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SUMMARY 
 

 

Neutron radiation detectors are an integral part of the Department of Homeland 

Security (DHS) efforts to detect the illicit trafficking of radioactive or special nuclear 

materials into the U.S.  In the past decade, the DHS has deployed a vast network of 

radiation detection systems at various key positions to prevent or to minimize the risk 

associated with the malevolent use of these materials.  The greatest portion of this 

detection burden has been borne by systems equipped with 3He because of its highly 

desirable physical and nuclear properties.  However, a dramatic increase in demand and 

dwindling supply, combined with a lack of oversight for the existing 3He stockpile has 

produced a critical shortage of this gas which has virtually eliminated its viability for 

detector applications.  And, although a number of research efforts have been undertaken 

to develop suitable replacements, none of these efforts are attempting to closely match 

a 3He detector response across different neutron energy spectra, which is critical for 

certain non-proliferation programs and special nuclear material (SNM) assessments.  

Therefore, the objective of the proposed research was to produce several spectrally 

matched and validated equivalent neutron detectors for the direct replacement of 3He in 

these neutron detection applications. 

 

Prior to developing any actual designs, the fidelity of a computational approach 

was validated by executing radiation transport models for existing BF3 and 3He tubes and 

then comparing the results of these models to laboratory measurements conducted with 
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these exact detectors.  Both tubes were 19.6 cm in height, with a 1-inch diameter, and 

operated at 1 and 4 atm pressure respectively.  The models were processed using a 

combination of forward Monte Carlo and forward and adjoint 3-D discrete ordinates (SN) 

transport methods.  The computer codes MCNP5 and PENTRAN were used for all 

calculations with a nickel-filtered plutonium-beryllium (PuBe) source term that is 

equivalent to that of weapons-grade plutonium (WGPu).  Once the computational 

methods were validated, six distinct plug-in models were developed that matched the 

neutron spectral response and reaction rate of a 1-inch diameter 3He tube with a length of 

10 cm and operating at 4 atm pressure.  The equivalent designs consist of large singular 

tubes and dual tubes containing BF3 gas, B-10 linings, and/or polyvinyl toluene (PVT). 
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CHAPTER 1 
INTRODUCTION 

 

 

 

1.1 The Scope of this Neutron Detection Research 

 

Neutron detection is an integral part of our government’s non-proliferation efforts, 

both here and abroad.  These efforts have been severely hampered over the course of the 

past four years because of a severe shortage of the neutron detection gas 3He, which had 

previously become the most popular neutron detection mechanism.  Once the crisis was 

realized, the nuclear engineering research community began concerted research efforts 

toward developing new neutron detector materials or investigating whether existing ones 

could serve as an adequate replacement for the gas. 

 

To date, all associated 3He replacement research efforts have solely focused on 

“simple” detection cases where the overall system efficiency is the solitary concern (e.g. 

hand-held devices, portal monitoring systems, and backpack units).  For these simple 

cases, the use of solid materials or the inclusion of additional alternative gas detectors can 

generally address the overall detection issues, because the neutron spectral response 

(efficiency as a function of neutron energy) is irrelevant.  However, in most non-

proliferation programs such safeguards and material control and accountability programs 

associated with fissile special nuclear material (SNM) material assessments, detection 

results are almost exclusively calibrated directly to a reaction rate in 3He proportional 
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counters, and a mismatch in the neutron spectral response will result in serious mass 

quantification errors and potentially dire consequences. 

 

In these instances, a “simple” material replacement or additional detector approach 

is neither appropriate nor possible due to influences resulting from the complex nature of 

neutron scattering in moderators, cross section variations, gas pressures, geometries, and 

surrounding structural interferences or other constraints.  Instead, these more challenging 

detection cases require a detailed computational transport analysis be performed for each 

specific application.  Therefore, a leveraged approach using adjoint transport 

computations, and validated using forward transport and Monte Carlo computations, and 

selected confirmatory laboratory measurements can adequately address all pertinent 

issues associated with 3He tube replacement with spectrally-matched performance. 

 

This dissertation begins with a historical discourse on the evolution of the 3He gas 

crisis, discusses why this gas was highly prized as a neutron detector material and 

concludes with existing alternative detector materials and designs developed in this 

research that can serve as direct “plug-in” replacements for a 1-inch diameter, 4 

atmospheres (atm), and polyethylene-moderated 3He tube.  The proposed replacement 

detectors will yield a 3He spectral match while also delivering equivalent overall system 

efficiency for a given detection scenario. 
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1.2 Causal Factors of the 3He Gas Crisis 

 

Neutron detection is an integral part of our government’s efforts to detect the 

illicit trafficking of radioactive materials across our borders.  Following the events of 

September 11, 2001, President Bush and Congress acted swiftly to create the Department 

of Homeland Security (DHS) and to assign a cabinet-level position to its secretary.  The 

objectives of this department were to: (1) prevent terrorist attacks within the United 

States; (2) reduce America’s vulnerability to terrorism; and, (3) to minimize the damage 

and recover from attacks that do occur.  Legislation to create the DHS was separately 

introduced by Senator Joe Lieberman (D-CT) in S. 1534 and Dick Armey (R-TX) in H.R. 

5005 in the years 2001 and 2002 respectively.  Once the separate bills were merged in 

committee and voted on by both houses of Congress, President Bush signed the measure 

into law on November 25, 2002 as the Homeland Security Act of 2002 [1]. 

 

Prior to the formal creation of the DHS, the primary focus of the country was on 

airline security and intelligence gathering associated with this effort.  This mindset on 

airline security continued until March of 2002, when the terrorist Abu Zubaydah was 

captured in Pakistan.  The interrogation of Mr. Zubaydah by the Federal Bureau of 

Investigation (FBI) and the Central Intelligence Agency (CIA) in May of that same year 

led to the discovery of a plot by Jose Padilla to deploy a radiological dispersal device 

(RDD) within the United States.  Mr. Padilla was subsequently arrested that June [2]. 
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Following the discovery of the RDD plot, the homeland security focus 

significantly shifted into the realm of nuclear terrorism and the need to be able to detect 

illicit trafficking of radioactive materials or nuclear devices, both domestically and 

internationally.  Large-scale efforts such as the Second-Line of Defense and the Mega-

Ports Initiative, which were borne out of the RDD threat, resulted in a significantly 

increased need for neutron detectors.  The detectors were deployed in various locations 

such as airports, maritime ports, and border crossings inside portal monitors and/or cargo-

screening systems.  The lion share of the detection burden was borne by systems 

equipped with 3He because of highly desirable properties that will be discussed in the 

next section.  The dramatic increase in the use of this gas, combined with a limited 

supply, has led to a critical shortage that is adversely affecting not only the nuclear 

industry, but the medical, low-temperature physics, and the oil and gas industries as well.  

Gas that could be purchased for slightly more than $100 per liter in 2009 is now 

commanding a price in excess of $2100 per liter in 2013, if it can actually be procured at 

all [3]. 

 

Demand for the gas had been relatively stable at less than 25,000 liters annually 

for several decades prior to the formation of the DHS; however, once the department 

began instituting its radioactive material interdiction programs, demand for the gas soared 

and it is now estimated to be in the range of 75,000 – 85,000 liters per year [3 – 4].  The 

Department of Energy (DOE), who had been entrusted with managing the nation’s supply 

of 3He, failed to regulate the release of the gas at this critical juncture and, as a result, 

over two-thirds of the stockpile, which had been accumulated over a forty-year period, 
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disappeared in about six years.  Once the extent of the shortage became apparent, the 

Congress removed control of the stockpile from the DOE and formed an interagency task 

force to regulate the dispensing of the gas.  This task force suspended all distributions for 

2009 and began a rationing program to release only 8,000 – 12,000 liters annually while 

the group actively seeks solutions to the crisis.  By comparison, over 60,000 liters alone 

have been used for the 1300 portal monitoring systems that have been deployed for 

domestic border crossings, shipping ports, and airports during the short lifetime of the 

DHS [4]. 

 

In a separate effort, the Congressional Subcommittee on Investigations and 

Oversight also began holding hearings on the shortage of the 3He gas in the autumn of 

2009 to determine possible courses of action and the overall impacts of the gas shortage.  

This subcommittee has already made some short-term recommendations to the President 

of the United States and to the Secretary of the DHS, including the need to suspend some 

programs such as the Advanced Spectroscopic Portal (ASP) program [5 – 6].  This ASP 

program alone required over 200,000 liters of 3He, but the main contractor for the 

program, Raytheon, was completely unaware of the 3He supply problem until the 

congressional hearings began.  Thus, the hearings demonstrated the lack of information 

DOE previously provided about the problem. 

 

In April of 2010, the subcommittee held another set of hearings that were 

captured in the report entitled, Caught by Surprise:  Causes and Consequences of the 

Helium-3 Supply Crisis.   During this meeting, the subcommittee received a great deal of 
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testimony from two separate panels of experts regarding the large-scale effects on science 

and industry [7]. 

 

1.3 Neutron Detection and the Appeal of 3He 

 

Since neutrons are neutral particles, they are generally detected by nuclear 

reactions within the detector volume that create charged particles.  The charge from these 

interactions can then be collected, analyzed, and quantified to provide the necessary 

information about the radiation field.  In general, exothermic reactions are desired for 

slow neutron reactions, while endothermic reactions are used for faster neutrons.  As a 

general rule, neutron energies below 0.5 eV, referred to as the cadmium-cutoff energy, 

are referred to as slow or thermal neutrons, while those with energies greater than this are 

considered fast neutrons [8].  The term thermal refers to neutron energies that are slow 

enough to be considered in thermal equilibrium with their surrounding materials. 

 

There are several important factors that determine the usefulness of a material for 

neutron detection.  First, the probability of the reaction occurring, or the cross section, 

should be as large as possible to ensure that a reasonable detector size can be realized.  

Second, excess energy created in the material due to a neutron interaction (Q-value) 

should be as large as possible to allow for easier discrimination between the neutrons and 

photons.  The target material should also be available in high abundances from naturally-

occurring isotopes or easily produced through artificial means such as enrichment.  And 

finally, it is also advantageous if the material is inert and does not have any hazardous 
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properties such as toxicity or corrosiveness.  It should be noted that no single material 

ever excels in all these factors, so a suitable choice must be made between the candidates 

for one that best meets the application-specific goals [9].  The remainder of this section 

will be spent discussing the useful properties of 3He in order to demonstrate why this 

particular gas became such a popular choice for neutron monitoring applications. 

 

The first important factor to be considered when choosing a neutron detector 

material is the probability or cross section for a particular reaction.  The cross section for 

neutron interactions in all materials is heavily dependent on the incident neutron energy 

and, therefore, its velocity.  This fact makes the magnitude of the cross section far more 

important for gaseous materials, such as 3He because the low density of a gas nearly 

precludes the probability of neutron moderation within a detector volume.  The 

mechanism of charge creation in 3He results from the production of charged particles 

according to the following relation: 

 

 𝐻𝑒 +  𝑛01  →  𝐻13  +  𝑝11 +  0.764 𝑀𝑒𝑉2
3  . (1.1) 

 

This reaction has a cross section of 5330 barns (10-24 cm2) if induced by a thermal 

neutron and is exothermic [9]. 

 

The cross section for the 3He reaction is the highest of any neutron-detection gas; 

however, the Q-value is lower by a factor of nearly four compared to another popular 

neutron detection gas, BF3, which is highly enriched in 10B (up to 96%).  Although the 
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Q-value is relatively low as far as neutron detectors are concerned, this shortcoming is 

greatly offset by the low atomic number (Z) and density of the gas, which significantly 

reduces photon interactions within the active volume of the detector.  By using a 

combination of activated charcoal to adsorb gas impurities in concert with the physical 

properties of the gas, sufficient photon discrimination can be achieved such that newer 

tubes can generally operate without noticeable interference up to about 2 Gy h-1 (200 rads 

h-1) [10].  These reaction properties, therefore, allow for the application of a very simple 

photon discrimination technique based solely on pulse height as compared to more 

elaborate methods necessitated by the use of solid and liquid detectors. 

 

The smaller magnitude of energy deposition resulting from photon interactions 

produces electrical pulses that are smaller in amplitude compared with Q, which allows 

most gas detectors, including 3He, to employ a simple differential discriminator or single-

channel analyzer (SCA) for photon discrimination.  The SCA window is established 

during the equipment setup phase such that single photon pulses will fall beneath the 

lower-level discriminator and multiple (pileup) events result in signals that exceed the 

upper-level discriminator setting as depicted in Figure 1.1.  An examination of this figure 

shows that the detector system has actually received five input pulses; however, three of 

the pulses do not meet the SCA energy window criteria and have, therefore, been rejected 

from consideration, resulting in a final tally of only two counts.  In this depiction, the first 

event likely occurred as a result of two nearly simultaneous events that could not be 

resolved electronically (photon-photon or neutron-photon), while the two smaller pulses 

resulted from photon interactions. 
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Fig. 1.1.  Differential discriminator or single-channel analyzer (SCA) [9].  

 

One final important consideration for a prospective detector material is its 

associated chemical properties.  Here 3He possesses a distinct advantage, because the gas 

is chemically inert and non-hazardous, which minimizes certain constraints for producers 

and users alike.  First, the tube can be pressurized without any concern for personnel 

safety, which increases the neutron detection efficiency and reduces the wall effect in the 

gas.  This effect occurs when the reaction products interact with the detector wall and are 

not fully stopped within the active volume. 
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1.4 The 3He Economy 

 

1.4.1 3He Supply 

 

The single largest detractor from using 3He as a detector medium is the severe 

lack of supply associated with the gas.  Unlike other materials that are naturally abundant 

or that can be enriched or produced through artificial means such as neutron 

bombardment, or accelerators, the sole supply of 3He is essentially from the decay of 

tritium with a 12.3 year half-life as shown by 

 

 𝐻 → 𝐻𝑒2
3  +  𝛽−1

0  +  �̅�001
3 +  18.6 𝑘𝑒𝑉 ,  (1.2) 

 

  

 

because the natural abundance of 3He in helium of 1.37 ppm makes any enrichment 

unattainable.  The U.S. inventory, which at one time exceeded 200,000 liters due solely 

to gas reclamation from its nuclear weapons activities, has plunged to the neighborhood 

of 45,000 liters and is now being rationed to ensure a delivery of no more than 12,000 

liters for 2010; moreover, the DOE currently estimates that it will have no more than 

8,000 liters of gas available annually beyond 2010 [4]. 

 

Prior to 1988, the DOE produced ample quantities of tritium at its heavy-water 

reactor facilities of the Savannah River Site (SRS) in Aiken, South Carolina, which 

indirectly ensured an ample supply of 3He; however, these facilities were shut down and 

decommissioned because of safety concerns, which eliminated the direct U.S. supply.  
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The lack of a direct 3H-supply existed for over ten years, until the DOE contracted with 

the Tennessee Valley Authority (TVA) in 1999 to produce the gas at its Watts Bar and 

Sequoyah nuclear plants [11].  TVA is currently producing tritium using lithium 

aluminate ceramic absorber rods that are highly enriched with 6Li (naturally-occurring 

lithium is only ~7.4% 6Li).  These rods are inserted into the reactor and removed during 

the 18-month refueling cycles.  Tritium is produced in these rods mainly through the 

following reaction: 

 

 𝐿𝑖  + 𝑛01 → 𝐻13  +  𝐻𝑒 + 4.78 𝑀𝑒𝑉2
4

3
6  .  (1.3) 

 

  

 

A similar reaction is also possible with 7Li; however, the threshold energy for this 

reaction is about 4 MeV and the cross section reaches a relatively constant value of 360 

mb at 6 MeV, making the reaction important only in the case of a thermonuclear weapon. 

 

The irradiated rods are transferred to the Tritium Extraction Facility at the SRS 

where the tritium is recovered [12].  This process, although effective, provides only 

enough tritium to meet DOE’s stockpile needs and does nothing to address the 3He crisis 

for other applications and industries.  TVA had originally offered a free and unlimited 

supply of tritium to the DOE if they would pay for the completion of the Browns Ferry 

Unit #4 nuclear plant which had been mothballed in the 1980s because of a lack of 

justification for the increased electrical supply; however, DOE refused the offer and 

decided to proceed with the current plan [13].  Had DOE chosen to accept the original 

TVA offer, it is possible that an adequate and cheap supply of 3He would exist today; 
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however, attempting to increase the 3He supply through similar arrangements with other 

commercial reactors will not ease the shortage due the 12.3 year half-life of tritium and 

current production costs.  One estimate put the cost of the gas at approximately $20,000 

per liter if produced in this manner [4].  This cost makes the commercial reactor approach 

cost-prohibitive for all but the defense-related applications. 

 

Although the United States wasn’t directly producing tritium following the 

shutdown of the SRS reactors, an indirect supply of 3He continued to exist due to the 

dismantlement of nuclear weapons, the reconstituting of certain components within the 

stockpiled weapons, and the decay of the stockpiled tritium at the SRS.  Since this supply 

alone more than accounted for the demand until around 2008, no one at the DOE took 

notice of the imminent crisis that was unfolding. 

 

At the SRS, the 3H/3He gas mixture from weapon components is removed and 

passed through hydride beds to separate the two gases.  The tritium must be periodically 

purified in this manner because approximately 5% is depleted per year due to radioactive 

decay, yielding the impurity, 3He.  Although 3He is a valuable commodity for neutron 

detection, it must be periodically separated from the 3H because it is a neutron absorber 

(poison) that will inhibit the proper function of a nuclear weapon.  Until 2009, a large 

supply of 3He (~15,000 – 25,000 liters per year) also existed from similar weapons 

activities in the Russian Federation; however, once the gas crisis became apparent, the 

Russians announced they were removing their 3He supply from the worldwide market.  
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Although the Russians gave no reason for their recent decision, it was most likely done to 

ensure their own internal needs for the gas were met [4]. 

 

The only other alternative supplies of 3He are from the reclamation of gas from 

unused detector tubes or by the removal from other tritium-containing volumes or from 

natural gas.  It is very unclear how much gas might be retrieved from unused detectors 

because most people in the scientific community are aware of the gas shortage and they 

are not willing to part with their equipment.  However, several possibilities exist to tap 

existing supplies of tritium that have been decaying for some time. 

 

Heavy-water reactors such as the Canada Deuterium Uranium (CANDU) power 

reactors use deuterium oxide (D2O) as a moderator.  The extra neutron found in 

deuterium (2H) makes for a substantially lower neutron absorption cross section 

compared with that of hydrogen (1H) [14].  However, some absorption does occur in the 

deuterium and the reaction produces tritium according to: 

 

 𝐻  +  𝑛01 → 𝐻13  +  𝛾001
2 +  2.23 𝑀𝑒𝑉.  (1.4) 

 

There are about fifteen of the CANDU reactors in operation throughout Canada, 

however, the units have been sold and constructed in a number of foreign countries such 

as Korea, Pakistan, China, India, and Romania. 
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The tritium produced in the Canadian reactors is routinely extracted and placed 

into titanium-tritide beds (Ti3H3).  These beds have been inserted into containers that are 

capable of withstanding the pressures associated with the complete decay of the tritium 

to 3He and they have been stored at the Ontario Power Generation facilities in Darlington, 

Ontario for about sixteen years.   Based upon initial estimates, there is approximately 

80,000 liters of 3He available in these beds and it is likely that a continuous supply of 

approximately several thousand liters per year could be available if a suitable extraction 

facility were to be constructed [15].  Based upon the recommendation of the Chairman of 

the Subcommittee on Investigations and Oversight, the President of the United States 

began a dialogue with Canada in late 2009 to discuss the possibility of obtaining the 

Canadian 3He [5]; however, since the extraction of the gas will require the construction of 

a facility costing at least $10 million, this option, while attractive, will not likely produce 

any meaningful short-term solution in the next few years.  Similar deals could also be 

negotiated with the other owners of CANDU reactors, but these countries are far more 

difficult to work with bilaterally and it unlikely that any meaningful 3He can be recovered 

from them. 

 

Some recent discussions have also taken place regarding the separation of 3He 

from natural gas.  Natural gas contains about 7% helium and there are significant 

quantities that are stockpiled in various locations, such as the national reserve outside 

Amarillo, Texas.  However, naturally-occurring helium contains only about 0.0134% 

(atom percent) abundance of 3He, and a facility of the size that is being discussed would 

provide no more than 10,000 liters per year.  Therefore, this option, as is the case with 
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reactor-based production, is a longer-term measure that might be possible, but will 

significantly increase the unit cost for 3He and is also unlikely to satisfy the gas demand 

[16]. 

 

1.4.2 3He Demand 

 

The current steady-state demand for 3He is estimated to be between 65,000 – 

75,000 liters per year; however, due to current DHS projects such as the Advanced 

Spectroscopic Portal monitoring program and other radiation portal monitoring projects, 

the demand in 2009 alone was more than 213,000 liters [7, 16].  The ASP program alone 

would have accounted for more than 200,000 liters of demand over the next few years [3 

– 4]; however, the acting Director of the Domestic Nuclear Detection Office (DNDO) 

who has responsibility for the program, recently announced that 3He would no longer be 

used in its portal monitoring systems [7].  This news was a complete shock to the prime 

contractor, Raytheon, who was not informed of this decision prior to the Director’s 

announcement at the congressional hearings on the matter. 

 

Approximately one-thousand additional 3He detectors are also required for the 

Spallation Neutron Source at the Oak Ridge National Laboratory.  The DOE has 

apparently already set aside 58,000 liters of 3He for use in this facility; however, the 

facility needs another 15,000 liters prior to 2015 and DOE has also informed the other 

numerous neutron scattering facilities that are in various stages of development that they 

will have to fend for themselves [4]. 
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The DOE and the Department of Defense (DOD) together are estimated to need 

between 13,200 – 22,400 liters for the next five years for additional projects [15].  The 

DOE’s Second Line of Defense (SLD) and Mega-Ports Initiative programs had sufficient 

quantities of portal monitors to meet the installation needs in 2009; however, their 

installations beginning in 2010 have been delayed due to the gas shortage. 

 

In summary, the current demand for 3He gas is exceeding supply by at least a 

factor of about 6 even in the absence of the larger programs mentioned in this section 

and, had not these programs been halted, the disparity would likely be in the range of 20 

– 30 times the supply.  Even in light of conservation efforts, the gap between supply and 

demand will likely widen in the near future if industry visions of a nuclear renaissance 

come to fruition and as we see an increased use of mixed-oxide (MOX) fuel that is 

helping to reduce proliferation concerns worldwide.  Since there is no imminent supply 

on the horizon that will offset 3He demand, alternatives must clearly be sought.  While it 

is certainly important to develop and test new alternative materials, this effort requires a 

substantial investment of time and capital.  In the meantime, a more prudent first step 

should be undertaken to develop methods that will allow the adaptation of existing 

materials to fill the role currently being played by 3He in neutron monitoring applications. 

 

1.5 Topics of Discussion 

 

In most dissertations, the chapter subsequent to the introduction is typically 

referred to as a literature search or the like.  The goal of such a chapter is to evaluate and 
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report on the current state of affairs associated with issues that are tangential or directly 

related to the proposed research proposal.  However, since the methodology developed in 

this research has never been attempted or applied toward neutron detector design, a 

chapter so titled would be inappropriate and vanishingly short.  Therefore, Chapter 2 has 

been given a more appropriate title, Neutron Detection Protocols, and will provide 

coverage of the current state of affairs related to neutron detectors, an overview of current 

techniques and information related to the alternative 3He materials used for this research.  

The latter part of Chapter 2 will also provide a statement of the research objectives. 

 

Chapter 3 provides the reader with a detailed discussion of the radiation 

interactions that are applicable and important for neutron detection, including photons, 

since they must be accurately discriminated by the detection system in order to obtain an 

accurate evaluation of the neutron environment. 

 

A detailed description of the computational methods that were used for modeling 

the radiation detectors and materials is given in Chapter 4.  The description provides 

coverage of the deterministic and Monte Carlo methods and also discusses the basic 

aspects of the Parallel Environment Neutral Particle Transport (PENTRAN) and Monte 

Carlo N-Particle Version 5 (MCNP5) codes.  These codes were used to apply the two 

unique transport methodologies for validating the computational detector design 

approach, thereby laying the foundation for the fidelity of the computationally-designed 

detector models. 
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Chapter 5 discusses the application of the techniques mentioned in Chapter 4 

toward modeling the 3He baseline detector and then developing computational models for 

testing.  The initial models were used to validate the computational approach by directly 

comparing their results to physical laboratory measurements taken with 3He and BF3 

tubes.  The plug-in designs that follow were achieved through an iterative process of 

adjusting the material dimensions and gas pressures.  Each design is described in detail 

and the information includes material listings, cross sections, and diagrams of the 

detector model.  Several similar detectors have been tested and validated with a purely 

Monte Carlo approach in the past several years, but these studies were lacking the 

valuable insights that can be gained by an adjoint deterministic approach.  Additionally, 

these prior tests did not have the multiple assurances of designs based on comparisons 

between measurements, deterministic adjoint, and forward deterministic and Monte Carlo 

methods [16 – 20]. 

 

Chapter 6 provides a description of the test facility, characteristics of the 

radioactive source that was used for the neutron measurements, and the nickel shield that 

was used for the source deployment.  The chapter includes photographs and diagrams of 

the facility so the reader can gain an understanding of the conditions that existed during 

the detector measurements and that were folded into the computational models. 

 

The actual neutron detector setup is described in Chapter 7 and includes the 

procedures that were followed to ensure the 3He and BF3 systems were setup and 

operating properly prior to taking any measurements.  The chapter also details some of 
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the precautions that were taken to ensure the other experiments and equipment did not 

pose a problem for this experiment.  The central issue associated with the use of the 

facility housing the container express (CONEX) was gamma and X-ray radiation coming 

from radioactive sources related to another detector system test and a computed 

tomography (CT) scanner used by medical physicists.  The chapter concludes with 

information regarding the moderator materials and the detector setup on the CONEX. 

 

The results associated with the operational setup of the 3He and BF3 neutron 

detector systems and neutron measurements are provided in Chapter 8.  This chapter also 

describes the computational modeling results associated with the neutron measurement 

validation.  The remainder of the material provides an in-depth analysis of each plug-in 

detector design, including adjoint profile, adjoint function, and reaction rate comparisons 

with the baseline 3He model.  The chapter concludes with an overall summary of the 

testing results. 

 

The dissertation closes with a presentation of the overall conclusions from the 

research activities and recommendations for extending the effort toward evaluating 

existing systems, designing radiation detectors in general, and testing new neutron 

detector materials. 
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CHAPTER 2 
NEUTRON DETECTION PROTOCOLS 

 
 
 

2.1 Current Protocols 

 

The human body is not equipped to sense the presence of radiation, since no pain 

or other sensation occurs during an interaction.  Large, and even lethal doses of radiation, 

could be received without a person becoming aware of the situation until weeks later.  

Since neutrons possess no electrical charge, their presence along a given path in a 

detector is analogous to the case of biological dose.  Unless the particles produce some 

form of ionizing radiation that can be subsequently collected by the detection system 

electronics, their passage will occur unnoticed. 

 

Radiation detectors are typically categorized according to their detection 

mechanism (gas, solid, etc.), output signal (current or pulse), and application; however, 

regardless of these characterizations, most detectors are based upon ionization and the 

collection or charge within a sensitive volume (notable exceptions are devices such 

fission, radio-chromic, and track detectors).  For the purposes of this study, the focus will 

be placed on gas and solid detectors used in the pulse mode of operation for detecting 

neutrons.  Systems of this type are vital for scanning personnel, transportation platforms 

(vehicles, planes, etc.), and material for use in non-proliferation applications and 

programs. 
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Since neutrons, as their name implies, are uncharged particles, their total energy 

must somehow be converted to produce the ionizing event we require for the production 

of a detector signal.  Depending on the energy of the neutrons of interest, the conversion 

process can include scatter (recoil), absorption, or both.  The absorption conversion 

process can also include radiative capture or fission; however, for the purposes of this 

study, discussion will be confined to captures resulting in the emission of heavy charged-

particles.  Unlike the case for reactor applications, Knoll, Tsoulfanidis, and other major 

authors group their discussions of neutron detectors into two broad categories, slow and 

fast, based upon the incident neutron energy of interest [1 – 2] and this convention will 

also be used in this paper. 

 

The fast category is conventionally typified by neutron energies of > 0.5 eV, 

while the slow category encompasses all other energy states.  The conventional value of 

0.5 eV was most likely chosen because 109Cd, which is a very popular neutron absorber 

for nuclear applications, has a very large (21,000 barns) neutron capture cross section for 

thermal neutrons and will absorb essentially all neutrons below energies of 0.4 eV [2].  

Until recently, all neutron detectors using a slow neutron detection mechanism had 

housings made of specially-coated cadmium to ensure that the response was solely due to 

neutrons that were moderated within the detector itself.  Regardless of the neutron 

energy, several important factors must be considered in the choice of a detector material. 

 

First, since all detector systems are generally size-constrained, one of the primary 

challenges is to choose a material such that the interaction probability and conversion 
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mechanism is maximized for the neutron energy of interest.  For example, if the aim is to 

field a neutron detector on the basis of a scattering reaction (fast neutrons) to reduce the 

response time, a material that preferentially undergoes a recoil reaction such as (n, p) 

should be selected over a slower-responding detector that requires an absorption reaction 

such as (n, α). 

 

The choice of the reaction type must also include a consideration of whether 

energy information is to be obtained from measurements.  Detectors employing the (n, p) 

or other recoil interactions typically measure only the initial interaction event, unless the 

detector volume is greatly increased or a capture-gating system is utilized.  However, 

since the detection takes place without the prior thermalization of the neutrons, 

information regarding the incident neutron energy can be preserved.  Detectors utilizing 

the (n, α) or other absorption interactions can benefit from the increased probability of 

interaction at the lower neutron energies; however, the large degree of moderation that is 

necessary will usually eliminate all knowledge of the incident neutron energy.  For these 

reasons, most neutron detectors operate simply as neutron counters and not as dose rate 

instruments. 

 

Next, the material should have acceptable material properties and be relatively 

abundant in nature or capable of being economically produced by artificial means and, 

finally, the material should be relatively insensitive to other radiation such as photons or 

it must exhibit a sufficiently large Q-value in the interaction with the neutron to ensure 

the resulting electronic pulse can be adequately discriminated from those created by 

 25  
 



photon interactions.  Once the appropriate material has been identified, it must also be 

matched with the appropriate amount and type of moderator to ensure the peripheral 

conditions are established such that the detector efficiency is tuned or maximized.  For 

example, a system based on scatter reactions will generally employ far less moderator 

between the radiation source and the detector than will one based on slow detection 

methods.  However, regardless of the interaction mechanism, each detector system must 

also have a specific amount of moderation behind the detector to ensure neutrons can be 

reflected into the detector through what is known as the albedo effect.  The optimal 

moderator thickness or amount can be determined using radiation transport codes or by 

simply conducting a series of counting experiments where the detection rate is evaluated 

as a function of the moderator thickness. 

 

One of the greatest advantages 3He possesses over competing materials is its 

ability to function well in both of the broad neutron energy realms (slow and fast).  It has 

a large absorption cross section of 5316 barns at thermal neutron energies (0.025 eV), 

which is significantly greater than other popular slow detector materials such as 6Li (940 

barns) and 10B (3843 barns) [1 – 2].  And for fast neutron applications, the relatively 

small mass difference between 3He atoms and neutrons ensures good energy transfer in 

elastic scatters, while the reasonable (n, p) cross section produces a full-energy peak at 

reasonable efficiencies.  Furthermore, since the gas is non-toxic and doesn’t experience 

degradation in its performance as a proportional gas at higher pressures, its absolute 

pressure can be increased significantly above 1.0 atm (typically 4 – 10 atm), which will 

vastly improve the detection efficiency. 
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2.1.1. Slow Methods 

 

As far as homeland security applications go, the only important interaction 

between a low-energy neutron and the detector is absorption, leading to some type of 

heavy charged-particle as shown below: 

 

𝑡𝑎𝑟𝑔𝑡 𝑛𝑢𝑐𝑙𝑒𝑢𝑠 + 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑛𝑒𝑢𝑡𝑟𝑜𝑛 → �

𝑝𝑟𝑜𝑡𝑜𝑛, 𝑜𝑟
𝑎𝑙𝑝ℎ𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑜𝑟

𝑓𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑎𝑛𝑑
𝑟𝑒𝑐𝑜𝑖𝑙 𝑛𝑢𝑐𝑙𝑒𝑢𝑠.

 

 

 

One advantage of this particular reaction type is the assurance that the reaction will be 

exothermic, with Q-values in the typically ranging between 0.764 – several MeV, 

depending on the target.  And since the kinetic energy of the incident neutron in this case 

is negligible when compared to the Q-value of the reaction, the kinetic energy of the 

reaction products is determined solely by Q. 

 

The advantage to such an interaction as this is that if a detector could be fabricated such 

that the kinetic energy of the reaction products is fully stopped within the sensitive 

volume, the response function for the detector would appear as a relatively discrete pulse 

corresponding to this cumulative energy as shown in Figure 2.1 and this would result and 

this would greatly simplify our ability to perform neutron spectroscopy.  However, the 

reality is that neutrons rarely deposit their full energy in a single detector because of 

energy losses within the detector walls (gases and solids), escape of particles due to a 

large range, or optical thickness, in the material (gases) and various electronics issues 

(solids and gases).  As a result, the detector response function associated with slow 

 27  
 



methods will have multiple features resulting from the various mechanisms at play, and 

its form will have the appearance of Figure 2.1, but with the superimposition of certain 

broad-energy continuums as shown in Figure 2.2.  The regions of Figure 2.2 that are 

marked as Recoil Li and alpha result from the instance in which the companion reaction 

product collided with the detector wall thus excluding its kinetic energy from the charge 

collection process.  This phenomenon is called a wall effect and can have serious 

consequences for gas-filled detectors.  In all cases, the only instance in which a full-

energy peak is produced is when all the reaction product kinetic energy is collected 

within the gas volume. 

 

 

 

Fig. 2.1.  Example of ideal neutron-induced detector pulses [adapted from [2]]. 
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Fig. 2.2.  Example of realistic neutron-induced pulses in BF 3  [adapted from [2]]. 
 

 

There are a number of materials that exhibit some of the important neutron 

detection characteristics mentioned in Section 2.1; however, the vast majority of 

detectors for homeland security type applications, both past and present, use the 

following reactions as the neutron kinetic energy conversion mechanism:  10B (n, 

α) 7Li;  6Li (n, α) 3H; or, 3He (n, p) 3H.  There have been some advances in the use of 

materials such as the odd-numbered gadolinium (Gd) isotopes, which have capture cross 

sections rivaling the greatest of any material, and fission counters; however, for the 

purposes of this research, the focus will be placed solely on detectors employing 

reactions in 10B or 3He because they are readily available and 10B can also easily be 

incorporated into a gas (10BF3) or a plastic scintillator. 
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2.1.2 Fast Methods 

 

The methods mentioned in Section 2.1.1 can also be applied to fast neutrons in 

theory; however, since many neutrons are scattered out of the detector before slowing 

down to thermal (slow) energies and the absorption probability decreases rapidly with 

increasing neutron energy, the slow detection methods must either be significantly altered 

or completely replaced with a new method to produce acceptable detection results for fast 

neutrons.  Since neutron absorption is less probable at higher energies, the most 

important reaction for fast neutrons is elastic scattering in the detector medium resulting 

in the production of a recoil proton and recoil nucleus that will give rise to an electrical 

pulse. 

 

2.2 Applied Protocols and Materials 

 

2.2.1 Research Motivation and Methodology 

 

It has already been established that 3He is an excellent and effective choice for 

neutron detection.  However, the features that made this particular gas so attractive also 

led to its ultimate demise in detector applications due to the absence of a dependable and 

sustained supply.  Given the security concerns facing our nation and that of the 

international community, there has never been a greater demand for radiation monitoring 

systems.  Therefore, it is imperative that appropriate materials and methods be developed 

now to ensure our sustained mission success in this key area. 
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There have already been a number of efforts to develop such replacement 

technologies for 3He [3 – 6]; however, as has been previously mentioned, all of these 

research efforts are solely targeted toward determining which detectors can be inserted 

into existing systems to deliver an equivalent sensitivity to a 3He tube(s).  These cases 

generally involve the results of monitoring of a single radioactive material that is 

typically 252Cf [3 – 18].  While this approach will certainly ensure that a particular 

detector system meets the established sensitivity criteria (e.g. c min-1 ng-1 of 252Cf at 2 m) 

[16, 18] listed in the technical specifications for most, if not all, detector contracts, it will 

certainly not be able to demonstrate that the proposed replacement has an equivalent 

spectral response to that of 3He across a wide range of neutron energies.  In other words, 

while a replacement detector might demonstrate an equivalent sensitivity for neutron 

emissions from 252Cf within a given geometry (e.g. an existing portal monitor), the 

detector spectral response could deviate significantly from 3He for other neutron sources 

or exposure geometries. 

 

The approach discussed in the paragraph above is adequate for the simple 

detection scenarios in which the only concern is achieving baseline detection sensitivity 

for a particular radionuclide; however, a simple approach will not do for more complex 

non-proliferation and safeguards detector applications.  In these instances, such as fissile 

material quantification assessments for 239Pu and 235U, the detectors have almost 

exclusively been 3He tubes of various designs and the neutron spectral response of any 

would-be replacement cannot be ignored and must demonstrate equivalency in both 

function (spectral shape) and magnitude (efficiency) [19].  Ignoring this requirement in a 
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misguided effort to achieve overall system sensitivity will produce serious and potentially 

dire consequences for material control and accountability (MCA) programs and other 

global non-proliferation efforts. 

 

Possibly the most important international effort that is hampered by the lack of 

adequate 3He supplies stems from the 2004 United Nations Security Council Resolution 

1540 [20].  This particular resolution addresses the risk of non-state actors acquiring, 

developing, and trafficking in or using nuclear, chemical, or biological weapons and their 

means of delivery.  The document specifically imposes obligations on member states to 

prevent these proliferation activities by refraining from providing any form of support to 

non-state actors attempting to engage in these types of efforts.  The explicit portions of 

the resolution that are directly affected by the lack of 3He supplies are those associated 

with maintaining effective border controls, detection capabilities used to prevent and 

combat the trafficking of radiological and nuclear materials, and measures to account for 

and secure items during production, use, storage, and transport. 

 

With these motivations in mind, this research effort will be directed toward 

investigating and developing a new method for evaluating candidate 3He replacement 

detectors and identifying detector designs that can serve as direct plug-in equivalents for 

a standard 1-inch diameter 3He tube pressurized to 4 atmospheres (atm) or 3040 torr.  The 

performance of the chosen candidates will be compared against the spectral response and 

efficiency achieved by the 3He baseline detector monitoring neutron emissions from an 

engineered weapons-grade plutonium (WGPu) source described in a later chapter.  
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Additional measurements will also be conducted using a geometrically-equivalent BF3 

tube (dimensions and active volume).  Although this tube will obviously not prove 

adequate as a plug-in replacement for the baseline case, it is intended to provide a second 

data point for an objective assessment of the computational models. 

 

Once the initial 3He and BF3 measurements have been gathered, the detector 

responses will be calculated using 3-D adjoint and forward deterministic transport and 

forward Monte Carlo simulations.  The deterministic calculations will be performed using 

the discrete-ordinates code PENTRAN1 (Parallel Enhanced Neutral Particle Transport) 

and the code MCNP52 (Monte Carlo N-Particle Version 5), both of which will be 

described in detail in a later chapter.  A comparison of the baseline measurements and 

computational results will first be used to demonstrate that a firmly established fidelity 

exists between the actual measurements and computational models.  Once fidelity has 

been established between the two methods, the computational approach can then be 

confidently applied for evaluations of the suitability of all prospective alternative material 

and designs. 

 

At this point, the design model of each candidate detector will be evaluated and 

adapted to mimic the baseline response as closely as possible.  The suitability of a 

particular candidate material and design will be established by the achievement of a 3He-

equivalent neutron spectral response and overall efficiency within an acceptable 

1 HSW Technologies LLC, 2501 Porter Street NW #220, Washington, DC 20008, USA – Tel. 352-871-
1099.  www.hswtech.com. 
2 Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA – Tel. 505-667-5061.  
www.lanl.gov. 
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uncertainty.  The overall objective of the research is to yield at least one detector design 

(material and geometry) that delivers an equivalent performance to 3He across a broad 

spectrum of neutron energies and that can, therefore, be used as a plug-in equivalent of 

the baseline design. 

 

2.2.2 3He and Proposed Alternatives 

 

The chosen alternative materials consisted entirely of commercially available off-

the-shelf products such as BF3 gas and 10B-lined tubes because they are well-established 

technologies, they are readily available to the radiation detection community at a 

reasonable price, and they don’t require expensive electronic components and/or 

elaborate neutron and gamma discrimination schemes (such as PVT and liquid 

scintillators).  Materials employing the 6Li(n, α)3H reaction such as LiI were also rejected 

from consideration because, although the Q-value of 4.78 MeV is more than double that 

of the 10B reaction and nearly seven times greater than that of the 3He reaction, the solid 

crystalline form of this solid is far more sensitive to photon radiation, making the task of 

neutron and photon discrimination nearly impossible [1 – 2, 10].  Newer applications 

using 6Li such as glass fiber detectors are becoming more in vogue, but they remain in 

the minority compared with the readily-available materials selected for this study. 

The suitability of each of the chosen candidates will be discussed in the next 

section.  This information will focus on the desirable properties of the specific materials 

as have been previously discussed and any specific photon discrimination methods that 

may be necessary will also be addressed.  Photon discrimination for all the gas designs 
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can easily be handled using a single-channel analyzer (SCA) or window technique 

previously discussed in Chapter 1.  Photon discrimination in poly-vinyl toluene (PVT) 

must be conducted using some form of pulse-shape discrimination (PSD), which is 

beyond the scope of this research effort. 

 

2.2.2.1 3He Gas 

 

The flexibility of 3He gas, combined with its other desirable properties caused 3He 

to become the overwhelming choice for neutron monitoring over the past two decades.  

However, its desirability, combined with its reasonable price and limited supply resulted 

in the current crisis that has necessitated the search for a suitable replacement.  These 

advantages and disadvantages were discussed in depth in Sections 1.2 and 1.3 and will 

not be repeated here.  However, one main disadvantage in the use of 3He remains and 

must be addressed. 

 

The low-Z of 3He ensures a large degree of energy transfer for incoming neutrons; 

however, it also creates a charge collection problem because of its low stopping power 

for ions and electrons.  A low stopping power means that the range and path length of the 

charged reaction products is significantly greater, producing enhanced wall effects as 

seen in Figure 2.2.  The low stopping power also works to decrease the magnitude of the 

full-energy peak associated with neutron absorptions because fewer counting events are 

attributed to the associated energy channel. 
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The wall effect combined with a lower Q-value (Eq. 1.1) also means that there is 

less separation between neutron and photon events, making photon discrimination 

potentially more difficult.  The situation is very slightly mitigated by the fact that 3He has 

a very low probability for photon interaction; however, this mitigation is minimal 

because most photon interactions cause interference indirectly through interactions within 

the detector walls, thereby injecting recoil electrons into the detector gas.  Consequently, 

care must be taken in the construction of 3He tubes to minimize these effects.  Therefore, 

these particular tubes are generally constructed from low-Z materials such as aluminum. 

 

The most obvious technique to reduce wall effects is to simply increase the size of 

the detector.  The increased size reduces the effects by:  1) increasing the probability that 

a neutron interaction occurs at a greater distance from the wall; and, 2) increasing the 

probability that the reaction product kinetic energy will be fully absorbed in the gas 

because a greater path length must be traversed to reach the wall itself.  Another method 

involves increasing the gas pressure to elevate the stopping power for the reaction 

products.  The increased stopping power will reduce the range of the reaction products, 

inhibiting their ability to interact with the wall.  One final approach toward reducing the 

wall effect is to introduce a small amount of a heavier gas such as CO2 to increase the 

stopping power.  Since all detectors have size constraints, as has been previously 

mentioned, the most popular method for reducing the wall effects has typically been to 

increase the gas pressure in the detector. 
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2.2.2.2 BF3 Gas 

 

BF3 is a popular neutron detection gas that is operated as a proportional counter 

and used in many different nuclear engineering applications.  Unlike 3He, the gas is not 

the product of radioactive decay and thus it is readily available from numerous 

manufacturers in a pressure range of 0.5 to several atm [2] and for very reasonable prices.  

The stopping power of BF3 is much greater than that of 3He, which helps to minimize 

wall effects even in the absence of a higher gas pressure.  The boron in the BF3 is 

enriched with 10B, so the gas acts as both the proportional gas and the neutron detection 

mechanism according to:  

  

 
𝐵  +  𝑛01 → �

𝐿𝑖3
7  +  𝐻𝑒 + 2.792 𝑀𝑒𝑉 (𝑔𝑟𝑜𝑢𝑛𝑑 𝑠𝑡𝑎𝑡𝑒)2

4

𝐿𝑖3
7  + 𝐻𝑒 + 2.310 𝑀𝑒𝑉 (𝑒𝑥𝑐𝑖𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑒)2

4  5
10  .  (2.1) 

 

The 10B content can easily be enhanced upwards of 96%, which improves the 

detection efficiency by a factor of five compared to natural boron.  For thermal neutrons 

(0.025 eV), the ground-state reaction occurs only about 6% of the time, while the 7Li is 

left in an excited state the remaining 94% of the time, followed by a the emission of a 

0.482 MeV gamma ray.  The Q-value energy of the reaction is shared by the recoil 7Li 

nuclue and the alpha particle, resulting in alpha particle energy of approximately 1.47 

MeV.  The alpha produces a large number of ionizations in the gas near the interaction 

site which produces the electrical pulse necessary for counting neutron interactions. 

 

 37  
 



Since the Q-value of the reaction in Eq. 2.1 is much larger than that of 3He, the 

photon discrimination techniques discussed in Section 1.2 can be more easily applied to 

BF3.  A comparison of the interaction probabilities for thermal neutrons and 1 MeV 

photons in 3He and BF3 is provided in Table 2.1.  The information clearly demonstrates 

that both gases are quite capable of photon discrimination on the basis of probability 

alone, which is important in homeland security and nonproliferation applications.  

Judging solely by the neutron/gamma ratio, one could come to the conclusion that 3He 

has superior photon discrimination properties compared with BF3; however, the 

aforementioned Q-value disparity between the two gases actually results in far superior 

qualities associated with BF3. 

 

Table 2.1.  Comparison of neutron and photon interaction probabilities in 3He and BF3. 
   

 Probability  

Thermal Detector  Thermal Neutrons 1 MeV Photons Neutron/Gamma 
Ratio 

     
3He (2.5 cm diameter, 4 atm)  0.72 1.00E-04 7200 
BF3 (5.0 cm diameter, 1 atm)  0.29 6.00E-04 483 
     

 

 

Although photon discrimination in BF3 is easier than with 3He, the use of this gas 

does present some challenges.  First, the (n, α) cross section for BF3 is significantly 

smaller than the (n, p) cross section of 3He for all neutron energies of interest as shown in 

Figure 2.3 and, for thermal neutrons, it is only 72.3% that of 3He, which means that the 

detection efficiency will suffer somewhat.  This disadvantage can be overcome; however, 
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it will always necessitate the use of additional, denser, or larger volume detectors.  Of 

course, if a single larger cylindrical detector of radius r is used, this choice will require, in  

 

Fig. 2.3.  Neutron reaction cross sections for energies of interest [adapted from 
[2]]. 

 

 

the absence of anode wire changes, a higher voltage to achieve electric field strength 

adequate for charge collection according to the following relation: 

 

 𝜉(𝑟) =  
𝑉

𝑟 ln  �𝑏𝑎�
 .  (2.2) 

 

In Eq. 2.2, V is the applied voltage between the cathode and anode, a is the anode 

wire radius, and b is the cathode inner radius in consistent units of length.  Care must be 

taken to balance the parameters of the larger detector to ensure a reasonable voltage can 

be achieved; otherwise, the detector will not be viable. 
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The need to increase the tube size in order to achieve similar sensitivities to 3He 

highlights another disadvantage of BF3 pertaining to its toxic properties [3, 5, 14, 16].  

As a result of its toxicity, the shipment of BF3 tubes is carefully controlled by the United 

States [19 – 20] and the International Air Transport Association (IATA).  The hazardous 

materials transportation law in the U.S. seemed to be rather confusing; so much so, that 

LND, Inc., who is a major manufacturer of gas detector tubes in the U.S., recently 

requested a series of clarifications from the U. S. Department of Transportation (DOT).  

The government’s clarifications on the U.S. law basically allow BF3 tubes containing less 

than 1 gram of BF3 to be shipped as non-hazardous materials, provided that the detector 

is not pressurized to more than 1 atm [21].  As a point of reference, non-toxic gases such 

as 3He can be shipped as non-hazardous materials (due to pressure) if they are pressurized 

to less than 2.7 atm [22 – 23].  It is important to remember that the regulations don’t 

prohibit the shipment of BF3 tubes within the U.S. or abroad; however, the additional 

controls that are necessary in order to exceed the pressure and mass limits significantly 

increases the cost of such detectors. 

 

One final disadvantage that must be considered with BF3 detectors is the more 

frequent replacement frequency compared with inert gases such as 3He.  BF3 is toxic in 

the sense that it is poisonous to humans, but it will also react violently with certain other 

compounds such as water to create hydrofluoric acid (HF) that is highly corrosive to the 

inner portions of the detector.  The corrosion rate is also unfortunately enhanced by the 

detection process within BF3 because the absorption of a neutron liberates three fluorine 

atoms.   Although the detector tubes are filled in an inert environment, some moisture 
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inevitably may enter the volume with the gas fill and through leakage around electrical 

connections, leading to the formation of HF.  These chemical phenomena inevitably lead 

to a reduced lifetime for these particular detectors when compared with inert-filled 

detectors. 

 

2.2.2.3 10B-Lined Proportional Tubes 

 

In gas-filled radiation detectors, the detection mechanism is generally always the 

gas itself; however, in this particular arrangement, the 10B lining is the sensitive element 

and it is coupled to a suitable proportional gas that receives the charged-particles 

produced in the energy conversion process.  An advantage of using an alternate gas to 

BF3 is the elimination of its associated toxicity and corrosion problems; however, in the 

energy conversion process one of the reaction products will always be lost to the system 

because they are emitted in opposite directions.  This process results in an unusual-

looking response function that will appear as steps associated with the alpha particle 

energy (1.47 MeV) and the lithium recoil nucleus (0.84 MeV) as shown in Figure 2.4. 

 

Since 1.47 MeV is the largest amount of energy that can be transferred to the 

proportional gas in this design, 10B-lined detector will have photon discrimination 

properties that are inferior to BF3 detectors; however, the lithium recoil nucleus energy 

remains greater than the Q-value of 3He and the chosen proportional gas will likely be 

less dense than, so the end result is that this particular scheme should exhibit a 

discrimination capacity approaching that of BF3 and that can be handled in the same  
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Fig. 2.4.  Pulse height spectra in a 1 0B-lined tube showing the wall 
effects produced by the alpha particle and 7Li recoil nucleus [adapted 
from [2]].  

 

 

manner.  One other design limitation associated with this type of detector is the range of 

the reaction products of the 10B reaction and, in particular, the range of the alpha particle. 

 

For most radiation detectors, the adage “more is better” generally applies and 

increasing the active volume coincides with increased detection efficiency.  However for 

the case of 10B-lined tubes, the adage applies only to a certain extent because of the small 

penetrability of the reaction products.  Since the alpha particle is emitted with the greatest 

energy of the boron reaction products, it will determine the maximum thickness of the 

boron layer.  In gas detectors, the range of the alpha particle can be several centimeters; 

however, in solid 10B, the maximum range of the 1.47 MeV alpha particle is only about 1 

mg cm-2 .  This corresponds to thickness of ~0.4 cm for boron at 2.3 g cm-3 density.  

Therefore, the detection efficiency of this specific design will increase only as long as the 

boron coating doesn’t exceed ~0.4 cm and it is useless to add any additional boron 
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beyond this point.  While the addition of more boron will indeed result in the occurrence 

of more reactions, the result will be a dead layer beyond ~0.4 cm where the reaction 

products are incapable of reaching the proportional gas and, therefore, excluded from 

being detected.  Furthermore, the addition of extra boron will actually begin to degrade 

the detection efficiency because of increased neutron attenuation in the wall. 

 

2.2.2.4 10B-Loaded Poly-Vinyl Toluene (PVT) 

 

PVT is one of a number of organic plastic solutions that are commonly referred to 

as plastic scintillators.  These materials have many similarities to liquid scintillators and 

they are readily able to detect neutrons through proton recoil interactions above 0.5 MeV 

in their base condition.  The response of these scintillators to more moderated neutron 

energies can be greatly enhanced by the addition of neutron absorbers such as the 10B 

incorporated into the previously-mentioned detectors.  The detection mechanism 

associated with 10B-loaded PVT is identical to that described for the previous 10B-based 

detectors; however, the signal is initially transmitted via light emission from the 

scintillator and must later converted to an electrical pulse via a photomultiplier tube, 

photodiode, or another such device. 

 

PVT is a low-Z material and, as such, has virtually no photo-electric cross section; 

however, the material is very sensitive to photon radiation.  The solid nature of PVT 

assures that its density exceeds that of the gases by approximately three orders of 

magnitude or more.  This property ensures a greater degree of neutron interaction; 
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however, the greater density guarantees that secondary electrons generated via photon 

interactions will likely be captured within the solid.  The collection of these secondary 

electrons, coupled with the greater degree of sensitivity for plastics relative to electrons, 

produces a large Compton continuum that must be discriminated from the neutron signal 

via some form of PSD. 

  

 44  
 



2.3 References 

 

1. Tsoulfanidis, N. and Landsberger, S., Measurement and Detection of Radiation – 
3rd Ed.  CRC Press, Boca Raton, FL, 2011. 
  
 

2. Knoll, G., Radiation Detection and Measurement, 4th Ed.  John Wiley & Sons, 
Inc., New York, 2010. 
 
 

3. Kouzes, R., The 3He Supply Problem.  Pacific Northwest National Laboratory 
(PNNL), PNNL Technical Report – 18388.  PNNL, Richland, WA, April 2009. 
 
 

4. Jones, R., FYI:  The AIP bulletin of Science policy news - Science Committee 
Hearing Spotlights Shortage in Critical Isotope.  American Institute of Physics, 
Number 53, May 12, 2010. 
 
 

5. Kouzes, R., Ely, J., Lintereur, A., Siciliano, E., and Woodring, M., BF3 Neutron 
Detector Tests, PNNL Technical Report – 19050.   PNNL, Richland, WA, 2009. 
 
 

6. Kouzes, R., Wright, M., Crawford, R., and Robertson, J., The 3He Supply 
Problem and Possible Alternative Technologies.  PNNL Technical Report – 
18550, Pacific Northwest National Laboratory, Richland, WA, 2009. 
 
 

7. Athanasiades, A., Shehad, N., Martin, C., Sun, L., and Lacy, J., Straw Detector 
for High Rate, High Resolution Neutron Imaging.  Proceedings of the IEEE 
Nuclear Science Symposium Conference, San Juan, Puerto Rico, Record N14-
124: 623–627. 
 
 

8. Lacy, J., Boron-Coated Straw Neutron Detector, United States Patent No. 
US7002159 B2. Assignee Proportional Technologies, Inc. Houston, TX, USA. 
 
 

9. Katagiri, M., and Matsubayashi. M., Radiation or Neutron Detector Using Fiber 
Optics. United States Patent No. US7214943 B2.  Assignee Japan Atomic Energy 
Research, Kashiwa Japan. 
 
 

 45  
 



10. Lintereur, A., Kouzes, R.,  Ely, J., Erikson, L., and Siciliano, E., Boron-Lined 
Neutron Detector Measurements, PNNL Technical Report – 18938.  PNNL, 
Richland, WA, 2009. 
 
 

11. Ely, J., Erikson, L.,  Kouzes, R.,  Lintereur, A., and Siciliano, E., Lithium-Loaded 
Glass Fiber Neutron Detector Tests, PNNL Technical Report – 18988.  PNNL, 
Richland, WA, 2009. 
 
 

12. Lintereur, A., Ely, J.,  Kouzes, R., Erikson, L., and Stromswold. D., Coated-Fiber 
Neutron Detector Test, PNNL Technical Report – 18919, PNNL, Richland, WA, 
2009. 
 
 

13. Kouzes, R., Erikson, L., and Kernan, W., Full Scale Coated-Fiber Neutron 
Detector Measurements, PNNL Technical Report – 19264.  PNNL, Richland, 
WA, 2010. 
 
 

14. Kouzes, R., Ely, J., Erikson, L., Kernan, W., Lintereur, A., Siciliano, E., 
Stephens, D., Stromswold, D., Van Ginhoven, R., and Woodring, M., Neutron 
Detector Alternatives to 3He for National Security Applications.  Nuclear 
Instruments and Methods in Physics Research A 623, 1035-1045 (2010). 
 

15. Van Ginhoven, R., Kouzes, R., and Stephens, D., Alternative Neutron Detector 
Technologies for Homeland Security, PNNL Technical Report – 18471, PNNL, 
Richland, WA, 2009. 
 
 

16. Kouzes, R., Ely, J., Erikson, L., Kernan, W., Lintereur, A., Siciliano, E., 
Stromswold, D., and Woodring, M., Alternative Neutron Detection Testing 
Summary, PNNL Technical Report – 19311, PNNL, Richland, WA, 2010. 
 
 

17. Kouzes, R. and Ely, J., Status Summary of 3He and Neutron Detection 
Alternatives for Homeland Security, PNNL Technical Report – 19360, PNNL, 
Richland, WA, 2010. 
 
 

18. Stromswold, D., Ely, J., Kouzes, R., and Schweppe, J., Specifications for 
Radiation Portal Monitor Systems, Rev. 6.7, PNNL Technical Report – 14716, 
PNNL, Richland, Washington (2003). 
 
 

 46  
 



19. Office of Nuclear Regulatory Research, Passive Nondestructive Assay of Nuclear 
Materials (PANDA).  U. S. Nuclear Regulatory Commission, NUREG/CR-5550, 
Washington, March, 1991. 
 
 

20. United Nations, Security Council Resolution 1540, United Nations, New York, 
April, 2004. 
 
 

21. U.S. Government, Title 49 CFR Parts 171-180, Special Provision 238.  Federal 
Hazardous Materials Transportation Law, Code of Federal Regulations, U.S. 
Department of Labor, 2012. 
 
 

22. Pohanish, R., Sittig’s Handbook of Toxic and Hazardous Chemicals and 
Carcinogens, 6th ed., Elsevier, Inc., Oxford, 2012. 

 
 
23. U.S. Government, Title 49 CFR Parts 171-180.  Federal Hazardous Materials 

Transportation Law, Code of Federal Regulations, U.S. Department of Labor, 
2012. 
 
 

 47  
 



CHAPTER 3 
 RADIATION INTERACTIONS IN MATERIALS 

 
 

  
It is important to discuss the mechanisms by which radiation interacts with 

materials prior to discussing the actual detectors and electronics that comprise an 

effective neutron detection system.  While it would seem logical that this chapter should 

focus solely on the radiation physics associated with neutrons, this approach would be 

short-sighted and lacking.  In order to fully understand how to effectively employ a 

neutron detector, one must not only understand the mechanisms that produce the 

electrical pulses being sought, but also those events that serve to hamper our efforts of 

reliably evaluating the neutron environment, such as photon interactions. 

 

Discussions of photon radiation within the confines of neutron detector research 

may seem misplaced to some; however, photons are always present to a certain degree in 

all neutron environments, whether due to neutron scattering in surrounding materials or 

as a result of the process that gave rise to the neutrons themselves (e.g. neutrons arising 

from (α, n) reactions in PuBe).  Although neutron detector materials are chosen such that 

the probability of neutron interaction is maximized, photons will inevitably collide with 

these materials to a certain degree and produce electrical pulses that must be 

discriminated from neutron-related events.  While it is true that any single photon 

interaction will not produce an electrical pulse magnitude comparable to that of a neutron 

interaction, numerous photon events at a certain rate will create coincidence or summed 
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pulses that can easily be confused with neutron interactions.  Therefore, all neutron 

detector research must include some treatment of photon interference or cross talk. 

 

3.1 Photons 

 

The term photon is used as a general categorization for electromagnetic radiation, 

which under various conditions can display a duality of both waves and particles.  

Photons have an energy hυ (or hc/λ) and momentum hυ/c (or h/λ), where h is Planck’s 

constant (6.626 x 10-34 J s), c is the speed of light (3.00 x 108 m s-1), υ is the frequency of 

the radiation and λ is the wavelength (λ = υ/c).  The exact classification of photons is 

generally specified according to the process of origination without regard to energy.  For 

example, gamma rays originate from nuclear transitions; X-rays originate from the 

acceleration of charged particles (Bremsstrahlung) or from transitions within the electron 

orbitals (characteristic), and annihilation radiation results from the combination of an 

electron and positron. Photons always travel at the speed of light, possess wave and 

particle properties, and have no physical mass, so they are highly penetrating and require 

dense materials for shielding purposes. 

 

Since photons are uncharged, they do not experience the Coulomb forces that 

cause continuous energy dissipation in charged particles.  Rather, photons travel with a 

specified probability of interaction per unit distance of having some type of interaction.  

This probability is referred to as the linear attenuation coefficient and is typically denoted 

by the symbol μ.   
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The principle modes by which photons interact with matter are Compton 

scattering, the photoelectric effect, and pair production, with the first two modes being 

dominant in all cases except when the incident photon energy greatly exceeds 1.022 

MeV.  Although it is not extremely probable event within radiation detectors, pair 

production is briefly discussed for completeness. 

 

3.1.1 Photoelectric Effect 

 

The photoelectric effect is a mechanism by which the entire incident photon 

energy is absorbed by an atom.  During the absorption process, the photon disappears and 

the atom ejects an orbital electron with a kinetic energy (T) equal to 

 

 𝑇 = ℎ𝜐 −  𝜑 , (3.1) 

 

Where hυ is the incident photon energy and φ is the work function or the amount of 

energy necessary to free the electron from its state within one of the atomic orbitals (K, 

L, etc.).  The binding of the electron and interaction with the atom are necessary 

conditions for the photoelectric effect to occur because total energy and momentum 

cannot be conserved in the interaction between a photon and a free electron.  The ejected 

electron is referred to as a photoelectron and will dissipate its energy in the surrounding 

materials via charged-particle interactions that lead to the rise of an electrical pulse in the 

detector. 
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The photoelectric effect is dominant at low photon energies of several tens to a 

few hundreds of keV, depending on the atomic number of the target, and the interaction 

cross section (τ) is roughly described by the relation 

 

 
𝜏 ∝

𝑍4

(ℎυ)3
 , (3.2) 

 

where Z is the atomic number [1].  For non-monatomic detector materials such as BF3 or 

PVT, Z is replaced by the effective atomic number (Zeff) 

 

 
𝑍𝑒𝑓𝑓 = �𝑤𝑖𝑍𝑖

𝑁

𝑖=1

 , (3.3) 

 

with the weight percentage (wi) determined by  

 

 𝑤𝑖 =  
𝑀𝑖

𝑀𝑚
 , (3.4) 

 

where Mi is the atomic mass of the ith element and Mm is the molecular mass of the 

detector material. 

 

Although the numerator of Eq. 3.2 is of a higher power than the denominator, the 

cross section decreases with increasing photon energy.  Figure 3.1 demonstrates the large  

 51  
 



 

Fig. 3.1.  Photoelectric cross sections in aluminum 
(Z=13) and lead (Z=82) [2]. 

 

dependence on atomic number and also shows the cross section becoming insignificant 

above the 1.022 MeV threshold where pair production begins to take place [1].  The 
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figure also illustrates that the photoelectric cross section for lead is substantially greater 

than that of aluminum for all photon energies and the disparity rises with increasing 

energy, ranging from about 19 at 1 keV to over 5300 at 1.02 MeV, after which both cross 

sections begin to significantly decline [3 – 5].  The strong dependence on atomic number 

is the primary reason that lead and other dense materials such as lead excel as low to mid-

energy photon shields.   

 

The complete absorption of the photon is highly desirable in solid-state systems 

because the electrical pulse resulting from the interaction is nearly equivalent to the 

incident photon’s energy (within a few eV) and, in the absence of substantial scatter, can 

be used to identify the radiation source.  However, an inspection of Eq. 3.2 demonstrates 

that, for neutron detectors using gas or PVT, this cross section will be extremely small 

due to a small effective atomic number.  Therefore, the photoelectric effect is a small 

contributor to photon interference within neutron detection systems. 

 

3.1.2 Compton Scattering 

 

A Compton scattering event occurs when a photon interacts with an atomic 

electron and is scattered at a reduced energy and at an angle from its prior trajectory.  The 

energy which is transferred to the electron serves both to overcome the work function 

discussed in Section 3.1.1 and to accelerate the ejected electron.  Compton scattering is 

the principle means of energy dissipation for photon energies between several hundred 

keV to several MeV, depending on the atomic number of the absorbing material [1].  
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Following the interaction, the scattered photon can either escape the detector or undergo 

further Compton scatters that produce streaming losses or eventual photoelectric 

absorptions.  The Compton scattering cross section (σ) increases rapidly in conjunction 

with the declining photoelectric cross section and can be described by the relation [1] 

 

 𝜎 ∝
𝑍
ℎ𝜐

  . (3.5) 

 

Compton scattering is the dominant mechanism of photon interactions between energies 

of a few hundred keV to about 5 MeV.  The cross section for aluminum and lead is 

shown in Figure 3.2 to demonstrate that, unlike the photoelectric effect, there is a much 

smaller dependence on the atomic number as Eq. 3.5 indicates.  In fact, the ratio of the 

lead to aluminum cross section varies only between 1.93 at 1 keV to a value of about 6.30 

above 14 MeV [2]. 

 

 54  
 



 

 

Fig. 3.2.  Compton scattering cross sections in 
aluminum (Z=13) and lead (Z=82) [2].   
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The Compton scattering process is depicted in Figure 3.3 where an incoming 

photon of energy (E) is scattered through an angle (θs), producing a Compton electron of 

kinetic energy (T) which is scattered through angle (θc), with all angles measured relative 

to the original direction of the incident photon.  Although the speed of the photon does 

not change in an interaction, the 

 

 

Fig. 3.3.  Diagram illustrating a Compton scattering event.  
 

 

wavelength of the photon must of necessity increase to account for the energy loss.  The 

change in wavelength can be determined by evaluating the conservation of energy and 

momentum of the reactants to arrive at the relation 

 

  
∆𝜆 = 𝜆ʹ − 𝜆 =

ℎ
𝑚𝑜𝑐

(1 − cos 𝜃𝑠) , (3.6) 
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where mo is the rest mass of an electron (see derivation in Appendix A).  It is interesting 

to note that the wavelength change is dependent solely on the angle through which the 

photon is scattered and is completely independent of the incident photon energy. 

 

The energy of the scattered photon (hυʹ) can also be expressed as a function of the 

scattering angle by performing algebraic manipulations on Eq. 3.6.  Begin by using an 

alternate relation for the photon wavelengths according to 

 

 ∆𝜆 = 𝜆ʹ − 𝜆 = �
𝑐
υʹ

 −
𝑐
υ

 � = 𝑐 �
1
υʹ

 −
1
υ

 � . (3.7) 

 

Next, set Eqs. 3.6 and 3.7 equal to one another and divide both sides by hc to arrive at 

 

 
�

1
hυʹ

 −
1

hυ
 � =  

1
𝑚𝑜𝑐2

(1 − cos 𝜃𝑠) . (3.8) 

 

Since we want to solve for hυʹ, we move the hυ term to the right side of Eq. 3.8 and 

manipulate the terms to reach a common denominator 

 

 1
hυʹ

=  
𝑚𝑜𝑐2 + ℎ𝜐(1 − cos 𝜃)

ℎ𝜐𝑚𝑜𝑐2
 . (3.9) 

 

We then take the inverse of both sides of this result to arrive at 

 

 57  
 



 
hυʹ =  

ℎ𝜐𝑚𝑜𝑐2

𝑚𝑜𝑐2 + ℎ𝜐(1 − cos𝜃)
 . (3.10) 

 

The desired relationship is finally achieved by multiplying the right-side of Eq. 3.10 by a 

magnitude of one associated with the electron rest mass energy  

 

 

hυʹ =  �
ℎ𝜐𝑚𝑜𝑐2

𝑚𝑜𝑐2 + ℎ𝜐(1 − cos𝜃)
�  ∙ � 

1
𝑚𝑜𝑐2

1
𝑚𝑜𝑐2

� , (3.11) 

 

to arrive at the desired relation shown in Eq. 3.12 

 

 
hυʹ =  

hυ

1 + hυ
𝑚𝑜𝑐2

(1 − cos 𝜃)
  . (3.12) 

 

This equation specifies the scattered photon energy in terms of the incident energy 

and scattering angle.  The scattered photon continues at the speed of light in its new 

direction until it either escapes the detector or undergoes further Compton scatterings or a 

photoelectric absorption.  Each interaction results in the creation of some amount of 

charged-particle kinetic energy that is imparted to the detector and that can possibly be 

mistaken for a neutron interaction because of pulse summing or coincidence, which is 

referred to as pulse pileup or cross talk. 
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The kinetic energy imparted to the recoil electron is given simply by  

 

 𝑇 = ℎ𝜐 − ℎ𝜐ʹ , (3.13) 

 

and by substituting the hυʹ term from Eq. 3.12, the following relation can be obtained 

 

 
𝑇 =  

ℎ𝜐 (1 − cos 𝜃𝑠)
𝑚𝑜𝑐2
ℎ𝜐 + (1 − cos 𝜃𝑠)

 . (3.14) 

 

By inspection of Eq. 3.12, it can be seen that hυʹ will be at a minimum when θs is 180º or 

π radians, because the cosine of this angle is equal to -1.  In this case, Eq. 3.14 dictates 

that T will reach a maximum value of 

 

 
𝑇𝑚𝑎𝑥 =  

2ℎ𝜐
𝑚𝑜𝑐2
ℎ𝜐 + 2

 . (3.15) 

From a neutron detection standpoint, large values of T represent a worst-case 

scenario because this energy can potentially interfere with the determination of the true 

neutron interaction rate.  The bounding values of T in this case can be determined by 

considering the limiting cases for hυ and T in Eqs. 3.12 and 3.15.  The limiting minimum 

value attained by hυʹ is 
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hυʹ𝑚𝑖𝑛 = lim
ℎ𝜐→∞

�
ℎ𝜐

1 + ℎ𝜐
𝑚𝑜𝑐2

(1 − cos 𝜃𝑠)
� ≈  

𝑚𝑜𝑐2

2
 ≈ 0.256 𝑀𝑒𝑉 . (3.16) 

 

By substitution of these results into Eq. 3.13, the worst-case T (θs equal to 180º or π 

radians and T > 255.5 keV) can be bounded as 

 

 0 ≤ 𝑇 ≤ (ℎ𝜐 − 0.256 𝑀𝑒𝑉), (3.17) 

 

where the lower limit represents the case of Thomson scatter.  From Figure 3.2, it can be 

seen that the Compton scattering cross section exhibits a severe decrease with increasing 

photon energy at higher photon energies making this interaction less probable.  At these 

higher energies, pair production, which will be discussed in the next section, becomes the 

dominant interaction. 

 

Of the various photon interaction mechanisms, Compton scattering is considered 

the most undesirable for neutron detection applications.  The first reason for the 

undesirability is because the cross sections for the other interactions is vanishingly small 

for the low-Z materials typically found in neutron detectors, rendering them as 

insignificant.  However, the chief reason this particular interaction is unwanted is because 

the coincidence pulses that can arise from multiple recoil electrons can produce signals 

that are indistinguishable from those arising via neutron interactions.  If the detector 

volume is sufficiently small compared with the path length of the recoil electrons in the 
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media, such as is the case for gas-filled detectors, then the magnitude of the Compton 

pulse will be minimal.  However, for PVT and other solid or liquid detectors, a sufficient 

volume of material is typically present to allow incident photons to undergo additional 

scatterings and possibly even a final photoelectric event.  In this case, simple 

neutron/photon discrimination techniques are ineffective and more elaborate electronics 

and pulse-shape discrimination (PSD) methods must be employed to effectively separate 

the photon and neutron events. 

 

3.1.3 Pair Production 

 

At higher photon energies, an interaction can occur between the photon and the 

intense electric field surrounding the nucleus of an atom causing the photon to disappear 

and be replaced by an electron-positron pair that is emitted in opposite directions, equally 

sharing the energy of the incident photon.  Since an electron and positron both possess 

rest mass energies of 511 keV or 0.511 MeV apiece, it is apparent that in order to 

conserve energy and mass, the threshold photon energy is 2moc2 or 1.022 MeV as shown 

in Figure 3.4. 

 

After the electron-positron pair is created, the particles will exhaust its kinetic 

energy through charged particle interactions in the detector which can potentially produce 

interference in a neutron detector.  Meanwhile, the positron will eventually slow and 

combine with an electron, causing annihilation photons to be emitted in opposite 

directions.  Since annihilation photons are the result of a mass-to-energy conversion, they 
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Fig. 3.4.  Pair production cross sections in aluminum 
(Z=13) and lead (Z=82) [2]. 

 

 62  
 



will each have a minimum energy of 511 keV, depending on the kinetic energy of the 

positron at the time of annihilation.  Once produced, these photons can subsequently 

cause Compton scatter or photoelectric effects within the detector that creates additional 

interference. 

 

The pair production cross section (κ) is calculated using one of three screening 

models depending on the magnitude of 

 

 
𝛼 ∝

137
𝑍0.5  , (3.18) 

 

where α is equal to hυ/moc2 [1].  Regardless of the screening model used, the following 

approximation holds true for all cases [1]: 

 

 κ ∝ 𝑍2 . (3.19) 

 

The effect of the atomic number is by far most pronounced in the region of 1.022 – 5 

MeV as seen in Figure 3.4, after which the behavior appears asymptotic in nature.  The 

ratio of the pair production cross sections for lead and aluminum varies between 92.7 at 

1.25 Mev to a slowly decreasing value of 34.1 at 20 MeV [2]. 

 

As with Compton scattering, the amount of the pair production energy deposited 

in the detector depends on the size and composition of the detector.  However, given that 
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most neutron detectors have a relatively low-Z or Zeff as discussed in the previous two 

sections and they are operated in areas where the photon energies rarely exceed the 1.022 

MeV pair production threshold, this interaction mechanism will normally be considered 

negligible.  Notwithstanding the previous statement, pair production must be adequately 

evaluated in situations where neutron detectors are operated in the vicinity of active 

interrogation systems because photon beams with energies greater than 5 MeV are 

generally employed in these devices.  Detectors utilizing the conversion reactions 

of 155Gd or 157Gd isotopes also bear further evaluation because neutron absorption in 

these isotopes will produce in excess of 8 MeV of total energy, with some of the 

individual photon energies exceeding 6 MeV. 

 

3.1.4 Total Interaction Cross Section for Photons 

 

The total linear photon interaction probability is the sum of probabilities for all 

reactions of importance.  For the energy region of interest associated with this research, 

only the reactions discussed in this section are applicable and thus, the total interaction 

probability, µ, is simply 

 

 𝜇 =  𝜏 +  𝜎 +  𝜅 . (3.20) 

 

The μ for lead is displayed Figure 3.5, while Figure 3.6 demonstrates the regions where 

the various photon interaction processes are dominant. 
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Fig. 3.5.  Interaction cross sections for photons in lead 
[adapted from [1]].   

 

 

Fig. 3.6.  Dominance of photon interaction cross sections for materials 
of atomic number Z as a function of energy [adapted from [1]].  
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3.1.5 Photon Interaction Probability 

 

Since photons, unlike charged particles, are absorbed or scattered in singular 

events, the uncollided flux of a collimated beam will exhibit a truly exponential decrease 

per unit thickness of material as the photons pass through.  The interaction process 

follows first-order kinetics and can be described by the differential relation 

 

 𝑑𝜙 =  −𝜇𝜙 𝑑𝑥 , (3.21) 

 

where φ is the flux, dx is a differential thickness of shielding material and the negative 

sign implies the function is decreasing with the absorber thickness.  The solution to this 

differential equation is 

 

 𝜙(𝑥) =  𝜙0𝑒−𝜇𝑥 , (3.22) 

 

where φ0 is the initial flux.  The ratio of the positional flux and the initial flux tells us the 

percentage of photons that do not interact within a thickness (x)  

 

 𝜙(𝑥)
𝜙0

=  𝑒−𝜇𝑥 . (3.23) 

 

Therefore, the probability of having an interaction occur within a thickness x can be 

simply calculated by 
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 𝑝(𝑥) = 1 −  𝑒−𝜇𝑥 . (3.24) 

 

It is also useful to calculate a quantity known as the mean-free path which 

describes the mean distance travelled by a photon between interactions.  This quantity 

can be calculated by applying the laws of probability toward the scenario in which a 

photon travels a certain distance without interaction and then experiences an interaction 

within a differential thickness (dx).  The probability that a photon will not interact in 

distance (x) is given by Eq. 3.23, while the probability of interaction per unit path length 

from Section 3.1.4 is just μ; therefore, the probability of having an interaction in dx is μ 

dx.  By combining these probabilities, we can calculate the mean free path by integrating 

the equation for calculating averages by parts to obtain 

 

 
𝑥 = � 𝑥

∞

0
𝑝(𝑥)𝑑𝑥 = 𝜇� 𝑥

∞

0
𝑒−𝜇𝑥𝑑𝑥 =

1
𝜇

 . (3.25) 

 

By considering this equation in the context of Figure 3.5, it can be seen that x will vary 

with energy and composition of the material being traversed.  This quantity is extremely 

important for statistically-based Monte Carlo transport codes because it can be used to 

determine, on average, when photon interactions will occur. 
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3.2 Neutrons 

 

Neutrons are neutral particles with a comparable size and mass to protons and are 

constituents of the nucleus of all atomic nuclei with the exception of 1H.  However, 

neutrons, unlike protons, do not have to overcome the repulsive Coulomb barrier before 

entering the nucleus.  Since this particle is also electrically neutral, it is highly penetrating 

and only interacts by means of the strong nuclear force which is within a range on the 

order of 10-15 m.  Regardless of the production mechanism (fission, D-T reactions, etc.) 

neutrons have a fast energy at birth and, with the exception of cosmic ray interactions in 

our atmosphere, there are no natural neutron emitters in our environment.  Therefore, in 

non-proliferation applications, all neutron signals must be investigated. 

 

Neutrons are generally categorized according to energy regions (e.g. thermal, 

epithermal, or fast) when consideration is given to issues of transport or fuel analysis.  

Although these terms are brandished about with regularity by scientists and engineers 

alike, no exact convention exists and one must take care to quantify the terms.  For 

example, fast neutrons are generally considered to be those with kinetic energies 

exceeding 0.1 MeV and thermal neutrons are considered to be those below 0.1 eV; 

however, numerous contrary examples exist in textbooks and journal articles because 

authors sometimes choose to vary the energy thresholds for a particular purpose. 

 

Because neutrons are large, neutral particles traveling within a velocity 

distribution, the manner in which they interact with their surrounding matter is vastly 
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different from that of photons.  Whereas photons of energies less than the pair production 

threshold interact primarily with the atomic electrons, neutrons interact almost 

exclusively with the atomic nucleus and have a vanishingly small cross section for 

electron interactions. Photons also travel at the speed of light independent of their 

material interaction history; however, a neutron’s velocity is generally only a small 

fraction of the speed of light and has a highly variable magnitude that is directly 

dependent on the history.  For these reasons, neutron cross sections vary widely as a 

function of the neutron velocity (kinetic energy), element, and even isotopes of the same 

element, while photon cross sections vary within only a few percent between neighboring 

elements of the periodic chart and across a wide-energy range for a given element. 

 

Although the interaction possibilities for neutrons greatly outnumber those of 

photons, the most important considerations for detector applications will be the 

probability of the interaction and the amount of energy that is transferred to the detector 

media.  Despite the large number of interaction possibilities, neutron interactions can be 

broadly grouped into the categories of scatter, absorption, or radiative capture.  Which 

mechanism is paramount depends on the detector material being used for the neutron 

energy conversion. 

 

3.2.1 Scatter 

 

High-energy neutrons generally lose energy by colliding with the surrounding 

atoms in the medium they are traversing.  These collisions can either be elastic or 

 69  
 



inelastic in nature, depending on the target material and the incident neutron energy.  

Elastic collisions are those in which both kinetic energy and momentum are conserved in 

the interaction.  This type of interaction, unlike the inelastic variety, leaves the nucleus of 

the atom unchanged in isotopic composition and internal energy.  Apart from elastic 

scatter, all other neutron interactions are inelastic in nature. 

 

Both of scatter mechanisms can be efficient at moderating or slowing the neutron 

velocity; however, their effectiveness is dictated by the target material and the incident 

neutron energy (velocity).  Because of physical relationships that will be described later 

in this section, it will become evident that elastic scatter will be the most important 

reaction for 3He, while this same mechanism will be essentially irrelevant for BF3 where 

the capture reaction will be predominant.  

 

3.2.1.1 Inelastic Scatter 

 

Inelastic collisions are best described by a compound nucleus model in which an 

incident neutron is considered to be captured and then reemitted at a lower energy.  In 

this case, the momentum and energy exchange that led to the excited state is dissipated 

through the emission of a gamma photon.  The cross section for inelastic scatter exhibits 

a threshold phenomenon where the probability of the interaction is zero until an incident 

neutron has enough energy to stimulate the nucleus into its first excited state.  The 

reaction isn’t possible for hydrogen, since the nucleus consists of a single proton, but in 

general, the threshold increases to a maximum of about 6 MeV for 16O and then gradually 
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decreases with atomic number to only about 44 keV for 238U [2].  The magnitude of the 

cross section is generally on the order of only a barn or less for neutron energies around 

0.1 MeV, but it increases with increasing neutron energies and approaches a maximum 

corresponding to the geometric cross section of the target nucleus. 

 

Photons emitted in inelastic collisions tend to be of a higher energy, so they will 

typically escape the detector; however, interactions within the detector will obviously 

serve to obscure the true neutron counting rate unless discriminated.  Because the 

detector materials used in this research contain materials with low atomic numbers, the 

incident neutrons energies will typically be much less than the inelastic scatter threshold 

and the reaction will be negligible compared with elastic scattering. 

 

3.2.1.2 Elastic Scatter 

 

An elastic scatter is generally described as a billiard-ball type interaction in which 

kinetic energy and momentum of the products are conserved.  Since elastic scatter with 

neutrons is much more prevalent in low-Z materials such as 3He, the energy transfer will 

generally produce recoil protons that deliver the detection signal.  In this reaction, the 

neutron transfers some of its kinetic energy to the target nucleus and is directed into some 

new solid angle at a lower energy.  Since the neutron experiences both a change in 

direction and energy in this transition, the probability for the interaction is typically 

characterized through what is known as a double differential cross section which 

characterizes the probability of the neutron scattering from one energy (E) into a final 
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energy (dE΄) about E and from an initial direction (Ω) into a final direction (dΩʹ) about Ω 

[6] 

 

 𝜎𝑠(𝐸 → 𝐸ʹ,𝛺 → 𝛺ʹ)𝑑𝐸ʹ 𝑑𝛺ʹ . (3.26) 

 

The double differential scattering cross section can be reduced to a differential scattering 

cross section or to the scattering cross section by integrating over energy or angle as 

shown below: 

 
𝜎𝑠(𝐸 → 𝐸ʹ) =  � 𝜎𝑠(𝐸 → 𝐸ʹ,𝛺 → 𝛺ʹ) 𝑑𝛺ʹ 

4𝜋

 , (3.27) 

 
𝜎𝑠(𝛺 → 𝛺ʹ) = � 𝜎𝑠(𝐸 → 𝐸ʹ,𝛺 → 𝛺ʹ) 𝑑𝐸ʹ  

∞

0

, (3.28) 

or, 

 
𝜎𝑠(𝐸) = � � 𝜎𝑠(𝐸 → 𝐸ʹ,𝛺 → 𝛺ʹ)𝑑𝐸ʹ 𝑑𝛺ʹ

∞

04𝜋

 . (3.29) 

 

The calculation of differential scattering cross sections is generally an enormous 

task; however, in situations where elastic scattering from stationary nuclei occurs, the 

laws of conservation of energy and momentum can be used to calculate these quantities 

in a relatively straightforward manner.  In the case of radiation detection applications, the 

differential energy scattering cross section (Eq. 3.27) is usually the quantity of interest, 

because this term quantifies the magnitude of the energy deposition and, therefore, the 
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pulse amplitude.  The first step in the process is to specify the probability that a scatter 

reaction changes the incident neutron energy (E) to a value between Eʹ and Eʹ + dEʹ 

according to 

 

 𝜎𝑠(𝐸 → 𝐸ʹ)𝑑𝐸ʹ  . (3.30) 

 

The next step is to decompose Eq. 3.30 into separate scalar and differential 

probability components by 

 

 𝜎𝑠(𝐸 → 𝐸ʹʹ)𝑑𝐸ʹ =  𝜎𝑠(𝐸) 𝑃(𝐸 → 𝐸ʹ)𝑑𝐸ʹ , (3.31) 

 

where P(E → Eʹ) dEʹ describes the energy probability distribution.  Since a significant 

compilation of scalar terms σs(E) already exist for most isotopes [63], the challenge of 

solving Eq. 3.31 lies in calculating 

 

  𝑃(𝐸 → 𝐸ʹ)𝑑𝐸ʹ .  

 

Thankfully, this term can be explicitly evaluated for instances in which neutrons of 

moderate energy (< 1 MeV) undergo elastic scatter in stationary nuclei with a small mass 

number (A).  This situation is applicable to most neutron detection scenarios, including 

those within the confines of this study.  Scalar quantities such as σs(E) are measured in 

what is known as a laboratory frame-of-reference that realistically represents the 
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scattering relationship between an incident neutron and the target nucleus; however, this 

system is computationally cumbersome.  To ease this burden, it is helpful to choose a 

frame of reference in which the center-of-mass remains stationary after the collision 

between the two bodies.  This new frame of reference is known as the center-of-mass 

system and its comparison to the laboratory system is shown in Figure 3.7. 

 

 

Fig. 3.7.  Comparison of the laboratory and center-of-mass systems for 
scattering reactions [adapted from [6]].  

 

 

The relationship between the different velocities and the center of mass at some 

arbitrary reference point in the laboratory system (scattering point) can be described 

graphically as shown in Figure 3.8, where r l and R l are position vectors describing the 

location of the neutron and nucleus following a scatter interaction, rc and Rc are position 

vectors showing  the center of mass coordinates, and ρ is the position vector displaying 

the location of the center of mass with respect to the scattering site. 
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Fig. 3.8.  Positional relationships of the scattering products in the laboratory and 
center-of-mass coordinate systems. 

  

 

The equation for the center of mass (ρ) of the system shown above can be adapted from 

the formal definition provided in college-level calculus and physics texts [64] 

 

  𝝆 =  
𝑚𝒓𝑙 +  𝑀𝑹𝑙
𝑚 + 𝑀

 , (3.32) 

 

where and m and M are the masses of the neutron and the target nucleus, respectively.  

By inspection of Figure 3.8, the center of mass coordinates of the neutron and nucleus are 

given by 

 

 𝒓𝑐 = 𝒓𝑙 −  𝜌  𝑎𝑛𝑑  (3.33) 

Center of Mass 

Nucleus 

Neutron 

Origin in 
Laboratory 
Coordinates 

Rl 

rl 

ρ 

rc 

Rc 
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 𝑹𝑐 = 𝑹𝑙 −  𝜌  . (3.34) 

 

Because the particles described in Eqs. 3.33 and 3.34 are in motion, these vectors 

are functions of time and their respective velocities can be determined by taking their 

derivatives to obtain 

 

 d𝐫𝐜
𝑑𝑡

= 𝒗𝑐 = 𝒗𝑙 − 𝑽𝐶𝑀  , (3.35) 

 

 d𝐑𝐜

𝑑𝑡
= 𝑽𝑐 = 𝑽𝑙 − 𝑽𝐶𝑀  , (3.36) 

 

where vc and Vc are the velocities of the neutron and nucleus with respect to the center of 

mass, v l  and Vl are the velocities in the laboratory coordinate system, and VCM is the 

velocity of the center of mass that is can be obtained by differentiating Eq. 3.32 

 

 𝑑𝝆
𝑑𝑡

= 𝑽𝐶𝑀 =  
𝑚𝒗𝑙 +  𝑀𝑽𝑙
𝑚 + 𝑀

 . (3.37) 

 

Now, since the neutron velocity is significantly greater than the molecular motion 

of the target nucleus (V l) in the laboratory system, V l is considered to be zero and Eq. 

3.37 reduces to 
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 𝑽𝐶𝑀 =  
𝑚𝒗𝑙
𝑚 + 𝑀

 . (3.38) 

 

It can be seen from this equation and Figure 3.8 that in cases where M is very large, VCM 

approaches zero and the two coordinate systems become identical.  By substituting Eq. 

3.38 into Eqs. 3.35 and 3.36 and equating Vl to zero, the velocities of the neutron and 

nucleus in the center-of-mass system become 

 

 𝒗𝑐 = 𝒗𝑙 − 𝑽𝐶𝑀 =  
𝑀𝒗𝑙
𝑚 + 𝑀

  (3.39) 

 

 𝑽𝑐 = −𝑽𝐶𝑀 = −
𝑚𝒗𝑙
𝑚 + 𝑀

  . (3.40) 

 

The total momentum (pCM) of the center-of-mass system can then be described by 

 

 𝒑𝐶𝑀 = 𝒎𝒗𝑐 + 𝑴𝑽𝐶𝑀 =  
𝑚𝑀𝒗𝑙
𝑚 + 𝑀

−
𝑚𝑀𝒗𝑙
𝑚 + 𝑀

= 0 , (3.41) 

 

which means that the total momentum in the center-of-mass system is exactly zero.  It is 

this outcome that affords the simplicity of calculation mentioned previously.  

 

The simplicity can be divulged by first correlating the total energy in both 

coordinate systems and then substituting a relative speed for the particles that exists 
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before any collision occurs.  Remember that VL = 0, the initial energy in the laboratory 

system is 

 

 
𝐸𝑙 =

1
2
𝑚 𝒗𝒍𝟐 , (3.42) 

 

and the energy in the center-of-mass system, using Eqs. 3.39 and 3.40 is 

 

 𝐸𝐶 =
1
2
�
𝑚𝑀
𝑚 + 𝑀

 � 𝒗𝑙2 . (3.43) 

 

Through the comparison of Eqs. 3.42 and 3.43, it is evident that the energy of the two 

coordinate systems can be correlated by the relation 

 

 𝐸𝐶 =
1
2
�

𝑀
𝑚 + 𝑀

 �𝑚𝒗𝑙2 = �
𝑀

𝑚 + 𝑀
 �  𝐸𝑙 . (3.44) 

 

Now that an energy correlation for the two systems has been established, consider 

that the relative speed of the particles before a collision is 

 

 𝑣𝑙 = 𝑣𝑐 + 𝑉𝐶  . (3.45) 

 

Substituting Eq. 3.39 into Eq. 3.44 yields 
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 𝐸𝐶 =
1
2
�
𝑚𝑀
𝑚 + 𝑀

 �  (𝑣𝑐 + 𝑉𝐶)2, (3.46) 

or, 

 
𝐸𝐶 =

1
2
µ(𝑣𝑐 + 𝑉𝐶)2, (3.47) 

 

where µ is referred to as the reduced mass of the two-particle system  

 

 µ = �
𝑚𝑀
𝑚 + 𝑀

 � . (3.48) 

 

Following the collision, the total energy is unchanged because the interaction was elastic, 

therefore, 

 

 
𝐸𝐶 =

1
2
µ(𝑣𝑐′ + 𝑉𝐶′)2. (3.49) 

 

By equating Eqs. 3.47 and 3.49, it follows that 

 

 𝑣𝑐 + 𝑉𝐶 = 𝑣𝑐′ + 𝑉𝐶′  . (3.50) 

 

Since we know that the total momentum in the center-of-mass system remains 

zero before and after a collision, it is evident that 
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 𝑚𝑣𝑐 = 𝑀𝑉𝐶  , (3.51) 

and 

 𝑚𝑣𝑐′ = 𝑀𝑉𝐶′  . (3.52) 

 

Using these two equations to eliminate terms in Eq. 3.50 yields 

 

 �1 +  
𝑚
𝑀
�𝑣𝑐 = �1 + 

𝑚
𝑀
�𝑣𝑐′ , (3.53) 

 

which demonstrates that the neutron speed does not change following a collision in the 

center-of-mass system.  Coupling Eq. 3.53 with Eq. 3.50 also shows that the speed of the 

target nucleus remains unchanged in the interaction as well.  The important relationship 

between the scattering angles shown in Figure 3.9 can also be divulged by using Eq. 3.39.  

This equation is a general result that is valid before and after a scattering reaction, so we 

can write 

 

 𝒗𝑐′ = 𝒗𝑙′ − 𝑽𝐶𝑀 ,  (3.54) 

 

which can be depicted in the following vector diagram. 
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Fig. 3.9.  Relationship of the scattering angles in the laboratory and center-of-mass 
coordinate systems [adapted from [1]].  

 

From Figure 3.9, the relationships between the scattering angles are 

 

 𝒗𝑙′ sin𝜗 = 𝒗𝑐′ sin 𝜃  , (3.55) 

 

 𝒗𝑙′ cos𝜗 = 𝑽𝑪𝑴 + 𝒗𝑐′ cos 𝜃 . (3.56) 

 

Dividing Eq. 3.55 by Eq. 3.56 and remembering that vc = vc′ provides the 

following direct correlation between the two scattering angles 

 

 
tan𝜗 =

sin𝜃
𝑚
𝑀 + cos 𝜃

 . (3.57) 

 

One additional and perhaps more useful relationship can also be extracted by rewriting 

Eq. 3.56 as 

Direction of Incidence 

VCM 
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cos𝜗 =

𝑽𝑪𝑴 + 𝒗𝑐′ cos 𝜃
𝒗𝑙′

 . (3.58) 

 

The denominator can then be expanded using the law of cosines to yield 

 

 𝒗𝑙′ = �(𝒗𝑐′ )2 + (𝑽𝐶𝑀)2 + 2𝒗𝑐′ 𝑽𝐶𝑀 cos 𝜃 .  (3.59) 

 

Now by using the relations vc = vc′ and Eqs. 3.40 and 3.51, we arrive at 

 

 
cos𝜗 =

1 + �𝑀𝑚� cos 𝜃

��𝑀𝑚�
2

+ 1 + 2 �𝑀𝑚� cos𝜃 
 . (3.60) 

 

Since the whole point of this mathematical exercise was to determine the 

probability of a neutron scattering from E→ E′, the next step will be to use Eq. 3.59 and 

the other velocity relations to determine the energy transfer and scatter probability terms.  

When these steps are taken, the following important relations result, including the 

probability term we were originally seeking (see Appendix B for the derivation) 

 

 
𝐸′

𝐸
= �  

 
 (1 + 𝛼) +  (1 − 𝛼) cos 𝜃

2
 

 
0

        
       𝛼𝐸 ≤ 𝐸ʹ ≤ 𝐸

 
   otherwise

   (3.61) 
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and, 

 
𝑃(𝐸 → 𝐸ʹ) =  �  

 
 1

𝐸(1 − 𝛼)
 

 
 0

        
       𝛼𝐸 ≤ 𝐸ʹ ≤ 𝐸

 
   otherwise

   
(3.62) 

 

where the scattering parameter (α) is defined as 

 

 
𝛼 ≡ �

𝑀 − 1
𝑀 + 1

 �
2

 . (3.63) 

 

Eq. 3.63 can now be combined with the scalar term in Eq. 3.31 to arrive at the differential 

scatter cross section we were seeking 

 

 
𝜎𝑠(𝐸 → 𝐸ʹ)𝑑𝐸ʹ =   �

𝜎𝑠(𝐸)
𝐸(1 − 𝛼)� 𝑑𝐸ʹ . (3.64) 

 

By integrating this relation over the neutron energy range of interest, one can 

determine the scatter cross section.  Eqs. 3.61 and 3.62 are very interesting results 

because they show that the energy transfer to the detector medium and the probability of 

achieving any final neutron energy is only dependent on the incident neutron energy and 

the scattering material itself.  Furthermore, for the maximum energy transfer to take place 

(θ = π), Eq. 3.61 yields 
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 𝐸′

𝐸
=  

2𝛼
2

=  𝛼  (3.65) 

or, 

 𝐸′ = 𝐸𝛼 . (3.66) 

 

By interpreting Eq. 3.66 with the aid of Eq. 3.63, it can readily be seen why a 

material of low mass number is so vital in a neutron detector utilizing the scattering 

reaction to produce an electrical signal.  For elastic scattering in hydrogen (A=1), these 

equations demonstrate that it is possible for a neutron to lose its entire kinetic energy in a 

single collision.  However, since no detector can be comprised entirely of hydrogen, these 

results explain one of the reasons why 3He is very popular for neutron monitoring.  For 

example, in 3He, the neutron can potentially lose up to 75% of its initial energy in a 

single elastic collision.  Figure 3.10 provides an overall view of the values σs(E) for the 

materials being evaluated in this research and shows that the cross section increases 

significantly at lower neutron energies [63].  This behavior will be discussed further in 

Section 3.2.3. 

 

As a fast neutron slows, the number of collisions it experiences increases.  For 

this reason, it is convenient to introduce an independent variable other than energy to 
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Fig. 3.10.  Elastic scattering cross sections for various 
detector elements [7].  

 

 

describe the collision density.  This variable is call lethargy and is usually denoted by the 

symbol u.  Lethargy is specifically defined by 

 

 𝑢 ≡ ln
𝐸0
𝐸

 , (3.67) 

 

where E0 is an arbitrary energy that is generally chosen based on the most energetic 

neutrons for the case being considered because this choice will ensure that the lethargy 

value will always be positive.  If u is chosen in this fashion, the lethargy is zero for 

neutrons of this energy and will increase with a decreasing energy.  In other words, the 

neutrons become more lethargic as their energy level decreases. 
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The lethargy term can be also be used to develop an important parameter denoted 

as ξ, which is called the average increase in lethargy per collision.  This parameter is 

important, because it can be used to determine the average number of collisions necessary 

to reduce the incident neutron energy from E0 to some final E.  The change in lethargy 

resulting from a single collision can be calculated using the equation of the mean from 

calculus as 

 

 
∆𝑢 = 𝜉 =

∫ ln �𝐸𝐸ʹ�
𝐸
𝛼𝐸  𝑃(𝐸 → 𝐸ʹ)𝑑𝐸ʹ

∫ 𝑃(𝐸 → 𝐸ʹ)𝐸
𝛼𝐸 𝑑𝐸ʹ

  , (3.68) 

 

where the probability of distribution across all energies in the denominator is equal to 

one.  Eq. 3.68 must be numerically evaluated except for the case of isotropic scattering in 

the center-of-mass system.  In this case, one can substitute Eq. 3.62 into Eq. 3.68, thereby 

reducing the integral to the following expression 

 

 
𝜉 =

1
𝐸(1 − 𝛼)� ln �

𝐸
𝐸ʹ
�

𝐸

𝛼𝐸
 𝑑𝐸ʹ  , (3.69) 

 

which can evaluated analytically by making the substitution x = Eʹ / E and inserting the 

appropriate new limits 
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𝜉 =

1
(1 − 𝛼)� ln(𝑥)

𝛼

1
 𝑑𝑥  , (3.70) 

 

which leads to the final result 

 

 𝜉 = 1 + �
𝛼

1 − 𝛼
� ln𝛼  . (3.71) 

 

Eq. 3.71 can also be correlated to mass number (M) by substituting Eq. 3.63  

 

 
𝜉 = 1 +

(𝑀− 1)2

2𝑀
ln �

𝑀 − 1
𝑀 + 1

�  . (3.72) 

 

The fractional term in the natural logarithm term can be inverted to obtain the following 

relation 

 

 
𝜉 = 1 −

(𝑀− 1)2

2𝑀
ln �

𝑀 + 1
𝑀 − 1

�  , (3.73) 

 

which allows for an easier expansion as the power series of 1 / (1 – M).  When this 

expansion is performed, Eq. 3.73 reduces to the following simple expression 
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 𝜉 =
2

𝑀 + 2
3

  . (3.74) 

 

When the moderating medium contains more than one isotope, the average lethargy of 

the material can be calculated using the discrete form of the average by writing 

 

 
𝜉 =

∑ 𝜉𝑖𝛴𝛴𝑠𝑖𝑛
𝑖=0

∑ 𝛴𝛴𝑠𝑖𝑛
𝑖=0

  , (3.75) 

 

where 𝛴𝛴s is the macroscopic scattering cross section at the lower energy of interest (e.g. 

0.0253 eV for thermal) calculated using the microscopic scatter cross section and the 

number of atoms per cm3 according to 

 

 𝛴𝛴𝑠 =   𝜎𝑠𝑁 . (3.76) 

 

We can determine what fractional energy escapes the detector following an elastic 

scatter by evaluating Eq. 3.67 for average energies and rearranging the terms to get 

 

 
−𝜉 = ln

𝐸
𝐸0

  . (3.77) 

 

and then solving for the energy relation 
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 𝐸
𝐸0

= 𝑒−𝜉 .  (3.78) 

 

The fractional amount of energy (f) that is transferred to the target during an elastic 

collision is  

 

 
𝑓 = 1 −

𝐸
𝐸0

= 1 − 𝑒−𝜉 . (3.79) 

 

An estimation of the number (N) of scatterings that are necessary to moderate a 

neutron to a lower energy is given by 

 

 𝑁 =
𝑢
𝜉

 . (3.80) 

 

It is interesting to calculate N for the case of 2 MeV neutrons that are moderated to 1 eV 

because these are roughly the parameters associated with the lifecycle of a neutron from 

birth to fission in 235U.  When these energy parameters are inserted into Eq. 3.77, we get 

the following result 

 

 
𝑁 =

14.5
𝜉

 . (3.81) 
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Various quantities related to elastic scattering and moderation have been 

calculated and provided in Table 3.1 for general comparison.  An evaluation of the data 

demonstrates the large dependency on the mass number of the scattering medium, 

including the severe decrease in the fractional energy transfer beyond a mass number of 

four.  The values of ξ and f can also be seen to approach one another as the atomic mass 

increases, differing only by the 3rd decimal place beyond a mass number of 16 (oxygen).  

And, on average, it takes 119 times more scattering to moderate fission neutrons to 1 eV 

in uranium compared with hydrogen.  This highlights one of the main design differences 

between thermal and fast reactors, where the latter employs a coolant with a higher mass 

number such as liquid sodium to minimize the energy lost during collisions.  

   

Table 3.1.  Elastic scattering and moderation parameters for select nuclides. 
      
Nuclide Mass No. α ξ f N 
      
      
Hydrogen 1 0.000 1.000 0.632 14.500 
Deuterium 
Water 
Helium 
Helium 
D2O 
PVT (EJ-200)3 
BF3 
Beryllium 
Carbon 
Oxygen 
Sodium 
Iron 
Uranium 

2 
-- 
3 
4 
-- 
-- 
-- 
9 

12 
16 
23 
56 

238 

0.111 
-- 

0.250 
0.360 

-- 
-- 
-- 

0.640 
0.716 
0.779 
0.840 
0.931 
0.983 

0.725 
0.945 
0.538 
0.425 
0.535 
0.403 
0.354 
0.207 
0.158 
0.120 
0.084 
0.035 
0.008 

0.516 
0.611 
0.416 
0.346 
0.414 
0.332 
0.298 
0.187 
0.146 
0.113 
0.081 
0.035 
0.008 

19.990 
23.700 
26.957 
34.092 
34.999 
43.694 
48.655 
70.184 
91.907 

120.887 
171.620 
410.848 

1730.337 
      

 

 

3 Eljen Technology, 1300 W. Broadway, Sweetwater, TX 79556, (325) 235-4276. 
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For neutron detectors designed on the basis of elastic scattering or absorption, the 

premium choices will be made from materials having lower values of α and higher values 

of ξ and f.  The data show that 3He and PVT both have very respectable properties in this 

sense, requiring an average of only 3 and 10 additional collisions to achieve the 

moderation of water.  Although PVT is a solid with substantial hydrogen content, the 3He 

gas performs better as a moderator because of the large carbon content in the PVT [8].  In 

fact, the data also show that BF3 performs nearly as well as the PVT in terms of 

moderation despite the fact that it operates on the principle of neutron absorption. 

 

3.2.2 Absorption 

 

In the same sense that the term scattering was a higher-order expression 

encompassing both inelastic and elastic processes, the term absorption incorporates a 

number of different reactions that are possible when an incident neutron is absorbed into 

the nucleus of the atom.  The various reactions that are probable include the emission of 

charged particles, additional neutrons, or photons and even fission, depending on the 

target and the energy level within its nucleus.  Of these processes, only the radiative 

capture and charged-particle reactions are of importance for the detectors being 

considered.  Normally, radiative capture is the most important reaction of this kind; 

however, the materials under evaluation here are either enriched with materials that 

enhance an absorption reaction (i.e. 10B (n, α) 7Li) or that have a large elastic scattering 

probability (i.e. 3He (n, p) 3H). 
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3.2.2.1 Radiative Capture 

 

This particular interaction can occur at all neutron energies; however, it becomes 

more probable at low energies.  In radiative capture reactions, the excited compound 

nucleus reaches the ground-state by emitting gamma radiation, so this reaction is usually 

referred at as an (n, γ) reaction.  This process is represented symbolically by 

 

 𝑋 +  𝑛01  →  ( 𝑋𝑍𝐴+1 )∗  →  𝑋1𝐴+1 +  𝛾 + 𝐸𝑍
𝐴  . (3.82) 

 

Since the atomic number does not change in this reaction, the resultant product is an 

isotope of the original element that can be stable or radioactive.  If a radioactive isotope 

results, it will likely be a beta-emitter because this decay is prevalent in isotopes having 

an elevated neutron/proton ratio.  In most cases, the excess energy is carried away by 

several photons, although in a few cases, such as 1H, a single energetic photon is emitted 

 

 𝐻 + 𝑛01  →  ( 𝐻12 )∗  →  𝐻12 +  𝛾 + 2.2 𝑀𝑒𝑉1
1  . (3.83) 

 

Although the cross section for this reaction is only 1 – 10 barns at thermal 

energies as seen in Figure 3.11, the reaction is important in PVT because of its large 

hydrogen content.  These photons can potentially skew the neutron detection rate if they 

are not discriminated in some fashion [39].  All the detector materials considered in this 

research have (n, γ) cross sections at or below that of 1H for all neutron energies.  The 
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Fig. 3.11.  Radiative capture cross section in 1H [7]. 
 

 

behavior of the 1H (n, γ) cross section below 0.1 eV is interesting because it varies as a 

line with slope of the reciprocal of velocity or as the square-root of energy.  This 

phenomenon is generally referred to as the 1/v behavior and, unlike other regions of the 

cross section plot, it allows one to easily calculate the cross section value at another 

neutron energy as long as the new data point is still within the 1/v behavior range.  The 

relationship below shows how to perform the calculation behavior region if the cross 

section is known at a particular energy (velocity) 

 

 𝜎
𝜎𝑜

=
𝑣𝑜
𝑣

= �𝐸𝑜
𝐸

  , (3.84) 
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where σo is the known cross section value at the initial velocity (vo) or energy (Eo) and σ 

is the cross section to be determined at a new velocity (v) or energy (E). 

 

The 1/v region can sometimes extend to energies of up to 1 keV, depending on the 

target nucleus.  The reason for this behavior, which is witnessed in all elements below a 

varying endpoint, will be discussed further in Section 3.2.3. 

 

3.2.2.2 Charged-Particle Reactions 

 

The charged-particle absorption reactions of interest in this study are the 3He 

(n  p) 3H and the 10B (n, α) 7Li, which were described in detail in Chapter 1.  It should be 

noted that the (n, p) reaction is a scatter reaction caused by a direct collision with a proton 

and not an absorption reaction in which the neutron interacts within the quantum 

framework of the nucleus.  The absorption of a fast neutron is not very probable because 

the cross section is very small for all nuclei at higher energies; however, as a neutron is 

moderated through the scattering processes discussed in the previous section, the 

absorption cross section increases for all nuclei.  Eventually, a point is reached where this 

cross section also begins to vary inversely with the velocity of the neutron.  Once the 

neutron has reached a point when it is at thermal equilibrium with the surrounding media, 

it can no longer impart kinetic energy and can either be lost by absorption (capture) or 

leakage from the system. 
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As can be seen from Figure 3.12, the elastic scattering cross section in 3He (n, p) 

is larger than the (n, α) reaction in 10B below ~ 0.1 MeV, after which the two cross 

sections follow the 1/v behavior discussed in the preceding section [7].  At the thermal 

energy of 0.025 eV, the cross sections for the two reactions are 5330 and 3840 barns 

respectively.  Both these cross sections are reasonably large in magnitude and the excess 

energy resultant in the absorption produces a charged particle that can be sensed by the 

detection medium and attributed to a neutron interaction.  In 3He and BF3 detectors, the 

resulting pulse height is significantly higher than that produced by even a high-energy 

photon, so photon discrimination is straightforward and requires only a simple pulse-

height discriminator. 

 

 

Fig. 3.12.  Cross section comparison for 3He and BF 3  [7].  
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3.2.3 Total Interaction Cross Section for Neutrons 

 

The total interaction probability for neutrons is the sum of probabilities for the 

reactions of importance, as was the case for photon interactions.  Only the reactions 

discussed in this section are applicable for this study; therefore, the total interaction 

probability is 

 

 𝜎𝑡 =  𝜎𝑠 + 𝜎𝑎 , (3.85) 

 

and the total macroscopic cross section (expectation of the interaction probability) is then 

 

 𝛴𝛴𝑡 =  𝛴𝛴𝑠 + 𝛴𝛴𝑎 , (3.86) 

 

where 𝛴𝛴s is the elastic scattering cross section and 𝛴𝛴a is the absorption cross section of 

interest (either n,p or n,α).  The macroscopic cross section for a material (x) is related to 

σx by the relation 

 

 𝛴𝛴𝑥 =  𝑁𝑥𝜎𝑥 , (3.87) 

 

and is considered an expectation value because of the variability associated with N, which 

is the number density or number of atoms per unit volume (cm3) for a particular the 
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element.  The total cross sections (microscopic) for all the elements present in the 

detector materials being considered are collectively provided in Figure 3.13 [7]. 

 

 

Fig. 3.13.  Total cross sections for applicable detector elements [7].  

 

The energy dependence that exists for neutron cross sections can be discussed in 

terms of the reactions we have previously discussed.  In the lower energy range, where 

the neutron energy is less than the chemical binding energy of the atoms in a material, the 

neutron does not interact with an individual nucleus, but rather the total of the bound 

nuclei.  The thermal motion in this range is characterized by a thermal energy of (3/2) kT 

where k = 8.6173 x 10-5 eV/° K.  Since the neutron is no longer moving with a velocity 

much different from the nuclei, the motion of the neutron (v) relative to that of the nuclei 

(V) or |v - V| becomes extremely important and the cross section behaves as 1/v when an 

average cross section is calculated [9]. 
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The irregular behavior exhibited by the cross sections between 0.025 – 10 MeV 

are related to the wavelength of the neutron.  These rapid oscillations result from 

situations in which the neutron wavelength is approximately the same as the atomic 

spacing between the nuclei, causing the neutron to interact with the material as a whole 

and resulting in the neutron being diffracted in a similar manner as X-rays passing 

through a crystal lattice.  The large energy dependencies are caused by wavelengths that 

are comparable to several of these interstitial lattice distances.  However, once the 

neutron energy decreases to a point, the wavelength becomes large relative to the lattice 

spacing and diffraction is no longer possible, causing the cross section behavior to 

become smooth again.  The patterns of irregular behavior will become apparent again at 

higher neutron energy levels; however, these patterns are referred to as resonance 

reactions and they occur when the incident neutron energy is comparable to the lowest 

energy levels of a compound nucleus.  In these instances, the reaction probability 

increases and decreases abruptly according to the energy state within the compound 

nucleus [1, 3 – 4]. 

 

3.2.4 Neutron Interaction Probability 

 

Neutron interactions in materials of small thicknesses, can be described using the 

same process described for photons in Section 3.1.5 where the percentage of neutron that 

do not interact within a thickness (x) is given by 
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 𝜙(𝑥)
𝜙0

=  𝑒−𝛴𝑡𝑥 , (3.88) 

 

and the probability of having an interaction occur within a thickness (x) is simply 

 

 𝑝(0) = 1 −  𝑒−𝛴𝑡𝑥 . (3.89) 

 

where is the total macroscopic cross section defined in Section 3.2.3.  Likewise, the 

neutron mean-free path (𝑥) can be determined using the same logic applied to photons 

according to 

 

   
𝑥 = � 𝑥

∞

0
𝑝(𝑥)𝑑𝑥 = 𝛴𝛴𝑡 � 𝑥

∞

0
𝑒−𝛴𝑡𝑥𝑑𝑥 =

1
𝛴𝛴𝑡

 . (3.90) 

 

This quantity is similarly used by Monte Carlo codes to determine the average flight 

distance of a neutron before an interaction. 

 

3.3 Cosmic Muons 

 

Cosmic muons have the charge of an electron, but carry approximately 209 times 

greater mass.  Like electrons, these particles mainly undergo interactions with the atomic 

electrons; however, since they are massive compared to an electron, their path is not 

tortuous, but relatively linear in fashion and they experience a more gradual energy loss.  
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Muons have energies from a few eV to 1010 GeV; however, the average muon energy 

reaching the earth’s surface is approximately 3 GeV due to interactions within the 

atmosphere. 

 

These particles can interact with solid neutron detector materials resulting in 

pulses that are characterized as photons and/or neutrons; however, the muon flux at the 

earth’s surface is fairly constant (varies slightly with latitude) and, therefore, the rate of 

false coincidences should also be relatively constant.  Regardless, muon interactions can 

be easily correctable by the pulse processing system [3] and are of no consequence for 

gas-filled detectors due to the small magnitude of their density. 
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CHAPTER 4 
COMPUTATIONAL METHODS OF THREE-DIMENSIONAL 

RADIATION TRANSPORT 
 
 

This chapter describes the computational methods that will be applied to 

determine whether a suitable replacement for 3He exists among the materials being 

considered in this research.  The intent of the modeling effort is to draw a correlation 

between the modeling results for 1-inch diameter 3He (4 atm) and BF3 (1 atm) tubes and 

direct laboratory measurements made using the same devices to ensure fidelity exists 

between the two.  Once an excellent statistical correlation has been established for the 

case of the gases, the modeling effort can then be confidently extended to other tube 

designs and materials. 

 

The goal of any computational radiation detection effort is to provide a solution of 

the linear Boltzmann transport equation (LBE), which describes neutral-particle behavior 

as a function of spatial, angular, and energy.  Since detector materials represent a non-

multiplying environment for neutral particles, we will concern ourselves with the 

forward, non-multiplying, steady-state form of the LBE shown in Eq. 4.1.  The left-hand 

side of Eq. 4.1 represents losses associated with streaming and collisions, while the right-

hand side details any gains produced by scattering and fixed source terms.  The solution 

to the angular flux term in is computationally expensive because the equation contains 

seven independent variables.  Therefore, regardless of the method employed to solve Eq. 

4.1, some technique must be applied in order to reduce the problem space to one that is  
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 𝛺� ∙ ∇𝜓�𝑟,𝛺� ,𝐸� + 𝜎(𝑟,𝐸)𝜓�𝑟,𝛺� ,𝐸�

=  � � 𝑑𝐸′ 𝑑𝛺′ 𝜎𝑠�𝑟,𝛺�′ ∙ 𝛺� ,𝐸′ → 𝐸�𝜓�𝑟,𝛺�′,𝐸′� +  𝑞(𝑟,𝛺� ,𝐸) 
4𝜋∀𝐸

. 

 

(4.1) 

where: 

Ω�  = solid angle (particle direction); 

𝑟 = spatial coordinate (particle position); 

E = energy; 

ψ(𝑟,𝛺� ,𝐸) = angular flux; 

𝜎(𝑟,𝐸) = total macroscopic cross section; 

 𝜎𝑠�𝑟,𝛺�′ ∙ 𝛺� ,𝐸′ → 𝐸� = macroscopic differential scatter cross section; and, 

𝑞(𝑟,𝛺� ,𝐸) = fixed source term. 

 

calculable through the use of a high-performance computer system.  Deterministic codes 

that attempt to solve the LBE directly generally use some type of spatial, energy, and 

angular discretization technique such as discrete ordinates, while statistical approaches 

such as Monte Carlo require variance reduction techniques. 

 

4.1 Deterministic Transport 

 

4.1.1 Deterministic Basis 

 
The direct solution of the LBE offers an attractive alternative to other methods 

such as Monte Carlo because it can be significantly faster and more accurate, it provides 

universal information which can directly support fluxes and other applications such as 
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burnup calculations, and the solution is without statistical uncertainty, yet is limited to the 

accuracy of the cross sections and truncation error of the applied numerical discretization 

schemes [38].  Problems must be broken or decomposed into discrete algebraic 

expressions to use this method, since digital computers cannot directly perform calculus 

operations.  One popular method for decomposition of the phase space (dimension, angle, 

energy, and time) is the discrete ordinates (SN) method [1 – 2]. 

 

4.1.2 The Discrete Ordinates (SN) Method 

 
Rather than solving the LBE across the entire spatial domain, this technique 

solves the LBE for only a discrete set of directions (ordinates), energy bins, and spatial 

meshes.  Although 1-D and 2-D problems can be well-managed on a conventional laptop 

computer, a 3-D problem typically requires a robust parallel algorithm for efficiency, 

combined with a high-performance computer system. 

 

As is the case with any computational method, the advantages also come with a 

set of disadvantages that must be understood and accounted for during the modeling 

phase.  As noted, each and every radiation transport application is only as effective as the 

cross section data used for determining particle reactions such as absorption, scatter, 

fission, etc.  One challenge associated with the deterministic method is that using 

something akin to point-wise or continuous-energy cross sections is prohibitive from a 

time and computer memory perspective.  Therefore, the user must choose the proper 

subset of a fine-group data collection to apply in a model, and he or she must somehow 

collapse this information into something that is representative of the actual overall 
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physical behavior (broad-group).  The choice of a proper broad-group set will ensure that 

a problem is computationally manageable, while accounting for all the important physical 

characteristics associated with a particular model, such as the source term and scattering 

moments that will be discussed in a later section. 

 

Possibly the most deleterious condition associated with the most popular 

deterministic method, discrete ordinates, is the existence of ray effects that can render 

analytical solutions that are unphysical or inaccurate.  These effects are actually an 

artifact of the approach itself, which uses only a discrete number of ordinates (directions) 

in order to minimize the computational expense.  In cases where the transport media 

presents little scattering or a high optical thickness (i.e. highly absorbing or sparse 

materials), angular flux values along the chosen ordinates will be satisfactory; however, 

areas of the media between the ordinates may contain few if any source particles and this 

will yield angular fluxes that are small to non-existent.  The term optical thickness refers 

to the number of mean-free paths a photon or particle will travel in a certain medium; 

however, in radiation transport applications where the radiation is being projected along 

an ordinate, it is customary to keep track of this quantity according to its directional 

cosine along a particular axis to help determine whether a particular differencing scheme 

(discussed later) is becoming ineffective.  Therefore, for deterministic transport 

applications, the optical thickness (OT) is generally referred to by the following 

relationship 
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   OT =  �
σ∆x
µ
�  ,      (4.2) 

 

where σ is the macroscopic cross section for the medium, Δx is the distance along x 

traveled by the radiation in the medium, and μ represents the direction cosine along the x-

axis in this example. 

 

The ray effects can generally be minimized by increasing the quadrature (e.g. S8 

versus S2), but this action will significantly increase the computation time and must be 

applied judiciously.  Another approach that one can take is to couple the deterministic 

transport with a Monte Carlo routine that can be called upon to handle particle transport 

in regions of optical thickness where the effects are noticeable [3].  One additional 

technique that can be employed, and the one applied to the deterministic models of this 

research, is to displace the actual source from a region of large optical thickness to a 

region adjacent to the detector by determining the equivalent surrogate source strength 

for this volume.  This method will be discussed further in a later section of this chapter. 

 

Earlier in this section, mention was made of the need to separate or discretize the 

entire phase space of the problem for using a deterministic method.  The processing of 3-

D models places a heavy burden on storage capacity and processor memory.  An 

effective differencing scheme must also be employed to ensure the problem converges to 

a good solution and the problem must absolutely be run on a parallel processing system 

that will adequately produce an effective discretization.  The latter element was primarily 

to blame for the slow progress toward applying the deterministic method. 
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Prior to 1990, the computer resources necessary to handle large problems did not 

exist and would-be SN users had to employ lower-order approximations or significant 

simplifications to apply the method.  However, since that time, a number of effective 

decomposition algorithms have been successfully tested that have provided for a greatly 

improved memory partitioning and computational acceleration [4].  By coupling these 

algorithms with improved input/output (I/O), such as the message passing interface 

(MPI), problems that were previously impossible to handle, can now be efficiently and 

quickly processed on distributed computing environments that are widely available. 

 

The first step in doing so is to address the energy variable by separating the entire 

energy spectrum into a discrete number of energy groups (g = 1, G) representing the 

entire interval from ψmin to ψmax.  When this is done, Eq. 4.1 takes the following form 

 

 Ω � ∙ ∇𝜓𝑔�𝑟,Ω � � +  𝜎𝑔(𝑟)𝜓𝑔�𝑟,Ω � �

=  � � 𝑑Ω′  𝜎𝑠   𝑔′→ 𝑔�𝑟,  Ω �′ ∙ Ω � � 
4𝜋

𝐺

𝑔′́ =1

𝜓𝑔�𝑟,Ω � ′� +  𝑞𝑔�𝑟,Ω � � , 

  

    (4.3) 

 

which is referred to as the multi-group form of the LBE, operating on the forward group 

angular flux ψg and all terms are as previously defined [1].  The scattering term is then 

replaced by an expression which accounts for higher-order or anisotropic scattering.  This 

expansion is typically done with Legendre polynomials as highlighted in Appendix C and 

combining this with spherical harmonics, results in [2] 
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   Ω � ∙ ∇𝜓𝑔�𝑟,Ω � � + 𝜎𝑔(𝑟)𝜓𝑔�𝑟,Ω � �

=  �  �(2𝑙 + 1)𝜎𝑠,𝑔′→ 𝑔,𝑙(𝑟) �𝑃𝑙(𝜇)𝜙𝑔′,𝑙(𝑟) + 2�
(𝑙 − 𝑘)!
(𝑙 + 𝑘)!

𝑙

𝑘=1

𝑃𝑙𝑘(𝜇)
𝐿

𝑙=0

𝐺

𝑔′́ =1

∙ �𝜙𝐶 𝑔′,𝑙
𝑘 (𝑟) cos(𝑘𝜗) + 𝜙𝑆 𝑔′,𝑙

𝑘 (𝑟) sin(𝑘𝜑)�� + 𝑞𝑔�𝑟,Ω � � , 

  

 

 

    (4.4) 

where old terms are as previously defined and the new terms are: 

 

ϑ = azimuthal angle constructed from arctan(ξ/η), with proper phase shift 

l = Legendre expansion index 

σs g′→g, l = l th Legendre moment of the macroscopic differential scattering cross section 

from group g′ to g 

Pl = lth Legendre polynomial (PN) 

ϕg′,l = lth Legendre scalar flux moment for group g 

𝑃𝑙𝑘(𝜇) = lth , kth associated Legendre polynomial 

𝜙𝐶 𝑔′,𝑙
𝑘  = lth , kth cosine associated Legendre scalar flux moment for group g 

𝜙𝑆 𝑔′,𝑙
𝑘  = lth , kth sine associated Legendre scalar flux moment for group g . 

And where the flux moments, ϕg′,l , , 𝜙𝐶 𝑔′,𝑙
𝑘 ,  and  𝜙𝑆 𝑔′,𝑙

𝑘   are defined in terms of μ′ and ϕ′ 

as: 

 

 
𝜙𝑔′,𝑙(𝑥,𝑦, 𝑧)   =  �

𝑑𝜇′
2

1

−1

 𝑃𝑙(𝜇′) �
𝑑𝜙′
2𝜋

 𝜓𝑔′

2𝜋

0

(𝑥,𝑦, 𝑧, 𝜇′,𝜙′)         (4.5) 
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   𝜙𝐶 𝑔′,𝑙

𝑘 (𝑥,𝑦, 𝑧)  =  �
𝑑𝜇′
2

1

−1

 𝑃𝑙𝑘(𝜇′) �
𝑑𝜙′
2𝜋

 cos(𝑘𝜙′)𝜓𝑔′

2𝜋

0

(𝑥,𝑦, 𝑧, 𝜇′,𝜙′)         (4.6) 

 

 
𝜙𝑆 𝑔′,𝑙
𝑘 (𝑥,𝑦, 𝑧)  =  �

𝑑𝜇′
2

1

−1

 𝑃𝑙𝑘(𝜇′) �
𝑑𝜙′
2𝜋

 sin(𝑘𝜙′)𝜓𝑔′
2𝜋

0

(𝑥,𝑦, 𝑧, 𝜇′,𝜙′)    (4.7) 

 

 
 

 

If the streaming term in Eq. 4.3 is expanded in 3-D Cartesian coordinates, it becomes 

 

 
𝛺� ∙ ∇ =  𝜇

𝜕
𝜕𝑥

+ 𝜂
𝜕
𝜕𝑦

+ 𝜉
𝜕
𝜕𝑧

         (4.8) 

 

And this result can be substituted into Eq. 4.4 to produce the final form of the non-

multiplying Legendre-expanded multi-group form of the LBE in 3-D Cartesian geometry, 

where μ, η, and ξ refer to the direction cosines along the x, y, and z axes [2].  This new 

expression represents a coupled set of sub-interval equations that can be solved for the 

total flux in each energy group. 

 

 �𝜇
𝜕
𝜕𝑥

+ 𝜂
𝜕
𝜕𝑦

+ 𝜉
𝜕
𝜕𝑧
�𝜓𝑔�𝑟,Ω � � + 𝜎𝑔(𝑟)𝜓𝑔�𝑟,Ω � �

=  �  �(2𝑙 + 1)𝜎𝑠,𝑔′→ 𝑔,𝑙(𝑟) �𝑃𝑙(𝜇)𝜙𝑔′,𝑙(𝑟) + 2�
(𝑙 − 𝑘)!
(𝑙 + 𝑘)!

𝑙

𝑘=1

𝑃𝑙𝑘(𝜇)
𝐿

𝑙=0

𝐺

𝑔′́ =1

∙ �𝜙𝐶 𝑔′,𝑙
𝑘 (𝑟) cos(𝑘𝜙) + 𝜙𝑆 𝑔′,𝑙

𝑘 (𝑟) sin(𝑘𝜙)�� +  𝑞𝑔�𝑟,Ω � �   

  

 

 

 
  (4.9) 
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We begin by integrating Eq. 4.9 according to spatial variables over the x, y, and z 

coordinates of a parallel-piped mesh cell.  This produces an expression that describes the 

LBE in terms of an averaged angular flux across these cells.  By combining this 

information with the choice of a set of discrete set of directions and collapsing the right-

side of Eq. 4.9 into a single term (q) which accounts for scattering, fission (if applicable) 

and external sources, we reach the following non-multiplying discrete ordinates form of 

Eq. 4.1 in Cartesian coordinates which is the recursive zeroeth spatial moment balance 

equation [5] 

 

 |𝜇𝑥|
∆𝑥

�𝜓𝑜𝑢𝑡,𝑔
𝑥 − 𝜓𝑖𝑛,𝑔

𝑥 � +
|𝜂𝑦|
∆𝑦

�𝜓𝑙𝑒𝑓𝑡,𝑔
𝑦 − 𝜓𝑟𝑖𝑔ℎ𝑡,𝑔

𝑦 � +
|𝜉𝑧|
∆𝑧

�𝜓𝑡𝑜𝑝,𝑔
𝑧 − 𝜓𝑏𝑜𝑡𝑡𝑜𝑚,𝑔

𝑧 �

+ 𝜎𝑎𝑣𝑒,𝑔𝜓𝑎𝑣𝑒 =  𝑞𝑎𝑣𝑒,𝑔 .  

  

(4.10) 

 

The terms g and m in Eq. 4.10 refer to the energy group and direction, ave is an 

average, and all other indices refer to the position of the angular flux along a cell defined 

by its Cartesian coordinates (x, y, and z).  The absolute value of the direction cosines is 

used in Eq. 4.10 to ensure a positive sense in the equations, which will exist in the 

direction of particle motion.  The average angular flux used for the collision term (𝜓𝑎𝑣𝑒,𝑔
𝑚 ) 

in each direction (x, y, and z) is calculated by considering the angular flux at the cell 

boundaries according to the Eqs. 4.11 – 4.13 [5]: 

 

 
𝜓𝑜𝑢𝑡,𝑔
𝑥  =  �

1
𝑎𝑥𝑦𝑧,𝑔
𝑥 � �𝜓𝑎𝑣𝑒 + 𝜓𝑖𝑛,𝑔

𝑥 (𝑎 − 1)�       (4.11) 
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𝜓𝑜𝑢𝑡,𝑔
𝑦  =  �

1
𝑎𝑥𝑦𝑧,𝑔
𝑦 � �𝜓𝑎𝑣𝑒 + 𝜓𝑖𝑛,𝑔

𝑦 (𝑎 − 1)�       (4.12) 

 
𝜓𝑜𝑢𝑡,𝑔
𝑧  =  �

1
𝑎𝑥𝑦𝑧,𝑔
𝑧 � �𝜓𝑎𝑣𝑒 + 𝜓𝑖𝑛,𝑔

𝑧 (𝑎 − 1)�  .      (4.13) 

 

Eq. 4.10 contains seven variables and the 𝜓𝑎𝑣𝑒,𝑔
𝑚  and 𝜓𝑜𝑢𝑡,𝑔

𝑚  terms are unknowns; 

therefore, the normal approach is to solve for 𝜓𝑎𝑣𝑒,𝑔
𝑚  and use this value to calculate 𝜓𝑜𝑢𝑡,𝑔

𝑚  

in Eqs. 4.11 – 4.13.  To do this, first begin with the formula for 𝜓𝑎𝑣𝑒,𝑔
𝑚  and solve for the 

𝜓𝑜𝑢𝑡,𝑔
𝑚  expressions in each direction according to the following [5]: 

 

   
𝜓𝑎𝑣𝑔,𝑔
𝑚  =  �

𝜓𝑜𝑢𝑡,𝑔
𝑚 + 𝜓𝑖𝑛,𝑔

𝑚

2
�  ,       (4.14) 

and 

   𝜓𝑜𝑢𝑡,𝑔
𝑚 = 2𝜓𝑎𝑣𝑒,𝑔

𝑚 − 𝜓𝑖𝑛,𝑔
𝑚  .      (4.15) 

 

Substituting Eq. 4.15 into Eq. 4.10 and performing some algebra results in an expression 

for one of the unknowns we are seeking: 

 

 

𝜓𝑎𝑣𝑒 =

|2𝜇𝑚|
∆𝑥 �𝜓𝑖𝑛,𝑔

𝑥 � + |2𝜂𝑚|
∆𝑦 �𝜓𝑟𝑖𝑔ℎ𝑡,𝑔

𝑦 � + |2𝜉𝑚|
∆𝑧 �𝜓𝑏𝑜𝑡𝑡𝑜𝑚,𝑔

𝑧 � + 𝑞𝑎𝑣𝑒,𝑔

𝜎𝑎𝑣𝑒,𝑔 + |2𝜇𝑚|
∆𝑥 + |2𝜂𝑚|

∆𝑦 + |2𝜉𝑚|
∆𝑧

 .  

 

(4.16) 
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Now 𝜓𝑎𝑣𝑒 is substituted into Eq. 4.15 to solve for 𝜓𝑜𝑢𝑡,𝑔
𝑚 , since the 𝜓𝑖𝑛,𝑔

𝑚  and σave,g terms 

in Eq. 4.10 are already known [5]. 

 

Eqs. 4.11 – 4.13 represent what are known as low-order differencing equations or 

differencing schemes, and in the current form, they are referred to as a diamond 

differencing scheme (DD).  In normal practices, the coefficient a, b, and c are solved via 

an iterative technique such as Gauss – Seidel; however, a simplified form known as the 

linear diamond differencing scheme (LDD) can be reached by simply equating each 

coefficient to ½.  The benefit of using a low-order scheme such as the DD or LDD is that 

the calculations are very fast; however, if a negative flux solution results or irregular 

oscillations are observed during the convergence process, a more effective scheme must 

be substituted. 

 

Some of the additional differencing equations that are now available are the 

diamond zero (DZ) [5], theta-weighted (TW) [5], directional Θ-weighted (DTW) [6], 

exponential directional weighted (EDW) [7], and the exponential directional iterative 

(EDI) [8].  The various schemes are described in depth in the respective references; 

however, a brief mention of their important feature(s) is in order here.  The TW scheme 

ensured that fluxes always remains positive to eliminate the negative fluxes that 

occasionally happened with use of the DZ differencing equations, although the use of TW 

continued to produce undesirable oscillations during the convergence period.  The DTW 

scheme was introduced in 1996 to simultaneously eliminate both the flux and the 

oscillation problems of previous schemes [6].  DTW used a theta-weighting parameter 
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that forces positivity on the fluxes; however, it did not prove to be highly accurate in all 

situations. 

 

Rather than focusing solely on developing new differencing equations, some of 

the newer schemes such as EDW and EDI were also created to review or predict the 

behavior of some baseline scheme such as DTW, and then perform some form of 

exponential correction to yield a more stable and accurate solution than the baseline 

scheme alone.  This technique is commonly referred to as a predictor-corrector scheme.  

The EDW operates on the baseline DTW performance, while the EDI uses the same 

exponential basis as the EDW, but with the addition of an iterative refinement for the 

exponential constants. 

 

Most discrete ordinates codes begin with the LDD and then another scheme has to 

be substituted after-the-fact if LDD proves unreliable.  However, more advanced SN 

codes, such as PENTRAN4, have an adaptive differencing strategy that allows the code to 

automatically select the most appropriate scheme on a coarse-mesh-by-coarse-mesh basis 

[9].  The selection strategy for this adaptive method will be discussed in a subsequent 

section. 

 

4.1.3 Parallel Environment Neutral Particle Transport (PENTRAN) Code System 

 

PENTRAN is a multi-group, anisotropic SN code for Cartesian geometries that 

was specifically designed for distributed memory and scalable parallel computing using 

4 HSW Technologies LLC, 2501 Porter Street NW #220, Washington, DC 20008, (352) 871-1099. 
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the F90 MPI library [10].  This code optimizes parallel decomposition and also 

automatically optimizes the memory allocation.  The code has demonstrated an excellent 

agreement with various standard deterministic transport codes such as DORT, TORT5, 

TWODANT and THREEDANT and PARTISN6 as well as the current reference Monte 

Carlo code MCNP5.   PENTRAN has also performed quite well in comparisons against 

experimental measurements that have been conducted for a variety of problems in reactor 

physics, radiation detection, and medical physics applications [11]. 

 

PENTRAN is actually a family of codes that allows one to readily generate 

discrete mesh geometries and macroscopic cross sections, to solve up to 3-D transport 

models, and to collate the resulting parallel data.  The program utilizes a Taylor 

Projection Mesh Coupling (TPMC) to interpolate between coarse and fine-mesh grids in 

order to minimize the loss of angular flux information that can occur between materials 

of differing density [12]. 

 

PENTRAN solves problems such as multi-group, isotropic/anisotropic scatter, 

fixed-source and criticality in Cartesian geometry.  The code accepts directions through a 

FIDO input file, which is very common among applications such as PENTRAN that were 

written in the FORTRAN language.  The code can operate in either the forward or adjoint 

transport modes, which allows for maximum flexibility in detector design.  These modes 

will be discussed in subsequent sections. 

5 DORT and TORT were developed by the Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 
37831. 
6 TWODANT, THREEDANT, PARTISN and MCNP5 were developed by the Los Alamos National 
Laboratory, Los Alamos, NM 87545. 
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In addition to specifying important parameters associated with a particular 

problem, the input file directs how PENTRAN distributes the processors and memory 

associated with the phase-space decomposition discussed previously.  The decomposition 

is conducted through a line in the input file referred to as the decomposition weight 

vector (decmpv) which instructs the code to project the angular, energy, and spatial 

information according to a specified number of processors.  Once the problem is initiated, 

PENTRAN functions to allow the various processors to communicate effectively and 

proceeds toward a parallel iterative solution of Eq. 4.4.  During processing, PENTRAN 

produces a large amount of individual processor data associated with the decmpv settings. 

 

4.1.3.1 PENTRAN Differencing Strategies 

 

All the differencing strategies discussed in Section 4.1.2 are fully implemented in 

PENTRAN.  The schemes can be individually selected in the PENTRAN input file, or 

alternatively, the code will automatically select the best method to apply for a particular 

problem using its built-in adaptive differencing strategy.  The adaptive strategy works by 

gradually elevating the differencing scheme based on established upgrade criteria that 

are resident within the code.  For example, if the DZ scheme is being used for a certain 

energy group and, during the convergence process a negative flux occurs inside any 

coarse mesh, the code will automatically switch to the DTW scheme.  The convergence 

process then continues using the DTW method until the code switches to the next energy 

group, after which it returns to the DZ scheme.  However, if at any point, the upgrade 

criterion for the DTW scheme is reached, the code will switch to the EDI and so forth. 
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All the PENTRAN output files contain coarse mesh information associated with 

each energy group of a model and list the differencing scheme that was used in each 

coarse mesh.  By subsequently inspecting this information following the job processing, 

one can make an objective assessment regarding the mesh sizes used in the model.  An 

example of the coarse cell differencing mapping table from a PENTRAN job is provided 

in Appendix D and shows the differencing decisions made by the code for various coarse 

meshes.  This is valuable information for cases in which one or more energy groups did 

not reach full convergence.  The various differencing schemes and upgrade criteria are 

displayed in Table 4.1.  The final column also indicates how one can automatically 

choose (lock-in) a particular scheme within the PENTRAN input file. 

 

Table 4.1.  Adaptive PENTRAN differencing schemes and upgrade criteria. 
     
Number Method Average Metric Description Upgrade 

Criteria 
Lock-In 
Method 

     
     

0 DD Not Used None  0 
1 
2 
3 
4 

DZ 
DTW 
EDI 
EDW 

Flux Fixup / Sweep 
Maximum Weight / Sweep 
Iterations / Sweep 
DTW Use / Sweep 

Fixup 
W = 0.9500 
σΔhmax

7
 = 

0.02 
σΔhmax = 0.02 

-1 
-2 
-3 
-4 

     
 

The W value in Table 4.1, which can be varied by the user, refers to the DTW 

weighting factors for the xyz axes.  When W reaches a high weight, this condition 

indicates that the DTW scheme is having difficulty maintaining positivity as is typically 

the case with significantly streaming environments.  In this case, a shift to the EDI 

7 This criterion is actually an exception to the upgrade between DTW and EDI due to a small optical 
thickness. 
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scheme will allow for an exponential treatment of the optically-thick cells (see Eq. 4.2) 

that best handles this situation. 

 

The other term in Table 4.1 that requires explanation is σΔhmax, which refers to 

the maximum case of the optical thickness value and Δhmax = maximum (Δx, Δy, Δz).  

Unlike the other criteria, this value actually provides an exception to the upgrade criteria.  

The default setting is 0.02 and indicates that a particular coarse mesh has a very small 

optical thickness.  In this instance, even if W exceeds the DTW upgrade criterion, the 

switch to EDI will not occur because the DTW scheme should be able to accurately 

resolve the angular flux for this situation. 

 

4.1.3.2 Developing the PENTRAN Input File 

 

The utility code, PENMSHXP8 [13], was used to generate the PENTRAN input 

files for each model.  The utility comes resident with a graphical user interface (GUI) that 

allows new users to build the input file by answering a series of geometry questions 

regarding the model; however, more advanced users are allowed to build the input file 

directly using any word processor. 

 

The code strictly requires the two input files penmsh.inp that details the meshing 

parameters and a prbname.inp file for each z-level that lists all other parameters that are 

necessary for the PENTRAN input file.  The optional files prbname.spc and 

prbname.mba were also supplied to the utility so that the source spectrum would be 

8HSW Technologies LLC, 2501 Porter Street NW #220, Washington, DC 20008, (352) 871-1099. 
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inserted correctly into the PENTRAN input file and to allow for the production of a 

material balance file for each model.  The material balance output is a very handy tool for 

verifying that the geometry and volumes of the model are as expected and it also lists a 

detailed accounting of xyz meshes so that users can determine if the geometry settings 

require updating prior to executing PENTRAN. 

 

PENMSHXP also delivers very useful 2-D or 3-D model plots for each z-level 

through the commercially available TECPLOT9 software.  These pre-computation plots 

enable users to visually verify that the coarse and fine meshes are properly aligned within 

the model and that there are no overlapping shapes (spheres, pipeds, etc.) within the 

model.  After a PENTRAN job has fully executed, PENMSHXP can also be used to 

produce plots of quantities such as the energy group flux, which not only displays the 

flux profile for that particular model, but also the existence of any harmful ray effects that 

would necessitate a revamping of the original model. 

 

4.1.3.3 Cross Section Processing 

 

The multi-group cross section library, BUGLE-96 [14], was used to calculate the 

broad-group neutron cross sections for the PENTRAN calculations.  The library consists 

of 47-neutron groups and 20 gamma-ray groups that were produced and tested for light-

water reactor shielding and pressure-vessel dosimetry applications and the library has 

been used extensively in detector applications as well [4, 15 – 17].  The forward energy 

group structure of the BUGLE-96 library is provided in Table 4.2. 

9 Tecplot, Inc., P.O. Box 52708, Bellevue, WA 98015, (425) 653-1200. 
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Table 4.2.  Forward energy group structure of the BUGLE-96 broad-group library.10 
        

 
Group 

Energy 
(MeV) 

 
Group 

Energy 
(MeV) 

 
Group 

Energy 
(MeV) 

 
Group 

Energy 
(MeV) 

        
        
1 1.73E+01 13 2.37E+00 25 2.97E-01 37 1.58E-03 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

1.42E+01 
1.22E+01 
1.00E+01 
8.61E+00 
7.41E+00 
6.07E+00 
4.97E+00 
3.68E+00 
3.01E+00 
2.73E+00 
2.47E+00 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

2.35E+00 
2.23E+00 
1.92E+00 
1.65E+00 
1.35E+00 
1.00E+00 
8.23E-01 
7.43E-01 
6.08E-01 
4.98E-01 
3.69E-01 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

1.83E-01 
1.11E-01 
6.74E-02 
4.09E-02 
3.18E-02 
2.61E-02 
2.42E-02 
2.19E-02 
1.50E-02 
7.10E-03 
3.35E-03 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

4.54E-04 
2.14E-04 
1.01E-04 
3.73E-05 
1.07E-05 
5.04E-06 
1.86E-06 
8.76E-07 
4.14E-07 
1.00E-07 

        
 

 

4.1.3.4 Post-Processing Software 

 

The GMIX11 code was used to create the actual macroscopic cross section data 

file for use in the PENTRAN calculations.  The code requires an input file that contains 

all the items that are necessary for the production of the cross section file that is needed, 

such as all the materials used within a model as weight percent or atom fractions, the 

number of energy groups, and the PN order.  GMIX accesses this input file upon 

execution, takes note of the associated material information, then accesses the applicable 

elemental data in the BUGLE-96 broad-group cross section library and produces the 

cross section file (problemname.xs) that PENTRAN requires for the deterministic 

transport calculations. 

10 Forward Group 1 (fast) is Adjoint Group 47 and vice versa. 
11 HSW Technologies LLC, 2501 Porter Street NW #220, Washington, DC 20008, (352) 871-1099. 
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The PENTRAN code possesses a resident post-processing utility that is called 

from the command line using the syntax < ppen-post prbname pen n m >, where prbname 

is the name of the PENTRAN input file prbname.pen minus the extension, n is the 

number of computer cores used for the job, and m is the number of processors used per 

core.  This routine will remove the excess processing information that was created during 

the PENTRAN run and produce the output files that can be accessed through the 

PENDATA12 utility or a computer program that was written to obtain specific 

information from the PENTRAN output files. 

 

The PENDATA utility program gathers the parallel results from multiple files and 

produces group-specific flux files in the ASCII format that can then be used for 

additional applications such as plotting or in calculating an important quantity such as the 

reaction rate for a detector. 

 

4.1.4 Deterministic Forward Transport 

 

In the typical forward circumstance, the LBE is solved to yield the scalar flux (ϕ) 

for a specific neutron source term (q).  If more than one source exists, separate 

computations must be completed for each of them, which is one disadvantage of the 

forward method.  Once all the flux computations are complete, the reaction rate for a 

detector can be calculated using the following equation (see discussion of the flux terms 

given in 4.1.5) 

 

12 HSW Technologies LLC, 2501 Porter Street NW #220, Washington, DC 20008, (352) 871-1099. 
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𝑅 = � 𝑑𝐸

𝐸
� 𝜎𝑑 (𝑥,𝑦, 𝑧,𝐸) 
𝑉𝑑

𝜙(𝑥,𝑦, 𝑧,𝐸) 𝑑𝑥 𝑑𝑦 𝑑𝑧 ≈ � 𝜙𝑔,𝑖
∆𝑉𝑖∈𝑉𝑑
𝑔=1,𝐺

 𝜎𝑑 𝑔,𝑖 ∆𝑉𝑖 ,   (4.17) 

where: 

 

R  = detector response (s-1) 

Vd  = detector volume (cm3) 

(x, y, z)  = spatial location of detector 

ϕ(x, y, z, E) = spatial, energy dependent scalar flux (n cm-2 s-1) from quadrature of ψ 

σd(x, y, z, E) = spatial, energy dependent detector cross section (cm-1) 

ϕg,i  = ith cell scalar flux for group g (n cm-2 s-1), from quadrature of ψg,i 

σd,g,i  = ith cell detector cross section for group g (n cm-2 s-1) 

ΔVi  = ith cell volume (cm3) 

 

4.1.5 Deterministic Adjoint Transport and the Adjoint Importance Function 

 

In the design of a radiation detector, it is essential to account for particle 

importance, which reveals the specific spatial and corresponding energies where neutrons 

will contribute the most to the detector response.  The adjoint solution to the adjoint form 

of the LBE provides such information and insight, which is not available through forward 

deterministic or Monte Carlo methods.  The adjoint form of the LBE can be derived using 

the adjoint identify for real-valued functions,  

 

 〈𝜓𝑔
†𝐻𝜓𝑔〉 =  〈𝜓𝑔𝐻†𝜓𝑔

†〉 , (4.18) 
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where the Dirac brackets ‹ › represent integration over all independent variables and  

 

 
𝐻 =  Ω � ∙ ∇ + 𝜎𝑔(𝑟) − � � 𝑑Ω′  𝜎𝑠   𝑔′→ 𝑔�𝑟,  Ω � ′ ∙ Ω � � .

4𝜋

𝐺

𝑔′=1

      (4.19) 

 

In Eqs. 4.18 and 4.19, 𝜓𝑔
† is the angular adjoint (importance) function and H is 

the forward transport operator.  We develop the adjoint transport operator (𝐻†) by 

applying the boundary condition that particles leaving the system have a zero importance 

for all groups and by requiring that a continuous importance function exists to arrive at 

 

 
𝐻† =  −Ω � ∙ ∇ +  𝜎𝑔(𝑟)− � � 𝑑Ω′  𝜎𝑠   𝑔→  𝑔′�𝑟,  Ω � ∙ Ω � ′� .

4𝜋

𝐺

𝑔′=1

      (4.20) 

 

The minus sign on the streaming term reflects that, in the adjoint condition, particles 

travel in a reversed direction, where particles scatter from group g to other groups g′ 

(groups formerly contributing to group g in the forward equation) [1 – 2].  For the case of 

a fixed forward detector problem, the neutron flux must satisfy the following relation: 

 

 𝐻𝜓𝑔 =  𝑞𝑔 ,      (4.21) 

 

because the source term is purposely omitted from the forward operator (H) relation.  

Likewise, the inhomogeneous adjoint equation must be satisfied with an adjoint source 

that is aliased to the group detector response cross section (σd,g) by 

 122  
 



 𝐻†𝜓𝑔
† =  𝜎𝑑,𝑔 .  (4.22) 

 

Now, by substituting Eqs. 4.21 and 4.22 into Eq. 4.18 and simplifying, the 

following important result is obtained: 

 

 𝑅 = 〈𝜓𝑔𝜎𝑑,𝑔〉 =  〈𝜓𝑔
†𝑞𝑔〉 ,  (4.23) 

 

where R is the detector response or reaction rate.  This relation demonstrates that the 

detector response can be computed directly from several forward transport computations 

for each source or a single adjoint transport computation as  

 

 

 

 
𝑅 = � 𝑑𝐸

𝐸
� 𝜎𝑑

†(𝑥′,𝑦′, 𝑧′,𝐸) 
𝑉𝑞

𝑞(𝑥′,𝑦′, 𝑧′,𝐸) 𝑑𝑥′,𝑑𝑦′,𝑑𝑧′ ≈ � 𝜙𝑑 𝑔,𝑖
†

∆𝑉𝑖∈𝑉𝑑
𝑔=1,𝐺

 𝑞𝑔,𝑖 ∆𝑉𝑖 ,   (4.24) 

 

 

where: 

R   = detector response (s-1) 

Vq   = source volume (cm3) 

 (x′, y′, z′)  = spatial location of non-zero source cells (adjoint) 

𝜙𝑑
† (x′, y′, z′, E) = spatial, energy dependent scalar adjoint function for detector d 

q(x′, y′, z′,E)  = spatial, energy dependent source (n cm-3 s-1) 

ϕ†d,g,i  = ith cell scalar adjoint function for detector d and group g. 

qg,I   = ith cell source density for group g (n cm-3 s-1) 

ΔVi   = ith cell volume (cm3). 
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Although PENTRAN provides the capability to calculate reaction rate using angular flux 

as shown in Equation 4.23, the scalar flux can be substituted in cases where it is deemed 

appropriate as shown in Equations 4.17 and 4.24.  This simplification significantly 

reduces the output file size and speeds computations. Regardless of the flux term that is 

used, the ability to determine the detector response for an arbitrary source distribution, 

weighted by the computed adjoint function, shows the incredible power of the adjoint 

technique and its obvious application toward problems of detector design. 

 

A forward transport code can actually be used to solve for the adjoint function by 

replacing the source term with transposed group cross sections and by also transposing 

the cross section scattering matrix to progress from G to 1.  This is the exact method by 

which PENTRAN handles adjoint problems, although the code performs the cross section 

transposition internally.  If the numerical truncation errors are negligible, the forward and 

adjoint results should be directly comparable, which will provide further proof, along 

with the forward Monte Carlo method, that the detector model is valid. 

 

4.2 Monte Carlo Transport 

 

4.2.1 History of the Technique 

 

The basic tenant of this computational radiation transport method was developed 

out of the boredom of a solitaire session in 1946 by Stanislaw Ulam, who was one of the 
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most prominent mathematicians of the 20th century.  During a convalescent period, Ulam, 

who was participating in the Manhattan Project, began to wonder what his chances were 

of successfully laying out a hand of solitaire with a deck of 52 cards.  After 

unsuccessfully attempting to estimate the probability of this occurrence through various 

combinatorial schemes, he wondered if a better approach might be to just lay out the 

cards and count the number of successful attempts.   And, after having this revelation, 

Ulam’s next thought was to envision the application of this new idea to neutron diffusion 

and other physical problems.  Later that same year, Ulam described his idea to John von 

Neumann, who quickly became enamored with the idea of applying this technique to the 

developing technique of electronic computing.  Von Neumann eventually outlined a 

statistical approach to solving neutron diffusion and multiplication problems in a letter to 

the Theoretical Division Leader, Dr. Robert Richtmyer, at Los Alamos in early 1947.  

This outline detailed the computational flow of the process, including its application 

through an electronic computer for the first time [18]. 

 

The technique found broad application in the field of nuclear engineering, because 

the macroscopic cross section for a neutron interaction can be interpreted as the 

probability of interaction per unit distance traveled by the particle.  On the basis of this 

important premise, a collection of neutrons could now be individually tracked from origin 

(e.g. in-scatter, fission or emission) to conclusion (e.g. scatter, capture, or escape) by 

determining the interaction locations and types, directional changes, and the subsequent 

neutron energies through probability sampling.  Each neutron history in the set is 

analogous to an individual game of solitaire in von Neumann’s original formulation, with 
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the digital computer drawing (generating) the probabilities (random numbers) that dictate 

the events and the ultimate outcome of the game.  The use of probability sampling along 

with the card game that originally inspired Ulam led von Neumann to nickname the 

process Monte Carlo [18].  In the decades that have passed since World War II, this 

elegant method has been significantly enhanced and has become one of the most useful 

numerical methods in all of nuclear engineering. 

 

4.2.2 Monte Carlo Basis 

 

Monte Carlo is a statistical method that is used to solve physical problems which 

occur due to random processes and that can be mathematically modeled.  The objective 

of such a simulation is to recreate only those processes in which the basic physics is 

understood (i.e. radiation transport).  The method uses the laws of probability and random 

number generation to obtain an average or expectation of a particular random variable 

(e.g. x) that corresponds to a certain random process with p(x) [19].  The inference is that 

x is related to a random number (ξ).  The random variable used in the Monte Carlo 

simulation can be either discrete or continuous; however, in radiation transport problems, 

continuous random variables are the norm. 

 

All basic physical processes give the appearance of randomness in the sense that 

one cannot predict the outcome of every individual progression.  What the Monte Carlo 

process attempts to accomplish is to effectively characterize these random (stochastic) 

processes by observing and estimating the average behavior of many elements (e.g. 
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particles or photons for radiation transport).  Requiring a large number of elements for 

the estimation means that this computational technique is far more computationally 

“expensive” when compared with deterministic methods, although the advent of faster 

and parallel computers have eased this limitation in the past decade.  And, since the result 

that is produced is an estimate, it will also have an uncertainty associated with it and the 

estimate should never be mentioned in the absence of this uncertainty, unlike 

deterministic results which are exact solutions of the LBE.  A basic step-by-step Monte 

Carlo process is included in Appendix E that describes how particle transport progresses 

through the use of the technique. 

 

4.2.3 Monte Carlo Tally Variance 

 

Prior to discussing techniques to reduce the Monte Carlo variance, it is prudent to 

discuss what the term means in relation to the calculations, so we can understand exactly 

what we’re trying to reduce or minimize.  Since this computational technique necessitates 

the production of many histories, we can take advantage of the Central Limit Theorem 

(CLM) to describe what is meant by the estimate (mean) and variance.  The CLM states 

that if we repeat a model a great many times and with numerous histories, the average of 

the means (�̅�) from each model will be distributed normally about the true mean (x) and 

with a variance (𝑆𝑋�
2), even if the set of true means are not normally distributed.  The 

variance or the uncertainty is the value that we’d like to minimize or even optimize as the 

case may be.  Each of these terms is specified in mathematical terms by the following set 

of equations: 
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𝑥 ≡ � 𝑥 𝑝(𝑥)𝑑𝑥

∞

0
  ,      (4.25) 

 

 
�̅� ≡  

1
𝑁

 �𝑥𝑖

𝑁

𝑖=1

  ,𝑎𝑛𝑑      (4.26) 

 
𝑆2 ≡

1
𝑁 − 1

�(𝑥𝑖 − �̅�)2  ≅ 𝑥2��� − �̅�2 ,
∞

0

      (4.27) 

where 

 
𝑥2��� ≡  

1
𝑁

 �𝑥𝑖2  .
𝑁

𝑖=1

      (4.28) 

 

In Eq. 4.26, the Law of Large Numbers specifies that the average of the various 

means will approach the true mean as N  ∞.  Eq. 4.27 represents the standard deviation 

of the population histories, which tells us how far each history varies from the average 

history; however, the actual variance we’re seeking to reduce or optimize is called the 

variance of the average and is calculated by 

 

 
𝑆𝑋�
2 ≡

1
𝑁
�𝑆2 .
∞

0

  (4.29) 

 

Since Monte Carlo results are estimates of the transport behavior, they should never be 

quoted in literature without the estimate of the variance (error). 
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4.2.4 Variance Reduction 

 

The real goal of any Monte Carlo calculation is to produce a result with an 

acceptable relative error as has just been stated.  In most current problems, the newer 

computing abilities can ensure we achieve the stated goal above; however, one area 

where Monte Carlo struggles is in transporting particles thick radiation shields.  In the 

absence of some technique (non-analog) to increase the number of particles penetrating 

the shield, the problem would require far too many histories (elements) and computer 

time to yield an estimate with an acceptable relative error.  Two basic approaches can be 

applied to reduce both the calculation expense and the relative error and these are to 

simplify the model and/or use non-analog techniques [20].  Since these techniques have 

been exhaustively described in the MCNP5 manual [21], they will only be described 

briefly here. 

 

4.2.4.1 Model Simplification Techniques 

 

Model simplification techniques are those that typically reduce the variance by 

simplifying or truncating the geometry and/or the physics associated with a problem in an 

effort to eliminate particles or histories that have little or no bearing on the outcome of 

the simulation, thereby reducing the necessary computation time.  The application of 

these techniques is probably as much about art or intuition as it is about science and care 

must be taken such that accuracy is not sacrificed in the name of precision (i.e. low 

variance) because each choice will introduce some degree of bias. 
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Examples of model simplifications are those associated with the physics 

treatment, particle energy, and time or history.  Physics simplifications include such 

things as disallowing the production of Bremsstrahlung during transport, allowing only 

non-coherent scattering, and ignoring neutron energies beyond some maximum.  One can 

also set cutoffs (minima or maxima) associated with tracking of particle energy or the 

maximum number of particle histories or computational time that is allowed. 

 

4.2.4.2 Non-Analog Techniques 

 

Unlike model simplification techniques, the goal of non-analog methods is to 

increase the number of particles that reach some tally point such as a detector or surface 

in order to speed the solution, thereby allowing one to reduce the computation time.  The 

basic tenant of this technique is to track particle weight rather than the sheer number of 

the particles themselves.  A particle is assigned an initial weight upon emission from the 

source and when it is artificially forced toward the tally point, the weight is decreased in 

a manner that ensures the average weights reaching the tally point are the same as what 

would occur in the normal analog situation.  In other words, we must maintain a fair 

game or the tally outcome will be unavoidably altered. 

 

Non-analog techniques are extremely important in the Monte Carlo method 

because of the very nature and rate of radioactive source emissions.  While it might seem 

to some that running a complex transport problem using 1010 total neutron histories is 

overkill, this magnitude must be considered in the context of the source strength of the 
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radioactive material, which can easily emit this many particles every second depending 

on its activity!  Due to the angular nature of every source emission in the analog case, 

many source particles are not directed toward the tally point, in which case they are 

considered lost.  In a real-world case, a sufficient number of particles might reach our 

detector over the course of even one minute that would constitute an accurate source 

assessment due to the source emission strength; however, the Monte Carlo case of 1010 

total histories might only represent the number of particles emitted in one or two seconds 

from the actual source.  Non-analog methods are therefore used to increase the number of 

particles arriving at our detector by directing more source particles with a varied weight 

toward the tally point, thereby significantly reducing the number of lost particles.  The 

main techniques of this type that are used include source biasing, particle splitting, 

Russian roulette, and implicit capture. 

 

In source biasing, we emit m times more particles toward the source with initial 

weights of only 1/m, thus maintaining a fair game compared with the analog case.  We 

can play a similar game using splitting, where a particle is split into m number of 

particles with a reduced weight of 1/m as was the case with source biasing.  In the case of 

most Monte Carlo programs, the actual splitting process is controlled by assigning an 

importance factor for specific spaces within a model.  When a particle crosses a boundary 

into a space of greater importance, the splitting process occurs and an increased number 

of particles continue to be tracked, but at a reduced weight. 
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Russian roulette (RR), on the other hand, is played in the converse case of a 

particle exiting a region of higher importance into one of lower importance.  In this 

instance, the particle is eliminated or killed (i.e. shot by a bullet) with a probability equal 

to 

 

 𝑝(𝑅𝑅) =   
𝐼𝑚𝑝𝑛𝑒𝑤 𝑐𝑒𝑙𝑙

𝐼𝑚𝑝𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑐𝑒𝑙𝑙
  , (4.30) 

 

where Imp is an abbreviation for importance.  For example, if the particle exits a region 

of Imp=2 and crosses into a space with Imp=1, the particle is killed with a probability of 

0.5.  If the particle is killed during the RR process, its weight is eliminated and the 

particle is no longer tracked; however, if the particle survives the encounter, its 

importance is increased by a factor of 1/p (RR) and it continues to be tracked, thus 

maintaining a fair game as before.  The RR process is basically used to prevent the 

continued tracking of particles that are moving away from the tally point and that are 

unlikely to contribute to the tally. 

 

4.2.5 MCNP-5 Code Description 

 

MCNP-5 is a general-purpose, continuous-energy, Monte Carlo transport codes 

that is capable of handling coupled neutron, photon, and electron transport [21].  The 

code has thousands of person-years of development behind it and is the global standard 

by which all Monte Carlo codes are judged.  MCNP-5 can be used in singular transport 
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modes for neutron/photon/electron or in various combinations of these three modes.  The 

continuous-energy cross sections used by the code cover the neutron energy range of 10-

11 MeV to 20 MeV and continue up to 150 MeV for some isotopes.  The code can be 

obtained from the Radiation Safety Information Computational Center (RSICC) which is 

operated by the Oak Ridge National Laboratory (ORNL).  The code package provided by 

RSICC includes a setup program to install all the necessary accessories used by MCNP-5.  

The end user can choose to copy one of the applicable executable programs 

(MCNP.EXE) that are provided for several computer platforms or to create a new 

executable by compiling one from the setup disks.  The program also automatically runs 

a substantial number of sample problems that should yield specified results upon the 

successful installation of the code.  The verification of the sample problem results is left 

as an exercise to the user; however, it is extremely important that this task be 

accomplished, because it provides the final quality assurance that the code installed all 

the associated files properly. 

 

All the necessary physics (and much more) discussed in the previous section are 

provided within the installed code package.  The user must formally implement the code 

by calling the executable file at the command prompt (Windows-based systems) while 

also listing the name of an input file that will direct the code toward some calculation 

goal.  This input file, which must be written by the user, contains information such as:  1) 

geometry (mathematical description) of the problem; 2) material descriptions; 3) cross 

sections to apply; 4) location and type of source (neutron, photon, electron); the type of 

information (tally) that is desired; and, any variance reduction techniques that are to be 
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employed to improve the efficiency of the calculation and its associated uncertainty 

(error).  The MCNP5 and PENTRAN models for the computational experiments will be 

shown in the following chapter. 
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CHAPTER 5 
COMPUTATIONAL MODELING EXPERIMENTS 

 
 
 

Now that the scientific foundation has been laid for the computational design 

approach, we must consider how to apply this approach toward identifying detector 

designs that are 3He-equivalent.  The identification process was carried forward in two 

distinct phases. 

 

5.1 Models for Comparisons to Neutron Measurements (Phase 1) 

 

The first step taken during the experimental phase was to create models for 

the 3He baseline and a singular BF3 design (length of 19.6 cm and 1-inch diameter) that 

matched the two actual detector assemblies that were going to be used for the laboratory 

measurements of the PuBe source.  Although the computational models for all 

PENTRAN and MCNP5 designs in the second phase were identical, save for the 

detection material, the source configuration for the PENTRAN model was altered in the 

initial phase to allow for the use of a lower-order quadrature (S8) and Legendre moment 

(P2) for the PENTRAN calculations while precluding any ray effects.  Specifically, a 

baseline surrogate source box strength of 15623 ± 63 n cm-3 s-1 (1.96σ)was determined by 

using MCNP5 to calculate the source necessary to produce the same surface current (J-) 

across the outer detector surface as the true source configuration used in the MCNP5 

detector models. 
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The combination of the surrogate source and the lower-order quadrature and 

Legendre moment (S8 / P2) produced excellent convergence (< 8.0E-04) for both the 

forward and adjoint cases in all models, while requiring calculation times of less than 4 

hours.  For computational expense comparisons, a test case using the true source location 

and an S20 / P3 combination produced equivalent results, but required over 24 hours to 

fully converge.   

 

Since the only difference between the two comparative computational models was 

the type of gas within the detector, the plots appear identical; therefore, only one figure is 

provided for each of the respective computer codes and detectors.  The surrogate box 

source for the PENTRAN model is shown in red in Figure 5.1 and Figure 5.2 displays the 

MCNP5 model geometry, although the actual figure was produced using the 

PENMSHXP utility.  Figure 5.2 also highlights the significant number of meshes initially 

 

 
Fig. 5.1.  PENTRAN model for 3He and BF3 tubes with a 1.27 cm 
radius.  
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Fig. 5.2.  Equivalent MCNP5 model used for comparisons to the PENTRAN results and 
actual neutron measurements.  

 

required for the S20 / P3 combination when the source was placed at its actual location of 

100 cm away from the detector.  The material data associated with the two models is also 

given in Table 5.1. 

 

Table 5.1.  3He / BF3 material data. 
   
Number Material Density (g cm-3) 
   
   

1 Detector (3He / 
BF3) 

5.39E-04 / 2.73E-03 

3 
4 
5 

Air 
Polyethylene 
Air Source 

1.20E-03 
9.40E-01 
1.20E-03 

   
 

 

The final task of the first phase was to compare the computational calculations to 

the neutron measurements to determine if the models reflected the actual conditions 

inside the room with an acceptable fidelity.  Additional information about the source 

configuration, shielding and the overall experimental facility setup is provided in Chapter 

6, while the actual neutron detector system setup and testing is discussed in Chapter 7.  

Chapter 7 will also show the neutron tubes and demonstrate how they were fitted with the 

moderator material and positioned during the measurements.  The results associated with 

the modeling and measurements mentioned herein will be given in Chapter 8 and 

grouped according to the type of detector design (i.e. BF3, 10B lining, or PVT). 
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5.2 Models for Comparisons to the Baseline Detector (Phase 2) 

 

The second phase of the process consisted of developing PENTRAN and MCNP5 

models for the reference 3He detector, and then executing the problem for a global 

neutron source of 1000 n s-1 surrounding the detector assembly and having the emission 

probabilities listed in Table 5.2.  Each of these probabilities coincides with the energy 

group structure detailed in Table 4.2 of the previous chapter.  The reaction rate and 

adjoint function that stemmed from this job provided the baseline quantities that would 

determine the suitability of the potential replacement designs. 

 

Table 5.2.  PuBe emission probability associated with the BUGLE-96 broad-group library structure.13,14 
        

 
Group 

Emission 
Probability 

 
Group 

Emission 
Probability 

 
Group 

Emission 
Probability 

 
Group 

Emission 
Probability15 

        
        
1 1.17E-04 13 3.39E-03 25 4.67E-02 37 1.32E-05 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

3.15E-04 
1.50E-03 
3.10E-03 
6.16E-03 
1.62E-02 
2.91E-02 
7.15E-02 
6.50E-02 
3.49E-02 
3.75E-02 
1.69E-02 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

2.07E-02 
5.95E-02 
6.15E-02 
7.84E-02 
1.11E-01 
6.49E-02 
2.99E-02 
5.67E-02 
4.79E-02 
5.82E-02 
3.16E-02 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

2.48E-02 
1.21E-02 
5.64E-03 
9.82E-04 
1.30E-03 
2.73E-04 
3.06E-04 
7.54E-04 
5.62E-04 
1.74E-04 
5.26E-05 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

1.78E-06 
6.04E-07 
4.31E-07 
3.75E-08 
5.01E-09 
3.62E-09 
1.34E-09 
2.79E-10 
2.83E-10 
0.00E+00 

        
 

 

13 Forward Group 1 (fast) is Adjoint Group 47 and vice versa. 
14 Data from [1]. 
15 Emission probabilities for Forward Groups 41 – 47 are set equal to zero for computations because they 
significantly increase the computational expense, but contribute nothing to the detector reaction rate. 
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After the baseline results were established, alternative models were executed, 

processed, and adjusted in an iterative fashion using PENTRAN and MCNP5 to obtain 

designs that matched the baseline 3He reaction rate and adjoint function.  MCNP5 was 

used to more quickly establish the iterative starting point for each plug-in design by 

inserting estimates of the detector dimensions and then evaluating the resultant reaction 

rate.  During this phase, one additional wrinkle was added to the computational mix by 

using tube lengths that were only half that (10 cm) of the actual tubes used for the final 

phase of the research (19.6 cm).  The intent of this action was to ensure that the results of 

the research would be valid for more than a singular case, thereby demonstrating 

additional fidelity for the computational approach used herein.  The overall flow for the 

development effort is shown in Figure 5.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3.  Design Flow Path for Plug-In Detector Development . 
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The PENTRAN calculations utilized cross sections derived from the BUGLE-96 

library by the GMIX utility.  The Evaluated Nuclear Data Files Version 7 (ENDF/B-VII) 

continuous-energy neutron cross sections were used for the MCNP5 calculations [2].  

 

5.3 General Detector Design Parameters 

 

Although the detectors consisted of various materials and configurations, there 

were several design features that were common to all.  For example, each detector used in 

the study was outfitted with 2 cm of polyethylene at the rear of the detector (away from 

the source) based on research done by Ghita et al. [1, 3 – 4].  The stipulation for the rear 

moderator thickness was based on achieving the highest-degree for the albedo response, 

which results from neutrons that are scattered backwards into the detector. 

 

Another common feature was that each detector included 2 cm of polyethylene on 

the front-side of the detector (toward the source), 1 cm thick walls on either side, and a 

common height of either 10 cm or 19.6 cm as was discussed in the previous section (see 

Figure 5.1.).  The sidewall thickness was simply a procurement result; however, the 

forward moderator thickness was based upon on measurements taken of the PuBe source 

during the equipment setup, using a varying thickness of polyethylene (0 – 6 cm) which 

will be discussed in Chapter 7.  The only variance in the sidewall thickness occurred in 

the multi-detector designs with dissimilar radii.  In this case, the sidewall thickness was 

kept at 1 cm from the outside radius of the larger tube.  The 2 cm forward moderator 
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proved to be the optimal choice, because it provided the highest detector count rate 

during the source measurements. 

 

Each model also utilized a global source that surrounded the entire detector 

assembly (see Figure 5.3) with vacuum boundary conditions, because an initial MCNP5 

investigation of neutron reflection along the borders indicated there was < 2% albedo 

condition for any surface.  The boundary having the greatest albedo was also a few feet 

from the detector, which rendered any potential albedo contribution insignificant. 

 

Although no firm constraint exists regarding the physical size of any replacement 

design, serious consideration was only given for detectors that would not present any 

undue installation issues associated with existing detection systems.  As a general rule, 

the width of a detector assembly presents the greatest challenge regarding plug-in 

potential and, since this potential is the primary research focus, an arbitrary width 

constraint of 7.62 cm (3 inches) was chosen to limit the detector possibilities.  The choice 

of this constraint eliminated single-tube BF3 detectors operating at 1-atm pressure from 

consideration, although it is certainly possible to create a detector with this fill pressure 

that mirrors the characteristics of the 3He baseline detector selected for this study. 

 

5.4 3He Detector Baseline 

 

The baseline detector used for comparison purposes was a 1-inch diameter 3He 

tube pressurized to 4 atm.  This particular tube is discussed in detail in Chapter 7 and is a 
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common design that is found in various nuclear-related applications.  The PENTRAN 

model for this baseline design is shown in Figure 5.4., with a ubiquitous source that was 

previously mentioned.  For the initial experiments, the MCNP5 and PENTRAN models 

were identical, employing the materials provided in Table 5.3 and with the absorption 

cross sections given in Table 5.4. 

 

 
Fig. 5.4  3He baseline design. 

 
 
 

Table 5.3.  Baseline 3He material data. 
    
Number Material Density (g cm-3) Volume (cm3) 
    
    

1 Air Source 1.20E-03 603.20 
2 
3 

Polyethylene 
3He 

9.40E-01 
5.39E-04 

246.25 
  50.67 
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Table 5.4.  Four atmosphere 3He tube absorption cross sections derived from the BUGLE-96 library.16 
        
Group Σa (cm-1) Group Σa (cm-1) Group Σa (cm-1) Group Σa(cm-1) 

        
        
1 1.88E-05 13 7.60E-05 25 1.15E-04 37 2.84E-03 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

2.11E-05 
2.39E-05 
2.67E-05 
2.93E-05 
3.27E-05 
3.70E-05 
4.45E-05 
5.74E-05 
6.52E-05 
7.08E-05 
7.47E-05 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

7.74E-05 
8.19E-05 
8.71E-05 
8.85E-05 
8.59E-05 
8.43E-05 
8.58E-05 
8.91E-05 
9.34E-05 
9.77E-05 
1.03E-04 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

1.48E-04 
2.00E-04 
2.75E-04 
3.46E-04 
3.96E-04 
4.31E-04 
4.54E-04 
5.23E-04 
7.28E-04 
1.10E-03 
1.68E-03 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

4.71E-03 
6.91E-03 
1.08E-02 
1.92E-02 
3.14E-02 
4.90E-02 
7.56E-02 
1.10E-01 
2.10E-01 
4.86E-01 

 
        

 

 

Since BF3 at 1 atm is far less efficient at neutron detection when compared to 3He 

at 4 atm, the only possible way to get an efficiency match between the two gases is to 

somehow increase the amount of BF3 gas in a system.  In all simple detection cases 

where only the gross neutron count rate matters (e.g. portal monitors, backpack units, 

etc.) designers can simply increase the detector size, increase the amount of moderator, 

and/or add additional detectors in order to improve the efficiency without regard for 

shifts in the adjoint function; however, for the more difficult detection cases, the 

challenge of increasing the efficiency must be balanced with the requirement to maintain 

the overall neutron spectral response.  In other words, one cannot simply insert a larger 

detector, obtain an acceptable cumulative count from a 252Cf source at 1 m, and assume 

the detector will respond in equivalent fashion to the 3He spectral response. 

 

16 Forward Group 1 (fast) is Adjoint Group 47 and vice versa. 
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5.5 3He-Equivalent Tube Designs Based on BF3 Gas 

 

The approach taken in this research was to investigate a single-tube design 

(Design 1) with an increased gas pressure (2 atm) and two different two-tube designs at 1 

atm pressure (Designs 4 and 5) with moderation consistent with the approach discussed 

in Section 5.3.1.  These three designs are shown in Figs. 5.5 – 5.7 below and their 

associated material properties and cross sections are also provided in Tables 5.5 – 5.8.  

As a point of convention, when two-tube designs are discussed, the rear tube is toward 

the left and the forward tube is toward the right as you look at the XY design plots. 

 

The housings for radiation detection systems such as portal monitors generally 

prohibit the inclusion of additional items in horizontal directions because of electrical 

boards and other related items that are in close quarters with the detectors.  The vertical 

nature of the dual-tube designs in this research was borne out of space considerations 

where the use of a larger or additional tube would be impossible.  Aside from the 

increased footprint, larger tubes require a higher operating tube voltage to maintain an 

electrical field sufficiently large enough for efficient charge collection and to reduce 

recombination effects that occur in some gases at higher pressure.  The magnitude of the 

voltage increase can be minimized by adjusting the radius of the anode wire (a) in 

relation to the cathode inner radius (b) as seen in Eq. 2.2.  However, one advantage of a 

larger tube radius is that it reduces wall effects that were discussed in Chapter 2. 
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5.5.1 Design 1 – Large Single Tube Operating at 2 Atmospheres Pressure 

 

 
Fig. 5.5.  Single BF 3  tube with 2 cm radius. 

 

 
Table 5.5.  BF3 tube material data (2 atm – Design 1). 

    
Number Material Density (g cm-3) Volume (cm3) 
    
    

1 Air Source 1.20E-03 720.00 
2 
3 

Polyethylene 
BF3 

9.40E-01 
5.45E-03 

354.34 
125.66 
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Table 5.6.  Two atmosphere BF3 absorption cross sections derived from the BUGLE-96 library (Design 
1).17 

        
Group Σa (cm-1) Group Σa (cm-1) Group Σa (cm-1) Group Σa(cm-1) 

        
        
1 2.11E-05 13 1.65E-05 25 6.01E-05 37 9.94E-04 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

2.32E-05 
2.66E-05 
3.10E-05 
3.58E-05 
4.29E-05 
4.27E-05 
3.34E-05 
1.96E-05 
2.08E-05 
1.79E-05 
1.61E-05 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1.73E-05 
2.27E-05 
2.61E-05 
1.52E-05 
1.04E-05 
1.24E-05 
1.52E-05 
2.08E-05 
3.17E-05 
3.98E-05 
4.53E-05 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

8.09E-05 
9.98E-05 
1.25E-04 
1.48E-04 
1.75E-04 
1.77E-04 
1.84E-04 
2.07E-04 
2.77E-04 
4.04E-04 
6.01E-04 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

1.63E-03 
2.38E-03 
3.70E-03 
6.54E-03 
1.07E-02 
1.67E-02 
2.57E-02 
3.75E-02 
7.13E-02 
1.65E-01 

        
 

 

5.5.2 Design 4 – Two Dissimilar Tubes Operating at 1 Atmosphere Pressure 

 

 
Fig. 5.6.  Dual BF 3  tubes with dissimilar radii (2.05 cm rear / 
1.27 cm forward).  

 

17 Forward Group 1 (fast) is Adjoint Group 47 and vice versa. 
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Table 5.7.  BF3 tube material data (1 atm – Designs 4 and 5). 
    
Number Material Density (g cm-3) Volume (cm3)18 
    
    

1 Air Source 1.20E-03 849.60 / 948.00 
2 
3 

Polyethylene 
BF3 

9.40E-01 
2.73E-03 

496.84 / 547.09 
182.70* / 304.11† 

    
*There is 50.67 cm3 of BF3 in the forward tube and 132.03 cm3 in the rear tube. 
†There is 152.06 cm3 of BF3 in each tube. 

 
 
 
Table 5.8.  One atmosphere BF3 absorption cross sections derived from the BUGLE-96 library (Designs 
4 and 5).19  
        
Group Σa (cm-1) Group Σa (cm-1) Group Σa (cm-1) Group Σa(cm-1) 

        
        
1 1.06E-05 13 8.25E-06 25 3.00E-05 37 4.97E-04 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

1.16E-05 
1.33E-05 
1.55E-05 
1.79E-05 
2.15E-05 
2.13E-05 
1.67E-05 
9.82E-06 
1.04E-05 
8.94E-06 
8.07E-05 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

8.66E-06 
1.14E-05 
1.30E-05 
7.58E-06 
5.21E-06 
6.18E-06 
7.62E-06 
1.04E-05 
1.59E-05 
1.99E-05 
2.26E-05 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

4.05E-05 
4.99E-05 
6.23E-05 
7.39E-05 
8.77E-05 
8.86E-05 
9.19E-05 
1.04E-04 
1.38E-04 
2.02E-04 
3.00E-04 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

8.15E-04 
1.19E-03 
1.85E-03 
3.27E-03 
5.35E-03 
8.33E-03 
1.29E-02 
1.87E-02 
3.57E-02 
8.25E-02 

 
        

 
 
 
 
 
 
 
 
 
 
 
 
 
 

18 Volumes are listed as Design 4 / Design 5. 
19 Forward Group 1 (fast) is Adjoint Group 47 and vice versa. 
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5.5.3 Design 5 – Two Identical Tubes Operating at 1 Atmosphere 

 

 
Fig. 5.7.  Dual BF 3  tubes with the same radii (2.20 cm). 
 

 

5.6 3He-Equivalent Tube Designs Based on a 10B-Lining 

 

Although the 10B lining in these designs undergoes the same reaction as the 

material incorporated into BF3 gas, there are some differences between the approaches.  

Whereas the BF3 gas provides for both interaction and charge collection, the sole purpose 

of the solid 10B lining is to introduce one of the two reaction products to a separate 

proportional gas.  Although BF3 performs adequately as a proportional gas, it suffers 

from deterioration of its counting and resolution properties with time, and especially in 

high neutron counting-rate and higher temperature environments [5 – 6] due to the 

increased release rate of fluorine free-radicals. 

 

There are a number of commercially-available gases with superior gas 

amplification and resolution properties and BF3 is typically utilized only for its photon 
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discrimination properties [7 – 9].  Detectors using a 10B lining suffer from none of the 

aforementioned BF3 drawbacks and they can be designed to have a similar efficiency as 

their BF3 counterparts.  And since the lining only serves as a neutron detection 

mechanism, the detector can be fitted with one of the more suitable proportional gases 

that do not suffer from the BF3 dissociation problems [7 – 9]. 

 

One important design limitation that is unique to the 10B lining is that the 

thickness should not exceed a density thickness of about 1 mg cm-2 because of the limited 

range of the alpha particle reaction products in the boron [6, 8 – 9].  In theory, the photon 

discrimination properties of boron-lined detectors are inferior to BF3 gas because of the 

smaller magnitude of energy transferred to the proportional gas; however, the use of 

superior proportional gases such as 4He significantly reduce the total photon interaction 

cross section and allows for the use of a lower high voltage.  The net result is that boron-

lined detectors can operate in the same intense gamma fields as that of BF3. 

 

Knoll mentions that the lining thickness is based on the alpha particle range in 

boron [8]; however, both particles contribute to the detector signal and establishing the 

wall thickness to achieve the highest efficiency is an art of balancing the greater reaction 

rate associated with a thicker lining with the higher efficiency of reaction product charge 

collection associated with a thinner lining.  The fact that the alpha particle range is 

greater than that of the lithium nuclei can be shown by evaluating the stopping power of 

both particles in the boron lining. 
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The full stopping power calculation is a complex relation, but according to Evans 

[10], the following description is a very reasonable approximation for particles that are 

massive in relation to an atomic electron 

 

 
𝑆(𝐸) = −

𝑑𝐸
𝑑𝑥

=
4𝜋𝑧2𝑒4𝑁𝑍
𝑚𝑜𝑉2𝐴

ln�
𝑍𝑚𝑜𝑉2

𝐼
�  , (5.1) 

 

where 

S(E) is the stopping power of a specific particle as a function of energy (g or mg cm-2); 

z is the particle atomic number (amu); 

Z is the absorber atomic number (amu); 

e is the electronic charge (esu); 

mo is the rest mass of an electron (MeV); 

A is the atomic mass number of the absorber (amu); 

V is the particle velocity (cm s-1); 

N is Avagadro’s Number; and, 

I is the ionization potential of the absorber (eV). 

 

By inspection of Eq. 5.1, one can determine that the maximum energy transfer possible is 

equal to 2moV2; therefore, Eq. 5.1 can be further reduced to 

 

 
−
𝑑𝐸
𝑑𝑥

=
144𝑍𝑧2

𝐸𝐴
ln �

2195𝐸
𝐼

�  , (5.2) 
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where E is the particle energy (MeV) and all other terms are as previously defined in Eq. 

5.1.  The actual ionization potential can be used in Eq. 5.2; however, if the quantity is 

unknown, it can also be estimated by [11] 

 

 
𝐼(𝑍)  =  �

13𝑍,                                         𝑍 ≤ 13
 

9.76𝑍 + 58.8𝑍−0.019,          𝑍 > 0  .
  

(5.3) 

 

Since the range of the alpha particle was previously given as 1 mg cm-2, one can estimate 

the range of the lithium ion by substituting the appropriate values into Eq. 5.2 for each 

case and then evaluating the associated ratio according to 

 

 −𝑑𝐸𝑑𝑥𝐿𝑖
−𝑑𝐸𝑑𝑥𝛼

=
(9)(1.47 𝑀𝑒𝑉) ln �(2195)(0.84 𝑀𝑒𝑉)

(13)(5) �

(4)(0.84 𝑀𝑒𝑉)  ln �(2195)(1.47 𝑀𝑒𝑉)
(13)(5) �

  , (5.4) 

 

which reduces to the following result: 

 

 𝑑𝐸
𝑑𝑥𝐿𝑖

= (3.37)
𝑑𝐸
𝑑𝑥𝛼

  . (5.5) 

 

Now that we have an estimate of the lithium nuclei stopping power, the range of 

this particle can now be estimated by remembering that the range of a particle is 

associated with the integral of the reciprocal stopping power per energy interval.  By 
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substituting the known quantities into Eq. 5.6 below, an estimate of the lithium nuclei 

range in boron is 

 

 
𝑅𝐿𝑖 = �

1
(3.37) 𝑆(𝐸)

𝐸𝑚𝑎𝑥

0

𝑑𝐸 ≈ 0.297 𝑚𝑔 𝑐𝑚−2  . (5.6) 

 

Although the lithium nuclei have a greater magnitude of charge (+4) compared 

with the alpha particles (+2), the latter are more important from a detection standpoint.  

This is due to the fact that the alpha particles are traveling at a velocity nearly twice that 

of the lithium nuclei and this produces collisions with the proportional gas molecules at 

dispersed intervals, thus causing ionizations further within the gas.  These ionizations are 

more efficiently collected because electric field magnitude increases as you approach the 

center of a detector.  The 10B-lined tube designs presented in this section all utilize the 1 

mg cm-2 wall thickness because no lined tubes were available for measurements during 

this research effort.  The absence of these tubes precluded any efforts to draw a balance 

between the neutron absorption rate and the collection efficiency; however, it is clear 

from the literature that each of these particular designs needs to be individually evaluated 

in order to optimize this balance [12 – 13].  Consequently, the final plug-in designs 

stipulated in this section likely represent the minimum diameter case and the actual 

designs will need to be adjusted for the use of a 0.28 mg cm-2 thickness to allow for a 

more efficient collection of the lithium nuclei [12]. 
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The normal density of 10B is 2.34 g cm-3, which means that a 1 mg cm-2 density 

thickness of 10B is only 4.27E-04 cm thick (or 1.20E-04 cm for a density thickness of 

0.28 mg cm-2)!  Such a vanishingly small section of material would make it virtually 

impossible to establish a useable mesh size in any discrete ordinates code; therefore, in 

the computational models, the 10B thickness was increased to 0.5 cm by using the 

following material balance relation and then solving for the reduced density (ρ2) 

 

 𝜌1 𝑑𝑥1 = 𝜌2 𝑑𝑥2 . (5.7) 

 

The resulting 10B density of 1.998E-03 g cm-3 (or 5.60E-04 g cm-3 for a density thickness 

of 0.28 mg cm-2) allowed for at least two meshes of 0.25 cm thickness to be used in the 

boron portion of the PENTRAN models.  This ensured that an adequate number of 

interactions would occur within the sensitive volume of this particular detector and that 

convergence of the angular flux would proceed in an acceptable fashion.  The validity of 

the material balance shown in Eq. 5.7 will be demonstrated in Chapter 8. 

 

The lined detector models have also been equipped with a 4He fill gas operating at 

10 atm to provide an increased stopping power for the reaction products, while also 

presenting moderation properties that are very similar to that of 3He.  And while the 10B 

lining thickness cannot be increased beyond the stipulated limitation, the detection 

efficiency can be improved in a manner similar to the BF3 tubes by increasing the tube 

size or by adding additional tubes.  These two designs are shown in Figs. 5.8 and 5.9 and 

their associated material data and cross sections are given in Tables 5.9 and 5.10. 
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5.6.1 Design 2 – Large Tube with 4He Operating at 10 Atmospheres 

 
Fig. 5.8.  Single 1 0B-lined tube with a 1.90 cm radius 
for a 10B density thickness of 1.00 mg cm- 2 (2.37 cm 
radius required for 0.28 mg cm-2).  

 

 

Table 5.9.  10B-lined tube material data (10 atm – Designs 2 and 3). 
    
Number Material Density (g cm-3) Volume (cm3)20 
    
    

1 10B Lining 2.00E-03   51.84 /   64.09* 
3 
4 
6 

Air Source 
Polyethylene 
4He 

1.20E-03 
9.40E-01 
1.23E-03 

707.20 / 708.00 
344.26 / 182.38 
  61.76 /   37.25 

    
*There is 32.05 cm3 of 10B per tube at the reduced density 

 
 
 
 
 
 
 
 
 
 
 

20 Volumes are listed as Design 2 / Design 3 with a reduced 10B density. 
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Table 5.10.  10B-lined tube absorption cross sections derived from the BUGLE-96 library.21 
        
Group Σa (cm-1) Group Σa (cm-1) Group Σa (cm-1) Group Σa(cm-1) 

        
        
1 2.20E-05 13 4.03E-05 25 1.47E-04 37 2.43E-03 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

2.49E-05 
2.79E-05 
3.16E-05 
3.58E-05 
4.15E-05 
4.34E-05 
5.14E-05 
4.53E-05 
5.06E-05 
4.37E-05 
3.94E-05 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

4.23E-05 
5.55E-05 
6.38E-05 
3.70E-05 
2.54E-05 
3.02E-05 
3.72E-05 
5.09E-05 
7.74E-05 
9.73E-05 
1.11E-04 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

1.98E-04 
2.43E-04 
3.03E-04 
3.61E-04 
4.02E-04 
4.30E-04 
4.49E-04 
5.07E-04 
6.76E-04 
9.89E-04 
1.47E-03 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

3.99E-03 
5.81E-03 
9.05E-03 
1.60E-02 
2.62E-02 
4.08E-02 
6.29E-02 
9.16E-01 
1.74E-01 
4.04E-01 

 
        

 
 

5.6.2 Design 3 – Twin Tubes with 4He Operating at 10 Atmospheres 

 

 

Fig. 5.9.  Dual 10B-lined tubes with the same radii (1.27 cm) for a 10B density 
thickness of 1.00 mg cm-2 (1.84 cm radius required for 0.28 mg cm-2).  

 
 

21 Forward Group 1 (fast) is Adjoint Group 47 and vice versa. 
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5.7 Design 6 - Single 10B-Loaded Poly-Vinyl Toluene (PVT) Cylinder 

 

The same 10B that was utilized in the previously discussed designs can also be 

incorporated into PVT to provide for gamma and neutron measurements with a single 

scintillation detector [8 – 9, 14].  An upper concentration bound of 5% by weight 

provides for excellent neutron sensitivity, while minimizing light quenching caused by 

the black color of the boron.  The PVT material is also an excellent moderator due to the 

large number of hydrogen atoms and greater density than its gas counterparts.  This 

means that a small PVT detector can provide the equivalent sensitivity of much larger 

gas-filled tubes. In fact, although the PVT cylinder used in Design 6 has the same 

diameter as the 3He tube used for measurements, it is only 4.5 cm in height, compared 

with 19.6 cm for the gas tube. 

 

From a computational perspective, the PVT does, however, require some model 

modifications related to neutron scattering.  All the other plug-in detectors previously 

discussed used some form of gas at densities roughly a thousand times less than PVT.  

The addition of hydrogen-containing compounds at higher density ensures far more 

scattering events in the detector than is the case with gases.  This means that the 

simplified S8 / P2 approach used in the other designs is inadequate for this case.  

Convergence of < 1E-03 was impossible for a 1-inch diameter PVT cylinder inserted into 

the Figure 5.1 design space, even by reducing the universal mesh size to ~0.1 cm as 

shown on Figure 5.10.  Therefore, in addition to reducing the mesh size for this model,  
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Fig. 5.10.  Single 1.27 cm radius PVT cylinder 
(1.78 cm radius may be necessary to account for 
efficiency losses).  

 

 

the Legendre order was increased to P3, which provided excellent convergence (< 2E-04) 

for all neutron energy groups. 

 

The use of currently-available PVT also presents challenges associated with the 

collection of the scintillation light output.  The first of these issues is referred to as pulse-

shape discrimination (PSD) and presents issues because the 10B-loaded PVT is very 

sensitive to both photons and neutrons.  Whereas the previously mentioned detectors 

were relatively insensitive to photon radiation and their associated electrical pulses could 

easily be discriminated using a simple SCA technique, PVT is more sensitive to particles 

with a lower-magnitude linear energy transfer (LET) such as electrons.  Therefore, any 

attempt to use PVT for the singular characterization of neutron or photon fields must 

incorporate a suitable PSD method within the overall system.  Plastic scintillators have 

typically exhibited PSD capabilities that inferior to that of liquid scintillators [8 – 9, 14]; 
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however, new crystalline plastics are currently being developed that exhibit PSD 

characteristics that rival liquid scintillator materials and that will essentially eliminate this 

limitation [15 – 18]. 

 

In addition to the PSD challenges, organic scintillators such as PVT can also 

suffer from the loss of a portion of the scintillation output signal because of the disparity 

of the refractive indices at the junction between the PVT and surrounding materials.  

When the light photons exit the plastic, some of the light is reflected, depending on the 

polarization and angle of incidence of the photons.  The critical angle of incidence that 

determines whether the photons are scattered or absorbed is described by Brewster’s Law 

[14].  This law states that the photons will not be reflected if their angle of incidence, as 

measured from the centerline is greater than or equal to the Brewster’s Angle (θB) 

defined by 

 

 𝜃𝐵 = tan−1 �
𝑛2
𝑛1
�  , (5.8) 

 

where n1 refer to the refractive index of the transmitting material (i.e. PVT here) and n2 

is the refractive index of the material opposite the junction (i.e. polyethylene here). 

 

The PVT used in the model for this section is identical to EJ-25622 or BC-45423 

with 5% 10B by weight.  This particular material has a refractive index n1 = 1.58 [8] with 

a 425 nm wavelength of maximum emission.  Meanwhile, the index for the surrounding 

22 Eljen Technologies, 1300 W. Broadway, Sweetwater, TX 79556, (325) 235-4276. 
23 Saint-Gobain Crystals, 17900 Great Lakes Parkway, Hiram, OH 44234, (440) 834-5600.  
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polyethylene is n2 = 1.512 and, substituting these values into Eq. 5.2 yields a Brewster’s 

Angle of only 43.74º [19].  Light photons scattered at angles greater than this will be lost 

because they will not be reflected back into the PVT matrix and received through the 

optical coupling and into the photomultiplier tube.  Therefore, in most cases, users will 

have the PVT covered with a TiO2-based white paint with n2 = 2.731 or a vermillion-

colored paint with n2 = 3.14, which yields Brewster Angles of 60.90º - 63.14º and greatly 

enhances the detection efficiency compared with the bare case. 

 

Since MCNP5 does not allow the user to account for efficiency losses associated 

with the scintillation light output or edge effects in the PVT, this particular design will 

likely need a larger PVT diameter of up to 1.78 cm in order to account these and other 

efficiency loss mechanisms, which could reach 24%.  As was the case with the 10B-lined 

tubes, each particular system design will require testing in order to identify the exact 

plug-in dimensions.  The material data and cross sections used for the PENTRAN 

calculations are shown in Tables 5.10 and 5.11. 

 

Table 5.11.  10B-loaded PVT material data (5% 10B – Design 6). 
    
Number Material Density (g cm-3) Volume (cm3) 
    
    

1 PVT 1.03E+00   22.80 
3 
4 

Air Source 
Polyethylene 

1.20E-03 
9.40E-01 

295.68 
112.81 
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Table 5.12.  10B-loaded PVT absorption cross sections derived from the BUGLE-96 library.24 
        
Group Σa (cm-1) Group Σa (cm-1) Group Σa (cm-1) Group Σa(cm-1) 

        
        
1 3.11E-03 13 2.01E-04 25 7.26E-04 37 1.21E-02 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

4.07E-03 
4.81E-03 
8.10E-03 
4.08E-03 
2.79E-04 
2.17E-04 
2.56E-04 
2.26E-04 
2.52E-04 
2.18E-04 
1.97E-04 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

2.11E-04 
2.75E-04 
3.16E-04 
1.84E-04 
1.27E-04 
1.50E-04 
1.85E-04 
2.53E-04 
3.83E-04 
4.81E-04 
5.47E-04 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

9.79E-04 
1.21E-03 
1.50E-03 
1.79E-03 
1.99E-03 
2.13E-03 
2.23E-03 
2.52E-03 
3.36E-03 
4.91E-03 
7.30E-03 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

1.98E-02 
2.89E-02 
4.50E-02 
7.95E-02 
1.30E-01 
2.02E-01 
3.12E-01 
4.55E-01 
8.66E-01 
2.00E+00 

        
 

  

24 Forward Group 1 (fast) is Adjoint Group 47 and vice versa. 
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CHAPTER 6 
EXPERIMENTAL CONDITIONS 

 
 
 

This chapter provides a description of the conditions that existed during the 

measurement period.  General information is provided about the area where the 

measurements were conducted along with a description of the radioactive source used to 

produce the detector responses. 

 

6.1 Test Facility Description 

 

6.1.1 General Area 

 

The measurements for the gas-filled detectors were conducted in a secure room 

associated with the Florida Institute of Nuclear Detection and Security (FINDS).  FINDS 

was program that had been mandated by the State of Florida in 2004 to engage in the 

design and testing of detection systems for homeland security applications.  This greater 

portion of the room was empty with the exception of a large CONEX (Container Express) 

that had been placed here for use in various cargo monitoring experiments. 

 

There were also two internal rooms within the FINDS research area that housed 

computer equipment and a CT scanner associated with the medical physics program as 

shown in Figure 6.1.  The discrimination setting for each neutron detector system was 

evaluated with and without exposure to a 137Cs source because of the presence of the CT 

device.  This precaution was taken to ensure that photons emanating from the scanner  
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Fig. 6.1.  Overhead view of the FINDS research area.  

 

would not produce enough coincidence pulses in the detector tubes to cause an elevation 

in the neutron count rate, which could possibly skew the counting results and render the 

computational modeling comparisons invalid. 

 

The overall dimensions of the room were 60 feet x 30 feet x 20 feet (length x 

width x height).  There were four separate concrete columns that support the roof inside 

this research area; however, only one of the columns was in close enough proximity to 

potentially reflect neutrons back into the detectors. 

 

6.1.2 CONEX Container 

 

The CONEX is multi-purpose container used for safe and secure storage and 

shipping of materials along a global intermodal route that can include road, rail, or 

seagoing vessels.  CONEX containers come in various sizes according to the application 

and they can range from 8 – 56 feet in width, 8 – 9.5 feet in height, and lengths of > 10 
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feet.  Since these containers are routinely used to bring foreign goods into the U.S., the 

use of a CONEX was a natural choice. 

 

The particular container used in this research effort had dimensions of 20 feet 

(length), 8 feet (width), and 8 feet (height), and the walls, floor, and ceiling of the 

container consisted of 14 gauge (1/16 or 0.0625 inches) galvanized steel.  An example of 

this type of container is given in Figure 6.2, while an internal view of the actual CONEX 

used in this research is provided in Figure 6.3.  The latter figure also shows the placement 

of the radioactive source within the container itself.  A more thorough discussion of the 

source and its configuration will be covered in the subsequent section of this chapter.  For 

orientation purposes, the detector and the concrete columns were located beyond the wall 

on the left side of Figure 6.3. 

 

 

Fig. 6.2.  CONEX example. 
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Fig. 6.3.  Interior view of the CONEX 
container (reflected conditions).  

 
 

All portions of the CONEX were at least six feet away from any other wall inside 

the basement with the exception of a single concrete column.  An expanded view of the 

research area around the CONEX is provided as Figure 6.4 and clearly shows this 

column, which was offset from the center of the southern CONEX wall by a few feet.  

Ordinarily, the detectors and source would have been repositioned; to prevent any 

potential scatter from the column from reaching the detectors; however, because of some 

additional testing that was taking place in the room, no other arrangements were 

available.  Therefore, an MCNP5 evaluation was conducted to verify that the column did 

not produce an albedo effect that needed to be incorporated into the computational 

models as discussed in Chapter 5.  During the equipment set up, a number of 

measurements were also taken to determine the scattering effect of the column and the 

results showed that there was a negligible effect (<<1%).  The measurement results,  
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Fig. 6.4.  Expanded view of the floor plan surrounding the CONEX. 

 

coupled with the fact that any scatters would be uniformly seen by all the detectors, 

meant that this column did not need to be incorporated into the computational models. 

 

6.2 Neutron Emissions 

 

6.2.1 Source Construction 

 

The neutron emitter used in these experiments was a plutonium-beryllium 

(239PuBe) source that was manufactured by Mound Laboratories in June, 1971.  PuBe is a 

very popular neutron source because of the long half-life of 239Pu (~24000 years) which 

lends stability to the neutron emissions and the reduced photon background compared to 

other mixtures such as radium-beryllium (RaBe), americium-beryllium, and polonium-
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beryllium (PoBe).  Neutrons are produced in the PuBe according to the following 

reaction 

 

 𝐻𝑒  + 𝐵49 → ( 𝐶)∗6
13 → + 𝐶6122

4 +  𝑛01 +  5.71 𝑀𝑒𝑉 ,  (6.1) 

 

which, due to variances in the excitation energy of the compound nucleus, yields a 

complex neutron energy spectrum with an average energy of 4.61 MeV. 

 

Beryllium is an effective target in neutron sources because the binding energy of 

the last neutron is only 1.66 MeV and, since it is a light element, its nucleus presents a 

relatively small coulomb repulsion to an incident alpha particle, which makes the 

interaction more likely.  To ensure the best neutron yield, it is important to achieve a 

homogenous mixture of the alpha-emitter and the beryllium within the active source 

material.  PuBe sources of this type have a typical yield of ~107 n s-1 Ci-1 (Curie) of 239Pu 

and generally contain up to 1 Ci or ~16 g of 239Pu.  Sources of this type are doubly-

encapsulated to ensure the actinide is adequately sealed/protected and that expansion of 

the source due to the buildup of 4He from the alpha decay does not result in a capsule 

breach.  Tantalum has very similar thermal and mechanical properties to 239Pu; therefore, 

this metal is almost always used as the inner capsule liner, and with a stainless steel outer 

layer as seen in Figure 6.5. 
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Fig. 6.5.  PuBe source configuration [1] 
 

 

According to the shipping documents provided by Mound Laboratories, this PuBe 

source had a capsule density of 4.35 g cm-3, with 7.86 g of beryllium and 15.02 g of 239Pu 

(0.94 Ci).  The manufacturer’s documents also specified the cylindrical dimensions of the 

outer container as 2.59 cm (diameter) and 3.68 cm (height).  The stated emission rate was 

listed as 1.93 × 106 n s-1, which produced a dose rate of 100 mrem h-1 at 88.9 cm.  This 

particular source was extensively studied by Ghita et al [1, 3 – 4] using both Monte Carlo 

and deterministic transport techniques.  The calculated neutron leakage accounting for 

sub-critical multiplication and age of the Pu resulted in an average emission rate of 

(1.925 ± 0.0001) × 106 n s-1, which is within round-off of the manufacturer’s stated 

emission rate [1].  The BUGLE-96 neutron energy bins used in this research were 

previously provided in Table 4.2 and the probability of emission associated with these 

bins was given in Table 5.1.  The information listed in those two tables formed the basis 

for the source term for both the PENTRAN and MCNP5 models. 
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6.2.2. Moderator Materials 

 

The neutron source was measured in both a bare and reflected condition inside the 

CONEX container.  The reflected case used containers of bottled water, 3-feet thick, that 

were placed on the north side of the source (away from the detector) as shown in Figure 

5.3.  This water was removed for the bare source exposures and the only other 

moderating material consisted of polyethylene that encased the detectors.  Although 

counting information was gathered for the bare and reflected conditions, only the bare 

case was used for direct comparison with the computational models because the 

arrangement and openings between the water bottles produced variations that would skew 

the comparisons to the computational models. 

 

6.2.3 Shielded Container 

 

One of the main objectives of any special nuclear material (SNM) detection 

system is to identify plutonium in cargo that is passing through a border crossing or into a 

port of entry (POE).  The testing of such systems have been hampered over the years by a 

lack of (α, n) sources and/or plutonium metal due to security issues or the availability of 

another suitable source such as 252Cf because of radioactive decay or supply limitations.  

Ghita et al. was able to overcome these technical issues through the use of a high-purity 

nickel scatter shield that can shift and alter a PuBe neutron spectrum to match that of 

subcritical multiplication in Pu metal, with average emission energy of only 2.11 MeV 

[3]. 

 174  
 



An example of the shielded spectrum from this research is shown in Figure 6.6 

and demonstrates the excellent spectral response provided by the nickel shielding.  The 

nickel geometry consisted of a right-cylinder with a diameter of 15.6 cm and a total 

height of 14.6 cm.  Since a casting of pure nickel would have been very expensive, the 

shield was formed by stacking flat cylindrical pieces of nickel and using clamps to ensure 

good contact between individual pieces.  The inner portions of the nickel plates had a 3 

cm hole drilled through them to allow for the placement of the PuBe source.  This 

configuration resulted in a total of 6.3 cm of nickel between the source wall and the 

exterior surface of the shield. 

 

 

Fig. 6.6.  Forward neutron leakage spectra from Pu metal and shielded PuBe [3]. 
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The source was placed into the shield as shown in Figure 6.7 and the resulting 

cylinder had 5.3 cm of nickel beneath the PuBe and 4.8 cm above it.  The nickel plates 

were clamped as shown in Figure 6.8 to match the laboratory conditions to the 

computational models as closely as possible [1, 3 – 4].  The nickel-shielded PuBe source 

was used for all the detector measurements and was also incorporated into the associated 

computational models to ensure a direct comparison could be made between all results. 

 

 

 

Fig. 6.7.  Placement of the PuBe source into 
the nickel shield. 
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Fig. 6.8.  PuBe source in its nickel shield. 
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CHAPTER 7 
NEUTRON DETECTOR SETUP AND MEASUREMENTS 

 
 
 

The correlation between the laboratory measurements taken with the 3He and BF3 

detectors and their associated computational models discussed in Chapter 5 provided the 

fidelity by which the modeling techniques could be extrapolated to other materials, such 

as the PVT and 10B-loaded PVT.  The procedures for preparing and using both gas-filled 

detection systems were identical, therefore, these issues will be discussed in a single 

section and noting any differences.  

 

7.1 Laboratory Equipment and Operational Setup 

 

7.1.1 Laboratory Equipment 

 

Prior to monitoring for neutrons, the appropriate individual components had to be 

gathered and assembled into a functioning system that would meet the needs of the 

research.  The components and their associated arrangement are shown in Figure 7.1.  

These items were were arranged into a nuclear instrument module (NIM) bin as shown in 

Figure 7.2.  The system components were almost exclusively manufactured by ORTEC25 

with the exception of a Canberra26 Model 2006 pre-amplifier.  The other system 

components consisted of a Model 556 high-voltage supply, Model 410 linear amplifier,  

 

25 ORTEC, 801 South Illinois Avenue, Oak Ridge, TN 37831 
26 Canberra Industries, 800 Research Parkway, Meriden, CT 06450 
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(ORTEC 551)

Timer/Counter
(ORTEC 871)

Pre-Amp
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Trump PCI 2K 
MCA Card Personal Computer
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Fig. 7.1.  3He system setup. 
 

 

 

Fig. 7.2.  NIM components for the 3He and BF 3 
systems. 

 

and a Model 551 single-channel analyzer (SCA).  Bipolar output pulses (seen in Figure 

7.3) from the linear amplifier were fed to the SCA using a 2 µs shaping time.  The SCA 

output was directed to either a Model 871 timer/counter or a Trump PCI 2K multi-

channel analyzer (MCA) card, depending on whether the system counting parameters or 

the output pulse shape or spectra were being evaluated.  The information from the Trump  
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Fig. 7.3.  Bipolar output pulse from the linear 
amplifier.  

 

PCI card was processed through a personal computer and the ORTEC Maestro software 

to display the differential pulse height spectra. 

 

The 3He neutron detector was a Model 252 manufactured by LND, Inc. and was 

pressurized to 4 atm (3040 torr).  The detector had an overall length of 11.20 inches with 

an effective length of 8.0 inches and an active volume of 89.01 cm3.  The BF3 detector 

was a Model G-10-8 manufactured by the N. Wood Counter Laboratory, Inc. and with an 

internal pressure of 0.96 atm (730 torr), which will be rounded to 1 atm for the remainder 

of this document.  The BF3 gas was enriched with 96% 10B to increase the neutron 

absorption in the detector.  The tube itself had an overall length of 10 inches and, like the 

LND-252, an effective length of 8.0 inches with an active volume of 89.01 cm3.  The two 

tubes are shown side-by-side in Figure 7.4. 

 

 

 181  
 



 

Fig. 7.4.  Neutron tubes used 
in the study. 

 

7.1.2 Operational Setup 

 

Prior to establishing the initial system parameters, an ORTEC Model 480 pulser 

and an Infinium27 Model S4832B oscilloscope (Figure 6.3) were used in conjunction to 

verify the electrical connections were sound and to ensure the electronic components 

were trouble free.  Prior to using the system, the oscilloscope was also used together with 

a 1 Ci PuBe source and a 10 µCi 137Cs source to determine an appropriate setting for the 

linear amplifier gain and the lower limit of detection (LLD) for the SCA.  A coarse gain 

of 30 (0 fine gain) and an LLD of 200 milli-Volts (mV) or 20 pulse height units (PHU) 

on these units ensured that only single neutron events would be registered by the 

detection system by taking advantage of the large Q-value of the neutron interactions as 

compared with photon interactions.  These settings worked well and were applied to both 

detector types. 

 

27 Agilent Technologies, Inc., 5301 Stevens Creek Blvd., Santa Clara, CA 95051 
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The final operational step that had to be completed before using the system was to 

determine the optimal operating voltage for the tubes by systematically increasing the 

HVPS voltage until a stable plateau was achieved.  This action was necessary to ensure 

that minor fluctuations in the building voltage did not adversely impact the counting 

results of the experiment.  The HVPS was energized at 100 V and allowed to stabilize for 

five minutes prior to beginning the process.  During this interval, the bare PuBe source 

was removed from its container and positioned one foot away from the neutron tube 

centerline (see Figure 7.5).  After the stabilization period was over, a one-minute count 

was entered into the timer/counter to stop the counting process and display the final count 

information.  A series of these one-minute counts was taken with both tubes using 

incremental voltage increases in steps of 100 V.  The incremental counts were continued 

to a maximum voltage of 2000 V for 3He or 2300 V for BF3. 

 

Other System Components

T
u
b
eNeutron Source 

 

Fig. 7.5.  Source-to-detector arrangement used for the operational tests.  

 

The gathered data were plotted and evaluated to establish the optimal operating voltage 

for each probe.  Prior to using each probe, the correct voltage was input to the HVPS and 

the system was allowed to stabilize for at least five minutes to preclude recording errant 

pulses.  Once this stabilization period was over, the system was essentially ready for use; 

however, since one of the goals of this research is to establish a methodology for 
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evaluating 3He candidate replacements, it was vital to gain an understanding about the 

system response in the presence of a mixed field of photon and neutron radiation. 

 

The system response was evaluated according to the important features associated 

with the differential pulse height spectra of the two gases.  The important features being 

considered were the overall spectral appearance and the expression of peaks associated 

with the decay directly to the ground state or subsequent decay from the first excited state 

of the nucleus.  By comparing the baseline spectra to those associated with a mixed-field 

component, a judgment could be rendered about the ability of the detector to discriminate 

against photons.  The baseline information was obtained through a five-minute count of 

the bare PuBe source at a distance of 3 feet.  A second five-minute count was 

subsequently performed after the 10 µCi 137Cs source was taped directly onto the 

cylindrical wall of the tube.  The data from both tests were exported from the Maestro 

software into Microsoft Excel for plotting. 

 

7.2 Measurements of the Shielded PuBe Source 

 

After the completion of the operational checks, the PuBe source was inserted into the 

shielded container of nickel as discussed in Chapter 6.  Once the source was prepared, 

measurements were taken with both a reflected and bare source condition as was also 

previously described in Chapter 6.  A series of two-minute counts were completed with 

each source configuration and with varying amounts of a polyethylene moderator 

between the source and detector.  The polyethylene thicknesses were increased in 

increments of 0.5 cm from a bare condition and up to a maximum of 6 cm.  The bare 
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moderator configuration wasn’t totally bare as the name implies, but consisted of a 

specially-machined rectangular parallel piped which maintained the majority of the front 

hemisphere (toward the source) of the detector open as seen in Figs. 7.6 and 7.7.  This 

particular moderator had a height of 21 cm, a width of 4.54 cm (toward the source), and a 

width of 6 cm on the axis perpendicular to the tube shown in Figure 7.6.  Ghita 

determined that 2 cm of the polyethylene should be maintained behind the detector to 

maintain the spectral quality of the neutron source, while maximizing the performance of 

gas-filled detectors, therefore, this constant amount was maintained on the rear-side of 

the detector (away from the source) during each measurement [1]. 

 

The standard parallel piped used for all other measurements was originally cut to 

the same overall dimensions of the bare unit by the author as part of his assistance to 

Ghita [2 – 3]; however, the detector opening was drilled through the centerline of the 

polyethylene block as shown in Figure 7.8.  This machining left only 1 cm of 

polyethylene on both sides of the detector, so an additional 1.0 cm of polyethylene was 

added to the front and rear of the base unit to achieve the optimal amount.  Figure 7.8 

shows the addition to the rear of the detector and the identical thickness was added to the 

front of the detector as well.  The final piped was firmly secured against the side of the 

CONEX by using a test assembly that clamped onto the outside of the polyethylene. 
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Fig. 7.6.   3He detector inserted into the 
bare polyethylene parallelepiped (from an 
unrelated experiment).  

 
 
 

 

 

Fig. 7.7.  Bare polyethylene parallelepiped  
configuration. 
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Fig. 7.8.  Standard polyethylene parallelepiped 
configuration. 

 

 

Figure 7.9 shows how the tube and moderator assembly were secured during the 

experiments.  The polyethylene was marked to ensure the detectors were always attached 

to the stand at the correct height of 30.6 cm above the floor, which aligned the tube 

centerline with the neutron source.  The tubes themselves fit snugly within the center of 

the polyethylene, so that no restraint was necessary to hold them in place.  As the 

experiment progressed, additional polyethylene slabs were attached to the base unit to 

achieve the desired thickness for each individual measurement.  The extra slabs were 

secured with duct tape to the front face of the polyethylene (toward the CONEX 

container). 

 

The source measurements detailed in this section provided the standard by which 

the computational methods were judged.  The successful comparison of these models to 
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Fig. 7.9.  Moderated detector 
assembly positioned against 
the CONEX container.  

 

 

actual measurements meant that the computational approach could be trusted to assess the 

usefulness of designs for serving as plug-in replacements for the baseline 3He detector.  

The results of all the various research tasks, including the neutron measurements, are 

provided in the following chapter.  The measurement data will be presented immediately 

following some general statements because of their importance to the research. 
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CHAPTER 8 
RESULTS AND DISCUSSION 

 
 
 

The previous four chapters have provided the necessary detail about the 

computational modeling and neutron measurements employed for developing equivalent 

spectrum plug-in designs for a baseline 4-atm 3He detector.  Although no specific results 

were presented in Chapter 4, the activities connected to the remaining chapters all 

produced results that require elaboration.  These details will be covered in this chapter; 

however, before doing so, a brief review of how we arrived at this point is in order. 

 

Chapter 5 detailed the computational modeling activities along with the designs 

that were produced from the application of the transport codes described in Chapter 4.  

The experimental testing facility profile was the focus of Chapter 6, and the information 

presented defined the overall facility configuration, moderating materials, and the nickel-

filtered PuBe source used for the neutron measurements.  The information in Chapter 7 

specifically pertained to the neutron detection systems used for the laboratory 

measurements and described the individual system components for each and their 

operational setup.  The discussion also covered the protocols that yielded the neutron 

measurements of the nickel-filtered PuBe source.   Since the neutron measurements were 

conducted prior to any other effort associated with this research, we will begin this 

chapter with a presentation of the measurement results and progress according to the 

order events in each associated chapter. 
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 8.1 Operational Setup 

 

8.1.1 3He Detection System 

 

The data for the high-voltage determination was tabulated in Table 8.1 and plotted 

in Figure 8.1 to help select the optimal tube operating voltage.  Since only one data point 

was taken at each voltage, the error term is quoted at 1.96 times the standard deviation 

(95% confidence) of the count.  The beginning of the proportional plateau can be seen at 

1500 V, and the plateau continues to 1800 V, after which the count rate increases 

substantially.  An optimal operating voltage of 1700 V was selected for the 3He tube, 

which was directly in the mid-range of the plateau.  It is worth noting the slightly positive 

slope of the voltage plateau.  This outcome, which was also expected, stemmed from 

slight increases in the detector efficiency, which occurs even in the proportional region of 

the gas amplification curve. 

 

Table 8.1.  High-voltage determination in 3He.28 

Voltage Neutron Counts Uncertainty (1.96σ) 

   
1100       0 0 
1200       0 0 
1300     40 12.4 
1400   926 59.6 
1500 1406 73.5 
1600 1611 78.7 
1700 1645 79.5 
1800 1721 80.8 
1900 1960 86.8 
2000 2628 100.5 

   
 

28 3He data obtained from laboratory measurements. 
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Fig. 8.1.  3He voltage curve at 95% confidence. 
 

The 3He response for a five-minute count of the unshielded PuBe source was 

extracted from the Trump PCI card and plotted in Figure 8.2.  Wall effects can be seen 

beginning with Channel 38, and continue to approximately channel 100 for this particular 

tube.   The wide spectrum of neutron energies from the PuBe also produced a wide 

continuum of energies in the spectrum resulting from a partial energy transfer to the 3He 

as seen in Channels 110 – 187.  The operational constraints of the facility where the 

measurements were being taken precluded a long count time for the source.  The 

restricted counting time prevented all the features of the idealized differential pulse-

height spectrum (dN/dE) seen in Figure 8.3 from being manifested.   

 

In particular, the epithermal peak, which results from thermal neutron interactions 

in the gas, cannot be readily distinguished from the overall recoil proton distribution; 

however, the maximum energy of the recoil distribution can be seen at channel 187 and 
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Fig. 8.2.  Source response in the 3He tube operating at 1700 V (PuBe only).  
 

 

Fig. 8.3.  Idealized 3He response from a mono-energetic fast neutron source [1]. 
 

 

the peak centroid of the full-energy deposition is clearly displayed at channel 432.  There 

is a 25 channel range (415 – 440) about the peak centroid, which was produced by the 

energy distribution of the source neutrons emitted by the PuBe source. 

0

50

100

150

200

250

0 100 200 300 400 500

C
ou

nt
s 

Channel 

 193  
 



The maximum energy of the recoil proton distribution can be found through the 

use of Eq. 3.68, which resulted from an elastic neutron scatter at π radians or 180 degrees 

in the center-of-mass system.  Using this relation, the scattered neutron energy can be 

determined by 

 

 
𝐸′ = 𝐸 �

𝑀 − 1
𝑀 + 1

 �
2

=  0.25𝐸 , (8.1) 

 

for the non-relativistic case in 3He (M = 3), and the energy imparted to the recoil proton is 

 

 𝐸𝑝 = 𝐸 −  0.25 𝐸 = 0.75𝐸 , (8.2) 

 

which is prominently displayed in the idealized spectrum of Figure 8.3. 

 

Although the initial settings for the linear amplifier were selected to prevent 

signals from noise and/or photons from being amplified and recorded as neutron events, 

the potential effect of photon radiation on the neutron counts was also evaluated to ensure 

that this was indeed the case due to a CT scanner that was housed on the other side of the 

CONEX container laboratory as shown in Chapter 6.  Figure 8.4 shows the results of 

another 5-minute count of the same PuBe source, but with the 10 µCi 137Cs source 

affixed directly to the tube.  A direct comparison to Figure 8.2 confirms that photons did 

not produce any noticeable effects on the neutron count tally, spectrum appearance, or 

associated channel numbers.  This conclusion, which was expected, helped to confirm the 
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Fig. 8.4.  Source response in the 3He tube for a mixed radiation field (PuBe and 137Cs).  
 

 

appropriateness of the electronic settings while demonstrating that, although 3He has a 

relatively small Q-value compared with other neutron detector gases such as BF3, it is 

still quite capable of discriminating between neutron and photon events. 

 

The photon cross section plot in Figure 8.5 demonstrates why this is so [2].  It can 

be readily seen that for a gas such as 3He, with a density on the order of 10-4 g cm-3 and a 

thickness of only a few centimeters, he energy deposition for any photon will be at least 

five orders of magnitude lower than the smaller Q-value of 3He.  This information 

demonstrates why, in the absence of a very large photon function, a coincidence pulse 

large enough to be mistaken for a neutron event will not result.  In the majority of 

non-proliferation monitoring situations, large photon functions will not be present, 

thus 3He doesn’t present any true impediments.   
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Fig. 8.5.  3He photon cross section at 4 atm 
(1 keV to 10 MeV) [2].  

 

 

8.1.2 BF3 Detection System 

 

The data for the high-voltage determination was tabulated in Table 8.2 and plotted in 

Figure 8.6 to help select the optimal tube operating voltage.   The beginning of the 

proportional plateau can be seen at 1600 V, and the plateau continued to about 2100 V, 

after which time the count rate increased substantially.  An optimal operating voltage of 

1800 V was chosen for this particular BF3 tube, which was in the middle of the 

proportional plateau.  This plateau region also exhibited a slightly positive slope, which 

was discussed in the previous section. 
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Table 8.2.  High-voltage determination in BF3.29 

Voltage Neutron Counts   Uncertainty (1.96σ) 

   
1300 0        0 
1400 83 17.9 
1500 185 26.7 
1600 230 29.7 
1700 248 30.9 
1800 241 30.4 
1900  241   30.4 
2000 258 31.5 
2100 283 33.0 
2200 
2300 

369 
496 

37.7 
43.7 

   
 

 

 

Fig. 8.6.  BF 3  voltage curve at 95% confidence. 
 

 

It is particularly interesting to compare the magnitude of the voltage plateaus for 

the two gases.   By comparing Figs. 8.1 and 8.6, it can be seen that the 3He plateau is only 

29 BF3 data obtained from laboratory measurements. 
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about 60% of the length for that of BF3.  This phenomenon resulted from a combination 

of wall effects and a lower Q-value in the 3He gas.  There is considerably more separation 

between the energy of a Q-value deposition in 10B and the reaction product energies; 

however, the relatively small Q-value of the 3He reaction means that the triton and proton 

energies are more closely spaced with the full-energy peak at 764 keV.  As the level of 

amplification increases, this smaller separation lead to a reduced voltage range over 

which an acceptable proportional plateau was observed in 3He [1].  The larger plateau 

width of the BF3 provided more stability during the experiment because voltage changes 

that would have had serious repercussions for the 3He tube would not have caused a 

departure from the proportional region in this gas. 

 

Once the operating voltages were determined, the HVPS was set to the new value 

of 1850 V and a fifteen-minute count of the PuBe source was taken to help account for 

the lower detection efficiency of the BF3 gas.  The response data from this count are 

plotted in Figure 8.7 and demonstrates a striking difference from the 3He response curve.  

Wall effects for the BF3 tube can also be seen beginning with channel 38, but they 

continue to channel 300 as compared to channel 100 for 3He.  This phenomenon resulted 

from three main reasons:  1) the larger Q-value of the BF3 reactions compared with 3He; 

2) the absence of a fast neutron interaction mechanism in the BF3 gas; and, 3) a low 

elastic scattering cross section in the heavier BF3 gas compared with the (n, p) reaction 

in 3He, which varies from one to three orders of magnitude in the neutron energy range of 

1000 eV – 0.01 eV [3]. 
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Fig. 8.7  Source response in the BF 3  tube operating at 1800 V (PuBe only).  

 

 

The larger magnitude BF3 peak at Channel 322 resulted from the excited state 

of 7Li (Q = 2.310 MeV), while the smaller, but more energetic peak at Channel 387 (Q = 

2.792 MeV) occurred due to the ground state reaction.  Once again, there was some 

variance about the peak centroid of both peaks due to the energy distribution of the PuBe 

neutron emissions.  The count result for both energy peaks agrees exactly with the 

branching ratios of the Q-value reactions (94% excited state / 6% ground state). 

 

The initial settings for the linear amplifier were evaluated for BF3 in the same 

manner as for 3He, because, although BF3 has a larger Q-value for neutron absorption, it 

also has a larger effective atomic number (Zeff), which can be calculated by Eq. 3.3. 

 

 
𝑍𝑒𝑓𝑓 = �𝑤𝑖𝑍𝑖

𝑁

𝑖=1

= (0.159 × 5) +  (0.841 × 9) = 8.364 . (8.3) 
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The larger Zeff means that BF3 will respond more readily to photon radiation because the 

main photon cross section components (photoelectric effect, Compton scattering, and pair 

production) are all dependent on this quantity as seen in Eqs. 3.2, 3.5, and 3.21 and as 

depicted in Figure 8.8 [4]. 

 

 
Fig. 8.8.  BF 3  photon cross section at 1 atm (1 keV to 10 MeV) [2].  

 

 

By comparison of tabular data used to produce these two figures [2], the BF3 

photoelectric cross section is about 100 times greater than that of 3He; however, this 

larger value still produces an insignificant energy deposition in the gas for the same 

reasons discussed in Section 2.2.1.1 for 3He.  The slight increase in the energy deposition 
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is also mitigated by the larger Q-value of the neutron reaction in BF3.  The fact that 

photon energy deposition is negligible in BF3 is borne out by the comparison of Figure 

8.9, which includes the effects of the photon contributions from the 10 µCi 137Cs source 

discussed in the prior section.  As was the case with 3He, a comparison of Figs. 8.7 and 

8.9 confirms that the photons did not produce any noticeable effect on the neutron count, 

the spectrum appearance, or any associated channel values.  The satisfactory results of 

this test further confirmed that the electronic settings of linear amplifier and single-

channel analyzer (SCA) were appropriate for this particular gas and would effectively 

discriminate photon events. 

 

 
Fig. 8.9.  Source response in the BF 3  tube for a mixed radiation field (PuBe and 137Cs).  

 

 

8.2 Baseline 3He Computational Model 

 

The adjoint PENTRAN file for a 1-inch diameter 3He tube at 4 atm pressure and 

10 cm length was initially executed to provide the baseline result.  Afterwards, the 
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forward PENTRAN and MCNP5 cases were executed and their results tabulated for 

comparison to the adjoint case.  The results for the baseline detector are shown in Table 

8.3 and demonstrate excellent agreement between the three different transport models 

with the largest bias being only 1.585%.  The difference between the non-adjoint cases is 

referred to as the bias and was calculated by the relation: 

  

 
𝐵𝑖𝑎𝑠 =  

(𝑅 − 𝑅𝑎𝑑𝑗)
𝑅𝑎𝑑𝑗

 × 100 , (8.4) 

 

where Radj is the adjoint reaction rate and R is the reaction rate for either the forward 

PENTRAN or the MCNP5 case.  The bias calculation was carried out in this fashion so 

that a positive or negative value would indicate whether the reaction rate was less than or 

greater than the adjoint rate and at the calculated percentage that is specified. 

 
Table 8.3.  Reaction rates for 3He baseline. 

Method Rate (s-1) Bias (%) Uncertainty (1.96σ) 

    
PENTRAN Adjoint 2.650 --- -- 
PENTRAN Forward 2.674  0.906 -- 
MCNP5 Forward 2.608 -1.585 0.005 

    
 

 

For the baseline detector and model comparisons to this baseline, a forward 

neutron source of 1000 n s-1 was uniformly inserted around the detector assembly as 

discussed in Section 5.1.  The overall source volume was 607.01 cm3, which means that 

each discretized cell contained a 1.65 n cm-3 s-1 volumetric neutron source and, since the 
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overall reaction rates for the designs were within a range of 2.6 cts s-1 - 2.7 cts s-1 this 

means that the overall absolute efficiency of the baseline detector on the front face of the 

assembly was ~0.3% for this emission scenario.  The baseline case was also executed for 

a flat source consisting of equal source emission probabilities of 2.50E-02 rather than the 

true source probabilities given Table 6.2.  This run was completed as a second check to 

demonstrate that the models were not specifically tailored to the shielded PuBe spectrum 

alone and the results varied between 6.312 cts s-1 – 6.360 cts s-1, which is a range of only 

0.75%. 

 

The aluminum tubes that usually form the pressurized container for neutron 

detectors was not included in any of the deterministic or MCNP5 models, since the 

typically thin wall thickness has been shown to alter results by no more than a few 

percent or less [5].  However, to verify this assertion, an MCNP5 simulation was 

conducted that compared the reaction rate of a bare 3He gas volume with the same gas 

contained within the tube walls of the baseline LND-252 detector (1.78 mm thickness).  

The resultant reaction rate was smaller by only 0.4%, which justified the simplification. 

 

The adjoint PENTRAN calculation was completed in 94.78 minutes on four 

processors, while the forward executed in only 64.83 minutes on the same number of 

processors.  These times were typical of all the PENTRAN executions.  The MCNP5 

input file executed in 253.89 minutes on four processors, with a total of 1.60E8 particles 

started to an average error of 0.05%.  The excellent agreement achieved between the 

PENTRAN and MCNP5 reaction rate results demonstrated that the 47-group BUGLE-96 
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library performed in a consistent and favorable manner when compared with the MCNP5 

calculations that used the continuous-energy Evaluated Nuclear Data File/B-VII [6]. 

 

Function profiles can be produced by the DISLIN library implemented in the 

PENMSHXP utility.  The profiles are created using data from the respective function 

files that are tabulated by the PENDATA utility following post-processing of PENTRAN 

output files.  Although profiles can be produced for all 47 BUGLE-96 energy groups, 

only those for the Adjoint Groups 1, 29, and 47 are provided in Figs. 8.10 – 8.12 below, 

along with a 3-D plot of the detector geometry.  These groups were selected in order to 

display and highlight the behavior of the adjoint function for thermal, midrange, and fast 

neutron energies.  It is important to remember that in this work, the adjoint function is 

synonymous with detector efficiency as demonstrated in Chapter 4, and by viewing the 

fluctuations in this function, one can ascertain regions of a detector system that produce 

the majority of detection events for a particular neutron energy group (i.e. the detection 

“sweet spots”) in the geometry as a function of energy group. 

 

For example, in Figure 8.10, it can be seen that the highest region of importance 

(efficiency) for thermal neutrons is within the detector itself (~7.4E-01) and that the 

thermal neutrons in the region surrounding the detector assembly are far less important 

(~4.2E-03).  This makes physical sense, because thermal neutrons emitted outside the 

detector assembly are less likely to penetrate the polyethylene and then react within 

the 3He gas.  As the neutron energy increases, Figs. 8.11 and 8.12 demonstrate that the 

adjoint function for neutrons emitted in this same region decreases to ~7.0E-03 and 
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(a) 

   

(b) (c) 
 

Fig. 8.10.  A 3-D view of the baseline 3He detector model (a), an XY slice of the model 
(b) and the corresponding Adjoint Group 1 (thermal) flux profile (c).  

 

 

finally to ~4.2E-04, which is a reduction of more than a factor 1700 over the entire 

neutron energy range.  Note that in Fig. 8.10 (b), the course meshes of air (blue) adjacent 

to polyethylene (green) on the right-side of the figure are those that would be considered 

toward the source in a normal detection application. 
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(a) (b) 
 

Fig. 8.11.  An XY slice of the baseline 3He detector model (a) and the corresponding 
Adjoint Group 29 (1 MeV) flux profile (b).  
  

 

    

(a) (b) 
 

Fig. 8.12.  An XY slice of the baseline 3He detector model (a) and the corresponding 
Adjoint Group 47 (17.3 MeV) flux profile (b).  

  

 

These adjoint function profiles demonstrate the need for some degree of 

moderation on the part of the higher-energy neutrons before they will appreciably interact 

within the gas volume.  The neutrons in Adjoint Group 29 (1 MeV) require less 

moderation than Adjoint Group 47 (17.3 MeV), since they are almost two orders of 
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magnitude lower in energy.  This is indicated by the adjoint efficiency difference that is 

slightly more than two orders of magnitude higher for Adjoint Group 29.  The lower 

efficiencies that exist on the top and bottom of the detector in Figs. 8.10 – 8.12 are due to 

the thinner polyethylene sidewalls (1 cm) as compared with the 2 cm walls to the 

immediate right and left of the detector.  If the models had a constant 2 cm of 

polyethylene surrounding the detector, the area of increased efficiency would extend 

around the entire tube. 

 

Finally, a plot of the adjoint function as a function of neutron energy across all 

course meshes is given in Figure 8.13 and the adjoint reaction rate as a function of the 

adjoint energy group in the forward course meshes (toward the source) is given in Figure 

8.14.  These figures form the basis by which the various detector designs will be judged 

in the subsequent sections.  The maximum for Figure 8.13 and its counterparts for the 

various detector designs that will be discussed occur in either Adjoint Groups 5 or 6, 

which represents energies from 5.04 – 10.78 eV, although Figure 8.14 demonstrates that, 

in general, the groups with higher efficiencies contribute little to nothing toward the 

reaction rate.  In fact, the only general adjoint groups contributing for all the detector 

designs discussed herein are Adjoint Groups 20 – 41 (6.74E-02 MeV – 7.41 MeV). 

 

The behavior at the lower energies occurs because the neutrons need to possess 

some threshold energy to adequately penetrate the moderator.  The higher-energy 

neutrons, in contrast, reach a point where they do not experience scatter appreciable 

enough to produce any detector counts.  In models that have been well characterized, the  
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Fig. 8.13.  Adjoint function per unit source density in the forward air-filled 
course meshes adjacent to the polyethylene (toward a source) for the 3He baseline 
detector with a 1-inch diameter, 10 cm active length, operating at 4 atm pressure.  

 
 
 

 

Fig. 8.14.  Adjoint reaction rate across all air-filled course meshes for the 3He 
baseline detector exposed to a nickel-filtered PuBe source. 
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neutron energy groups that are non-contributors could be removed from the source term, 

thus saving valuable computational time and speeding the deterministic calculations; 

however, these energies were included and tracked for all models associated with this 

research. 

 

Before proceeding, it is important to mention that features absent from the adjoint 

function plots are possibly as important as those that are readily observable.  For 

example, none of the plots display large gradient behavior along boundaries that would 

be indicative of mesh sizes that are too dissimilar.  Poor meshing choices will also 

typically manifest themselves in an inability to achieve convergence of the solution to a 

reasonable level (e.g. infinity norms < 1E-03).  Another feature that is not present on the 

plots is ray effects, as discussed in Chapter 4.  If ray effects were present, they would 

appear as fingers or a star-like pattern with oscillatory adjoint function values emanating 

from the center of the plot along the individual ordinates as shown in Figure 8.15.  The 

inadequate convergence in the model execution can even produce unusual asymmetry in 

the adjoint function solution for the mid-range energies as seen in Figure 8.15(b). 

 

The absence of these effects in Figs. 8.10 – 8.12 confirms that the combination of 

S8 (80 ordinates in 3-D on the unit sphere) and P2 scattering moments adequately 

handled the source and material characteristics associated with the baseline 3He tube.  

This combination was used for evaluating all the research model designs except for 

Design 6, which required a higher scattering moment (P3) due to the presence of a 

hydrogenous solid with a much higher density than gases used in the alternate designs. 
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(a)                 (b) 

 

(c) 

Fig. 8.15.  An XY slice of Design 1 (large BF 3  tube) demonstrating ray effects produced by 
source neutrons from a nickel-filtered PuBe source in the adjoint model.  The ray effects 
resulted from an inadequate quadrature (S N =2) and scattering moment (P N =1) and are 
displayed for (a) Adjoint Group 1 (thermal), (b) Adjoint Group 29 (1 MeV), and (c) 
Adjoint Group 47 (17.3 MeV). 
 

 

8.3 Neutron Measurements of the PuBe Source 

 

The measurements of emissions from the shielded PuBe source were conducted as 

discussed in Section 7.2.  The original intention was to monitor the source solely in an 
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unreflected condition (no water behind the source) in order to limit unknown variables 

and to ensure the best possible comparison to the computational models.  During this 

same time period, however, a separate detection system was being tested in the same 

CONEX which required that cases of bottled water be emplaced behind the PuBe source 

to produce scatter as seen in Figure 8.16.  To wait for the unrelated test to be completed 

would have introduced a significant period of inactivity; therefore, it was finally decided 

to make measurements in the reflected case simply to serve as another qualitative 

verification for our neutron detection measurements (3He and BF3). 

 

 

Fig. 8.16.  Shielded PuBe source in the 
reflected condition. 

 

In an unreflected case, source neutrons emitted in a solid angle pointed away from 

the detector would escape the CONEX container with a high probability; however, 

having the water in place should produce an increase in the detector counts due to 
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scattering backwards toward the detectors.  Three data points were obtained for each of 

the source configurations and with varying amounts of polyethylene inserted between the 

detectors and the PuBe source.  Note that each tube also had a constant amount (2 cm) of 

moderator behind it for each measurement, as discussed in Chapter 7.  The average 

number of counts was calculated for each of these data points with both detectors and the 

measurement uncertainty was calculated at the 95% confidence level (1.96σ).  The results 

for each individual detector are given in the subsequent two sub-sections. 

 

8.3.1 3He Results 

 

The 3He measurement data produced by the unreflected and reflected source 

conditions are given in Tables 8.4 and 8.5.  The reflected counts were indeed greater than 

the unreflected case by an average of 9% as expected.  The total number of counts rose 

gradually with an increasing moderator thickness up to a maximum at 2 cm for the 

unreflected case; however, the maximum for the reflected case occurred at only a 1.5 cm 

thickness, although the 2 cm moderator produced an almost equivalent count.  The slight 

difference between the two source conditions was caused by the slight shift in the neutron 

energy spectrum resulting from neutron scatter from behind the source.  The degraded 

energies of the scattered neutrons made them more susceptible to moderation in the 

polyethylene and they stopped prematurely or scattered more readily when compared 

with the unreflected condition.  The ratio of the reflected to the unreflected counts and 

count differential for the lower neutron energies in Table 8.5 substantiates this finding.  

Based on the information from Table 8.4, a 2-cm moderator was used between the source 
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and detector for the computational models and the comparative detector measurements 

used to verify the fidelity of the computational approach used in the subsequent sections. 

 
 

Table 8.4.  3He counting results for a shielded PuBe source in the unreflected condition. 

Polyethylene (cm) Neutron Counts Uncertainty (1.96σ) 

   
 Bare  14600 112 

0.5 15525 137 
1.0 15862 82 
1.5 16149 191 
2.0 16184 119 
2.5 15727 203 
3.0 15394  118 
3.5 14749 146 
4.0 14467 225 
4.5 13781 251 
5.0 
5.5 
6.0 

13303 
12376 
12180 

 

247 
194 
231 

 

 
Table 8.5.  3He counting results for a reflected (R) source with a comparison to the unreflected (U) 
condition. 

Polyethylene (cm) Neutron Counts Uncertainty 
(1.96σ) 

Δ Counts (R-U) Ratio (R/U) 

     
Bare 17236 54 2636 1.18 
0.5 17316 60 1791 1.12 
1.0 17395 68 1532 1.10 
1.5 17430 116 1281 1.08 
2.0 17416 117 1232 1.08 
2.5 17271 171 1544 1.10 
3.0 16812  252 1418 1.09 
3.5 15990 259 1241 1.08 
4.0 15397 146   930 1.06 
4.5 14670 151   889 1.06 
5.0 
5.5 
6.0 

14002 
13325 
12604 

 

246 
208 
142 

  699 
  949 
  425 

1.05 
1.08 
1.03 
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8.3.2 BF3 Results 

 

The BF3 measurement data associated with the unreflected and reflected source 

conditions are provided in Tables 8.6 and 8.7.  The resulting tally for this particular 

detector was less than the 3He detector by an average factor of 5.10 for the two source 

conditions.  Ratios of up to four have been reported in literature [7]; however, the 

outcome of the previously-reported measurements resulted from smaller tubes that were 

exposed to spontaneous fission neutrons from a 252Cf source, which is quite different 

from the filtered PuBe spectrum used in this research.  Therefore the differences reported 

herein are considered valid and quite acceptable. 

 

Table 8.6.  BF3 results of a shielded PuBe source in the unreflected condition. 

Polyethylene (cm) Neutron Counts Uncertainty (1.96σ) 

   
Bare 2098 44 
0.5 2818 69 
1.0 2966 159 
1.5 3042 119 
2.0 3169 189 
2.5 3126 194 
3.0 3080 180 
3.5 3052 128 
4.0 2916 177 
4.5 2713 169 
5.0 
5.5 
6.0 

2661 
2577 
2391 

 

94 
268 
174 

 

 

The BF3 tube exhibited the same overall behavior as the 3He tube regarding the 

varying moderator thickness.  The 2-cm forward moderator also produced the greatest 

number of counts for the unreflected source, and there was also a shift in the amount of  
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Table 8.7.  BF3 counting results for a reflected (R) source with a comparison to the unreflected (U) 
condition. 

Polyethylene (cm) Neutron 
Counts 

Uncertainty 
(1.96σ) 

Δ Counts (R-U) Ratio (R/U) 

     
Bare 2649 128 551 1.26 
0.5 3139 148 321 1.11 
1.0 3307 71 341 1.11 
1.5 3425 207 350 1.11 
2.0 3367 109 265 1.08 
2.5 3426 65 300 1.10 
3.0 3220 225 140 1.05 
3.5 3168 61 116 1.04 
4.0 3045 140 125 1.04 
4.5 2919 127 206 1.08 
5.0 
5.5 
6.0 

2804 
2734 
2574 

 

213 
130 
212 

143 
157 
183 

1.05 
1.06 
1.08 

 

 

moderator that produced the greatest number of counts for reflected case.  Unlike the 3He 

case, however, the shift in the reflected case was toward more moderation (see Table 8.7) 

and not less as was seen in Table 8.5.  This behavior was expected because of the overall 

tendency witnessed in the computational results for the BF3 designs versus the 3He 

baseline (see Figs. 8.21, 8.26, and 8.31).  In all of these comparisons, the BF3 presented a 

negative bias at the lower neutron energies, which could be compensated by slightly more 

moderator. 

 

The data from Tables 8.4 – 8.7 were also used to demonstrate that the ratio of 

the 3He / BF3 reaction rates varies little over the entire range of moderator thicknesses 

and source conditions that existed during the counting experiments.  This information is 

presented in Table 8.8. 
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Table 8.8.  3He / BF3 reaction rate ratios as a function of moderator thickness and source 
condition. 

Polyethylene (cm) Reflected Unreflected 

   
Bare 6.51 6.96 
0.5 5.52 5.51 
1.0 5.26 5.35 
1.5 5.14 5.31 
2.0 5.07 5.11 
2.5 5.04 5.03 
3.0 5.22 5.00 
3.5 5.05 4.83 
4.0 5.06 4.95 
4.5 5.03 5.08 
5.0 
5.5 
6.0 

4.99 
4.87 
4.90 

 

5.00 
4.80 
5.09 

 

 

8.4 Computational Modeling Results Associated with the PuBe Measurements 

 

It is a relatively easy undertaking to build a computational model for a radiation 

detector and then execute the model through some transport code to yield a result.  

However, one must always ask what the computational result means and whether it 

reflects the reality of the detection environment.  Some sort of comfort can be taken if the 

model produces a result that compares favorably with a standard transport code such as 

MCNP5 and its derivatives.  However, the ultimate judgment for computational results is 

the degree to which it matches actual physical measurements.  Computational 

measurements should always be validated by measurements to the greatest extent 

possible.  Adherence to this policy will prevent a myopic dependence on purely 

computational results that may have no basis in reality.  
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A great deal of time and effort went into building and computationally testing the 

plug-in models provided in Section 8.5; however, if they could not accurately reflect 

reality, then they would prove to be of limited value.  Therefore, a detailed comparison 

was completed to determine how well the new designs compared to actual measurements 

taken of the unreflected nickel-filtered PuBe source using the baseline 3He detector 

system.  The MCNP5 models utilized the actual nickel-filtered PuBe source spectrum 

detailed in Chapters 5 and 7, while the PENTRAN models used the surrogate source box 

as described in Chapter 7 to reduce the computational expense by allowing eliminating a 

meter of air space.  The results of the comparisons are given in Tables 8.9 and 8.10. 

 

Table 8.9.  Comparison of the 3He measured reaction rate (neutron counts) recorded over a 2-minute 
interval for a nickel-filtered PuBe source and computational calculations of the same source with 
PENTRAN and the 47-group BUGLE-96 broad-group cross sections [8] and MCNP5 with the 
continuous-energy ENDF/B-VII cross sections [6]. 

Method Counts Uncertainty (1.96σ) Fractional Bias 

    
3He Measurement 
PENTRAN Adjoint 

16184 
15780 

119 
-- 

-- 
-0.025 

PENTRAN Forward 16120 -- -0.004 
MCNP5 Forward 15582  31 -0.037 

    
 
 
 
Table 8.10.  Comparison of the BF3 measured reaction rate (neutron counts) recorded over a 2-minute 
interval for a nickel-filtered PuBe source and computational calculations of the same source with 
PENTRAN and the 47-group BUGLE-96 broad-group cross sections [8] and MCNP5 with the 
continuous-energy ENDF/B-VII cross sections [6]. 

Method Counts Uncertainty (1.96σ) Fractional Bias 

    
BF3 Measurement 
PENTRAN Adjoint 

3169 
3183 

109 
-- 

-- 
0.004 

PENTRAN Forward 3218 -- 0.015 
MCNP5 Forward 3273  14 0.033 
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It should be noted once again that MCNP5 is not capable of accounting for 

detection system losses produced by electrical noise, inefficient counting, and/or pulse 

pileup that tend to produce negative modeling biases in exact representations of detection 

scenarios.  The positive biases associated with the BF3 results are well within the 

propagated error associated with the source box determination, cross section values, and 

model parameters and should not be taken to imply that all potential loss mechanisms 

have been accounted for in the model.  Regardless, the strong agreement that exists 

between the adjoint/forward deterministic and Monte Carlo transport computations and 

the laboratory measurement data firmly establishes the validity of the applied 

computational approach, and the validity of the plug-in alternative designs for the 

baseline 3He detector. 

 

8.5 Plug-In Replacement Designs for the Baseline 3He Tube 

 

Now that we have high confidence that the transport methods undertaken give 

results consistent with laboratory tests, each of the replacement designs will be evaluated 

in a manner similar to that of the baseline 3He detector.  The reaction rates for the three 

different models will be presented in tables along with adjoint function plots for energy 

groups 1, 29, and 47 as before.  In other words, a forward PENTRAN reaction rate 

calculated for a BF3 design will be compared to the forward PENTRAN reaction rate for 

the 3He baseline detector provided in Table 8.3 and not to the baseline adjoint or MCNP5 

results.  This will eliminate confusion and ensure an appropriate evaluation is made. 
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8.5.1 Detector Equivalency 

 

The focus of this research has been to identify detector designs that match the 

neutron spectral response and the reaction rate of a 1-inch diameter 3He tube operating 

at 4 atm, such that the newer designs could serve as a direct plug-in replacement for 

the 3He detector.  Consequently, a discussion regarding what exactly constitutes this 

match is in order to ensure completeness on the part of this dissertation. 

 

Since the adjoint function as treated in this work is synonymous with detector 

efficiency, the general expectation is that detectors having the same spectral response and 

overall reaction rate should have the same efficiency (adjoint function) for all neutron 

energy groups; however, this is not necessarily the case.  Eq. 4.21 demonstrated that if 

the discretization of space, energy, and angle is properly handled, then the exact 

calculation of the adjoint-based reaction rate could be reduced to an approximate 

summation term and coupled to the discretized calculation of the adjoint function by 

 

 
𝑅𝑎𝑑𝑗 ≈  � 𝜙𝑑 𝑔,𝑖

†

∆𝑉𝑖∈𝑉𝑑
𝑔=1,𝐺

 𝑞𝑔,𝑖 ∆𝑉𝑖 , (8.5) 

 

where these terms have all been previously defined.  If a detector design is to serve 

adequately as a plug-in replacement, its computed reaction rate must always be equal 

within some acceptable user tolerance.  This does not, however, always mean that the 

unit-less adjoint function term in Eq. 8.5 will be equivalent for the alternative detectors 
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and the baseline detector across the entire neutron energy spectrum, although that is a 

notable design goal. 

 

In fact, the only time the adjoint functions for two distinct detectors will be a 

match is if both detectors are activated by an identical source density (n cm-3 s-1) and 

overall geometry footprint.  Because none of the detector assemblies could possibly have 

the same dimensions as the 3He design, the approach that was taken here was to maintain 

a consistent design approach (see Chapter 5) wherein all the detector models contained 

the same degree of moderation, scatter, and other physics treatments in the detector for 

the transport simulations.  This means that the air volumes for all the models, which 

function as the adjoint detectors in the adjoint sense, are not equivalent and, therefore, 

have different source densities while preserving the total number of source particles in a 

given response model.  This poses no issue at all from the standpoint of the reaction rate 

calculations; however, it does preclude a direct model-to-model adjoint function 

comparison. 

 

In order to make side-by-side comparisons of the adjoint functions for the various 

designs against the baseline 3He design, each adjoint response must be normalized to 

their respective source densities.  This approach ensures the adjoint functions are being 

evaluated for a constant number of source particles across all designs.  A revised 

baseline 3He model was created using a similar air volume as Design 5, which has the 

greatest volumetric air difference of all the plug-in designs.  This model was executed to 

ensure that the normalized source density equivalent to Design 5 would produce the same 
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adjoint response and this was the case.  Although it was not possible to get every portion 

of the model into the same configuration as Design 5 (due to different detector 

dimensions), the adjoint function differed by < 10% for all adjoint groups.  Table 8.11 is 

provided below to refresh the memory of the reader regarding the important aspects of 

the plug-in designs and to preclude the need to refer back to Chapter 5 where these 

features were originally discussed. 

 

Table 8.11.  Summary of the plug-in designs from Chapter 5.  

Design Sensitive 
Material 

Number of 
Detectors 

Length / Cylinder Radius (cm) Pressure 
(atm) 

     
1 BF3 1 10.00  / 2.00 2 
2 10B lining 1 10.00 / 1.90 10 (4He) 
3 
4 
5 
6 

10B lining 
BF3 

BF3 
PVT with 10B 

2 
2 
2 
1 

10.00 / 1.27 (both tubes) 
10.00 / 2.05 (rear) & 1.27 (forward) 
10.00 / 2.20 (both tubes) 
4.50 / 1.27 

10 (4He)  
1 
1 
--- 

     
 

 

Notwithstanding the previous discussion, the parameter that most effectively 

demonstrates whether a detector design is a suitable plug-in replacement for another 

detector is the relationship between the reaction rates as a function of the neutron energy 

group for a prescribed number of source particles.  If these rates match reasonably well, 

then the adjoint function will be an acceptable group-by-group efficiency match for the 

baseline unit.  This type of comparison will also be made in the next section, 

demonstrating how well the various proposed designs perform. 
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The foregoing discussions also emphasize the close attention that must be paid to 

the selection of the source term and cell volumes when calculating reaction rates based on 

discrete ordinates code results.  These codes generate very large quantities of information 

and, even after post-processing the files, the user must typically write some sort of 

computer program to gather, tabulate, and calculate desired quantities of interest such as 

reaction rates.  When writing this type of program, one must be careful to not get 

confused regarding what constitutes the source and detector in the forward and adjoint 

senses; otherwise, the resulting reaction rates will be erroneous.  Two separate reaction 

rate programs (forward and adjoint) were written during this research effort to extract the 

necessary data from the PENTRAN output files for the reaction rate calculations.  Both 

of these codes are provided in Appendices F and G for the forward and adjoint cases 

respectively. 

 

8.5.2 3He-Equivalent Tube Designs Based on BF3 Gas 

 

The plug-in designs exhibit similar behavior compared with each other and 3He in 

some circumstances.  The first of these similarities is that only the Adjoint Groups 20 – 

41 account for the reaction rate, according to the discussion from the previous section.  

One other similarity of the gas tube designs is the tendency for the reaction rate to 

gradually increase from a minimum around Adjoint Group 20 (6.74E-02 MeV), to around 

Adjoint Group 25 (4.98E-01 MeV) due to a gradual increase in the 10B (n, α) cross 

section versus that of 3He (n, p). 
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There is also a general tendency for positive biases to occur from Adjoint Group 

29 (1.00 MeV) to Adjoint Group 41 (6.07 MeV) due to a rapid increase in the 10B cross 

section.  In fact, this cross section exceeds that of 3He (n, p) above neutron energies of 

about 4 MeV.  The disparity is tempered somewhat, however, because elastic scattering 

with the nucleus becomes the predominant 3He reaction for neutrons beyond 150 keV. 

 

Deviations from the general tendencies mentioned above will be elaborated upon; 

however, adherence to these behaviors will not be mentioned further.  Adhering to this 

convention will ensure the results discussions are thorough and concise. 

 

8.5.2.1 Design 1 – Large Single BF3 Tube Operating at 2 Atmospheres 

 

The reaction rate results for Design 1 are provided in Table 8.12 and display 

excellent agreement with that of the 3He baseline case.  Adjoint function profiles for 

Design 1 are provided in Figs. 8.17 – 8.19 for comparison to the baseline case.  All these 

figures contain an XY slice of the detector to allow a more complete evaluation of the flux 

profiles and Figure 8.17 also includes a 3-D view of the model.  These figures 

demonstrate that this design exhibits the same overall behavior as the baseline detector.  

They also exhibit smaller magnitude adjoint functions that were expected based on prior 

discussions, including the smaller efficiency along the detector sidewalls (top and 

bottom) where there is less polyethylene. 
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Table 8.12.  Reaction rates results for Design 1 (BF3 tube at 2 atm). 

Method Rate (s-1) Uncertainty (1.96σ) Bias (%) 

    
PENTRAN Adjoint 2.644 -- -0.226 
PENTRAN Forward 2.648 -- -0.972 
MCNP5 Forward 2.587 0.004 -0.805 

    
 

 

(a) 

 

(b) (c) 
 
Fig. 8.17.  A 3-D view of the Design 1 detector model (BF 3  tube at 2 atm) (a), an XY slice 
of the model (b) and the corresponding Adjoint Group 1 (thermal) flux profile (c).  
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(a) (b) 
 
Fig. 8.18.  An XY slice of the Design 1 detector model (BF 3  tube at 2 atm) (a) and the 
corresponding Adjoint Group 29 (1 MeV) flux profile (b).  

 

 

        

(a) (b) 
 

Fig. 8.19.  An XY slice of the Design 1 detector model (BF 3  tube at 2 atm) (a) and the 
corresponding Adjoint Group 47 (17.3 MeV) flux profile (b).  

 

 

The XY slice of the entire region of detector material inside the tube in Figure 8.17 

also displays the same efficiency behavior as did the 3He tube, with an orderly decrease 

as particles are moved farther from the detector.  The second outer ring around the 

detector shown in green  in this figure appears to be about twice as thick as the same 
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region in the 3He tube and this is likely due to the larger tube dimension as well because 

the larger detector presents a bigger target for any scattered neutrons.  There are also 

regions of slightly greater efficiency at the top and bottom of the detector assembly, 

which occur due to the smaller degree of moderation on the sidewalls, which allows 

slower neutrons to more easily penetrate into the detector. 

 

The overall adjoint function behavior in Figs. 8.18 and 8.19 is essentially the 

same as that of the 3He baseline, with the exception of a larger region of smaller 

importance at the top and bottom of the figures.  These features are associated with the 

larger tube dimensions as well, because there is less moderator material in this area when 

compared with that of the 3He tube.  This means there is a smaller probability for 

neutrons of higher energy to scatter in the moderator here and then be absorbed in the 

detector. 

 

Figs. 8.20 and 8.21 show the adjoint function per unit source density and the 

reaction rate per neutron energy group for Design 1.  The excellent behavior displayed in 

these figures proves that this design would serve well as a replacement for the for the 

baseline 3He tube.  The reaction rate plot, in particular, is very telling, because all but two 

of the reaction rates across the entire breadth of neutron energies are within 5% of 

the 3He rate and the largest bias of only 6.7% occurs at Adjoint Group 41 (6.07 MeV).  

Note that a positive bias means that the reaction rate for a particular design is greater than 

the rate for 3He at that same neutron energy, and the converse is true for negative biases.  
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Fig. 8.20.  Design 1 (BF 3  tube at 2 atm) adjoint function per unit source density in 
the forward air-filled course meshes adjacent to the polyethylene (toward a source) 
and in comparison with 3He. 

 

 
 

Fig. 8.21.  Design 1 (BF 3  tube at 2 atm) adjoint reaction rate across all air-filled 
course meshes and the fractional bias with 3He. 

 

The negative bias dip at Adjoint Group 21 (1.11E-01 MeV) will be seen in all of the 

designs using BF3 gas and is associated with a neutron energy region where the 3He  
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(n, p) cross section follows an orderly decrease, while the 10B cross section becomes 

slightly erratic (see Figure 3.12). 

 

8.5.2.2 Design 4 – Two Dissimilar BF3 Tubes Operating at 1 Atmosphere 

 

The reaction rate results for Design 4 are detailed in Table 8.13 and display 

excellent agreement with that of the 3He baseline case.  Adjoint function profiles 

associated with this design are provided in Figs. 8.22 – 8.24 with an XY slice of the 

detector alongside each to ease the profile comparisons.  Figure 8.22 also includes the 

addition of a 3-D view of the model to give the reader an overall sense of the assembly.  

There are a number of interesting features that appear in each figure which results from 

the twin-tube design and each of these features bears some additional discussion 

 

Table 8.13.  Reaction rates for Design 4 (dissimilar BF3 tubes at 1 atm). 

Method Rate (s-1) Uncertainty (1.96σ) Bias (%) 

    
PENTRAN Adjoint 2.603 -- -1.774 
PENTRAN Forward 2.608 -- -2.468 
MCNP5 Forward 2.561 0.004 -1.802 

    
 

 

 In considering Figure 8.22, one will notice that the adjoint function is about 10% 

higher within the rear tube due to a larger volume that increases the probability of 

interactions within the gas.  There is also a larger degree of moderation surrounding the  
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(a) 

      

(b) (c) 
 
Fig. 8.22.  A 3-D view of the Design 4 detector model (dissimilar BF 3  tubes at 1 atm) (a), 
an XY slice of the model (b) and the corresponding Adjoint Group 1 (thermal) flux profile 
(c). 

 

 

forward tube, which produces a region of lower efficiency around the edges when 

compared with the rear tube.  This occurred because the lower-energy neutrons have 

farther to penetrate in the polyethylene to react with the forward tube.  And unlike other 

regions of the polyethylene, the area between the two tubes retains a rather large 

efficiency because the material is sandwiched between two regions of neutron detector 

material. 
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Some additional interesting features are evident in Figs. 8.23 and 8.24 with 

increasing neutron energy.  In these plots, the larger rear tube that was featured so 

prominently in the previous thermal-energy region seems to have almost disappeared in 

the shadow of the smaller forward tube.  The same phenomena that produced a smaller 

thermal efficiency for the forward tube, here creates efficiencies that are 45% and 34% 

greater respectively and for a much smaller tube!  These plots suggest that dissimilar tube  

 

      

(a) (b) 
 
Fig. 8.23.  An XY slice of the Design 4 detector model (dissimilar BF 3  tubes at 1 atm) (a) 
and the corresponding Adjoint Group 29 (1 MeV) flux profile (b).  

 

 

      

(a) (b) 
 
Fig. 8.24.  An XY slice of the Design 4 detector model (dissimilar BF 3  tubes at 1 atm) 
(a) and the corresponding Adjoint Group 47 (17.3 MeV) flux profile (b).  
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designs may hold some promise for developing detectors that have a relatively flat energy 

response across a wide range of neutron energies. 

 

Figure 8.25 displays the comparison between the adjoint functions per unit source 

density for Design 4 and the 3He baseline detector.  The reaction rate per adjoint group in 

Design 4 is shown in Figure 8.26 and proves that this design is also a very good overall 

 

 
Fig. 8.25.  Design 4 (dissimilar BF 3  tubes at 1 atm) adjoint function per unit 
source density in the forward air-filled course meshes adjacent to the 
polyethylene (toward a source) and in comparison with 3He. 

 
 

replacement for the baseline 3He tube.  The large disparity between the tube sizes 

produced biases that were slightly more pronounced, with 10 of the 47 adjoint groups 

having biases > 5%; however, only four of these biases were > 10% and the maximum 

difference was 13.3%, which is quite acceptable in the realm of neutron detection.  The 

more exaggerated negative bias dip at Adjoint Group 21 (1.11E-01 MeV) when 
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Fig. 8.26.  Design 4 (dissimilar BF 3  tubes at 1 atm) adjoint reaction rate across all  
air-filled course meshes and the fractional bias with 3He. 

 

 

with Design 1 is due to the extra polyethylene surrounding the forward detector that 

prevents some of these neutrons from being detected.  Conversely, the bias increase in the 

region of Adjoint Groups 36 – 40 (2.47 – 4.97 MeV) is most likely due to the larger 

dimension of the rear tube that presents a larger target to neutrons scattered in the 

polyethylene.  The detector did, however, exhibit the same behavior regarding the energy 

groups contributing to the reaction rate (20 – 42). 

 

8.5.2.3 Design 5 – Two Identical BF3 Tubes Operating at 1 Atmosphere 

 

The reaction rate results for Design 5, shown in Table 8.14, also exhibit excellent 

agreement with the 3He baseline case.  The adjoint function profiles associated with this 

specific design are provided in Figs. 8.27 – 8.29 and reveal essentially the same behavior 

as the baseline detector, but with a mirrored image because of the two-tube design and  
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Table 8.14.  Reaction rates for Design 5 (identical BF3 tubes at 1 atm). 

Method Rate (s-1) Uncertainty (1.96σ) Bias (%) 

    
PENTRAN Adjoint 2.574 -- -2.868 
PENTRAN Forward 2.590 -- -3.141 
MCNP5 Forward 2.498 0.004 -4.218 

    
 

 

 
(a) 

 

      

(b) (c) 
 
Fig. 8.27.  A 3-D view of the Design 5 detector model (identical BF 3  tubes at 1 atm) 
(a), an XY  slice of the Design 5 detector model (b) and the corresponding Adjoint 
Group 1 (thermal) flux profile (c).  
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(a) (b) 
 
Fig. 8.28.  An XY slice of the Design 5 detector model (identical BF 3  tubes at 1 atm) (a) 
and the corresponding Adjoint Group 29 (1 MeV) flux profile (b).  

 

  

(a) (b) 
 
Fig. 8.29.  An XY slice of the Design 5 detector model (identical BF 3  tubes at 1 atm) (a) 
and the corresponding Adjoint Group 47 (17.3 MeV) flux profile (b).  
 
 
 

the increased efficiency in the region between the tubes, which was also evident in the 

Design 4 plots. 

 

Figs. 8.30 and 8.31 give the adjoint function per unit source density and the 

reaction rate comparisons with 3He.  The overall behavior of all these figures is very 

similar to Design 1, which was expected because of the large tube diameters that are part 

of this design. 
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Fig. 8.30.  Design 5 (identical BF 3  tubes at 1 atm) adjoint function per unit 
source density in the forward air-filled course meshes adjacent to the 
polyethylene (toward a source) and in comparison with 3He. 

 
 
 

 
 

Fig. 8.31.  Design 5 (identical BF 3  tubes at 1 atm) adjoint reaction rate across all 
air-filled course meshes and the fractional bias with 3He. 
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8.5.3 3He-Equivalent Tube Designs Based on a 10B-Lining 

 

From a discrete ordinates perspective, materials with a vanishingly small 

thickness such as the 10B lining used in the two subsequent designs present a problem 

from a mesh standpoint.  Not only is the overall material thickness very small, but the 

corresponding mesh size will of necessity become even smaller.  All of the gas tube 

designs in this research used a maximum mesh size of 0.25 cm in all directions and at 

least two meshes were desired for each coarse mesh in all directions.  This constraint 

would have resulted in fine mesh sizes for the 10B lining that were on the order of 5E-05 

cm, which is too small to produce accurate deterministic results; therefore, to ensure 

adequate material coverage in the 10B, the material density and thickness was adjusted in 

accordance with Eq. 5.1 to provide the desired model parameters. 

 

8.5.3.1 Design 2 – Large 10B-Lined Tube with 4He Operating at 10 Atmospheres 

 

Table 8.15 displays the reaction rate results for Design 2 that demonstrates 

excellent agreement with the 3He baseline detector.  The validity of Eq. 5.1 was also 

successfully established by altering the MCNP5 model associated with this design.  The 

only changes to the model included reducing the 10B thickness to 4.27E-04 cm and 

increasing the boron density to 2.34 g cm-3 in accordance with Eq. 5.1.  The revised 

MCNP5 model yielded a neutron count rate of 2.524 c s-1 that is only 0.5% different from 

the result in Table 8.15 and, therefore, validates the material balance approach that was 

implemented in order to increase the coarse mesh size in the accompanying PENTRAN 
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models.  However, some cautionary comments concerning neutron counting must be 

mentioned about this specific type of detector design before moving onto a presentation 

of the profiles and plots connected with Design 2. 

 
 
Table 8.15.  Reaction rates for Design 2 (10B-lined tube at 10 atm).  

Method Rate (s-1) Uncertainty (1.96σ) Bias (%) 

    
PENTRAN Adjoint 2.595 -- -2.075 
PENTRAN Forward 2.599 -- -2.805 
MCNP5 Forward 2.511 0.005 -3.719 

    
 

 

Chapter 2 detailed the pulse-height discrimination technique and demonstrated 

why this simple technique can be very effectively applied to gas detectors.  The specific 

pulse-height spectrum of a 10B-lined tube design was also detailed in Section 2.2.2.3 of 

that same chapter and discussed the fact that only one of the two reaction products (alpha 

or recoil 7Li) produced in neutron absorption could be collected per event.  Radiation 

transport codes such as PENTRAN and MCNP5 can provide information related to 

reactions that occur within a particular material; however, they cannot account for 

information lost due to inefficient charge collection associated with the detector 

electronics.  Therefore, the dimensions and reaction rates associated with Design 2 are 

applicable only to the extent that the pulse-height discriminator setting has been properly 

established by the user. 

 

If a single-channel method is chosen, the threshold must not preclude the counting 

of pulses produced by the 0.84 MeV 7Li recoil product or if a window method is 
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employed, the thresholds must allow for tallying pulses from the 1.47 MeV alpha 

particles as well.  The discriminator must obviously be properly chosen for the gas tubes 

as well; however, since both reaction products are emitted into the sensitive volume for 

these, there is much more room for error associated with the lower threshold setting. 

 

Adjoint function profiles for this design are given in Figs. 8.32 – 8.34 with XY 

slices of the mode alongside each profile to aid in analyzing the profiles.  Figure 8.32 also 

includes the addition of a 3-D model view to help the reader gain an overall sense of the 

design.  Figs. 8.32 and 8.33 exhibit much the same overall behavior as the previously-

discussed designs; however, there is one unique feature associated with Figure 8.32 that 

bares some discussion.  The inner portions of all the gas tube designs discussed to this 

point have exhibited an overall constant efficiency throughout their volume and this is 

because the proportional gas functioned as both a charge carrier and the actual detection 

mechanism.  Chapter 5 discussed the weaknesses of BF3 as a proportional gas and also 

mentioned that one advantage of using a 10B-lined tube was that a proportional gas with 

better qualities could be used as the charge carrier.  Both 10B-lined tubes detailed in this 

section accordingly use 4He at 10 atm pressure for this purpose. 

 

While 4He has similar moderation properties 3He, the gas itself serves no function 

for the actual neutron detection itself.  Therefore, the inner volume of these detectors will 

not reveal the uniform nature of the adjoint function at thermal neutron energies as have 

all the other designs evaluated to this point.  This feature is readily apparent in Figure 

8.32 where there is an adjoint function difference of approximately 11% between the 4He 
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and the 10B lining.  One might expect that the efficiency disparity would be greater, 

since 4He does not detect neutrons; however, thermal neutrons that are placed inside 

the 4He have a high probability of nonetheless being detected and this contributes to the 

relatively small function difference.  Once we progress beyond the thermal-energy case, 

there really are no discernible differences between the adjoint functions in Figs. 8.33 and 

8.34 and those associated with the other single-tube designs. 

 

 

(a) 

      

(b) (c) 
 

Fig. 8.32.  A 3-D view of the Design 2 detector model (10B-lined tube at 10 atm) (a), an 
XY slice of the model (b) and the corresponding Adjoint Group 1 (thermal) flux profile 
(c). 
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(a) (b) 
 

Fig. 8.33.  An XY slice of the Design 2 detector model (10B-lined tube at 10 atm) (a) and 
the corresponding Adjoint Group 29 (1 MeV) flux profile (b).  

 
 
 

      

(a) (b) 
 
Fig. 8.34.  An XY slice of the Design 2 detector model (10B-lined tube at 10 atm) (a) and 
the corresponding Adjoint Group 47 (17.3 MeV) flux profile (b).  

 

 

Plots of the adjoint function per unit source density and the reaction rate for 

Design 2 are given in Figs. 8.35 and 8.36.  The close comparison of these figures with the 

baseline case reveals that this design approximates the behavior of 3He very closely.  In 

particular, only three of the adjoint group biases as a function of adjoint energy group 

shown in Figure 8.36 exceed 5%. 
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Fig. 8.35.  Design 2 (1 0B-lined tube at 10 atm) adjoint function per unit source 
density in the forward air-filled course meshes adjacent to the polyethylene 
(toward a source) and in comparison with 3He. 

 
 
 

 

Fig. 8.36.  Design 2 (1 0B-lined tube at 10 atm) adjoint reaction rate across all air-
filled course meshes and the fractional bias with 3He. 
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8.5.3.2 Design 3 – Twin 10B-Lined Tubes with 4He Operating at 10 Atmospheres 

 

Reaction rate results for Design 3 are given in Table 8.16 and prove that this 

design also approximates the performance of the baseline 3He detector very well.   

However, since this design also utilizes 10B-lined tubes, the same cautionary discussion 

associated with Design 2 also applies here.  Figs. 8.37 – 8.39 display the adjoint function 

profiles for this design with the XY detector slices that have been included in each of the 

other designs.  The 3-D view of the model has also been included in Figure 8.37 as well.  

These graphics are very similar to those of the dual-tube designs that have been 

previously discussed.  However, since the sensitive volume for the neutron detection is 

concentrated on the periphery of the embedded tubes, there are a few interesting items of 

note that should be discussed. 

 

Table 8.16.  Reaction rates for Design 3 (identical 10B-lined tubes at 10 atm). 

Method Rate (s-1) Uncertainty (1.96σ) Bias (%) 

    
PENTRAN Adjoint 2.738 -- 3.321 
PENTRAN Forward 2.754 -- 2.992 
MCNP5 Forward 2.625 0.004 0.652 

    
    

 

 

The interface region between the twin tubes in Figure 8.37 exhibits an increased 

efficiency as has been the case with the other multi-tube designs; however, because of the 

concentration of 10B toward the outside of the tubes, there is a factor of 20 increase in 

efficiency for Adjoint Group 29 compared with Design 4 and more than a 25%  
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(a) 

  

(b) (c) 
 
Fig. 8.37.  A 3-D view of the Design 3 detector model (identical 1 0B-lined tubes at 10 
atm) (a), an XY slice of the model (b) and the corresponding Adjoint Group 1 (thermal) 
flux profile (c).  

 

 

    

(a) (b) 
 

Fig. 8.38.  An XY slice of the Design 3 detector model (identical 1 0B-lined tubes at 10 
atm) (a) and the corresponding Adjoint Group 29 (1 MeV) flux profile (b).  
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(a) (b) 
 
Fig. 8.39.  An XY slice of the Design 3 detector model (identical 1 0B-lined tubes at 10 
atm) (a) and the corresponding Adjoint Group 47 (17.3 MeV) flux profile (b). 

 

improvement in Adjoint Group 47.  There is also a reduction in efficiency of about 11% 

between this region and the outer edges of both tubes to the left and right.  This increase 

is due solely to the higher concentration of 10B that is in close proximity to the interface 

region. 

 

Another interesting feature to note is the region of higher efficiency surrounding 

the tubes in Figs. 8.38 and 8.39.  The appearance of these regions is very similar to that of 

Figs. 8.11 and 8.12 associated with 3He and this is due to the concentration of the 10B 

along the periphery along with the same tube diameters.  Apart from these two 

observations, all other features exhibit behavior similar to that of similar designs.  Similar 

sentiment applies to the plot of the adjoint function per unit source density in Figure 8.40; 

however, the adjoint reaction rate bias in Figure 8.41 displays an interesting feature not 

seen in any other designs evaluated to this point. 
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Fig. 8.40.  Design 3 (identical 10B-lined tubes at 10 atm) adjoint function per 
unit source density in the forward air-filled course meshes adjacent to the 
polyethylene (toward a source) and in comparison with 3He. 

 
 

 

Fig. 8.41.  Design 3 (identical 10B-lined tubes at 10 atm) adjoint reaction rate across 
all air-filled course meshes and the fractional bias with 3He. 

 

The unique aspect that should be noted is the absence of a negative bias across the 

entire range of neutron energy.  This feature also results from an accumulation of 10B in 
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the interface region between the two detectors; however, only two responses have a bias 

greater than 5% and, oddly enough, these occur in the region of Adjoint Group 21, which 

typically has produced the largest negative bias for several of the other detectors.  The 

likely cause for the increased efficiency at these energies is the higher concentration of 

the 10B near the sidewalls of the detector (top and bottom), which allows many of these 

lower-energy neutrons to be detected because of the smaller moderator thickness in this 

region.  As a result of the positive bias behavior, the dual-tube 10B-lined design represents 

the most conservative case from the perspective of criticality safety monitoring. 

 

8.5.4 3He-Equivalent Tube Design Based on a 10B-Loaded PVT – Design 6 

 

The combination of a large hydrogen content at higher density (compared to the 

gases) produced an inability to converge the PVT model to an infinity norm < 2E-03 with 

the S8 and P2 parameters used within the other models.  Reducing the overall coarse 

mesh thicknesses by half to approximately 0.12 cm and using the former PENTRAN 

parameters also failed to produce convergence below 1E-03; therefore, a higher scattering 

moment (P3) was selected for the execution of the PENTRAN 10B-loaded PVT model.  

The higher scattering moment was necessary for neutron scattering physics and produced 

a convergence of < 5E-04. 

 

The reaction rate produced by Design 6 during the computational modeling is 

shown in Table 8.17.  As with the other designs, this particular one also matched the 

overall response of 3He quite well; however, this particular design is less than half the 

size of the other detectors (4.5 cm height), which means that it is more efficient by a 
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factor of about 2.2 compared with the baseline detector on a volumetric basis.  The plots 

of the adjoint function profiles are also given in Figs. 8.42 – 8.44 along with the XY 

detector slices and the 3-D model view as was done for the other designs.  Design 6 

displays the same overall thermal appearance as the other single detector designs; 

however, there are two unique features related to Figs. 8.43 and 8.44 that require some 

discussion. 

 

Table 8.17.  Reaction rates for Design 6 (10B-loaded PVT). 

Method Rate (s-1) Uncertainty (1.96σ) Bias (%) 

    
PENTRAN Adjoint 2.668 -- 0.679 
PENTRAN Forward 2.699 -- 0.935 
MCNP5 Forward 2.610 0.004 0.077 
    

 

 

Unlike all the other detectors in this study, including 3He, the PVT response for 

the midrange neutrons in Figure 8.43 demonstrates a good efficiency that covers the 

entire detector region and extends outwardly into the polyethylene on all sides in an 

ellipsoidal fashion, which is also unique among the different designs.  The efficiency in 

this entire region is approximately 50% greater than the highest 3He efficiency at this 

neutron energy, which results from the plastic content of the PVT and its higher overall 

density.  Had the detector been equally moderated on all sides (2 cm), the appearance of 

the higher-efficiency region would most likely be more spherical in nature. 

 

The other unusual feature related to the PVT energy response is associated with 

the higher neutron energies beginning with Adjoint Group 43 (8.61 MeV).  The plot 
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(a) 

  

(b) (c) 
 

Fig. 8.42.  A 3-D view of the Design 6 detector model (10B-loaded PVT) (a),  an XY slice of 
the Design 6 model (b) and corresponding Adjoint Group 1 (thermal) flux profile (c).  

 

  

(a) (b) 
 
Fig. 8.43.  An XY slice of the Design 6 detector model (10B-loaded PVT) (a) and the 
corresponding Adjoint Group 29 (1 MeV) flux profile (b).  
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(a) (b) 
 
Fig. 8.44.  An XY slice of the Design 6 detector model (10B-loaded PVT) (a) and the 
corresponding Adjoint Group 47 (17.3 MeV) flux profile (b).  

 

shown in Figure 8.44 is obviously for a much higher energy (17.3 MeV); however, its 

characteristics capture the essence of the function plot for Adjoint Group 43 and will be 

used for discussion purposes.  The nature of the gradient used in the DISLIN module in 

the PENMSHXP software gives the appearance that the PVT is efficient only within the 

detector region itself; however, by comparing the adjoint function profiles closely, one 

will notice that, with the exception of the corners of the plot, every coarse mesh possesses 

a greater adjoint function (efficiency) than the greatest function regions of the 3He plot 

for this neutron energy.  Some of this behavior is once again due to the higher density of 

the PVT, but other aspects that lead to the improved performance are a good 

concentration of 10B within the PVT matrix and the moderation properties of the PVT. 

  

The comparison of the adjoint function per unit source density for the PVT 

and 3He baseline is given in Figure 8.45 and the reaction rate comparison with 3He is 

given in Figure 8.46.  While Figure 8.45 delivers a similar appearance compared with the 
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other detectors, the reaction rate plot stands in stark contrast to any other detector in this 

study.  The adjoint reaction rate in Design 6 specifically appears to be an almost mirror 

reflection of plots for the other detectors.  Instead of a negative bias in the Adjoint Group 

20 region, there is 10% positive bias; after which the reaction rate gradually decreases 

until Adjoint Group 34 (2.35 MeV).  The overall response is excellent, with only 5 of 47 

groups having > 5% bias. 

 

The opposite behavior exhibited by the PVT in Figure 8.46, results from the PVT 

components having a higher density.  Even in the more highly efficient 3He gas, thermal 

neutrons can still leak out of the detector and escape counting; however, with the PVT, 

the increased density and scattering properties of the plastic excel at keeping those same 

 

 
Fig. 8.45.  Design 6 (1 0B-loaded PVT) adjoint function per unit source density in the 
forward air-filled course meshes adjacent to the polyethylene (toward a source) and in 
comparison with 3He. 
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Fig. 8.46.  Design 6 (1 0B-loaded PVT) adjoint reaction rate across all air-filled 
course meshes and the fractional bias with 3He. 

 

 

neutrons within the confines of the detector, where they are more efficiently captured in 

the 10B. 

 

Conversely, the PVT can also act as an inhibitor to detection at the higher neutron 

energies, because the scattering properties that more efficiently contained thermal 

neutrons within the PVT, can adversely affect the higher-energy response by producing 

scattering from the detector at rates exceeding the absorption events.  In addition to 

hydrogen, the PVT also contains a good deal of carbon.  At 10 MeV, both of these 

elements have scattering cross sections that are at least double that of the 10B (n, α) 

reaction and at 1 MeV, the disparity is much greater.  Therefore, unlike the thermal 

energy case, the cross section behavior of the PVT constituents produces a net-negative 

effect at the higher neutron energies.  This overall behavior still favors the 10B-loaded 

PVT, however, because the emission rate of neutron emitters at the higher energies is far 
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less than those of lower energies.  For example, the emission rate for a 4.97 MeV neutron 

in the source term of the computational models used in this research compared with that 

of a 1 MeV neutron is approximately 2000 times less likely. 

 

8.6 Summary of the Results 

 

The overall objective of this dissertation effort was to investigate the use of 

deterministic adjoint transport methods toward developing at least one plug-in 

replacement for our 4 atm baseline 3He tube.  A secondary objective of the research was 

to accomplish the former using commercial off-the-shelf materials in order to preclude 

the availability issues that continue to plague the 3He economy.  It can be unequivocally 

stated that both these goals were achieved, while delivering a total of six plug-in designs 

that match the overall spectral performance of 4 atm moderated 3He. 

 

The excellent agreement demonstrated between the computational calculations 

and the neutron measurements in Section 8.4 validated the use of radiation transport 

simulations for designing the plug-in detectors.  Based upon the ability of these 

simulations to represent the reality of an actual neutron monitoring environment, it can be 

confidently stated that the designs discussed in Section 8.5 can all serve as valid plug-in 

detectors for a 1-inch diameter 3He detector operating at 4 atmospheres pressure and with 

an active length of 10 cm. 
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Furthermore, the results of this research demonstrate that the techniques 

developed here can be applied toward the testing of new detector materials and/or designs 

to determine their suitability as spectrally-equivalent alternatives to 3He.  The data also 

prove that these methods can be effectively utilized for radiation detector design in 

general by taking advantage of the important insights that can be gained through an 

adjoint transport evaluation. 

 

However, having said this, the reader should not assume that this design process 

was trivial.  The MCNP5 code was utilized to greatly reduce the amount of guesswork 

related to the initial design choices; however, a minimum of 15 – 20 PENTRAN 

simulations were still necessary to establish the correct dimensions associated with each 

equivalent design.  The design process can also be extended by the choice of quadrature, 

scattering order, and the spatial coarse mesh dimensions necessary for convergence. 

 

The decision to use an in-line arrangement for the dual tube designs was 

motivated by the extra vertical space that is generally available between a detector and 

the assembly housing as was previously mentioned.  In these cases, the in-line design 

would allow for the insertion of a second detector directly behind the existing unit 

without causing a configuration control challenge. 
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CHAPTER 9 
CONCLUSIONS AND RECOMMENDATIONS 

 
 

 

9.1 Conclusions 

 

This dissertation describes a specific computational methodology for designing 

spectrally-matched plug-in replacements for a baseline 3He detector (1-inch diameter and 

10 cm length) operating at 4 atm pressure.  The application of computational adjoint 

transport methods toward this end has never been attempted in literature, and represents a 

large step forward in radiation detector development because of the unique insights that 

can be gained through this type of assessment.  In particular, the adjoint technique 

provides a comprehensive picture of the detector environment, allowing a designer to 

choose appropriate materials and to position them accordingly to optimize detector 

performance.  The technique also allows the designer to evaluate potential combinations 

of detector materials that take advantage of the strengths of each by evaluating the 

potential reaction rate performance across a wide range of neutron energies. 

 

The motivation for this research stemmed from the tremendous shortage of 3He 

gas that presented technical challenges for numerous non-proliferation applications; 

however, an important issue that has been lost in the scientific clamor is the effect on 

domestic and international non-proliferation policy.  Obligations associated with 

curtailing terrorist activities by non-state actors that stemmed from positions such as 

those found in U.N. Security Council Resolution 1530 have been severely hampered by 
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the lack of 3He gas, because many of the nuclear-related goals were directly tied to 

detection programs.  Specifically, the unavailability of the 3He gas inhibited the ability of 

the various member states to develop effective prevention measures related to the 

proliferation of nuclear weapons and/or radiological devices because so much focus had 

been placed on a singular technology.  For this reason, only off-the-shelf products that are 

readily available to replace 3He were chosen for testing in this research. 

 

Although the primary focus of the research was on developing plug-in 

replacements for a specific 3He neutron detector design, the computational adjoint 

method demonstrated herein can be directly applied toward any radiation detector design 

associated with neutrons and/or photons.  A combination of forward transport methods 

and physical measurements firmly established the validity of the methods and, therefore, 

the designs that resulted from them.  The excellent agreement between the PENTRAN 

adjoint and forward deterministic calculations and MCNP5 also attested that the broad-

energy multi-group BUGLE-96 cross section library produces results that are in 

agreement with the current continuous-energy ENDF/B-VII cross section library. 

 

The successful conclusion of the research yielded six different novel designs that 

can serve as direct plug-and-play alternatives for a baseline 3He detector.  This 

achievement, which has never been demonstrated, allows for the use of existing and 

readily-available detector materials in place of 3He for applications such as portal 

monitoring, material control and accountability (MC&A), fissile material assessments, 

and other non-proliferation efforts that have been established on the basis of a 3He 
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detector response.  The capability of these proven and less-expensive detectors should not 

only have a positive technological impact on non-proliferation programs, but also on 

policy-based application, because it is highly probable that these alternatives will find a 

wider application solely because of their affordability. 

 

The equivalent designs consisted of both larger individual tubes containing BF3 

gas or a 10B lining and smaller dual tube designs using the same materials.  Each design 

demonstrated its equivalency to the baseline detector by matching the adjoint function 

(importance or efficiency) and reaction rate across 47 neutron energy groups ranging 

from 0.1 eV to 17.3 MeV.  The final analysis of each design yielded valuable information 

about the adjoint function (importance or efficiency) behavior and the reaction rate as a 

function of neutron energy.  The analysis also revealed that the only adjoint neutron 

energy groups that typically contribute to the detector reaction rate are Adjoint Groups 

20- 41, which represent the neutron energy range of 6.74E-02 – 7.41 MeV.  This 

information, which has never been published in literature, allows for the elimination of 

source neutrons outside this particular energy range, which can accelerate deterministic 

calculations and lower their overall computational expense without adversely affecting 

the outcome of a calculation. 

 

The knowledge gained about the reaction rate performance also hints about 

possible designs that exploit a combination of multiple detector types that do not rely on 

a single material or detection mechanism in order to produce a relatively flat neutron 

energy response.  For example, the PVT testing demonstrated that this particular design 
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excelled at detection of neutrons at lower energies, whereas the other 10B-based designs 

all performed better at higher neutron energies.  This behavior immediately suggests that 

the best overall 3He replacement detector should consist of a combination of PVT/BF3 

(Designs 1 and 6) or a PVT/10B-lining (Designs 2 and 6) in order to enhance the overall 

reaction rate response as a function of neutron energy.  The combination designs could 

potentially be able to estimate quantities like the equivalent dose far better than any 

detector currently on the market due to a more horizontal energy response.  If a singular 

material approach is preferable, then the dual 10B-lined tube design (Design 3) should be 

considered, especially in the area of criticality safety, since the detector bias for this 

particular design had a consistently small positive bias. 

 

It should be noted that the plug-in designs that were identified in the research 

results were determined by the adjoint deterministic method on the basis of their 

individual reaction rate and spectral response; therefore, one cannot simply add detector 

biases for two separate designs together in order to specify a plug-in design on the basis 

of composite materials.  Rather, the materials would need to be incorporated into a new 

combinatorial design and processed in the same manner as that specified in Figure 5.3 to 

accurately determine the associated dimensions. 

 

9.2 Recommendations 

 

The materials chosen for this study all utilized 10B in some form, be it a gas or a 

solid.  The choice of these materials and the 10B reaction was prudent because the 
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materials have been in use for decades, they are readily available today, and the cross 

section exhibits characteristics similar to 3He across a wide neutron energy range.  One 

future extension of this research might be to focus on detector materials whose cross 

section behavior is atypical of 3He and then insert combinations of various moderators 

and/or materials to alter their associated adjoint function and reaction rate to match 

the 3He response. 

 

Another extension could be to develop replacement designs for existing systems 

being operated in support of special nuclear material assessment programs or another 

non-proliferation application.  One example is well counters used for 239Pu analyses 

associated with spent fuel or other reprocessing.  Facilities with these counters are all 

being adversely affected by the 3He shortage because any available gas stock is generally 

consumed by the Department of Homeland Security (DHS) or the National Nuclear 

Security Administration (NNSA) before anyone else is aware of its availability.   The 

spectrally-matched 3He alternatives developed herein can be directly substituted for 

existing detectors in these applications would meet with a welcome audience.  

Subsequently, Georgia Tech has filed a provisional patent on this technology as a result 

of this work. 

 

One final area that can be investigated is the application of these techniques to 

neutron detector design in general.  There are very few applied examples of the adjoint 

transport method a detector design in the literature, once one migrates from the 

educational community.  This technique is far superior to a singular forward approach 
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using MCNP because information is gained about the entire phase space and not just a 

singular point or region.  The additional information that is provided by the adjoint 

method should be able to drastically improve the ways in which neutron detectors are 

designed and constructed.  This approach should also yield detectors that are smaller, 

more adaptable, and that are more efficient than currently available units. 

 

Finally, now that it has been absolutely proven that alternative detectors can serve 

as plug-in replacements for 3He tubes in even the most challenging of spectral 

applications, the nuclear industry should be able to break free from the restraints that this 

shortage has shackled us with.  Furthermore, we must be willing to accept the chief 

lesson that this shortage emphasized, which is that we should never again fall into the 

trap of “placing all our eggs into one detection basket,” so to speak.  Once we are able, as 

an industry, to apply the hard lessons we’ve learned from this lengthy hardship, we will 

be able to break free from a singular focus on replacement efforts and instead, become 

empowered to move beyond 3He’s capability whenever possible. 
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APPENDIX A 
DERIVATION OF COMPTON WAVELENGTH (EQ. 3.6) 

 
 
 

The Compton scattering process is depicted in Figure A.1 where an incoming 

photon of energy (E) is scattered through an angle (θs ), producing a Compton electron of 

kinetic energy (T) scattered through angle (θc) and where each angle is  

 

 

Fig. A.1.  Diagram Illustrating a Compton Scattering Event.  
 

 

measured relative to the original direction of the incident photon.  Considering the case 

where an incoming photon strikes an electron at rest, the conservation of energy dictates 

that initial and final energy states of the photon and electron are given by 

 

  𝐸𝛾 +  𝐸𝑒 = 𝐸𝛾ʹ +  𝐸𝑒ʹ  , (A.1) 
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where Eγ = hυ, Eγ
ʹ = hυʹ.  From the relativistic energy-momentum relationship, the energy 

of the electron at rest (Ee) is  

 

 
𝐸𝑒 =  

𝑚𝑒𝑐2

�1 −  �𝑣𝑐�
2

= 𝑚𝑒𝑐2 . (A.2) 

 

However, for the case of the recoil electron, the total energy term must now include a 

consideration of kinetic energy, since the particle has been accelerated by the momentum 

transfer from the photon.  The momentum transfer can be included in the equation for 

energy by first squaring the full version of Eq. A.2 

 

 
𝐸𝑒ʹ

2 = (𝑚𝑐2)2 =  
𝑚𝑒
2𝑐4

1 −  �𝑣𝑐�
2  . (A.3) 

 

Next, rearrange the terms to get 

 

 
𝑚2𝑐4 �1 −  �

𝑣
𝑐
�
2
� =  𝑚𝑒

2𝑐4 . (A.4) 

 

Now, expand the left-side of A.4 

 

 𝑚2𝑐4 −  𝑚2𝑐2𝑣2 =  𝑚𝑒
2𝑐4  (A.5) 
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and rearrange A.5 to obtain 

 

 𝑚2𝑐4 =  𝑚𝑒
2𝑐4 +  𝑚2𝑐2𝑣2  . (A.6) 

 

The left-side of A.5 may now be reinserted to get 

 

 𝐸𝑒ʹ
2 =  𝑚𝑒

2𝑐4 +  𝑚2𝑐2𝑣2  . (A.7) 

 

Solving for the energy term yields 

 

 𝐸𝑒ʹ =  �𝑚𝑒
2𝑐4 +  𝑚2𝑐2𝑣2  . (A.8) 

 

Using the fact that momentum (p) = mc (rest mass) or mv (kinetic), A.5 can also be 

written as 

 

 𝐸𝑒ʹ =  �(𝑚𝑒𝑐2)2 +  𝑝2𝑐2  . (A.9) 

 

Substituting A.5 into A.1 gives 

 

 ℎ𝜐 +  𝑚𝑒𝑐2 = ℎ𝜐ʹ +  �(𝑚𝑒𝑐2)2 + 𝑝2𝑐2 , (A.10) 
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where the photon energy terms have been changed to quantum relations.  By moving hυʹ 

to the left-hand side of A.10 and squaring both sides of the equation, one gets 

 

 (ℎ𝜐 + 𝑚𝑒𝑐2 −  ℎ𝜐ʹ)2 = (𝑚𝑒𝑐2)2 + 𝑝2𝑐2 , (A.11) 

 

Moving the rest-mass term to the left-hand side gives 

 

 𝑝2𝑐2 = (ℎ𝜐 +  𝑚𝑒𝑐2 −  ℎ𝜐ʹ)2 −  (𝑚𝑒𝑐2)2 . (A.12) 

 

Since A.12 is in terms of momentum, we now shift our focus to the evaluation of this 

quantity.  Since the electron is initially at rest, the conservation of momentum relation is 

 

 𝑃𝛾 +  0 = 𝑃𝛾ʹ +  𝑃𝑒ʹ  , (A.13) 

 

Solving for the momentum of the recoil electron yields 

 

 𝑃𝑒ʹ = 𝑃𝛾ʹ − 𝑃𝛾   . (A.14) 

 

By making use of the scalar product rule, we can write 

 

 𝑃𝑒ʹ
2 = 𝑃𝑒ʹ ∙ 𝑃𝑒ʹ = �𝑃𝛾ʹ − 𝑃𝛾� ∙ �𝑃𝛾ʹ − 𝑃𝛾� (A.15) 

 264  
 



= 𝑃𝛾ʹ
2 + 𝑃𝛾2 − 2𝑃𝛾ʹ𝑃𝛾 cos 𝜃 . 

 

Multiplying both sides of A.13 by c2 yields 

 

 𝑃𝑒ʹ
2𝑐2 = 𝑃𝛾ʹ

2𝑐2 + 𝑃𝛾2𝑐2 − 2𝑐2𝑃𝛾ʹ𝑃𝛾 cos𝜃, (A.16) 

 

Using the relation pc = hυ for photons, A.13 can be rewritten as 

 

 𝑃𝑒ʹ
2𝑐2 = ℎ𝜐ʹ2 +  ℎ𝜐2 − 2ℎ𝜐ʹℎ𝜐 cos 𝜃. (A.17) 

 

A.17 can now be equated to Eq. A.12 to obtain 

 

 (ℎ𝜐 +  𝑚𝑒𝑐2 −  ℎ𝜐ʹ)2 −  (𝑚𝑒𝑐2)2 =  ℎ𝜐ʹ2 +  ℎ𝜐2 − 2ℎ𝜐ʹℎ𝜐 cos 𝜃. (A.18) 

 

Solving A.18 algebraically provides the following relation 

 

 2ℎ𝜐𝑚𝑒𝑐2 +  2ℎ𝜐ʹ𝑚𝑒𝑐2 = 2ℎ2ℎ𝜐ℎ𝜐ʹ(1 − cos 𝜃), (A.19) 

 

Dividing both sides of A.19 by 2hυυʹmec supplies us with 
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 𝑐
𝜐ʹ  −  

𝑐
𝜐

=
ℎ
𝑚𝑒𝑐

(1 − cos 𝜃). (A.20) 

 

Substituting the relations c = υ λ = υʹ λʹ into A.20 provides the final outcome 

 

 
𝜆ʹ − 𝜆 =

ℎ
𝑚𝑒𝑐

(1 − cos𝜃). (A.21) 
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APPENDIX B 
DERIVATION OF ENERGY TRANSFER AND SCATTER 

PROBABILITY TERMS (EQUATIONS 3.62 – 3.64) 
 
 
 

Derivation of Equation 3.62 

 

The velocity term in Eq. 3.60 provides a motivation for developing the energy 

relationships.  We first begin by squaring Eq. 3.60 to get 

 

 (𝒗𝑙′)2 = (𝒗𝑐′ )2 + (𝑽𝐶𝑀)2 + 2𝒗𝑐′ 𝑽𝐶𝑀 cos 𝜃 .  (B.1) 

  

Using the fact that cos (π – θc) = - cos θc and rearranging terms gives 

 

 2𝒗𝑐′ 𝑽𝐶𝑀 cos(𝜋 − 𝜃) = (𝒗𝑐′ )2 + (𝑽𝐶𝑀)2 − (𝒗𝑙′)2 .  (B.2) 

 

Now, leaving the cosine term on the left-hand side of B.2 

 

 
cos(𝜋 − 𝜃) =

(𝒗𝑐′ )2 + (𝑽𝐶𝑀)2 − (𝒗𝑙′)2

2𝒗𝑐′ 𝑽𝐶𝑀
 .  (B.3) 

 

Next, we substitute the following terms into B.3 which were taken from Eqs. 3.39, 3.40, 

3.41, 3.52, and 3.53 
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 𝑽𝐶𝑀 =  
𝑚𝒗𝑙
𝑚 + 𝑀

 , (B.4) 

 

 𝒗𝑐 = 𝒗𝑙 − 𝑽𝐶𝑀 =  
𝑀𝒗𝑙
𝑚 + 𝑀

 ,    (B.5) 

 

 𝑽𝑐 = −𝑽𝐶𝑀 = −
𝑚𝒗𝑙
𝑚 + 𝑀

  ,  (B.6) 

 

 𝑚𝑣𝑐 = 𝑀𝑉𝐶  , (B.7) 

 

 𝑚𝑣𝑐′ = 𝑀𝑉𝐶′  , (B.8) 

 

And substituting B.4 – B.8 into B.3 yields 

 

 

cos(𝜋 − 𝜃) =
� 𝑀
𝑚 + 𝑀�

2
𝒗𝑙2 + � 𝑚

𝑚 + 𝑀�
2
𝒗𝑙2 − (𝑣𝑙′)2

2 � 𝑀
𝑚 + 𝑀��

𝑚
𝑚 + 𝑀�𝑣𝑙

2
 .  (B.9) 

 

Reducing B.9 gives the following relationship 
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cos(𝜋 − 𝜃) =

� 𝑣𝑙
𝑚 + 𝑀�

2
(𝑀2 + 𝑚2) − (𝑣𝑙′)2

2𝑚𝑀� 𝑣𝑙
𝑚 + 𝑀�

2  .  (B.10) 

 

Reduce B.10 and separate the right-hand side of the equation 

 

 
cos(𝜋 − 𝜃) =

(𝑀2 + 𝑚2)
2𝑚𝑀

−
(𝑣𝑙′)2

2𝑚𝑀� 𝑣𝑙
𝑚 + 𝑀�

2 .  (B.11) 

 

Move the velocity terms to the left-hand side of the equation and change the cosine term 

 

 (𝑣𝑙′)2

2𝑚𝑀� 𝑣𝑙
𝑚 + 𝑀�

2 =
(𝑀2 + 𝑚2)

2𝑚𝑀
−  cos 𝜃.  (B.12) 

 

Reduce the left-hand side of B.12 to velocity terms only 

 

 𝑣𝑙′
2

𝑣𝑙2
=
𝑀2 + 𝑚2 + (2mM)cos𝜃

(𝑚 + 𝑀)2 .  (B.13) 

 

Multiply the left-hand side of B.13 by one to achieve energy terms 
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 1
2𝑚𝑣𝑙

′
2

1
2𝑚𝑣𝑙

2
=
𝐸′

𝐸
=
𝑀2 + 𝑚2 + (2mM)cos𝜃

(𝑚 + 𝑀)2 .  (B.14) 

 

Substitute the values A = M, m = 1 into B.14 

 

 𝐸′

𝐸
=
𝐴2 + 1 + 2A cos 𝜃

(𝐴 + 1)2 .  (B.15) 

 

The approach now will be to essentially complete the square twice for the right-hand side 

of B.15.  First begin by multiplying the right-hand side by a value of 2/2 

 

 𝐸′

𝐸
=

2𝐴2 + 2 + 4A cos 𝜃
2(𝐴 + 1)2 .  (B.16) 

 

Now add zero to the right-hand side of B.16 

 

 𝐸′

𝐸
=

2𝐴2 + 2 + (𝐴2 − 𝐴2 + 2A + 2A + 1 − 1)cos𝜃
2(𝐴 + 1)2 .  (B.17) 

 

Gather the appropriate terms in B.17 (first square is completed) 
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 𝐸′

𝐸
=

2𝐴2 + 2 + [(𝐴2 + 2𝐴 + 1) − (𝐴2 − 2𝐴 + 1)] cos 𝜃
2(𝐴 + 1)2  .  (B.18) 

 

Now, begin the final square completion by working on the first portion of the numerator 

in B.18 

 

 𝐸′

𝐸
=
𝐴2 + 𝐴2 + 2𝐴 − 2𝐴 + 1 + 1 + [(𝐴2 + 2𝐴 + 1) − (𝐴2 − 2𝐴 + 1)] cos𝜃

2(𝐴 + 1)2  .  (B.19) 

 

Gather the appropriate terms and reduce B.19 

 

 
 
𝐸′

𝐸
=

(𝐴2 + 2𝐴 + 1) + (𝐴2 + 2𝐴 − 1) + [(𝐴2 + 2𝐴 + 1) − (𝐴2 − 2𝐴 + 1)] cos𝜃
2(𝐴 + 1)2  ,      (B.20) 

 

 
   
𝐸′

𝐸
=

(𝐴2 + 2𝐴 + 1)(1 + cos𝜃) + (𝐴2 + 2𝐴 − 1)(1 − cos𝜃)
2(𝐴 + 1)2  ,     (B.21) 

 

 𝐸′

𝐸
=

(𝐴 + 1)2(1 + cos𝜃) + (𝐴 − 1)2(1 − cos 𝜃)
2(𝐴 + 1)2  ,  (B.22) 

 

Now factor the (A+1)2 term from the numerator and denominator and reduce the terms 
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𝐸′

𝐸
=

(1 + cos𝜃) + �𝐴 − 1
𝐴 + 1�

2
(1 − cos 𝜃)

2
   (B.23) 

 

 

 

𝐸′

𝐸
=

1 + �𝐴 − 1
𝐴 + 1�

2
+ �cos 𝜃 − �𝐴 − 1

𝐴 + 1�
2

cos𝜃�

2
 .  (B.24) 

 

Substitute Eq. 3.65 into B.24 and reduce the terms to reach arrive at Eq. 3.62 

 

 𝐸′

𝐸
=

1 + 𝛼 + [cos 𝜃 − 𝛼 cos 𝜃]
2

  .  

or 

 

 𝐸′

𝐸
=

(1 + 𝛼) + (1 − 𝛼) cos 𝜃
2

  .  (B.25) 

 

Derivation of Equation 3.63 

 

We begin by noting that the scattering angles and, therefore, the angular 

distributions of particles emerging from the laboratory and center-of-mass systems are 

different.  However, the total number of neutrons appearing in a given differential solid 

angle must be the same in each system.  We can see this one-to-one relationship 

displayed in Figure 3.6, which showed that 

 

 272  
 



 sin𝜗 ∝ sin𝜃 . (B.26) 

 

Since we are interested in developing an equation that expresses the probability of 

scattering from an incident energy (E) and into a final energy (Eʹ), our expression must 

involve the use of the microscopic cross section (σ), because this quantity is defined as 

the measure of the probability of interaction between a particle (neutron in this case) and 

a target nucleus.  The term can also be viewed as the effective cross sectional area 

presented by each target nuclei to an incident neutron beam. 

 

 

Because of the one-to-one relationship discussed above, we can write 

 

 σ(ϑ)sin𝜗 𝑑𝜗 = 𝜎(𝜃) sin𝜃 𝑑𝜃 . (B.27) 

 

Now, since quantities are calculated in the center-of-mass system, we want to focus our 

efforts on developing the right-hand side of Eq. B.27 which relates to this frame of 

reference. 

 

The probability of a neutron scattering into a given differential energy is 

 

 𝑃(𝐸 → 𝐸ʹ)𝑑𝐸ʹ  , (B.28) 
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And, since we know there is a one-to-one relationship between the final neutron energy 

and its scattering angle, we can further express B.28 using the laws of probability as 

 

 𝑃(𝐸 → 𝐸ʹ)𝑑𝐸ʹ

= 𝑃(𝑠𝑐𝑎𝑡𝑡𝑒𝑟 𝑖𝑛𝑡𝑜 𝜃) 𝑃(𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑔𝑙𝑒) . (B.29) 

 

The first term is related to the probability of scattering into a certain angle (θ) in relation 

to all other possible angles or probabilities; therefore, this term is simply 

 

 
𝑃(𝜃) =  

𝜎𝐶𝑀(𝜃)
𝜎𝑠

 . (B.30) 

 

and the probability of scattering within a given differential solid angle (dΩ) is just  

 

 2𝜋 sin𝜃 𝑑𝜃 , (B.31) 

 

since there is no dependence on φ.  So therefore, Eq. B.28 can be expressed as 

 

 
𝑃(𝐸 → 𝐸ʹ)𝑑𝐸ʹ = −�

𝜎𝐶𝑀(𝜃)
𝜎𝑠

 �2𝜋 sin𝜃 𝑑𝜃 ,  (B.32) 

 

where the minus sign appears because of the relationship between Eʹ and θ .  Eʹ decreases 

with increasing θ and a positive value of dθ necessarily implies a negative value of dEʹ.  
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Now, expand the left-hand side of Eq. B.25 (previous section) by moving E to the right-

hand side and taking the derivative of both sides to get 

 

 
𝑑𝐸′ =

−𝐸(1 − 𝛼) sin𝜃 𝑑𝜃
2

 .  (B.33) 

 

Now substitute B.33 into B.32 and solve for P(E→ Eʹ) to get 

 

 
𝑃(𝐸 → 𝐸ʹ) = �

4𝜋 𝜎𝐶𝑀(𝜃)
𝐸𝜎𝑠(1 − 𝛼)       for 𝛼𝐸 ≤ 𝐸ʹ ≤ 𝐸 

     𝑜,       otherwise
.  

(B.34) 

 

The remaining unknown scattering terms can be resolved by noting that, for 

neutrons of E < 10 MeV in low-Z materials, scatter in the center-of-mass system is 

isotropic, which means it is equally probable in all directions.  Therefore, the probability 

of an interaction scattering into angle θ is 

 

 𝑃(𝜃) =  𝜎𝐶𝑀(𝜃)  =  
𝜎𝑠
4𝜋

 , (B.35) 

 

which is known as S-wave scatter.  When we substitute this result into B.34, we arrive at 

Eq. 3.63 
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𝑃(𝐸 → 𝐸ʹ) =  �

1
𝐸(1 − 𝛼)         for 𝛼𝐸 ≤ 𝐸ʹ ≤ 𝐸 

   𝑜,       otherwise
. 

(B.36) 

 

It should be noted that the S-Wave (zeroeth moment) scatter assumption will not 

hold for neutron interactions with higher-Z materials and it will be necessary to correct 

for this anisotropy by developing higher scattering moments.  These conditions will be 

discussed in Chapter 4 and developed in Appendix C. 
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APPENDIX C 
LEGENDRE POLYNOMIALS AND SCATTERING MOMENTS 

 
 
 

C.1 Developing the Legendre Polynomials 

 

Legendre’s Equation is a very important one in Nuclear Engineering, because its 

solution is used to describe the scattering relation of neutrons in deterministic radiation 

transport codes.  The equation has the following form: 

 

 (1 − 𝑥2)𝑦" −  2𝑥𝑦′ +  𝑝(𝑝 + 1)𝑦 .  (C.1) 

 

 where the coefficient p is real and analytic.  We now guess a power series solution of the 

form 

 

 
𝑦 =  �𝑎𝑗𝑥𝑗

∞

𝑗=0

 =  𝑎0 + 𝑎1𝑥 +  𝑎2𝑥2 + ⋯  , (C.2) 

 

and then calculate the first derivative as 

 

 
𝑦′ =  �𝑗𝑎𝑗𝑥𝑗−1

∞

𝑗=1

 =  𝑎1 +  2𝑎2𝑥 + 3𝑎3𝑥2 +  ⋯  ,        (C.3) 

 

  

 

and finally, the second derivative is 
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𝑦" =  �𝑗(𝑗 − 1)𝑎𝑗𝑥𝑗−2

∞

𝑗=2

 =  2𝑎2 +  3 ∙ 2 ∙ 𝑎3𝑥 +  ⋯  . (C.4) 

 

Now, we substitute Eqs. C.2 – C.4 into C.1 

 

 
�𝑗(𝑗 − 1)𝑎𝑗𝑥𝑗−2
∞

𝑗=2

 −  �𝑗(𝑗 − 1)𝑎𝑗𝑥𝑗  − 
∞

𝑗=2

�2𝑗𝑎𝑗𝑥𝑗
∞

𝑗=1

 

+  𝑝(𝑝 + 1)�𝑎𝑗𝑥𝑗  
∞

𝑗=2

 =   0 . 

 

  (C.5) 

 

The index of summation is now adjusted to contain terms of xj rather than xj-2 and we 

collect terms to reach 

 

 
�(𝑗 + 2)(𝑗 + 1)𝑎𝑗+2𝑥𝑗
∞

𝑗=2

 −  �𝑗(𝑗 − 1)𝑎𝑗𝑥𝑗  − 
∞

𝑗=2

�2𝑗𝑎𝑗𝑥𝑗
∞

𝑗=2

 

+  𝑝(𝑝 + 1)�𝑎𝑗𝑥𝑗  
∞

𝑗=2

 

=  −2𝑎2 − 6𝑎3 + 2𝑎1𝑥 − 𝑝(𝑝 + 1)𝑎0 − 𝑝(𝑝 + 1)𝑎1𝑥  . 

 

 

(C.6) 

 

We can now collect terms and reduce C.6 to 
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�[ (𝑗 + 2)(𝑗 + 1)𝑎𝑗+2

∞

𝑗=2

−  𝑗(𝑗 − 1)𝑎𝑗  − 2𝑗𝑎𝑗 +  𝑝(𝑝 + 1)𝑎𝑗

− 𝑝(𝑝 + 1)𝑎1𝑥 ] 𝑥𝑗                

=  −2𝑎2 − 6𝑎3 + 2𝑎1𝑥 − 𝑝(𝑝 + 1)𝑎0 − 𝑝(𝑝 + 1)𝑎1𝑥  . 

 

(C.7) 

 

Now because a power series can only be identically zero if all the coefficients equal zero 

as well, we can equate the right side of Eq. C.7 to zero and solve for the recursion 

relationships by 

 

 −2𝑎2 − 𝑝(𝑝 + 1)𝑎0 = 0 .  (C.8) 

 

And 

 

 −6𝑎3 + 2𝑎1 − 𝑝(𝑝 + 1)𝑎0 =  0 .  (C.9) 

 

The recursion relations are then 

 

 
𝑎2 = −

𝑝(𝑝 + 1)
1 ∙ 2

 ∙ 𝑎0  ,  (C.10) 

 

 
𝑎3 = −

(𝑝 − 1)(𝑝 + 2)
2 ∙ 3

 ∙  𝑎1 ,  (C.11) 
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and finally 

 
𝑎𝑗+2 = −

(𝑝 − 𝑗)(𝑝 + 𝑗 + 1)
(𝑗 + 2)(𝑗 + 1)  ∙ 𝑎𝑗    𝑓𝑜𝑟 𝑗 = 2, 3, .. (C.12) 

 

We notice that the coefficients a0 and a1 are not specified, so we set a0 = y1 and a1 = y2.  

Using C.10 – C.12, we can solve for the remaining coefficients of the series as shown 

below. 

 

 
𝑎2 = −

𝑝(𝑝 + 1)
2

 ∙ 𝑦1  ,     (C.13) 

 

 
𝑎3 = −

(𝑝 − 1)(𝑝 + 2)
2 ∙ 3

 ∙  𝑦2 ,  (C.14) 

 

 

  

 
𝑎4 = −

(𝑝 − 2)(𝑝 + 3)
3 ∙ 4

 ∙ 𝑎2 =  
𝑝(𝑝 − 2)(𝑝 + 1)(𝑝 + 3)

4!
∙  𝑦1  ,  (C.15) 

 

 
𝑎5 = −

(𝑝 − 3)(𝑝 + 4)
4 ∙ 5

 ∙ 𝑎3 

=  
(𝑝 − 1)(𝑝 − 3)(𝑝 + 2)(𝑝 + 4)

5!
∙  𝑦2  ,  

 

(C.16) 

 

Inserting the coefficients into Eq. C.2 yields the general solution for the Legendre 

equation 
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𝑦 = 𝑦1 �1 −

𝑝(𝑝 + 1)
2!

𝑥2 +
𝑝(𝑝 − 2)(𝑝 + 1)(𝑝 + 3)

4!
 𝑥4 −  +⋯�

+ 𝑦2 �𝑥 −
(𝑝 − 1)(𝑝 + 2)

3!
𝑥3   

+
𝑝(𝑝 − 2)(𝑝 + 1)(𝑝 + 3)

5!
 𝑥5 + − . . . � .  

   

 

  (C.17) 

 

In the special cases when y1 is a positive even integer, the first bracket terminates 

as a polynomial.  And, in the special case when y2 is a positive odd integer, the second 

bracket also terminates as a polynomial.  These polynomials are referred to as Legendre 

polynomials and they form the basis for scattering moments in the LBE solution.  It can 

be seen from Eq. C.17 that the first few Legendre polynomials are  

 

 
𝑃0 =  1  ,𝑃1 =  𝑥 ,𝑃2 = (1 − 3𝑥2),𝑃3 = �𝑥 −

5
3
𝑥3� , ….  (C.18) 

 

C.2 Developing the Scattering Moments  

 

Legendre polynomials are convenient for adjusting isotropic (S-wave) scatter for 

the anisotropy conditions associated with neutron interactions with higher-Z materials.  

There are a few motivations for using such an approach.  First of all, Legendre 

polynomials are orthogonal on the interval [-1, 1], which corresponds to the range of the 

cosine function that is used for neutron scattering.  The second reason is that the 

scattering moments are easily calculated because of the orthogonal properties of the 
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Legendre polynomials on this same interval. This is not true in the case of a power series 

expansion, which is another advantage. 

 

To demonstrate how these moments are calculated, we begin by considering an 

expansion of the scattering cross section by 

 

 
𝜎𝑠(𝜇) = �𝛾 𝜎𝑠𝑙 𝑃𝑙(𝜇) ,

∞

0

 (C.19) 

 

where γ is a normalization constant, σsl is the lth scattering moment of σs (μ) and Pl (μ) is 

the Legendre polynomial.  Multiply both sides of C.19 by Pm (μ) and integrate to solve 

for σs (μ) by 

 

 
� 𝜎𝑠(𝜇) 𝑃𝑚(𝜇)
1

−1
= �  

1

−1
�(𝛾 𝜎𝑠𝑙) 𝑃𝑙(𝜇) 𝑃𝑚(𝜇) ,
∞

0

 (C.20) 

 

Keeping in mind the following important property of Legendre polynomials: 

 

 𝛿𝑙𝑚
2𝑙 + 1

= �  
1

−1
�𝑃𝑙(𝜇) 𝑃𝑚(𝜇) ,
∞

0

 (C.21) 

 

where δlm is zero in all cases except when l = m, when it attains the value of 1.  This is 

very important, because all other terms will not survive and the calculation proceeds 
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quickly.  Since C.21 is non-zero in a singular case, the summation can be eliminated, and 

C.20 becomes 

 

 
� 𝜎𝑠(𝜇) 𝑃𝑙(𝜇)
1

−1
=

𝛾 𝜎𝑠𝑙
2𝑙 + 1

  , (C.22) 

where m was replaced by l due to equivalence.  Now, we rearrange terms to solve for the 

scattering moment 

 

 
𝛾 𝜎𝑠𝑙 = (2𝑙 + 1)� 𝜎𝑠(𝜇) 𝑃𝑙(𝜇)

1

−1
  . (C.23) 

 

And, by letting γ = 2l + 1, the lth scattering moment of σs (μ) is 

 

 
𝜎𝑠𝑙 = � 𝜎𝑠(𝜇) 𝑃𝑙(𝜇)

1

−1
  . (C.24) 

 

By substituting all known terms into C.19, we get 

 

 
𝜎𝑠(𝜇) = �(2𝑙 + 1)𝜎𝑠𝑙 𝑃𝑙(𝜇) .

∞

0

 (C.25) 
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The original goal of this exercise was to adjust the isotropic (S-wave) scattering term (σs 

/4π) for anisotropic conditions when necessary.  Therefore, we can immediate write our 

final result of 

 

 
𝜎𝑠(𝜇0) = �

(2𝑙 + 1)
4𝜋

𝜎𝑠𝑙 𝑃𝑙(𝜇) ,
∞

0

 (C.26) 

 

where, σsl is defined by C.24.  It can easily be verified that in the P0 case, C.26 reduces to 

the isotropic scattering moment for one group in 1-D.  The scattering term can be 

expanded to the 3-D case by using a truncated set of spherical harmonics with the 

following relationships 

 

 𝛺� → 〈𝜃,𝜙〉 , �𝛺′� ∙ 𝛺�� → (𝜇0),𝜇 = (cos𝜃),𝑎𝑛𝑑 𝜇′ = (cos𝜃′) (C.27) 

 

 
𝜎𝑠 𝑔′→𝑔(𝑟, 𝜇0) = �(2𝑙 + 1)𝜎𝑠 𝑔′→𝑔,𝑙 (𝑟)𝑃𝑙(𝜇0)

𝐿

0

 , (C.28) 

 

 
𝜎𝑠 𝑔′→𝑔,𝑙(𝑟) = �  

𝑑𝜇0
2

𝜎𝑠 𝑔′→𝑔 (𝑟,𝜇0)𝑃𝑙(𝜇0)
1

−1

 ,  (C.29) 

 

 𝜇0  =  𝜇𝜇′  + (1 − 𝜇2)0.5�1 − 𝜇′2�
0.5

cos(𝜙 − 𝜙′) .  (C.27) 
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The Legendre polynomial in C.25 and C.26 is expressed using the Legendre Addition 

Formula as 

 

 
𝑃𝑙(𝜇0) =

1
2𝑙 + 1

� 𝑌𝑙,𝑘∗ (𝜃′,𝜙′) 𝑌𝑙,𝑘(𝜃,𝜙),
𝑙

𝑘=−𝑙

 (C.28) 

 

where the spherical harmonic terms on the right-side of C.28 are defined by Legendre 

polynomials and an exponential term by the following two expressions 

 

 
 𝑌𝑙,𝑘(𝜃,𝜙) = �(2𝑙 + 1)

(𝑙 − 𝑘)!
(𝑙 + 𝑘)!

  𝑃𝑙𝑘(𝜇)𝑒𝑥𝑝(𝑖𝑘𝜙)  𝑎𝑛𝑑  (C.29) 

 

  𝑌𝑙,−𝑘(𝜃,𝜙) =  (−1)𝑌𝑙,𝑘∗ (𝜃,𝜙) . (C.30) 

 

Now, by inserting C.29 and C.30 into C.28, Pl(μ0) can be expressed as: 

 

 

 

𝑃𝑙(𝜇0) = 𝑃𝑙(𝜇)𝑃𝑙(𝜇′) + 2�
(𝑙 − 𝑘)!
(𝑙 + 𝑘)!

 𝑃𝑙𝑘(𝜇)𝑃𝑙𝑘(𝜇′) cos�𝑘(𝜙 − 𝜙′)�  ,
𝑙

𝑘=1

 (C.30) 

and by trigonometric identity, 
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 cos�𝑘(𝜙 − 𝜙′)� =  cos(𝑘𝜙) cos(𝑘𝜙′) + sin(𝑘𝜙) sin(𝑘𝜙′) . (C.31) 

 

Eqs. C.30 and C.31 are folded into Eq. 4.3 to arrive at the Legendre expanded multi-

group form of the LBE in 3-D Cartesian geometry shown in Eq. 4.4.  And, finally, the 

other two variables in the streaming term (η and ξ) are also expressed as direction cosines 

on the unit sphere expressed in terms of the polar angle (θ) and azimuthal angle (ϕ) as: 

 

 𝜂 = �1 − 𝜇2 cos𝜙   𝑎𝑛𝑑  (C.32) 

 

 𝜉 = �1 − 𝜇2 sin𝜙 .  (C.33) 

 

Incorporating C.32 and C.33 into the streaming term in Eq. 4.4, provides the final 3-D 

non-multiplying discrete ordinates form of Eq. 4.1 in Cartesian coordinates as given in 

Eq. 4.9. 
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 APPENDIX D  
COARSE CELL / DIFFERENCING MAPPING TABLE 

ASSOCIATED WITH PENTRAN OUTPUT FILES FOR A 
50-COARSE MESH PROBLEM 

 
 
 
 
 Crs   Global   Difference   Dom In  Out Rgt Lft Bot Top  X   Y   Z   Mesh 
 Cell  i  j  k Method/Metric Mtl Bdy Bdy Bdy Bdy Bdy Bdy Fin Fin Fin  Cells 
 ---- -- -- -- ------------- --- --- --- --- --- --- --- --- --- --- ------- 
    1  1  1  1  2DTW 5.8E-01   3  -1   2  -3   6  -5  26   8   8  20   1280 
    2  2  1  1  2DTW 6.1E-01   3   1   3  -3   7  -5  27   8   8  20   1280 
    3  3  1  1  3EDI 1.0E+00   3   2   4  -3   8  -5  28  16   8  20   2560 
    4  4  1  1  2DTW 6.1E-01   3   3   5  -3   9  -5  29   8   8  20   1280 
    5  5  1  1  2DTW 5.8E-01   3   4  -2  -3  10  -5  30   8   8  20   1280 
    6  1  2  1  2DTW 5.9E-01   3  -1   7   1  11  -5  31   8   4  20    640 
    7  2  2  1  2DTW 5.9E-01   4   6   8   2  12  -5  32   8   4  20    640 
    8  3  2  1  3EDI 2.2E+00   4   7   9   3  13  -5  33  16   4  20   1280 
    9  4  2  1  2DTW 5.9E-01   4   8  10   4  14  -5  34   8   4  20    640 
   10  5  2  1  2DTW 5.9E-01   3   9  -2   5  15  -5  35   8   4  20    640 
   11  1  3  1  3EDI 1.0E+00   3  -1  12   6  16  -5  36   8  16  20   2560 
   12  2  3  1  3EDI 2.2E+00   4  11  13   7  17  -5  37   8  16  20   2560 
   13  3  3  1  3EDI 2.2E+00   1  12  14   8  18  -5  38  16  16  20   5120 
   14  4  3  1  3EDI 2.2E+00   4  13  15   9  19  -5  39   8  16  20   2560 
   15  5  3  1  3EDI 1.0E+00   3  14  -2  10  20  -5  40   8  16  20   2560 
   16  1  4  1  2DTW 5.9E-01   3  -1  17  11  21  -5  41   8   4  20    640 
   17  2  4  1  2DTW 5.9E-01   4  16  18  12  22  -5  42   8   4  20    640 
   18  3  4  1  3EDI 2.2E+00   4  17  19  13  23  -5  43  16   4  20   1280 
   19  4  4  1  2DTW 5.9E-01   4  18  20  14  24  -5  44   8   4  20    640 
   20  5  4  1  2DTW 5.9E-01   3  19  -2  15  25  -5  45   8   4  20    640 
   21  1  5  1  2DTW 5.8E-01   3  -1  22  16  -4  -5  46   8   8  20   1280 
   22  2  5  1  2DTW 6.1E-01   3  21  23  17  -4  -5  47   8   8  20   1280 
   23  3  5  1  3EDI 1.0E+00   3  22  24  18  -4  -5  48  16   8  20   2560 
   24  4  5  1  2DTW 6.1E-01   3  23  25  19  -4  -5  49   8   8  20   1280 
   25  5  5  1  2DTW 5.8E-01   3  24  -2  20  -4  -5  50   8   8  20   1280 
    

∙ 
∙ 
∙ 

 50  5  5  2  2DTW 5.8E-01   3  49  -2  45  -4  25  -6   8   8  20   1280 
 Total #Equations 6.1440E+06                      XYZ mesh total      76800 
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APPENDIX E – BASIC MONTE CARLO PROCEDURE 
 
 
 

E.1 Principles 

 

The random numbers that are so critical to the Monte Carlo method are generated 

by a computer using some form of random number generator (RNG).  In actuality, RNGs 

produce numbers that are only pseudo-random and this is actually desirable, because the 

production of truly random numbers is impractical and undesirable.  Instead, pseudo-

random numbers are desired because they can be reproduced from the same seed (stating 

point) and their statistical properties can be evaluated to ensure the RNG is acceptable. 

 

The basic Monte Carlo procedure begins with a description of the basic physical 

process that can be simulated using a stochastic (random) process.  In a stochastic 

process, we cannot say with certainty exactly what will occur at each individual point; 

instead, we simply seek to characterize the process by estimating the average behavior of 

a large number of elements.  The events (outcomes) of physical processes can be either 

discrete or continuous, but for the purposes of this section, discussion is limited to 

continuous random variables, because of its applicability to particle emissions from 

radioactive materials and to problems of radiation transport.  The overall description of a 

random variable is encompassed by two important functions that will be discussed in 

further detail:  the probability density function (PDF) and the cumulative density function 

(CDF). 
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The PDF or p(x)dx is defined as the probability that some random variable (x) 

will assume a value in the range of x and x + dx.  The PDF is further constrained by 

requiring that the probability of obtaining some value x on the interval a ≤ x ≤ b is equal 

to 1.  The correlation to the random number ξ now begins by establishing the following 

relationships 

 

 𝑝(𝑥)𝑑𝑥 =  𝑞(ξ)𝑑ξ (E.1) 

 

 𝑞(ξ) = 1   𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 1 ,  (E.2) 

 

 
𝑝(𝑥) =  

𝑑𝜉(𝑥)
𝑑𝑥

 ,𝑎𝑛𝑑 (E.3) 

 

 
𝑝(𝑥) =  

𝑓(𝑥)

∫ 𝑓(𝑥)𝑑𝑥𝑏
𝑎

=  
1

𝑏 − 𝑎
 . (E.4) 

 

The CDF or P(x) is defined as the probability that the random variable will 

not exceed x as shown in the following expression 

 

 
𝑃(𝑥) =  � 𝑝(𝑥)

𝑥

𝑎
𝑑𝑥 =  

𝑥 − 𝑎
𝑏 − 𝑎

 , (E.5) 
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and furthermore, 

 

 
𝑃(𝑥) =  � 𝑝(𝑥)

𝑥

𝑎
𝑑𝑥 =  𝜉 , (E.6) 

 

which follows from direct integration of Eq. E.1.  Now, by inverting Eq. E.6, we can 

finally translate our random number to the continuous random variable (x) by 

 

 𝑥 = 𝑃(𝑥)−1(𝜉) . (E.7) 

 

This basic procedure is applied to each event in a stochastic process (e.g. scatter energy 

deposition, etc.) to arrive at the final outcome of the problem. 

 

A simple example will be considered to demonstrate exactly how the Monte Carlo 

process is applied toward problems of radiation transport.  In this example, mono-

energetic (1-group), mono-directional neutrons will be injected directly into a one-

dimensional (1-D) homogeneous slab consisting of a singular elemental composition.  

Furthermore, the only interaction mechanisms that will be allowed are absorption and 

elastic scattering, with the final goal of determining how many neutrons exit the slab.  

Techniques associated with the handling of more elaborate models will be briefly 

discussed, although the details of these calculations will be left as an exercise to the 

reader. 
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E.2 Path Length Determination 

 

Since the neutrons are being inserted directly into the slab (i.e. velocity vector is 

normal to the slab), the first step is to determine the distance the neutron travels prior to 

interacting.  We begin by considering the process by which neutrons penetrate or are 

transported through the slab.  In order to do this, we need to consider the probability that 

a neutron travels a distance (x) without an interaction (collision) and then experiences a 

collision within the next small differential distance (dx).  The relation or PDF describing 

this stochastic event is 

 

 𝑝(𝑥)𝑑𝑥 = 𝑒−𝛴𝑡𝑥(𝛴𝛴𝑡𝑑𝑥) ,     (E.8) 

 

  

 

where the terms on the right-hand side of the equation have been grouped to denote their 

relation to the description above.  Now that the PDF has been formulated, we can 

immediately solve for the CDF by writing 

 

 
𝑃(𝑥) = � 𝛴𝛴𝑡𝑒−𝛴𝑡𝑥𝑑𝑥 

𝑥

𝑎
. (E.9) 

 

The solution to this integral was provided in Section 3.2.5 and we will now equate result 

to the first random number, ξ1, by 
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  𝜉1  = 1 − 𝑒−𝛴𝑡𝑥 . (E.10) 

 

We can now solve this equation to attain the desired relationship for x as 

 

 
𝑥 =  −

1
𝛴𝛴𝑡

ln(1 − 𝜉1) . (E.11) 

 

Eq. E.10 can be used as is; however, the calculation of the term within the parenthesis 

produces an unnecessary inefficiency.  The relation can be streamlined by remembering 

that, since ξ is randomly distributed on the interval [0, 1], then 1 – ξ1 must also be 

randomly distributed on this same interval.  Eq. E.11 can therefore be replaced by the 

simpler relation 

 

 
𝑥 =  −

1
𝛴𝛴𝑡

ln(𝜉1) , (E.12) 

 

which can be reasonably employed to determine the neutron path length within a code.  

However, in the case of a multi-region shield (several layers) or a shield that is relatively 

thick in comparison to the mean-free path (MFP) of the neutron, one final adjustment can 

be made to reduce Eq. E.12 to its most efficient form of 

 

 𝑥𝛴𝛴𝑡 = − ln(𝜉1) = 𝑏 , (E.13) 
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where the term b represents the number MFPs represented by the shield thickness.  Once 

the path length is calculated, it will first be compared to the thickness of the shield.  If the 

length exceeds this distance, the neutron is considered to have escaped and is tallied 

accordingly; otherwise, the neutron is computationally moved to the new location in the 

shield and the remaining processes move forward. 

 

E.3 Interaction Types 

 

Now that interaction location has been determined, an additional random number 

is used to determine the interaction type.  In our simplified model, there are only two 

interaction options; however, the selection of the interaction types is still determined in 

the same general manner through the relation 

 

 
𝑃𝑛 = �𝑝𝑖

𝑁

𝑖=1

   𝑓𝑜𝑟 𝑛 = 1,𝑁 , (E.14) 

 

where the pi terms describe the cumulative interaction probability of the ith element in a 

particular material.  To illustrate how the interaction mechanism is chosen, we will 

consider the case where our homogeneous shield material consists of a fictitious material 

exhibiting the absorption and elastic scattering cross sections shown in Table E-1. 
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Table E-1.  Fictitious Material Characteristics. 

Interaction Type       Σa,s (cm-1)     pi (Σa,s / Σt)   Pi 

    
Absorption (a) 0.300 0.333 0.333 
Elastic Scatter (s) 0.600 0.667 1.000 

 
Total 

 
0.900 

 
1.000 

 

 

Since the shield in our example consists of a single element, we obtain a second 

random number (ξ2) and make the following comparison to determine which of our two 

interactions will occur.  If, however, the shield composition was non-singular, we would 

first need to determine 

 

 

 𝜉2 = ≤ 𝑃1  � 𝑛𝑒𝑢𝑡𝑟𝑜𝑛 𝑖𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,𝑛𝑒𝑢𝑡𝑟𝑜𝑛 𝑖𝑠 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 . (E.15) 

 

which element was involved in the interaction using ξ2 and then we would evaluate the 

interaction type using a third random number, ξ3.  The actual method for selecting the 

element and interaction is conducted using the same method (Eq. E.15); however, when 

choosing the element type, the pi terms shown in the third column of Table E-1 must be 

replaced by the fractional weight percent (wi / wtotal) for each element that is part of the 

shield. 
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E.4 Neutron Scattering Angle and Energy 

 

Since our model consisted of a 1-D shield, we won’t need to concern ourselves 

with the evaluation of the neutron scattering angle; however, the method for doing so will 

be briefly discussed in order to provide an adequate coverage of the Monte Carlo method.  

There are different ways of treating the problem of scattering; however, the most 

straightforward method deals with the consideration of the azimuthal angle (ϕ) (2-D or 3-

D models) and a further consideration of the polar angle (θ) for 3-D models.  Although 

there is no convention between mathematicians and scientists on the use of ϕ for the 

azimuthal angle or θ for the polar angle, this has become standard in nuclear engineering 

as depicted in Figure E.1.  The convention in radiation transport has also been to sample 

ϕ uniformly in the range 0 ≤ ϕ ≤ 2π and θ from 0 ≤ θ ≤ π and using the polar angle to 

develop the proper PDF for elastic scattering.  Therefore, Eq. 4.31 can be directly used 

for ϕ, while θ requires a more elaborate evaluation. 

 

 

Fig. E.1  Schematic of the Neutron Scattering Angles.  
 

Since we are sampling ϕ uniformly, Eq. E.4 yields the following result 
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𝑝(𝑥) =  

𝑓(𝜙)

∫ 𝑓(𝜙)𝑑𝜙2𝜋
0

=  
1

2𝜋
  , (E.16) 

and Eq. E.6 yields 

 

 
𝑃(𝑥) =  � �

1
2𝜋
�

𝜙

0
𝑑𝜙 =  

𝜙
2𝜋

=  𝜉3 , (E.17) 

or 

 𝜙 =  2𝜋𝜉3 . (E.18) 

 

Eq. E.18 above is not only important for locating the scattered neutron within the slab, 

but the result for ξ3 can be inserted directly into Eq. 3.63 to determine the energy of the 

scattered neutron as well. 

 

In order to develop the PDF expression for selecting θ, one must begin by 

considering the differential scattering cross section that is defined as 

 

 𝛴𝛴𝑠�𝛺� → 𝛺�′�𝑑𝛺′ , (E.19) 

 

which represents the probability per unit path length that a particle moving in direction Ω 

will be scattered into a solid angle dΩ’ about Ω’.  The left-hand side of Eq. E.19 above 

describes the projection of omega onto omega prime, which is referred to as the dot 

product in physics and is calculated as 

 296  
 



 𝑨 ∙ 𝑩 = |𝑨||𝑩| cos 𝜃 , (E.20) 

 

where A and B are vectors and their dot product is equivalent to the absolute value of the 

individual vectors times the cosine of the angle between them.  In nuclear engineering 

terminology, the term μ is generally used to describe the magnitude of the unit vector in 

the z direction as seen in Figure E.1 and, since we’re using the cosine of the polar angle 

(θ) is generally given the following definition 

 

 𝜇0 = cos 𝜃 , (E.21) 

 

where μ0 denotes the initial angle of the neutron with respect to the z axis before the 

scattering event.  By using this new angle term along with the knowledge that the 

differential scattering cross section is only dependent on ϕ, we can now rewrite Eq. E.19 

in terms of μ and ϕ as  

 

 𝛴𝛴𝑠�𝛺� → 𝛺�′�𝑑𝛺′ =  𝛴𝛴𝑠(𝜇0)𝑑𝜇′𝑑𝜙′, (E.22) 

 

The term Σs  (μ0) can be expanded into separate scalar and probability components in 

exactly the same manner as was discussed for the differential energy scattering cross 

section in section 3.2.1.2 and shown in Eq. 3.33.  The new terms describe the scattering 

probability per unit path length and probability per steradian according to the following 

relation 
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 𝛴𝛴𝑠(𝜇0) =  𝛴𝛴𝑠 𝑝′(𝜇0) . (E.23) 

 

Therefore, we may now write the expanded form of Eq. E.23 as 

 

 𝛴𝛴𝑠(𝜇0)𝑑𝜇′𝑑𝜙′ =  𝛴𝛴𝑠 𝑝′(𝜇0)𝑑𝜇′𝑑𝜙′, (E.24) 

 

and if we now align the z-axis with the direction of μ0, we can replace the μ′ terms and 

the relation becomes 

 

 𝛴𝛴𝑠(𝜇0)𝑑µ0𝑑𝜙′ =  𝛴𝛴𝑠 𝑝′(𝜇0)𝑑µ0𝑑𝜙′, (E.25) 

 

now integrate the equation above over all ϕ angles to remove the azimuthal component 

and solve for the differential probability term by 

 

 
𝑝(𝜇0)𝑑𝜇0 =  

∫ 𝛴𝛴𝑠(𝜇0)𝑑𝜇0 𝑑𝜙′2𝜙
0

𝛴𝛴𝑠
 , (E.26) 

 

where p(μ0) is determined by 

 

 
𝑝(𝜇0)𝑑𝜇0 =  � 𝑝′(𝜇0) 𝑑𝜙′

2𝜙

0

 . (E.27) 
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The result of this effort is the following relation 

 

 
𝑝(𝜇0)𝑑𝜇0 =  

2𝜋 𝛴𝛴𝑠(𝜇0)𝑑𝜇0
𝛴𝛴𝑠

 , (E.28) 

 

which is the PDF form of the scattering term we’re seeking.  We now solve for the CDF 

term we need and set it equal to our next random number by 

 

 
𝑃(𝜇0) =  �

2𝜋 𝛴𝛴𝑠(𝜇0)𝑑𝜇0
𝛴𝛴𝑠

µ0

−1

=  𝜉4 .     (E.29) 

 

  

 

Recall from the scattering discussions of Chapter 3 that neutron scattering is isotropic in 

the center-of-mass system for reactor engineering applications (i.e. En ≤ 10 MeV) and, in 

this case, 

 

 𝛴𝛴𝑠(𝜇0) =  
𝛴𝛴𝑠
4𝜋

 . (E.30) 

 

By substituting this term into Eq. E.29 and simplifying the expression, we reach the 

conclusion that 

 

 𝜇0 +  1
2

=  𝜉4 , (E.31) 
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or 

 𝜇0 =  2𝜉4 −  1 , (E.32) 

 

which is the new scattering angle.  Finally, the new direction cosine is calculated using  

 

 
𝜇′ =  𝜇𝜇0 + �1 − 𝜇2 �1 − 𝜇02  cos𝜙0  ,  (E.33) 

 

where μ is the previous μ′ and ϕ0 is determined by evaluating the angular probability for 

ϕ in the Cartesian coordinate system 

 

 
𝑃(𝜙0) =  

𝜙0
2𝜋

=  𝜉5 ,  (E.34) 

or, 

  𝜙0 =  2𝜋𝜉5 .  (E.35) 

 

At this point, the process reverts back to Eq. E.10 and continues in a loop until the 

particle track is terminated by escape (streaming), capture, etc. 
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APPENDIX F 
AREACT COMPUTER CODE FOR CALCULATING 

ADJOINT REACTION RATES 
 
 
 
! 
!     Adjoint Reaction Rate Calculator  
! 
!       by CRITCEL Group                     
! 
!     Version 1.5g  
! 
!     This code is used to process the aflux files from adjoint PENTRAN 
!     runs to calculate reaction rates and various other quantities. 
! 
!-------------------------------------------------------------------- 
! 
      PROGRAM AREACT  
! 
      IMPLICIT REAL (A-H,O-Z) 
      IMPLICIT INTEGER (I-N) 
! 
!     MAIN PROGRAM 
! 
!///////////////// 
! 
      CALL IHEADR 
      CALL INSIFT 
! 
      STOP 
!       
      END 
! 
!---------------------------------------------------------------------- 
! 
!     SUB IHEADR 
! 
!     PURPOSE OF IHEADR ROUTINE: 
!     -To print header when program is initiated 
!       
      SUBROUTINE IHEADR  
! 
      WRITE(*,'(A2///) ')'                                             ' 
      WRITE(*,'(2X,A46)')' Adjoint Reaction Rate Evaluation Program    '    
      WRITE(*,'(A2)')'                                                 '   
      WRITE(*,'(2X,A48)')'       Version 1.5  SINGLE PRECISION         ' 
      WRITE(*,'(2X,A48)')'               CRiTCEL Group                 ' 
      WRITE(*,*) '                                                     ' 
      WRITE(*,'(2X,A48)')'                DEC  2012                    '   
      WRITE(*,'(A2)')'                                                 ' 
!       
      END      
! 
!---------------------------------------------------------------------- 
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!     
!     SUB INSIFT 
!  
!     PURPOSE OF INSIFT ROUTINE: 
!     -To read and process data   
!       
      SUBROUTINE INSIFT 
!                 
      IMPLICIT REAL (A-H,O-Z) 
      IMPLICIT INTEGER (I-N) 
! 
      REAL, DIMENSION(150) :: tstnum, grpegy, srcspc, qsrc   
      REAL, DIMENSION(1500) :: dx,dy,dz,vol,rr  
      INTEGER, DIMENSION(1500) :: icm            
      CHARACTER(10) :: matname  
      CHARACTER(64) :: datfnam, outfnam, dxdydzf, srcspecf, aflxlgf     
      CHARACTER(80) :: dummy 
      INTEGER :: ngroups 
      LOGICAL  exists, opend 
! 
!     Information location in aflux (.flx) files : 
!   
!     Note: Adjoint files give results in reverse group order, 
!     Group 1 adjoint is the adjoint result for FORWARD group 47 
! 
!     Total number of ASCII Columns  in data files 
      ntdat=7 
!  
!     Coarse mesh data Column Index 
      icmidx=2  
! 
!     Target Material # Column Index 
      itargm=3 
! 
!     x data Column Index 
      ixcol=4 
! 
!     y data Column Index 
      jycol=5 
! 
!     z data Column Index 
      kzcol=6 
! 
!     Scalar Adjoint data Column Index 
      iaflux=7 
! 
!     Total Isotropic Sn Source #/s over a volume(cc)   
!     comment: source is isotropic in 24960 meshes    
! 
      totsrc = 1000  
      srcvolcc = 720.72 
! 
!---------------------------------------------------------------------- 
!     
!     Files Needed: 
!    
!        source spectrum forr response  
!        dxdydz.out for Coarse mesh data -> Volume 
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!        flx.Log to list group data files in a listing 
!        group files named in flx.Log 
! 
!     Input information: 
! 
c     WRITE(*,'(A40)')' Input Source Material # to sum reactions for: ' 
c      READ(*,*) nmat 
      nmat=3 
! 
c     WRITE(*,'(A22)')' Input Source Material Name: ' 
c      READ(*,*) matname  
      matname='Air-source' 
!       
!     Generalized support for arbitrary number of groups 
c     WRITE(*,'(A24)')' Input Number of Groups: ' 
c      READ(*,*) ngroups 
      ngroups=47  
!       
!     Prompt for number of coarse meshes (technically this is in dxdydz) 
c     WRITE(*,'(A31)')' Input Total Number of Coarse Meshes: ' 
c      READ(*,*) ntgcm 
      ntgcm=50  
!       
! 
!     Arbitrary Energy Group Selection 
!     Read and Echo our energy to the screen for reference       
! 
!     ENERGY.FWD ***File format, starting from top line: 
!       BUGLE96.grp 67 Group n-gamma (use Upper Energy Group Bins in MeV) 
!       #neut_grps  FissNeutTemp(t,e,f) 
!         47             t 
!       Grp#  Upper_MeV 
!        1    17.332 
!        2    14.191 
!        ... 
! 
!     Note this is loaded in Reverse order to match reverse order of 
!     adjoint results (g47 is input and reported as g1 adjoint, etc)! 
! 
      WRITE(*,*) ' '  
      WRITE(*,*) 'Opening Forward Energy Groups File:'  
      WRITE(*,*) ' '  
      OPEN(17, FILE='energy.fwd', ACCESS='SEQUENTIAL') 
        DO i=1,4 
          READ(17,*) dummy  
        END DO  
        DO jg = ngroups, 1, -1  
          READ(17,*) igrpno, grpegy(jg) 
          WRITE(*,*) 'Group (', jg,'): ', grpegy(jg),' MeV'   
        END DO           
      CLOSE(17) 
      WRITE(*,*) 
!    
!     Initialize problem: responses, etc                               
! 
      respons=0 
      rr=0  
      afavgmx=0.0 
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      eavgmx=0.0 
      igrp=0 
! 
!     Read dxdydz file and compute volume 
! 
!     Note: This dxdydz term is the volume of the forward source term! 
!     When EOF is reached, control transfers to statement 150 
!   and continues from there.  
!     DXDYDZ.OUT starting from top line: 
!     Coarse Cell     dx        dy        dz 
!         1        0.333     0.333     0.250 
!         ... 
! 
      WRITE(*,*) ' '  
      WRITE(*,*) 'Reading Mesh Volume File:'  
      WRITE(*,*) ' '  
      dxdydzf='dxdydz.out' 
      OPEN (3, FILE=dxdydzf, ACCESS='SEQUENTIAL') 
        i=0 
        READ (3,'(A)') dummy 
        WRITE(*,'(A80)') dummy 
100     i=i+1 
        READ (3,*,END=150) icm(i), dx(i), dy(i), dz(i)   
        WRITE(*,'(I5,3(2X,F8.3))') icm(i), dx(i), dy(i), dz(i)  
        vol(i)=dx(i)*dy(i)*dz(i)   
        GOTO 100  
150     i=i-1  
        IF(i.NE.ntgcm)THEN 
          WRITE(*,*)'ERROR: Cell count i ',i,' mismatch ntgcm ', ntgcm 
          STOP 
        END IF 
        WRITE(*,*)' Read ',i,' Cell Dimensions ' 
        WRITE(*,*) ' '      
      CLOSE(3)  
! 
!     Read source spectrum and normalize spc data from device 1 
!       Note this is loaded in Reverse order to match reverse order of 
!       adjoint results (g47 is input and reported as g1 adjoint, etc)! 
!  
      WRITE(*,*) ' '  
      WRITE(*,*) 'Opening Forward Source File:'  
      WRITE(*,*) ' '  
      srcspecf = 'design1.spc' 
      OPEN (1, FILE = srcspecf, ACCESS = 'SEQUENTIAL') 
        srcspc = 0.0 
        srcsum = 0.0 
        DO jg = ngroups, 1, -1  
          READ (1,*) srcspc(jg) 
          srcsum = srcsum + srcspc(jg) 
        END DO 
      CLOSE(1)  
! 
!     Construct isotropic volumetric source 
!     Arrays qsrc and srcspc   
! 
      WRITE(*,*) ' '  
      WRITE(*,*) 'Setting Isotropic Source density:'  
      WRITE(*,*) ' '  
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      DO jg=1, ngroups    
        qsrc(jg) = (srcspc(jg)/srcsum) * totsrc/srcvolcc 
        WRITE(*,*)'G ',jg,' (MeV):',grpegy(jg), 
     &    ' qsrc=',qsrc(jg),' #/s/cc'  
      END DO  
      WRITE(*,*) ' '  
! 
!     Read aflux logfile listing from device 2 
! 
      WRITE(*,*) ' '  
      WRITE(*,*) 'Opening Adjoint Data Log Filelist: '  
      WRITE(*,*) ' '  
      aflxlgf = 'flx.Log'  
      OPEN (2, FILE = aflxlgf, ACCESS='SEQUENTIAL') 
        READ (2,'(A)') dummy 
        WRITE(*,'(A80)') dummy 
! 
!     ------BEGIN GROUP DEPENDENT SEQUENCE------ 
! 
200   CONTINUE 
! 
!     Increment group counter, reset material counter, target matl volume 
!   igrp was previously set to 0. 
!       Initialize afluxmax and mean free path         
! 
      igrp=igrp+1  
! 
!     Read Group Response Cross Section from 1  
! 
      IF (igrp .LE. ngroups) THEN 
        imatcnt=0  
        voltarg=0.0 
        afluxmax=0 
        WRITE(*,*)'Group Counter = ', igrp,' Out of ',ngroups, 
     & ' groups.' 
        rr(igrp)=0.00 
      ELSE   
        igrp=igrp-1 
      END IF 
! 
!     Get aflux datafile assignment data from 2  
!  
250     CONTINUE 
        READ (2,*,END=400) datfnam 
! 
!       Open aflux datafile and read vectors of aflux data 
! 
!       The aflux files are opened below and the read statement dumps 
!   the header information to dummy.  The write statement lists 
!   the name of the aflux file and the read statement at 350 
!   begins to pull out the necessary data. 
!  
          OPEN (10, FILE = datfnam, ACCESS='SEQUENTIAL') 
           READ (10,'(A)') dummy 
           WRITE(*,'(A18,A40)')' Read data from : ', datfnam 
300        CONTINUE 
           READ (10,*,END=350) (tstnum(iety), iety=1,ntdat) 
! 
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!    The read statements above read information from columns 
!    1 to n of the aflux file datfnam  
!    When the EOF is reached, control goes to line 350. 
!      
!          If target material compute response from that cell  
!  
           IF (INT(tstnum(itargm)).EQ.nmat) THEN 
             imatcnt=imatcnt+1   
             itstcm=INT(tstnum(icmidx))  
             voltarg = voltarg + vol(itstcm)  
             afluxmaxold = afluxmax  
             afluxmax=MAX(afluxmax, tstnum(iaflux))  
! 
!            Compute group rxn rate and total rxn respons  
! 
             rr(igrp) = rr(igrp) +  
     &           (tstnum(iaflux)*qsrc(igrp)*vol(itstcm))  
             respons = respons +  
     &           (tstnum(iaflux)*qsrc(igrp)*vol(itstcm))  
           END IF  
         GOTO 300 
350     CONTINUE 
        CLOSE(10) 
! 
!       Finished a group...  wrap up responses: 
! 
1200    FORMAT(A7,I6,1X,A7,I3,1X,A17,F10.2,A4) 
        WRITE(*,1200) ' Found ',imatcnt,' matl# ',nmat, 
     &  ' meshes covering ', voltarg,' cm3'  
! 
        WRITE(*,'(A5,I3,A1,1PE10.3,A5,A15,1PE13.6,A10, 
     &    0PF6.2,A1,0PF6.2,A1,0PF6.2,A2,1PE13.6)') 
     &   ' Grp ',igrp,' ',grpegy(igrp),' MeV ',' abs  #/s : ', 
     &    rr(igrp) 
        WRITE(*,*)' '  
!  
!       Compute Response-Weighted max aflux, and energy    
!  
        afavgmx=afavgmx + (afluxmax*rr(igrp)) 
        eavgmx=eavgmx + (grpegy(igrp)*rr(igrp)) 
! 
!       If any left, do more groups 
! 
        IF(igrp .EQ. ngroups) THEN 
          GOTO 400 
        END IF  
      GOTO 200 
! 
400   CONTINUE 
! 
!     Report avg Results 
! 
      afavgmx = afavgmx/respons  
      eavgmx = eavgmx/respons      
!  
      WRITE(* ,*)' ' 
      WRITE(* ,*)'----------------------------------------------------' 
      WRITE(* ,*)'  READ Data from the Following Files : ' 
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      WRITE(* ,'(A31,A30)')'          dxdydz mesh data...  ',dxdydzf  
      WRITE(* ,'(A31,A30)')'               Source data...  ',srcspecf  
      WRITE(* ,'(A31,A30)')'Adjoint data filename list...  ',aflxlgf  
      WRITE(* ,'(A40)') '       forward energy list... energy.fwd' 
      WRITE(* ,*)'----------------------------------------------------' 
! 
      WRITE(* ,*) '  -- Summary for ',matname,' --'  
      WRITE(* ,*) ' Tot Src: ', totsrc,' #/s'  
      WRITE(* ,1000)' Total Neutron Response from ', ngroups, 
     & ' Groups: ',  respons,' cts/s ' 
1000  FORMAT(' ',A28,I3,A9,1PE13.6,A7)  
      WRITE( *,*) ' Response/source: ', (respons/totsrc)  
      WRITE( *,*) ' Avg g Resp-Weighted aflux ',afavgmx ,' imp ' 
      WRITE(* ,*) ' Avg g Resp-Weighted energy ',eavgmx ,' MeV ' 
      WRITE(* ,*) ' ' 
      WRITE(* ,*)' --- End of Data for ',matname,' ---'  
      WRITE(* ,*) ' ' 
! 
      CLOSE(2) 
      CLOSE(11)  
!   
      STOP  
! 
      END 
 
 

Energy.Fwd filed called from within AREACT 

BUGLE96.grp 67 Group n-gamma (use Upper Energy Group Bins in MeV) 
#neut_grps  FissNeutTemp(t,e,f) 
  47             t 
Grp#  Upper_MeV 
 1    1.7332E+01 
 2    1.4191E+01 
 3    1.2214E+01 
 4    1.0000E+01 
 5    8.6071E+00 
 6    7.4082E+00 
 7    6.0653E+00 
 8    4.9659E+00 
 9    3.6788E+00 
 10   3.0119E+00 
 11   2.7253E+00 
 12   2.4660E+00 
 13   2.3653E+00 
 14   2.3457E+00 
 15   2.2313E+00 
 16   1.9205E+00 
 17   1.6530E+00 
 18   1.3534E+00 
 19   1.0026E+00 
 20   8.2085E-01 
 21   7.4274E-01 

 307  
 



 22   6.0810E-01 
 23   4.9787E-01 
 24   3.6883E-01 
 25   2.9721E-01 
 26   1.8316E-01 
 27   1.1109E-01 
 28   6.7379E-02 
 29   4.0868E-02 
 30   3.1828E-02 
 31   2.6058E-02 
 32   2.4176E-02 
 33   2.1875E-02 
 34   1.5034E-02 
 35   7.1017E-03 
 36   3.3546E-03 
 37   1.5846E-03 
 38   4.5400E-04 
 39   2.1445E-04 
 40   1.0130E-04 
 41   3.7266E-05 
 42   1.0677E-05 
 43   5.0435E-06 
 44   1.8554E-06 
 45   8.7643E-07 
 46   4.1399E-07 
 47   1.0000E-07 
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APPENDIX G 
REACT COMPUTER CODE FOR CALCULATING 

FORWARD REACTION RATES 
 
 
 
! 
!     Forward Reaction Rate Calculator  
! 
!       by G. Sjoden/Scottie Walker 
! 
!     Additional contributions from: 
!     Michael Chin (May 2012) 
!     Matthew Molinar (May 2012) 
 
!     Version 1.5g  
! 
!     This code is used to process the flux files from fwd PENTRAN 
!     runs to calculate reaction rates and various other quantities. 
! 
!-------------------------------------------------------------------- 
! 
      PROGRAM REACT  
! 
      IMPLICIT REAL (A-H,O-Z) 
      IMPLICIT INTEGER (I-N) 
! 
!     MAIN PROGRAM 
! 
!///////////////// 
! 
      CALL IHEADR 
      CALL INSIFT 
! 
      STOP 
!       
      END 
! 
!---------------------------------------------------------------------- 
! 
!     SUB IHEADR 
! 
!     PURPOSE OF IHEADR ROUTINE: 
!     -To print header when program is initiated 
!       
!     NOTES:  
!     -None        
! 
!     AUTHOR (date):  
!     S. W. Walker/G. Sjoden (January 2012) 
! 
!     WITH CONTRIBUTIONS FROM: 
!     M. Chin (May 2012) 
!     M. Molinar (May 2012) 
!          
      SUBROUTINE IHEADR  
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! 
      WRITE(*,'(A2///) ')'                                             ' 
      WRITE(*,'(2X,A46)')' Forward Reaction Rate Evaluation Program    '    
      WRITE(*,'(A2)')'                                                 '   
      WRITE(*,'(2X,A48)')'       Version 1.5  SINGLE PRECISION         ' 
      WRITE(*,'(A2)')'                                                 '       
      WRITE(*,'(2X,A48)')'       Scottie W. Walker / G. Sjoden         ' 
      WRITE(*,'(2X,A48)')'            Michael R. Chin                  ' 
      WRITE(*,'(2X,A48)')'            Matthew P. Molinar               ' 
      WRITE(*,*) '                                                     ' 
      WRITE(*,'(2X,A48)')'                DEC  2012                    '   
      WRITE(*,'(A2)')'                                                 ' 
!       
      END      
! 
!     ****************************************************************** 
!     SUB INSIFT 
!     ******************************************************************             
! 
!     PURPOSE OF INSIFT ROUTINE: 
!     -To read and process data   
!       
      SUBROUTINE INSIFT 
!                 
      IMPLICIT REAL (A-H,O-Z) 
      IMPLICIT INTEGER (I-N) 
! 
      REAL, DIMENSION(150) :: tstnum, grpegy 
      REAL, DIMENSION(1500) :: dx,dy,dz,vol,rr  
      INTEGER, DIMENSION(1500) :: icm            
      CHARACTER(10) :: matname  
      CHARACTER(64) :: datfnam, outfnam, dxdydzf, rrxsecf, flxlogf     
      CHARACTER(80) :: dummy 
      CHARACTER(80) :: xsname 
      INTEGER :: ingrp 
      LOGICAL  exists, opend 
! 
!     ****************************************************************** 
!     Information location in flux (.flx) files : 
!     ****************************************************************** 
! 
!     Total number of ASCII Columns  in data files 
      ntdat=7 
!  
!     Coarse mesh data Column Index 
      icmidx=2  
! 
!     Target Material # Column Index 
      itargm=3 
! 
!     x data Column Index 
      ixcol=4 
! 
!     y data Column Index 
      jycol=5 
! 
!     z data Column Index 
      kzcol=6 
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! 
!     Flux data Column Index 
      iflux=7 
! 
!     Total Sn Source #/s  
      totsrc = 1000  
! 
!     Material to Sum Rxns 
! 
!     ****************************************************************** 
!     Files Needed: 
!     ****************************************************************** 
!        response xsecs for response xsec 
!        dxdydz.out for Coarse mesh data -> Volume 
!        flx.Log to list group data files in a listing 
!        group files named in flx.Log 
! 
!     ****************************************************************** 
!     Input information: 
!     ****************************************************************** 
!     Each of the read (*,*) statements require an input 
! 
c     WRITE(*,'(A40)')' Input Material # to sum reactions for: ' 
c      READ(*,*) nmat 
      nmat=1 
! 
c     WRITE(*,'(A22)')' Input Material Name: ' 
c      READ(*,*) matname  
      matname='Large Tube-BF3 at 2 atm'  
!       
!     Generalized support for arbitrary number of groups 
c     WRITE(*,'(A24)')' Input Number of Groups: ' 
c      READ(*,*) ingrp 
      ingrp=47  
!       
!     Prompt for number of coarse meshes (technically this is in dxdydz) 
c     WRITE(*,'(A31)')' Input Number of Coarse Meshes: ' 
c      READ(*,*) ntgcm 
      ntgcm=50  
!       
!     Generalized support for different cross section files - MC 
c     WRITE(*,'(A35)')' Input Cross Section Filename (.xs): ' 
c      READ(*,*) xsname 
      xsname='bf32x.xs'  
! 
!     Arbitrary Energy Group Selection 
!     Read and Echo our energy to the screen for reference       
! 
!     ENERGY.FWD ***File format, starting from top line: 
!       BUGLE96.grp 67 Group n-gamma (use Upper Energy Group Bins in MeV) 
!       #neut_grps  FissNeutTemp(t,e,f) 
!         47             t 
!       Grp#  Upper_MeV 
!        1    17.332 
!        2    14.191 
!        ... 
! 
      OPEN(17, FILE='energy.fwd', ACCESS='SEQUENTIAL') 
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        DO i=1,4 
          READ(17,*) dummy  
        END DO  
        DO jg = 1, ingrp 
          READ(17,*) igrpno, grpegy(jg) 
          WRITE(*,*) 'Group (', jg,'): ', grpegy(jg),' MeV'   
        END DO           
      CLOSE(17) 
      WRITE(*,*) 
!    
!     ****************************************************************** 
!     Initialize problem: averages, fluxsums, responses, group count  
!     ****************************************************************** 
! 
      respons=0 
      rr=0  
! 
      favgmx=0.0 
      eavgmx=0.0 
      igrpcnt=0 
! 
!     ****************************************************************** 
!     Read dxdydz file and compute volume 
!     ****************************************************************** 
! 
!     Note: This dxdydz term is the volume of the forward source term! 
!     When EOF is reached, control transfers to statement 150 
!   and continues from there.  
!     DXDYDZ.OUT starting from top line: 
!     Coarse Cell     dx        dy        dz 
!         1        0.333     0.333     0.250 
!         ... 
! 
      dxdydzf='dxdydz.out' 
      OPEN (3, FILE=dxdydzf, ACCESS='SEQUENTIAL') 
        i=0 
        READ (3,'(A)') dummy 
        WRITE(*,'(A80)') dummy 
100     i=i+1 
        READ (3,*,END=150) icm(i), dx(i), dy(i), dz(i)   
        WRITE(*,'(I5,3(2X,F8.3))') icm(i), dx(i), dy(i), dz(i)  
        vol(i)=dx(i)*dy(i)*dz(i)   
        GOTO 100  
150     i=i-1  
        IF(i.NE.ntgcm)THEN 
          WRITE(*,*)'ERROR: Cell count i ',i,' mismatch ntgcm ', ntgcm 
          STOP 
        END IF 
        WRITE(*,*)' Read ',i,' Cell Dimensions ' 
        WRITE(*,*) ' '      
      CLOSE(3)  
! 
!     ------------------------------------------------------------------ 
! 
!     Read Response Cross section file header from device 1 and 
!    the flx.log header from device 2. 
! 
!   The two read statements read and write the data of the first 
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!   two lines in the cross section file to the variable dummy 
!     (not needed).  The data actually begins on the 3rd line. 
! 
!   The first line of the flx.log is a header and the single 
!   read/write statement puts that information into dummy. 
! 
!   Both of these files remain open until the very end of the 
!   program. 
!     ------------------------------------------------------------------ 
! 
!     ****************************************************************** 
!     Read cross section input file and flx.Log file 
!     ****************************************************************** 
! 
!     Read rr xs data from device 1 
! 
      rrxsecf = 'bf32x.xs' 
      OPEN (1, FILE = rrxsecf, ACCESS = 'SEQUENTIAL') 
!       read header on xs file 
        READ (1,'(A)') dummy 
        WRITE(*,'(A80)') dummy 
        READ (1,'(A)') dummy 
        WRITE(*,'(A80)') dummy 
! 
!     Read flux datafile listing from device 2 
! 
      flxlogf = 'flx.Log'  
      OPEN (2, FILE = flxlogf, ACCESS='SEQUENTIAL') 
        READ (2,'(A)') dummy 
        WRITE(*,'(A80)') dummy 
! 
!     ****************************************************************** 
!     Open output file 
!     ****************************************************************** 
! 
c     itest=INDEX(matname,' ')-1 
c     IF(itest.LE.10) THEN 
c       outfnam=matname(1:itest)//'-frx.out' 
c     ELSE 
c       outfnam=matname(1:10)//'-frx.out' 
c     END IF 
c  
c     OPEN (11, FILE=outfnam, ACCESS='SEQUENTIAL') 
c     WRITE(* ,*)'  ',outfnam  
! 
      WRITE(* ,*)' ' 
      WRITE(* ,*)'----------------------------------------------------' 
      WRITE(* ,*)'  READ Data from the Following Files : ' 
      WRITE(* ,'(A31,A30)')'          dxdydz mesh data...  ',dxdydzf  
      WRITE(* ,'(A31,A30)')'                   xs data...  ',rrxsecf  
      WRITE(* ,'(A31,A30)')'    flux log filename list...  ',flxlogf  
      WRITE(* ,'(A40)') '       forward energy list... energy.fwd' 
      WRITE(* ,*)'----------------------------------------------------' 
! 
! 
!     ****************************************************************** 
!                ------BEGIN GROUP DEPENDENT SEQUENCE------ 
!     ****************************************************************** 
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! 
200   CONTINUE 
! 
!     Increment group counter, reset material counter, target matl volume 
!   igrpcnt was previously set to 0. 
!       Initialize fluxmax and mean free path         
! 
      igrpcnt=igrpcnt+1  
! 
!     Read Group Response Cross Section from 1  
! 
      IF (igrpcnt .LE. ingrp) THEN 
        imatcnt=0  
        voltarg=0.0 
        fluxmax=0 
        rmfpa=0.0  
        WRITE(*,*)' Group Counter = ', igrpcnt,' Out of ',ingrp, 
     & ' groups.' 
        READ (1,*) sigabs 
        IF(sigabs.GT.1E-10)THEN 
          rmfpa = 1.0/sigabs 
        ELSE 
          rmfpa = 0.0 
        END IF 
        WRITE(*,*) ' siga = ',sigabs, ' 1/cm,    mfp= ',rmfpa,' cm'  
        rr(igrpcnt)=0.00 
      ELSE   
        igrpcnt=igrpcnt-1 
      END IF 
! 
!     Get flux datafile assignment data from 2  
!  
250     CONTINUE 
        READ (2,*,END=400) datfnam 
! 
!       Open flux datafile and read vectors of flux data 
! 
!       The flux files are opened below and the read statement dumps 
!   the header information to dummy.  The write statement lists 
!   the name of the flux file and the read statement at 350 
!   begins to pull out the necessary data. 
!  
          OPEN (10, FILE = datfnam, ACCESS='SEQUENTIAL') 
           READ (10,'(A)') dummy 
           WRITE(*,'(A18,A40)')' Read data from : ', datfnam 
300        CONTINUE 
           READ (10,*,END=350) (tstnum(iety), iety=1,ntdat) 
! 
!    The read statements above read information from columns 
!    1 to n of the flux file datfnam  
!    When the EOF is reached, control goes to line 350. 
!      
!          If target material compute response from that cell  
!  
           IF (INT(tstnum(itargm)).EQ.nmat) THEN 
             imatcnt=imatcnt+1   
             itstcm=INT(tstnum(icmidx))  
             voltarg = voltarg + vol(itstcm)  
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             fluxmaxold = fluxmax  
             fluxmax=MAX(fluxmax, tstnum(iflux))  
! 
!            Compute group rxn rate and total rxn respons  
! 
             rr(igrpcnt) = rr(igrpcnt) +  
     &            (tstnum(iflux) * sigabs * vol(itstcm))  
             respons = respons +  
     &            (tstnum(iflux) * sigabs * vol(itstcm))  
           END IF  
         GOTO 300 
350     CONTINUE 
        CLOSE(10) 
! 
!       Finished a group...  wrap up responses: 
! 
1200    FORMAT(A7,I6,1X,A7,I3,1X,A17,F10.2,A4) 
        WRITE(*,1200) ' Found ',imatcnt,' matl# ',nmat, 
     &  ' meshes covering ', voltarg,' cm3'  
! 
        WRITE(*,'(A5,I3,A1,1PE10.3,A5,A15,1PE13.6,A10, 
     &    0PF6.2,A1,0PF6.2,A1,0PF6.2,A2,1PE13.6)') 
     &   ' Grp ',igrpcnt,' ',grpegy(igrpcnt),' MeV ',' abs  #/s : ', 
     &    rr(igrpcnt) 
        WRITE(*,*)' '  
!  
!       Compute Response-Weighted max flux, and energy    
!  
        favgmx=favgmx + (fluxmax*rr(igrpcnt)) 
        eavgmx=eavgmx + (grpegy(igrpcnt)*rr(igrpcnt)) 
! 
!       If any left, do more groups 
! 
        IF(igrpcnt .EQ. ingrp) THEN 
          GOTO 400 
        END IF  
      GOTO 200 
! 
400   CONTINUE 
! 
!     Report avg Results 
! 
      favgmx = favgmx/respons  
      eavgmx = eavgmx/respons      
!  
1000  FORMAT(' ',A28,I3,A9,1PE13.6,A7)  
!      
      WRITE(* ,*) '  -- Summary for ',matname,' --'  
      WRITE(* ,*) ' Tot Src: ', totsrc,' #/s'  
      WRITE(* ,1000)' Total Neutron Response from ', ingrp, 
     & ' Groups: ',  respons,' cts/s ' 
      WRITE( *,*) ' Response/source: ', 
     &    (respons/totsrc)     
      WRITE( *,*) ' Response/source/cm3: ', 
     &    (respons/totsrc/voltarg)     
      WRITE( *,*) ' Avg g Resp-Weighted flux ',favgmx ,' n/cm2/s ' 
      WRITE(* ,*) ' Avg g Resp-Weighted energy ',eavgmx ,' MeV ' 
      WRITE(* ,*) ' ' 
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      WRITE(* ,*)' --- End of Data for ',matname,' ---'  
      WRITE(* ,*) ' ' 
! 
      CLOSE(2) 
      CLOSE(1) 
      CLOSE(11)  
!   
      STOP  
! 
      END 
 
 

The energy.fwd file called within REACT is the same as that attached to Appendix F. 
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