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SUMMARY 

 

Conventional solder balls used in microelectronic packaging suffer from thermo-

mechanical damage due to difference in coefficient of thermal expansion between the die 

and the substrate or the substrate and the board. Compliant interconnects are 

replacements for solder balls which accommodate this differential displacement by 

mechanically decoupling the die from the substrate or the substrate from the board and 

aim to improve overall reliability and life of the microelectronic component. Research is 

being conducted to develop compliant interconnect structures which offer good 

mechanical compliance without adversely affecting electrical performance, thus 

obtaining good thermo-mechanical reliability. However, little information is available 

regarding the behavior of compliant interconnects under shock and impact loads. 

 

The objective of this thesis is to study the response of a proposed multi-path 

compliant interconnect structure when subjected to shock and impact loading.  As part of 

this work, scaled-up substrate-compliant interconnect-die assemblies will be fabricated 

through stereolithography techniques.  These scaled-up prototypes will be subjected to 

experimental drop testing.  Accelerometers will be placed on the board, and strain gauges 

will be attached to the board and the die at various locations.  The samples will be 

dropped from different heights to different shock levels in the components, according to 

Joint Electron Devices Engineering Council (JEDEC) standards.   In parallel to such 

experiments with compliant interconnects, similar experiments with scaled-up solder 

bump interconnects will also be conducted.  The strain and acceleration response of the 



 xviii 

compliant interconnect assemblies will be compared against the results from solder bump 

interconnects.   Simulations will also be carried out to mimic the experimental conditions 

and to gain a better understanding of the overall response of the compliant interconnects 

under shock and impact loading.  The findings from this study will be helpful for 

improving the reliability of compliant interconnects under dynamic mechanical loading.  
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CHAPTER 1 

INTRODUCTION 

 

Due to alternating periods of operation and idling, a typical microelectronic 

package undergoes thermal cycling by means of repetitive heating and cooling. The 

different materials comprising the package have different Coefficients of Thermal 

Expansion (CTE) and therefore, expand and contract to different extents during 

operation. This differential expansion and contraction of package materials leads to the 

development of stresses, which are transferred to the package die by means of the 

interconnecting solder bumps. The amount of stress transferred is also increased by the 

presence of underfill material surrounding the solder bumps. Under the effect of the 

developed and transferred stresses, the die tends to crack and fail leading to package 

failure. In addition, any low-K dielectric materials used in the package may also undergo 

cracking due to stress development and may be subjected to subsequent delamination due 

to these stresses. These problems are among the primary reasons for microelectronic 

package failure. 

The main cause of this stress transfer is the use of rigid solder bumps, which act 

as stress transfer conduits. In order to overcome the drawbacks of the solder bump, a 

proposed alternative is the compliant interconnect. Compliant interconnects are 

elastically deformable interconnect structures which possess the ability to absorb and 

reduce stress developed in the package during operation. They aim to prevent the failure 

of a package by compensating for the differential displacement of the die and the 

substrate caused due to thermal cycling induced by operation. Compliant interconnects 
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additionally aim to provide other advantages including reduction in the overall chip or die 

stresses. They allow easier use of low-K dielectric materials by reducing the stresses 

which cause low-K dielectric cracking and delamination. Also, the compliant nature of 

the interconnects removes the need for underfill material, which leads to stress transfer 

and increase in die stresses.  

Till date, researchers have developed numerous compliant interconnect structures 

to account for the drawbacks of solder bumps. These complaint interconnect structures 

have been studied in detail from a thermo-mechanical reliability aspect. However, not 

much has been done to understand the effect of drop and impact on these structures. This 

area of microelectronic package reliability is in dire need and must be addressed in order 

to understand the feasibility of using compliant interconnects as operational first level 

interconnects. 
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CHAPTER 2 

LITERATURE REVIEW 

 

A preliminary background on conventional interconnects, compliant interconnects 

and drop testing will be given in the following sections. 

2.1 Interconnects 

Interconnects are the electrical pathways in electronic packages through which 

power and signals are transmitted between the chip and the underlying substrate, and 

between the electronic package and the surrounding board and related hardware. They 

usually consist of low resistance electrical conduits which allow transfer of electrical 

signals at very high rates. Based on location and function, interconnects can be classified 

as given below. 

 On-chip interconnects: Used to connect devices within a single chip. 

 Off-chip interconnects: Used to connect an individual chip to the 

underlying substrate as well as beyond the substrate, such as 

connecting the chip directly to the underlying printed circuit board. 

These are also referred to as first-level interconnects. 

 Interconnects connecting the electronic package to the underlying 

printed circuit board. 

 Interconnects connecting different printed circuit boards. 

 Interconnects connecting different sub-assemblies and systems 



 4 

Of the above, the interconnect design dealt with in the currently presented work 

will be a first-level interconnect, that is, an interconnect that connects the chip to the 

underlying substrate. First-level interconnects have evolved over the years due to varying 

demands and requirements imposed on them. This level of interconnects is usually 

designed keeping several key features in mind. Although the first-level interconnects 

function as power, ground, and signal interconnects between the chip and the substrate, 

they must also be able to account for problems in the electronic package that arise during 

operation of the entire system. They must be mechanically reliable and must be able to 

take the differential displacement that occurs in the package due to differing coefficients 

of thermal expansion (CTE) between the chip or die and the substrate, at the same time 

displaying good electrical characteristics and mechanical reliability. They must be able to 

account for the low-K dielectric material properties of the various layers used in the 

microelectronic package and must not create high stresses in the chip or near any brittle 

material or weak interface. At the same time, they must be cost effective and easily 

repeatable in fabrication.  

Taking into account the above requirements, various first-level interconnects have 

been designed, of which few are in actual use today. Tummala’s book on Fundamentals 

of Microsystems Packaging provides a good overview of typical first-level interconnect 

technologies in use today [Tummala, 2001]. 

2.1.1 Wire-bonding 

Shown in Figure 2.1, wire-bonding is a basic chip-to-package interconnection 

methodology wherein fine metal wires are attached between the chip and substrate using 

ultrasonic bonding techniques.  Originating with AT&T’s beam lead bonding in the 
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1950’s, wire-bonding is typically done using thin 25 µm thick gold wires. These wires 

are ultrasonically bonded to the pads available on the chip and the substrate. This 

technique is largely popular due to the highly flexible interconnection process, low defect 

rates and large well-established industrial infrastructure.  

 

 However, these interconnections suffer from poor electrical performance, large 

footprint size, slow point-to-point attachment process as well as wire-sweep possibility 

during encapsulation. Despite these drawbacks, wire-bonding is still the most widely 

preferred means of interconnecting the chip and the substrate [Tummala, 2001]. 

2.1.2 Tape Automated Bonding (TAB) 

Tape automated bonding, better known as TAB, makes use of flexible polymer 

tapes for providing the interconnection paths. Figure 2.2 shows a top-down view a Tape 

Automated Bonded strip.  

 

Figure 2.1: Stacked dies with wire-bonds (Courtesy of SOCcentral) 



 6 

 The polymer tapes used in this process are multi-layered, with metal layers within 

the tape providing the electrical pathways.  The fabrication process for TAB is fully 

automated and thus is able to handle very-large-scale-integration (VLSI) as well as high 

I/O (input/output) densities. The presence of the polymer tapes prevents wire-looping, a 

problem present in wire-bonded connections. However, this new interconnection design 

presents several new problems, including increased package size with increasing I/O 

counts, necessary peripheral attachment, difficulty of rework, and most of all, large 

capital investment with very little infrastructure already existing for fabrication and 

implementation. 

2.1.3 Flip Chip 

 Invented in 1962 by IBM as the Solid Logic Technology, and later converted to 

Controlled Collapse Chip Connection (C4) in 1970, flip chip technology is one of the 

most upcoming first-level interconnection techniques. It involves flipping the chip upside 

down and then bonding the chip directly to the substrate using suitable interconnections. 

Figure 2.2: Tape Automated Bonding (Courtesy of Westinghouse ESG) 
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Known for its rapid fabrication techniques, high I/O counts, low stand-off distance 

between chip and substrate and good electrical characteristics, flip chip packages usually 

make use of solder-bumps as the interconnections. While this particular interconnection 

technique has many advantages, it suffers from other problems such as solder bump 

failure due to creep and fatigue during operation, delamination between adjacent layers as 

well as cracking at different locations due to accumulated stresses during operation. 

Figure 2.3 shows a schematic of a basic flip-chip package. 

 

 

 

 

 

 

 

 

2.2 Compliant Interconnects 

In order to overcome the problems discussed in the above sections, the concept of 

the compliant interconnect was developed. Compliant interconnects can be defined as 

elastically deformable structures which mimic springs and are designed with the main 

purpose of compensating for the differential displacement or mismatch between the die 

and substrate during thermal cycling and operation. Simultaneously, they aim to reduce 

die stresses and due to their compliant nature, try to reduce delamination and cracking by 

preventing excessive stress concentration at various interfaces within the package. Given 

      

 
         

 

 

  

Solder balls 

Solder bumps 
Die 

Underfill 

Figure 2.3: Schematic of a typical flip-chip package 
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below are some of the compliant interconnect designs which have been developed in the 

past, along with their advantages and disadvantages. The following sections provide an 

overview of various compliant interconnects and are based on, among other references, 

the book chapter by Sitaraman and Kacker [2009]. 

2.2.1 Sea of Leads 

 The sea of leads (SoL) is a compliant interconnect design which aimed to rectify 

package failure due to high mechanical stresses in the low-k interlayer dielectric material 

of a microelectronic package [Bakir et al, 2005]. Designed for the Wafer Level Package 

(WLP), these interconnects comprised of compliant leads fabricated on top of a polymer 

film deposited on a silicon wafer. Solder bumps were deposited on the compliant leads 

and served as the connecting pathway between the lead and the substrate. The main 

drawback of this compliant interconnect design was in the use of the underlying polymer 

layer, which reduced the overall compliance of the compliant lead. Thus, the inherent 

design of the compliant lead posed limitations on achievable compliance. 

 

 

Figure 2.4: Sea of Leads interconnect with air gap [Bakir et al, 2003] 
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2.2.2 FormFactor’s MicroSpring MOST
TM 

 Initially designed for probe card applications, FormFactor’s MicroSpring wafer 

scale package MOST
TM

 (MicroSpring contact On Silicon Technology) had limited 

success as an interconnect of the first-level [Novitsky and Pederson, 1999]. Its unique 

shape was fabricated by controlling the motion of the wire-bonder used for its fabrication. 

But due to the serial nature of this fabrication process, large I/O density could not be 

achieved. Figure 2.5 depicts an SEM image of Formfactor® MOST
TM

. 

2.2.3 Helix Interconnects: β-Helix and G-Helix 

 Designed at Georgia Institute of Technology, the helix group of compliant 

interconnects consisted of spring-like copper-based structures fabricated using a 

multilayer photolithographic process. The initial design was the β-Helix structure, which 

was found to have directional problems as well as multiple fabrication steps [Zhu et al, 

2003]. In an effort to overcome the drawbacks of the β-Helix, the G-Helix compliant 

interconnect was designed [Lo et al, 2004].  

Figure 2.5: FormFactor® MicroSpring MOST
TM

 [Novitsky and Pederson, 1999]  
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 Shown in Figure 2.6, the G-Helix compliant interconnect consisted of a three-

layer copper interconnect. The compliant nature of this compliant interconnect was due to 

the arcuate beam which connected the posts. The two posts were intentionally offset in 

order to obtain directional compliance and ensure proper differential displacement in all 

three X, Y and Z directions. On comparing the two, it was observed that the β-Helix had 

better mechanical compliance, while the G-Helix displayed better electrical 

characteristics than the β-Helix. However, both designs were directionally challenged and 

offered different compliance values in different directions and each design had at least 

the very least three photolithographically fabricated layers, making fabrication 

cumbersome. 

2.2.4 Parallel-path FlexConnect 

 In an effort to overcome the problems observed in the β-Helix and G-Helix, 

FlexConnect compliant interconnects were designed at Georgia Institute of Technology 

[Kacker et al, 2007]. Shown in Figure 2.7, the FlexConnect compliant interconnect 

consisted of a two layer structure with mirrored arcuate beams. Requiring a two layer 

Figure 2.6: Micrograph of 100 µm pitch G-Helix interconnects [Lo et al, 2004] 
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photolithographic fabrication procedure, the FlexConnect addressed the electrical 

concerns of the G-Helix by providing opposing electrical pathways, thereby reducing 

electrical parasitics and providing redundant electrical pathways in case one of failure of 

one of the arms. The main drawback of this structure was again the directional 

compliance of the structure, with compliance values being higher along one direction 

than the other. 

 

2.2.5 Multi-path fan-shaped compliant interconnects 

 The drawback of the FlexConnect lay in the differential directional compliance 

that was seen in its design. The multi-path fan-shaped compliant interconnects, designed 

at Georgia Institute of Technology, aimed to address this problem by making use of 

radially repetitive designs [Lee at al, 2011]. Shown in Figure 2.8, these interconnects 

possessed compliant arms (two, three or four in number) which were supported on posts. 

These arcuate beams would take the differential displacement induced during operation, 

Figure 2.7: Parallel-Path FlexConnects at 100 µm pitch [Kacker et al, 2008] 
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thereby reducing chip stresses. The radial nature of these compliant interconnects enabled 

the same compliance value in all in-plane directions.  

 The current research work being conducted will make use of the three-arc multi-

path compliant interconnect design for all its experimental tests and simulations. 

2.3 Drop testing 

As was mentioned in the previous chapter, drop testing is a very important aspect 

of microelectronic package reliability. Drop testing allows one to determine the response 

of the given package when subjected to extremely high loads over very short durations of 

time. In effect, impulse loads are applied on the package and its performance is studied 

Figure 2.8: Multi-path fan-shaped compliant interconnects – (i) Two-arc interconnect 

(ii) Three-arc interconnect (iii) Four-arc interconnect [Lee et al, 2011] 

(i) 

(ii) 

(iii) 
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before, during and after the impulse load has been applied. A reliable microelectronic 

package will not display any adverse effect due to the impulse load and will function with 

at least the same or slightly reduced efficiency, but will not stop working all together. 

Drop testing also allows the determination of the maximum stresses and strains which the 

package will experience during the impulse loading event, allowing the replacement of 

currently used materials for more robust, impact-resistant ones. 

2.3.1 JEDEC Standard for drop testing 

 For many years, there was no set standard for conducting repeatable and reliable 

drop tests on microelectronic components. To address this issue, in July 2003, the Joint 

Electron Devices Engineering Council (JEDEC) established a standard for board-level 

drop test reliability (JESD22-B111) which specified the conditions for conducting 

repeatable drop tests. The basic procedure involved the mounting the sample to be tested 

on top of a drop test table. The drop test table would be raised to a suitable height and 

dropped under free-fall along guide rods and be made to impact a rigid surface 

underneath it. The resultant impact would create a shock, which would travel upward 

through the drop test table and into the sample, simulating a drop event. This technique 

was called the 0° JEDEC standard drop test. The specific impulses that had to be 

imparted were specified in a subsequent standard last revised in November 2004, called 

Subassembly Mechanical Shock (JESD22-B110). The above two standards combined 

would pave the way for what the industry deemed reliability in drop testing. Shown in 

Figure 2.9 is a schematic of the basic JEDEC standard drop test setup. 

 Before JEDEC established the currently used drop test standards, attempts were 

made to quantify drop testing in terms of mathematical equations. Drop testing is a highly  
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nonlinear event, involving large deformation occurring over very short durations of time. 

To understand this, researchers at AT&T Bell Laboratories developed a basic 

mathematical formulation to explain nonlinear dynamic response of printed circuit 

boards, when subjected to shock loading [Suhir, 1991]. While this mathematical 

formulation seemed correct, it was not until after the JEDEC standards were established 

that these formulations could be verified. The last revision of this formulation allowed the 

understanding of impact pulse generation as seen in the JEDEC standard [Suhir, 2010].  

 While mathematical formulation by and of itself was validation enough, 

experimental proof allowed a better visual understanding of the drop test phenomena. 

Several researchers have undertaken the task of conducting and understanding drop tests 

experimentally. These experiments generally take a very long time to setup and conduct, 
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due to the complex nature of the parts fabricated, the pre-calibration of the machine and 

the associated post-processing of data needed after the tests are conducted. It was 

generally agreed that conducting simulations of the drop test event would speed up the 

understanding of the drop test phenomena for microelectronic packages. 

  Drop testing, being a highly nonlinear event, required that any simulation that 

was done should be able account for the extremely large deformation experienced by the 

package over a short duration of time. For this purpose, explicit finite-element simulation 

solvers were found to be more suitable compared to implicit solvers. Thin-profile fine-

pitch BGA (TBGA) and very-thin-profile fine-pitch BGA (VTBGA) packages were 

experimentally tested  by Tee and others, using the JEDEC-specified 1500G impact 

acceleration, the results being used to validate explicit simulations conducted using 

ANSYS®/LS-DYNA® [Tee et al, 2003]. Drop tests on ball-grid arrays (BGA) , quad-flat 

no-lead packages (QFN) and conduction-cooled ball-grid arrays (C2BGA) were 

conducted based on the testing methods given in JEDEC standards and subsequently used 

to validate explicit finite-element simulation data obtained using ABAQUS® explicit 

software [Lall et al, 2004, 2006]. Chip-scale packages (CSP) were studied for varying 

pad configurations like NSMD (non-solder mask defined) [Pan et al, 2006]. The CSP 

experimental results were validated using ANSYS®/LS-DYNA® explicit solvers. 

Reliability models based on failure envelopes, Digital Image Correlation (DIC) and 

explicit submodeling were developed and studied for various BGA configurations [Lall et 

al, 2005, 2009]. Some researchers departed from the drop test sample dimensional 

specifications specified by JEDEC to conduct their drop testing. It was claimed that using 

the circular drop test printed circuit board assembly (instead of the rectangular board 
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specified in JEDEC standard JESD22-B111) would lead to more uniform stress and strain 

levels during the drop event. Nevertheless, these experimental results were used to 

validate finite-element simulations conducted on BGA packages using ABAQUS® 

Explicit. 

 While the data obtained from explicit simulations was accurate and found to be 

sufficient, there existed the case in industry of lack of access to explicit solvers. Finite-

element simulation software usually came with only the implicit solver, the explicit 

solvers being an expensive add-on feature. To try and make use of available resources, 

researchers at STMicrolectronics, Singapore developed an implicit finite-element 

formulation for conducting drop tests. The JEDEC standard was used to develop 

mathematical equations which would allow one to use readily available implicit solvers 

to conduct drop tests [Luan et al, 2004]. Known as the Input-G Method, this technique 

gave rise to several studies on drop test reliability of microelectronic packages. Luan and 

Tee showed how simplification of the JEDEC standard drop test model would allow the 

use of implicit formulations in conducting drop test simulations. Fueled by this, Tee and 

others also developed several other drop test simulation techniques, weighing the pros 

and cons of each and proving the reliability of the Input-G Method [Tee et al, 2005]. 

They conducted drop tests on electronic devices such as PDAs as well as BGA packages 

and determined the location of critical solder joints. Around the same time, Irving and 

Liu developed their own implicit transient dynamics methodology to conduct drop test 

simulations on the Fairchild 6 lead Micropak
TM 

[Irving et al, 2004]. 

 While all the above drop testing methodologies are valid and have been proven, a 

general trend can be seen. There is next to no information on drop test reliability of 
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compliant interconnects themselves. Indeed, one of the only studies done on compliant 

interconnect drop testing is by Yuan and others at Guilin University of Electronic 

Technology, China, where they studied the effect of drop testing on Compliant Wafer 

Level Packages (CWLP) [Chaoping et al, 2009]. They combined the Input-G Method and 

explicit ANSYS®/LS-DYNA solvers to obtain their drop test results, stating that their 

design allowed the compliant nature of their copper arm interconnects to relieve stress 

between the chip and bump pad, effectively increasing assembly reliability. 
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CHAPTER 3 

OBJECTIVES AND METHODOLOGY 

  

As can be seen from the previous chapter, a lot of drop testing research has been 

conducted on BGAs, CSPs and other variants of solder-bump based packages. Very little 

information is available in published literature on response of compliant interconnects 

when subjected to drop testing. Thus, there is a definite need to understand the drop test 

reliability of such compliant interconnects. With this in perspective, the objectives of this 

thesis are as follows: 

 Develop a drop testing methodology which can be applied to any 

compliant interconnect structure 

 Understand and establish the drop test reliability of the three-arc multi-

path compliant interconnect in particular 

 Develop an alternative drop test method which can provide a quick low 

cost preliminary alternative to drop testing of photolithography-based 

structures 

 Develop finite-element models to mimic drop testing and to validate the 

results of the FE models with experimental data Suggest improvements 

in the compliant interconnect structure by parametric comparison against 

other common designs 

 Determine possible alternative uses for the given three-arc multi-path 

compliant interconnect structure 
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To achieve the objectives of this work, the following approach or methodology 

was employed.   

 Drop test prototypes of the compliant interconnects with associated die 

and substrate were fabricated using stereolithography. This was done 

since the cleanroom-based fabrication steps needed for 

photolithographic fabrication of the compliant interconnects were still in 

development. 

 The prototypes were appropriately scaled up to preserve the width, 

thickness, height, pitch and other dimensions of the compliant 

interconnect. The substrate and die dimensions were decided based on 

the scaling of the interconnects, limitations of the testing machine and 

appropriate standards. 

 A drop test setup was developed which would accommodate the 

fabricated samples. Drop tests were conducted for different drop heights 

using the fabricated samples. Accelerometers and strain gauges mounted 

on the sample were used to measure and collect output data. 

 Simultaneously, finite-element simulations were carried out to obtain 

numerical drop test data for the fabricated interconnects. The finite-

element results were validated using the obtained experimental data. 

 Comparisons were made between the proposed compliant interconnect 

structures and conventional bump interconnects, keeping the 

dimensional scaling in mind.  
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The following chapters present different aspects of the research work conducted. 

Chapter 4 deals with stereolithographic fabrication and experimental drop testing of the 

complaint interconnects. Chapter 5 presents the methodology behind the drop test finite-

element simulations conducted. Chapter 6 presents the results obtained from both 

experimental drop testing and finite-element drop test simulations, with appropriate 

comparisons and validation of data. Chapter 7 will deal with finite-element simulation of 

the proposed compliant interconnect structure using the original scale and materials. 

Finally, conclusions and future work will be given in Chapter 8. 
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CHAPTER 4 

DROP TESTING OF COMPLIANT INTERCONNECTS 

  

 The experimental aspect of this thesis research work involved conducting drop 

test experiments on interconnect samples fabricated using suitable techniques. The testing 

procedure used for the experimental testing aimed to follow basic JEDEC guidelines 

[JESD22-B111, JESD22-B110a] suitably modified to take into account availability of 

fabrication equipment and testing limitations. The basic JEDEC standard board-level 

drop test consists of a controlled 0° drop of a given board with assembled packages, 

where the 0° notation refers to the orientation of the board with respect to the underlying 

drop table. The schematic for this type of 0° drop test is given in Figure 2.9 and is based 

on JEDEC standards 

 In a typical drop test, the PCB test board with assembled packages is mounted on 

a drop test table using spacers. The spacers raise the board above the drop table. By doing 

this, the test sample is supported at its four corners, allowing the rest of the sample to flex 

freely during the actual drop event due to experienced acceleration and inherent inertia of 

the board material and assembled packages. This also isolates the effect of the 

acceleration experienced by the board during the drop event, allowing higher 

accelerations to be obtained from different drop heights. The board is mounted in such a 

way that the assembled packages are below the board, closer to the drop table than the 

board itself. Suitable accessories needed for measurement and data collection are attached 

to the sample to be tested. These include strain gauges mounted at appropriate locations 

(to measure changes in strain along different directions of the board and package 
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surface), accelerometers (to measure acceleration and board deflection) and electrical 

probes (to measure resistance change in the actual package). The drop table with mounted 

test sample is then raised to specified drop heights and then released under controlled 

free- or accelerated-fall onto a rigid surface. Uniformity of the free-fall is maintained by 

making use of guide rods which allow the drop table to fall in only one orientation. The 

impact of the drop table on the rigid block beneath it creates a mechanical shock, which 

travels upwards through the drop table material, through the base-plate, through the 

mounting spacers used to support the board and then to the test sample. In order to relieve 

the shock, and additionally due to its own inertia, the test board will flex about its mean 

position. This flexing action takes place over a very short duration of time (typically over 

5 ms to 100 ms, depending on the board material under test) and is of very high 

frequency. This high frequency flexing leads to the generation of stresses and strains in 

the packages mounted on the underside of the board. This entire process makes up a 

single drop event. This is the basic procedure behind a JEDEC standard 0° board-level 

drop test [JESD22-B111]. 

 The above explained drop test procedure makes use of a fully assembled package, 

with suitable wiring for the interconnections to be powered through. The work presented 

in this thesis aims to determine the drop test reliability of the multi-path three-arc 

compliant structures used as first-level interconnects by fabricating, assembling and 

subsequently testing the actual copper-silicon interconnect-die assembly package. 

However, the fabrication of the actual copper-silicon interconnect-die assembly package 

is still underway. Therefore, in order to understand the drop test behavior of this 

particular compliant interconnect design in the interim, an alternative test sample was 
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fabricated and utilized to conduct the drop test. The methodology, reasoning and 

procedure used to obtain this alternative sample will be explained in the following 

paragraph. 

 The original copper-based multi-path compliant interconnects are supposed to be 

fabricated using a multi-layer photolithography process using basic cleanroom tools. This 

cleanroom-based fabrication process is still under development. In order to develop an 

alternative to understand the drop test behavior of the multi-path compliant interconnects, 

an alternative to the photolithographic fabrication procedure used in the cleanroom was 

sought. It was determined that stereolithography (or rapid prototyping) could be used to 

fabricate faithful replicas of the required test samples. However, this process could be 

used to fabricate samples only out of stereolithographic polymer, which would allow the 

samples to mimic the physical behavior of the required compliant interconnects due to 

similar geometry, deeming rapid testing and experimentation of the interconnect 

geometry’s behavior possible. The process of stereolithography is explained in more 

detail in the following sections. 

4.1 Sample fabrication 

4.1.1 Stereolithography 

 Stereolithography (also known as Rapid-Prototyping) is a rapid fabrication 

technique used in industry and research to develop prototypes of three-dimensional 

models in order to gauge response behavior that cannot be predicted through 

mathematics, simulation or other numerical techniques. The process of stereolithography 

requires the use of a three-dimensional computer-aided design (CAD) model of the 

prototype to be fabricated. This CAD model is used as input into the stereolithography 
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machine by suitably converting it into the required file format, usually an .STL file. The 

.STL file, upon being entered into the stereolithography machine’s software, gets 

manipulated and altered by the software. The associated CAD model gets cut up into 

virtual ‘slices’ or layers as shown in Figure 4.1. These layers when stacked on top of each 

other form the whole CAD model.  

 The stereolithography machine utilizes a light-sensitive polymer resin as raw 

material for building is prototypes. This light-sensitive polymer is reacts to the beam of a 

computer-controlled UV light source, usually a laser, which focuses its beam on the 

liquid polymer and partially polymerizes it, allowing the resin to harden and take on the 

required three-dimensional shape. This procedure is used to build each layer or ‘slice’ of 

the CAD model using a bottom-up approach. After the first layer or ‘slice’ of the CAD 

model is fabricated, the second layer is built directly on top of it. This process is 

continued till the entire three-dimensional part is fabricated. This procedure allows for 

the generation of complex three-dimensional shapes using the machine’s homogenous 

polymer resin material. Free floating surfaces can also be generated by making use of 

suitable support structures, which are usually automatically generated by the 

stereolithography machine’s software. After generation of all the layers, a workable 
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Figure 4.1: Virtual slicing of input CAD model 
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three-dimensional replica of the input CAD model is obtained, though it is still unfinished 

and cannot be used directly for testing. This polymer model is removed from the 

fabrication chamber, cleaned using solvents to dissolve unwanted liquid polymer resin 

left on the polymer prototype and subjected to ultraviolet (UV) light to fully polymerize, 

cure and obtain the required prototype. The accuracy of the part’s dimensions depends on 

the resolution of the given stereolithography machine; this resolution is a function of the 

workability of the polymer resin raw material (specified in terms of part build layer 

thickness in the material property data sheet for the given polymer resin) and the 

resolution of the UV light source used to partially polymerize the light-sensitive polymer 

resin (diameter of the UV laser beam). 

Figure 4.2: Stereolithography/Rapid Prototyping process (courtesy 

CustomPartNet) 
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 In the current research on drop testing of three-arc compliant interconnects, it was 

proposed that stereolithography be used to fabricate these complex three-dimensional 

compliant interconnect structures using an overall package geometry that takes into 

account the limit of resolution of the available machine, repeatability of the fabrication 

process, material used for fabrication and ease of testing of the fabricated model used in 

the actual drop test. The following sections are devoted to explaining the various tools, 

processes and procedures involved in the actual sample fabrication process. 

4.1.2 Viper® SLA
2
 Stereolithography machine 

 The machine selected for the purpose of stereolithographic fabrication of the 

compliant interconnects was the Viper® SLA
2
 series stereolithography machine. Similar 

Figure 4.3: Viper® SLA
2

 stereolithography machine 
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to most stereolithography and rapid prototyping setups, this machine makes use of an 

ultraviolet (UV) sensitive polymer resin and a computer-controlled UV laser to generate 

three-dimensional replicas of the input CAD models.  

 The machine consists of a fabrication chamber which houses a tank containing the 

UV-sensitive resin, a moveable and detachable fabrication plate with drain holes is held 

within the tank (the drain holes allow excess resin to flow out after fabrication is 

completed), associated guide frames to allow the fabrication plate to move up and down 

inside the chamber and within the resin-tank and a computer-controlled UV laser used to 

generate the three-dimensional geometry of the model. The fabrication chamber has a 

safety door to prevent operation of the machine when being loaded or unloaded and an 

exhaust system to drive out the fumes given out by the polymer resin. The fabrication 

chamber is linked to a computer with appropriate software, which is used to manipulate 

the CAD model before being used for fabrication and to control the operation of the 

entire machine. Figure 4.3 shows the Viper® SLA2 stereolithography machine used for 

the fabrication of the currently studied interconnect samples. 

4.1.3 Stereolithography material: RenShape
TM

 SL 7510 

 The Viper® SLA
2
 series of stereolithography machines makes use of a specific 

light-sensitive polymer resin created specifically for its use, known as RenShape
TM

 SL 

7510. The material properties associated with this polymer resin are given in Table 4.1 

and were obtained from the RenShape
TM

 Material Database [RenShape
TM

 MSDS]. Held 

in the tank lying within the fabrication chamber, this polymer resin can achieve a layer 

thickness of as small as 0.025 mm. While this layer thickness would lead to extremely 

accurate features, the small value of the layer thickness would lead to exceedingly large 
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fabrication times and was found to be unnecessarily fine. The required drop test samples 

could be fabricated just as easily with larger part layer resolution. Therefore, a layer 

thickness of 0.1016 mm (101.6µ) was utilized as the part build layer thickness. This was 

done by setting the step height of the fabrication table movement to 0.1016 mm using the 

attached computer interface. Incidentally, this was the smallest achievable step height for 

the given model of the Viper® SLA
2
 stereolithography machine. 

 One drawback noticed during fabrication and subsequent testing was that the 

material properties of the UV-exposed polymer tended to degrade with time. In other 

words, polymer ageing was an issue over long durations of sample storage [Hutchinson, 

1995]. The fabricated parts would become more brittle with the passage of time, typically 

a time frame of several weeks when the parts were left idle in an aerated container 

maintained at room temperature. To ensure this time-dependent deterioration of material 

properties did not affect the results of the drop test, the samples were  

Liquid Polymer Resin 

Measurement Condition Value 

Appearance - Amber 

Density @ 25°C (77°F) 1.17g/cm
3
 

Viscosity @ 28°C (82°F) 400cps 

Part building layer thickness - 
Minimum 0.025mm 

(0.001in) 

Post-cured Polymer Material 

Measurement Test method 
Value (90-minute UV post-

cure) 

Hardness, Shore D ASTM D 2240 87 

Tensile Modulus ASTM D 638 2282MPa (331 KSI) 

Density - 1.18g/cm
3
 

 

Table 4.1: RenShapeTM SL 7510 polymer resin material properties [Courtesy 

RenShape
TM

] 
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fabricated approximately 24 hours before conducting the drop tests. Data obtained from 

the drop tests were compared between samples fabricated in the same batch, as well as 

between different batches. Just the time from fabrication completion to testing was 

maintained constant between compared samples. 

4.1.4. Model Geometry 

 In order to obtain accurate readings, the three-arc interconnects had to be 

designed as close to the original size and shape as possible. The compliant interconnects 

used in the copper-silicon interconnect-die assembly had a footprint of 0.14 mm (140µ) 

with a pitch of 0.2 mm (200µ). While these dimensions could easily be attained using 

basic cleanroom photolithographic fabrication, the machine being used here for 

stereolithography would not allow such small dimensions to be fabricated, without loss of 

part accuracy. 

 It was thus apparent that the compliant interconnects could not be fabricated at 

such a small pitch and footprint using the stereolithography machine at hand. In order to 

accommodate this, it was decided that the compliant interconnect structures would be 

suitably scaled up to accommodate the resolution limits of the machine. A scaling factor 

of 75 was used to scale up the dimensions of the compliant interconnects. This scaling 

factor was deemed suitable and well within the resolution limits of the Viper® SLA
2
 

stereolithography machine being used. Therefore, the new interconnects, to be fabricated 

using stereolithography, had a footprint of 10.5 mm with a pitch of 15 mm. 

 In order to conform to drop test standards set by JEDEC, the board used for drop 

testing was selected to be 110 mm long, 64 mm wide and 1 mm thick. The scaled up 

interconnects were meant to be sandwiched between this board and a 45 mm by 45 mm 
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square die. Thus, taking into account the new dimensions of the scaled up compliant 

interconnect structures, a 3 by 3 area array of interconnects was found to be sufficient for 

fabrication and testing. The board and die dimensions were decided taking into account 

the dimensions of the testing machine, the scaling of the interconnects and referenced 

JEDEC standards.   

 For the sake of uniformity between experimental samples and numerically solved 

models, the model geometry used for the numerical simulation was exported directly 

from the finite-element simulation software, ANSYS
®
, to create the required CAD model 

needed as input to the stereolithography machine. The final geometry of the proposed 

sample was taken from the finite-element model depicted in Figure 4.4. It should be 

noted that the ANSYS® model was also designed with homogenous polymer resin 

material properties, as was the case of the fabricated experimental test samples  

 

 

Figure 4.4: FEM model used to generate 3D CAD model for stereolithography input 

(i) Full model with die and board 

(ii) Close-up of area-array of interconnects with die removed 

(i) 
(ii) 
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4.1.5. Actual sample fabrication procedure 

 The process of fabricating the polymer-based drop test samples made use of all 

the above mentioned tools and processes. As mentioned, the initial CAD model, needed 

for generation of the .STL file, was exported from ANSYS® in the form of an .IGES file. 

Using computer-aided design software like SolidEdge®, this .IGES file was converted to 

the required .STL format, the preferred file format for stereolithography machines.  

 The .STL file was opened using Buildstation v13, a stereolithography machine 

software used to control and modify CAD models, where the CAD model was spliced 

into ‘slices’ or layers. At this point in the process just before the stereolithography 

machine would start fabrication, an appropriate support structure had to be determined to 

support the free-standing portions of the required prototype to be fabricated. Typically, 

stereolithography models which have free standing structures are fabricated by generating 

removable supports under the free standing regions. In the case of the current compliant 

interconnect model, the support structures generated had to be manually selected in order 

to ensure repeatability and ease of removal. This was extremely important as the gap 

between the compliant interconnect arms and the board below was 2.25mm, while the 

gap between the compliant interconnect arms and the die above them was 1mm.  
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Figure 4.5: Side view schematic of three-arc interconnect with dimensions 
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 After multiple trials, it was determined that the appropriate orientation for 

fabrication required the support structures to be built between the compliant interconnect 

arms and the board below them, rather than between the arms and the die. This ensured 

easy removal of the supports below the arms. Additionally, the computer generated area 

array pattern of supports for the free standing portions of the die was replaced with a 

manually entered peripheral arrangement of supports. This was deemed sufficient to 

prevent the collapse of the die itself during fabrication as well as easy removal post-

fabrication of the sample. The support structure pattern used in fabrication is shown in 

Figure 4.6.  

 

 

 

 

 

 

 

 Once the support structure was defined, the part was ported to the computer 

console of the Viper® SLA
2
 stereolithography machine and the required step height and 

fabrication resolution were selected. Next, the fabrication plate inside the 

stereolithography machine was removed, cleaned and replaced back into the fabrication 
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Figure 4.6: Support structure layout used for stereolithographic fabrication 
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chamber. The level of the polymer resin in the tank inside the fabrication chamber was 

checked and topped up if necessary. Finally, the safety door was closed and locked and 

the computer console was used to start the fabrication process. 

4.1.6 Post-fabrication treatment and processing 

 After the sample fabrication procedure was over, the samples were removed from 

the fabrication plate using a flat chisel. Precision scissors were used to cut away the 

support structure below the entire sample, followed by the cutting of the supports below 

the die and the compliant interconnect arms. This was followed by immediate immersion 

in a methyl alcohol bath for 5 minutes, allowing the excess unpolymerized resin left on 

the sample to dissolve and wash away. Care had to be taken at this point to prevent the 

sample from being submerged in the methyl alcohol bath for too long, as this would 

cause the polymer material to breakdown and soften, rendering the sample useless for 

testing. 

 After removal from the methyl alcohol bath, all the samples were washed with 

running water and scrubbed with a cleaning brush to remove any precipitate formed on 

the samples. Finally, the samples were patted dry and placed in a UV oven for curing. 

Each sample was subjected to a 90 minute post-fabrication UV bake to cure the polymer 

completely and finish the entire fabrication process. A flowchart depicting the fabrication 

process is given below. 

 The required time for fabrication of a single sample was approximately 2.5 hours. 

With optimum settings, it took 4 hours to fabricate a given sample from the initial input 

of the CAD model into the stereolithography machine, all the way to the end of the post-

fabrication UV-exposure step. This time was optimized by fabricating up to 3 samples in 
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each run. This was done in order to save overall fabrication time and also to ensure 

uniformity of material properties of the samples used in a single drop test run. This 

allowed easy removal of samples and reduced the overall fabrication time. The latter was 

possible because each sample fabrication required the machine to build a support 

structure with a height of 0.4 inch (10.16mm) below the actual part geometry to be 

Input CAD model into Buildstation v13 

Virtual slicing of CAD model into layers 

Preparation of fabrication chamber 
• Fabrication plate 
• Top off polymer resin in tank 

Sample fabrication 

Post-fabrication treatment 
• Removal of support 

structures 
• Methyl alcohol bath 
• Water rinse and scrub 

90 minute UV bake 

Finished drop test sample 

 

 

 

 

 

 

Figure 4.7: Fabrication process flow 
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fabricated. By fabricating multiple samples together, the time required to fabricate the 

initial support structure was saved for individual samples.  

 Figure 4.8 shows the fabricated three-arc interconnect drop test sample. Figure 

4.9(i) shows an inverted die with attached three-arc interconnects while Figure 4.9(ii) 

shows a single interconnect attached to the board. Figure 4.10 shows the fabricated bump 

interconnect drop test sample. 

 

Figure 4.8: Three-arc interconnect drop test sample 

Figure 4.9: Three-arc interconnect drop test sample – (i) Inverted die with attached 

three-arc interconnects (ii) Close up of a single three-arc interconnect 

(i) (ii) 
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4.2 Experimental setup 

 Once the samples had been fabricated, the actual drop testing was conducted. The 

various aspects of the experimental setup used for the drop testing are explained below in 

the subsequent sections. 

 The traditional drop test for board-level microelectronic packages is performed 

using the JEDEC standard for board-level drop testing (JESD22-B111). As explained in 

the literature review, the board-level drop test standard requires the use of a drop tester 

which can impart the required acceleration impulse on impact and suitably control the 

damping of the sample after the impact. Alongside the drop tester, appropriate 

measurement accessories are required which can adequately measure and record the drop 

test data, without aliasing the information collected from the sample during the drop test 

event. Finally, filtering techniques may be used to remove the high filter noise present in 

the output data. Each aspect of the drop test setup is explained in the following sections. 

4.2.1 Instron® Dynatup 8250 drop weight impact tester 

 The Instron® Dynatup 8250 drop weight impact tester is a testing machine 

designed to conduct impact reliability testing of a given material. Shown in Figure 4.11, 

Figure 4.10: Bump interconnect drop test sample – (i) Drop test sample (ii) Close- 

up of bump interconnect package 

(i) (ii) 
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the Instron® Dynatup 8250 consists of a central chamber with built in crosshead and tup. 

The impacting action can be accelerated by altering the amount of weight that is attached 

to the crosshead. The crosshead, tup and weight are housed within a safety chamber to 

prevent accidents. Below the crosshead and tup, a rigid surface is available which can be 

used to place and mount suitable clamping devices for different models to be tested. This 

chamber is supported underneath by rigid supports bolted firmly to the ground to transfer 

excessive shock to the ground, and prevent damaging the other movable parts of the 

system. In the current experimental setup, foam cushions were used to obtain the required 

damping of the test sample after the drop event. 

 The working procedure of the Instron® Dynatup 8250 is as follows. The material 

whose impact strength is to be determined is placed on the stand provided inside the 

testing chamber. The crosshead with attached tup (which impacts the material to be 

Figure 4.11: Instron® Dynatup 8250 drop weight impact tester 
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tested) is raised to a known height using the provided control pendant, which can 

manually raise, lower and release the crosshead and attached tup. Once raised to the 

appropriate height, the crosshead is released through the action of a pneumatic clamp, 

and the crosshead with attached tup falls under gravity. The tup impacts the material to be 

tested with a force that is relative to the height from which the crosshead is dropped. A 

built-in load cell inside the tup measures the impact force values, while a tab fixed to the 

side of the crosshead activates a detector which is used to determine the velocity of the 

tup just before impact. The results are ported to the Instron® Dynatup 8250 software 

module where calculations can be done to obtain whichever data item is needed. 

 While the above mentioned procedure is the typical standard test method used to 

determine impact strength, the Instron® machine had to be modified in order to be used 

for the JEDEC standard drop test required for the current research study.  

4.2.2 Drop test fixture 

 The JEDEC standard states that an appropriate drop-table surface must be 

available in order to faithfully perform a drop test on microelectronic components. The 

Instron® 8250 Drop Weight Impact tester explained in the previous section is normally 

used to conduct impact tests on material slabs and structures. As such, the machine had to 

be modified in order to accommodate a JEDEC-standard drop test. 

 It was proposed that the drop-weight action of the Instron® machine could be 

used to perform the standard JEDEC drop test if an appropriate surface for mounting the 

samples could be attached to the machine. In order to accomplish this, a custom drop test 

fixture was designed and fabricated, which would act as the drop table surface. A similar 
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method has been used by Zhou et al to conduct drop tests using the Instron® impact 

testing system [Zhou et al, 2009 IEEE]. 

 The drop test fixture that was designed consisted of four slabs of impact-resistant 

Chromium-Molybdenum steel. The dimensions of the fabricated test fixture were decided 

keeping in mind the space available inside the Instron® machine chamber. The final 

structure formed a box with a base used for mounting the samples using screwed-in stud 

mounts or spacers, an upper surface with a built-in attachment step for attaching the 

custom fixture to the Instron® machine’s drop-weight crosshead, and two side walls 

which held the entire structure together and prevented the upper surface from crashing 

into the sample mounting base. The walls and upper and lower surfaces were held 

together using 1.5in hardened steel hex bolts. The various parts of the fixture and the 

assembled fixture itself are shown in Figure 4.12. 

4.2.3 Data Acquisition Module: National Instruments® 9215 DAQ 

 A National Instruments® 9215 Data Acquisition Module (NI 9215 DAQ) was 

used in the drop test experimental setup to record the output data. The NI 9215 DAQ has 

Figure 4.12: Custom drop test fixture – (i) Drop test fixture parts (ii) 

Assembled drop test fixture 

(i) (ii) 
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a 4-channel interface and is able to record up to 100,000 samples per second. This 

sampling rate was deemed sufficient in order to prevent aliasing of the output signal and 

would allow even minute changes in strain and voltage to be recorded. The NI 9215 DAQ 

interfaced directly through a Universal Serial Bus (USB) port with a LabView® program, 

which was be used to post-process and visualize data as soon as the drop tests were 

conducted. 

4.2.4 Measurement device: Strain gauges 

 Strain gauges are measurement accessories used to determine strain changes at a 

given location. They are usually mounted close to the surface of interest using thin-

layered adhesives. In operation, when the surface on which the strain gauge is mounted 

deforms, the strain gauge undergoes a slight change in dimensions. The electrical 

pathways present in the strain gauge subsequently deform, giving rise to a change in 

overall resistance of the strain gauge. This change in resistance is used to obtain strain 

values using appropriate conversion from output voltage to strain, using equations such 

as [Murray et al, 1992]- 

Figure 4.13: NI® 9215 Data Acquisition Module 
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                                       -Equation 4.1 

where ɛ is Strain, GF is Gauge Factor, Rl is Lead Resistance in Ω, Rg is Gauge 

Resistance in Ω and Vr is a ratio given by the relation- 

                                  –Equation 4.2 

where Vo denotes Voltage Output and Vex denotes Excitation Voltage. The above 

relations are for a half-bridge Wheatstone network, which was the electrical setup used in 

the currently presented work. 

 The strain gauges used for measuring of strains in the current work were of two 

types. First, linear single-axis strain gauges (with a gauge length of 5 mm, gauge factor of 

2.1 and gauge resistance of 351.2 Ω) were mounted at the center of the board. Next, bi-

linear 90° rosette strain gauges (with gauge length 3 mm, gauge factor 2.09 and gauge 

resistance of 350 Ω) were mounted on the chip or die. Figure 4.14 shows both strain 

gauges in their mounted states. 

Both strain gauges were pre-wired and were subjected to stress relief during the test by 

the use of a strain relief bondable pad at the other end of the strain gauges wires. 

 

Fig 4.14: Mounted strain gauges - (ii)Linear single axis strain gauge mounted on 

board (SG1) (iii)Bi-axial Tee-rosette strain gauge  mounted on die/package 

assembly(SG2, SG3) 

 (ii) (iii) 
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4.2.5 Power supply  

 A Hewlett-Packard® Harrison 6201B DC power supply was utilized for powering 

the strain gauges. The above mentioned strain gauges were powered with a 10V input 

voltage, which was monitored during the actual impact event. The output from the power 

supply was fed into the NI 9215 DAQ alongside the strain gauge output voltage data, to 

allow accurate calculation of the strains reported by the strain gauges. 

4.2.6 Measurement device: Accelerometer 

 A PCB® brand ICP® (Integrated Circuit – Piezoelectric) 352B01 accelerometer 

was used to determine the impact pulse generated during the drop test from different drop 

heights. This was done by attaching the accelerometer to the drop test table next to one of 

the supports used for mounting the drop test samples to measure the impact time. Later 

on, the accelerometer was relocated onto the board, in order to determine the acceleration 

experienced by the board during the drop test event. The accelerometer was powered 

separately using a PCB® Model 480C02 battery-powered ICP® sensor signal conditioner 

Figure 4.15: HP Harrison 6201B DC power supply 
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unit, which would deliver the correct amount of input current to the accelerometer while 

preventing any extraneous noise from entering the input current signal into the 

accelerometer. Figure 4.16 shows the PCB® 352B01 accelerometer in its mounted state 

alongside a mounted linear single-axis strain gauge. 

4.2.7. Analysis software: LabView® 

 A basic program was written in LabView® to control the NI 9215 DAQ and 

record the output data. While the NI 9215 DAQ output data was initially recorded in the 

form of text files, it was determined that some preliminary filtering might give a good 

idea of the response curve of the strain gauges during the drop test event. A 1000Hz low-

pass filter was employed to remove unnecessary high frequency noise for initial 

visualization and to confirm the proper working of the experimental setup. This gave an 

idea of the response behavior of the strain gauges, allowing for immediate corrective 

action in case of faulty readings.  

Figure 4.16: Mounted PCB® 352B01 accelerometer next to a linear single-axis 

strain gauge 
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4.3 Drop test setup and procedure 

 A schematic of the experimental drop test setup is shown in Figure 4.17 with a 

schematic layout of the setup given in Figure 4.18. As can be seen, the main components 

are the drop weight testing machine, the measurement devices (strain gauges and 

accelerometers), the data acquisition module and the analysis software which collects the 

output from the data acquisition module. 

 

 The actual drop test process involved the steps shown in Figure 4.19, which is a 

flowchart depicting the entire drop test process. The test samples were subjected to an  

 

 

Figure 4.17: Experimental drop test setup schematic 
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isopropyl alcohol rinse prior to testing, to remove any leftover residue from the 

fabrication process and clean the surface properly for additional processing. This was 

followed by a quick 10 minute UV-bake to remove any traces of the isopropyl alcohol 

and prepare the sample for mounting of strain gauges and accelerometers. 

 

 

 

Drop Tester  
• Fixture 
• Mounted 

polymer model 
• Strain gauges 

Velocity data 

Bridge Completion Module 

(Wheatstone network) 

Dynatup Software; 

Check consistency of 

test setup 

Power Supply for 

strain gauge and 

accelerometer 

Data Acquisition System(ADC) 

Computer used to collect 

data; interfaces with  

LabView® program 

Excitation 

voltage (V) 

Voltage 

output (mV) 

Output 

 

 

 

 

 

Figure 4.18: Drop test setup schematic 
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 Two locations, as shown in Figure 4.20, were selected for mounting of the strain 

gauges and accelerometer. Both locations were located on the central region of the 

sample; one on the die and the other on the board. A linear single-axis strain gauge was 

mounted on the board with its axis along the longitudinal direction while a bi-directional 

90° tee rosette strain gauge was attached at the center of the die, with one strain gauge  

Stereolithographic sample fabrication 

Sample surface preparation 
•  Isopropyl alcohol 

rinse 
• 10 minute UV bake 
• Surface smoothing 

Strain gauge and accelerometer mounting  
• Adhesive mounting 
• Strain gauge relief bonding pad 
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•  Drop height selection 
• Pulse shaping foam cushion 

placement 
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Figure 4.19: Drop testing procedure flowchart 
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axis being parallel and the other strain gauge axis being perpendicular to the longitudinal 

axis of the board. The mounting surfaces were initially prepared with 21.8 µm / P800 grit 

sandpaper and cleaned using an ethanol wipe. Loctite® 496 was used as the mounting 

adhesive for the strain gauges, due to its quick setting time and flexible nature. In order to 

determine the acceleration experienced by the board, an accelerometer was attached to 

the sample as well, using Loctite® 454 adhesive. 

 The sample with attached strain gauges and accelerometer was then mounted on 

the drop test table base plate using four support spacers, which raised the drop test sample 

Figure 4.20: Accelerometer and strain gauge positions and 

orientations 

(i) Accelerometer and Linear single-axis strain gauge mounted on 

board (top view) 

(ii)Side view of mounted accelerometer and strain gauges 

(iii)Bi-axial Tee-rosette strain gauge mounted on die (bottom view) 
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to the required height above the drop test table. This space allowed the sample to flex 

above and below its mean position during the actual impact. The drop test fixture was 

attached to the crosshead of the Instron® machine using appropriate bolts. Using half-

bridge Wheatstone networks, the electrical output of the strain gauges was converted to a 

suitable microvolt output, which was recorded by the NI 9215 DAQ. At the same time, 

the accelerometer output was also passed into the NI 9215 DAQ so that it could be 

converted to a digital signal and recorded, similar to the strain gauge output data. The NI 

9215 DAQ output was controlled using a Lab View® program written specifically to 

record, filter and possibly display the output waveforms of the different strain gauges and 

accelerometers. The voltage output of the power supply used to power the strain gauges 

was also monitored, in order to get more accurate voltage input readings for calculating 

the strain output. 

 Once the connections were completed, the entire drop test fixture was raised to 

varying drop heights using the controller pendant of the Instron® machine. In order to 

ensure repeatability of drop heights, a linear graduated scale was attached along the side 

of the drop test chamber. A movable metal tab was locked into place at different drop 

heights along this scale and was used to obtain repeatable drop heights. The automatic 

feature available on the Instron® machine controller pendant allowed the drop test fixture 

to be raised to a given drop height by using a magnetic sensor mounted on the crosshead. 

In automatic mode, the crosshead would essentially lift the drop test fixture until the 

mounted magnetic sensor sensed the metal tab on the graduated scale. Once the metal tab 

was detected, the crosshead would stop moving, allowing repeatable drops from the same 

height. This feature also allowed rapid drop testing without further calibration.  
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 Once raised to the required drop height, the controller pendant would be ‘armed’ 

and the crosshead latch would be released, allowing the drop test fixture to fall under 

gravity, guided along a vertical path by guide rods passing through the crosshead. 

Simultaneously, the Lab View® program would be manually activated and allowed to 

record any and all readings from the strain gauges, accelerometer and power supply. The 

NI 9215 DAQ readings recorded over a duration of three seconds, and contained data 

obtained from the measurement accessories during free-fall (before impact), during 

impact and also after impact.  

 The identification of the actual impact in the raw data recorded by the DAQ was 

done in two ways; by manually sifting through the raw data and by the application of 

filters. During manual sifting, the raw data was plotted without any post-processing and 

suitable peaks and troughs were determined based on visual inspection. However, this 

procedure was very cumbersome as the NI 9215 DAQ had a sensitivity of 100,000 

readings per second, thereby providing 300,000 data points over three seconds. However, 

this method was found to be suitable for the determination of impact pulse, since this just 

involved the determination of the first peak in the data. The usage of filters, on the other 

hand, made it easier to detect the total impact event in the raw data. The data was initially 

normalized and then passed through a 1000hz low-pass filter to remove high frequency 

noise. This allowed one to obtain very distinct curves for the strain output. 

4.3.1 Drop heights and sample selection 

 Based on the capability of the Instron® drop weight impact tester, heights ranging 

from 100mm to 600mm in steps of 100mm were selected as suitable drop heights for the 

packages being tested. A graduated ruler was fixed to the frame of the Instron® machine 
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and was used to calibrate and obtain each drop height for every drop event. For 

continuous drop testing from the same height, the automatic return feature of the 

Instron® machine’s crosshead was utilized, which would return the crosshead (and 

attached components) to a specified drop height automatically after each drop event. This 

maintained the consistency of results obtained from subsequent drops of the same height.  

 To obtain a proper trend line and prove consistency of results, multiple samples 

with the multi-path three-arc compliant interconnect design were fabricated and tested. 

Each sample was prepared using the same method, tools and equipment. All the 

measurement devices such as strain gauges and accelerometers were mounted in the same 

locations carefully marked on the specimens. The locations of the strain gauges and 

accelerometer were explained previously in Section 4.2 of this chapter. Additionally, all 

the samples were tested at approximately the same times after their fabrication, to ensure 

polymer aging did not affect the consistency of observed output data. 

 Of the multiple samples tested, the output strain data was observed and the three 

samples with the clearest data were used to obtain averaged results. The remaining 

samples were not considered for averaging due to inconsistencies during the testing 

procedure, which included incorrect strain gauge and accelerometer mounting (due to 

insufficient or excessive adhesive usage), insufficient stabilization of the accelerometer 

output and strain gauge initialization data, and inherently flawed samples which broke 

within a few drop tests and rendered further drop tests impossible.  
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4.3.2 Three-arc compliant interconnect model drop testing 

 As mentioned above, results obtained from three consistent samples were used to 

obtain strain results from experiment. Each sample was tested at different drop heights, 

with one drop test at each drop height. The output data obtained from each drop event 

consisted of two plots.   

 

 The first plot was obtained from the recorded data of the accelerometer and 

displayed the acceleration experienced by the sample during the impact event. This data 

was used to obtain the impact pulse for the given drop height, the magnitude of peak 

acceleration and the exact damping ratio for that particular drop height and sample. As an 

example, the acceleration data obtained from a 100mm drop test event is given in Figure 

4.21 for a single trial, while Figure 4.22 shows the averaged acceleration data for the 

100mm drop test event. 

Figure 4.21: Acceleration plot for 100mm three-arc interconnect model drop test (trial 1) 
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 In this plot, the first peak was used to obtain both the magnitude of the impact 

peak acceleration and the experienced impact pulse for the given drop height. The impact 

pulses obtained from different drop heights are given in Table 4.2. Dominant frequencies 

and damping ratio were calculated using subsequent peaks of the acceleration plots. 

These values were used in subsequent finite-element simulations, and will be explained 

in the following chapter on numerical simulation.  

 

 

Drop 

Height 

(mm) 

100 200 300 400 500 600 

Impulse 

Time (s) 
0.01 0.008 0.005 0.003 0.002 0.0015 

Table 4.2: Impulse times recorded from experiment for three-arc interconnect 

drop test samples 

Figure 4.21: Acceleration plot for 100mm three-arc interconnect model drop test 

(averaged over three samples) 
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The second plot obtained from the experiments showed the magnitudes of strain 

recorded using the strain gauges mounted on both the board and the die-interconnect 

assembly. Figure 4.23 shows the strain data plot for a 100mm height drop event for a 

particular trial while Figure 4.24 shows the averaged strain data plot. 

Figure 4.23: Strain data plot for 100mm three-arc interconnect model drop 

test (sample 1); SG1 refers to strain in the board while SG2 and SG3 refer to 

strain in the die 
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Figure 4.24: Strain data plot for 100mm three-arc interconnect model drop test 

(averaged over three samples); SG1 refers to strain in the board while SG2 and 

SG3 refer to strain in the die 
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 The given strain data plot consists of three data sets, each data set corresponding 

to a given strain gauge output. The strain data denoted by SG1 (Strain Gauge 1) refers to 

the output of the single-axis strain gauge mounted on the board. At the same time, SG2 

(Strain Gauge 2) refers to the output of the strain gauge mounted on the die, with its axis 

parallel to that of SG1 while SG3 refers to the strain gauge data from the strain gauge 

mounted on the die with its axis perpendicular to that of SG1. This system allowed 

studying the effect of the compliant interconnects on strain transfer from the board to the 

attached die possible as well as giving the transverse effect of the drop test event on the 

die-interconnect assembly. It should be noted that the strain gauge mounted on the die 

was a bi-axial 90°tee rosette strain gauge, with strain gauge SG3 perpendicular to strain 

gauge SG2. Therefore, there were three strain gauges mounted on each sample; a linear 

single axis strain gauge mounted on the board (SG1) with its axis parallel to the length of 

the board and a combined bi-axial tee rosette strain gauge mounted on the die, with one 

strain gauge (SG2) parallel to SG1 and another (SG3) at right angles to SG1. The peak 

strain from each strain gauge was obtained by studying the strain data plot for each 

sample. 

 The acceleration and strain data plots for all the samples are given in Appendix A 

with associated peak strain values given in Chapter 6. 

4.3.3 Bump interconnect assembly drop testing 

 While the three-arc interconnect models gave experimental data on their behavior 

when subjected to drop testing, it was thought to be prudent to compare the response 

behavior of these three-arc compliant interconnect structures with other more 

conventional models. For this purpose, a bump interconnect was designed with the same 
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footprint as that of the three-arc interconnects. This bump interconnect model was 

assembled and fabricated in the same 3x3 area array pattern used for the three-arc 

interconnect design. The bump interconnect samples were prepared much the same way 

as the three-arc interconnect samples, with strain gauges and accelerometers mounted in 

the same locations as before.  

 Drop tests for these bump interconnect samples were conducted and associated 

acceleration and strain data were obtained using the same procedure enumerated in the 

previous sections. Again, as in the case of the three-arc models, multiple samples were 

tested and the three samples with the most consistent and repeatable results were used to 

obtain strain values for comparison.  

 

  As before, two plots were obtained from the bump-model interconnect drop test 

experiments. The first plot was the acceleration data obtained from the accelerometer 

mounted on the board of the sample. An example of this data plot is shown in Figure 

Figure 4.25: Acceleration plot for 200mm bump interconnect model drop test (sample 1) 
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4.25, which depicts the acceleration plot for a 200mm drop height for a particular trial. 

The first peak of this plot was used to obtain the peak acceleration value experienced by 

the sample, as well as the impact pulse time for the given drop height. The impact pulse 

times recorded for different drop heights are given in Table 4.3. Again, the damping ratio 

was calculated for each drop height using the acceleration plot and will be dealt with 

further in the next chapter. 

 

Drop 

Height 

(mm) 

100 200 300 400 500 600 

Impulse 

Time (s) 
0.008 0.007 0.006 0.005 0.004 0.003 

 

 The second plot, as before, showed the strain data gathered from the different 

strain gauges mounted on the sample. The same naming convention (SG1, SG2 and SG3) 

which was used in the three-arc interconnect model was used here to obtain the strain 

Table 4.3: Impulse times recorded from experiment for bump interconnect drop test 

samples 

Fig 4.26: Acceleration plot for 200mm bump interconnect model drop test (averaged) 
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experienced at the location of the strain gauge mounts on the bump interconnect samples. 

Figure 4.27 shows a typical strain data plot for the bump interconnect, for a drop test 

height of 200mm.  

Figure 4.27: Strain data plot for 100mm bump interconnect model drop test 

(sample 1); SG1 refers to strain in the board while SG2 and SG3 refer to 

strain in the die 
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Figure 4.28: Strain data plot for 100mm bump interconnect model drop test 

(averaged over three samples); SG1 refers to strain in the board while SG2 

and SG3 refer to strain in the die 
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 The acceleration plots for different drop heights for the bump interconnect 

samples are given in Appendix A, while the averaged peak strain values are given in 

Chapter 6. 
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CHAPTER 5 

FINITE-ELEMENT MODELING OF DROP TEST 

 

 While the experimental aspect of drop testing of the compliant interconnects 

provided physical behavioral evidence, it is still seen that the time it took to understand, 

set up and conduct these tests was very long. Industrial requirement of quick turnover 

necessitates the need for faster realization of drop testing results. Keeping this 

requirement in mind, numerical finite-element simulations of the three-arc compliant 

interconnect model were conducted using ANSYS®. This was done in order to obtain a 

quick yet physics-based assessment of the effects of drop testing on the compliant 

interconnects. At the same time, comparative simulations were run for the bump 

interconnect model. The following sections enumerate the finite-element modeling and 

simulation of the current drop testing process. 

5.1 Traditional drop testing simulation 

 Drop testing simulation has been widely accepted as a quick means to understand 

the effect of shock and impact loads on microelectronic packages. Drop testing of 

microelectronic components generally involves large-scale deformation of entities within 

extremely short periods of time. Such type of large-scale deformations over short time 

durations necessitates the use of extremely small solution steps in the used finite-element 

model, known as time steps. Essentially, the time step size must be optimized for the 

given model and boundary conditions. Additionally, the smaller the time step size, the 

more accurate the result, although this will unfortunately also increase the total solution 

time. The traditional means of conducting drop testing simulations is by means of explicit 
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solvers, which are mathematical solvers used by finite-element simulation software to 

solve large-scale deformation problems. Explicit mathematical solvers are inherently 

more stable for large-scale deformation problems, such as in the case of drop testing. 

Researchers have, thus, usually turned towards numerical solvers which make use of 

explicit formulations. In comparison, basic finite-element simulation software come 

equipped with implicit solvers. Such implicit solvers typically see a large amount of 

divergence when used for large-scale deformation problems and are thus harder to use for 

solution of large strain rate problems such as drop testing simulation. While this may 

make a valid case for explicit solvers to be used, it stands to reason that the use of explicit 

solvers is restricted to those who have access to explicit solvers. This is because basic 

finite-element packages are not equipped with explicit solvers and are usually expensive 

add-ons. Implicit solvers are therefore a more economical option for finite-element 

simulation solution. With this in mind, an implicit approach to drop testing which would 

allow easy drop testing simulations was needed. A method which aimed to satisfy this 

requirement in implicit drop testing was the Input-G Method, proposed by Tee and Luan 

in 2004 [Tee et al, 2004]. 

5.2 Input-G Method 

 The Input-G Method is a drop testing simulation technique that was derived based 

on Joint Electron Device Engineering Council (JEDEC) standards for board level drop 

testing of microelectronic components [JESD22-B110a, JESD22-B111]. It is a technique 

which makes use of acceleration data or ‘G value’ gathered from a drop test experiment.  

The acceleration or ‘G value’ is the magnitude of acceleration experienced by a given 

object, in terms of multiples of acceleration due to gravity. In other words, a 150G value 
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represents an acceleration magnitude which is 150 times greater than the acceleration due 

to gravity. Thus, 150G is equal to 1471.5 m/s
2
. The Input-G Method makes use of this 

acceleration value as input. Using basic mathematical equations, this acceleration value is 

converted into suitable displacement values. These displacement values can then be used 

as input boundary conditions to implicit simulations. The advantage of this Input-G 

Method lies in the conversion between acceleration and displacement. This is because an 

implicit solver can only take displacement values as input, and the Input-G Method caters 

to this need. Shown in Figure 5.1 are the locations for applying the displacement 

boundary conditions using the Input-G Method. 

5.2.1 Impact pulse  

 The Input-G Method obtains the required acceleration data from the impact pulse 

generated during a drop event in a drop test experiment. The impact pulse is defined as 
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the first peak observed in the acceleration curve experienced by any component subjected 

to (in this case) drop testing. Typical acceleration impact pulses are given in Figure 5.2. 

  The impact pulse observed from experiment is usually approximated as a sine 

curve. However, during simulation, the impact pulse can be suitably modified to obtain 

different types of loading conditions. Shown in Figure 5.2(ii) is a square impact pulse, 

wherein the impact pulse instantaneously jumps to a given value, then drop down after a 

given time. While this may be simple to model, it has been observed that the square pulse 

gives rise to unnecessary deformation during drop test simulation. For that purpose, an 

ideal sine curve is used to replace the simple-to-model square impact pulse. This is 

shown in Figure 5.2(i). The sine impact pulse requires multiple load steps to define in a 

simulation, but allows for better response of the model under study. Additionally, the sine 

impact pulse is the closest approximation to the acceleration impact pulse observed in 

experiment. The actual acceleration impact pulse is obtained by placing accelerometers at 

suitable locations on the sample to be drop tested. The location that was used in the 
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Figure 5.2: Sine and square impact pulses used to calculate input boundary 
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current research work to determine the impact pulse from experiment is shown in Figure 

5.3. This location can be seen to be on the board, on the side opposite to the attached 

interconnects and die. The accelerometer location is given schematically in Figure 4.20. 

 Once the impact pulse is clearly obtained, the peak acceleration (G) recorded 

during experiment can be obtained. At the same time, the overall duration for the impact 

pulse is also noted and is known as impulse time (T). Knowing these two quantities, it is 

easy to convert the acceleration conditions experienced by the test sample during drop 

testing into displacement boundary conditions needed as input for the implicit finite-

element model based on the Input-G Method. 

5.2.2 Displacement equation 

 The simplicity with which the Input-G Method converts the acceleration input 

boundary conditions obtained from experimental drop testing into usable displacement 

boundary conditions can be seen if one studies the mathematical equation used for his 

conversion. Given in Equation 5.1 is an example equation used for obtaining 

Figure 5.3: Accelerometer mount location to determine impact 

pulse during drop test 
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displacement values from experimental acceleration data for a sine impact pulse [Tee et 

al, 2004].  

        - Equation 5.1 

 In the above equation, d(t) is the displacement, Gm is the mean acceleration value, 

G is the peak acceleration value, T is the impulse time and t is time elapsed during the 

acceleration curve. The peak acceleration value G, as a function of time t, is given in 

terms of the mean acceleration value Gm by Equation 5.2 [Tee et al, 2004]. 

                                    - Equation 5.2 

 From experiment, the value of peak acceleration value (G) and impulse time (T) 

are obtained. Then, using Equation 5.1, the required displacement boundary conditions 

are obtained from the acceleration input. Given in Figure 5.4 are the acceleration and 

displacement curves for a 500mm drop height test, with a peak acceleration of 536.1G 

and an impulse time of 2ms recorded from experiment. 

 It should be noted that taking the impact pulse from the experiment into 

consideration during the calculation of displacement boundary conditions invariably 

takes into account any extraneous effect from other components used during the drop test 

experiment [Tee et al, 2004]. This is because impact pulse is a function of every material 

and equipment used during the drop test experiment. Thus, using the impact pulse 

directly from experiment negates the need to model the impact surfaces during the finite-

element model creation needed for the implicit Input-G Method. This is an advantage 

over explicit simulation, as explicit simulation requires the modeling of the surfaces 

undergoing impact during the drop event.  
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Keeping the above information in mind, it can be seen how the information 

presented in Chapter 4 on experimental drop testing could serve as input for the finite-

element simulations conducted. In summary, the basic acceleration impact pulse 

experienced by the drop test samples in experiment is obtained for different drop heights 

by making use of an accelerometer mounted on the base plate of the drop test setup and 

Figure 5.4: Acceleration and calculated displacement curves for 536.1G 

drop event from 500mm drop height 
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on the drop test sample itself. The first peak observed in each acceleration plot is used to 

obtain the peak acceleration value as well as the impact pulse experienced by the samples 

for the given drop height. This acceleration data (G) and impulse time (T) are then used 

in the acceleration-to-displacement conversion equation given by Equation 5.1 to obtain 

the displacement boundary conditions needed as input for the implicit finite-element 

simulation based on the Input-G Method.  

5.3 Modeling geometry 

 As in the experiments, two different models were created. The first model was 

based on the multi-path three-arc compliant interconnect geometry while the second 

model was based on the bump interconnect geometry.  

5.3.1 Basic dimensions 

 Since the experimental test samples were fabricated using geometries ported from 

the finite-element simulation models, the geometry used for simulation and the geometry 

of the experimental samples matched to a very close degree. Each model consisted of a 

board with dimensions 110mm by 64mm by 1mm. A die of dimensions 45mm by 45mm 

by 1mm was used in all the geometries. A 3 by 3 area array of scaled-up interconnects 

(three-arc compliant interconnect or bump interconnect, depending on the model being 

studied) were sandwiched between the die and the board. This geometry closely matched 

the experimental test samples.  

5.3.2 Meshing 

 In implicit simulations, the fineness or coarseness of the mesh plays a very vital 

role in deciding whether the simulation successfully converges to an acceptable solution 



 67 

or not. The mesh required for each model was varied depending on the areas of interest. 

The mesh was made fine near the interconnects and coarse away from the package itself, 

in order to reduce computation time and improve efficiency of the solution. 8-noded 

SOLID 185 elements were used to build both the three-arc interconnect and the bump 

interconnect models. At least three elements were used along the thickness of both the 

board and the die, to ensure the applied transverse boundary conditions could be properly 

transferred. Figure 5.5 shows the meshed finite-element model boundary conditions. 

 

Figure 5.5:  Simulation model for three-arc interconnects – (i) Full model with 

die and board (ii)Close-up of area-array of interconnects with die removed 

(i) 

(ii) 
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5.3.3 Material properties 

 Both simulation models made use of a single homogenous polymer resin as in the 

actual experiments.  The material properties for the given polymer resin used in 

experiment are given in Table 5.1. 

 

Material Young’s Modulus Density Poisson’s Ratio 

SL7510 polymer 

resin 

2282 MPa 1.18 g/cm
3
 0.3 

 

 The material properties used in the simulation were assumed to be linear elastic 

and isotropic in nature. This material model was deemed sufficient in order to understand 

the high strain rate response of the drop test sample, as well as to represent the polymer 

material properties of the drop test samples used in experiment. This material model was 

selected because the experiments were conducted at room temperature. Therefore, there 

was little or no creep or viscoelastic deformation. The simulations were also carried out 

at room temperature. Thus temperate effect on material properties could be ignored. 

Additionally, the experimental acceleration and strain data were obtained in less than 

110ms, and thus, time-dependent creep effects could be ignored. It should be noted that at 

high strain rates, plastic effects are minimal and thus were not included in the 

simulations. 

 

 

 

 

Table 5.1: Polymer material properties 
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5.3.4 Boundary conditions  

 As seen in Figure 5.5, four screw holes are present in the both models used for 

simulation. These holes designate the locations were the test sample was screwed onto 

the base plate. Therefore, these are the locations were the boundary conditions must be 

applied in the simulations. Figure 5.6 shows the screw holes with applied displacement 

boundary conditions. These boundary conditions are applied in such a way as to mimic 

the inverted orientation of the drop test sample used in the experiment, as specified in the 

JEDEC standard [JESD22-B111].  

 

Figure 5.6:  Applied boundary conditions– (i) Full model with displacement 

boundary conditions at four screw holes (ii)Close-up of applied boundary 

conditions at one loading screw hole 

(i) 

(ii) 
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 The boundary conditions needed for the simulations were taken based on the 

acceleration values taken directly from experiment, as explained in Section 5.2. After 

conversion to displacement, these boundary conditions were used as input to the finite-

element model under study. 

5.3.5 Damping and Damping ratio ξ 

 If allowed to solve without any additional input, a linear elastic model subject to a 

transient analysis, as was the case in the current research project, will keep on deforming 

indefinitely. The response of the system will either oscillate about the mean value 

indefinitely or will exponentially increase in magnitude until the model fails. The former 

type of response is seen only in ideal systems, while the latter is improbable and does not 

happen in nature. 

 In order to ensure the response of the finite-element model followed the same 

trend as the experimental results, the concept of damping was introduced into the model. 

Damping, when applied in any finite-element model, will periodically and rhythmically 

reduce or ‘damp out’ the response of the system, so that it comes to rest at a mean value. 

This type of response is seen in real world phenomena and is a necessary part of 

conducting dynamic finite-element analysis [Park et al, 2009]. 

 In the currently presented research work, numerical damping was applied to the 

finite-element model using data gathered from the acceleration plot recorded during 

experiment for different drop heights. Shown in Figure 5.7 is the acceleration curve for a 

100mm drop height test sample.  
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 Using the values obtained from consecutive peaks, the damping ratio of the 

system could be calculated using the following procedure [Ginsberg, 2001]- 

1. Determine acceleration values at two consecutive peaks. Denote them as x1 and 

x2. 

2. Using Equation 5.3, the logarithmic decrement δ is calculated. 

                                               -Equation 5.3 

3. The logarithmic decrement δ is then used in Equation 5.4 to calculate the damping 

ratio ξ for the given acceleration curve. 

                                            -Equation 5.4 

 ANSYS® specifies damping in any implicit finite-element simulation by either 

making use of material damping parameters or numerical damping to damp out the 

Figure 5.7: Acceleration curve for experimental 100mm drop test 
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results. Equation 5.5 gives the relation for numerical damping which was used in the 

conducted finite-element simulations [ANSYS® reference manual, 2010].  

                                           -Equation 5.5 

 In Equation 5.5, α and β are known as Raleigh’s damping coefficients while ωi 

stands for the circular natural frequency [ANSYS® reference manual, 2010]. Knowing 

any two dominant values for the natural frequency ωi, and the value for damping ratio ξ, 

the values for damping coefficients α and β can be calculated. The value of damping ratio 

ξ was, thus, determined from experiment for different drop heights and samples. The 

dominant natural frequencies were determined by running a modal analysis on the 

finished finite-element model. Once ω1 and ω2 were known, two simultaneous equations 

were solved as given below. 

                                         -Equation 5.7 

                                         -Equation 5.8 

 Therefore, using Equations 5.7 and 5.8, the values for damping coefficients α and 

β were determined and used as input into the implicit finite-element model to damp out 

the response of the system in a fashion similar to that observed in experiment. 

5.4 Three- arc interconnect drop test simulations 

 The first geometry studied in the current research work was the multi-path three-

arc interconnect model. Shown in Figure 5.8, the three-arc interconnect geometry consists 

of a 3 by 3 area-array of multi-path compliant interconnects sandwiched between a board 

and a die. The three-arc interconnects were scaled up 75 times from their original 

dimensions, with the final dimensions meant for a pitch of 15mm.  
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5.4.1 Boundary condition input 

 As explained in Section 5.3, the input displacement boundary conditions were 

obtained by converting the acceleration curve values recorded in experiment. Figure 5.9 

shows a typical displacement curves for 100mm, 300mm and 500mm drop test events 

used as input boundary conditions, and were calculated from acceleration values obtained 

in experiment.  

Figure 5.8:  Simulation model for three-arc interconnects – (i) Full model 

with die and board (ii)Close-up of area-array of interconnects with die 

removed 

(i) 

(ii) 
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 At the same time, damping was applied numerically using the procedure 

enumerated in Section 5.3.5. Modal analysis was carried out to determine the natural 

frequencies of the three-arc interconnect model. The two dominant natural frequencies 

selected were 109.89Hz and 215.98Hz. Damping ratios were then calculated from 

acceleration curves recorded in experiment. Table 5.2 gives the damping ratios observed 

for various drop test heights. 

 

(i) (ii) 

(iii) 

Fig 5.9: Calculated three-arc interconnect model displacement curves – (i) 

500mm drop height displacement curve with 2ms impulse time (ii) 300mm drop 

height displacement curve with 5ms impulse time (iii) 100mm drop height 

displacement curve for 10ms impulse time  
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Drop height 100mm 200mm 300mm 400mm 500mm 600mm 

Damping 

Ratio ξ 

0.0887 0.09238 0.09735 0.09248 0.09487 0.11418 

 

 The damping ratios given in Table 5.2 were used to calculate the Rayleigh 

damping coefficients α and β for different drop heights. These values were applied to the 

finite-element simulations. 

5.4.2 Basic results 

 Given in Figure 5.10 is a typical response curve for a drop test simulation. Three 

curves were obtained from the finite-element model. Each curve represented an averaged 

strain value, and corresponded to the strains measured during experiment and explained 

in Section 4.3.2. The notations used in experiment for different strain values (SG1, SG2 

and SG3) were the same notations used in the presented simulation data. Therefore, SG1 

represents strain recorded on the board surface, along the length of the board. SG2 and 

SG3 refer to strains recorded on the die, one along the length of the board and the other 

along the width of the die respectively. The detailed results for the three-arc interconnect 

drop test simulations are given in the Chapter 6. 

Table 5.2: Damping ratios for three-arc interconnect model for different drop 

heights 
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5.5 Bump interconnect drop test simulations 

 The second geometry studied in the current research work was the bump 

interconnect model. Shown in Figure 5.11, the bump interconnect geometry consists of a 
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Figure 5.10: Strain response curve for 500mm drop height three-arc interconnect 

model simulation 

Figure 5.11: Bump interconnect simulation model – (i) Full model 

showing die and board (ii) Bump interconnect exposed by removing the 

die 

(i) (ii) 
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3 by 3 area-array of multi-path compliant interconnects sandwiched between a board and 

a die, similar to the geometry arrangement in the three-arc interconnect model.  

 A pitch of 15mm was utilized with a footprint size of each bump interconnect 

equal to that of the corresponding three-arc interconnect. The main purpose of the bump 

interconnect model was to provide comparative results for the strain response of the 

three-arc interconnect model. 

5.4.1 Boundary condition input 

 Figure 5.12 shows the typical displacement curves for 200mm, 300mm and 

500mm drop test events used as input boundary conditions in the bump interconnect 

model, and were calculated from acceleration values obtained in experiment.  

 It can be seen that the final applied values seemed to greatly increase in 

comparison to the three-arc interconnect displacement curves.  This was attributed to the 

larger impulse times and the lower peak acceleration values recorded for the bump 

interconnect model. The strain response of the samples was the focus of these finite-

element simulations.  

 Damping was applied numerically using the procedure enumerated in Section 

5.3.5, similar to what was done for the three-arc interconnect model. Modal analysis was 

carried out to determine the natural frequencies of the bump interconnect model. The 

natural frequencies found to be dominant for this model were 413.56Hz and 937.8Hz. 

Next, damping ratios were calculated from acceleration curves recorded in experiment. 

Table 5.3 gives the damping ratios observed for various drop test heights for the bump 

interconnect model.  
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Drop height 100mm 200mm 300mm 400mm 500mm 600mm 

Damping Ratio ξ 0.05249 0.06694 0.07127 0.08657 0.09359 0.09861 

 

 Finally, using the natural frequencies and the damping ratios given in Table 5.2, 

the Rayleigh damping coefficients α and β were determined for different drop heights and 

were used as input damping parameters for the finite-element simulations.  

 

Table 5.3: Damping ratios for bump interconnect model for different drop heights 

Figure 5.12: Calculated bump interconnect model displacement curves – (i) 

500mm drop height displacement curve with 4ms impulse time (ii) 300mm drop 

height displacement curve with 6ms impulse time (iii) 200mm drop height 

displacement curve for 7ms impulse time  
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5.4.2 Basic results 

 Given in Figure 5.13 is typical response curve for a bump interconnect model 

drop test simulation. Three curves were obtained from the finite-element model. Each 

curve represented an averaged strain value, and corresponded to the strains measured 

during experiment and explained in Section 4.3.3. The notations used in experiment for 

different strain values (SG1, SG2 and SG3) were the same notations used in the presented 

simulation data. 

 Here, SG1 represents strain recorded on the board surface, along the length of the 

board. SG2 and SG3 refer to strains recorded on the die, one along the length of the board 

and the other along the width of the die respectively. The detailed results for the bump 

interconnect drop test simulations are given in the Chapter 6. In addition, it should be 

noted that the bump interconnect geometry finite-element simulations used slightly 

reduced material properties for the polymer resin. A Young’s Modulus of 1882MPa was 
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Figure 5.13: Strain response curve for 500mm drop height bump interconnect 

model simulation 
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used to conduct the bump interconnect simulations, as compared to the 2282MPa, which 

was the original material property value. 
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CHAPTER 6 

RESULTS AND COMPARISON 

In the Chapter 4, we have seen the various methods and processes used to conduct 

drop test experiments on two different interconnect designs, the multi-path three-arc 

compliant interconnect and the bump interconnect for comparison. In Chapter 5, the 

methodology behind conducting implicit finite-element simulations for the purpose of 

quick estimation of drop test response behavior of the interconnects was given. The 

current chapter will present the results obtained from the various drop test experiments 

conducted on the stereolithography-based drop test samples for both interconnect designs 

studied. The first section will present experimental results obtained from drop testing of 

the multi-path three-arc compliant interconnect. This will be followed by a section on 

experimental drop test results obtained from drop testing of the bump interconnect 

geometry. The purpose of this model will be to provide a comparative estimate of the 

response behavior of the three-arc compliant interconnects. Comparisons between the 

two interconnect designs will be given in subsequent sections. Finally, the experimental 

results will be used to validate the finite-element simulations conducted.  

6.1 Multi-path three-arc compliant interconnect experimental results 

 One of the main objectives of this presented research work was to understand the 

drop test response and reliability of the proposed multi-path compliant interconnect 

design. Since the fabrication of the actual copper-silicon interconnect-die assembly was 

still under way, an alternative fabrication technique was used to fabricate the required 

three-arc interconnect geometry. Stereolithography was used to generate scaled up 
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versions of the complaint interconnects. These samples were used to obtain information 

on the response behavior of the three-arc compliant interconnects. 

 A number of samples were fabricated and tested using the methods explained in 

Chapter 4 on experimental drop testing procedures. The samples were mounted in a 

custom drop test fixture as shown in Figure 6.1.  

 The samples were then raised to dropped from different heights (100mm, 200mm, 

300mm, 400mm, 500mm and 600mm), with the maximum drop height restricted by the 

height of the Instron® drop weight impact testing machine used to conduct the drop tests. 

The strain and acceleration experienced by the samples for different drop heights were 

measured by means of mounted strain gauges and accelerometers as shown in Figure 6.2 

and Figure 6.3. 

 Output from the strain gauges, accelerometer and power supply were recorded 

using a Data Acquisition System. The data was ported to LabView®, where preliminary 

observations of the recorded strain and acceleration values were done. Finally, the data 

was filtered using a 1000Hz low pass Butterworth filter using Matlab®. Given in the 

Figure 6.1: Drop test sample mounted inside fixture  



 83 

following sections are the results from the drop testing of the three-arc compliant 

interconnect geometry. 

 

Figure 6.2: Strain gauge and accelerometer mounted on 

three-arc interconnect drop test sample 

Figure 6.3: Strain gauge and accelerometer mounted on bump 

interconnect drop test sample 
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6.1.1 Acceleration data 

 After the three-arc compliant interconnect drop test samples were prepared and 

mounted for drop testing, initial observations were made on the acceleration imparted to 

the samples by the drop event, as well as the acceleration experienced by the sample 

itself. Shown in Figure 6.4 is the acceleration data obtained from a 100mm height drop 

test of the three-arc interconnect sample. 

 The above acceleration versus time plot was obtained from the accelerometer 

mounted on the sample, as shown in Figure 6.5. 

 The acceleration response of the sample could be seen to clearly damp out from a 

first peak maximum value of 105G to 0G over a duration of 100ms for a 100mm height 

drop test. The first peak was also used to determine the required impact pulse duration, 

necessary for conducting finite-element drop test simulations. Subsequent peaks were 

used to determine the damping ratio using Equation 5.3 and Equation 5.4, as mentioned 

Fig 6.4: 100mm height drop test acceleration response for three-

arc interconnect sample 
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in Chapter 5 on finite-element simulation. Given in Table 6.1 are the first measured peak 

acceleration values and the impact times for the multi-path three-arc interconnect 

geometry, over drop heights ranging from 100mm to 600mm. 

 

 

Drop Height 

(mm) 
100 200 300 400 500 600 

Measured 

Peak 

Acceleration 

(G) 

104.5 182.41 130.9 391.8 536.1 1056.8 

Impact 

Time (s) 
0.01 0.008 0.005 0.003 0.002 0.0015 

 The 200mm drop height tests seem to not follow the trend. This was attributed to 

faulty damping material used for all the 200mm drop height tests of the three-arc 

interconnect. The acceleration plots obtained from drop testing of the three-arc geometry 

for different drop heights are given in Appendix A. The scatter shown in the acceleration 

plots is due to the use of raw data directly, without any filtering. It was decided that 

filtering the acceleration plot data at this stage would lead to compromised results, with 

Table 6.1: Peak acceleration and impact times for three-arc interconnect assembly 

under drop testing 

Figure 6.5: Accelerometer mounted on three-arc interconnect sample 
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the maximum acceleration value getting reduced. By not filtering, the acceleration plots 

could be used effectively to obtain proper input boundary conditions for the 

simultaneously conducted finite-element simulations. 

 Based on the acceleration plots, it could be seen that the peak acceleration value 

or the maximum ‘G value’ tended to increase exponentially from 104.5G at a drop height 

of 100mm to 1056.8G at a drop height of 600mm. The exponential behavior of the 

acceleration recorded can be attributed to the fact that the acceleration experienced is a 

function of the drop height (h), the velocity before impact (v) as well as the material used 

to obtain the required damping and output pulse shaping. These variables when put 

together give rise to decreasing impact times with increasing height. The higher drop test 

height impact time values for the conducted drop test experiments also seemed to 

converge towards the drop test height specifications given in the JEDEC standard on 

board level drop testing. 

6.1.2 Strain data 

 The strain gauges mounted on the three-arc interconnect drop test samples were 

used to measure the amount of strain experienced in the board and the mounted 

interconnect-die assembly. As has been mentioned before, the strains shown in the 

following plots are based on three values recorded per sample. The first strain value, 

SG1, refers to the longitudinal strain recorded from the board, at the center and along its 

length. Value SG2 refers to the strain at the die center, again along the length of the 

board. SG2 values were recorded parallel to SG1. SG3 refers to the strain values again 

recorded on the die, but in a direction transverse to both SG1 and SG2. The data shown 
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was normalized and filtered using a 1000Hz low-pass Butterworth filter which was 

deemed sufficient to filter most of the high frequency scatter and noise. 

 

 Figure 6.6 shows the strain data obtained from a 100mm height drop test of the 

three-arc compliant interconnect geometry. The strain data plots for the remaining drop 

heights can be found in Appendix B. The peak strain values for different drop heights are 

given in Table 6.2 and were calculated by taking the maximum difference from the mean 

of each strain plot.  

 

Drop 

Height 

(mm) 

100 200 300 400 500 600 

SG1 2256 3964 4291 5673 5774 6258 

SG2 312 495 879 1006 1008 1069 

SG3 250 305 692 646 562 441 

 

Table 6.2: Experimental microstrain data for three-arc interconnect drop test 

sample 
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Figure 6.6: Strain data from 100mm drop test for three-arc interconnect sample 
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 The strain in the board, SG1, can be seen to monotonically increase as the drop 

height increases from 100mm to 600mm. At the same time, it can be observed that the 

strain in the die recorded by SG2, remains fairly constant around 1000 after a drop height 

of 400mm. The strain in the die along the transverse direction, recorded by SG3 is 

reported as nearly half that of SG2. From these, we can gather that the board strains are 

heavily dependent on the drop height, which linearly increases. At the same time, the die 

strains (SG2 and SG3) seem to be much smaller in magnitude than the board strains 

(SG1). This can be attributed to the presence of the three-arc compliant interconnects, 

which are able to absorb and damp out most of the strain being transferred from the board 

to the die. The ratio of board strain to die strain is averaged to 5.85:1, displaying the 

impact-isolating nature of the flexible arms of the three-arc compliant interconnects. 

6.2 Bump interconnect experimental results 

 While the three-arc compliant interconnect geometry experimental results gave 

good insight into the behavior of these structures when subjected to drop testing, it was 

thought that a comparative estimate of the response behavior of these compliant 

interconnects would be useful. For this reason, an interconnect design based on the 

conventional solder bump was designed. The bump interconnect was designed to have 

the same footprint as the scaled-up three-arc compliant interconnect. The drop test 

samples for this particular interconnect design were also fabricated using the 

stereolithography process, as the three-arc compliant interconnect. The sample 

preparation, testing procedure, acceleration and strain measurement, collection and post-

processing of data for the bump interconnect were all done in the same fashion as that for 

the three-arc interconnect. 
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 The bump interconnect drop test samples were also dropped from various heights 

ranging from 100mm, 200mm, 300mm, 400mm, 500mm to 600mm. The drop test strain 

data collected from the various drop tests was filtered using a 1000Hz low-pass 

Butterworth filter to remove any extra noise and filter the data. 

6.2.1 Acceleration data 

 Initial understanding of the response of the bump interconnect models to drops 

from various heights was done by obtaining acceleration data from accelerometers 

mounted on the sample. Given in Figure 6.7 is the acceleration response recorded from a 

200mm height drop test of a bump interconnect test sample. The various acceleration 

plots for different drop heights are given in Appendix A. 
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Figure 6.7: Acceleration response for 200mm height drop test for bump interconnect 

sample 
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 The maximum acceleration value according to the Figure 6.7 is 202.6G for a drop 

height of 200mm. This value increases to a magnitude of 766.7G for a 600mm height 

drop test. Using the acceleration versus time plots, the impact times for the bump 

interconnect sample for various drop heights was determined. The acceleration values 

were observed to increase with drop height, as was expected. The different peak 

acceleration values and associated impact times recorded for the bump interconnect drop 

tests are given in Table 6.3.  

 

Drop Height 

(mm) 
100 200 300 400 500 600 

Measured 

Peak 

Acceleration 

(G) 

81.87 202.6 269.49 352.9 394.9 766.7 

Impact 

Time (s) 
0.008 0.007 0.006 0.005 0.004 0.003 

 

 Appropriate finite-element simulations were carried out, using the acceleration 

peak values and impact times shown in Table 6.3 as input boundary conditions. 

6.2.2 Strain data 

 Alongside the acceleration response collected and shown in Section 6.2.1, strain 

data was obtained for the various bump interconnect geometry drop tests. The location 

and arrangement of strain gauges used was the same as for the three-arc samples. SG1 

refers to the longitudinal strain in the board, SG2 refers to the strain in the die parallel to 

SG1 and SG3 refers to strain in the die transverse to SG1 and SG2. Figure 6.8 shows the 

strain data plot for a 200mm height drop test for the bump interconnect sample geometry. 

Table 6.3: Peak acceleration and impact times for bump interconnect drop test 

sample 
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The various maximum strains for different drop heights recorded from experiment are 

given in Table 6.4. 

 

Drop 

Height 

(mm) 

100 200 300 400 500 600 

SG1 - 1094 1334 1624 1853 1765 

SG2 - 748 1109 1408 1566 1542 

SG3 - 203 324 275 407 496 

 

 The strain observed during the drop testing of the bump interconnect samples was 

found to increase monotonically from the lowest to the highest drop height, and tended to 

level out at higher drop heights. One thing to note was that the strain SG2 in the die 

seemed to be either equal in magnitude to or greater than the strain SG1 observed in the 

board. This means that the bump interconnect model was transferring almost all the strain 

Table 6.4: Experimental strain data for bump interconnect drop test sample  
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Figure 6.8: Strain data for 200mm height drop test for bump interconnect 

sample 
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from the board to the die due to the low compliance of the bump interconnects. At the 

same time, the transverse strain in the die SG3 seemed to be an average 26.8% of the 

strain SG2 in the die. Although this transverse strain response was expected, it still did 

not change the fact that the bump interconnects did not reduce the strain in the die 

compared to that in the board.  

 One thing to note is that the results for the 100mm height drop tests did not give 

out any strain value. The conclusion was that 100mm drop height was not sufficient to 

incite any large observable strain response which could be detected with the setup used, 

although the acceleration response was observed. Both the acceleration plot and strain 

data plot for the 100mm height drop test of the bump interconnect model are given in 

Figure 6.9 and Figure 6.10 respectively. Strain data plots for different drop heights are 

given in Appendix B. 
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Figure 6.9: Acceleration response for 200mm height drop test for bump 

interconnect sample 
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6.3 Comparison of experimental response of three-arc interconnects and bump 

interconnects 

 On comparing the acceleration response of the three-arc compliant interconnects 

versus that of the bump interconnects, it can be seen that the compliant interconnects are 

subjected to higher peak acceleration values than the bump interconnects for the same 

drop heights. This is due to the overall higher rigidity of the bump assembly compared to 

the three-arc compliant interconnect assembly. At the same time, the impact times 

observed in the board for the three-arc interconnect assembly were found to be shorter for 
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Figure 6.10: Strain data for 100mm height drop test for bump interconnect 

sample 
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higher drop heights. The acceleration peaks values and impact times for both interconnect 

geometries are given in Table 6.5. 

 

 

Drop Height (mm) 100 200 300 400 500 600 

Three-

arc 

Peak G 104.5 182.41 130.9 391.8 536.1 1056.8 

Impact 

Time (s) 
0.01 0.008 0.005 0.003 0.002 0.0015 

Bump 

Peak G 81.87 202.6 269.49 352.9 394.9 766.7 

Impact 

Time (s) 
0.008 0.007 0.006 0.005 0.004 0.003 

 

 The difference in acceleration response can be explained by considering the 

rigidity of the bump interconnects, which are much stiffer than the three-arc compliant 

interconnects due to the larger bump cross section (for the same footprint size). The 

bump interconnects prevent the board from flexing to a greater extent due to their rigid 

nature, while the compliant interconnects having much smaller bumps and flexible arms, 

allow the board to flex more easily. This allows the compliant interconnect drop test 

samples to undergo higher strains in the board, compared to the board strains in the bump 

interconnect drop test samples. This allows for higher acceleration values experienced by 

the three-arc compliant interconnect samples. This flexing nature also contributes to the 

change in impact times observed for both interconnect samples, with higher flexing 

leading to smaller impact times. 

 

 

Table 6.5: Experimental data comparison between three-arc and bump 

interconnect samples 
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Drop Height 

(mm) 
100 200 300 400 500 600 

SG1 

Three-

arc 
2256 3964 4291 5673 5774 6258 

Bump - 1094 1334 1624 1853 1765 

SG2 

Three-

arc 
312 495 879 1006 1008 1069 

Bump - 748 1109 1408 1566 1542 

SG3 

Three-

arc 
250 305 692 646 562 441 

Bump - 203 324 275 407 496 

 

 On comparing the strain response of both interconnect geometries, as shown in 

Table 6.6, it can be seen that the bump interconnect samples underwent lower board 

strains compared to the three-arc interconnects, which was expected based on the lower 

peak acceleration values experienced as shown in Table 6.5. However, the amount of 

strain transferred from the board to the die (SG1 versus SG2) is much smaller in the case 

of the three-arc interconnects compared to the bump interconnects. The SG2 strain values 

are actually lower in the three-arc interconnect drop test samples compared to the bump 

interconnect samples, despite the higher board strains in the former. The strain ratio 

(board strain to die strain) is on average 5.85:1 for the three-arc compliant interconnect 

samples versus 1.22:1 for the bump interconnect samples. This strain ratio response 

displays the excellent strain absorption capability of the three-arc compliant interconnect 

structure versus the rigid bump interconnect geometry, which is used in conventional 

microelectronic packages. 

Table 6.6: Experimental strain data comparison between three-arc and bump 

interconnect samples 
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6.4 Three-arc compliant interconnect finite-element simulation results 

 Alongside the experimental drop tests, finite-element simulations based on the 

Input-G Method were conducted, in an effort to obtain drop test response behavior of the 

three-arc compliant interconnects through numerical simulation. By obtaining this 

numerical data, the response of the compliant interconnects could be understood in a 

much faster manner than conducting the actual experimental drop tests.  

 Simulations were carried out for three out of the six drop heights used in 

experiment. The drop test heights used for obtaining simulations results were 100mm, 

300mm and 500mm. The impact times and peak acceleration data were taken from 

experiment and applied to the finite-element simulation model. The nature of the implicit 

formulation used for the finite-element simulation allowed the strain response data to be 

used as a comparative estimate versus the experimental results. 
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Figure 6.11: Strain data for 100mm height drop test simulation for 

three-arc interconnect model 
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 Shown in Figure 6.11 is the strain response plot for a 200mm drop test simulation 

conducted for the three-arc compliant interconnect geometry. The various strain response 

plots are given in Appendix C.  

 The strain data observed from finite-element simulations are given in Table 6.7, 

where the values are compared against the experimental results obtained. It can be seen 

that the peak strain values obtained through simulation were within reasonable error, 

when compared with the experimental results. In most cases, the finite-element 

simulations under-predicted the strain response of the three-arc compliant interconnect 

models. This could be attributed to the effect of polymer ageing in the experimental drop 

test samples. The finite-element simulations were conducted using the original material 

property values for the polymer resin, thus leading to lower strains displayed in 

simulation. At the same time, the damping ratio applied during simulation was obtained 

from experiment. The amount of strain absorbed by the compliant interconnects in 

simulation, however, seemed to be in the same ratio as in experiment. Additionally, both 

experiment and simulation data were seen to damp out within the same amount of time, 

the time being dependent on the drop test height, but always within 100ms. 

 

 

Drop Height (mm) 100 300 500 

SG1 
Experimental 2256 4291 5774 

Simulation 2754 4675 5026 

SG2 
Experimental 312 879 1008 

Simulation 257 504 689 

SG3 
Experimental 250 692 562 

Simulation 201 302 442 

Table 6.7: Experiment versus simulation strain data comparison for three-arc 

interconnect  
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 It was concluded that the finite-element simulation by implicit Input-G Method 

could be used to obtain preliminary data on drop test response of the three-arc compliant 

interconnects. The amount of time taken by each simulation was in excess of 20 hours 

due to the size of the simulation model and the small time step used for solution. This 

time was still much smaller than the amount of time it took to design, fabricate, set up 

and test the three-arc interconnect samples through experiment.  

6.5 Bump interconnect finite-element simulation results 

 Finite-element simulations of the bump interconnect model were also conducted 

using the same Input-G Method as in the case of the three-arc interconnects. Again, 

Time (s) 

 

S
tr

a
in

 

Figure 6.12: Strain data for 200mm height drop test simulation for 

bump interconnect model 
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200mm, 300mm and 500mm drop height experimental test data was used to conduct the 

simulations for the bump interconnect geometry. Shown in Figure 6.12 is the 200mm 

height drop test strain response of the bump interconnect. The peak strain values obtained 

from this and other strain response plots (given in Appendix C) are given in Table 6.8 

alongside the experimental results obtained for the same drop heights. 

 

 

Drop Height (mm) 200 300 500 

SG1 
Experimental 1094 1334 1853 

Simulation 1329 1586 2071 

SG2 
Experimental 748 1109 1566 

Simulation 1166 1387 1731 

SG3 
Experimental 203 324 562 

Simulation 105 253 407 

 It was seen that the finite-element simulation strain values for various drop 

heights was within reasonable error. The finite-element simulations conducted 

overpredicted the strain results due to change in the material properties, as given in 

Chapter 5 for the bump interconnect. The finite-element simulation data seemed to follow 

the same trends as the experimental results, with the strain in the die being shown to be 

close to the strain in the board, as was seen in experiment. The strain ratio from the board 

to the die was 1.16:1. 

 It was concluded that the implicit Input-G Method used to conduct numerical 

simulations of the drop testing of the bump interconnect model was sufficient to obtain 

preliminary data on drop test behavior of the bump interconnect models used to obtain 

comparative strain data. 

Table 6.8: Experiment versus simulation strain data comparison for bump 

interconnect  
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CHAPTER 7 

PROPOSED COPPER-SILICON INTERCONNECT-DIE ASSEMBLY 

SIMULATION 

In previous chapters, experimental and numerical data gathered from scaled up 

compliant interconnects was presented. These data were based on the drop test samples 

fabricated by stereolithography and made use of the stereolithographic polymer resin. 

While the data obtained from such samples gave good insight into the mechanical 

behavior of the compliant interconnects, response of the original interconnects when 

subjected to drop testing is yet to be understood. This chapter will deal with finite-

element simulation data for two compliant interconnect geometry sizes. The first size will 

deal with the scaled up geometry, but with the material properties used in the true 

package. The second size will deal with the true scale complaint interconnects, again 

modeled using the original copper-silicon interconnect-die assembly material properties. 

As no experimental drop test data is yet available for copper interconnect/silicon die /FR4 

board assembly, the discussion presented in this chapter is preliminary and needs to be 

validated with experimental data, as outlined in the next chapter.  However, this chapter 

provides certain insight into the drop impact behavior of compliant copper interconnects. 

 As was given in Chapter 4, the compliant interconnect geometry studied up until 

now was scaled up by a factor of 75. The new scaled up pitch used for fabrication was 

15mm. This scaling up was done in order to comfortably fabricate the three-arc geometry 

using stereolithography without losing any dimensional accuracy, and also to take the 

resolution of the stereolithography machine into account. However, the original scale or 

true scale multi-path three-arc compliant interconnects are meant to be fabricated at a 
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pitch of 200µm. Such small dimensions necessitate the need for photolithographic 

fabrication. The steps needed to fabricate this compliant interconnect geometry are 

currently under development. It should be noted that all the other dimensions of the 

multi-path three-arc compliant interconnect such as width, length, thickness and height 

are calculated based on the provided pitch, making this interconnect geometry truly 

scalable.  

7.1 Scaled-up copper-Silicon Interconnect-Die assembly 

 In order to transition from the scaled up compliant interconnect geometry with 

polymer material properties used till now to the true scale copper-silicon interconnect-die 

assembly model, an intermediate model was studied, using the scaled up geometry of the 

compliant interconnects with the material properties of the true scale copper-silicon 

interconnect-die assembly. 

7.1.1 Model geometry  

Shown in Figure 7.1 is the scaled-up geometry used for finite-element simulation 

of the three-arc compliant interconnects. As has been given before, this geometry consists 

Figure 7.1: Three-arc Cu interconnect/Si die assembly model 
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of a board (110mm by 64mm by 1mm) and a die (45mm by 45mm by 1mm) sandwiching 

a 3 by 3 area-array of scaled up three-arc compliant interconnects. The geometry for this 

simulation was thus the same geometry used in previous simulations. The entire 

geometry as modeled using 8-noded SOLID185 elements, with finer mesh closer to the 

interconnects and coarser mesh away from the package. 

7.1.2 Material Properties 

 As a transition model, the currently presented geometry was modeled using 

material properties meant to be used in the true scale copper-silicon interconnect-die 

assembly model. The various material properties used for this simulation as well as the 

parts modeled using the same are given in Table 7.1. 

 

Material Geometry 

Young’s 

Modulus 

(GPa) 

Poisson’s 

Ratio 

Density 

(Kg/m
3
) 

Copper Interconnect 129 0.34 8900 

FR4 

(substrate) 
Substrate/Board 16 0.3 2243 

Solder Solder bump 49.229 0.4 7420 

Silicon Die 117.61 0.25 2329 

 

7.1.3 Boundary Conditions 

 The scaled-up compliant interconnect model with copper-silicon material 

properties specified in Table 7.1 was loaded using boundary conditions that were 

obtained from the 500mm drop height test of the experimental three-arc compliant 

interconnect polymer model. Figure 7.2 gives the acceleration and displacement curves 

applied to the currently presented geometry. As before, the displacement boundary 

Table 7.1: Material Properties used in simulation [Lall et al, 2009] 
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conditions were applied at the four screw holes provided in the model to mimic the 

presence of supports. A damping ratio of 0.095 was applied to the model in order to 

mimic real world response. This damping ratio was used to calculate the corresponding 

Rayleigh damping coefficients, α and β, which were then used in the finite-element 

simulation to obtain the required damping. 

 

Figure 7.2: Acceleration and calculated displacement curves for 536.1G drop 

event from 500mm drop height 
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7.1.4 Results 

  On running the finite-element simulation of the above explained model, it was 

seen that the overall response of the structure damped out within 15ms. This was much 

smaller in duration compared to the approximately 100ms it took for the polymer samples 

to damp out and can be explained due to the higher stiffness of the FR4 material used to 

model the board.  The strain response of the model was studied using the same technique 

as in previously studied finite-element drop test simulation models.  

 The strain in the board along the longitudinal direction (given by SG1) was found 

to peak at a maximum of 3633.9 microstrain. In comparison, the peak strain in the die 

parallel to the length of the board (given by SG2) was 308 microstrain, an order smaller 

than SG1. Additionally, the transverse strain in the die (SG3) was found to be 64.1 

microstrain. Comparing the strain values for SG1 and SG2, it can be seen from Figure 7.3 

that the board to die strain ratio was 11.8:1. The scaled-up copper compliant 

interconnects were thus able to reduce the amount of strain transferred to the die by a 
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Figure 7.3: 500mm drop height finite-element simulation strain data for 150-

scale Cu/Si three-arc assembly model 
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factor of 10. This response is roughly twice as much as what was seen with the polymer 

interconnects. Although the polymer interconnects are more compliant than the copper 

interconnects, the current simulations use a silicon die which is much stiffer than the 

polymer die used in earlier simulations.  Therefore, the increase in interconnect stiffness 

is offset by the increase in die stiffness to result in reduced transfer of board strain to die 

strain. 

7.2 True scale Copper-Silicon Interconnect-Die assembly 

 In order to understand the behavior of the true scale compliant interconnects, a 

finite-element simulation using the true scale dimensions of the compliant interconnects 

was run.  

7.2.1 Model Geometry 

 The true scale compliant interconnect geometry necessitates a pitch of 200µm, 

with the other dimensions of the compliant interconnect structure suitably related to this 

pitch. The amount of time it took to solve the scaled-up compliant interconnect geometry 

models gave a fair estimation of exactly how long the true scale geometry might take to 

solve. Therefore, in order to reduce computational time and improve efficiency, the true 

scale compliant interconnects were modeled using 3-noded BEAM189 elements. A force 

and moment study was done between the interconnect geometry modeled at true scale 

using both SOLID188 elements and BEAM189 elements, in order to understand the 

differences that may arise during solution. Given in Figure 7.4 is the three-arc compliant 

interconnect geometry modeled using solid elements and beam elements. 
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It can be seen from Figure 7.4 that the number of elements needed to model each 

interconnect using beam elements was much lower than that needed when modeling 

using solid elements. This approach would make the overall simulation more efficient by 

reducing the number of elements required. Care was taken to ensure that the dimensions 

of both the models were kept the same. Then, using material properties as specified in 

Table 7.1, the compliance of both structures was studied. Figure 7.5 compares the 

compliance values for both the interconnect structures. 

 From the comparison, it was seen that the compliant interconnect modeled with 

solid elements had a compliance of 1.7mm/N out-of-plane while the compliant 

interconnect modeled using beam elements had a compliance of 1.91mm/N out-of-plane. 

This difference in compliance values was kept in mind when using the beam elements for 

the following simulation. 

 The geometry used for conducting the finite-element simulation of the true scale 

compliant interconnect geometry is given in Figure 7.6. A quarter symmetry model was 

used to reduce computational time. The interconnects were modeled as beams using 

Figure 7.4: Three-arc compliant interconnect simulation model  built using – 

(i) SOLID elements (ii) BEAM elements 

(i) (ii) 
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BEAM189 elements with a pitch of 200µm. A 5mm by 5mm die was used above the 

interconnects, although the die thickness was reduced to 400µm compared to previous 

Figure 7.5: SOLID versus BEAM force-displacement studies 

Figure 7.6: True scale complaint interconnect simulation geometry  - (i) 

Quarter symmetry model (ii) Close-up of three-arc compliant interconnects 

modeled using BEAM elements 

(i) (ii) 
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simulations. The substrate/board used for the simulation was 110mm in length, 64mm in 

width and 1mm in thickness. 

7.2.2 Material Properties 

 The material properties used for the true scale compliant interconnect model 

comprised of BEAM element interconnects were the same as the ones used for the scaled 

up copper-silicon assembly model. The material properties are given in Table 7.1. 

 

7.2.3 Boundary Conditions  

Unlike other simulations, the interconnects used in the current simulation were 

modeled using BEAM189 elements. Beam elements inherently contain 6 degrees of 

freedom. Therefore, to prevent rotation about the three orthogonal axes, the beam 

Figure 7.7: Extended BEAM elements used for ‘zippering’ the 

interconnect to surrounding elements 
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elements used to model the interconnects were rotationally constrained in the three 

directions. In addition, the posts of the interconnect as well as the beam element 

representing the solder bump were extended into the solid elements surrounding the 

interconnects. This, in effect, ‘zippered’ the beam elements to the surrounding solid 

elements, thus preventing any sort of nodal rotation about any of the three axes. Shown in 

Figure 7.7 are the extended arms and solder bump element used for ‘zippering’ the 

interconnect to the surrounding elements. 

 Being a quarter symmetry model, the free symmetry edges of the model were 

bound using symmetry boundary conditions. All the boundary conditions mentioned so 

far were utilized throughout the solution of the model. 

 The actual displacement boundary conditions that create the drop test were 

applied to the screw hole present in the model as shown in Figure 7.6. A 500mm drop 

height with a peak acceleration of 536G was used, with an impulse time of 2ms. The 

acceleration and displacement boundary conditions applied are the same as that used for 

the previously studied finite-element model and are given in Figure 7.2. 

7.2.4 Results 

 The obtained averaged strain data plot is shown in Figure 7.8. It was observed that 

the board strain along the longitudinal direction of the board was approximately 650.6 

microstrain (SG1). In comparison, the strain in the die along the same direction as the 

board strain was 60.5 microstrain (SG2) while the transverse die strain was 

approximately 29.3 microstrain (SG3). 

 It can be seen that the die strains were an order of magnitude lower than the 

corresponding board strains. The board to die strain ratio observed for this simulation was 
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10.75:1, displaying the excellent strain absorbing capability of the multi-path three-arc 

compliant interconnect used in the package.   
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Figure 7.8: 500mm drop height finite-element simulation for true scale 

copper-silicon interconnect-die assembly model 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

The purpose of this thesis was to understand the response of a proposed compliant 

interconnect design when subjected to drop and impact loading. The following 

conclusions were arrived at after conducting the experimental and numerical analysis 

presented in this thesis. 

 The JEDEC standard drop test can be adequately conducted using impact testing 

machines by suitably modifying the available components. 

 Stereolithography is a quick low-cost alternative to photolithographic fabrication, 

in order to understand response behavior of packaged structures subjected to drop 

and impact loading. 

 The Input-G Method provides an accessible solution method for conducting 

finite-element simulation studies on drop testing using commonly available 

implicit solvers. 

Of the compliant interconnects themselves, the following conclusions could be made. 

 The multi-path three-arc compliant interconnect geometry is capable of reducing 

die strains by acting as a damper. It absorbs the strains being transferred from the 

board to the die and thus, will prevent excessive stress development in the die. 

 Compared to more conventionally used rigid bump interconnects, the three-arc 

compliant interconnect is capable of reducing die strains to values less than that 
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seen in packages with bump interconnects having the same footprint as the three-

arc interconnect considered. 

 Based on the observed data, a possible use for the three-arc compliant 

interconnect geometry is in the form of vibration isolators. The three-arc 

compliant interconnect geometry showed excellent damping abilities and thus 

may be used as a vibration isolator in MEMS devices, or at the second-level 

interconnect stage. 

8.2 Future Work  

The following are recommendations for future work:. 

 Conduct experimental drop testing of true-scale copper-silicon interconnect-die 

assembly and validate results from the finite-element simulations 

 Conduct drop testing for heights and impulse times as specified in JEDEC 

standards, using appropriate damping mechanisms [JESD22-B110a]. 

 Perform numerical simulations using explicit solvers to provide comparative 

validation of conducted implicit finite-element simulations. 

 Investigate the effect of different damping mechanisms to freely control impact 

time. 

 Study the effect of drop testing using orientations other than the 0° drop. 

 Study the effect of clattering and multiple consecutive impacts due to free-fall. 

 Study the effect of varying geometry parameters of the compliant interconnect on 

the amount of strain transferred from the substrate to the die. 

 Study the drop test reliability of other compliant interconnect geometries. 
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APPENDIX A 

EXPERIMENTAL DROP TESTING ACCELERATION DATA 

 

 

  

 

Fig A1.2: 200mm drop height acceleration data for three-arc interconnect sample 
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Fig A1.3: 300mm drop height acceleration data for three-arc interconnect sample 
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Fig A1.4: 400mm drop height acceleration data for three-arc interconnect sample 
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Fig A1.5: 500mm drop height acceleration data for three-arc interconnect sample 
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Fig A1.6: 600mm drop height acceleration data for three-arc interconnect sample 
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Fig A1.7: 100mm drop height acceleration data for bump interconnect sample 
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Fig A1.8: 200mm drop height acceleration data for bump interconnect sample 
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Fig A1.9: 300mm drop height acceleration data for bump 

interconnect sample 
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Fig A1.10: 400mm drop height acceleration data for bump interconnect sample 
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Fig A1.11: 500mm drop height acceleration data for bump interconnect sample 
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Fig A1.12: 600mm drop height acceleration data for bump interconnect 

sample 
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APPENDIX B 

EXPERIMENTAL DROP TESTING STRAIN DATA 
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Fig A2.1: 100mm drop height strain data for three-arc interconnect sample 
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Fig A2.2: 200mm drop height strain data for three-arc interconnect sample 
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Fig A2.3: 300mm drop height strain data for three-arc interconnect sample 
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Fig A2.4: 400mm drop height strain data for three-arc interconnect sample 
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Fig A2.5: 500mm drop height strain data for three-arc interconnect 

sample 
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Fig A2.6: 600mm drop height strain data for three-arc interconnect sample 
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Fig A2.7: 100mm drop height strain data for bump interconnect 

sample 
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Fig A2.8: 200mm drop height strain data for bump interconnect sample 
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Fig A2.9: 300mm drop height strain data for bump interconnect sample 
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Fig A2.10: 400mm drop height strain data for bump interconnect sample 
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Fig A2.11: 500mm drop height strain data for bump interconnect sample 
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Fig A2.12: 600mm drop height strain data for bump interconnect sample 
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APPENDIX C 

FINITE-ELEMENT DROP TEST SIMULATION STRAIN DATA 
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Fig A3.1: 100mm drop height simulation strain data for three-arc 

interconnect model 
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Fig A3.2: 300mm drop height simulation strain data for three-arc 

interconnect model 
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Fig A3.3: 500mm drop height simulation strain data for three-arc interconnect 

model 
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Fig A3.4: 200mm drop height simulation strain data for bump interconnect 

model 
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Fig A3.5: 300mm drop height simulation strain data for bump interconnect 

model 
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Fig A3.6: 500mm drop height simulation strain data for bump interconnect model 
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