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SUMMARY 

Lithium alloys with metallic or semi-metallic elements are attractive candidate materials for 

the next-generation rechargeable Li-ion battery anodes, thanks to their large specific and 

volumetric capacities. The key challenge, however, has been the large volume changes, and the 

associated stress buildup and failure during cycling. The chemo-mechanics of alloy-based 

electrode materials entail interactions among diffusion, chemical reactions, plastic flow, and 

material property evolutions. 

In this study, a continuum theory of two-way coupling between diffusion and deformation is 

formulated and numerically implemented. Analyses based on this framework reveal three major 

conclusions. First, the stress-to-diffusion coupling in Li/Si is much stronger than what has been 

known in other electrode materials. Practically, since the beneficial effect of stress-enhanced 

diffusion is more pronounced at intermediate or higher concentrations, lower charging rates 

should be used during the initial stages of charging. Second, when plastic deformation and 

lithiation-induced softening take place, the effect of stress-enhanced diffusion is neutralized. 

Because the mechanical driving forces tend to retard diffusion when constraints are strong, even 

in terms of operational charging rate alone, Li/Si nano-particles are superior to Li/Si thin films or 

bulk materials. Third, the diffusion of the host atoms can lead to significant stress relaxation 

even when the stress levels are below the yield threshold of the material, a beneficial effect that 

can be leveraged to reduce stresses because the host diffusivity in Li/Si can be non-negligible at 

higher Li concentrations. 
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A theory of coupled chemo-mechanical fracture driving forces is formulated in order to 

capture the effect of deformation-diffusion coupling and lithiation-induced softening on fracture. 

It is shown that under tensile loading, Li accumulates in front of crack tips, leading to an anti-

shielding effect on the energy release rate. For a pre-cracked Li/Si thin-film electrode, it is found 

that the driving force for fracture is significantly lower when the electrode is operated at higher 

Li concentrations -- a result of more effective stress relaxation via global yielding. The results 

indicate that operation at higher concentrations is an effective means to minimize failure of thin-

film Li/Si alloy electrodes.  
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1. Introduction 

Energy capacity per unit mass or unit volume is a key figure of merit for battery materials. 

In the quest for much-needed high energy density and high performance rechargeable batteries 

for vehicles and portable electronics devices, Li alloys have attracted tremendous interest since it 

offers greater specific and volumetric capacities than graphite (the negative electrode material for 

most existing batteries) and other candidate materials. One of the main challenges with alloy-

based Li-ion battery electrodes, however, has been the large volume changes during lithiation 

and delithiation. The volume changes can induce stresses and degrade the electrode material in a 

few cycles [1], an effect that has hindered the practical application of electrodes based on Li-

alloys for almost a decade.  

Recent efforts to improve the cyclability of Li-alloy based electrodes are highlighted by the 

utilization of nano-structured materials [2-6], including Si nanowires (NWs) [7], crystalline-

amorphous Si core-shell nanostructures [8], sealed Si nanotubes [9], nano-structured 

carbon/silicon composites [10], double-walled silicon nanotubes [3], and nanopowder-alginate 

mixture [11]. Thanks to their ability to reduce diffusion-induced stresses (DIS) and to better 

accommodate inhomogeneous volume changes, these novel materials can withstand hundreds or 

thousands of charge/discharge cycles and have enabled the envelop of battery life and allowable 

charging rates to be pushed out every few months.  

The mechanical behavior and failure mechanism of nano-sized electrode materials can be 

distinctly different from those of electrode material with characteristic sizes in the micron or 

millimeter ranges. For example, bulk and thin film Si electrodes mainly fail through cracking [12, 
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13]; Si NW electrodes, on the other hand, may degrade through internal void formation [14] 

and/or surface roughening[5]. Sethuraman et al. [15] measured the evolution of stresses in silicon 

thin films during electrochemical cycling and showed that the flow stress of lithiated Si 

decreases as Li concentration increases. The finding suggests that parameters which depend on 

stress singularities such as the mode I fracture toughness KIC are not very relevant for 

nanostructured Li/Si electrodes. Instead, plastic (or viscoplastic) flow is an important process 

that cannot be neglected. 

Improving the reliability and performance of nano-sized Li-alloy electrode materials 

requires a fundamental understanding of the complex chemical-mechanical-electrical 

characteristics of the underlying physical processes and the interplay of many different factors. 

The multiscale and multiphysics nature of the phenomena involved makes this both a 

challenging and interesting endeavor which has attracted the attention of many researchers (e.g. 

[16-22]). The aim of this research is to investigate the chemo-mechanics of alloy-based electrode 

materials, especially that of Li/Si electrode materials, by using a continuum-level theory. In this 

introductory chapter, a brief background review is presented in order to bring out the issues to be 

investigated in this research.  

1.1. Alloy-based electrodes for Li-ion batteries 

The concept of lithium ion batteries was first proposed by M. S. Whittingham [23] in the 

1970s. Although materials and designs vary, a Li-ion battery always conceptually comprises 

three major parts: the anode, the cathode, and the electrolyte (Fig 1.1). During the discharge half 

cycle, lithium ions transfer through the electrolyte and electrons transfer through the external 
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circuit, both from the anode to the cathode. During the charge half cycle, the migration directions 

of lithium ion and electros reverse, but it is customary to term the negative electrode “anode” and 

the positive electrode “cathode” for both discharge and charge half cycles.   

 

Fig. 1.1 Components of a Li-ion battery. Reproduced from Wikipedia. 

The anode material in traditional lithium ion batteries is graphite, which holds one 

lithium atom per six carbon atoms. The specific and volumetric capacities of Li-alloy based 

electrodes, on the other hand, are generally ~10 times higher than that of graphite. Among the 

materials listed in Fig. 1.2, silicon has the highest theoretical capacity of 4,200 mAh g
-1

 and thus 

attracted the most interest.  
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Fig. 1.2 Gravimetric and volumetric capacities for selected alloying reactions. 

Capacities for graphite are given as references. Reproduced from Ref. [1]. 

One of the main challenges with alloy-based Li-ion battery electrodes, however, has been 

large volume changes during lithiation and delithiation. For example, when lithiated at room 

temperature, silicon-based anodes can expand by up to 311% in volume as Li content is changed 

from 0 to 4.4 per Si [12]. Graphite anodes in commercial batteries, in contrast, exhibit only ~10% 

volumetric changes [24]. If the alloy-based active material particles are mechanically constrained 

by a current collector such as the conductive substrate attached to the electrode or the binder 

which comprises part of the electrode composite, high stresses develop during charge/discharge 

cycling. Fig. 1.3 illustrates the cracks generated in thin-film Li/Si electrodes that form due to 

electrochemical cycling. Similar crack patterns are also seen in other Li-alloy-based electrode 

material systems, such as Ge [25], Sn [26], and Si-Sn [13]. 
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Fig. 1.3 Crack patterns which form due to electrochemical cycling of thin-film 

Li/Si electrodes. Reproduced from Ref. [27]. 

Even when mechanical constraints are absent, the inhomogeneity of lithium concentration 

due to finite lithium diffusivity can still lead to stresses. The buildup of stresses due to 

composition inhomogeneity during diffusive transport in solid materials is a ubiquitous process 

seen in many disciplines of science and engineering. Such stresses, called “diffusion-induced 

stresses” (DIS), has been observed in many areas including oxidation of metals, hydrogen 

transport in solid-state hydrogen-storage media, dopant diffusion in semiconductor processing, 

and lithium ion transport in battery electrodes.  
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Fig. 1.4 Schematic illustration of morphological changes that occur in Si 

during electrochemical cycling. (a) The volume of silicon anodes changes by 

about 300% during cycling. As a result, Si films and particles tend to pulverize 

during cycling. Much of the material loses contact with the current collector, 

resulting in poor transport of electrons, as indicated by the arrow. (b) NWs 

grown directly on the current collector do not pulverize or break into smaller 

particles after cycling. Rather, facile strain relaxation in the NWs allows them 

to increase in diameter and length without breaking. This NW anode design 

has each NW connecting with the current collector, allowing for efficient 1D 

electron transport down the length of every NW. Reproduced from Ref. [7]. 

The diffusion-induced stresses due to finite diffusivity can be significantly reduced by 

decreasing the system dimension [28]. One of the earliest attempts in using silicon nanowires 

(NWs) as an anode material is made by Chan et al. [7], who achieved the theoretical charge 

capacity for silicon anodes and maintained a discharge capacity close to 75% of the theoretical 

maximum, with little fading during cycling. Besides the reduction of stresses, another benefit of 
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using NWs, according to Chan et al. [7], is the maintenance of good electronic contact with the 

substrate as illustrated in Fig. 1.4. 

1.2. Theoretical challenges and recent research trends 

While the stress buildup in Li-ion battery electrode materials bears resemblance to the 

process of thermo-stress development, a phenomenon relatively well-understood, the physics 

involved in these alloy-based electrodes is much more complex in nature, more challenging to 

address, and richer in the variety of influencing factors. The reasons not only lie in the fact that 

the mechanical deformations are much larger, but also arise from the fact that the processes 

entail interactions among mass diffusion, chemical reactions, non-linear plastic flow and material 

property evolutions. This richness of physics presents an opportunity for researchers of solid 

mechanics to explore novel phenomena which are both theoretically interesting and practically 

important. 

Many continuum-level models have been proposed to characterize the buildup and 

mitigation of stresses, and the associated mechanical failure, in Li-ion battery electrodes. Issues 

of active studies include concentration-change-induced softening of the alloy materials, inelastic 

flow, electro-chemical-mechanical coupling, finite deformation, chemical reaction, phase 

transition, and mass transport. In this section, we provide a simple review of those works that are 

relevant to this research. 
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Diffusion-induced stresses  

Due to its close relationship with cyclic degradation, diffusion-induced stress in free-

standing particle electrodes has been subject to extensive studies [29-33]. By drawing an analogy 

to the thermal stress problem, Cheng and collaborators analyzed the effect of DIS in battery 

electrode particles with spherical [29, 30] and cylindrical [31] shapes. They discussed the 

implications of different charging regimens such as potentiostatic and galvanostatic operations 

on stress levels [29]. They also identified a dimensionless number that is analogous to the Biot 

number in heat transfer problems in order to quantify the relative significance of surface kinetics, 

governed by linearized Butler-Volmer’s law, and the bulk diffusion kinetics, governed by the 

Fick’s law [32]. The effect of surface tension on internal stress in spherical particles has been 

investigated, and it is suggested that the surface effect can significantly reduce the tensile stress 

in the material when the particle radius is shrank into the nano regime [20].  

If the electrode material is constrained by external agencies such as a substrate or current 

collector, stresses can arise even when the Li concentration is homogeneous. This is the case for 

thin-film electrodes, in which the active electrode material (e.g., Si or Sn) is deposited on a 

current collector, usually made of Cu or Ti, via thin-film deposition techniques such as electron 

beam evaporation or sputtering [15, 34, 35]. To analyze the fracture patterns, Li et al. [27] 

modified the two-dimensional spring-block model originally proposed by Leung and Neda [36] 

for the problem of corn starch drying, and successfully explained the experimental observation 

that cracks are straight with larger islands in thicker films, but show more wiggles with smaller 

islands in thinner films. The analysis by Li et al. [27] also shows a critical film thickness below 

which no crack would form in Li/Si thin-film electrodes. 
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In addition to the findings by Li et al. [27], it turns out that reducing the in-plane dimensions 

of the islands of active material also mitigates fracture in Li/Si thin-film electrodes [35]. As 

mentioned before, the stresses in thin-film electrodes arise mainly due to the constraints at the 

film-substrate interface. Weaker constraints, for example in the form of interfacial sliding, may 

therefore be beneficial because it helps reduce the stress level. Xiao et al. [35] leveraged this idea 

by introducing a patterning approach to improve the cycling stability of silicon electrodes. They 

found an improvement in cycle life when the pattern size is below the critical (7-10 m) level. 

To explain the mechanism responsible for their observation, Xiao et al. [35] considered a Si thin 

film which already contained an array of cracks with spacing L and calculated the minimum 

crack spacing which is small enough so that no additional crack can be inserted between the 

existing cracks. The critical spacing thus estimated agreed with the experiments. Later, to 

analyze the delamination at the Si/Cu interface, a more sophisticated model was developed by 

Haftbaradaran et al. [37], which leads to yet another length scale that controls the peel-off of the 

cracked Si film from the Cu substrate.  

Plastic deformation and lithiation-induced softening 

Although pure silicon in its crystalline or amorphous state is brittle [38], lithiated Si, which 

is generally amorphous, can undergo significant inelastic deformation. Such a brittle-to-ductile 

transition of Li/Si is an important embodiment of an effect called “lithiation-induced softening”. 

There are two aspects of lithiation-induced softening of Li/Si: reduction in yield stress and 

reduction in elastic modulus as the Li content increases. 
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In continuum theories, the lithiation-induced changes in mechanical properties have been 

modeled by assuming that the elastic moduli and yield stress are functions of the local lithium 

concentration [16, 39, 40], an assumption that is sufficient for capturing most experimental 

observations with regard to the effects of lithiation-induced softening. More sophisticated 

theories have also been proposed. For example, it is suggested by Brassart and Suo  that the link 

between mechanical response and electrochemical charging conditions can also be established by 

reckoning the non-equilibrium driving force 
Li  which is essentially the difference in chemical 

potentials between the electrode material and the surrounding environment [41, 42]. Here, Li  is 

the partial atomic volume of Li and   is the osmosis pressure. The key assumption behind this 

type of treatment is that the concurrent deformation and reaction processes is a non-equilibrium 

process which is governed by how far the state deviates from thermodynamic equilibrium. Many 

interesting predictions have been made out from this type treatment, including the prediction that 

the host under a constant deviatoric stress will flow gradually in response to ramping in the 

chemical potential, and will ratchet in response to cycling in the chemical potential [41]. 

Diffusion-deformation two-way coupling 

The chemo-mechanical coupling in alloy-based electrode materials involves two aspects, 

chemical-to-mechanical (CM) coupling and mechanical-to-chemical (MC) coupling: while 

diffusion induces stresses, stresses can also affect diffusion. Bower et al. [16] developed a 

comprehensive framework and used it to analyze time-dependent plasticity in thin-film Li/Si. 

The effect of stress-enhanced diffusion (SED) was analyzed, revealing significant reduction in 

stress due to a mechanical driving force for diffusion when the deformation is in the elastic 

regime [43]. This enhancement effect can nevertheless be diminished or even fully reversed 
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when the material deforms plastically [44]. Haftbaradaran and Gao discussed the condition and 

effect of surface locking due to the modulation effect of stresses on diffusivity [19]. Zhao et al. 

[45] considered plastic deformation and showed that inelastic flow can significantly alleviate 

stresses in Li/Si. Numerical frameworks based on the mixed finite element method have also 

been proposed in order to simulation the deformation-diffusion coupling [18, 46].  

Fracture mechanics 

Cheng et al. considered a maximum-stress-based fracture initiation criterion [32], and an 

energy-based criterion [30] that is essentially an electrochemical counterpart of Hasselman’s 

thermal shock model [47]. Based on the concept of cohesive zones, Bhandakkar and Gao [48] 

developed an analytical model for crack nucleation in an initially crack-free stripe electrode 

during galvanostatic intercalation and deintercalation by considering a periodic array of cracks in 

a free-standing thin strip. Li et al. [27] modified the two-dimensional spring-block model 

originally proposed by Leung and Neda [36] for the problem of corn starch drying, and 

successfully explained the experimental observation that cracks are straight with larger islands in 

thicker films, but show more wiggles with smaller islands in thinner films. Xiao et al. [35] 

considered a Si thin film which already contained an array of cracks with spacing L and 

calculated the critical L which is small enough so that no additional crack can be inserted 

between the existing cracks. All of these models consider only the effect of diffusion-induced 

deformation and stress, but not the converse effect of mechanical-to-chemical coupling. 

Bower and Guduru [46] and Grantab and Shenoy [49] used the cohesive finite element 

method to analyze the fracture behavior of Li/Si electrodes. Both analyses consider the two-way 
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coupling between diffusion and deformation, by using the mixed finite element method [50] or 

by calculating the pressure gradient from fields in adjacent elements [49]. It is found that the 

two-way coupling can lead to lithium accumulation at the crack tip [49], similar to the 

accumulation of hydrogen in hydrogen embrittlement problems. Such accumulations could have 

a significant impact on near-tip stress fields and, consequently, affect fracture [39]. The use of 

cohesive elements allows fracture propagation to be explicitly tracked with ease, compared with 

other propagation-tracking techniques such as crack-tip remeshing [51]. When significant 

plasticity is involved, however, care must be taken when using cohesive finite elements because 

the critical separation might be comparable or even larger than nano-sized features in the 

electrodes. 

Since lithiated silicon is highly ductile, fracture criteria based on the energy-release-rate 

seem to be a logical choice for fracture analyses. Hu et al. [52] used the energy release rate and 

the Griffith condition to study insertion-induced cracking in LiFePO4 particles caused by the 

mismatch between different phases. Ryu et al. [53] proposed a framework for calculating the 

energy release rate J for cracks in Si nanowire electrodes and used the framework to study the 

size dependence of fracture. This theory nevertheless relies on an effective diffusivity 
effD  

which is applicable only when the material deformation is elastic. In order to overcome this 

shortcoming, Gao and Zhou [39] developed a fully-coupled finite deformation theory for 

analyzing the coupled mechano-diffusional driving forces for fracture in electrode materials. The 

detail of the coupled mechano-diffusional driving forces will be the topic of chapter 5. 
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1.3. Objective, scope, and organization of this thesis 

This research aims at understanding the chemo-mechanical characteristics in nano-sized 

lithium ion battery electrode materials. We focus on the following issues: 

1) How does one capture the chemo-mechanical two-way coupling by using a 

continuum theory and how does one simulate this coupling effectively by using the 

finite element method? 

2) How does the chemo-mechanical two-way coupling affects the stress and 

concentration profile in an electrode, and how significantly does the coupling affect 

the battery cyclablility and operational charging rate? 

3) How good is the assumption of zero host diffusivity in Li/Si alloys and what is the 

effect of small but finite host diffusivity on stresses? 

4) How does chemo-mechanical coupling, plasticity, and lithiation-induced softening 

affect fracture and, in turn, battery design? 

Chapters 2 and 3 are dedicated to the first issue, by establishing a continuum framework and 

then by implementing this framework using the mixed finite element method. In chapter 4, issues 

2) and 3) are addressed by using the theoretical tool built in chapter 2 and 3. Chapter 5 focuses 

on the fourth issue, by modifying the existing Rice J-integral theory so that the theory can 

capture the effect of mechano-diffusional coupling.  
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2. Theoretical framework of diffusion-deformation coupling 

Based on the work by Wu [54], Bower et al. [16],  Zhao et al. [45],  Cui et al. [40], and Gao 

et al. [18], this chapter lays out the continuum framework for the coupling between diffusion and 

large deformation in alloy-based electrode materials.  

We begin with a review of relevant experimental observations and atomistic-level results in 

section 2.1 for two purposes: first, to establish the motivation to extend the existing continuum 

theories, and second, to delineate the physical phenomena that the new framework must capture. 

A focus will be given to the Li/Si material which has the highest known theoretical energy 

storage capacity. For the completion of the picture, experimental phenomena (e.g. amorphization 

of crystalline Si) that are potentially important but are beyond the scope of this research are also 

presented. When such phenomena are introduced, discussions on the range of applicability of the 

theoretical framework are given.  

 The physical picture and the mathematical formulation of the deformation-diffusion 

coupling theory are in section 2.2. Analyses, results, and discussions based on theory will be 

presented in Chapter 4 and Chapter 5. 
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2.1. Experimental observations and atomistic mechanisms  

2.1.1. Lithiation-induced amorphization of crystalline silicon 

During the first lithiation half cycle of a crystalline Si (c-Si) electrode, amorphization occurs, 

leading to an amorphous material structure for subsequent cycles [55]. In-situ TEM studies 

indicate that the phase transition of c-Si into amorphous Si (a-Si) takes place by advancing a 

sharp phase boundary towards the c-Si domain which is devoid of lithium [56, 57]. For 

subsequent lithiation-delithiation cycles, however, there are no more sharp phase boundaries and 

the lithium concentration profile is smooth and governed by diffusion kinetics [56]. 

Recent studies show the existence of sharp phase interfaces during the first lithiation half 

cycle even if the starting material is a-Si [58, 59]. Specifically, lithiation of a pristine a-Si 

electrode occurs by the movement of a sharp phase boundary between a Li-rich Li/Si alloy phase 

and a Li-poor pure a-Si phase.  For subsequent cycles, however, no more sharp phase boundaries 

are observed and the lithiation/delithiation process is governed by diffusion kinetics [59], unless 

the Li/Si electrode is deep lithiated to a very low cutoff voltage to induce recrystallization to the 

Li15Si4 phase [60-62]. 

The sharp phase boundaries are harmful because the abrupt change of Li concentrations at 

those boundaries may induce high levels of stresses [57, 63-65]. Many interesting phenomena, 

including the anisotropic interface mobility and swelling [57, 66, 67] and the self-limiting 

lithiation [68, 69], have been observed during the first half-cycle of c-Si. However, practically 

feasible Li/Si electrodes would be unlikely to be made from c-Si due to the undesirable effects of 

the sharp boundaries during the first lithiation cycle [63]. These effects can be avoided by 
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starting with a-Si and by allowing electrodes to undergo careful initial “priming” to bring them 

to amorphous states which will not generate phase boundaries during subsequent usage [59]. 

Therefore, unless specified otherwise, discussions in this research focus on situations in which 

the starting material is fully amorphous. Under this condition, neither phase transition nor phase 

boundary needs to be considered, and the governing kinetics is diffusion instead of phase 

transition. Theories and models thus formulated are applicable to the operation of primed Li-Si 

electrodes but not to the initial priming treatment. 

2.1.2. Large deformation due to lithiation and delithiation 

It is well-established that during lithiation Li-alloy based electrode materials undergo large 

volumetric changes.  Beaulieu et al. measured the thickness change of thin-film Li/Si during 

cycling, and found that the volumetric change can reach as high as 311% [12]. Atomistic 

simulations have also reproduced this large volume expansion [70, 71].  Depending on the design, 

stresses in an electrode may arise via two mechanisms if the starting material is fully amorphized 

Si. The first is due to Li concentration inhomogeneity arising from the fact that the diffusivity of 

Li is finite; the second is due to constraining by external agencies such as a substrate or current 

collector in contact with the electrode. 

The stresses during lithiation and delithiation reciprocally affect the overall deformation by 

inducing elastic or even plastic deformations. In order to isolate the contribution due to the 

change of lithium concentration itself, the stress-free (SF) deformation is defined as the 

deformation of a volume element in the electrode during the change of Li concentration if the 
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whole element is subject to no stresses. For a well-primed a-Si electrode, the stress-free 

deformation during Li concentration change is isotropic with only volumetric changes.  

For the first lithiation half-cycle of a c-Si electrode, however, the stress-free deformation can 

be anisotropic [57, 59, 69]. This anisotropic expansion can lead to undesirable effect of stress 

intensification and fracture at certain locations [69].  For electrodes made of a-Si, the first 

lithiation half-cycle is also a two-phase process but without expansion anisotropy [59]. This 

difference in expansion behaviors implies that a-Si undergoes more manageable physical 

transformations than c-Si during the first priming cycle, which may make it a more desirable 

active material [59]. After the first priming cycle, however, both c-Si and a-Si are fully 

amorphized and further lithiation-delithiation cycles only induce isotropic expansions. As 

discussed in section 2.1.1, this research mainly focuses on situations in which the starting 

material is fully amorphous, such that the governing kinetics is diffusion instead of phase 

transition, and the stress-free expansion can be assumed to be isotropic. 

2.1.3. Plastic deformation and lithiation-induced softening 

Sethuraman et al. employed an experimental technique with a multi-beam optical sensor 

(MOS) to measure the in-situ stress evolution in a thin-film Si electrode [72]. The technique 

entails the measurement of the curvature change of the film-substrate system during 

electrochemical cycling and the calculation of the stresses in the thin film from the curvature via 

the Stoney equation [73, 74]. Fig. 2.1 shows the cell potential and the film stress so obtained as 

functions of the capacity of the silicon thin-film electrode [15]. This capacity level (the 

horizontal axis) is linearly related to the Li content  in the chemical composition LiSi. During 
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the lithiation process, an initial linear increase in the bi-axial compressive stress is attributed to 

elastic deformation. At compressive stress of about 1.7 GPa (which corresponds to a capacity of 

ca. 325 mAhg
-1

), the film appears to reach the elastic limit and begins deform inelastically with 

further lithiation. This response is needed in order to accommodate the additional volume 

expansion. The flow stress is seen to decrease with further lithiation, reaching a value of about 1 

GPa at a capacity of ca. 1875 mAhg
-1

, at the cut-off potential. Upon delithiation, the unloading is 

initially elastic; the stress reverses elastically until it reaches ca. 1 GPa in tension, where the film 

begins to flow in tension in order to accommodate the reduction in volume. The flow stress 

increases to about 1.75 GPa when the upper limit of 1.2 V is reached. What Sethuraman et al. [15] 

observed clearly indicates that lithiated Si undergoes inelastic deformation, and the associated 

yield stress Y  decreases as the Li content  in LiSi increases. Such a decrease in Y  is an 

important manifestation of what is called lithiation-induced softening.  

In terms of the atomistic mechanisms that underlie the observed behavior, Zhao et al. [75]  

proposed that the brittle-to-ductile transition with increasing Li concentration and associated 

large plastic deformation is due to continuous lithium-assisted breaking and re-forming of Si-Si 

bonds and the creation of nanopores. 

Besides the decrease in Y , the effect on mechanical properties of Li/Si of lithiation also 

entails the decrease in elastic moduli [72, 76, 77]. One of the earliest studies on the elastic 

softening of Li-Si due to lithiation was by Shenoy et al. [77], who carried out density functional 

theory (DFT) calculations of the elastic moduli of a-Si and c-Si in different lithiation states. They 

found that the elastic properties of a-Si and c-Si depend strongly on the lithiation state, i.e. the  

value in the chemical formula LiSi. This dependence approximately follows the rule of mixing 
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that connects the elastic properties of LiSi at the two end compositions, i.e. and max. In 

terms of atomistic mechanism, they attributed the elastic softening to the increase in the 

population of ionic Li–Si bonds that are weaker than the covalent Si–Si bonds [77]. 

 

Fig. 2.1 Cell potential vs. capacity curve corresponding to lithiation and 

delithiation of a-Si thin-film electrode cycled at C/4 rate between 1.2 and 0.01 

V vs. Li/Li
+
, and (b) the corresponding stress calculated from the substrate 

curvature using the Stoney equation. The curves labeled X and Y correspond to 

the stresses calculated from the averaged horizontal and vertical 

displacements of the spots, respectively. The arrows in both figures indicate 

cycling direction. Reproduced from Ref. [15]. 

Hertzberg et al. [76] arrived at a conclusion consistent with those drawn by Sethuraman et al. 

[15] and Shenoy et al. [77] for the Young’s modulus and hardness through ex-situ depth-sensing 
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indentation experiments. The measurements by Hertzberg et al. [76] indicate that the Young's 

modulus decreases from an initial value of 92 GPa for pure Si to 12 GPa at full lithium insertion 

(Li5Si4), and the corresponding hardness change is from an initial value of 5 GPa for Si to 1.5 

GPa for Li15Si4. The measured modulus-concentration dependence by Hertzberg et al. deviates 

slightly from the simple rule of mixing suggested by the DFT calculations of Shenoy et al. [77]. 

Such a deviation could have important implications, but is nevertheless considered to be as 

higher-order effect in most continuum models that consider the lithiation-induced softening (e.g. 

[16, 40, 43]).  

In continuum theories, the lithiation-induced changes in mechanical properties are usually 

modeled by assuming that the elastic moduli and yield stress are functions of the local lithium 

concentration [16, 39, 40], an assumption that is sufficient for capturing most experimental 

observations with regard to the effects of lithiation-induced softening. More sophisticated 

theories have also been proposed [41, 42]. In this study, we assume that the elastic moduli and 

yield stress are functions of the local lithium concentration via the rule of mixing. 

2.1.4. Interdiffusion of lithium and host atoms 

Most existing continuum models of Li-ion battery electrode materials are based on the 

assumption that host atoms are immobile. Nevertheless, DFT calculations by Kim et al. [78] 

show that the bonding environment of silicon atoms changes significantly as lithium 

concentration increases, indicating that the diffusive migration of silicon may become non-

negligible. Recently, Johari et al. [79] calculated the diffusivity of both Li and Si ( LiD  and SiD ) 

in crystalline and amorphous Si (c-Si and a-Si) electrodes using ab initio molecular dynamics. 
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They found that 10 91.67 10 ~ 4.88 10LiD     cm
2
s

-1
 and 14 131.97 10 ~ 5.74 10SiD      cm

2
s

-1
 

for c-Si and 9 81.25 10 ~ 3.69 10LiD     cm
2
s

-1
 and 11 101.53 10 ~ 5.13 10SiD      cm

2
s

-1
 for a-

Si. The associated diffusivity ratio in a-Si falls into the range of 

2 2/ 0.8 10 ~1.39 10Si LiD D     . It should be noted that the study by Johari et al. was 

conducted on Li/Si systems with the composition of Li1.0Si. For higher Li contents, the 

diffusivity ratio /Si LiD D  could be even higher since more Si-Si covalent bonds are broken. In 

Li/Ge, another promising alloy-based electrode material, host diffusion could be even more 

significant since the Ge-Ge covalent bond is much weaker than the Si-Si bond (the melting 

temperatures of crystalline Si and Ge are 1687 K and 1211.40 K, respectively). 

Finite diffusivity values of host atoms may have interesting implications on the performance 

and cyclability of alloy-based electrode materials. For example, in Li/Si and Li/Ge nano-

electrodes, cycling-induced formation of nano-pores indicates that the host material has been 

irreversibly moved away from the voided regions [5, 80]. If reversible expansion and elastic 

deformation were the only mechanisms for material deformation, the nano-pores would not form 

because the host network must revert back to its original configuration upon unloading. Two 

mechanisms have been proposed to account for the irreversible migration of host atoms. The first 

is inelastic flow (a form of continuous convection) driven by deviatoric stresses during which 

material flows in the normal direction of the nucleated pore, leading to void enlargement [5]. The 

second mechanism is vacancy aggregation during selective dealloying, which involves diffusive 

migration of host atoms and allows nucleated voids to coalesce and grow [80]. Either or both 

mechanisms might be relevant, their relative significance depends on the specific material 

system.  
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The continuum framework in this study takes the effect of non-zero host diffusivity into 

consideration. As will be discussed in section 4.3, the finite diffusivity of host can also bring up a 

stress relaxation mechanism even at stress levels below the yield threshold. For other parts of this 

study, the assumption of immobile host lattice will be taken in order to simplify the model and 

allow more focused discussions.  

2.1.5. Effect of stress on Li chemical potential 

While the mass diffusion of lithium, a chemical process, induces volume changes and 

stresses, the stresses also affect the chemical process. Specifically, since the lithium chemical 

potential increases when the material is under compressive stresses and vice versa when the 

material is under tensile stresses, the mechanical stresses can take effect on the diffusive 

transport of lithium. The question is how much change in chemical potential can be induced by 

this mechanical-to-chemical coupling. Sheldon et al. measured the stress contributions to 

solution thermodynamics in Li/Si alloys, and found that the stresses can alter the electrochemical 

potential by 50 mV or more [81]. On the capacity-voltage curve, this stress-induced chemical 

potential shift can be responsible for 40% of the energy loss, i.e. of the area enclosed by the 

hysteresis [15, 72, 82, 83].  

It turns out that the chemical potential shift induced by stresses, although only about 50 mV, 

is big enough to significantly affect the diffusive transport in Li/Si [43], as will be discussed in 

section 4.1. Section 2.2 therefore takes the two-way coupling between deformation and diffusion 

as an essential part of the theoretical framework. 
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2.2. Theory of diffusion-deformation coupling 

The lithiation and delithiation of alloy-based electrodes are electrochemical processes. Still, 

the electric conductivities of most alloy-based electrodes are high enough so that the electric 

potential inside the solid domain of the electrode particles can be regarded as uniform. Therefore, 

most particle-level continuum models of electrode materials entail only the coupling between Li 

diffusion and mechanical deformation, but not electric fields [16, 18, 40, 45], although 

exceptions exist [16]. In this study, sufficient electric conductance is assumed so that the whole 

electrode has a uniform electric potential, and only the deformation and diffusion processes need 

to be analyzed explicitly. 

The electrode is assumed to be composed of two chemical species: host (denoted as H) and 

guest (lithium). Vacancies are not treated as chemical species due to the lack of site-conservation 

constraint in amorphous materials [84]. 

Based on the background information in section 2.1, in establishing the continuum 

framework for diffusion-deformation coupling in alloy-based electrodes, it is desirable to capture 

the following:  

1) The geometric non-linearity due to deformation up to 300% volume expansion, 

2) The material non-linearity due to incremental inelastic flow, 

3) Small but finite host diffusivity, 

4) The two-way deformation-diffusion coupling, especially the effect of stresses on 

diffusion, 

5) The phase transformation during the first lithiation cycle, and 
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6) The anisotropic stress-free expansion during first lithiation cycle. 

Because this study focuses on well-primed a-Si electrodes, we focus on (1)-(4) but not on (5) 

and (6). Nevertheless, internal state variables are considered in the thermodynamics and arbitrary 

stress-free deformation is used in the kinematics, so that (5) and (6) can be captured with minor 

extension of the framework.  

2.2.1. Kinematics 

Since the material of interest is highly amorphous with small but non-zero host diffusivity 

[79], the notion of continuous deformation must be used with caution. Following the treatment 

by Stephenson [84], we identify two types of host atom movement during guest (lithium) 

insertion: collective convection and diffusive transport. To illustrate the relative displacement 

between neighboring host atoms, network lines (solid black) linking adjacent hosts are 

introduced in Fig. 2.2. It should be noted that these lines do not necessarily represent host-host 

bonds, although recent studies do indicate that a significant portion of Si atoms tend to remain in 

rings, chains or pairs even in highly lithiated amorphous Li/Si [78]. It should also be noted that 

the regular arrangement of the initial network [Fig. 2.2 (a)] is used only to facilitate the 

illustration without implying any regularity or periodicity in atomic structure. As the material 

expands due to guest insertion, two scenarios may arise in terms of the movement of the host 

atoms. In the first scenario (consider atom B as the example), the network lines linking the host 

atom (B) with its neighbors (B-C, B-D, B-E) remain; and the movement of the host (B) can be 

tracked by bookkeeping the continuum deformation  ,tx x X of the network. We call this type 

of host movement collective convection. In the second scenario (consider atom A as the 
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example), the local distortion of the network is so significant that the atom’s nearest neighbors 

completely change. The displacement of atom A can be decomposed into two parts: the first part 

is from the initial position of A to an imaginary point A and is due to collective convection; the 

second part is from A to the final position of A. The second part of displacement (from A to the 

final position) is highly random compared with the collective convection, and the effect is the 

diffusive transport of the host atom relative to the collectively deformed configuration. Here, the 

position of A can be obtained by averaging the positions of atoms within a representative 

volume element (RVE) around A [A, C, D, F and G in Fig. 2.2 (a)]. The deformed network so 

obtained (to which A is attached) reflects the structural deformation of the material and defines 

the updated Lagrangian configuration.  

 

Fig. 2.2 The distinction between collective convection and diffusive transport. 

(a) The original host network. The solid black lines represent the network lines 

linking each host atoms to its neighboring hosts. These network lines do not 

necessarily represent host-host bonds. (b) When guest atoms (Li here) are 

inserted, the host network is distorted and some host atoms (e.g. atom A) may 

migrate relative the network. The dashed lines in (b) gives the host network 

site A which is given by averaging the movement of atoms (i.e. A, C, D, F and 

G) in a RVE around A. 
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If the diffusive transport dominates the host atom movement, the arrangement of the hosts is 

reshuffled quickly (too many host atoms move like A) and a continuum mapping  ,tx x X  

between the reference and current configurations may not be well-defined. Here, we assume that 

the diffusivity of the hosts is much smaller than that of the guests (Li) so that the host network 

can be identified and, consequently, the continuous deformation  ,tx x X  is well-defined. 

Note that  ,tx x X  should be construed in an average sense which may involve statistically 

averaging the displacement of atoms in a specific RVE [c.f. Fig. 2.2].  

The Eulerian concentrations of the host (e.g., Si) and the guest (lithium), namely the atomic 

numbers per unit current volume, are denoted by Hc  and Lic , respectively. Their Lagrangian 

counterparts HC and LiC  in the reference configuration are related to Hc  and Lic  by 

 detH HC c F  and  detLi LiC c F , where  F = x / X  is the deformation gradient. The 

dimensionless compositions  /H H Li Hx c c c  ,  /Li Li Li Hx c c c  and /Li Hc c  , on the 

other hand, can be used to measure the proportions of the concentrations of the host and the guest. 

Here, composition   corresponds to the lithium number per host in the chemical formula LiH. 

The maximum   at the fully charged state is denoted as 
max , and the state of charge (SOC) 

relative to this fully charged state is denoted as 
max/   . 

Following the standard theory of large deformation plasticity, a Lee-type decomposition [16, 

85] can be performed for the deformation gradient, i.e., 

 e SF p  F F F F   (2-1) 
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where  
e

F , SF
F  and p

F  are the elastic, stress-free volumetric and plastic deformation gradients, 

respectively [16, 40]. Here, the plastic part p
F  is volume-conserving [i.e.,  det 1p F ], and the 

volumetric part SF
F  is termed “stress-free” because it corresponds to the shape changes of the 

material due to composition change without stress. One assumption that is typically made for 

amorphous silicon (a-Si) is that SF
F  is isotropic, although the theoretical framework depicted by 

Eq. (2-1) by itself does require such isotropy and can also be used for situations where SF
F  is 

anisotropic (cf. section 2.1.2). 

The decomposition in Eq. (2-1) implies linking the reference (or Lagrangian) state and the 

current (or Eulerian) state via two imaginary and incompatible states, as shown in Fig. 2.3. When 

a piece of electrode material is lithiated from the top layer, the top part expands in the actual 

charged state, leading to deformation gradient F  and associated stresses. This total deformation 

gradient is decomposed such that the material first deforms plastically to reach incompatible 

state I, and then undergoes expansion SF
F  to reach incompatible state II. Here incompatible 

states I and II are stress-free but discontinuous. To maintain continuity, an elastic 

accommodation e
F  is needed. This elastic deformation pieces the incompatible state II together 

back to the actual charged and stressed state.  
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Fig. 2.3 Illustration of the Lee-type decomposition. The total deformation 

gradient F  is decomposed into three parts linked by two incompatible stress-

free states. 

Given the Lee decomposition delineated in Eq. (2-1) and Fig. 2.3, the mechanical properties 

of an electrode material can be prescribed by laying out the constitutive equations that govern 

e
F , SF

F  and p
F  one by one. In order to account for incremental large deformations, this is done 

via the associated rates of deformation 

Initial state:

• Stress-free

• Continuous

Actual charged state:

• Charged  

•Stressed

• Continuous

Li

Incompatible 

stress-free state II: 

• Charged

• Stress-free

• Volume expanded

• Discontinuous

Incompatible 

stress-free state I: 

• Not charged

• Stress-free

• Volume conserved

• Discontinuous
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2.2.2. Conservation of mass and momentum 

The diffusive fluxes of lithium and host can be measured either in the Lagrangian frame as 

Li
J and H

J or in the updated Lagrangian frame as 
Li

j and 
H

j . These quantities are related through 

1f F  as: 

    det , ,S S

K Ki iJ f j S Li H F . (2-3) 

The associated equation for mass conservation in the Lagrangian frame is 

  , , ,
S S

SK
b

K

C J
R S Li H

t X

 
  

 
 (2-4) 

where S

bR
 
is the body source of species S (=Li, H)  measured in the Lagrangian frame.  

It is important to notice that 
Li

j  and  
H

j  are measured in the updated Lagrangian frame 

relative to the moving host network which undergoes convection  ,tx x X , instead of in the 

Eulerian frame. If the fluxes were to be measured relative to the Eulerian frame, the conservation 

of mass would take the form of a mixed convection-diffusion equation in order to avoid double 
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counting the movement of Li and H [84]. That approach is not used here. Again, vacancies 

should not be treated as chemical species here due to the lack of site-conservation constraint in 

amorphous materials, as discussed by Stephenson [84]. 

Finally, under the conditions of zero body force and negligible inertia effect, balance of 

momentum takes the form 

 0,
ji

jx





 (2-5) 

where 
ij  is the mechanical Cauchy stress. Contributions due to the electromagnetic Maxwell 

stress is neglected since its magnitude is much smaller than the contribution due to 
ij  in typical 

battery electrode applications [16]. 

2.2.3. Thermodynamics 

The thermodynamic properties of the electrode material can be characterized by the 

Lagrangian density of the Helmholtz free energy   [54]. We assume  

 ( , , , , ),e H LiC C    F   (2-6) 

where   is the temperature and   is an internal state variable (also known as the order 

parameter) describing the non-equilibrium metastable states. Physically,   can be the degree of 

amorphization [55, 86], porosity [14], or degree of damage. Consider an infinitesimal virtual 
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deformation x  during which , ,H LiC C  , and   are kept constant. The virtual work done by 

the external agent is related to the 1
st
 Piola-Kirchhoff stress 

1 det( )PK

Kj Ki ijf σ  F
 
through  

 
0

1

0 ,
jPK

mech Kj
V

K

x
W dV

X


 




   (2-7) 

where  
0

0
V

dV  stands for integration over the Lagrangian volume. On the other hand,  
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0

*
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.
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     
    
      
   



 

x
F F F

x

  (2-8) 

Here,  
1

SF SF


f F ,  
1

P P


f F  and  * P SF f f f . A comparison of (2-7) and (2-8) leads to 

 *

, , ,H Li

PK1

Kj K ke

jk C C

f
F

 








 (2-9) 

and 

 
   

, , ,

1 1
.

det det
H Li

PK1 e

ij iK Kj ik e

jk C C

F F
F

 


 


 

F F
 (2-10) 

Following Wu [54], the chemical potential of lithium is given by  
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  (2-11) 

Since 
SF SF

SF SF

Li LiC C

 
 

 

f F
f f  , 

 
 

, , , , , , , ,
, , , ,

.
H P H P

H P

p SFe SF
e SF

Li B B

C C
C

C C C
   

 

   
    

  
F F F F

F F

F f fF F
F f   (2-12) 

Substitution of eq. (2-12) into eq. (2-11) leads to 

 
, , , , , ,, , ,

.
e H H PH Li

SF
Li e SFkl

ik ljLi e Li

C ij CC C

F
F f

C F C    

 


  
 
  F F F,

 (2-13) 

With Eqs. (2-10) and (2-13), the guest (lithium) chemical potential can be related to the 

Cauchy stress by 

  
, , , , , ,

det .
e H H P

SF
Li e e SFkl

mi ij jk lmLi Li

C C

F
f F f

C C   


 


 
 F F F,

F   (2-14) 

By the same token, the chemical potential of the host atoms can be written as 

  
, , , , , ,

det .
e Li Li P

SF
H e e SFkl

mi ij jk lmH H

C C

F
f F f

C C   


 


 
 F F F,

F   (2-15) 
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2.2.4. Kinetics 

According to Wu [54], the Clausius-Duhem inequality can be stated in the Lagrangian frame 

as 

 
( ) 1

0,

PK1 H H Li Li

Ki iK

H Li
q H Li

F C C   

 
  

  
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    
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     
J JX X XJ



  (2-16) 

where ( )q
J is the heat flux measured in the Lagrangian frame and   is the Lagrangian density of 

entropy. Under isothermal conditions with 0   and   0
X , 

 0.
H Li

PK1 H H Li Li H Li

Ki iKF C C
 
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 

   
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On the other hand, because 0  , 
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Since  detPK1

Ki iK ij jiF D F , Eqs. (2-18), (2-14), (2-15), (2-10) and (2-2) lead to 
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The isothermal Clausius-Duhem inequality in the updated Lagrangian frame therefore takes 

the form 

     0,Li Li H H

P           j j
x x

  (2-20) 

where the plastic dissipation rate P  
and the local dissipation rate   are defined as 
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  (2-21) 

In general, the stress-free deformation SF
F  can be a function of ,Li HC C  and the internal 

state variable  , i.e., 

  , ,SF SF H LiC C F F  . (2-22) 

By Eq. (2-2),  

 .SF e SF SF e

ij ji ij jk kl lm miD F F f f    (2-23) 

Therefore, Eqs. (2-21)-(2-23) combine to give  
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  (2-24) 

The kinetic driving force can be defined as 

    , ,
T

Li H

kin f       
 

X x x   (2-25) 

and the associated response is 

  , , .
T

P Li H

kin kin kin   J D j j J X,   (2-26) 

The kinetic response of the electrode material is specified through the driving force-response 

relation  kin kin kinJ = J X  which must satisfy the Clausius-Duhem inequality in the form of 

 0.T

kin kin J X   (2-27) 

In this study, the simplest linear “diagonal” form is chosen for Eq. (2-26) such that  
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In the above relations, Li

ikD
 
and Li

ikD
 
are the positive-definite tensorial diffusivity of lithium 

and host, respectively; c  is the linear coefficient for internal state variable evolution; Bk  is the 

Boltzmann constant;  Q Q   is the dissipation potential for plastic flow; and   is the scalar 

rate coefficient for plasticity. For visco-plastic materials,      ; for rate-independent 

materials,   can be determined through the consistency condition.  

It is often convenient to evaluate the fluxes in the Lagrangian frame. When the diffusivities 

are isotropic [see Eqn. (2-33)], the Lagrnangian fluxes can be obtained from the fluxes in the 

updated Lagrangian frame in Eqn. (2-28) through  
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  (2-29) 

2.2.5. Constitutive behaviors of fully amorphized isotropic electrode materials 

Equations (2-6), (2-10), (2-14), (2-15), (2-25) and (2-26) provide a general framework for 

two-species electrode materials that undergo large elastic-plastic deformations. The formulation 

is capable of capturing anisotropic behavior through anisotropic SF
F  and the effects of phase 

transformations through the internal state variable  . To proceed, material-specific relationships 

[Eqs. (2-6), (2-22) and (2-26)] need to be specified. Since the electrode material of interest here 

is fully primed amorphized Li-alloys, several further assumptions are in order. 
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Full amorphization 

The theoretical framework in this study is capable of phenomenologically capturing the 

amorphization process in the first few charging cycles via a double-well potential of   in terms 

of  [cf. Eq. (2-6)]. Such a phase field model of amorphization is not considered here, mainly 

due to the lack of experimental data on the evolution law of  . Instead, the alloy is assumed to 

have fully amorphized, with saturated degree of amorphization, i.e. 0  . This assumption is 

reasonable because full amorphization is achieved after only a few charge-discharge cycles for 

an initially crystalline Si electrode. The isothermal free energy thus becomes 

 ( , , ).e H LiC C  F   (2-30) 

Small elastic deformation 

The elastic deformation is assumed to be small compared with the total deformation and can 

be characterized by the elastic strain 

     1
.

2

T
e e e F F - I  (2-31) 

The free energy   can therefore be written as the sum of a stress-free (SF) part 
SF  and an 

elastic part w  [54], i.e., 
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 ,H Li

ijkl ijklC C C C  is the elastic modulus which depends on the local material composition in 

general.  detSF SFJ  F
 
is the Jacobian of the stress-free expansion. 

 Isotropy 

The physical properties of the electrode material are assumed to be isotropic. Specifically, 

the diffusivities are assumed to be of the forms 
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  (2-33) 

the stress-free expansion is 

    
1/3

, ,SF SF H Li SF H LiJ C C V C C 
 

F I = I  ; (2-34) 

and the elastic response is also assumed to be isotropic such that 

 2 ' '9

2

SF e e e

m ij ijw J K G  
 

  
 

 . (2-35) 

Here, / 3e e

m kk   and 
e e e

ij ij m ij     
 
are, respectively, the isotropic and deviatoric parts of 

the elastic strain; K and G are the bulk and shear modulus, respectively.  detSF SFJ  F is the 

stress-free volume change, and  
1/3

SF SFV J  is the associated stretch. Equations (2-10) and 

(2-35) lead to 
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  '3 2 ,e e e e

ij iK m KL KL jLF K G F       (2-36) 

where 2
nd

 order terms of e  have been neglected due to the assumption of small elastic 

deformation. With Eqs. (2-15), (2-35), and (2-36), the chemical potential of the host and lithium 

can be shown to be 

 

 
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( )

det , and

det ;
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H

H e H SF

mH

C
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 

 
  



   

 

F

F

  (2-37) 

where / 3m kk   is the hydrostatic stress; 
( ) /

Li

H SF SF H

C
J C     and 

( ) /
H

Li SF SF Li

C
J C   

are the stress-free partial atomic volume of the host and lithium, respectively.  

Under the assumption that elastic strain e  is small and by using Eq. (2-32), Eq. (2-37) can 

be further simplified into 

 
 

 

( )

( )

det , and

det ,
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  
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F
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  (2-38) 

where 
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*
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SF
H H H H

SF BH

k x
C

k x
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   


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   


   
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  (2-39) 
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are the isothermal chemical potential of host and lithium at zero stress. Here, 
*

H  and 
*

Li  are the 

reference-state chemical potentials; and  
H  and 

Li  are the stress-free activity coefficients.  

Finally, substituting Eqs. (2-37) and (2-38) into Eqn.(2-29) and neglecting 2
nd

 order terms of 

e  lead to 
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( )

, and

.

H SFHH H
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K Ki Ji Ki Ji

B J B J
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D D
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 
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 

        
 


       

 

  (2-40) 

To proceed, the dependency of Li

SF  and H

SF  on the Li composition   (or  Lix  and Hx ) 

need to be specified. According to the Gibbs-Duhem equation, Li

SF  and H

SF  are mutually 

dependent and the overall relationship of  Li Li

SF SF    and  H H

SF SF   can be reflected by a 

single function of thermodynamic factor    such that 

   1 1
Li Li H H

Li Li H H

x x

x x

 


 

 
    

 
 . (2-41) 

This thermodynamic factor characterizes the non-ideality of the binary solution of LiH [87]. 

When 1  , the solution model reduces to the ideal solution case. Using the thermodynamic 

factor [Eqn. (2-41)], Eqn. (2-40) can be transformed into  
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, and

.

H SFH Li H
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K Ki Ji Ki Ji
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             
    


             

   

 (2-42) 

Generally speaking,  Li Li

SF SF    and  H H

SF SF   [cf. Eqn. (2-39)] can be determined by 

fitting the activity coefficients 
Li  and 

H  to experimentally measured open circuit potential 

(OCP) data [43, 88, 89]. If this approach is used, Eqn. (2-42) is more convenient to calculate the 

fluxes. On the other hand, if the model is based on simplifying assumptions such as the ideal 

solution assumption [20, 45, 90-92], regular solution assumption [93-95], or lattice-gas 

assumption [96-98], Eqn. (2-40) allows easier calculation of fluxes than Eqn. (2-42).  

In the results and discussions part (i.e. chapter 4 and chapter 5), section 4.1 and 4.3 are 

based on chemical potentials fitted using OCP data, and therefore use Eqn. (2-42); section 4.2 

and chapter 5 are based on the idealized  Li Li

SF SF    curve , and therefore use Eqn. (2-40). 

 Yield surface and flow rule 

The plastic deformation is assumed to follow an associated flow rule with a composition-

dependent yield surface  Y Y   , i.e., 

  
21 1

: 0
2 3

dev dev

YQ      , (2-43) 
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where   / 3dev tr  I    is the deviatoric part of the Cauchy stress. Below the yielding 

threshold, D [Eqn. (2-2)] is simply given by the rate form of Eqs.(2-36) and (2-34), i.e. 

 
   ln ln1 1 1
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      

D I I+


  (2-44) 

Here,    W W     is the objective Jaumann rate of  , with   / 2T
W = L - L  being the 

spin tensor. Upon yielding, the rate of deformation including plasticity is [cf. Eqn. (2-28)]  
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 (2-45) 

where the scalar rate factor   can be determined from plastic consistency conditions if plastic 

model is used [69-71, 75], or from the stress-strain rate relationship if visco-plastic model is used 

[15, 37].  

For perfectly plastic case with no strain hardening but lithiation-induced softening, closed-

form relationship between   and stress state takes the form of 
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3 1 1
: .
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dev Li

Y YG
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
 

 




 D    (2-46) 
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In finite element implementations, however, relationship of Eq. (2-46) is generally 

inconvenient to use, and   is solved by using the so-called return-mapping algorithm (see 

section 3.4).  
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3. Numerical framework based on the mixed finite element method 

In equation (2-40) [and also Eqn. (2-42)], the diffusion fluxes of the host and guest consist 

of two parts each. The stress-free (chemical) parts  
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, and
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 (3-1) 

are due to chemical interactions between the guest and host atoms. The mechanical parts 
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 (3-2) 

are due to stresses which tend to squeeze the atoms from compressive regions to tensile regions; 

,H mech

KJ  and ,Li mech

KJ  embody what is termed “mechanical-to-chemical” coupling. To illustrate the 

significance of this coupling, consider a piece of LiSi alloy in which  is spatially homogeneous 

and Si is immobile. If one side of the alloy is compressed and the other side is stretched, the 

resultant stress gradient would induce a driving force that squeezes lithium from the compressive 

side to the tensile side, as shown in Fig. 3.1. It has been suggested that the stress-induced 

contributions may significantly affect concentrations and stresses in Li-ion battery electrodes [45, 

99]. For nanowire electrodes made of Li/Si, the stress effect could amount to a 303% increase in 
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the effective diffusivity, thereby significantly decrease the stress levels [43]. Therefore, ,H mech

KJ  

and ,Li mech

KJ  must be captured to correctly evaluate the stress levels and assess resulting failure in 

Li-alloy electrodes. 

 

Fig. 3.1 Illustration of lithium migration driven by mechanical stress. Such an 

effect can be described by considering a stress-induced chemical potential shift. 

One of the major numerical challenges here is associated with the gradient of hydrostatic 

stress (i.e. /m JX  ) that appears in eqn. (3-2) when a finite element (FE) method is used. 

Since / /e

m J m JX X      , either the strain gradient or the stress gradient itself has to be 

calculated numerically. Tang et al. [93] used a finite difference method to calculate the diffusion-

stress coupling in olivine electrodes and successfully reproduced the phase transformation 

characteristics observed in experiments. The benefit of using a finite difference scheme is that 

one automatically captures the 2
nd

-order deformation gradient by using appropriate discretized 

gradient operators. The finite element method, however, is more valuable if geometric shapes 

other than rectangles are involved.  

When a linear interpolation is used with a finite element, the information of strain gradient is 

lost since the diagonal terms of the interpolator’s spatial Hessian are always zero. One remedy is 

to use elements with high-order polynomials as the interpolation functions. Another strategy is to 

Li

Si

Li migration 

driven by stresses

Compressive Tensile
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compute the 2
nd

 order deformation gradients by fitting to nodal displacements across several 

adjacent elements, instead of relying only on the nodal values of one specific element under 

consideration [100]. These methods fall into the category of irreducible finite element methods. 

Bower and Guduru [46] and Gao et al. [43] independently proposed methods that leverage 

the concept of mixed finite elements [101] to simulate the diffusion/deformation two–way 

coupling. Instead of using only the deformation and concentration of the diffusion species as 

nodal variables, the hydrostatic stress m  [43] or the Li chemical potential 
Li   [46] can also be 

treated as a redundant degree of freedom, thereby automatically resolve the relevant gradient 

needed by Fick’s law. This chapter covers the mixed finite element framework [18] that we have 

developed for the diffusion/deformation two-way coupling problem.  

3.1. Variational form of the mixed finite element 

The mixed FE method was originally proposed to avoid numerical singularity in problems of 

incompressible solids, for which the hydrostatic stress m  cannot be well-defined in terms of the 

displacement field. As a remedy, the hydrostatic stress can be introduced as a Lagrangian 

multiplier to enforce the incompressibility, hence the name “mixed” finite element. Similar 

concepts were later adopted to capture the strain gradient effects in non-local theories of 

plasticity by treating either the rotation or the full deformation gradient as redundant variables 

[102, 103]. Mixed FE methods have also been used in soil mechanics, in which transport of 

incompressible fluid in porous media is mainly driven by pressure gradients [104]. Here, we treat 

the hydrostatic stress  ,m t X  as though it was an independent field variable in order to 
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facilitate the calculation of its gradients. We call m  a redundant variable, in contrast to truly 

independent field variables such as  , t u X x - X , C
H 

and C
Li

. This redundant variable is 

implicitly constrained by eqn. (2-36), i.e., 

 3 / 0.e

m m K    (3-3) 

Here, 2
nd

 order terms of e  are neglected in the derivation of eqn. (3-3). Since 

       det det det dete SF e SFJ F F F F  and   det 1 / 3e e

m  F , the constraint condition in 

Eqn. (3-3) can be restated in the variational form of 
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  (3-4) 

where  
V

dV  stands for integration over the current configuration of the body. The same 

constraint in the Lagrangain domain 0V
 
is 

    
0

0det det / 1 / 0SF

m mV
J K dV      F F . (3-5) 

The variational statement of the conservation of momentum [Eqn. (2-5)], on the other hand, 

takes the standard form 
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
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where 1 det( )PK

Ji Jj jif  F   and  

 .dev

ij m ij ij       (3-7) 

Here, m  is treated as an independent variable.  
0

0S
dS

 
stands for integration over the 

surface of the Lagrangian domain. T  and B  are the surface traction and body forces in the 

Lagrangian frame, respectively. 

Finally, the conservation of mass [Eqs. (2-4)] requires 
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 

X   (3-8) 

where 
LiQ  and 

HQ  are the Lagrangian surface influxes. The fluxes Li

KJ  and H

KJ  are given by 

Eqn. (2-40), with m  being treated as an independent variable.

 

3.2. Discretization 

The variational forms in Eqn. (3-4)-(3-8) are discretized using the FE interpolations of 
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  (3-9) 

where  aN x
X ,  C

aN X  and  m

aN


X  are shape functions for the displacement, concentration 

and hydrostatic stress degrees of freedom (DOF), respectively;  a tx ,  Li

aC t ,  H

aC t  and 

 a

m t  are the corresponding time-dependent nodal values. Here, 2
nd

 order isoparametric shape 

functions are used for  aN x
X  and linear isoparametric shape functions are chosen for  C

aN X  

and  m

aN


X  [cf. Fig. 3.2]. This interpolation scheme gives sufficient accuracy for the 

/m JX 
 
effect in Eqn. (3-2) yet does not introduce too many redundant DOF which may result 

in singular Jacobian matrices [101]. 

 

Fig. 3.2 The mixed finite element used to calculate deformation/interdiffusion 

coupling in alloy-based electrodes. 2
nd

 order isoparametric shape functions 

are used for displacement and linear isoparametric shape functions are used 

for concentration and pressure. The corner nodes have displacement, 

concentration and hydrostatic stress DOF and the edge nodes only have 

displacement DOF. 

u, CLi and CH, m

u
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Substitution of Eqn. (3-9) into (3-6) leads to 
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  (3-10) 

The nodal force which is work-conjugate to aiu
 
is, therefore, 
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where the stress is given by eqn. (3-7). By the same token, the residual associated with the 

 ,S

aC S Li H   DOF is 
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  (3-12) 

where 
0

0

C C

ab a bV
N N dV    is the consistent capacity matrix. 

Finally, substitution of eq. (3-9) into the constraint condition in Eqs. (3-5) yields the 

requirement  

       
0

0det det / 1 / 0.mSF a

m a mV
a

J K N dV
       F F X   (3-13) 

The residual associated with the a

m  DOF is, therefore,  
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      
0

0det det / 1 / m
a
m

SF

m aV
F t J K N dV




      F F  . (3-14) 

Now, the deformation/diffusion coupling problem had been reduced to a set of nonlinear 

ODEs that must be satisfied for all nodes: 
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    (3-15) 

To proceed, we need to further discretize the time variable. For increment  1,n nt t  , we use 

the unconditionally stable backward Euler integration scheme, i.e., 
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  (3-16) 

where 1 1n n nt t t    is time increment of interval  1,n nt t  . The diffusion fluxes S

KJ , body 

source/sink S

bR
 
and surface influx 

SQ  should be evaluated at the end of  1,n nt t  , as indicated by 

eqn. (3-16). The first two equations in (3-15), on the other hand, can be discretized by simply 

evaluating Eqs. (3-11) and (3-14) at time 1nt  , i.e., 
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  (3-17) 



52 

 

3.3. The Hughes-Winget algorithm and the corrotational frame  

If the constitutive law for stresses were of a total strain vs. total stress form, as in the case of 

elastic and hyperelastic materials, the first equation in (3-15) would be simply a non-linear 

algebraic equation. The third of Eqn. (3-15), of course, is an ordinary differential equation which 

requires further discretization in the time domain; this discretization has been achieved by Eqn. 

(3-16). 

Because the stresses-strain relationship is incremental in this study [cf. Eqs. (2-45) and 

(2-44)], the first equation of (3-15) is an differential equation even when no inertial force (i.e. no 

kinetic energy) is considered: here, a differential operator / t   enters the first equation of (3-15) 

via the rate of deformation D  of Eqs. (2-45) and (2-44). 

Since   0
aiuF t   is a time-dependent ordinary differential equation when Eqn. (2-44) or 

(2-45) is substituted into it, it needs to be further discretized in the time domain. There are two 

challenges in doing this: 

1) To compute D  or its time integration during the increment  1,n nt t   accurately and 

efficiently from the nodal coordinates  a ntx  and  1a nt x . 

2) To compute the spin tensor   / 2T
W = L - L  during the increment  1,n nt t   

accurately and efficiently from the nodal coordinates  a ntx  and  1a nt x , so that 

stress rate   can be computed from the Jaumann objective rate   and  W  by using 

the relationship  

    W W      (3-18) 
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The above two challenges motivate the usage of Hughes-Winget algorithm [105] in our 

mixed finite element framework. This algorithm calculates and integrates the rate of deformation 

D  and the spin tensor W  on appropriate Gaussian integration points by using the following 

approximations: 

1) The time integral of D  during increment  1,n nt t  , denoted by    and evaluated on 

Gaussian integration points, is approximated by the central difference formula as 

 
 

1

/ 2

n

n

t

t
t

dt sym


 
    

    


x
D

x x
  , (3-19) 

where tx  is the Eulerian coordinate of the Gaussian point where   is evaluated. 

Here,  t ntx x  denotes the value at the beginning of the increment  1,n nt t  ;

t t t  x x x  is the increment of  tx  during  1,n nt t  ; and  1t t nt x x  is the 

Eulerian coordinate at the end of the increment. All geometric quantities, namely tx , 

t tx  and thus  , are evaluated on Gaussian points. 

When isoparametric interpolation of Eqn. (3-9) is used, the spatial gradient 

 / / 2t  x x  can be evaluated by 

 
   

 
1

/ 2
,

/ 2 / 2

t

t t



      
   

        

x xg

x x x x g g g
  (3-20) 

where g  denotes the isoparametric element coordinates of the master element. 

2) The integral of W  during increment  1,n nt t  , denoted by W  and evaluated on 

Gaussian integration points, is also approximated by central difference formula as 

 
 

1

/ 2

n

n

t

t
t

dt asym


 
    

    


x
W W

x x
 . (3-21) 
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Again, the spatial gradient  / / 2t  x x  can be evaluated by Eqn. (3-20). 

The increment of rotation R  on the Gaussian integration point is given by 

 

1
1 1

2 2



   
       

   
R I - W I + W   (3-22) 

One advantage of the Hughes-Winget algorithm is the introduction of the so-called 

corrotational coordinate system on Gaussian points via Eqn. (3-22). A corrotational system, by 

definition, rotates together with the local material; therefore the material locomotion has no 

rotational component in the corrotational frame. For a tonsorial quantity a, its time rate  / t a  

observed in the corrotational frame will be equal an objective rate in the global, non-rotating 

frame. Depending how the local rigid body motion is defined and how the corrotational frame is 

attached to the material, the corrotational rate can correspond to the Jaumann rate, the Green-

Naghdi rate, or some other types of objective rate in the global reference frame. Here, the 

rotation given by the Hughes-Winget algorithm [Eqn. (3-22)] defines a frame whose 

corrotational rate approximates the Jaumann rate of Eqn. (3-22). This approximation is widely 

used in many commercial and academic codes, including in the built-in geometric non-linearity 

module of commercial software ABAQUS. 

Practically, the introduction of corrotational frame via the Hughes-Winget algorithm allows 

1) the decomposition of stress increment t t t    , which is measured in the global 

non-rotating frame, into two parts: 

    , , , ,T H Li

t t t t t mC C t            R R        (3-23) 
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the first part being the change of stress tensor due to rigid body rotation of the whole 

material, and the second part ( ) being the corrotational change of  , measured in 

the corrotational frame; and 

2) the computation of corrotational increment   by using the objective constitutive 

equations [i.e. Eqs. (2-44) and (2-45)] and by simply equating the corrotational rate 

and the Jaumann rate. 

To compute the corrotational increment   during increment  1,n nt t  , one needs to 

integrate Eqs. (2-44) and (2-45) which reflect the material non-linearity of the mechanical 

response. This can be achieved by using the return-mapping algorithm, as will be discussed in 

the next section. 

3.4. The return-mapping algorithm for incremental inelastic flow 

In a corrotational frame, material does not undergo rigid body rotation, and the material time 

rate is equal to the objective time rate. This section describes the return-mapping algorithm used 

in our mixed finite element framework for the integration of Eqs. (2-44) and (2-45). The aim is 

to calculate  , namely the change of   during increment  1,n nt t   measured in the 

corrotational frame. Because the discussion in this section is exclusively carried out in 

corrotational frames, we denote   by   for simplicity of notations; this simplification of 

notation is used only here in section 3.4. 

To integrate Eqs. (2-44) and (2-45), one takes  , , ,H Li

mC C    , and possibly t  if the 

response is viscous and time dependent, as input, and solves for the corrotational stress 

increment  . In this study, we consider elasto-plastic model without viscous effect (i.e. no rate 
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effect on stresses), and the task of integrating Eqs. (2-44) and (2-45) reduces to finding the 

following relationship 

  , ,H Li

mC C           , (3-24) 

where ,H LiC C    and m  are inputs provided by the nodal variables via interpolation of 

Eqn. (3-9) and Hughes-Winget algorithm via Eqn. (3-19). During the finite element analysis, the 

calculation specified by Eqn. (3-24) is carried out on each Gaussian points of every element. 

The history-dependency of incremental plastic models requires yet two other inputs to Eqn. 

(3-24): the stress state  t t   and the yield threshold  Y t  at the beginning of the increment 

 1,n nt t  . These two quantities are not given by the nodal variables of Eqn. (3-9). Instead, they 

are state variables associated with integration points where calculation of (3-24) is carried out. It 

should be noted that the plastic models used in this study are perfectly plastic without strain 

hardening, because of the lack of experimental data on the hardening rate. In numerical 

computations, however, perfect plastic models give rise to instability and numerical difficulties 

when an implicit integration scheme is used. We therefore use a very small strain hardening 

slope to mimic perfectly plastic behavior and to stabilize the numerical computation. 

The return-mapping algorithm works by first assuming that the material response in every 

increment   1,n nt t   is elastic, and then by checking the validity of this assumption. If the final 

stress state t t  given by Eqn. (2-44) falls out of the yield surface, one rules out the possibility 

of elastic response and re-calculates t t  by using the plastic equation of (2-45). 
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Specifically, by assuming elastic response, the final stress state t t , measured in the 

corrotational frame, is given by solving t tS  from 

 

   

, ,

/2 /2

2 2 3 3

1 ln 1 ln
.

3 3

m t t m tt t t

t t t t t t

H H Li Li

t t t t t tH Li

t t t t

G G K K

d J d J
C C C C

dC dC

 

 

 

 

   
        

   

 

S S
I

I I



SF SF

+

  (3-25) 

Here, devS   is the deviatoric part of the Cauchy stress  ; K and G are the composition-

dependent bulk and shear modulus. 

The von Mises stress 
t tq 

 associated with t tS  is 

 
3

2
t t t t t tq    S : S  . (3-26) 

If  t t Yq t   , the elastic assumption is correct, and the corrotational stress increment is 

simply  

 
,t t m t t t    S I   , (3-27) 

where t tS  is the solution of Eqn. (3-25); if  t t Yq t  , however, the elastic assumption is 

incorrect and plastic increment should be considered such that [cf. Eqn. (2-45)] 
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    

, ,

/2 /2
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1 ln 1 ln
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m t t m tt t t

t t t t t t
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t t t t t tH Li

t t t t
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   
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 
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S S
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I I
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SF SF

+



  (3-28) 

Here, pl t t t   e S  is the plastic strain increment during  1,n nt t  . By defining the 

effective plastic strain increment 
ple  as 

 
2

3
pl pl ple   e : e  , (3-29) 

the plastic strain 
ple  increment is given by Eqs. (3-26) and (3-29) to be 

 
3

2

t t
pl pl

t t

e
q




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S

e   (3-30) 

In this study, we consider rate-independent plasticity with small but finite strain-hardening 

for numerical stability, such that 

  ,Y Y ple    , (3-31) 

where   is the Li composition in LiH; 
ple  is the total effective plastic integrated from 

 
 1,

0
1

2

3
n n

n
t t t

pl pl pl pl
i

e dt e 



   e :e   (3-32) 
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By using Eqs. (3-30), the deviatoric part of Eqn. (3-28) is 

 
3

2 2 2

t t t t t
pl

t t t t t

e
G G q

 

 

 
    

 

S S S
e  , (3-33) 

where    / 3tr   e I    is the deviatoric part of the total strain increment. Rearrange Eqn. 

(3-33) gives 
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t t

t t t t t

e
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 
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and therefore, 
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3
:
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t t t t
pl

t t t t

q
e

G G G
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

     
          
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S S
e e  . (3-35) 

On the other hand, consistency condition requires  

    , nt t

t t Y t t Y t t pl plq t e e   

      , (3-36) 

where nt t

ple


 is the total effective plastic strain at the beginning of the increment.  

Equations (3-35) and (3-36) are two scalar equations with two unknowns: 
ple  and t tq  . 

These two unknowns can be solved by using the Newton-Raphson method. 

Finally, once 
ple  and t tq   are solved, the deviatoric stress t tS  is given by 
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3.5. Implementation as Abaqus UEL 

The 3D mixed finite element framework is implemented using the UEL interface of 

ABAQUS Standard 6.11. Gaussian quadrature is used to integrate the residuals, with 27 

integration points for  
aiuF  and 8 integration points for S

aC
F  and a

m

F


. Since the well-known 

Newtown iteration method is used by ABAQUS to solve the non-linear equations in (3-16) and 

(3-17), Jacobians of 
aiuF ,  S

aC
F  and a

m

F


 with respect to nodal variables at 1nt   are needed. The 

derivation of these Jacobians is not elaborated here. 
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4. The deformation-diffusion two-way coupling 

We have outlined the theoretical and numerical framework for the deformation-diffusion 

two-way coupled problem in Chapter 2 and 3. This coupling has two aspects: chemical-to-

mechanical (CM) coupling, i.e. the deformation induced by composition change, and the 

mechanical-to-chemical (MC) coupling, i.e. the lithium migration driven by stress gradient. This 

chapter addresses on the numerical results and physical implications, with a focus on the effect 

of mechanical to chemical (MC) coupling on lithium diffusion.  

In section 4.1, we will show that the contribution of mechanical-to-chemical (MC) coupling 

to diffusion driving forces is very significant compared with the contribution of purely chemical 

driving forces and, there, cannot be neglected. In section 4.2, we will discuss the fundamental 

difference in terms of of MC coupling between the linear elastic case and the nonlinear plastic 

case. Zero host diffusivity is assumed in sections 4.1 and 4.2 for simplicity; the effect of small 

but finite host diffusivity is discussed in section 4.3. 

Discussions in this chapter are based on the work published in refs. [43], [44], and [18], with 

a focus on the Li/Si material. 

4.1. The effect of stress-enhanced diffusion 

Questions arise when it comes to the relative importance of the stress-free part Li

SF  and the 

stress-induced shift ( )Li SF

m  in terms of their contributions to the Li flux [cf. Eqn. (2-38)]. It 

has been shown in chapter 3 that, to incorporate ,Li mech

KJ  into the diffusion model, the stress 
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gradient mX  is needed, and considerable effort is required to numerically capture mX  in a 

finite element (FE) framework. If the contribution to flux due to ( )Li SF

m  is much smaller than 

that due to Li

SF , it might be economical and prudent to neglect the stress-induced chemical 

potential shift and, hence, the mechanical-to-chemical coupling altogether.  

In this section, however, we will show that the contribution of mechanical-to-chemical 

coupling (MC) to diffusion driving forces is very significant compared with the contribution of 

purely chemical driving forces and, therefore, cannot be neglected. We will also show that the 

overall effect due to the MC coupling is an enhancement to diffusion, as long as the stress is 

below the yield threshold. The discussion in this section is based on the work published in [43]. 
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4.1.1. Linear perturbation relative to stress-free state 

 

Fig. 4.1 (a) Galvanostatic charging and finite deformation of initially pure Si 

host nanowire; (b) Imaginary stress-free configuration. 

To analyze the large deformation of LiSi during Li insertion, we assume that the host atoms 

(Si) undergo only convection but negligible diffusion when the problem is treated in a 

Lagrangian frame fixed on the host. This is the case for carbon in LiC6, as the carbon atoms form 

a scaffold through which small Li ions diffuse. It is also a reasonable first order approximation 

for LiSi because the diffusivity of Si is much smaller than that of Li. The implication of finite 

host diffusivity will be the topic of section 4.3.  
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As illustrated in Fig. 4.1 (a), the electrode analyzed is a free-standing cylindrical NW made 

of pure a-Si (LiSi with  
0

, 0
t

r t

 ) with initial radius 0 . The mechanical constraint near the 

junction between the NW and the conductive support is neglected because the aspect ratio of the 

NW is assumed to be very large. Under galvanostatic conditions, the Lagrangian surface influx is 

constant, i.e., 

 
0 max

0

1 1

2

Li Si

s rJ C
T

    e J , (4-1) 

where 
max  is the charging limit of LiSi, 0T  is the total time required to attain full charge, and 

re  is the base vector in the radial direction in a cylindrical coordinate frame and is equal to the 

unit surface normal N̂ . The volume average lithium concentration in the NW at time t is 

  max 0/t t T   . 

Lithium flux in the updated Lagrangian frame is determined by Fick’s law [cf. the reference 

configuration counterpart of Eqn. (2-29)] as 

 
Li Li

Li Li

k

B k

D
j c

k x






 


, (4-2) 

where LiD  is the lithium diffusion coefficient of in LiSi, Bk  is the Boltzmann constant and   is 

temperature which is taken to be a constant ( 300 K  ). Assuming small e , the chemical 

potential for lithium [cf. Eqn. (2-38)] can be simplified into 
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 (4-3) 

Here, we have used the linear relation ( ) 1SFJ     which is a good description according to 

findings of Chevrier and Dahn [106]; the expansion coefficient  and the partial atomic volume 

of Li (  Li SF
 ) are related via  

/
Li SF SiC  .  

When the wire radius is at the nanometer scale, bulk stress could be affected by surface 

energy and surface stress [20, 31]. In particular, for an infinitely long wire the contribution of the 

surface stress of surf surf surf

z z z      e e e e  to the bulk stress is: 

 0 2
surf surf surf

z
r r z z

 
 

  

  
      e e e e e e , (4-4) 

where  is the wire radius in the current configuration.  Due to its homogeneous nature, 0  does 

not affect the diffusion flux per Eqs. (4-2) and (4-3).  

We base our analysis on the large deformation theory of chapter 2, but linearize the 

equations by using a perturbation method in order to obtain analytical solutions for short-time 

(low concentrations) and long-term (high concentrations) responses. To this end, a 

homogeneously charged state with   , zero Cauchy stress (   ) and uniform deformation 

gradient 
1/ 3

0 ( )SFJ    F I  is taken as an imaginary Lagrangian state from which perturbations 

are made [cf. Fig. 4.1 (b)]. The underlying assumption is that the   field in the NW deviates 

slightly from the averaged, homogeneous, and stress-free state. If the variation of concentration 
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      is small across the NW, the relative deformation gradient  1

R 0

 F F F  between the 

imaginary configuration represented by 0F  and the true current configuration whose deformation 

gradient is F  should be small. Therefore, F  is regarded as a perturbation around 0F  due to  . 

All field quantities can be conveniently referred to 0F  as a first order approximation to their 

updated Lagrangian representations relative to the true current configuration. The finite 

deformation constitutive relation of Eqn. (2-36) can be linearized as 

  
 

1

3
tr

E E J

  





   I I  

SF
,  (4-5) 

where  T

R R / 2  F F I  is the Lagrangian strain relative to the uniformly expanded, stress-free 

configuration,  E E   is the concentration-dependent Young’s modulus and      is the 

Poisson’s ratio. In fact, given  ,r t     , the stress profiles follow the classical solution in 

thermo-elasticity [107], i.e., 
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where /r r   is the dimensionless spatial coordinate;    
1/3

0t J     
 

SF  can be 

approximated by the radius of the nanowire in the uniformly expanded configuration 0F . The 

surface stress effect is included in Eq. (4-6). 

The cylindrical symmetry of the NW dictates that Li Li

r rj ej . Equations (2-3), (4-2), (4-3) 

and (4-6) combine to give 

 
   

1 1

Li Li

Li Li Li

r stress stressj D D
r r

  
 

 

     
        

      
   

, (4-7) 

where   /Li SF Li Li Si

r rj J j D C   is the dimensionless flux in the updated Lagrangian 

configuration, 
   

21 2 1 1

9 1

Li

stress Si

B

E
D

k CJ



  


 SF
 is the dimensionless effective diffusivity 

accounting for the contribution of stress to diffusion, and  Li   is the stress-free 

thermodynamic factor [cf. Eqn. (2-41)]. Li  can be determined by the open-circuit potential 

(OCP) OCPU  of a stress-free Li/Si anode vs. lithium metal through 

    / 1 / ,Li OCP

Be k dU d         (4-8) 

where e  is the charge of a single electron. The approximation in Eq. (4-7) is due to the fact that 

      is assumed to be small. The accuracy of this approximation is confirmed by separate 

numerical calculations. 
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Conservation of mass [Eqn. (2-4)] requires that    / 1/ /Li Li

rc t r r j r      . Therefore, 

 
2

1
Li

effD
r

t r r r

 



   
  

   
, for 1r  ,  (4-9) 

where  
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2

/ 1

2

1 9 1 det

Li Li Li Li

eff stress

Li SF
Li Li Si

Li

SF
B

D D D

ED C
D

k

  



  

    
 


 

  F

 (4-10) 

is the effective diffusivity. The boundary condition implied in (2-3) and (4-1) is 

 
2

max

0

1

2

Li

r Li
j

D T

 
  , at 1r  . (4-11) 

The transient solution to Eq. (4-9) under the condition of Eq. (4-11) is 

 
 
 

 
2

0

0
1 0

2 nn

s

n n

J r
e j d

J


 

     







 
     

 
  ,  (4-12) 

where   2

0
/

t
Li

efft D dt      and 
2

max 0/ 2 Li

s effj D T  .  0J r  is zeroth-order Bessel function of 

the first kind; n  is the n
th

 root of the first-order Bessel function, i.e.  1 0nJ   . Due to the 

exponential terms of  2exp n  , the transient solution would asymptotically approach its long-

term behavior when 0t t , where 2 2

0 0 1/ Lit D   is the characteristic time for diffusion in the 
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NW. To be specific, it is expected that 
max 0/ / /t t T        , which leads to the long-term 

solution of 

 
2

2max
max

0 0

1 1

4 2Li

eff

t
r

T D T

 
 

 
   

 
.  (4-13) 

4.1.2. Results and discussions 

Fig. 4.2 shows the short-term concentration and stress profiles for a LiSi NW with an initial 

diameter of 100 nm at a charging rate of 1C (full charge to max  in 1 hour). Relevant material 

parameters are max 4.4   [7], SiC  49.3 atoms/nm
3 

(pure amorphous Si with mass density 
Si

=2.30 g/cm
3
) [108], 0.707  (from max 3.11   [12]), and 1210LiD   cm

2
s

-1
 [109]. The 

concentration-dependent elastic properties are   (18.90 90.13) /(1 ) GPaE E        and 

  (0.24 0.28) / (1 )        [77]. 1Li   is assumed for the dilute regime. To the best of 

the authors’ knowledge, accurate surface stress data for LiSi is not currently available. An 

estimate through surface energy   based on Kelly’s approximation suggests that 

0 /10surf surf

z Ea    [31, 110], with a0 being the equilibrium separation between two 

atomic planes. A typical value of   is around 1 J/m
2
, which leads to 0 0

0

20r 


 


     MPa 

and 0

0

2
40z





    MPa for 0 50   nm. Since the stress contribution due to surfaces 0  is 

compressive, the surface effect reduces tensile stresses during cycling. As pointed out by Cheng 

et al. [32], this reduction in tensile stress may be partly responsible for the enhanced resistance to 
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fracture and decrepitation of nanosized electrodes. To avoid the uncertainty associated with the 

value for   and focus on the SED mechanism, only DIS due to concentration inhomogeneity 

0DIS      instead of the total stress   is plotted here. Since 0  is homogeneous throughout 

the wire [cf. Eq. (4-4)], the total stress   can be readily obtained by shifting the DIS  curves. 

What is important here is to realize that 0  has no bearing on diffusion. 

 

Fig. 4.2 Short-term response of a LiSi NW during the initial stages of a 

galvanostatic charge, (a) evolution of concentration distribution – the short-

term solution (solid lines) quickly approaches the long-term solution (dotted 

line) by 02t ,  (b)-(d) 0DIS      profiles. The NW diameter is 100 nm and 

the charging rate is 1C. 
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The first observation from Fig. 4.2(a) is that the variation in   across the NW cross 

section is indeed small (
35 10   ), validating the assumption made at the beginning. The 

smallness of   is also confirmed by the mixed-form full-coupling FEM simulation. The short-

term profiles for   approach quickly the long-term profile [Eq. (4-13)] after 02t , where 

2 2

0 0 1/ 1.7 sLit D    is the characteristic time for diffusion for the wire at hand. Initially, 

      increases with time, but starts to decrease as the stress effect kicks in via Li

stressD  in 

Li

effD . Since Li

stressD  is always positive, the stress effect always increases the effective diffusivity 

Li

effD  and thus enhances diffusion. The enhancement becomes more significant as   increases. 

The result is that the stresses first increase and then decrease as   builds up and then decreases. 

As illustrated in Fig. 4.2(b-d), the stresses are lower at 06t  than at 02t . 

Fig. 4.3 shows the evolution of stresses at the NW surface and center, where the stress levels 

of DIS  are at their corresponding extreme values. Since 
2

0

1
0

r

r dr
r

   at 1r   (surface) and 

20
0

1
lim / 2

r

r
r dr

r
 


    (center), Eq. (4-6) simplifies into 
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After a quick initial increase, DIS at the surface levels off and reaches a maximum at 02t t  

as illustrated in Fig. 4.3(a). The evolution of DIS at the NW center lags due to the time needed 

for concentration to propagate from surface to center. The subsequent decrease of the stresses at 

both the surface and center (and throughout the NW) after the full development of   is due to 

the effect of SED through the term Li

stressD  in 
Li

effD . A close look at Eqns. (4-6), (4-12) and (4-14) 

also reveals that the maximum DIS at the center and surface approximately scale with 2

0 0/ LiD T . 

 

Fig. 4.3 (a) and (b): Stress evolution at the NW surface and center. (c): 

      at the NW surface and center. 0t  is the characteristic time for 

diffusion in the NW. The NW diameter is 100 nm and the charging rate is 1C. 
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Fig. 4.4 shows the long-term concentration and stress profiles for the same LiSi NW under 

the same charging rate as in Fig. 4.3 at a state of charge (SOC) of max/ 0.5   . Ding’s 

experiments [109] suggest that / 0.1eVOCPdU d    at max0.5 2.2   , leading to 

  27.2Li   . Again, the variation of   across the NW cross section is small, validating the 

assumption made at the beginning. To reveal the significance of SED at this intermediate SOC, 

both solutions with and without Li

stressD  in    / 1Li Li Li Li

eff stressD D D       
 are shown. 

Obviously, the SED effect significantly enhances the diffusion process, making    much more 

uniform. This effect amounts to an increase of  / / 1Li Li

stressD     
303% in the effective 

diffusivity of lithium. The long-term DIS profiles in Fig. 4.4(b) offer insight as well. The radial 

stress DIS

r  is tensile throughout the wire. On the other hand, the axial stress DIS

z  and the hoop 

stress DIS

  are tensile in the core and compressive near the surface. The hydrostatic part of DIS  

is only ~2 MPa in a thin wire with d = 100 nm under a moderate charging rate of 1C. 

Nevertheless, such a low DIS level contributes significantly to the overall driving force for 

diffusion as seen in Fig. 4.4(a).  
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Fig. 4.4 Long-term solution for a LiSi NW when charged to a SOC of 

max0.5 2.2   , (a) concentration and (b) stress. The NW diameter is 100 

nm and the charging rate is 1C. 

Equations (4-13) and (4-6) show that the long-term DIS 
2

0/DIS Li

effD T    . Thus, the 

long-term stresses also increase quadratically with the wire radius and are inversely related to the 

charging rate and the diffusivity. These scaling relations are consistent with previous findings of 

Christenensen et al. [88] for LiC6 and Zhang et al. [99] for LiMn2O4. What is different here is the 

strong modulation of the effective diffusivity by Li

stressD  in the case of LiSi. Zhang et al. 

discussed the effect of SED of Li in Mn2O4 crystalline cathodes and showed that the difference 

in concentration inhomogeneity    max        with and without the SED effect is ~13% 

[99]; for LiC6 the difference is ~20% [88]. Here, however, the difference is 303%. The 

enhancement due to stress in LiSi is much more pronounced for two reasons. First, the partial 

atomic volume 
 Li SF

  of lithium in LiSi is 14.3 Å
3
, much larger than the partial atomic volume 

of Li in Mn2O4 (  
5.8

Li SF
  Å

3
 per Li [99]). The lower amount of open space in the alloy 

electrodes compared with that in intercalation lattices gives rise to the stronger SED effect seen 



75 

 

in Fig. 4.4. Second, LiSi can be charged to a much higher Li concentration limit than cathode 

lattices and the contribution of stress to effective diffusivity ( Li

stressD ) is proportional to the 

average concentration  .  

It should be noted that the change of LiD  with stress is not considered in this study. 

Haftbaradaran et al. [19] considered the activation barrier shift bE  for diffusion due to DIS and 

showed that the stress effect could slow down diffusion through  0 exp /Li Li

b BD D E k   . 

While stress-induced activation barrier change bE  is more important under very high stresses, 

stress development and diffusion mainly couple through the chemical potential for moderate 

stresses [111] which is the regime we consider in this section. There might be a transition 

threshold below which stress enhances diffusion and above which stress hinders diffusion. 

Following Haftbaradaran et al. [19], we take 0.3   for b bE       where b  is the bi-axial 

surface stress. This leads to  / 1b BE k    only when b  reaches as high as 1 GPa, otherwise, 

the factor  exp /b BE k   is negligible. Therefore, if a transition threshold exists, it must be 

very high, even higher than the yield stress for onset of plasticity [15]. 

The levels of DIS  at the lower concentrations in Fig. 4.2 and Fig. 4.3 are as much as ~100 

times those at the higher concentrations in Fig. 4.4. To understand this significant change in 

stress levels, note that    / 1 8.5Li      and 25.8Li

stressD   at 0 / 2t T  ( 2.2  ) and 

   / 1 1Li      and 0.14Li

stressD   at 02t t  (
32.1 10   ) for LiSi. Also contributing to 

this is the fact that the material is softer (as measured by the elastic modulus) at higher lithium 

concentrations [77]. The thermodynamic factor enhancement, SED and the softening of material 
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lead to lower stress levels at higher Li concentrations. In this process, the SED effect is the 

dominant factor and the most important. It should be noted that experimentally measured 

 OCPU   curves for LiSi are associated with significant hysteresis [70] which makes accurate 

estimates of the quasi-equilibrium value of /OCPdU d  difficult. This lack of accuracy in 

determining the value of /OCPdU d  should not be construed as to obscure the importance of 

SED in the intermediate composition range. For example, even if / 0.15 eVOCPdU d  , 

   / 1 12.8Li      and  / / 1Li Li

stressD     
202%, a scenario in which SED still 

dominates.  

If the NW radius is large or charging rate is high, the total stress 0DIS      could be high 

enough to cause material failure. The fact that the peak DIS levels scale with 2

0 0/ LiD T  and the 

initial DIS levels are much higher than the long-term values suggests that lower charging rates 

should be used to prime a new Si anode or a Si anode after deep discharge in order to avoid 

mechanical failure during initial charging. The results obtained here also indicate that deep 

discharging would reduce the cyclability of LiSi anodes because of the higher DIS at low 

concentrations. The adverse effect is more pronounced if fast recharge is carried out 

subsequently.  

4.1.3. Conclusions 

In this section, we analyzed the development of DIS in amorphous LiSi alloy NW-based 

electrodes by using the finite deformation framework of chapter 2, and by accounting for full 

two-way diffusion-stress development coupling. Analytical solutions for concentration and 
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stresses are obtained via linearization through a perturbation method. Significant contribution to 

diffusion by stress at high Li concentrations is shown for LiSi electrodes. The contribution of 

stress to diffusion is small when Li concentration is low in early stages of a charging process, 

leading to high DIS levels. A rational charging regimen for Li ion batteries with new amorphous 

Si anodes should include priming with a charging rate significantly lower than the regular 

operational charging rate. The analysis also suggests that deep discharging should be avoided, 

especially when fast recharges are needed subsequently. The long-term DIS levels scale with 

nanowire radius, charging rate, and stress-modulated Li mobility in Si, reflecting the strong two-

way coupling between diffusion and stress development, in contrast to what is the case for most 

intercalation electrodes. The scaling law suggests that designs that take advantage of the size 

effect, controlling of charging rate and enhancement of diffusion through alloying are all 

effective means for enhancing the reliability of LiSi anodes. 

The fact that the mechanical-to-chemical coupling, or the effect of SED, is much more 

pronounced in Li/Si than that in other intercalation materials is attributed to two reasons [43]. 

First, the partial atomic volume  Li SF
  in Li/Si is much larger than those in LiMn2O4 and LiC6 -- 

according to Eqn. (4-10) the MC contribution to the effective diffusivity (second term) is 

proportional to the square of  Li SF
 . Second, Li/Si can be charged to a much higher Li 

concentration limit than cathode lattices or carbon -- and the MC contribution to 
Li

effD  is 

proportional to the average Li concentration 
Li SiC C . Therefore, the mechanical-to-chemical 

coupling in Li/Si has significant implications and cannot be neglected.  
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4.2. The effect of plasticity on two-way coupling 

The analysis in section 4.1, along with the conclusion of strong stress-enhanced diffusion 

(SED), is based on the assumption that the deformation is elastic. Under this assumption, LiC  

and m  point to the same direction in a nanowire during lithiation and delithiation, and the 

effect of m  is an enhancement to the diffusive kinetics.  

According to section 2.1.3, however, Li/Si is also capable of deforming plastically. As we 

will show in this section, the overall effect of MC (mechanical-to-chemical) coupling during 

plastic deformation is fundamentally different from that described in section 4.1.  

To demonstrate this difference, we investigate the effect of external constraints on Li 

diffusion using the fully coupled, finite deformation framework of chapter 2. It is found that thin-

film electrodes on rigid substrates suffer from much slower diffusion rates compared with free-

standing films (or nano-flakes in some applications) with the same material properties and 

geometric dimensions. Of particular interest is the surprising finding that mechanical driving 

forces tend to retard diffusion in thin-film electrodes when lithiation-induced softening is 

considered. This is in sharp contrast to the fact that mechanical stresses always enhance diffusion 

when the deformation is in the elastic regime. The result provides further support for nano-

particles as a better alternative to thin films as alloy-based electrode material. The discussion in 

this section is based on the work published in [44]. 
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4.2.1. Model configurations and simplifying assumptions 

We use the rate-form, large-deformation, mixed finite element framework (chapter 3) to 

analyze the two-way coupling between diffusion and stress development (chapter 2). The issues 

of focus are  

1) how does the mechanical-to-chemical (MC) coupling affect the transport of Li under 

different mechanical constraints and  

2) as an important figure of merit for batteries, how significantly does this difference 

affect the operational charging rate? 

 

Fig. 4.5 The two configurations used to analyze how mechanical constraints 

affect Li transport. (a) Thin film with thickness H perfectly bonded to a rigid 

substrate. A galvanostatic influx is prescribed on the top surface. (b) a thin 

film which is constrained only in the z-direction at the bottom (due to 

symmetry) with the same galvanostatic influx at the top face (left). This 

configuration is equivalent to a film with a thickness of 2H under symmetric 

influxes from both faces (right). The coordinate in the current configuration is 

denoted as z and the coordinate in the Lagrangian configuration is denoted as 

Z. 
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To this end, we consider two simple electrode configurations with essentially the same 

material properties and geometric setup, but different mechanical constraints. The first 

configuration [Fig. 4.5 (a)] involves a thin film of LiSi (host H=Si) with thickness H perfectly 

bonded to a substrate which has a stiffness much higher than that of the film and, therefore, can 

be treated as rigid. A constant influx of Li is specified at the top surface so that the electrode is 

charged under galvanostatic conditions. This surface influx is measured in the reference 

configuration as 

   max

0

Si
Li Li

Surf Z

H C
J J Z H

T


    , (4-15) 

where T0 is the nominal time for achieving full charge. Here, we take 0 4T   hours (1/4 C 

charging). 

The second configuration [Fig. 4.5 (b)] has the same thickness and influx, but the bottom 

surface is only constrained in the z-direction and is free to move in the other directions. This is 

equivalent to a film with a thickness of 2H and the same influx on both faces. Understandably, 

the two configurations will develop very different stresses due to the different constraints. Our 

goal is to analyze how  ,LiC Z t  is distributed ( Z  denotes the Lagrangian coordinate) with two-

way deformation-diffusion coupling under different mechanical constraints. 

The material behavior is assumed to follow the constitutive laws delineated in chapter 2.  To 

simplify the problem,  Li Li

SF SF    is not fitted from experimental OCP data (as we have done 

in section 4.1); instead, we adopt the ideal-solution form of Li

SF  originally proposed by Larche 
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and Cahn [97] and subsequently used by Purkayastha and McMeeking [96] and Yang et al. [98] 

in the form of 

 
*

max

lnLi Li

SF k


  
 

 


, (4-16) 

where 
max  is the maximum charging limit of the electrode material and the constant 

*

Li  is a 

reference chemical potential. The composition-dependent diffusivity  Li LiD D  , on the other 

hand, is taken to be [96, 98] 

    0 max 0 max1 / 1 /Li Li Li Li LiD D D C C     . (4-17) 

Combining Eqs. (2-40), (4-16), and (4-17) leads to the lithium flux of 
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 (4-18) 

In the above relations, ,Li chem

KJ  and ,Li mech

KJ  are contributions due to chemical interaction and 

mechanical driving force, respectively. According to Purkayastha and McMeeking [96], the main 

advantage of Eqs. (4-16) and (4-17) is that it correctly captures the fact that the stress-gradient-

driven diffusion flux ,Li mech

KJ  [cf. eqn. (4-18)] vanishes at the charging limits of  0   and 

max  .  
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The material properties used in this section are  Li SF
 14.3 Å

3

 [12, 43], 12

0 10LiD   cm
2
s

-1
, 

max 3.75   and 
0

Si SiC C
 
= 49.3 atoms/nm

3
. The temperature is taken to be 300 K. A calculation 

is first carried out with a composition-independent Young’s modulus value of 80E  GPa, 

Poisson’s ratio value of 0.22  and yield stress value of 1.75Y   GPa. The corresponding 

bulk modulus K and shear modulus G are 47.62 GPa and 32.79 GPa, respectively. This 

calculation is used as the baseline case to study the effect of lithiation-induced softening on Li 

diffusion. The second calculation involves composition-dependent bulk modulus 

(12.46 65.44) / (1 )K     GPa, shear modulus of (7.63 35.51) / (1 )G      GPa [77], and 

yield stress of    1.75 0.167 / 1Y      GPa, allowing comparison with the baseline case to 

be made. The variation of yield stress with concentration represents a simple interpolation 

between 1.75Y   GPa at 0   and 0.5Y   GPa at 
max   [15, 56] using the rule of mixture. 

4.2.2. Stress-enhanced diffusion during elastic deformation (configuration b) 

Fig. 4.6 shows the profiles of normalized lithium concentration   and the stresses in a film 

with a thickness of H=500 nm and constraint only in the z-direction at the bottom [configuration 

Fig. 4.5 (b)]. When ,Li mech

KJ  is neglected, the concentration builds up in the early stages of 

charging [Fig. 4.6 (a)], accompanied by increases in the in-plane stresses [Fig. 4.6 (c)]. As 

stresses increase, the surface and center of the film reach the yield threshold and begin to flow 

plastically, leading to plateaus in the stress profiles at 0 00.0125 ~ 0.1t T T . The time scale for 

this transient buildup of concentration is 2 2

0/ 4 6 10Li LiH D  s. Beyond Li , the long-term 

profile of   continues to evolve, albeit slowly; however this evolution is no longer due to 
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transient effects. In Fig. 4.6 (d), the concentration profiles that account for the effects of ,Li mech

KJ  

show similar behavior in early stages as those Fig. 4.6 (a), but reflect more uniform distribution 

of Li as time progresses. Also, the stress levels are much lower [Fig. 4.6 (f)] compared with the 

case without the effect of ,Li mech

KJ  [Fig. 4.6 (c)]. In fact, the reduction in stresses is so significant 

that the yield threshold is never reached in Fig. 4.6 (f), as a result the deformation is fully within 

the elastic regime throughout the charging process. A simple analysis shows that when ,Li mech

KJ  is 

considered, the diffusion is no-longer governed by 
0

LiD  itself. Instead, Li

ZJ  is governed by an 

effective diffusivity ,Li effD  such that (cf. section 4.1.1) 

 

   
 

,

, ,

0

2
( )

max,

0

, with

and

1 / 2
.

9 1

Li
Li Li eff

Z Ki Ji

Li eff Li Li mech

Li Li Li G SF

Li mech Li

SF

B

C
J D f f

Z

D D D

C C C E
D D

k J 


  




  


  
  

 (4-19) 

The form of Eqn. (4-19) is slightly different from Eqn. (4-10) mainly because of the 

different assumptions on  Li LiD D   and  Li Li

SF SF    made here and made in section 4.1. 

Eqn. (4-19) is valid as long as the deformation is fully elastic. Here, the second term (i.e. ,Li mechD ) 

in the expression of ,Li effD   is always positive. It is due to the mechanical driving force for 

diffusion and is ~20 times larger than 
0

LiD  at 
max/ 0.5   . This effect leads to much faster 

lithium transport due to the fact that stresses always try to “squeeze” Li from compressed regions 

into tensile regions, hence the name stress-enhanced diffusion (SED). It should be noted that 

classical theories of diffusion suggest an asymptotic shape of concentration profile which 
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remains unchanged once Lit  . Here, however, the long-term shapes of the concentration and 

stress profiles continue to evolve even for Lit  . Two mechanisms are responsible. The first is 

associated with the fact that  , ,Li eff Li eff LiD D C  is concentration-dependent [cf. eqn. (4-19)]. 

Since  ,

max1 /Li mech Li Li LiD C C C  ,  SED is less pronounced when   is close 0 or 
max . 

Therefore the concentration profiles are steeper at the end of charging process ( 00.952t T ) than 

at 00.1t T  in Fig. 4.6 (e). By the same token, the stresses are also higher at the end than at 

00.1t T . This first mechanism is relevant only for the situation when ,Li mech

KJ  is considered. The 

second mechanism, which is relevant with or without ,Li mech

KJ , is associated with the geometric 

non-linearity under finite deformations [Eqn. (4-27)]. This mechanism will be discussed later. 

 

Fig. 4.6 Normalized Li concentration (a,b,d,e) and stress (c,f) profiles in a film 

with a thickness of H=500 nm and constraint only in the z-direction at the 

bottom [configuration in Fig. 4.5 (b)].  (a-c) normalized concentration and 
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stress profiles when the mechanical driving force for diffusion is not 

considered. (d-f) normalized concentration and stress profiles when the 

mechanical driving force for diffusion is considered. For clarity, (a) and (d) 

show, with a finer vertical axis scale, the three early-stage profiles in (b) and 

(e), respectively. 

When ,Li mech

KJ  is neglected, the Li concentration reaches its fully-charged limit of 
max  on 

the surface at 00.864t T , rendering further galvanostatic charging practically impossible. In 

experiments, the charging condition is usually switched to potential-static at this point so that 

max   is maintained on the surface while   in the interior further increases. This charging 

regimen is not considered in the simulations here. Instead, the simulations are stopped once the 

surface concentration   reaches 
max  and the average Li concentration 

end  in the electrode at 

that point is used for comparison. This average value is directly related to the actual change time 

endt  via   max 0/end endt T  . Since the actual charging time endt   is always smaller than the 

nominal charging time 0T , 
end  is always smaller than 

max . Obviously,  
end  depends on the 

charging rate which is controlled by 
Li

SurfJ . Higher charging rates lead to lower 
end . To achieve 

the same 
end  through slower Li transport, lower operational charging rate must be used. 

Calculations show that, for the material conditions analyzed under the nominal changing rate of 

0 4T   h, 
max0.952end  when ,Li mech

KJ  is considered and, in contrast, 
max0.864end   when 

,Li mech

KJ  is neglected. Clearly, the SED effect (stress contribution to diffusion) not only lowers 

stresses but also increases allowable operational charging rate through enhanced Li transport 

(and, therefore, more uniform Li distribution). This effect will be further analyzed later in the 

context of different mechanical constraints. 
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Fig. 4.7 Lagrangian lithium flux normalized by surface influx with (a) 

mechanical driving force not considered and (b) mechanical driving force 

considered. Z denotes Lagrangian coordinate. The film is constrained only in 

the z-direction at the bottom and lithiation-induced softening is not considered. 

A look at the distribution of lithium fluxes also provides insights. Fig. 4.7 shows the 

Lagrangian lithium fluxes as normalized by the surface influx [Eq. (4-15)]. Only Li

ZJ   is plotted 

because 0Li Li

X YJ J   due to symmetry. For both the situations with and without the effect of 

,Li mech
J , 

Li Li

Z SurfJ J   at the surface (Z=500 nm) and 0Li

ZJ   at the center (Z=0 nm). Since the 

problem is 1-D here, the conservation of mass [Eqn. (2-4)] requires 

    
0 0

0 .

Z ZLi
Li Li Si

Z Z

C
J Z J Z dZ C dZ

t t

 
    

    (4-20) 

The normalized concentration /Li SiC C   can be decomposed into two parts: the average 

Li-concentration part 
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and the inhomogeneity part 

 .      (4-22) 

By Eqs. (4-21), (4-20) and (4-15), 

 
max

0

t

T
  . (4-23) 

Therefore, Eqs. (4-20)-(4-23) require 

  
0

.

Z

Li Li Si

Z Surf

Z
J Z J C dZ

H t


  


 (4-24) 

Since    
0

0 0

/ / 0

H

t dZ t dZ        , Eqn. (4-24) has a Taylor-expansion in the form 

of  

    ( )

1

, 1

n

Li Li Li n

Z Surf Z

n

Z Z Z
J Z t J J t

H H H





 
    

 
  (4-25) 

where the coefficients  ( )Li n

ZJ t  are directly related to the time rate / t   of the concentration 

inhomogeneity.  

For the case in which ,Li mech
J  is not considered [Fig. 4.7 (a)], / 0t    once the transient 

build-up of   has completed ( Lit  ). Consequently,  ( ) 0Li n

ZJ t   except for the initial transient 
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stages, explaining why the  Li

ZJ Z  profiles in Fig. 4.7 (a) are linear for 00.1t T  and 00.864T . 

For the case in which ,Li mech
J  is considered, the effective diffusivity ,Li effD  [eqn. (4-19)] changes 

slowly even after the initial transient development finishes. This long-term modulation of ,Li effD  

leads to non-zero / t   and hence non-zero  ( )Li n

ZJ t . As a result, the  Li

ZJ Z  profiles at 

00.1t T  and 00.952t T  deviate from the  /Li Li

Z SurfJ Z H J   line, as seen in Fig. 4.7(b). Such 

a deviation is nevertheless fairly small and a first-order approximation of 

 Li Li

Z Surf

Z
J J

H
   (4-26) 

can lead to some interesting observations. Specifically, when the thin film is constrained only in 

the z-direction [Fig. 4.5(b)], the deformation gradient is approximately (in the elastic regime 

p F I ) 

  
1/3

1 0 0

0 1 0 .

0 0 1

p SF SFJ

 
 

   
 
 

F F F  (4-27) 

Under this deformation, the concentration gradient / Z   can be determined from Eqs. 

(4-18), (4-19) and (4-26) to be 

 
 

2/3

,
.

SFLi
Si Li

SurfLi eff

JC Z
C J

Z Z D H

 
 

 
 (4-28) 

By the same token, / Z   without the effect of ,Li mech
J  is governed by 
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 
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0

SFLi
Si Li

SurfLi

JC Z
C J

Z Z D H

 
 

 
. (4-29) 

Equations (4-28) and (4-29) show that the shapes of the long-term   profiles are 

approximately quadratic as long as the transient build-up stages have finished, regardless of 

whether ,Li mech
J  is considered or not. Moreover, when ,Li mech

J  is not accounted for, the diffusion 

is controlled by a constant diffusivity 
0

LiD .  Because SFJ  is larger at higher  , the concentration 

inhomogeneity     increases with t according to Eqn. (4-29). This is why the Li concentration 

profile is steeper at 00.863t T  than at 00.1t T  in Fig. 4.6(b). Such a long-term evolution of   

profile [Fig. 4.6(b)] is fundamentally different from that seen in Fig. 4.6(e): although the 

geometric effect is also present in Fig. 4.6(e), the evolution of    profile in Fig. 4.6(e) is instead 

mainly due to the slow change of ,Li effD . 

The finite dimensional change [Eqn. (4-27)] is also responsible for the observation that the 

stresses at 00.864t T  are lower than those at 00.1T  in Fig. 4.6(c). The analysis in section 4.1 

showed that, under fully elastic conditions, stresses scale with the current dimensions according 

to  

 / .SFJ   (4-30) 

On the other hand, eqn.  (4-29) indicates that  
2/3

0/SF LiJ D  . Therefore,  

  
1/3

0/SF LiJ D


  (4-31)  



90 

 

When ,Li mech
J  is not considered, the diffusivity 

0

LiD  is constant and Eqn. (4-31) indicates that 

stresses are lower when SFJ  is higher. This explains why the stresses at  00.864t T  are lower 

than those at 00.1T , as seen in Fig. 4.6(c). This geometric effect on long-term stresses is so 

significant that the plastic regions in Fig. 4.6(c) are unloaded back to the elastic regime as 

charging proceeds and the associated residue plastic strain leads to the positive slopes of 

xx yy   at the center and surface at 00.864t T .  

It should be noted that the approximation embodied in Eqn. (4-27) is, strictly speaking, valid 

only when the deformation is elastic throughout the charging history, while the deformation in 

Fig. 4.6(c) does involve plasticity. Nevertheless, the above analysis qualitatively explains the 

long-term evolution of concentration and stress profiles in Fig. 4.6(c) because most of the 

charging history is in the elastic regime. It will be shown later that when the material undergoes 

full-scale yielding, Eqn. (4-27) must be revised, and the associated finite deformation would 

result in very different concentration profiles, with or without ,Li mech
J . 
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4.2.3. Neutralization of SED due to plastic flow (configuration a) 

 

Fig. 4.8 Normalized Li concentration (a,b,d,e) and stress (c,f) profiles in a film 

with a thickness of H=500 nm and fully constrained at the bottom 

[configuration in Fig. 4.5(a)]. Here, lithiation-induced softening is not 

considered. (a-c) normalized concentration and stress profiles without 

mechanical driving force for diffusion. (d-f) normalized concentration and 

stress profiles with mechanical driving force for diffusion. For clarity, (a) and 

(d) show, with a finer vertical axis scale, the three early-stage profiles in (b) 

and (e), respectively. 

The diffusion characteristics are drastically different when the thin film is fully constrained 

at the bottom, as shown in Fig. 4.8. First and foremost, due to the strong mechanical constraint, 

the film quickly reaches full-scale yielding regardless of if two-way coupling is accounted for 

[see Fig. 4.8 (c) and (f)]. More importantly, diffusive transport is much slower compared with 

that seen in Fig. 4.6. Specifically,  
max0.568end   without ,Li mech

KJ  and 
max0.590end   with 

,Li mech

KJ . This occurs because of two reasons. First, when the material undergoes full-scale 
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yielding, stress gradient essentially vanishes (specifically, 0m  ). Since ,Li mech

m J , the 

absence of stress gradient removes the SED effect. Indeed, the fact that 
end  is approximately the 

same with and without ,Li mech

KJ  is a direct result of the loss of SED. A look at Fig. 4.8(d) reveals 

sudden changes in the slope of   profiles at the boundary between the elastic and plastic zones. 

The steeper slope in the plastic zone (surface side) indicates that the effective diffusivity in the 

yielded region is much lower than that in the elastic region. As the charging proceeds, the 

boundary between the two zones moves from the surface towards the interior. Once the boundary 

reaches the bottom, the whole electrode is plastic with low effective diffusivity. The second 

reason for the slower Li transport is different finite dimensional change. When the film is fully 

constrained by the substrate, deformation occurs only in the z-direction (normal to the film 

plane), and the deformation gradient is approximately 

 

1 0 0

0 1 0 .

0 0

p SF

SFJ

 
 

   
 
 

F F F  (4-32) 

On one hand, this deformation gradient is very different from that for the configuration in 

Fig. 4.5(b) [cf. eqn. (4-27)]. On the other hand, the arguments on Li

ZJ  drawn by Eqs. (4-20)-(4-25) 

are still valid. Indeed, Fig. 4.9 (a) and (b) show similar  Li

ZJ  profiles as those in Fig. 4.7, at least 

to a first order of approximation. Although sharp kinks in Li

ZJ  are seen in Fig. 4.9(b) for 

0 / 80t T  and 0 / 40t T , the long-term profiles of  Li

ZJ  are fairly close to the 1
st
 order 
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approximation of Li Li

Z Surf

Z
J J

H
  . For reasons similar to those in Eqs. (4-27)-(4-29), the long-

term Li concentration profiles are now governed by 

 
 

2

0

SFLi
Si Li

SurfLi

JC Z
C J

Z Z D H

 
 

 
. (4-33) 

Here, because SED is lost when the film is under full scale yielding (i.e. ,

0

Li eff LiD D ), Eqn. 

(4-33) is valid for both the situations with and without ,Li mech
J . A comparison of Eqs. (4-33) and 

(4-29) indicates that the long-term   for Fig. 4.8 (b) and (e) should be  
4/3

~ SFJ  times larger 

than   in Fig. 4.6(b). Simply speaking, because the current-configuration film thickness in the 

fully-constrained case is  
2/3

SFJ  times larger than that in the partially-constrained case, Li must 

now traverse a longer distance, giving another reason for why the diffusion is less efficient and 

end  is smaller in Fig. 4.8(b) and (e) than in Fig. 4.6(b). As discussed previously, the lower 
end  

in Fig. 4.8(b) and (e) compared to the 
end  in Fig. 4.6(b) indicates that fully-constrained thin-film 

electrodes must be charged with a lower operational rate than their partially-constrained 

counterparts, if the same final state of charge 
end  is required. 
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Fig. 4.9 Lagrangian lithium flux normalized by the surface influx when (a) 

mechanical driving force is not considered; (b) mechanical driving force is 

considered. Z denotes Lagrangian coordinate. The film is fully constrained at 

the bottom and lithiation-induced softening is not considered. 

4.2.4. Stress-retarded diffusion due to lithiation-induced softening (configuration a) 

It is important to note that diffusion in the fully-constrained film is slowed further when 

lithiation-induced softening is accounted for. To illustrate this effect, we first note that when 

,Li mech

KJ  is not considered [Fig. 4.10(a-b)], the concentration profiles are essentially the same as 

those in Fig. 4.8(a-b), although the stresses [Fig. 4.10(c)] are significantly different from those in 

Fig. 4.8(c). When the film undergoes full-scale yielding, the deformation gradients with and 

without lithiation-induced softening are comparable [both can be approximated by Eqn. (4-32)]. 

Therefore, in the absence of ,Li mech

KJ , the two cases are governed by the same diffusion equations 

over approximately the same deformed configurations, hence, have roughly the same 

concentration profile. Indeed, 
end  in Fig. 4.10(b) is approximately the same as that in Fig. 4.8(b), 

and Li

ZJ  in Fig. 4.11(a) is approximately the same as that in Fig. 4.9(a). However, when ,Li mech

KJ  

is considered, Li

end  in Fig. 4.10(e) is ~19% smaller than that in Fig. 4.8(e) and all the 
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concentration profiles in Fig. 4.10(e) are significantly steeper than those in Fig. 4.8(e). The 

reason lies in the fact that when composition-induced softening is considered,  xx , 
yy , and 

hence m  are all smaller at the surface than at the center. Since ,Li mech

KJ  always points towards 

the same direction as the gradient of m , it contributes a driving force which tends to “squeeze” 

lithium upward toward the surface. Because such a driving force does not exist in the absence of 

lithiation-induced softening, diffusion is more efficient in Fig. 4.8 than in Fig. 4.10. Again, the 

1
st
 order approximation of Lagrangian flux profile is Li Li

Z Surf

Z
J J

H
   [cf. Eqns. (4-20)-(4-25) and 

Fig. 4.11], i.e. the long-term profiles of Li

ZJ  in Fig. 4.11 are not significantly different from those 

in Fig. 4.9, at least to a first order approximation. The less efficient diffusive transport therefore 

leads to steeper   profiles and hence lower 
end  in Fig. 4.10 than in Fig. 4.8. 
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Fig. 4.10 Normalized Li concentration (a,b,d,e) and stress (c,f) profiles in a 

film with a thickness of H=500 nm and constrained at the bottom 

[configuration in Fig. 4.5(a)]. Lithiation-induced softening is considered.  (a-c) 

normalized concentration and stress profiles when the mechanical driving 

force for diffusion is not considered. (d-f) normalized concentration and stress 

profiles when the mechanical driving force for diffusion is considered. For 

clarity, (a) and (d) show, with a finer vertical axis scale, the three early-stage 

profiles in (b) and (e), respectively. 

The retardation of diffusion due two-way coupling is in striking contrast to that seen in the 

elastic regime [Fig. 4.6(d-e)], in which stress effects always enhances diffusion. Indeed, the 

validity of Eqn. (4-19) is strictly based on the premise that the deformation is elastic throughout 

the charging history. Our results indicate that whether the mechanical driving force assists or 

retards Li diffusion does not have a universal answer, and Li-transport is very sensitive to the 

externally applied mechanical constraints. This strong dependence of Li diffusion on mechanical 

constraints may help explain why Li diffusivities reported for different electrode configurations 

differ by several orders of magnitude, from 10
-14

 to 10
-8

 cm
2
s

-1 
[79, 109, 112-114], because it is 
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the effective diffusivity  ,Li effD  instead of the tracer diffusivity 
0

LiD  that can be experimentally 

measured. Specifically, Ruffo et al. measured ,Li effD  for free-standing Si NWs to be 102 10  

cm
2
/s [113] while Soni et al. found that the upper bound for Li diffusivity in fully-constrained Si 

thin film is 1110  cm
2
/s [115]. Using the ideal-solution assumption [Eqn. (4-16) and (4-19)], we 

estimate that the effective diffusivity ,Li effD  during elastic deformation is ~20 times higher than 

0

LiD  for an intermediate state of charging of 
max / 2  . Such a ,Li effD  is appropriate for free-

standing Si NWs which is not subject to strong mechanical constraints. For Si thin films, in 

contrast, stresses retard instead of enhance diffusion, leading to an effective diffusivity ,Li effD  

that is on the order of or even lower than 
0

LiD . The model in this section is therefore consistent 

with the experimental findings by Ruffo et al. [113] and Soni et al. [115], in the sense that the 

,Li effD  may vary by one order of magnitude under different mechanical constraints. Admittedly, 

the ideal-solution assumption [Eqn. (4-16)] in this section entails a rather rough estimation of 

 Li Li

SF C . An accurate evaluation of ,

0/Li eff LiD D  requires more realistic data on  Li Li

SF C  

(which can be obtained once more accurate quasi-static OCP data is available). Such an 

evaluation is not the focus of this section. Nevertheless, the main result, i.e., the strong 

dependence of diffusion on mechanical constraints, is not obscured by this uncertainty associated 

with  Li Li

SF C . At least, the analysis here indicates that the mechanical constraint is a very 

important factor to consider when interpreting experimentally measured diffusivities. While 

many other factors (such as deposition conditions for the amorphous Si) may affect the measured 

Li diffusivity, the analysis here indicates even the mechanical constraint alone can lead to 

variance in ,Li effD  by one order of magnitude. 
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Fig. 4.11 Lagrangian lithium flux normalized by the surface influx when (a) 

mechanical driving force is not considered; (b) mechanical driving force is 

considered. Z denotes Lagrangian coordinate. The film is fully constrained at 

the bottom and lithiation-induced softening is considered. 

4.2.5. Conclusions 

The finding that lithium diffusion is very sensitive to external constraint can have profound 

practical implications. The design of battery electrodes involves tradeoffs among capacity, 

cyclability and operational charging rate. The main advantage of alloy-based electrodes, 

especially Li/Si, is their much higher capacity compared with carbon-based electrodes. In terms 

of cyclability, it has been suggested that plastic flow can be beneficial for Li/Si electrodes 

because it relaxes stresses and thus reduces the chance of electrode failure. Our results here, 

however, indicate that there is another mechanism at work. On one hand, plasticity may help 

avoid electrode fracture – a mechanism that can be utilized by adopting measures that promote 

inelastic flow through the tailoring of material properties and changing charging regimen. On the 

other hand, plasticity may inhibit Li transport, especially under tight mechanical constraint. 

Under any scenario, designs with less mechanical constraint on the electrodes are desirable 

because  mechanical constraints  diminishes stress-enhanced diffusion (SED) and magnifies the 
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deleterious effect of plasticity and concentration-induced softening on Li transport. Because of 

these reasons, even in terms of operational charging rate alone, Li/Si nano-particles (e.g. 

nanospheres, nanoflakes, nanowires and nanotubes) are superior to Li/Si thin films or bulk 

materials. The results in this section provide further support for nano-particles as building blocks 

for next-generation alloy-based electrodes. 

It should be noted that discussions in this section mainly concern electrodes with highly 

simplified geometries of slabs or films, in order to highlight the role of external constraints and 

the enhancement and retardation of diffusion by stresses [cf. Fig. 4.5]. For more complex 

electrode geometries with curved boundaries, stress profiles during plastic deformation will be 

more complex, but the conclusion that plastic flow reduces or neutralizes the effect of stress-

enhanced diffusion most likely will still apply. The question is how to find the electrode 

geometry such that, for the same electrode material properties, the benefit of stress-enhanced 

diffusion can be maximized and the lithium transport can be tuned to be the fastest. Since the 

electrode will be subject to cyclic loading conditions, the design should not only consider the 

effect of plastic flow itself, but also the effect of the residual stresses which may be present after 

the plastic deformation stops. By the same token, residue stresses that arise due to the sharp 

phase boundaries during the first “priming” lithiation cycle [cf. section 2.1.1] could also play an 

important role. To design an electrode geometry such that the diffusion efficiency is maximized 

is not the focus of this study, but is nevertheless considered highly relevant and interesting by the 

author for future research. 
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4.3. Stress relaxation through interdiffusion 

In section 4.1 and 4.2, we investigated the effect of diffusion-deformation two-way coupling 

on the lithium transport and the stress buildup by assuming zero host diffusivity. Many other 

studies based on this immobile-host assumption have been carried out to investigate the buildup 

and mitigation of stresses in Li-ion battery electrodes and the associated effects on the 

electrochemistry [19, 20, 22, 88, 96, 99, 116-119]. Tang et al. [94] showed that the elastic strain 

energy can significantly affect the electrochemistry in the cathode material of LiFePO4. Bower et 

al. [16] developed a comprehensive framework and used it to analyze the time-dependent 

plasticity in thin-film Li/Si electrodes. Deshpande et al. [31] considered the effect of surface 

stresses and concluded that surface effect can reduce the tensile stresses in nano-sized electrodes, 

thereby improving electrode cyclability. Zhao et al. [33, 45] considered plastic deformation and 

showed that inelastic flow can significantly alleviate the stresses in Li/Si. The mechanisms for 

stress reduction considered in these analyses include stress-enhanced diffusion of Li, surface-

effect-induced compressive stresses and plasticity.  

One of the stress reduction mechanisms in Li-Si that have not been analyzed is the migration 

of Si (host) atoms which can be significant especially at high Li concentrations when the bonds 

between Si atoms are weakened or broken. Indeed, DFT calculations by Kim et al. [78] show 

that the bonding environment of silicon atoms changes significantly as lithium concentration 

increases, indicating that the diffusive migration of silicon may become non-negligible. Recently, 

Johari et al. [79] calculated the diffusivity of both Li and Si ( LiD  and SiD ) in crystalline and 

amorphous Si (c-Si and a-Si) electrodes using ab initio molecular dynamics. They found that 

10 91.67 10 ~ 4.88 10LiD     cm
2
s

-1
 and 14 131.97 10 ~ 5.74 10SiD      cm

2
s

-1
 for c-Si and 
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9 81.25 10 ~ 3.69 10LiD     cm
2
s

-1
 and 11 101.53 10 ~ 5.13 10SiD      cm

2
s

-1
 for a-Si. The 

associated diffusivity ratio in a-Si falls into the range of 2 2/ 0.8 10 ~1.39 10Si LiD D     . It 

should be noted that the study by Johari et al. was conducted on Li/Si systems with the 

composition of Li1.0Si. For higher Li contents, the diffusivity ratio /Si LiD D  could be even 

higher since more Si-Si covalent bonds are broken. In Li/Ge, another promising alloy-based 

electrode material, host diffusion could be even more significant since the Ge-Ge covalent bond 

is much weaker than the Si-Si bond (the melting temperatures of crystalline Si and Ge are 1687 

K and 1211.40 K, respectively). 

In this section, we analyze the implication of a small but non-zero SiD  in amorphous Li/Si 

electrodes (host H=Si and guest G=Li). One focus of the analysis is the relative importance of 

the mechanical driving force [eqn. (3-2)] and the chemical driving force [eqn. (3-1)] for host 

atom migration. The analysis also focuses on the direction of the diffusive migration of host (Si) 

atoms and the dependence of the direction on the relative strengths of the chemical and 

mechanical driving forces. A parametric study is carried out over a range of values of host 

diffusivity and the thermodynamic factor which measures the tendency for the Li and Si atoms to 

chemically mix. In particular, the analysis allows the effect of Si diffusion on stress evolution to 

be quantified. The calculations also focus on the time scales associated with the diffusive 

migration of guest and host, and how these time scales affect the evolution and distributions of 

stresses and concentrations, especially at charge times beyond the characteristic time scale for 

host migration. The results will show quantitatively that the diffusion of Si is a significant 

mechanism for stress relief in Li/Si, in addition to SED and inelastic deformation.  Of particular 

interest is the finding that the steady-state distributions of stresses at times much longer than the 
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characteristic time for Si diffusion depends on neither the thermodynamic factor nor the 

diffusivity of Si. 

Section 4.3 is based on the interdiffusion theory of chapter 2, the mixed finite element 

framework of chapter 3, and the numerical results published in ref [18].  

4.3.1. Migration of host atoms in Li/Si nanowire electrodes 

We consider a cylindrical Li/Si nanowire [inset of Fig. 4.12(a)] with radius 0 250 nm   

when fully discharged. This fully-discharged state is taken to be the Lagrangian reference state. 

The NW is charged from its outer cylindrical surface at a constant Lagrangian lithium influx 
LiQ  

[cf. Eqn. (3-8)]. Under galvanostatic conditions, 

 
0 0 max

0

1 1
,

2

Li SiQ C
T

   (4-34) 

where max  is the maximum charging limit for lithium per silicon, 
0

SiC =49.3 atoms/nm
3 

is the 

silicon concentration in fully discharged state (the density of pure amorphous Si is 2.30 g/cm
3
) 

[108], and 0T  is the nominal time  required to attain full charge. In this section, we take 

max 4.4    and  0T =1 hour (i.e. at 1C charging rate). End effects are neglected because the 

aspect ratio of the NW is assumed to be very large. Numerically, this is achieved by forcing the 

top and bottom surfaces to remain flat using the multi-point constraint (MPC) functionality in 

ABAQUS.  
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Fig. 4.12. Concentration and stress profiles for a Li/Si NW with radius 

0 250 nm  , thermodynamic factor 10   and diffusivity ratio 

/ 0.02Si LiD D  . Results at different stages up to the fully charged state are 

shown. The charging rate is 1C and the initial composition is Li2.2Si.  (a) 

normalized Lagrangian silicon concentration profiles at different stages of 

charging, the normalization is relative to 
0

SiC .  The radial coordinate r is 

measured in the current configuration. The inset shows the NW charged under 

galvanostatic conditions at a constant surface influx 
LiQ . The z-axis of the 

cylindrical coordinate system is along the NW axis. (b) profiles of normalized 

Lagrangian Li concentration, the normalization is relative to 
0

SiC . (c-g) 

profiles of radial, hoop and azimuthal stress components and the hydrostatic 

and von Mises invariants. (h-i) hydrostatic and von Mises stresses, normalized 

by the composition-dependent elastic modulus. 
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A linear composition-expansion curve ( / vs.Li Si SFx x J   curve under fixed SiC ) with 

constant partial atomic volumes  
 Si SF

01/ SiC  =20.3 Å
3

 and  Li SF
 14.3 Å

3

 [12, 43] is used. 

Recent calculations by Huang and Zhu indicates that the ~ SFJ  relationship could be non-

linear [71]. Here, a linear ~ SFJ relation is used in order to simplify the formulation and 

interpretation of numerical results and to focus on the implications of non-zero host diffusivity. 

The concentration-dependent elastic properties are   (12.46 65.44) / (1 ) GPaK K        

and   (7.63 35.51) / (1 ) GPaG G        [77]. Reported LiD  values in Li/Si typically range 

from 10
-14

 to 10
-8

 cm
2
s

-1 
[79, 109, 112-114]. In this section we take 1210LiD   cm

2
s

-1
. Although 

the predicted stress levels depend on the value of LiD according to the scaling law of 1/ LiD  

[88], the key issue in this study, i.e., the effect of host diffusion, is not controlled by LiD  itself 

but by the diffusivity ratio /Si LiD D . This host-to-guest diffusivity ratio in amorphous Si 

electrodes at room-temperature is found by Johari et al. [79] to be 

2 2/ 0.8 10 ~1.39 10Si LiD D      for Li1.0Si. Since silicon-silicon bonding is much weaker in 

high- Lix  states [78], SiD  could be even  larger at higher Lix . Indeed, at very low Lix , SiD  

approaches the silicon self-diffusivity which is negligible compared to LiD . We therefore start 

our simulation at the half charged state of Li2.2Si in order to more realistically capture the effect 

of Si migration. Specifically, at 0t   the NW is assumed to be a homogeneously half-charged 

alloy with 0 0

Si Si

tC C   and 0 0/ 2.2Li Si

t tC C   . It should be noted that the Lagrangian reference state 

(upon which LiC  and SiC  are measured) here is taken to be the fully discharged configuration 

instead of the half-charged configuration at 0t  . A parametric study is carried out by 
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systematically varying the /Si LiD D  ratio from 0.005 to 0.05 while keeping  1210LiD   cm
2
s

-1
 

constant. 

It should be noted that the diffusivities ( LiD  and SiD ) might depend on the local stress state.  

Haftbaradaran et al. [19] considered the activation barrier shift bE  for lithium diffusion due to 

stresses [120] and showed that the stress effect could slow down lithium diffusion through 

 0 exp /Li Li

b BD D E k   . While stress-induced activation barrier change bE  is more 

important under very high stresses, stress development and diffusion mainly couple through the 

chemical potential for moderate stresses [111]. For Li diffusion in silicon, it has been shown that 

/ 1b BE k    only when b  reaches as high as 1 GPa, otherwise, the factor  exp /b BE k   is 

negligible [43]. For simplicity, the effect of the factor  exp /b BE k   is not considered. This 

approximation should be valid at least for the stress levels considered in this section. 

Fig. 4.12 (a) and (b) show the profiles of the normalized Lagrangian concentrations  

  0, /Si SiC r t C  and   0, /Li SiC r t C  for a NW with 0 250 nm,   10   and / 0.02.Si LiD D   The 

Li concentration  ,LiC r t  quickly (in less than ~12 s) reaches a profile corresponding to the 

long-term solution obtained in section 4.1, i.e., for most of the charging process (times beyond 

~12 s), the distribution of  ,LiC r t   effectively increases uniformly over the entire wire radius, 

with the shape of the profiles largely unchanged. This observation is consistent with the stress 

profiles in Fig. 4.12 (c-g) which show that the stress distributions for 12 s and 30 s essentially 

match. It should be pointed out that, strictly speaking, the shape of  ,LiC r t  profiles does evolve 

even after 12 s, and the stresses at 1200 s is lower than those at 12 s and 30 s. However, this slow 
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modulation of  ,LiC r t  is due to composition-induced material softening (dependence of K and 

Gon Li/Si composition), change of NW size, and Si migration, but not due to the transience of 

the Li diffusion process. The characteristic time Li  for reaching the steady-state gradient of 

 ,LiC r t  is very short compared with the overall charging time and can be estimated to be 

2 2

1/Li Li

effD    according to the analytical solution for the case of 0SiD   (cf. section 4.1 and 

ref. [43]). Here,  
1/3

0 0 0,SF Si Li

t tJ C C  
 
 

 is approximately the NW radius during the initial 

stage of charging, 1 3.8317   is the first root of the first-order Bessel function, and  

 
 
   

2
( )

0

0 0 0 0

21

1 / 9 1 ,

Li SF Li
Li Li t
eff Li Si SF Si Li

t t B t t

E C
D D

C C k J C C 


   

   
  
 

 (4-35)  

is the effective diffusivity of Li. In the above relation, E and   are the Young’s modulus and 

Poisson ratio, respectively. For 10  , 0SiD   and 1210LiD   cm
2
s

-1
 , 2.7Li   s; hence 

long-term profiles with a steady-state shape can be expected for  ,LiC r t  when  2 5.4Lit    s 

[43], consistent with what is seen in Fig. 4.12.  
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Fig. 4.13. Concentration and stress profiles for a NW with radius 0 250 nm  , 

thermodynamic factor 90   and diffusivity ratio / 0.02Si LiD D  . The NW 

radius,  rate of charge (1C) and an initial composition (Li2.2Si) are the same as 

those in Fig. 4.12..  (a) and (b) normalized Lagrangian concentration profiles 

of silicon and lithium, respectively.  (c-g) profiles of radial, hoop, azimuthal, 

hydrostatic and von Mises stresses. (h-i) hydrostatic and von Mises stresses, 

normalized by the composition-dependent elastic bulk and shear modulus.  

The transient evolution of  ,SiC r t  [Fig. 4.12(a)], on the other hand, is much slower than 

the transient evolution of   ,LiC r t . As the charge progresses, SiC  at the NW surface decreases 

from the initial value and SiC  at the center increases from the initial value.  This indicates that Si 

atoms slowly migrate from the surface towards the center. Like LiC , SiC  also evolves towards a 

long-term steady-state profile, except that the time required by this transient evolution is longer 
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than that for LiC  ( ~12  s), as confirmed by the / 0.02Si LiD D   curve in Fig. 4.15(a).  The shape 

of the steady SiC  profile is shown by the curve for 1200t  s in Fig. 4.12(a). During the initial 

charging stage ( 12t   s), the stresses increase and the development is similar to that for the case 

with 0SiD   [43]. After the initial stage ( 12t   s), the stresses slowly decrease. As seen in Fig. 

4.12(c-g), all three stress components (radial r , hoop   and longitudinal z ) and the two 

stress invariants (hydrostatic stress m  and the Mises equivalent stress mises ) are lower at 

1200t   s than at 12t   s. One reason for the decrease in stresses is composition-change-

induced softening of Li/Si alloy. Specifically, the lower elastic modulus (K and G) values at 

higher x
Li

  levels cause the stresses to be lower. Nonetheless, this trend remains even if the 

stresses are normalized by the composition-dependent bulk and shear modulus, as /m K  and 

/mises G  are still significantly lower at 1200t   s than at 12t   s [Fig. 4.12(h) and (i)]. This 

decrease of /m K  and /mises G  is caused by the diffusive migration of the host (Si) atoms. 

Since Si migrates from the surface to the center, SFJ  increases at the center and decreases at the 

surface relative to the case with 0SiD  , leading to lower levels of e  and, consequently, the 

relaxation of the stresses. 

To analyze the effect of the thermodynamic factor  , the results of a case with 90   and 

/ 0.02Si LiD D   are shown in Fig. 4.13. The NW diameter, charging rate and diffusivities are the 

same as those in Fig. 4.12.  The profiles of LiC  [Fig. 4.13(b)] and the stress components [Fig. 

4.13(c-i)] are qualitatively similar to those for the 10   case in Fig. 4.12 for  30t   s, 

primarily because Si diffusion is too slow to have a significant influence during the initial stage, 

although the magnitudes of these quantities are understandably different as the effective 
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diffusivities are dependent on  . The profiles of SiC , however, are distinctively different. In Fig. 

4.13, SiC  increases at the surface and decreases at the center; indicating Si migration is from the 

center to the surface. This is directly opposite to what is seen in Fig. 4.12. The opposite 

directions of Si migration lead to significant differences in the stress distributions in the NW. 

Specifically, at the higher thermodynamic factor value of  90   (higher tendency to 

chemically mix between the two species), the stresses at 1200t   s are higher than the stresses at 

12t   s and 30t   s [Fig. 4.13(c-g)]. In contrast, at the lower thermodynamic factor value of 

10  , the stresses at 1200t   s are lower than the stresses at  12t   s and 30t   s. The same 

observations are made for the normalized stresses /m K  and /mises G  [Fig. 4.13(h-i)] as well.  

 

Fig. 4.14. The competition between the effects of chemical mixing and 

mechanical stress on the diffusive migration of host (Si) in Li/Si. (a) When 

lithium is inserted from the surface, compressive stresses develop near the 

surface and tensile stresses develop at the center. (b) Lithium diffuses from 

surface to center. (c) When the chemical effect dominates, the flow of the host 

(Si) is from the center to the surface of the NW. (d) When the mechanical effect 

dominates, the flow of the host (Si) is from the surface to the center. Realistic 

scenarios for Li/Si almost certainly entail (d). 
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The migration of Si is different between the 10   and 90   cases due to the 

competition between the chemical contribution [Eqn. (3-1)] and the mechanical contribution 

[Eqn. (3-2)] to the diffusive flux of silicon. The chemical contribution , /Si chem Six J X   

drives Si flow from high Six
 
 regions (center) towards low Six  regions (surface), causing the 

composition field to homogenize. The mechanical contribution ,Si mech
J , on the other hand, is 

proportional to /m X  and, therefore, drives Si flow from compressive regions (surface) 

towards the stretched regions (center). The magnitude of  ,Si chem
J

 
is proportional to   while the 

magnitude of ,Si mech
J  is controlled by  Si SF

 . For 90  , , ,Si chem Si mechJ J  and 

, ,Si Si chem Si mech J J J points towards the surface. For 10  , , ,Si chem Si mechJ J  and Si
J points 

towards the center. This competition between the chemical effect and the mechanical effect is 

illustrated in Fig. 4.14. Here, the value of   can be estimated from the open-circuit potential 

 OCP OCP LiU U x  data via [43] 

  / /Li OCP Li

Be k x dU dx   . (4-36) 

It should be noted that, however, experimentally measured  OCP LiU x  curves for Li/Si are 

associated with significant hysteresis [70] which makes accurate estimate of the quasi-

equilibrium value of /OCP LidU dx  difficult. Using the experimental OCP data of Chandrasekaran 

et al. [89] and eqn. (4-36), we estimate that 1 40   for 2.2 / 4.4Li SiC C   (the composition 

range studied in this section).  Therefore, the scenario in Fig. 4.13 and Fig. 4.14(c) reflects the 

outcome for an unrealistically high value of   for Li/Si; instead, the diffusive migration of 
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silicon always leads to stress relaxation in Li/Si and causes Si to migrate along the direction of 

m  gradient [Fig. 4.12(a)]. 

4.3.2. Effect of /Si LiD D  and   on stress relaxation 

Fig. 4.15 shows how the diffusivity ratio /Si LiD D  affects the evolution of the stresses and 

silicon concentration when the thermodynamic factor is kept at 10  . The NW configuration is 

the same as that in Fig. 4.12 and Fig. 4.13, with a diameter of 250 nm when fully discharged. 

The charging rate is 1C under galvanostatic conditions. The normalized silicon concentration 

0/Si SiC C , normalized hydrostatic stress /m K  and normalized von Mises stress /mises G  are 

plotted against time at the NW surface and center (denoted as s and c, respectively). For all 

/Si LiD D  ratios from 0.005 to 0.05, the migration of Si is from the surface to the center, as a 

result of the dominant effect of ,Si mech
J

 
[Fig. 4.15(a), Eqn. (2-42)].  

At the very low diffusivity ratio of 8/ 10Si LiD D  , the migration of silicon is essentially 

negligible.  Under this condition,   /m K  and /mises G  only change slightly after the initial 

stress buildup. The analytical solution for 0SiD   during the so-called long-term response 

period after the initial transient buildup has been given in section 4.1 as [cf. Eqn. (4-6)] 
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where  ,r t      can be regarded as the composition inhomogeneity, 
0/ ,Li SiC C   

   max 0/t t T   is a measure for the average composition over the NW radius and 

  
1/3

0 0/ ,SF Si Lir r J C C  
 

 is the nondimensionalized radius. Obviously, the long-term stresses 

for 0SiD   depend on two factors. The first factor is NW size. As SFJ  increases due to Li 

insertion, the stresses may decrease even when   does not change. The second factor is the 

effective Li diffusivity 
Li

effD , which depends on the elastic modulus [Eqn. (4-35)]. As Li 

concentration increases, the Li/Si alloy softens, leading to lower 
Li

effD  and causing the 

composition inhomogeneity   to change accordingly.  

 

Fig. 4.15. Evolution of silicon concentration and stress invariants at the NW 

center (denoted by c) and surface (denoted by s). The NW configuration, 

charging rate, and thermodynamic factor   are the same as those in Fig. 4.12. 
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The only difference is in  /Si LiD D  which is varied here. (a) Lagrangian 

silicon concentration normalized by 
0

SiC . (b) hydrostatic stress normalized by 

bulk modulus K; (c) details of (b) in the first 200 s. (d) von Mises stress 

normalized by shear modulus G. (e) details of (d) in the first 200 s. 

Using the numerical solution for 8/ 10Si LiD D   or the analytical solution for 0SiD   as the 

reference, we can quantify the effects of Si migration on stress relaxation. The normalized stress 

invariants /m K  and /mises G  (note that K  and G  are concentration-dependent and, therefore, 

decrease with time) first increase during the ramp up of the LiC  profile and then decrease as the 

effect of Si diffusion kicks in. The stresses at the center follow similar trends as the stresses near 

the surface but lag behind the stresses at the surface because the gradient of the hydrostatic stress 

/m X  [hence ,Si mech
J  according to Eqn. (3-2)] is higher near the surface than at the center. 

Note that for 0SiD  , long-term /m K  and /mises G  change only slightly  after 12t   s. In 

contract, the stresses decrease significantly more rapidly at the higher values of SiD . Specifically, 

for / 0.02Si LiD D  , the values of /m K  and /mises G  at the surface at 1200t   s are both ~20% 

lower than the corresponding values for 0SiD  , as well as their corresponding peak values at 

12t   s. The reductions clearly show that modest mobility of the host atoms (low SiD  value of 

142 10 cm
2
s

-1
 or / 0.02Si LiD D  ) can cause stress reductions on the order of ~20% relative to 

the case without Si mobility. It should be noted that the stress levels here are significantly lower 

than the yield stress of Li/Si of 1.0~1.75 GPa [15]. The stress relaxation due to host migration is 

separate from and in addition to the effects of stress-enhanced diffusion of Li [43] and plasticity 

[45]. Obviously, it can play an important role at high Li concentration levels even when stresses 

are below the yield threshold of the material.  
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Fig. 4.16. Evolution of silicon concentration and stress invariants at the NW 

center (denoted as c) and surface (denoted as s) at different values of   

between 5 and 90. The diffusivity ratio is kept at / 0.02Si LiD D  . All other 

parameters are the same as those in Fig. 4.12. (a) Lagrangian silicon 

concentration SiC  normalized by 
0

SiC . (b) Hydrostatic stress m   normalized by 

bulk modulus K; (c) Details of (b) in the first 200 s. (d) von Mises stress mises  

normalized by shear modulus G. (e) Details of (d) in the first 200 s. 

It is important to note that, for all the /Si LiD D values analyzed, 0/Si Si

surfaceC C  at the surface 

converges to the same steady-state surface value of ~0.996 and 
0/Si Si

centerC C  at the center 

converges to the same steady state value of ~1.004. The relaxation (or characteristic) time Si for 

silicon redistribution can be estimated using the time for   0/Si Si Si

centerC C C  to reach half of its 

steady-state value, here 
0

Si SiC C  is the average silicon concentration in the NW. According to 

Fig. 4.15 (a), 210Si   s for 142 10SiD   cm
2
s

-1
 ( / 0.02Si LiD D  ). The convergences of 
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0/Si Si

surfaceC C  and 
0/Si Si

centerC C  are not by chance. They indicate that Si migration always tends to 

lead to a steady state which is the same regardless of the value of SiD , as long as 0SiD  . This 

steady state is reflected not only in 
0/Si SiC C , but also in the stresses. Specifically, /m K  

converges to the same level of  /
Sit

m K   at the center and the same level of /
Sit

m K   at the 

surface [Fig. 4.15(b)] at Sit  (e.g., / 3Sit   ). Fig. 4.15 shows that / 0.00054
Sit

m K    for 

10  . A similar convergence of /mises G  at long times is seen in Fig. 4.15(d).  It is important 

to note that the steady state values of 0/Si

Si Si

t
C C


 for the surface and the center do evolve slightly 

as t further increases. This modulation of the steady state values of 0/Si

Si Si

t
C C


 at the surface and 

the center is because of the softening of the elastic modulus as x
Li

 increases, which lowers the 

mechanical driving force for silicon migration [Eqn. (3-2)]. As seen in Fig. 4.15(b) and (d), the 

normalized stresses /m K  and /mises G  decrease accordingly after the transient development 

of the SiC  profile.  Parametric study shows that the characteristic time Si  for achieving the 

steady state 0/Si

Si Si

t
C C


 distribution decreases as /Si LiD D  increases. This is understandable 

because 1/Si SiD  . It should be noted that, however, Si  cannot be simply estimated as 

2 2

1/ SiD   using the tracer diffusivity SiD , because such an estimation does not reflect the fact 

that Si diffusion is affected by the migration of Li through the stress driving forces and the Li-Si 

chemical interactions. Indeed, 2 2 3

1/ ~ 2 10SiD    s for 142 10SiD   cm
2
s

-1
 if the diffusion of 

Si occurs independently by itself without the presence of Li and without SED. Rather, it is the 

effective diffusivity 
Si

effD  of Si, that determines Si . Although a closed-form solution for 
Si

effD  

may not be easily obtained [in contrast, 
Li

effD  which is analytically quantified in Eqn. (4-35)], the 
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numerical results here indicate that 
Si Si

effD D  due to the strong coupling between stress and 

interdiffusion, at least for the case of 10  . 

Fig. 4.16 illustrates the effect of   at a constant diffusivity ratio of /Si LiD D =0.02. Again, 

the NW radius is 250 nm at the fully discharged state and the charging rate is 1C. The most 

important observation is that the direction of Si migration changes as   changes. Specifically, 

Si migrates from the surface to the center for 5 40   and from the center to the surface for 

90   [see Fig. 4.16(a)]. The reversal occurs at a critical value cr  , when ,Si mech
J

 
and ,Si chem

J
 

happen to cancel each other out. It should be noted that ,Si mech
J  depends on the magnitude of the 

elastic modulus, which decreases as lithium concentration increases. Therefore, the critical value 

cr  is not a constant. A typical value is found to be approximately 50cr  . When   is close 

to 50cr  , silicon migration is insignificant since , ,Si mech Si chemJ J
 
is very small, although it 

may not be exactly zero.  

When cr  , stresses first increase and then decrease gradually after reaching respective 

peaks [Fig. 4.16(b-e)]. When cr  , on the other hand, Si migrates in the opposite direction 

and stresses increase monotonically after the initial fast buildup. For 5 40  , 
0/Si SiC C  

evolves towards a - dependent value of 0/Si

Si Si

t
C C


. The difference between the center and 

surface values of 0/Si

Si Si

t
C C


 is larger when   is smaller. The peak values of stresses are higher 

at lower  , i.e., the stress relaxation due to Si migration is more significant when the 

thermodynamic factor is lower (or the host and guest are less likely to chemically mix).  
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Interestingly, although stresses evolve significantly differently for cr   and cr  , 

they all converge to the same values [Fig. 4.16(b) and (d)] at sufficiently long times. The similar 

convergence behavior has also been seen in Fig. 4.15(b) and (d). A comparison between Fig. 

4.16(b) and (d) with Fig. 4.15(b) and (d) reveals that the long-term stress limits are quite 

universal, regardless of the values of   and /Si LiD D . 

An analysis provides useful insight. As the distribution of  SiC  approaches the steady-state, 

the silicon flux vanishes, i.e., 

 0Si J , at Sit  . (4-38) 

Equations (2-42) and (4-38) lead to  

 

( )

0
SiSi

Si

Si Si SF

Si tt
mt

B

x
x

k













   X X , at Sit  . (4-39) 

This equation is independent of SiD  as it concerns the steady state solution of Six  for  

Sit  . Equation (4-39) shows that Six , hence SiC , for Sit 
 
does depend on the value of  , 

providing a direct proof for what is seen in Fig. 4.16(a). On the other hand, since the spatial 

gradient  ,LiC r t  remains approximately a constant (the LiC  profile “shifts” upward without 

changing its shape) at  Lit   [43],  

 max 0

0

constant,
SiLi

Li CC

t T


     


X
J  at Lit  , (4-40) 
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where 
max 0

SiC  is the Li concentration at the fully charged state and  T0  is the total galvanostatic 

charging time to attain full charge. If high-order terms are neglected, equations (4-40) and (2-42) 

lead to 

 
( )

constant
Li SF

Li Li Li

m

B

D x x
k




 
      

 
X X X , at Lit  . (4-41) 

Equations (4-39) and (4-41) and the fact that Si Li   combine to give 

 
( ) ( )

const
Li SF Li Si SF Si

Li Li Si

m

B B

x x
D x x

k k


 

   
         

  
X X X , at Sit  . (4-42) 

Since   0Li Six x  X
, the above leads to a  –independent equation for m  in the form 

of 

 
( ) ( )

constant
Li SF Li Si SF Si

Li

m

B B

x x
D

k k


 

   
      

  
X X , at Sit  . (4-43) 

Equations (4-39) and (4-43) indicate that the steady-state hydrostatic stress depends on 

neither /Si LiD D nor  . By extension via eqns. (2-31), (2-34) and (2-36), all stress components 

at the steady-state are independent of /Si LiD D  and  , as long as stressing is entirely due to 

concentration inhomogeneity and no external mechanical load is applied, as is the case of the 

free-standing NW analyzed here. It is important to note that the peak values of the stresses do 

depend on  , as Fig. 4.16 shows. Also, the relaxation time needed for the solutions to converge 
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to the steady-state depends on /Si LiD D . Again, for 10   and / 0.02Si LiD D   the stress 

reduction from the level without Si migration can amount to 20%. Even for the small diffusivity 

ratio of / 0.005Si LiD D  , the host-diffusion-induced stress relaxation is non-negligible[Fig. 4.15 

(b) and (d)]. Therefore, account should be taken for host migration in the analyses of Li/Si 

electrodes. 

4.3.3. Conclusions 

This section focuses on the effects of host migration on the relaxation of stress and changes 

in the concentrations of both the host and guest species. It is found that diffusion of the host 

atoms can have a significant impact on stress, primarily because of the chemical interactions 

between the species and the effect of stress gradient on interdiffusion. In particular, under 

conditions of pure elastic deformation the diffusion of Si atoms can cause stress reductions up to 

20% with the modest diffusivity ratio of / 1/ 50Si LiD D   ( 100LiD  nm
2
/s and 2SiD  nm

2
/s). 

For amorphous Li/Si alloys, the mechanical driving force dominates the chemical driving force, 

resulting in the migration of Si in the direction of the gradient of the hydrostatic stress m or 

from the surface to the center of cylindrical electrodes. The analysis has also shown what the 

behavior would be for alloys with (perhaps unrealistically) high thermodynamic factors. The 

results indicate that the effect of interdiffusion on stress relaxation can be important even when 

the stress levels are below the yield threshold of the material.  

The migrations of the host and guest introduce two time scales. The time scale for host 

migration is much longer than the time scale for guest migration, allowing the distribution of 

guest concentration to reach its own steady state which is slowly modulated by other factors, 
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especially the migration of the host. The time scale for host migration determines the rate at 

which the ultimate steady state of host concentration and all other field quantities are attained. 

The distribution of Si concentration is determined by the thermodynamic factor which measures 

the tendency for the host and guest to chemically mix, but the steady-state stress distribution 

depends on neither /Si LiD D  nor the thermodynamic factor. 

Finite diffusivity values of host atoms may have further implications besides the relaxation 

of stresses. For example, in Li/Si and Li/Ge nano-electrodes, cycling-induced formation of nano-

pores indicates that the host material has been irreversibly moved away from the voided regions 

[5, 80]. If reversible expansion and elastic deformation were the only mechanisms for material 

deformation, the nano-pores would not form because the host network must revert back to its 

original configuration upon unloading. Two mechanisms have been proposed to account for the 

irreversible migration of host atoms. The first is inelastic flow (a form of continuous convection) 

driven by deviatoric stresses during which material flows in the normal direction of the nucleated 

pore, leading to void enlargement [5]. The second mechanism is vacancy aggregation during 

selective dealloying, which involves diffusive migration of host atoms and allows nucleated 

voids to coalesce and grow [80]. Either or both mechanisms might be relevant, their relative 

significance depends on the specific material system. With minor adaptation, the continuum 

framework developed here can be used to delineate the influences of these mechanisms on void 

development under various conditions.  
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5. Coupled mechano-diffusional driving forces for fracture 

The fact that lithiated Li/Si deforms plastically (section 2.1.3) indicates that elastic-plastic 

fracture mechanics, instead of linear elastic fracture mechanics (LEFM), should be used to 

characterize failure. What complicates the problem is the fact that the distribution of Li, which 

gives rise to stresses, is in turn affected by the stress state [16, 93, 95]. When a crack is 

mechanically loaded, Li ions would accumulate in front of the crack tip, in a fashion similar to 

that seen hydrogen embrittlement problems [49, 53]. This accumulation of Li ions at the crack 

tip can have profound implications on the driving forces for fracture. 

Many models have been proposed to characterize the fracture behavior in Li-ion battery 

electrodes (see the review in section 1.2). Recently, Ryu et al. [53] proposed a framework for 

calculating the energy release rate J for cracks in Si nanowire electrodes and used the framework 

to study the size dependence of fracture. This theory relies on an “effective diffusivity” 
effD  into 

which the effect of stress on diffusion is lumped. Such an effective diffusivity is only applicable 

to linear elastic problems. Specifically, when a material deforms plastically diffusion is no longer 

governed by 
effD  and the overall diffusion kinetics depends on the nature of mechanical 

constraints as well as other factors [44]. Even in the elastic regime, calculations based on 
effD  

can only capture stress-induced enhancement to diffusion [43] in regions far from the crack tip 

but cannot capture the trapping of Li ions at the crack tip [49]. To correctly account for the 

underlying processes responsible for fracture by including Li trapping and plasticity, a fully-

coupled theory is needed to assess the energy release rate. 
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In this chapter, a fully-coupled theory is developed and used to analyze the coupled 

mechano-diffusional driving forces for fracture in electrode materials. The analyses take 

advantage of a mixed finite element framework [18, 46]. We first formulate a J-integral for 

coupled mechanical deformation and mass diffusion processes as a measure for the driving 

forces for crack growth. By treating the crack tip as a separate thermodynamic system, the 

formulation entails detailed account of balances of mass and energy and evolution of entropy. 

All relevant energy forms that may contribute to fracture are explicitly tracked. It is found that 

the standard form of J-integral for energy release rate is no longer path-independent when 

coupled mechano-diffusion driving forces are present. Instead, an area integral similar to those in 

hygrothermal [121] and dynamic [122-124] problems must be included. A numerical scheme for 

implementing this path-independent formulation through finite element simulations is also given. 

The numerical study based on the framework is carried out in a progressive manner, with 

increasing complexity in each step. In section 5.4, we first consider the linear elastic case with 

concentration-independent properties, so that the near-tip stress fields and the energy release rate 

can be compared with those given by purely mechanical LEFM. It is found that stress-induced 

lithium redistribution significantly affects energy release, but has no effect on in-plane stress 

fields and hence the stress intensity factor KI. The implication of such a dichotomy is discussed 

by drawing an analogy to the difference between plane-strain and plane-stress situations in 

LEFM. 

The next step in the analyses (section 5.5.1) assumes a finite yield stress so that the material 

can deform plastically. This scenario involves elasto-plastic deformation with concentration-

independent elastic properties and yield stress. The calculation focuses on a surface crack in a 
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thin-film electrode. Depending on whether the electrode yields globally, two regimes of response 

can be identified. Before global yielding, the energy release rate is governed by an effective 

crack length which is analogous to that proposed by Irwin. After the global yielding threshold, 

however, it is found that plastic deformation significantly reduces the energy release rate and 

softer materials generally have much lower energy release rate levels.  

Finally in section 5.5.2, the effect of lithiation-induced-softening on fracture tendency is 

added. The calculations consider deformation/diffusion coupling, plastic flow, and lithiation-

induced material softening through decreases in the elastic modulus and yield stress as Li 

concentration increases. The analyses lead to a design map for the configuration and operation of 

thin-film Li-Si electrodes.  

This chapter is based on the research published in ref. [39]. 

5.1.  Theoretical framework 

We consider the energy release rate for fracture in a solid electrode with full diffusion-

deformation coupling. The material, which is composed of two chemical species: host (denoted 

as H) and guest (lithium), is assumed to be highly conductive so that the whole electrode is at the 

same electric potential. The electrode is assumed to be fully amorphized from the beginning so 

that phase separation due to crystalline/amorphous transition does not need to be considered. 

During charge/discharge, lithium atoms diffuse, while the host atoms are assumed to undergo 

convection but not diffusion for simplicity [18].  



124 

 

The diffusion-deformation coupling is governed by the constitutive laws outlined in chapter 

2 and comprises of two interdependent aspects. The first aspect, the effect of diffusion-induced 

stress (DIS), arises due to a LiC -dependent term in the constitutive relationship between D  and 

  [cf. Eqs. (2-44) and (2-45)]. The second aspect, the effect of mechanical driving forces on 

diffusion, is embodied by a stress-driven term ,Li mech
J  in the total Lagrangian flux Li

J  of lithium 

[cf. Eq. (2-40)]. These two aspects, together with the conservation laws of mass [Eq. (2-4)]  and 

momentum [Eq. (2-5)], govern the material response in a solid electrode during charge and 

discharge.  

Following the simplifying assumptions in 4.2.1, we adopt the ideal-solution chemical 

potential of  

 
*

max

lnLi Li

SF k


  
 

 


, (5-1) 

and the composition-dependent diffusivity  Li LiD D   in the form of  

    0 max 0 max1 / 1 /Li Li Li Li LiD D D C C     . (5-2) 

Combining Eqs. (2-40), (5-1), and (5-2) leads to the lithium flux of 
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 (5-3) 

where ,Li chem

KJ  and ,Li mech

KJ  are contributions due to chemical interaction and mechanical driving 

force, respectively. Again, according to Purkayastha and McMeeking [96], the main advantage 

of Eqs. (5-1) and (5-2) is that it correctly captures the fact that the stress-gradient-driven 

diffusion flux ,Li mech

KJ  [cf. Eqn. (5-3)] vanishes at the charging limits of  0   and 
max  .  

The consideration of the energy release rate (J) for fracture is based on an account of the 

balance of mechanical work in a cracked body [123]. For electrodes whose response is affected 

by diffusion-deformation coupling, care must be taken because mechanical energy is no longer 

the only energy source at work. Specifically, chemical energy which drives the mixing between 

Li and host may also constitute a significant contribution to the overall energy balance. Such 

coupled driving forces for fracture in electrode materials are similar to those in hygro-thermal 

systems. Chen [121] proposed a generalized contour integral method to evaluate the latter. The 

method, however, is path-dependent and requires infinitesimal contours near the crack tip for 

accurate evaluation.   

In this section, we use non-equilibrium thermodynamics to develop a path-independent J-

integral for the coupled mechano-diffusional driving forces for fracture in electrode materials 

that undergo large elasto-plastic deformations. The analysis treats the crack tip as a separate 
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thermodynamic system, thereby allowing a systematic account of the balance of mass and energy 

and the production of entropy.  

5.1.1. Energy balance and entropy production 

The analysis of energy release rate under full diffusion-deformation coupling is based on 

accounts of energy and entropy. For any material point in the continuum body, the first law of 

thermodynamics [125] requires that  

  1 ,PK q Li Lie u    
X

v J J  (5-4) 

where e  is the internal energy per unit reference volume, d / dt
X

v = x  is particle velocity, 

 1 1detPK  F F   is the first Piola-Kirchhoff stress, and  /Li Li

T
u e C    is the partial 

atomic energy of Li. q
J  and Li

J  are the heat flux and Li atom flux, respectively; both measured 

in the reference configuration. In writing Eq. (5-4), we have assumed that there is no external 

volumetric heat source. Under this condition, the 2
nd

 law of thermodynamics can be stated as 

[125] 

  

0, where

.

Li Li Liq u









 

    

 

 


X J

JJ
J

 (5-5) 
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Here,   and 
J  are the Lagrangian density and flux of entropy, respectively;   is 

temperature; and   is the rate of entropy production per unit reference volume. In this study, 

isothermal conditions are assumed to prevail [i.e.,  , constantt  X ], therefore 

  
1

0.q Li Li Liu 


        
 X J J  (5-6) 

The entropy production rate   phenomenologically characterizes the irreversible nature of 

the processes in the continuum. For materials that deform plastically,   can be identified as the 

sum of P  (which is due to plastic flow) and NP  (which is due to dissipation mechanisms other 

than plastic deformation, e.g. diffusion), i.e.,  

 
 

,

det
: 0, and

0.

P NP

P P

NP



   



   

 


F
D  (5-7)  
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5.1.2. The crack tip subsystem 

 

Fig. 5.1 Energy balance at the crack tip, reckoned in the Lagrangian 

configuration. (a) Domain A is enclosed by   and 
0C C C C    . 

JN  and 

JM  are unit vectors normal to   and 
0C , respectively. V

 is the domain 

enclosed by  , C
 and C

. The infinitesimal region V
 exchanges energy and 

entropy with the crack subsystem which is characterized by its free energy 
crack . (b) A special type of contour  with rectangular shape. 

Following Moran and Shih [126, 127] and Freund [128], we consider a 2-D body in the 

 1 2,e e  plane with a crack extending along the 
1e  direction, as illustrated in Fig. 5.1(a). At time t, 

the crack has length  l l t  in the Lagrangian configuration. The crack tip, which propagates at 

speed l  in the reference configuration, can be isolated using a small Lagrangian contour   

which translates along with the crack tip. The nominal out-of-plane thickness (i.e., nominal 
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thickness along 
3e ) of the 2-D body, also measured in the reference configuration, is denoted as 

crackd . 

Consider a larger contour 
0C  which is fixed with respect to the material. There is no 

singularity in domain A bounded by  , 
0C  and the two crack surfaces C

 and C
. In the crack-

tip domain V
 bounded by  , C

 and C
, however, singularity exists. We treat this singular 

point in V
 as a stand-alone thermodynamic subsystem   which can exchange mass, energy and 

entropy with the surrounding continuum body. The Helmholtz free energy of this subsystem per 

unit out-of-plane thickness crackd  is assumed to take the form of  

  , , ,crack crack crack Lil n   (5-8) 

where crack  is the temperature and Lin   is the amount of Li per unit crackd . It turns out that Eq. 

(5-8) completely characterizes the thermodynamic properties of the crack subsystem. 

Specifically, the surface energy per unit crack area (  ), the entropy per unit out-of-plane 

thickness ( crackS ), the chemical potential for Li  ,Li crack  and the internal energy per unit out-of-

plane thickness  crackU  can all be uniquely determined via crack  as 

 

,

,

1

2

,

, and

,

crack

crack crack

crack
Li crack

Li crack

crack crack crack crack

l

S

n

U S










 


  


 



   

 (5-9) 
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respectively. Since isothermal conditions are assumed, temperature is uniform in the continuum 

domain and the crack subsystem   is in thermal equilibrium with its surrounding material in V
, 

i.e.  

  , const.crack t  X  (5-10) 

Under this assumption, the incremental form of Eq. (5-8) can be simplified with the help of 

Eq. (5-9) into 

 , ,2 .crack Li crack Li crackl n     (5-11) 

5.1.3. Energy release rate 

Without loss of generality, we assume that   can exchange mass, energy and entropy with 

the continuum body (domain A) only through V
. In other words, we neglect any direct mass, 

energy and entropy exchange between   and A (one possible mechanism for such direct 

exchange is surface adsorption on C
 and C

). Under this assumption, the balances of mass, 

energy and entropy for the combined system of   and V
 (denoted as V  ) require that 

 

,

0 0 1 0
V

1

0 1 0
V

0 0 1 0
V V

mass : ,

energy : ,

entropy :

G crack Li Li Li

J J J J

crack PK q Li Li

Ji i J J J J

q Li Li Li

J Jcrack crack

J J

d
n C dA J N d C l N d

dt

d
U edA v J u J el N d

dt

J u Jd
S dA dA l N d

dt



 


  







 

 



     

       

  
       
 
 

  

 

  + .
















(5-12) 
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Here,  
Γ

V 0dA stands for area integral over the 2D Lagrangian domain V
, while   0d   

stands for path integral along the 2D contour  . The area element 
0dA  and line segment 

0d  are 

both measured in the reference configuration. 0crack   is the entropy production rate (per unit 

crackd ), which can be due to dissipation inside   or dissipation associated with  interactions 

between 
 
and V

. In the derivation of Eq. (5-12), use has been made of the Reynold transport 

theorem on the local forms of Eqs. (2-4), (5-4) and (5-5). 

Combining the last two equations of Eq. (5-12) with Eq. (5-9) under isothermal conditions 

gives 

 
0

V

1

0 1 0 0 0
V

,PK Li Li crack

Ji i J J J

d
dA

dt

v N d l N d d dA



    



  

 

          
  



   J N

 (5-13) 

where      is the Helmholtz free energy of the continuum per unit reference volume. 

Again, 0crack   and 0   here, according to the 2
nd

 law of thermodynamics. 

Equation (5-13) embodies the balance that accounts for the transfer and dissipation of 

Helmholtz free energy around the crack tip. The significance of its terms can be explained as 

follows. The left hand side,   0
V

/d dt dA


  , is the time rate of the total Helmholtz free 

energy in the combined system V   . This system comprises of everything enclosed by the 

moving boundary  , including the singularity point. The four terms on the right hand side are, 

respectively, the rates of the mechanical work done by domain A to V   (1
st
 term), the free 
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energy swept into V   by the moving boundary   (2
nd

 term), the free energy conveyed into 

V   by mass flux (3
rd

 term), and the loss of available free energy in V   due to irreversible 

dissipation (4
th

 term). Here, the shape of   is arbitrary and, except Eq. (5-8), no specific 

assumptions on material constitutive behavior are made in the derivation of Eq. (5-13). 

Note that Eq. (5-13) accounts for different dissipation mechanisms in the continuum, 

including inelastic flow [e.g., P  in Eq. (5-7)] and mass transport [which can be lumped into 

NP  in Eq. (5-7)]. The only requirement is that the 2
nd

 law of thermodynamics is satisfied such 

that  0crack   and 0  . Now, consider the specific constitutive response described in Chapter 

2, in the limit that   shrinks to the crack tip. For the form of   given by Eqs. (2-32), (2-35), 

(2-38) and (4-16), the singularity satisfies the condition 

 0
V0

lim 0.
d

dA
dt




 
 

 
  (5-14) 

This is true as long as 1   for the asymptotic behavior of 1/ij r  when 0r  , where r  is 

the radial distance measured from the crack tip. On the other hand, chemical potential Li  of Eq. 

(2-38) and (5-1) [and even the  Li Li

SF SF    fitted from OCP data] ensures that  
max0     

even when 1/ n

m r  goes to infinity as 0r  . The fact that   (and hence LiC ) is continuous 

and bounded leads to 

 

 

0
V0

1 0
0

lim 0, and

lim 0.

Li

Li

J J

d
C dA

dt

C l N d





  
   

  






 (5-15) 
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Mass conservation near the crack tip [cf. Eq. (5-12)] when 0 , therefore, takes the form 

 ,

0
0

lim ,Li crack Li

J Jn J N d


    (5-16) 

i.e., Li atoms that transport into V   through   are predominantly stored in the crack tip 

subsystem   if 0 . 

Generally speaking, lithium chemical potential Li  in V
 is position-dependent and not 

necessarily equal to ,Li crack  in the   subsystem. When ,Li Li crack  , the transport of Li into   

(at the rate of ,Li crackn ) is dissipative and can be characterized by an positive-definite dissipation 

rate of  , ,

0
lim Li crack Li Li crackn  


 
 

. For simplicity, such an dissipation mechanism is not 

considered in this study, i.e., it is assumed that   is in chemical equilibrium with its immediate 

surroundings such that 

 
,

0
lim .Li crack Li 


  (5-17) 

This assumption [Eq. (5-17)] and Eq. (5-16) immediately lead to 

 , ,

0
0

lim .Li Li Li crack Li crackd n 


    J N  (5-18) 

Combining Eqs. (5-13), (5-14), (5-18) and (5-11), therefore, yields 

 
1

1 0 0
V0 0

lim 2 lim .PK crack

Ji i J Jv l N d l dA    
 

               (5-19) 
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The left hand side of Eq. (5-19) is the time rate at which energy is imparted into the crack tip 

region during crack growth. Under the conditions of local steady state,  1~ /i iv l u X   . The 

driving force for crack growth, namely energy provided per unit new crack area created, is 

therefore given by 

 

1

1 0 1

1 0
0 0

1

lim lim .

PK

Ji i J J PK i
J Ji J

v l N d u
J N d

Xl

  
 

 

     
    

 


  (5-20) 

The right hand side of Eq. (5-19), on the other hand, comprises two parts. The first part 2 l  

corresponds to the increase of free energy in the subsystem  , while the second part 

0
V0

limcrack dA


   
    characterizes the free energy loss due to dissipation. As for any 

irreversible processes, this dissipation is generally history-dependent, in the sense that the 

combined resistance  

 
0

V0

0

lim

2 lim

crack

CR

dA

J
l


 



   
   


 (5-21) 

depends on the history of crack growth even for the same thermodynamic state  , ,crack Lil n  of 

the crack tip subsystem  . For simplicity, the standard assumption of fracture mechanics that 

 CR CRJ J l  is used here, with the understanding that  
CRJ  may also depend on the state of 

charge (i.e., Li concentration) in the electrode. Under this assumption, the critical condition for 
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isothermal quasi-static crack growth accounting for deformation-diffusion coupling can be stated 

as 

 2 .CRJ J    (5-22) 

Equation (5-22) is the Griffith condition for fracture growth when diffusion-deformation 

two-way coupling is present. It should be noted that as a fracture mechanics criterion, the 

Griffith condition generally does not apply to fatigue crack growth and the failure of secondary 

battery electrodes can occur under static or cyclic loads (charge-discharge). However, for an 

electrode to last, it has to survive the first few cycles of loading during which fracture is 

governed by Eq. (5-22). As will be shown in the numerical analysis in sections 5.4 and 5.5, even 

this requirement alone puts significant constraints on the design of battery electrodes. We, 

therefore, use Eq. (5-22) as the criterion for battery failure in this study, and leave the discussion 

of cyclic fatigue to future studies. It should be also noted that even for situations in which fatigue 

is important, analyses such as the Paris-law generally require the calculation of fracture driving 

force (in the form of KI or J). The fully-coupled theory in this study can, therefore, also be 

regarded as an essential part of future models for cyclic failure in battery electrodes.  

5.1.4. Path-independent integral for energy release rate 

The specific form of Eq. (5-20) is general but inconvenient for the numerical evaluation of 

energy release rate because the integral 

  * 1

1 0

1

PK i
J Ji J

u
J N d

X
 



 
    

 
  (5-23) 
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is path-dependent for coupled diffusion/deformation problems. Indeed, for any continuum 

domain   bound by  ,  

  *

1 0 0

1

Li
P Li

J J

C
J w N d dA

X
 

 


    

  , (5-24) 

where the plastic potential Pw  is defined as 

 
   
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2
2
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det : , where
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2

t t
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E F F





  


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

 F D

 (5-25) 

Here,  2 1 TdetPK    F F F   is the 2nd Piola-Kirchhoff stress, and P
E  is the Lagrangian 

strain of plastic deformation.  
1/3

SF SFV J  is isotropic stretch associated with  detSF SFJ  F  

[cf. Eqn. (2-34)]. 

To prove Eqn. (5-24), we first note that balance of momentum [Eq. (2-5)] requires that 

 

1

0.
PK

Ji

JX





 (5-26) 

Therefore, invoking the divergence theorem on Eq. (5-23) leads to 

  *
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1 1

.PK iJ
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

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  (5-27) 
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The Lee decomposition [Eq. (2-1)] indicates that 

 
1 1 1 1

ln
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 (5-28) 

For free energy of the form ( , , )e LiC   F , the 1
st
 Piola-Kirchoff stress and Li chemical 

potential are, respectively [cf. Eqn. (2-9), (2-13), and (2-14)], 
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     (5-29) 

where  
1

P P


f F . Therefore, under isothermal conditions, 
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 (5-30) 

In the derivation of Eq. (5-30), it is assumed that SFV  is uniquely determined by current Li 

concentration [Eq. (2-34)]. 
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Combining Eq. (5-28) and Eq. (5-30) leads to 

 
1
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PK Li PK e SFiJ lJ
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. (5-31) 

With the assumption that elastic strains are small (i.e., 
e e

ij il jlF F  ), the second term on the 

right hand side of Eq. (5-31) can be easily transformed into 

  
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1 2

1 1

P P
PK e SF SF PKlJ JK
Ji il JK

F E
F V V

X X
 
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, (5-32) 

where  
1

2

P P P

JK jJ jK JKE F F    is the plastic strain. By Eqs. (5-27), (5-31) and (5-32), one obtains 
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To proceed further, consider the plastic potential of Eqn. (5-25), and adopt the standard 

approximation such that 

  
2

2

1 1

PP
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
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. (5-34) 

Substitution of Eq. (5-34) into Eq. (5-33) and the divergence theorem lead to  
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and we have proved Eqn. (5-24). The validity of Eq. (5-35) [namely Eqn. (5-24)] mostly depends 

on how significant the error associated with approximation (5-34) is. The path independency of 

Eq. (5-40) is therefore less reliable when approximation (5-34) breaks down. Indeed, for cracks 

in elasto-plastic materials, contours that are very close to the crack tip should not be used [39, 

129].  

Subtracting Eq. (5-24) from Eq. (5-23) leads to the path-independent integral form of 
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 (5-36) 

The integral  J   is path-independent, in the sense that   0J    for the boundary  of 

any continuum domain  . On the other hand, contour   in Eq. (5-20) can be of arbitrary shape 

as long as its size is infinitesimal. To establish a link between Eqns. (5-36) and (5-20), consider 

the special type of   shown in Fig. 5.1 (b). As pointed out by Freund [128], if the rectangular 

contour is shrunk onto the crack tip by first letting 
2 0   and then 

1 0  , one has 

 
1 2

1

1 0
0 0

1

lim lim PK i
J Ji J

u
J N d

X 
 

 

 
   

 
 . (5-37) 

Such rectangular contours are especially convenient because horizontal segments 2 and 4 do not 

contribute to the integral 1 0
1 2 3 4 5

P

J Jw N d
   

  [cf. Fig. 5.1 (b)]. Even if Pw  is singular at the 

crack tip, the plasticity term in Eq. (5-36) still vanishes as long as appropriate limiting process is 

considered, i.e. 



140 

 

 
1 2

1 0
0 0

lim lim 0.P

J Jw N d
 


 

   (5-38) 

On the other hand, for domain V

 bound by   [cf. Fig. 5.1(b)],  1 0

V
/Li LiC X dA



  can 

be evaluated and goes to 0 when 
2 0   and 

1 0  , i.e., 

  
1 2

1 0
V0 0

lim lim / 0.Li LiC X dA
 


 

    (5-39) 

Combining Eqs. (5-37)-(5-39), therefore, leads to the path-independent J-integral for 

coupled mechano-diffusional driving forces in the form of 

     1

1 0 0
V

1 1

,
Li

P PK Lii
J Ji J

u C
J J w N d dA

X X
   



  
       

  
   (5-40) 

where   is arbitrary.  

5.2. Implementation of J by using the energy domain integral method  

We will use Eqs (5-40) to evaluate energy release rates from numerical results given by 

finite element simulations. The main advantage of this path-independent form lies in the fact that 

  can be far away from the crack tip region where the numerical evaluation of  , Pw , 
1/iu X   

and 1PK

Ji   is usually more challenging. In this section, we propose a finite element 

implementation by leveraging the energy domain integral method originally proposed by Shih et 

al. [130]. 



141 

 

Eq. (5-40) is the path-independent form of the energy release rate used in this study for the 

numerical evaluation of J. With Eqs. (2-32), (2-35), (2-38), and some algebra, Eq. (5-40) can be 

recast into 

 

     

 

1

1 1 0

( )

0
V

, 1

/

det ,
e
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J Ji i J
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e Li SF

mLi

J J w w u X N d

w C
dA

C X

 






        
 

  
      




F

F
 (5-41) 

where w  is the elastic strain energy given by Eq. (2-35). Eqn. (5-41) consists of a contour 

integral over a finite path and an area integral over a finite domain.  

Based on Eq. (5-41),we adopt the method originally proposed by Shih et al. [130] in order to 

facilitate the computation of  J  . For arbitrary contours   and 
0C  (cf. Fig. 5.1), consider a 

sufficiently smooth field of  * *q q X  such that * 1q   on   and * 0q   on 
0C . Here,   is not 

necessarily infinitesimal. For traction-free crack surfaces C
 and C

, the path-independent 

expression of energy release rate [Eq. (5-41)] can be rewritten as 
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
F
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 (5-42) 

Here,   stands for contour   with the opposite loop direction. Application of the divergence 

theorem leads to 
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With Eqs. (2-35)-(2-39) and (5-43), 
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 (5-44) 

Here,   and 
0C  are arbitrary [cf. Fig. 5.1 (a)) and   is not necessarily infinitesimal.  

5.3. Model configurations  

The analyses carried out in in the following sections concern the energy release rate for 

stationary cracks. Specifically, the large-deformation, mixed finite element framework of the rate 

form (cf. Chapter 3) is used to analyze the coupling between diffusion and stress development 

[18, 46]. Based on numerical solutions obtained, the energy release rate is calculated using the 

path-independent form in section 5.1. The issues of focus are 



143 

 

1) how does the mechanical driving force for diffusion affect crack-tip fields and 

energy release rate? 

2) how does plasticity affect the energy release rate in the presence of 

diffusion/deformation coupling? and 

3) how does lithiation-induced softening affect fracture and, in turn, battery design? 

 

Fig. 5.2(a) A highly-simplified plane-strain system with a center crack in a 2D 

media, loaded by a remote stress. This configuration will be used to analyze 

the effect of diffusion/deformation coupling in the LEFM regime. (b) a thin-

film electrode with periodic surface pre-cracks, initial homogeneous Li 

concentration 0, and zero initial stress undergoing discharge at a constant 

surface outflux. The pre-crack is modeled as a notch with a small but finite tip 

radius of a for numerical stability. 

To address the first issue, we consider a highly-simplified plane-strain system with a center 

crack in a 2D media [Fig. 5.2(a)]. Lithiation-induced softening is not considered in this case and 

the material is assumed to be perfectly elastic. When the crack is loaded by a remotely applied 

stress 
, the effect of diffusion/deformation coupling can be analyzed, especially in terms of 

crack-tip fields and energy release rate. 
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Based on the insights gained from the above LEFM problem, a more realistic case with 

material inelasticity will be considered to address the second and the third issues. Specifically, a 

thin-film electrode with surface cracks during delithiation will be considered [Fig. 5.2(b)]. 

Analyses in this regard will be carried out in two steps. The first step involves constant 

mechanical properties that are independent of Li concentration (section 5.5.1). After that, the 

implications of lithiation-induced softening will be analyzed (section 5.5.2). 

Depending on the design and material, stresses in an electrode may arise via three 

mechanisms: (1) Li concentration inhomogeneity due to finite diffusivity, (2) lattice mismatch at 

phase boundaries, and (3) constraining by external agencies such as substrate or current collector. 

In order to focus on the effect of deformation/diffusion coupling and lithiation-induced softening 

on the fracture driving forces, we only consider the third mechanism (mechanical constraint) in 

this study. To this end, we assume that the initial material (Li/Si in this study) is fully 

amorphized and that the characteristic loading time 
0T  is much longer than the characteristic 

diffusion time 2

0/Li LiH D   so that the stresses in the electrode are entirely due to external 

loading [for Fig. 5.2 (a)] or mechanical constraint [for Fig. 5.2(b)]. The insight thus obtained can 

be easily extended to situations with 
0~Li T , which will not be the focus of this study. 

5.4. Linear elastic case 

We first consider the linear elastic situation such that the yield stress 
Y  is infinite and 

Young’s modulus E  and Poisson ratio   are  -independent. The geometry of the stress-

controlled configuration [cf. Fig. 5.2(a)] used here can be characterized by a single parameter a 
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which measures the crack length, as long as H a . The pre-crack is modeled as a notch with a 

small but finite tip radius of a for numerical stability. Starting from a stress-free state with 

homogeneous initial SOC of 
0 , the system is loaded by a remote stress of  0/t T E   with 

0

Li T . Under the condition of 
0

Li T , the concentration and stress fields, hence the fracture 

driving forces, do not depend on 
0

LiD  explicitly. Our task is to analyze the effect of mechanical 

driving force for diffusion on crack-tip fields and the energy release rate. 

Table 1 Concentration-independent material parameters for Li/Si used in the 

LEFM analysis. 

Parameter Symbol Typical value Reference/definition 

Partial atomic volume of Li  Li SF
  14.2 Å

3

 [13]  

Si concentration in fully-

discharged state 0

SiC
 

49.3 atoms nm
-3

 [108] 

Young’s modulus E 80 GPa [48] 

Diffusivity 0

LiD
 

10
-11

 cm
2
 s

-1
 [109, 112-114] 

Poisson ratio   0.22 [22] 

Maximum charging limit of 

LiSi max
 

3.75 [62] 

Chemical-to-mechanical 

partial atomic volume 
CM  0.7  Li SF SiC  

Mechanical-to-chemical 

dimensionless partial atomic 

volume 

MC  274  Li SF
/E k  

 



146 

 

Four dimensionless parameters can be identified here: the charging limit 
max , the Poisson’s 

ratio ,  and dimensionless partial atomic volumes  Li SFCM SiC  and  Li SFMC /E k  . The 

meaning of CM  is straightforward: it characterizes the volume expansion ratio when Li 

concentration changes. Specifically, the ratio between the volume at lithiated state LiH and the 

volume at fully-delithiated state Li0H is   CM1SFJ     . CM , therefore, determines the 

effect of chemical diffusion to mechanical deformation (Chemical-to-Mechanical, CM) when 

composition changes. To illustrate the significance of MC,  on the other hand, we consider the 

dimensionless chemical potential /Li

Bk   which can be easily shown from Eqs. (2-38) and (5-1)

to be 

 
MC* ln .

1

LiLi

m

B Bk k E



 

 
   

 
 (5-45) 

The first term of Eq. (5-45) is the chemical contribution to /Li

Bk  , the second term is due 

to mechanical stresses. Since /m E  is proportional to elastic strain e  [cf. Eq. (2-36)], one can 

immediately conclude from Fick’s law [Eq. (2-40) and (5-3)] that MC  is the parameter which 

controls the mechanical driving force to chemical diffusion (Mechanical-to-Chemical, MC). 

Specifically, if MC 0   there would be no stress effect on Li
J . 

The role of CM  has been widely studied, especially in the context of thermally-induced 

fracture. The significance of MC  and associated effect on fracture, however, are still not well-

understood. To see how MC  affects crack-tip fields and energy release rate, we used the typical 

room-temperature ( 300 K  ) values of material parameters for LiSi (H=Si for LiH). The 
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discussions compare two scenarios: one with MC MC

LiSi 
 
as listed in Table 1, and the other with 

MC 0  .. 

5.4.1. In-plane stresses and stress intensity factor 

Fig. 5.3(a) shows the redistribution of Li concentration 
max/    when an initially 

homogeneous electrode (with a=500 nm and 
0 0.4  ) is loaded by a remote stress of 

0.005E  , under the condition of MC MC

LiSi  . The spatial coordinates are normalized by the 

crack length a. It can be seen that   deviates from the average value 
0    such that 

0 0     in front of the crack tip. This redistribution, driven by the crack-tip hydrostatic 

stress 
m , in turn relaxes 

m   [Fig. 5.3(b)], as shown by the much lower 
m  levels for the fully-

coupled case ( MC MC

LiSi  ) than the levels for the purely mechanical case ( MC 0  ).   

 

Fig. 5.3. Distributions of Li concentration and hydrostatic stress near the 

crack tip under a remote stress of 0.005E  . (a) deviation of concentration 

from its spatial average when MC MC

LiSi  ; (b) normalized hydrostatic stress 

/m 
 along the y=0 line for the fully-coupled ( MC MC

LiSi  ) and the purely 

mechanical ( MC 0  ) cases. The inset in (b) shows the corresponding 
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/m 
contours. The length of the center-crack is a=500 nm and the initial 

SOC is 
0 0.4    . All spatial dimensions are normalized by crack length a. 

Given the dependence of 
m  

on MC , one may conjecture that Li redistribution lowers all 

components of crack-tip stresses. Quite counter-intuitively, this is not the case. As shown in Fig. 

Fig. 5.4(a), the in-plane stress components (
xx  and 

yy ) are both independent of MC . The 

relaxation of 
m  is entirely due to the change in 

zz . Indeed, when MC 0   the problem reduces 

to an elementary plane-strain elasticity problem with   0zz xx yy      . On the other hand 

for MC MC

LiSi  , 0zz   [cf. Fig. 5.4(b)]. Such a tensile to compressive change of 
zz  

significantly increases the crack-tip von Mises stress 
mises  [compare Fig. 5.4(c) and (d)]. The 

consequence of this increase of 
mises will be discussed further later. 
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Fig. 5.4. Distributions of 
xx , 

yy , 
zz  and the von Mises effective stress 

mises  

normalized by the remote stress 0.005E  . (a-b) Normalized in-plane 

stresses (a)  and out-of-plane stress (b) along y=0. (c-d) Normalized von Mises 

stress for fully-coupled (c) and purely mechanical (d) cases. The length of the 

center-crack is 500 nm and the initial SOC is 
0 0.4    . All the spatial 

dimensions are normalized by the crack length a. 

In terms of stress intensity factor KI, how does the coupled case here differ from the pure 

linear elastic case in without chemical transport of Li? This issue warrants a careful examination. 

If we follow the classic linear elastic fracture mechanics (LEFM) definition, the single parameter 

KI that determines the in-plane stress fields near the crack tip is evaluated through 

    
0

lim , , 1,2 ,
2

I
ij ij

r

K
f i j

r
 


   (5-46) 
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where  ,r   are the polar coordinates with origin at the crack tip. For both plane-strain and 

plane-stress conditions, Eq. (5-46) has the same form of  ijf  . Effect of out-of-plane constraint 

kicks in only through out-of-plane stress: for plane-strain,  zz xx yy     ; for plane-stress 

0zz  . 

Although the stress states in Fig. 5.4 are computed under plane-strain conditions, the 

relationship of   zz xx yy      is no-longer valid. Instead, 0zz   for MC MC

LiSi  , as seen in 

Fig. 5.4(b). Still, the results in Fig. 5.4(a) indicate that the in-plane stresses are independent of 

MC .  In other words, as long as the material is elastic and sufficient time is given to allow 

diffusion to occur (i.e. 
0

LiT  ), the in-plane stresses can always be characterized by Eq. (5-46) 

even though stresses affect Li redistribution. The outcome is that 
IK  is independent of the 

accumulation of Li at the crack tip. Consequently, 
IK  is incapable of capturing the full effect of 

diffusion-deformation coupling on fracture.  

5.4.2. Energy release rate 

Similar findings on KI have been made for hydrogen embrittlement of metals [53] and 

transformation toughening of ceramic materials [131], in the sense that the in-plane stresses are 

independent of dilatational eigen-strains near the stationary crack tip. This conclusion on in-

plane stresses can also be proved analytically using the linear elastic compatibility conditions 

(which will not be elaborated here). However, previous studies have not clarified if the energy 

release rate, a more universal parameter for fracture analysis, changes as Li redistributes. We 

provide an analysis in this regard. 
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Fig. 5.5 (a) shows the calculated J values for the range of initial concentration of 

00.2 0.999   . The circular symbols denote the non-coupled energy release rate 

 NCP MC 0J J    and the solid lines represent the fully-coupled values of 

 CP MC MC

LiSiJ J   .  For MC 0  , NCPJ  coincides with the purely mechanical LEFM result 

of     
2

NCP 2/ 1 /J aE E    . For MC MC

LiSi  , two observations can be made. First, CPJ  

depends on
0 ; second, CP NCPJ J . Specifically, for all initial concentrations J

CP
 is always 

higher than J
NCP

, except for 
0 0.999   when the two are essentially equal. This trend is more 

clearly seen in Fig. 5.5(b), which shows J
CP

/ J
NCP

 as a function of 
0  (crack length of 500 nm 

and remote load 0.005E  ).  

 

Fig. 5.5. Path-independent J integral for a stationary crack in Fig. 2a using Eq. 

(5-41). (a) Energy release rate for the fully-coupled case 

 CP MC MC

LiSiJ J   as a function of remote stress for different levels of 

initial concentration 
0 , the circular symbols denote  NCP MC 0J J    as 

the baseline for comparison. (b) Dependence of J
CP

 on initial concentration 

when KI (thus J
NCP

) is fixed at a value that corresponds to a=500 nm and 

0.005E  . 
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The 
0 -dependence of CPJ  is due to the fact that Li content   cannot exceed 1, as 

embodied by the fact that /Li

Bk    when 1  [cf. Eq. (5-45)]. If the initial content 
0  is 

close to 1, redistribution of Li cannot happen and CPJ  approaches NCPJ . The plateau for 

0 0.8   [cf. Fig. 5.3(b)], on the other hand, is due to the fact that the relaxation of 
m  is nearly 

complete such that changes in 
0  in the range of 

00.2 0.8    bear no significant influence on 

CPJ . 

 

Fig. 5.6. Illustration of the negative effective Poisson’s ratio effect. When 

material near the crack tip is subject to uniaxial tensile stresses, Li transported 

from a reservoir may overcome the elastic Poisson’s effect and induce an 

overall expansion in the transverse directions. The cuboid with dotted 

boundary denotes the initial configuration of the isolated near-tip system 

before stretching, and the cuboid with solid boundary represent its stretched 

counterpart.  

The finding that / 1CP NCPJ J   appears counterintuitive at the first glance: since Li 

redistribution is a stress relaxation mechanism, why would this redistribution cause the energy 

release rate to increase? It turns out that this anomaly can be associated with a negative effective 
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Poisson’s ratio effect near the crack tip. If we conceptually isolate the LiSi material near the 

crack tip, the bulk of LiSi far from the crack can be regarded as a reservoir with fixed Li 

chemical potential Li

res  [Fig. 5.6]. Consider a uniaxial stretch applied to the near-tip material. 

During the stretch, 
Li

tip  decreases as the hydrostatic stress becomes tensile. The associated 

chemical potential difference 0Li Li

tip res    drives Li from the reservoir into the crack tip. If the 

amount of Li so transported is large enough, the associated lithiation-induced volume change 

may overcome the elastic Poisson effect and lead to transverse expansion. The outcome is 

effectively a negative Poisson’s ratio – tensile loading causes lateral dimensions to increase. This 

is exactly what happens here for LiSi. 

To quantify this effect, we consider the limiting case with 
0

LiD   , MC   and 
max   . 

Under this condition, the chemical potential in the entire material is always in equilibrium and 

the mechanical contribution to diffusion [quantified by  /Li

Bk  ]
 

 MC /m E   dominates 

the chemical contribution    * / ln / 1Li

Bk        [cf. Eq. (5-45)]. Consequently, 
m  in the 

near-tip region is pinned at the same level as that in the remote regions. 

For MC 0  , the elastic response of the material is characterized by bulk modulus K and 

shear modulus G. For MC  , on the other hand, the overall deformation is governed by 

effective moduli effG G , 0effK  , and 1eff   , reflecting the fact that near-tip 
m  is pined at 

the remote level.  
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Now that KI is independent of MC  [discussions in 5.4.1], the introduction of effG  and effK  

allows  MCJ    to be calculated from KI using the classic LEFM relation. Specifically, 

  
 

2
2 2

MC 2

0

1
lim .
eff

eff

I I
Ieff eff

K

K K
J K

E G G






       (5-47) 

In contrast, the energy release rate for the purely mechanical case is 
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We therefore have shown that  
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Indeed, for 0.22   the ratio given by Eq. (5-49) is 2.56 , which is fairly close to the 

plateau value (2.2) of /CP NCPJ J  in Fig. 5.5(b).  The difference is due to the fact that the ideal 

case of 
MC   [Eq. (5-49)] overestimates the relaxation of 

m   compared with the realistic 

case of MC MC

LiSi   [Fig. 5.5(b)].  

From an energetic point of view, CP NCPJ J  embodies the fact that the redistribution of Li 

provides another source of energy for the fracture driving force besides the mechanical fields.  

Two complementary processes make this additional source of energy available for fracture. The 

first is energy storage. For MC 0  , the external agency (
 here) must provide extra work 
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compared with the case with MC 0   in order to induce the same remote fields. This extra work 

is stored as latent energy in the form of inhomogeneous Li concentration. The second mechanism 

is energy retrieval. Through the agency of composition-change-induced stresses, the latent 

energy is converted back into mechanical energy, thereby increasing the fracture driving force.  

The storage process is controlled by MC  and the retrieval process is controlled by CM . If 

either MC  or CM  is zero, the coupling is severed and the energy release rate reduces to the 

purely mechanical level. On the other hand, the analysis in eqns. (5-47)-(5-49) provides an upper 

bound for the change of energy release rate due to this storage-retrieval mechanism. This limit is 

reached when the hydrostatic stress field is completely relaxed (to the remote level) so that full 

redistribution of Li has occurred. This upper bound is universal or the same for all cases 

regardless of material properties and loading, as long as the material response is elastic and the 

loading is slow. 

It should be noted that the anti-shielding effect of J due to deformation-diffusion coupling 

(i.e., the fact that CP NCPJ J ) in this study is evaluated for the steady-state of Li distribution 

such that 
0

LiT  . Under this condition, stresses arise solely because of external constraint [Fig. 

5.2(b)] or mechanical loading [Fig. 5.2(a)]. As pointed out earlier, in general stresses may also 

develop during charge/discharge due to concentration inhomogeneity when 
0~Li T , as seen in 

free-standing amorphous LiSi particles or NWs [17, 32, 43, 45]. For such situations with 

transient effect, deformation-diffusion full coupling would manifest itself in two aspects. First, 

accumulation of Li near the crack tip, again, leads to an anti-shielding effect on J which 

increases the magnitude of the energy release rate. Second, remote concentrations and stresses 
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far from the crack are governed by an effective diffusivity 
effD  [22, 43]. This 

effD   leads to a 

stress-enhanced-diffusion (SED) effect that lowers the remote stresses [43] and hence J. In other 

words, the first effect increases J while the second effect decreases J. The final outcome is the 

combined effect of the two. Depending on the ratio of a/H, the characteristic time scales for the 

two effects can be different. This transient situation of 
0~Li T
 
is not the focus of this section. 

Instead, configurations shown in Fig. 5.2 with 
0

LiT 
 
 are considered in order to isolate the 

effect of Li accumulation near the crack tip (the first effect). The insight thus obtained can be 

easily combined with the effect of SED for far fields and thereby extended to situations with 

0~Li T . 

5.4.3. Remarks on KI-based and J-based fracture approaches 

We have shown earlier that KI is independent of MC , i.e. KI is unaffected by the 

deformation/diffusion coupling in the long-term limit (i.e. 
0

LiT  ). In contrast, Fig. 5.5 and 

Eqs. (5-47)-(5-49) show clearly that the coupled energy release rate does depend on MC . Even 

when the conditions of plane strain are maintained, the relationship between J and KI is no longer 

unique, in the sense that the coupled energy release depends on MC , CM  and 
0 . Given this 

dichotomy, we ponder the question of which criterion, 
I IcK K  or 

CRJ J , is more appropriate.  

To answer this question, we first note that a similar dichotomy exists in classic fracture 

mechanics in that the relationship between J and KI is not always unique there either. 

Specifically, under the same in-plane loading,  2 21 /NCP

IJ K E   for plane-strain and 

2 /NCP

IJ K E  for plane-stress. This difference arises due to the difference in the out-of-plane 
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constraint and, hence, crack tip stress triaxiality.  Here, however, the situation is more 

complicated because the crack-tip stress triaxiality is not only determined by out-of-plane 

constraint but also by the redistribution of Li. Depending on the values of  MC , CM  and 
0 , 

zz may assume any value between  xx yy    and  xx yy   , and J  may be of any value 

between  2 21 /IK E  [for MC 0  ] and  2 2/ 2 1 /I IK G K E   [for MC  ], even under 

the same plane-strain conditions. 

In the pure mechanical case, the fracture criterion can be stated as 

 
( ) ( ), or

( ) ( ).

crack crack

critical

crack crack

CR

K d K d

J d J d

 


 

 (5-50) 

The effect of crack-tip load triaxiality can be lumped into the thickness-dependence of 

fracture toughness ( )crack

criticalK d
 
which is higher than the plane strain fracture toughness 

IcK
 
and 

lower than the plane stress fracture toughness
cK  such that ( )crack

Ic critical cK K d K  . This 

handling allows the stress intensity factor 
IK  calculated solely from in-plane stresses, which do 

not depend on out-of-plane constraints, to be compared with the thickness-dependent fracture 

toughness ( )crack

criticalK d  to determine the onset of fracture. As a conservative measure, the plane-

strain fracture toughness 
IcK  is most often used. A similar treatment is reflected in the J-integral 

based fracture criterion above in that both J and 
CRJ  are thickness-dependent. 

Similarly, it is also possible to state the fracture criterion for electrode materials which 

deforms only elastically and experience diffusion/deformation coupling as 
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as long as both sides of these relations are specific to the same thickness and, in addition, the 

right hand sides are also specific to the initial state of charge 
0 . At this stage, it is unclear under 

what conditions the critical value functions 
0( , )crack

criticalK d   and
0( , )crack

CRJ d   would assume 

their minima or most conservative values. These failure envelopes separating the safe and unsafe 

regions in the 
0( , )crackd   space can only be determined by experiments.  

As a concluding remark to this section, it should be noted the results in Fig. 5.3-Fig. 5.5 are 

based on the highly-idealized assumption that the material is linear elastic. Understandably, the 

behavior of real Li/Si, which is capable of deforming plastically, is different. The results in this 

section may be more applicable to cathode materials such as LiFePO4 which is generally quite 

brittle. When significant (large-scale) plasticity is involved, the K-based criterion (the first of Eq. 

(5-51)) should not be used and the J-based criterion [the second of Eq. (5-51)] is the only 

sensible approach. Nevertheless, the analysis in this section yields insight into the behavior of 

alloy-based electrode materials. This discussion lays the foundation for further discussions 

accounting the effect of plasticity and lithiation-induced softening in the following sections. 
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5.5. Elasto-plastic case  

We now turn our attention to the situation when the electrode material deforms plastically, 

especially when plastic deformation is large enough to render the LEFM approach using K 

invalid. To this end, we first consider a simplified case such that the yield stress 
Y  is assumed 

to be independent of 
0  (section 5.5.1). For this purpose, we assume the same material 

properties and dimensionless parameters as listed in Table 1, with only one extra dimensionless 

number / 1Y Y E   which quantifies concentration-independent yield stress 
Y . The case 

with concentration-dependent 
Y  and elastic moduli will be considered in section 5.5.2.  

When the material deforms plastically, the stress-controlled configuration [Fig. 5.2 (a)] used 

to facilitate comparison with pure mechanical LEFM solutions is no longer appropriate because 

any remote stress 
 exceeding 

Y  would lead to large-scale plastic deformation. In this section, 

we therefore use the configuration shown in Fig. 5.2(b) which involves a thin-film electrode with 

initial thickness H and SOC 
0  under galvanostatic discharging. Again, the pre-defect is a 

surface crack with length a and a small but finite crack-tip radius of a . The initial stress-

free state (with SOC of 
0 ) is taken to be the Lagrangian configuration in which the energy 

release rate is calculated via Eq. (5-41). A surface outflux of 
surfJ  is specified to simulate 

galvanostatic discharging such that the average SOC   in the film decreases with time t 

according to   0 0/t t T     for 
0 0/t T  , where    0 1hour / C- rateT   is the nominal 

discharge time. The nominal thickness 
0H  is the thickness of the film in the fully discharged (i.e., 

0   throughout the electrode) state. It is related to the initial thickness H  via  0 0

SFH J H  . 
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The approximation is associated with elastic strains and therefore is very reasonable. Unless 

indicated otherwise, 
0H  is used because it is more convenient and almost exclusively used in the 

literature [37, 91, 132, 133].  

For the calculation in this section, a typical film thickness of 
0 200 nmH   and nominal 

discharging time of 
0T =50 h are considered. These values are such that 

0

LiT   and are in the 

range of available experimental data. In addition,  0 0/ / 1/ 4SFa H a J H     , so that the 

film/substrate interface does not significantly affect crack-tip fields.  

5.5.1. Effect of global yielding on energy release rate 

For galvanostatic discharging, the dimensionless discharge level  0 0/t t T     can 

be used to conveniently characterize the amount of Li extracted during the process. When 

0

LiT  , all stresses are due to constraint at the film-substrate interface, and the bi-axial stress 

state far from the crack can be written as 

 

 
 0

1
, for ,

3 1

, for ,

SF

xx yy YSF

xx yy Y Y

JE
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  

 
    

 


    

 (5-52) 

where 
Y  is the discharge level at which  

xx  and 
yy reach 

Y  so that the film begins to yield 

globally. 
Y  is approximately independent of 

MC  so long as 
0

LiT  , because MC  only 

affects the Li distribution near the crack and has no bearings on stresses far away from the crack 

 y H  where 
0 Y     is homogeneous.  
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Fig. 5.7. Effective plastic strain 
p

eff  for a stationary crack with a=50 nm in a 

film with nominal thickness 
0 200 nmH   and initial concentration of 

0 0.5  , when the discharge reaches a level 
Y  such that the film begins to 

yield globally with 0.01Y  . (a) 
p

eff
 
for fully-coupled case MC MC

LiSi  ; (b) 

p

eff with MC 0  . 

Fig. 5.7 shows the distribution of effective plastic strain  
0

2 / 3 :
t

p p p

eff dt   D D  for a 

film with 0.01,Y   
0 200 nmH  , a=50 nm and 

0 0.5  , at 
Y    as specified by Eq. 

(5-52). The plastic zone indeed extends through the thickness (horizontal) of the film for both 

MC MC

LiSi   and MC 0  , confirming the onset of full-scale yielding. The remote regions show 

slightly later yielding for MC MC

LiSi 
 
than for MC 0  , mainly because of the finite dimension 

in the y-direction. This slight difference does not affect the main conclusions to be drawn. On the 

other hand, the plastic strain near the crack is higher for  MC MC

LiSi   than for MC 0  , in 
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consistency with the previous finding that Li redistribution increases the crack-tip von Mises 

stress [cf. Fig. 5.4 (c) and (d)]. This promotion of plastic deformation, together with the 

redistribution of Li, is also responsible for the observation that the crack opening is wider for  

MC MC

LiSi   than for MC 0   [see Fig. 5.8 (a) and (b)]. 

 

Fig. 5.8. Distributions of Li concentration and hydrostatic stress for a 

stationary crack with a=50 nm in a film with nominal thickness 
0 200 nmH   
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and initial concentration 
0 0.5  . The condition shown corresponds to onset 

of global yielding at 
Y  

 
with 0.01Y  . (a) hydrostatic stress 

normalized by yield stress for MC MC

LiSi  , (b) hydrostatic stress normalized by 

yield stress for MC 0  , and (c) deviation of Li concentration from its average 

value 
0 Y     for MC MC

LiSi  . 

The redistribution of Li and resultant relaxation of 
m  at 

Y
 
are shown in Fig. 8.  

Although significant plastic strains are involved, the redistribution of Li [Fig. 5.8 (c)] is rather 

similar to that in the fully elastic case [Fig. 5.3 (a)]. Again, this redistribution causes 
m  to relax 

[Fig. 8a and b]. In contrast to what is seen previously, the in-plane stresses are no longer 

independent of MC . This difference indicates that J is the only sensible parameter for 

characterizing the fracture behavior. It turns out that the path-independent form of J in Eq. (5-41) 

is highly robust numerically, with less than 0.5% difference between J calculated from difference 

contours even when   reaches 
Y .  

 

Fig. 5.9. Evolution of energy release rate J for a stationary surface crack with 

a=50 nm in a film with nominal thickness 
0 200 nmH   and initial 
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concentration 
0 0.5  . Solid black lines indicate normalized values of 

 CP MC MC

LiSiJ J    and  NCP MC 0J J    for 0.01Y  . Dashed red 

lines show the corresponding CPJ  and CPJ  values for the corresponding 

elastic cases. 

Fig. 5.9 shows the evolution of J [normalized by (Ea)] for 0.01Y   (solid black lines). 

Both  CP MC MC

LiSiJ J  
 
and  NCP MC 0J J    are plotted, with the corresponding curves 

for the purely elastic cases (red dashed lines) given for comparison. Clearly, plasticity 

significantly affects the energy release rate (both CPJ  and NCPJ ), except for the very initial stages 

of discharge ( 0.01  ) when the plastic zone is small enough so that LEFM provides a good 

approximation.  

As   increases, both 
CPJ  and NCPJ  begin to deviate from their LEFM values. The most 

striking feature is the sudden slope changes in the J   curves (for both fully-coupled case of 

MC MC

LiSi   and purely mechanical case of MC 0  ) when   reaches the global yielding 

threshold 
Y  [cf. Fig. 5.7]. Before 

Y , plastic zone size 
yr  is small relative to the system 

dimension, and the effective KI and J can be estimated using Irwin’s effective crack length 

eff ya a r   [134]. Beyond 
Y   , however, the film yields globally and Irwin’s assumption 

no longer applies. Instead, plasticity in regions far away from the crack tip becomes important. 

This prevents the remote stresses from increasing further and leads to much flatter CPJ  and NCPJ  

curves. Such global yielding is important because it significantly reduces the energy release rates, 

thereby lowering the fracture tendency. 
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The shapes of the J -  curves in Fig. 5.9 are consistent with that was found by Aoki et al. 

[135] who calculated the energy release rate for a stationary crack in a thermally-loaded plate. 

What they studied corresponds to the special situation with CM 0   and  MC 0  .  Our 

calculation confirms that the overall characteristics of the J -  curve, especially the existence 

of inflection points, remain even for fully-coupled case with MC 0  . More importantly, Fig. 

5.9 indicates that J
CP

/ J
NCP

>1 even when the combined effect of plasticity and 

diffusion/deformation coupling is considered, although the upper bound given by the linear 

elastic solution [Eqs. (5-47)-(5-49)] can no longer be used directly. 

 

Fig. 5.10. Dependence of energy release on yield stress 
Y .  The length of the 

surface crack is a=50 nm and the nominal film thickness is 
0 200 nmH  . The 

initial concentration is 
0 0.5  . Full deformation-diffusion coupling 

( MC MC

LiSi   ) is considered. 

Fig. 5.10 shows the dependence of J on
 Y  for the fully-coupled case of MC MC

Li  . For 

both 0.005Y   and 0.01Y  , an inflection point is seen in the J-  relation. The location of 
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the inflection point for each case corresponds to its global-yielding threshold 
Y .  Overall, the 

reduction in 
Y  lowers the fracture tendency by lowering J [e.g. 

    elastic0.005 0.01Y YJ < J < J    for 0.05  ], except for early stages before global 

yielding occurs so that the development of J is approximately governed by the effective crack 

length 
effa a .  In terms of elastic modulus, note that J is normalized by Ea so a reduction in E 

would also lead to a reduction in the fracture driving forces. 

The discharge level 
CR  when critical condition CRJ J  is reached determines the 

maximum extractable amount of Li without electrode failure. Designs and cycling regimens that 

maximize 
CR  would increase the utilizable capacity of the electrode without jeopardizing its 

cyclability. For the same 
CRJ and a, Fig. 5.10 shows that choosing materials with smaller E  and 

Y  (hence 
Y ) is an effective way to avoid fracture.  

5.5.2. Effect of lithiation-induced softening  

What we learned from Fig. 5.10 can be important for alloy-based electrode materials, 

because the elastic moduli and yield stress of such materials show significant dependence on Li 

concentration. If we manage to find a composition window  0 0,CR     for which the 

combination of elastic modulus and yield stresses minimizes J , we can operate the battery in 

such a window to maximize the operational capacity 
CR .  
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Fig. 5.11. Dependence of energy release rate on discharge level   and 

initial concentration 
0  for a crack length of 20 nm. Full deformation-

diffusion coupling is considered. 

To find such a window for Li/Si, we now put all the insights learned thus far together and 

assess the combined effect of diffusion/deformation coupling, inelasticity, and lithiation-induced 

softening on fracturing driving force. To this end, calculations involving composition-dependent 

bulk modulus (12.46 65.44) / (1 )K     GPa, shear modulus (7.63 35.51) / (1 )G      

GPa [77], and yield stress    1.75 0.167 / 1Y      GPa, are conducted. The variation of 

yield stress with concentration represents a simple interpolation between 1.75Y   GPa at 0   

and 0.5Y   GPa at 
max   [15, 56] using the rule of mixture. Although it is likely that 

CRJ  

for Li/Si is composition-dependent, we adopt a constant value of 23 J / mCRJ   due to lack of 

experimental data. This critical value is estimated using the toughness for pure silicon which is 

typically between 2.5~4.3 J/m
2 
[38]. 
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Since the mechanical properties here are concentration-dependent, dimensionless parameters 

MC  and 
Y  are no-longer convenient, and all quantities will be stated in their respective 

physical units. The system configuration and discharge rate are the same as those in section 5.5.1 

[Fig. 5.2 (b)], which is relevant for thin-film electrodes under galvanostatic discharge. 

Fig. 5.11 shows the dependence of J development on initial concentration 
0 , for a film 

with nominal thickness of 
0 200 nmH  and pre-crack length of a=20 nm. For each J   

curve, the critical discharge level 
CR  at which 

CRJ J  is marked. Two scenarios can be 

identified. For lower 
0  [e.g., 

0 0.6  ] the energy release rate reaches its critical value before 

the onset of full-scale yielding. For higher 
0 [e.g., 

0 0.8  ], on the other hand, the material is 

softer and the inflection point 
Y

 
is reached before fracture.  

In the first scenario, fracture is essentially governed by Irwin’s effective crack length. Under 

this condition, the 
0CR   dependency is mainly due to lithiation-induced elastic softening 

(i.e. reduction of elastic moduli as Li concentration increases). Specifically, since J is 

approximately proportional to the Young’s modulus [note that J is normalized by (Ea) in Fig. 

5.10], the fracture driving force is lower when the operation window is chosen at higher 

concentrations. In the second scenario, relaxation due to global yielding comes into play, leading 

to much wider windows of  0 0,CR     than that in the first scenario. The increase in 

CR  due to global yielding is much more significant compared with that due to elastic softening. 

For all cases, the maximum allowed operational capacity
CR  is always higher when 

0  is 

higher, as a combined consequence of the lithiation-induced softening of E  and 
Y . 
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Fig. 5.12 Design map showing the maximum extractable amount of lithium   

without crack growth as a function of initial SOC 
0  for different pre-crack 

sizes. Full deformation-diffusion coupling is considered. 

We conclude our discussion with a design map [Fig. 5.12] which shows the maximum 

utilizable amount of Li (as measured by  ) as a function of 
0  when pre-cracks with different 

sizes are present. Again,  0 0,CR     is the safe window in which the electrode can be 

operated without fracture. For each pre-crack length a, the corresponding 
0CR  curve 

delineates the boundary between the unsafe region (upper left) and the safe region (bottom right). 

In real thin-film electrodes, the smoothness of electrode surfaces is always limited by the 

manufacturing and operating conditions, and the existence of surface defects is inevitable. Fig. 

5.12 indicates that for the same operational capacity ( ), a thin-film electrode is always more 

defect-tolerant when the changing/discharging regimen is designed such that the battery operates 

at higher concentration windows of  0 0,CR    .  
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As a final remark, it should be noted that  
CR  in Fig. 5.11 and Fig. 5.12 is calculated 

based on the assumption of a constant 
CRJ . For real alloy-based electrode materials, it is very 

likely that 
CRJ  is concentration-dependent. Taking conventional engineering material as 

reference, the general trend for fracture toughness is that KIC is higher for materials with lower 

Y . If this trend is also true for Li/Si, 
CRJ  would be higher at higher Li concentrations, a 

condition that would further reinforce the conclusion that operation at higher concentration is an 

effective means to mitigate failure of thin-film Li/Si electrodes. Such an analysis with 

composition-dependent 
CRJ , however, requires detailed experimental measurements and is not 

attempted in this study. 

It should also be noted that the analysis here is based on a stress-free initial condition which 

does not consider residue stresses from prior lithiation processes. Such a simplification, however, 

does not affect the primary conclusions, especially the conclusion that operation windows at 

higher concentrations enhance battery cyclability. 

5.6. Conclusions 

In this final chapter, a fully-coupled finite deformation theory for analyzing the coupled 

mechano-diffusional driving forces for fracture in electrode materials is developed. The 

formulation of J-integral treats the crack tip as a separate thermodynamic system and entails 

detailed account of balances of mass and energy and evolution of entropy. It is found that the 

standard form of J-integral for energy release rate is no longer path-independent when coupled 
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mechano-diffusion driving forces are present. Instead, an area integral must be included to 

maintain path-independency.  

A numerical scheme for implementing this path-independent formulation through mixed 

finite element simulations is given. This numerical scheme is found to be highly robust, even 

under conditions of global yielding. 

Under loading, lithium accumulates at tips, leading to relaxation of hydrostatic stress. This 

process does not affect in-plane stress fields or the tress intensity factor as along as the material 

is linear elastic and sufficient time is given for diffusion to occur (i.e. 
0

LiT  ). In contrast, the 

deformation-diffusion coupling increases the energy release rate (driving force for fracture). This 

anti-shielding effect on J can be understood through a negative effective Poisson’s ratio effect. 

Specifically, the anti-shielding effect embodies the fact that the redistribution of Li provides 

another source of energy for the fracture besides the mechanical fields. Two complementary 

mechanisms make this additional source of energy available. These two mechanisms are 

controlled by two partial atomic volumes. The first is the chemical-to-mechanical 
CM , which 

controls storage. The second is the mechanical-to-chemical 
MC , which controls retrieval.  

For electrode materials, energy release rate J and stress intensity factor K are not uniquely 

related. Under conditions of significant plasticity, K cannot be used and J is the only sensible 

choice for characterizing fracture. Before global yielding, fracture is governed by Iwrin’s 

effective crack length; after global yielding, plastic deformation in regions far from the crack 

significantly reduces J and, hence, the likelihood of fracture. Global yielding marks an inflection 

point in the energy release rate-discharge level curve. In general, the driving force for fracture in 
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thin-film electrodes can be lowered by operating at higher Li concentrations. A design map is 

developed to quantify this effect, accounting for lithiation-induced material softening, full 

diffusional-mechanical coupling and plasticity. This map can be used to guide the design of 

electrodes to improve cyclability and maximize utilizable operational capacity. 
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6. Concluding remarks 

6.1. Significance of contribution 

Electrode degradation due to internal stress build-up during cycling has been one of the key 

challenges for secondary battery designers. When guest atoms are inserted or extracted from the 

host in an electrode, the material in the electrode expands or contracts, inducing stresses that may 

cause material cracking. This issue is especially important in alloy-based electrode materials, 

which are attractive because their capacities are much higher than that of graphite, but at the 

same time experience much higher volume expansions. Previous studies indicate that 

miniaturization can be an effective means to develop electrodes for the next generation high-

capacity and high-performance rechargeable batteries.  

The improvement of nano-sized Li-alloy electrode materials requires a fundamental 

understanding of the chemo-mechanical characteristics of the coupled chemical-mechanical 

processes associated with the operation of batteries. While stress buildup associated with 

lithiation and delithiation bears certain resemblance to the development of thermo-stresses, a 

phenomenon better studied and relatively well-understood, the multiphysics processes in alloy-

based electrodes are much more complex, challenging and intriguing. The reasons are not only 

because much larger deformations are involved, but also because the processes entail two-way 

coupling between diffusion and deformation, nonlinearity and chemical reaction. This richness 

of physics presents opportunities for interdisciplinary research to the solid mechanics, physics, 
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chemistry, and materials communities. While the issues are challenging, the new phenomena are 

both theoretically interesting and practically important.  

We have shown that the coupling between diffusion and stress is two-way and the strength 

of the mechanical-to-chemical coupling in Li/Si is much stronger that what has been known in 

other electrode materials such as intercalation cathode materials (e.g., LiFePO4) and 

carbonaceous anode materials (e.g., LiC6). Theoretical analyses of this coupling necessitate 

realistic models that account for the relevant physics and special techniques. Specifically, one of 

the major numerical challenges here is associated with the gradient of hydrostatic stress that 

appears in the governing equation for diffusion fluxes when a finite element (FE) method is used. 

We have proposed a method to leverage the concept of mixed finite elements to simulate the 

diffusion/deformation two–way coupling. Instead of using only the deformation and 

concentration of the diffusion species as nodal variables, the hydrostatic stress m   is treated as a 

redundant degree of freedom, thereby automatically resolve the relevant gradient needed by 

Fick’s law. 

Calculations based on the mixed finite element method indicate that lithium diffusion is very 

sensitive to external constraint. The design of battery electrodes involves tradeoffs among 

capacity, cyclability and operational charging rate. The main advantage of alloy-based electrodes, 

especially Li/Si, is their much higher capacity compared with carbon-based electrodes. In terms 

of cyclability, it has been suggested that plastic flow can be beneficial for Li/Si electrodes 

because it relaxes stresses and thus reduces the chance of electrode failure. Our results indicate 

that there is another mechanism at work. On one hand, plasticity may help avoid electrode 

fracture – a mechanism that can be utilized by adopting measures that promote inelastic flow 
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through the tailoring of material properties and changing charging regimen. On the other hand, 

plasticity may inhibit Li transport, especially under tight mechanical constraint. Under any 

scenario, designs with less mechanical constraint on the electrodes are desirable because  

mechanical constraints  diminishes stress-enhanced diffusion and magnifies the deleterious effect 

of plasticity and concentration-induced softening on Li transport. Because of these reasons, even 

in terms of operational charging rate alone, Li/Si nano-particles (e.g. nanospheres, nanoflakes, 

nanowires and nanotubes) are superior to Li/Si thin films or bulk materials. Our results in this 

regard provide further support for nano-particles as building blocks for next-generation alloy-

based electrodes. 

At high lithium concentrations, the diffusive migration of silicon may become non-

negligible. It is found that diffusion of the host atoms can have a significant impact on stress, 

primarily because of the chemical interactions between the species and the effect of stress 

gradient on interdiffusion. In particular, under conditions of pure elastic deformation the 

diffusion of Si atoms can cause stress reductions up to ~20% with the modest diffusivity ratio of 

/ 1/ 50Si LiD D  . For amorphous Li/Si alloys, the mechanical driving force dominates the 

chemical driving force, resulting in the migration of Si in the direction of the gradient of the 

hydrostatic stress m or from the surface to the center of cylindrical electrodes. The analysis 

has also shown what the behavior would be for alloys with (perhaps unrealistically) high 

thermodynamic factors. Our results indicate that the effect of interdiffusion on stress relaxation 

can be important even when the stress levels are below the yield threshold of the material. 

A theory of coupled chemo-mechanical fracture driving forces is formulated in order to 

capture the effect of deformation-diffusion coupling and lithiation-induced softening on fracture. 
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This measure is used to analyze the fracture tendency in Li/Si electrodes through simulations by 

using the mixed finite element framework. Calculations show that under tensile loading, Li 

accumulates in front of crack tips, leading to an anti-shielding effect on the energy release rate. 

For a pre-cracked Li/Si thin-film electrode, it is found that the driving force for fracture is 

significantly lower when the electrode is operated at higher Li concentrations -- a result of more 

effective stress relaxation via global yielding. The results indicate that operation at higher 

concentrations is an effective means to minimize failure of thin-film Li/Si alloy electrodes. A 

design map for avoiding failure is thereby developed. 

6.2. Future directions 

All models and analyses for alloy-based electrode materials ultimately have a common goal: 

to improve the performance of batteries in terms of capacity, cyclability, and power density. The 

mitigation of lithiation-induced mechanical fracture and property degradation is generally 

regarded the foremost issue. On the other hand, experiments also show that besides fracture, 

alloy-based electrodes may also fail due to the formation and coalescence of internal voids [5]. 

Such failure by voiding, although potentially important, has been given much less attention than 

the failure by brittle or ductile fracture. Future research in this regard is considered highly 

relevant and important by the author. 

On the other hand, most research on the mechanical issues of battery electrodes have 

focused on the stresses and fracture in the electrode material itself. Relatively less research has 

been carried out to consider the effects of the solid-electrolyte interphase (SEI), a layer that 

forms on the surface of electrodes [136]. This is partly due to a lack of experimental data on the 
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mechanical properties of SEI. Nevertheless, studies by Wu et al. [3] indicate that the interaction 

between the SEI and the electrode material may significantly affect battery cyclability. 

Understanding of the implications of SEI on the stresses and failure tendency is probably the 

most important missing link between the current mechanical models and a more comprehensive 

understanding of the interplays among different factors in battery operation.  

Finally, it is important to point out that ultimately the design of battery electrodes must 

reach the macroscopic size scale. As such, it is recognized that the microstructures of electrodes 

consist of not only the active particles or films, but also a binder and pores. There is no doubt 

that the complexity of models increases significantly when one goes from isolated particles to 

microstructures. Almost inevitably, simplifying assumptions and approximations are needed. The 

porous electrode theory [137, 138] is one of the earliest successful theories to reduce the 

complex microstructures of battery electrodes into a more tractable 1-D homogenized picture. 

Christensen [139] proposed a pseudo-2D model which is essentially a multi-scale model that 

links the global solution of porous electrode theory to the microscopic response of an individual 

particle. Bottom-up models that directly simulate the coupling between electrochemistry and 

mechanical deformation at the microscopic level have also been developed [50, 117, 140, 141]. 

Despite these progresses, the chemo-mechanical properties and behaviors of electrode 

microstructures are much less investigated than those of stand-alone electrode particles, and the 

microstructure design which accounts for the essential multiphysics processes and the 

hierarchical nature of the materials is yet another area with significant research needs. 
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