the expected power output is obtained from 

2

0 33( )
1

eff

eql
p

l

S d j A
E P t d

R
C j

R










   


                                       (57) 

Note that, when computing analytical solutions of stack energy harvester under band-limited 

random excitation (which is necessarily the case in the experiments), the frequency range is set 

to be [ , ]   such that  

21
( ) ( ) ( )

l

E P t S d
R





   


                          (58) 

where ( )S   is the PSD of the excitation input and   is the upper frequency boundary of ( )S  . 
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4.3 Broadband random excitation: numerical solutions  

4.3.1 Fourier series-based Runge-Kutta solution 

 The first numerical solution approach treats the given time series of the excitation in a 

deterministic fashion through its Fourier series representation,  

0

1

2 2
( ) cos sin

N

k k

k

t t
p t m m k n k

T T

 



    
      

    
              (59) 

where T is the length of the time history of the applied axial pressure, 0m  is its mean value, 

while km  and kn
 
( 1,2,...k   are positive integers) are the Fourier coefficients given by 

0

0

1
( )

T

m p t dt
T

  , 
0

2 2
( )cos

T

k

t
m p t k dt

T T

 
  

 
 , 

0

2 2
( )sin

T

k

t
n p t k dt

T T

 
  

 
          (60) 

Thus the stochastic process is represented in a deterministic form and can be feed into the 

ordinary differential equation of the system:  

33

1 1eff

eq

p l

v d Ap v
C R

 
  

 
                     (61) 

where v  is the voltage output, and  p  is the time derivative of the applied pressure along the 

axial  direction. Note that zero initial conditions are assumed in the simulations). 

The computation is carried out by using an ODE solver, such as the ode45 algorithm in 

MATLAB that uses an explicit Runge-Kutta formulation. The time history of the voltage output 

is obtained from the electroelastic ODE. If the pressure history has zero mean value, it is known 
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that the response forms also have zero mean value. Thus the expected value of power output can 

be computed by using 

22

0

1 ( )
( )

T

v

l l

v t
E P t dt

T R R


                         (62) 

where v  is the standard deviation of the voltage response. 

 

4.3.2 Euler-Maruyama solution 

 An alternative approach for the solution of Eq. (61) is to treat the problem as a stochastic 

differential equation (SDE) and use the Euler-Maruyama method [42].  

Using Euler-Maruyama scheme the voltage output is approximated by: 

33

eff

eq eq

l p p

d Av
dv dt dW

R C C
                     (63) 

Where v is the voltage response and dW is the increment of Wiener process. In this case dW  is 

the increment of dynamic pressure exerted on the stack dp :  

dW dp                  (64) 

After obtaining the time history of voltage using Euler-Maruyama scheme, the expected value of 

power output can be computed using Eq. (62).  
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4.4 Experimental validation 

4.4.1 Experimental setup and multilayer stack 

 A PZT-5H piezoelectric stack (TS18-H5-104 by Piezo Systems Inc.) is used in the 

experiments and its basic properties are listed in Table 5. In the experimental setup (Fig. 24), the 

stack is horizontally compressed by a long-stroke shaker which is capable of providing excitation 

at low frequencies. A force transducer is located between the stack and the moving armature of 

the shaker. A resistor box is connected to the electrode terminals of the stack and voltage across 

the electrical load is measured for several resistance values in order to capture the optimality of 

power output. Two input channels of the data acquisition system are used, one records the force 

processed by a signal conditioner, the other records the voltage measured across the resistive 

load.                                         

  

   

Figure 24. Experimental setup: (a) shaker; (b) resistor box; (c) stiff fixture; (d) force transducer; 

(e) piezoelectric stack; (f) computer with data acquisition software; (g) signal conditioner; (h) 

power amplifier for shaker; (i) data acquisition hardware. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
(g) 

(h) 
(i) 
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Table 5. Geometric and material properties of the PZT-5H stack used in experiments 

 
Piezoceramic  

(PZT-5H) 

L x W x H [mm] 5x5x18 

33d [pm/V] 650 

33

effd [nm/V] 110.49 

33 0/T   3800 

pC [nF]

 

1745 

 

4.4.2 Experimental validation of electroelastic FRFs 

Prior to the harmonic and random vibration experiments, chirp tests are conducted for the 

purpose of obtaining the electroelastic response FRFs of the system. Figure 25 shows that the 

analytical voltage output FRFs are in very good agreement with the experimental results for a set 

of resistors. The experimental FRF measurements focus on the low-frequency (non-resonance) 

range only. Having validated the electroelastic FRFs of the system, harmonic and random 

vibration experiments are conducted next. 
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Figure 25. Voltage – to – pressure FRFs of the PZT-5H stack for a set of resistors ( lR =999, 

2991, 4975, 6951, 8920, 14778 ). Solid lines are analytical predictions and dots are 

experimental measurements. 

 

4.4.3 Harmonic excitation 

 The objectives of performing harmonic excitation experiments are to validate the 

analytical model and to determine the effective piezoelectric constant ( 33

effd ) using  

max

33 2

2

( )

eq

peff

o

C P
d

Ap
                     (65) 

which is derived from Eq (55). Here, eq

pC is equivalent capacitance, maxP is maximum power,   

is excitation frequency, A  is cross-sectional area and op is amplitude of applied axial pressure.  

The effective piezoelectric constant is determined using one experimental case and is 

successfully validated through all other cases.  

In harmonic excitation experiments, the stack is subjected to harmonic excitation at three 

excitation frequencies: 10 Hz, 20 Hz, and 30 Hz. At each frequency, the stack is compressed by 

harmonic force with five different amplitudes, resulting in five pressure levels. A resistive sweep 

is performed in order to capture the optimality of power generation. The experimental 

measurements of harvested power are compared to analytical solutions computed using Eq (53). 



58 
 

For harmonic excitation at 20 Hz, the comparisons are shown in Fig 26. The power output 

normalized with respect to input pressure is shown in Fig 27. 

 

Figure 26. Peak value of power output (normalized with respect to the stack volume) under 

harmonic excitation at 20 Hz at different pressure levels. 

 

 

Figure 27. Peak value of power output (normalized with respect to the stack volume and input 

pressure) under harmonic excitation at 20 Hz. 

 

To see the relation between input pressure and maximum output power, the maximum 

power is plotted with respect to amplitude of pressure (Fig 28). The analytical solutions and 

experimental measurements show very good agreement. As can be explained by Eq. (55), the 

maximum power output increases quadratically with amplitude of input force or pressure. 
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Figure 28. Maximum power output (normalized with respect to the stack volume and input 

pressure) under harmonic excitation at 10 Hz, 20 Hz and 30 Hz. 

 

4.4.4 Broadband random excitation 

 The fundamental resonance frequency of the PZT-5H piezostack used in the experiments 

is 74 kHz according to the manufacturer (Piezo Systems Inc.). Therefore, all practical excitation 

frequencies are within the off-resonant quasistatic region of the stack. The random excitation 

provided in experiments has a bandwidth from 0 to 200Hz, which is considered as broadband 

random excitation in this case. In later chapter on band-limited random excitation, vibration 

excitation with narrower bandwidths will be investigated. A sample of time history of the applied 

axial pressure in one test is shown in Fig. 29 and its PSD is shown in Fig. 30. As can be observed 

from the figure, the input energy is concentrated within the 0-200 Hz band.  
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Figure 29. An example of time history of the pressure applied on stack (RMS pressure: 58 kPa). 

 

 

Figure 30. PSD of the pressure in Fig. 29. 

 

When performing integration in analytical solution, PSD of pressure, ( )S  , up to 200 Hz is 

used thus frequency limit   is 200 Hz. A resistor sweep from 500  to 20k  is performed. In 

each set of experiments, signals of force and voltage output are recorded for 3.2 seconds. For 

each resistive load, the test is repeated five times. From Eq. (62), the expected (mean) power is 

computed. The five standard deviation results at each resistive load are then averaged. In order to 

compare responses of the harvester, the same experimental procedure is repeated for three 

pressure levels: 29 kPa, 44 kPa, and 58 kPa (RMS values). 
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At each pressure level, the experimental measurements are plotted and compared against 

analytical and numerical predictions as given in Fig 31. Very good agreement is observed 

between the experimental results and model predictions (both analytical and numerical 

solutions).  

 

Figure 31. Comparison of experimental results, numerical simulations, and analytical predictions 

of power generation (normalized with respect to the stack volume and input pressure) at a 

pressure level 58 kPa. 

 

Then the maximum expected power versus rms values of pressure is plotted in Fig. 32. A 

quadratic relation between maximum power and pressure is observed. This is due to the 

quadratic relation between pressure and its PSD.    

 

Figure 32. Experimental results and analytical predictions of maximum power generation at 

different pressure levels. 
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4.5 Comparison of various piezoelectric materials  

 In this section, a theoretical case study of energy harvesting from band-limited random 

excitation is presented for various piezoelectric materials: PZT-5H, PZT-8, PMN-PZT, PMN-

PZT-Mn and PZT-5A. The piezoelectric stacks share the same geometric properties with the 

PZT-5H stack investigated in the previous section. The relevant material properties are given in 

Table 6 [44,45]. 

 PZT-5H is a soft ceramic with larger piezoelectric coefficient (
33

d ) and larger dielectric 

permittivity ( 33

T ) whereas PZT-8 is a hard ceramic with smaller piezoelectric coefficient and 

smaller dielectric permittivity. PMN-PZT is a soft single-crystal with larger piezoelectric 

coefficient and larger dielectric permittivity compared to PMN-PZT-Mn, which is a hard single 

crystal. First, the analytical FRFs are generated, and then expected power is computed using 

analytical integrations in Eq. (58). The same broadband random excitation time histories in the 

experiments are employed in the simulations.   

 

Table 6. Piezoelectric, and dielectric properties of the materials where 0 8.854pF/m   is the 

permittivity of free space 

 

 PZT-5H PZT-8 
PMN-

PZT 

PMN-

PZT-Mn 
PZT-5A 

33d [pm/V] 650 225 1530 1140 390 

33

effd [nm/V] 110 38. 260 193 66 

33 0/T   3800 1000 4850 3410 1800 

pC [nF]

 

1745 459 2227 156 826 

 



63 
 

4.5.1 Electroelastic FRFs 

The analytical FRFs of five different piezoelectric materials are plotted in Figs. 33-37.  

 

Figure 33. Voltage – to – force FRFs of the PZT-5H stack for a set of resistors. 

 

 

Figure 34. Voltage – to – force FRFs of the PZT-8 stack for a set of resistors. 

 

 

Figure 35. Voltage – to – force FRFs of the PMN-PZT stack for a set of resistors. 
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Figure 36. Voltage – to – force FRFs of the PMN-PZT-Mn stack for a set of resistors. 

 

 

Figure 37. Voltage – to – force FRFs of the PZT-5A stack for a set of resistors. 

 

4.5.2 Expected value of the electrical power output 

 Using the information of analytical FRFs and broadband random excitation from the 

experiments in previous sections, the expected value of the electrical power output of energy 

harvester using these five piezoelectric materials is computed. As shown in Fig. 38, PMN-PZT 

generates the largest power output from band-limited random excitation, and it is followed by 

PMN-PZT-Mn, PZT-5H, PZT-5A and PZT-8.  

 It is found that single crystals (PMN-PZT, PMN-PZT-Mn) outperform ceramics (PZT-

5H, PZT-5A, PZT-8) for the same piezoelectric volume. Moreover, soft ceramics outperform 
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hard ceramics, while soft single crystals outperform hard single crystals. Table 7 summarizes the 

requirement of stack volume for generating 1 mW mean power under 1 MPa RMS pressure. 

 

Figure 38. Expected power output (normalized with respect to the stack volume and input 

pressure) for stacks made of different piezoelectric materials. 

 

 

Table 7. Comparison of volumetric stack requirement for different piezoelectric materials to 

generate 1 mW mean power output under 1 MPa (=2.5 kg / 25 mm
2
) RMS pressure. 

 

 

Required material volume for 1 mW 

mean random power generation under 1 

MPa RMS random pressure [cm
3
] 

PMN-PZT 0.40 

PMN-PZT-Mn 0.52 

PZT-5H 1.78 

PZT-5A 2.27 

PZT-8 3.81 
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4.6 Conclusions  

Frequency-domain analytical solution of piezoelectric energy harvesting using a multilayer 

stack configuration from harmonic and broadband random vibrations is presented. In addition, 

time-domain numerical solutions for energy generation under random vibrations are presented. 

The analytical and numerical predictions exhibit very good agreement with the experimental 

measurements taken for a PZT-5H piezostack. The analytical solutions are further validated for 

different levels of random excitation. It can be concluded that the analytical and numerical 

solutions presented in this chapter are effective tools for predicting and optimizing the 

performance of piezoelectric stack harvesters under broadband random excitation. Using the 

experimentally validated analytical solution, stacks made of various piezoelectric materials: 

PMN-PZT (soft single crystal), PMN-PZT-Mn (hard single crystal), PZT-5H (soft ceramic), 

PZT-8 (hard ceramic), PZT-5A (soft ceramic) are compared for power generation under random 

excitation. It is found that single crystals outperform ceramics, moreover, soft ceramics and 

single crystals outperform their hard counterparts because the power generation performance 

under off-resonant low-frequency excitation is governed by the elastic compliance and 

piezoelectric constant rather than the quality factor.  
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CHAPTER 5 

BAND-LIMITED RANDOM EXCITATION OF  

THE CANTILEVER AND STACK CONFIGURATIONS 

5.1 Cantilevered bimorph   

 In this section, energy harvesting from band-limited random vibrations using cantilevered 

bimorph is investigated. The analytical and numerical approaches discussed in previous chapters 

are applied here and results are validated by experimental measurements.    

 The cantilever investigated in this chapter is the brass-reinforced PZT-5H bimorph as 

described in Section 3.5.1. Shown in Fig. 39 are the analytical and experimental voltage output – 

to – base acceleration FRFs and tip velocity – to – base acceleration FRFs.  

 

 

Figure 39. (a) Voltage – to – base acceleration FRFs and (b) tip velocity – to – base acceleration 

FRFs of the PZT-5H bimorph cantilever for a set of resistors (solid lines are analytical model and 

dots are experimental measurements). 

 

(a) 

(b) 
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 In the following three sections, the bimorph is subjected to random excitations with three 

different bandwidths. The first set of random excitations has a frequency band from 0 to 200 Hz 

which does not cover any vibration mode, as can be observed from Fig 39. The second set of 

random excitations has a frequency band from 0 to 1 kHz, which covers the first vibration mode 

only. The third set of random excitations has a frequency band from 0 to 5 kHz, which covers the 

first and second vibration modes. The expected power generation and mean-square shunted 

vibration responses from the three sets of band-limited random excitations are computed using 

analytical and numerical solutions. The results are validated through experiments.  

 

5.1.1 Random excitation with 0-200 Hz bandwidth 

 The PSD of the base acceleration is directly extracted from the data acquisition system 

and an example is shown in Fig. 40. As can be seen from the figure, most energy of the base 

acceleration is accumulated within the 0-200 Hz frequency range.  

 

Figure 40. PSD of a 0-200 Hz random base acceleration signal. 

 

 The expected value of power output is presented in Fig. 41. Analytical prediction, two 

numerical solutions and experimental measurements show good agreement. The shunted 

vibration response (in the form of tip velocity) of the bimorph is not sensitive in this case since 
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the frequency band of the excitation does not cover any vibration mode. As shown in the square-

mean of tip velocity vs. resistance curve (Fig. 42), no valley shape is observed.    

  

Figure 41. Comparison of analytical predictions, numerical simulations, and experimental results 

of expected power generation of cantilever under 0-200 Hz random excitation: (a) five 

experimental and numerical data points at each resistor and (b) only average values for clarity. 

 

 

   

Figure 42. Comparison of analytical predictions, numerical simulations, and experimental results 

of mean-square tip velocity of cantilever under 0-200 Hz random excitation: (a) five 

experimental and numerical data points at each resistor and (b) only average values for clarity. 

 

5.1.2 Random excitation with 0-1 kHz bandwidth 

 In the second case, the bandwidth of the base acceleration is from 0 to 1 kHz, its PSD is 

shown in Fig. 43. This excitation signal covers the first vibration mode of the system.  

(a) (b) 

(a) (b) 
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Figure 43. PSD of a 0-1 kHz random base acceleration signal. 

 

 The expected value of power output is presented in Fig. 44. Analytical prediction, two 

numerical solutions and experimental measurements show good agreement. Recall that this 

bandwidth covers the first vibration mode of the bimorph, therefore the shunted vibration 

response (in the form of tip velocity) of the bimorph presents a typical valley shape, as shown in 

Fig. 45.  

     

Figure 44. Comparison of analytical predictions, numerical simulations, and experimental results 

of expected power generation of cantilever under 0-1 kHz random excitation: (a) five 

experimental and numerical data points at each resistor and (b) only average values for clarity. 

 

(a) (b) 
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Figure 45. Comparison of analytical predictions, numerical simulations, and experimental results 

of mean-square tip velocity of cantilever under 0-1 kHz random excitation: (a) five experimental 

and numerical data points at each resistor and (b) only average values for clarity. 

 

5.1.3 Random excitation with 0-5 kHz bandwidth 

 The PSD of a typical 0-5 kHz band-limited base acceleration is shown in Fig. 46.  

 

Figure 46. PSD of a 0-5 kHz random base acceleration signal. 

 

 The expected value of power output is presented in Fig. 47. Analytical prediction, two 

numerical solutions and experimental measurements show good agreement. The shunted 

vibration response (in the form of tip velocity) of the bimorph is shown in the Fig. 48.  The 

deviations in the simulations are due to the deviations between the experimental time series.  

(a) (b) 



72 
 

     

Figure 47. Comparison of analytical predictions, numerical simulations, and experimental results 

of expected power generation of cantilever under 0-5 kHz random excitation: (a) five 

experimental and numerical data points at each resistor and (b) only average values for clarity. 

 

 

    

Figure 48. Comparison of analytical predictions, numerical simulations, and experimental results 

of mean-square of tip velocity of cantilever under 0-5kHz random excitation: (a) five 

experimental and numerical data points at each resistor and (b) only average values for clarity. 

 

5.2 Multilayer piezostack  

 In this section, energy harvesting from band-limited random vibrations using piezostack 

is investigated. The analytical and numerical approaches discussed in previous chapters are 

applied and results are validated by experimental results. The piezostack investigated in this 

chapter is a PZT-5H multilayer stack as described in section 4.4.1. Shown in Fig. 49 are the 

analytical and experimental voltage output  – to – force input FRFs. 

(a) (b) 

(a) (b) 
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Figure 49. Voltage – to – force FRFs of the PZT-5H stack for a set of resistors (solid lines are 

analytical model and dots are experimental measurements). 

 

 In the following three sections, the stack is subjected to random excitation with three 

different bandwidths: 0-10 Hz, 0-50 Hz, and 0-140 Hz. The expected power generation and 

mean-square shunted vibration response from the three sets of band-limited random excitations 

are computed using analytical and numerical solutions. The results are validated through 

experiments.  

 

5.2.1 Random excitation with 0-10 Hz bandwidth 

 The PSD of the axial force input is directly extracted from the data acquisition system 

and the PSD of a typical axial force is shown in Fig. 50. As can be seen from the figure, most 

energy of the axial force is accumulated within the 0-10 Hz frequency range and decays beyond 

about 10 Hz.  
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Figure 50. PSD of a 0-10 Hz random excitation signal. 

 

 The expected value of power output is presented in Fig. 51. Analytical prediction, two 

numerical solutions and experimental measurements show good agreement. 

  

Figure 51. Comparison of analytical predictions, numerical simulations, and experimental results 

of expected power generation of piezostack (0-10 Hz random excitation): (a) five experimental 

and numerical data points at each resistor and (b) only average values for clarity. 

 

5.2.2 Random excitation with 0-50 Hz bandwidth 

 The PSD of a typical 0-50 Hz band-limited axial force is shown in Fig. 52 although the 

decay after 50 Hz is not very sharp. As can be seen from the figure, due to the limitation of 

signal generator and shaker, energy of the axial force decays over the frequency band. Since 

energy beyond 50 Hz is negligible, it is fair to assume that the excitation has a band limit of 0-50 

Hz.  

(a) (b) 
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Figure 52. PSD of a 0-50 Hz random excitation signal. 

 

 The expected value of power output is presented in Fig. 53. Analytical prediction, two 

numerical solutions and experimental measurements show good agreement. 

  

Figure 53. Comparison of analytical predictions, numerical simulations, and experimental results 

of expected power generation of piezostack (0-50 Hz random excitation): (a) five experimental 

and numerical data points at each resistor and (b) only average values for clarity. 

 

5.2.3 Random excitation with 0-140 Hz bandwidth 

 The PSD of a typical 0-140Hz band-limited axial force is shown in Fig. 54. As can be 

seen from the figure, most energy of the axial force is accumulated within the 0-140 Hz 

frequency range and decays beyond about 140 Hz.  

(a) (b) 
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Figure 54. PSD of a 0-140 Hz random excitation signal. 

 

 The expected value of power output is presented in Fig. 55. Analytical prediction, two 

numerical solutions and experimental measurements show good agreement again. 

  

Figure 55. Comparison of analytical predictions, numerical simulations, and experimental results 

of expected power generation of piezostack (0-140Hz random excitation): (a) five experimental 

and numerical data points at each resistor and (b) only average values for clarity. 

 

5.3 Conclusions 

In this chapter, energy harvesting from band-limited random excitation of cantilever and 

stack configurations is investigated. Analytical and numerical solutions of the expected power 

output and mean-square shunted vibration response are validated through experiments using a 

PZT-5H cantilevered bimorph and a PZT-5H multilayer stack.  

The frequency-domain analytical solution uses the PSD information of the excitation and 

the analytical FRFs of the harvester. In this chapter, only one time history of experimental 

(a) (b) 
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random excitation is used for expected power output estimation, that is, time history of excitation 

is fixed for varied resistance values. Since time history of excitation has variations in each 

experimental case, the analytical solution (one single curve) might deviate from numerical and 

experimental results. Numerical solutions use time history of excitation from each experimental 

case. Overall, the analytical and numerical results show very good agreement with experimental 

measurements, therefore the established mathematical tools are shown to be effective to predict 

the harvesters’ performance and capable of handling band-limited random vibration input.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

This thesis presents a study of piezoelectric energy harvesting from broadband random 

vibrations using a cantilevered bimorph and a multilayer stack. Analytical and two numerical 

solutions of expected (mean) piezoelectric power output and the mean-square vibration response 

of each harvester configuration are developed and experimentally validated. The analytical 

solution uses the combination of distributed-parameter electroelastic FRFs with the input power 

spectral density (PSD) while the numerical solutions treat the random base excitation problem in 

two separate approaches deterministically and stochastically. The deterministic approach 

represents the base acceleration history in terms of its Fourier series expansion to use with the 

first-order electroelastic equations in a Runge-Kutta-based ordinary differential equation (ODE) 

solver while the stochastic approach directly employs an Euler-Maruyama scheme to solve the 

resulting first-order stochastic differential equations (SDEs). The analytical as well as ODE-

based and SDE-based numerical predictions exhibit very good agreement with the experimental 

measurements in both studies of cantilevered bimorph and multilayer stack. The analytical and 

numerical solutions are further validated for different levels of random excitation. It can be 

concluded that the solutions presented in this thesis are effective tools for predicting and 

optimizing the performance of cantilevered piezoelectric harvesters and multilayer stack 

harvesters under broadband random excitation.  

In the base-excited cantilevered bimorph case, the effect of higher vibration modes is also 

investigated based on the analytical solution. It is concluded that lightly damped higher vibration 
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modes can alter the expected power curve (primarily the optimal load) if the PSD of input 

vibration covers frequencies of higher modes as in the case of white noise excitation.  

Using the experimentally validated analytical solution, cantilevered bimorphs made of 

four piezoelectric materials PZT-5H (soft ceramic), PZT-8 (hard ceramic), PMN-PZT (soft 

single crystal), PMN-PZT-Mn (hard single crystal) are compared for power generation under 

broadband random excitation. It is found that hard ceramics and single crystals outperform their 

soft counterparts. In addition, hard ceramics (PZT-8) can outperform soft single crystals (PMN-

PZT). However, the power output levels are on the same order of magnitude unlike the case of 

resonant excitation under harmonic input.   

Through theoretical studies, stacks made of various piezoelectric materials, PMN-PZT, 

PMN-PZT-Mn, PZT-5H, PZT-8, PZT-5A (soft ceramic) are compared for power generation 

under broadband random excitation. It is found that single crystals outperform ceramics, 

moreover, soft ceramics and single crystals outperform their hard counterparts because the power 

generation performance under off-resonant low-frequency excitation is governed by the elastic 

compliance and piezoelectric constant rather than the mechanical quality factor.  

Finally, through multiple series of experiments, the established analytical and numerical 

solutions are shown to work successfully for predicting the expected electrical power and 

shunted vibration response for the case of band-limited random excitation as well.  
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6.2 Recommendations for future work 

The present work investigated random excitation of geometrically, materially, and 

electroelastically linear piezoelectric energy harvesters. Future work might consider nonlinear 

energy harvesters under both broadband and band-limited random excitations for the cases of 

essential nonlinearities and nonlinearities introduced for performance enhancement in 

deterministic excitation to compare the distributed-parameter behavior (e.g. modal interactions, 

etc.) with the existing theories based on SDOF nonlinear modeling [24,28,32]. Modeling of 

random vibrational energy harvesting in the presence of nonlinear storage circuits [38,51-56] can 

also be of interest for future research. 
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