
MULTI-CAMERA UNCALIBRATED VISUAL SERVOING

A Thesis
Presented to

The Academic Faculty

by

Matthew Marshall

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Mechanical Engineering

Georgia Institute of Technology
August 2013

Copyright c© 2013 by Matthew Marshall

MULTI-CAMERA UNCALIBRATED VISUAL SERVOING

Approved by:

Dr. Harvey Lipkin, Committee Chair
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Ayanna Howard
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Nader Sadegh
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Wayne Daley
GTRI
Georgia Institute of Technology

Dr. Jun Ueda
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Ai-Ping Hu
GTRI
Georgia Institute of Technology

Date Approved: 27 June 2013

Dedicated to the memory of Floreine Langston, who valued education.

iii

ACKNOWLEDGEMENTS

Thanks to the members of my reading committee for their assistance, especially Dr. Sadegh

for his early contribution. Thanks to Dr. Lipkin for constantly being willing to talk about

all things engineering and for his patience. If this document is at all concise then the credit

goes to him. Also, his refusal to accept partial understanding is an inspiration. Thanks to

my wife, Laura, for all her help; we learned a lot about ourselves. Financial and technical

support came from Georgia Tech Research Institute, Food Processing Technology Division.

Thanks to G. V. McMurray, FPTD division chief, for his steadfastness.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF SYMBOLS OR ABBREVIATIONS xiv

SUMMARY . xvi

I INTRODUCTION . 1

1.1 Overview . 1

1.2 Motivation . 1

1.3 Contributions . 4

1.4 Outline . 5

II REVIEW OF PERTINENT VISUAL SERVOING LITERATURE . . 8

2.1 Visual Servoing Overview . 8

2.2 Various Feature Types . 9

2.3 Estimating the Composite Jacobian (Interaction Matrix) 9

2.4 Control Laws . 11

2.5 Occlusion Handling . 11

2.6 Multiple Cameras in VS . 12

2.7 Summary . 14

III A KALMAN FILTER BASED CONTROL LAW 15

3.1 Gauss-Newton Control Law . 15

3.1.1 Newton’s method . 15

3.1.2 Newton’s method in visual servoing 16

3.2 Kalman Filter Control Law . 19

3.2.1 Background . 20

3.2.2 Static and dynamic recursive least squares 20

3.2.3 Kalman equations . 24

v

3.2.4 System definition . 24

3.2.5 Control action . 31

3.2.6 Comparison of static and dynamic RLS control laws 34

3.2.7 Noise covariance . 40

3.2.8 Initialization of the algorithm . 41

3.3 Summary . 41

IV ADAPTIVE KALMAN FILTER CONTROL LAWS 43

4.1 Correlation Approaches . 44

4.2 Covariance Matching Approaches . 45

4.2.1 Fading and scaling factors . 49

4.2.2 Fuzzy logic . 50

4.3 Adaptive Measurement Noise Covariance in Uncalibrated Visual Servoing . 50

4.4 Summary . 52

V DECENTRALIZED ADAPTIVE KALMAN FILTER FOR UVS . . . 54

5.1 Data Fusion . 54

5.2 Gauss-Newton Control Law for Multiple Cameras 56

5.2.1 Dealing with sensor failure . 59

5.3 Decentralized Kalman Filter Derivation . 60

5.3.1 Local equations . 60

5.3.2 Information matrix . 63

5.3.3 Derivation of fusion equations . 65

5.3.4 Summary of decentralized Kalman equations 66

5.4 Decentralized Adaptive Kalman Filter For VS Control 67

5.4.1 Alternate examples of weighted data fusion 68

5.4.2 Dealing with sensor failure . 70

5.5 Summary . 70

VI ALGORITHM AND SETUP FOR EXPERIMENTS AND SIMULA-
TIONS . 72

6.1 Algorithm Summary . 72

6.2 Setup for Experiments . 73

6.2.1 Image data . 77

vi

6.3 Process Flow and Termination . 82

6.4 Summary . 83

VII SIMULATION RESULTS . 84

7.1 Setup for Simulations . 85

7.1.1 Robot model . 85

7.1.2 Camera model . 85

7.2 General Description of Simulations . 86

7.3 Comparing High-Cost and Low-Cost Cameras for Visual Servoing 88

7.3.1 Moving target . 88

7.3.2 Static target . 90

7.4 Handling Camera Failure . 94

7.5 Using Heterogeneous Sets of Cameras . 95

7.5.1 Moving target . 97

7.5.2 Static target . 101

7.5.3 Evaluation of camera weighting . 115

7.6 Summary . 127

VIIIEXPERIMENTAL RESULTS . 132

8.1 Moving-Target Trials . 134

8.2 Static-Target Trials . 138

8.3 Summary . 140

IX CONCLUDING REMARKS . 143

9.1 Major Contributions . 143

9.2 Controllability and Observability . 144

9.3 Noise Estimates . 144

9.4 Decentralized Architecture . 145

9.5 Simulation Results . 145

9.6 Experimental Results . 146

9.7 Summary . 146

9.8 Recommendations . 146

9.9 Future work . 147

vii

REFERENCES . 149

VITA . 156

viii

LIST OF TABLES

1 Known and unknown parameters in uncalibrated visual servoing 3

2 Average checkerboard-corners error norm (mm) for different moving target,
high-cost camera scenarios and different controllers. The notation for the
DAKF filters is “state space representation order”, “Y or N using input”,
“β”, “κ”, and “N”. 95

3 Kalman filter control law variations used in heterogeneous camera sets sim-
ulations . 97

4 Minimum, average, and maximum average checkerboard-corners error (mm)
for best controllers tested from three categories. The notation for the DAKF
filters is “state space representation order”, “Y or N using input”, “β”, “κ”,
and “N”. 101

5 Minimum, average, and maximum iterations to convergence S for best con-
trollers tested from three categories. The notation for the DAKF filters is
“state space representation order”, “Y or N using input”, “β”, “κ”, and “N”. 111

6 Experimental scenarios . 133

7 Experimental results for moving target . 136

8 Simulated and experimental average tracking error (mm) for similar moving-
target scenarios . 138

9 Experimental results for stationary target 140

ix

LIST OF FIGURES

1 Two iterations of Newton’s method . 16

2 Membership functions of DoM and ∆R for the “adaptive fuzzy Kalman
filter” of Sung et al. 51

3 Centralized architecture example . 56

4 Hierarchical architecture example . 57

5 Decentralized architecture example . 57

6 Fully connected decentralized architecture example 61

7 Overall system layout . 77

8 Six-axis KUKA KR 15 SL robot arm . 78

9 Fixed camera locations in experiments . 79

10 Image feature extraction comprises twelve checkerboard vertices. 79

11 Images from the four cameras; counterclockwise from top left, view from
Camera 3 (circled in the image is Camera 1), view from Camera 2 (circled in
the image is Camera 4), view from Camera 4 (circled in the image is Camera
2), and view from Camera 1 (circled in the image is Camera 3) 80

12 Simulation image data from twenty frames of a static target acquired by
the high-cost camera model (left) and the low-cost model (right) placed at
identical positions . 87

13 Average checkerboard-corners error norm using either high-cost or low-cost
cameras and different control laws (Q = 5I for DAKF). The top five lines
represent Low-cost camera trials and the bottom five lines are for high-cost
camera trials. 89

14 Image plane data from two high-cost cameras, moving target trial 90

15 3-D data using two high-cost cameras, moving target trial 91

16 Image plane data from four low-cost cameras, moving target trial 92

17 3-D data using four low-cost cameras, moving target trial 93

18 Average ending position error norm using either high-cost or low-cost cameras 93

19 Image-plane coordinates using DAKF controller with four high-cost cameras,
each given 75% chance of failing during servoing — static target 96

20 Average checkerboard-corners error norm using combinations of high- and
low-cost cameras with GN and 24 variations of DAKF, “0” or “1” refers to
the state space representation order and “Y” or “N” refers to with or without
input . 98

x

21 Average checkerboard-corners error norm using combinations of high- and
low-cost cameras with GN and 24 variations of non-adaptive decentralized
Kalman filter, “0” or “1” refers to the state space representation order and
“Y” or “N” refers to with or without input 99

22 Image-plane coordinates using GN controller with one high-cost camera (Cam-
era 1) and two low-cost cameras — moving target 102

23 3-D coordinates using GN controller with one high-cost camera (Camera 1)
and two low-cost cameras — moving target 103

24 Image-plane coordinates using DAKF controller with one high-cost camera
(Camera 1) and two low-cost cameras — moving target 104

25 3-D coordinates using DAKF controller with one high-cost camera (Camera
1) and two low-cost cameras — moving target 105

26 Average checkerboard-corners error (mm) for each of 100 trials with three
high-cost cameras using first order DAKF and GN, moving target 106

27 Average checkerboard-corners error norm (mm) for each of 100 trials with
one high-cost camera and two low-cost cameras using first order DAKF and
GN, moving target . 107

28 S̄ using combinations of high- and low-cost cameras with GN and 24 varia-
tions of DAKF, “0” or “1” refers to the state space representation order and
“Y” or “N” refers to with or without input 108

29 S̄ using combinations of high- and low-cost cameras with GN and 24 vari-
ations of non-adaptive decentralized Kalman filter, “0” or “1” refers to the
state space representation order and “Y” or “N” refers to with or without
input . 109

30 Innovation (pixels) for all three filters at every iteration of a moving-target,
three-camera trial with CH = 1 (“cam 1”) 110

31 Innovation (pixels) for all three filters at every iteration of a static-target,
three-camera trial with CH = 1 (“cam 1”) 110

32 Number of iterations to convergence S for each of 100 trials with three high-
cost cameras using first order DAKF and GN, static target 112

33 Number of iterations to convergence S for each of 100 trials with one high-
cost camera and two low-cost cameras using first order DAKF and GN, static
target . 113

34 Image-plane coordinates using GN controller with one high-cost camera (Cam-
era 1) and two low-cost cameras — static target 114

35 3-D coordinates using GN controller with one high-cost camera (Camera 1)
and two low-cost cameras — static target 115

36 Image-plane coordinates using DAKF controller with one high-cost camera
(Camera 1) and two low-cost cameras — static target 116

xi

37 3-D coordinates using DAKF controller with one high-cost camera (Camera
1) and two low-cost cameras — static target 117

38 Average trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = 5I and N = 20

— moving target . 118

39 Average trace
(
R̂(i)

)
(pixels2) using zeroth order with input DAKF Q = 5I

and N = 12 — static target . 118

40 trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = 5I and N = 20 with

CH = 1 (“cam 1”) — moving target . 119

41 trace
(
R̂(i)

)
(pixels2) using zeroth order with input DAKF Q = 5I and N =

12 with CH = 1 (“cam 1”) — static target 120

42 Innovation ν
(i)
k (pixels) using zeroth order with input DAKF Q = 5I and

N = 12 with CH = 1 (“cam 1”) — static target 120

43 Average trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = 3I and N = 20

— moving target . 121

44 Average trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = 1I and N = 20

— moving target . 122

45 trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = 3I and N = 20 with

CH = 1 (“cam 1”) — moving target . 123

46 trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = I and N = 20 with CH = 1

(“cam 1”) — moving target . 123

47 3-D coordinates using DAKF controller Q = 5I with one high-cost camera
(Camera 1) and two low-cost cameras — moving target 124

48 3-D coordinates using DAKF controller Q = 3I with one high-cost camera
(Camera 1) and two low-cost cameras — moving target 124

49 3-D coordinates using DAKF controller Q = I with one high-cost camera
(Camera 1) and two low-cost cameras — moving target 125

50 Average trace
(
R̂(i)

)
(pixels2) using zeroth order with input DAKF Q = 3I

and N = 12 — static target . 125

51 Average trace
(
R̂(i)

)
(pixels2) using zeroth order with input DAKF Q = 1I

and N = 12 — static target . 126

52 trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = 3I and N = 20 with

CH = 1 (“cam 1”) — static target . 126

53 trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = I and N = 20 with CH = 1

(“cam 1”) — static target . 127

xii

54 Image-plane coordinates using DAKF controller Q = I with one high-cost
camera (Camera 1) and two low-cost cameras — failure to converge to static
target . 128

55 3-D coordinates using DAKF controller Q = I with one high-cost camera
(Camera 1) and two low-cost cameras — failure to converge to static target 129

56 trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = I and N = 20 with CH = 1

(“cam 1”) — failure to converge to static target 129

57 Innovation ν
(i)
k (pixels) using first order DAKF Q = I and N = 20 with

CH = 1 (“cam 1”) — failure to converge to static target 130

58 Image feature coordinates for the DAKF controller with one camera (Camera
4) — stationary target . 134

59 3-D coordinates for the DAKF controller, scenario 1 (one camera — Camera
4) — stationary target . 135

60 3-D coordinates using GN controller, scenario 1 (one camera — Camera 4)
— moving target . 135

61 Feature image coordinates for the DAKF controller, scenario 3 (four cameras,
three of which — Camera 2, Camera 3, and Camera 4 — go offline for portions
of servoing) — moving target . 137

62 3-D coordinates for the DAKF controller, scenario 3 (four cameras, three of
which — Camera 2, Camera 3, and Camera 4 — go offline for portions of
servoing) — moving target . 138

63 3-D coordinates for the DAKF controller, scenario 5 (two cameras — Camera
2 and Camera 4) — stationary target . 139

64 Feature image coordinates using GN controller with three noisy cameras
(Camera 1, Camera 3, and Camera 4) — stationary target 140

65 Feature image coordinates for the DAKF controller with three noisy cameras
(Camera 1, Camera 3, and Camera 4) — stationary target 141

66 3-D coordinates using GN controller with three noisy cameras (Camera 1,
Camera 3, and Camera 4) — stationary target 141

67 3-D coordinates for the DAKF controller with three noisy cameras (Camera
1, Camera 3, and Camera 4) — stationary target 142

xiii

LIST OF SYMBOLS OR ABBREVIATIONS

ALS autocovariance least-squares; an adaptive filtering technique.

DAKF decentralized adaptive Kalman filter.

DKF decentralized Kalman filter; a sensor-fusion architecture.

EKF extended Kalman filter; used for non-linear systems.

EWRLS exponentially weighted recursive least squares; means of implementing a sliding
window for recursive least squares.

GN Gauss-Newton.

IBVS image-based visual servoing.

KF Kalman filter.

PBVS position-based visual servoing.

RLS recursive least squares.

TCP tool center point; the origin of the robot tool coordinate system.

UVS uncalibrated visual servoing.

VS visual servoing.

α camera inclusion threshold for centralized sensor-fusion architecture with Gauss-
Newton.

β scalar multiple for the process noise covariance estimate; Q = βI.

θ robot joint coordinates.

f image-plane error; f ≡ y − y∗.

u system input vector.

v measurement equation error.

y image-plane coordinates of the robot end-effector.

z measurement vector.

νk innovation at time k; νk ≡ zk −Hkx̂k|k−1.

φ joint-space vector between the current robot position and the one at which the
image-plane error f is minimized; φ ≡ θ − θ∗.

θ∗ the robot joint coordinates at which the image-plane error f is minimized.

hω change in robot joint velocity from earlier time to current.

xiv

hθ change in robot position from earlier time to current.

w process equation error.

y∗ desired image-plane coordinates of the robot end-effector.

x̂ state estimate.

κ scalar multiple for the initial measurement noise covariance estimate; R0 = κI.

λ forgetting factor.

µ maximum allowable norm for a joint offset command to the robot.

Φ transition matrix.

Ĉν,k the estimated innovation covariance at time k.

R̂ adaptive measurement noise covariance matrix.

B process equation input matrix.

C total number of cameras in a system.

Cν expected innovation covariance.

E(i) local variance error information for the i-th filter.

e(i) local state error information for the i-th filter.

F process model.

H measurement model.

I the identity matrix.

J a linearization of the relationship between joint displacements and image-plane
displacements; J ≡ ∂y

∂θ .

K the Kalman gain.

k time increment.

N sample size for adaptive filtering.

P error covariance matrix.

Q process noise covariance.

R measurement noise covariance matrix.

W weighting matrix for objective function.

xv

SUMMARY

This thesis develops and analyzes a Kalman filter based decentralized adaptive

controller for uncalibrated visual servoing that exploits the benefits of multiple cameras.

Visual servoing uses image data for closed-loop robotic control. This can be performed

in a calibrated paradigm where camera parameters are used to estimate the relationship

between robot joint motions and changes in image-plane coordinates or this relationship can

be estimated numerically without camera parameters in what is known as uncalibrated visual

servoing. With good calibration, the former can yield higher precision. However, it is known

that multiple cameras increase accuracy in uncalibrated visual servoing [41, 43, 68]. Benefits

of multi-sensor systems can include system survivability, improved state estimates, and the

ability to substitute inexpensive sensors for an expensive one. Multi-camera uncalibrated

visual servoing that can survive camera occlusion or failure is reported in the literature

[37] but it does not provide a methodical camera weighting ability. The adaptive technique

employed in this thesis is shown to yield lower average error and smaller outliers than the

existing method.

The Kalman filter estimates the direction in joint space for the robot to move to minimize

image-plane error in what is shown to be a completely observable system. An adaptive

filtering technique is chosen, modified to ensure positive definite covariance estimates, and

applied to the visual servoing controller. It automatically adjusts the covariance matrix

associated with each camera to provide data weighting, which reduces system sensitivity to

noise and poor camera placement. The controller is placed in a decentralized architecture

that parallelizes computation and adds robustness to camera occlusion.

Visual servoing simulations and experiments are performed for a six-axis robot manip-

ulator with both moving and static targets. A non-adaptive version of the controller, if

tuned properly, yields equivalent performance to Gauss-Newton for low-noise scenarios and

improves performance in the presence of noise. The adaptive version makes tuning simpler

xvi

and further reduces error. Simulation and experimental results include the following points:

• For moving targets the tracking error, averaged over many trials, is reduced by 15%

using the decentralized adaptive Kalman filter (DAKF) controller compared to Gauss-

Newton (GN). DAKF also reduces outliers. For example, the worst DAKF perfor-

mance has only 47% of the tracking error for the worst GN trial.

• More pronounced improvement is noted for static targets. Over 100 trials, DAKF

reduces the GN average convergence time by 43%. Also, the worst DAKF convergence

time is less than one third of the worst GN convergence time.

• Discrepancies between experimental and simulation results for different scenarios

range between 2% and 19%, which is acceptably low considering the variations in

camera placement between them.

The thesis makes the following contributions:

• The first experimental data for uncalibrated visual servoing simultaneously using more

than two cameras

• A visual servoing control method that performs as well as Gauss-Newton under ideal

imaging circumstances and reduces error and convergence time in the presence of noise

• An automatic camera weighting method that requires neither robot nor camera pa-

rameters and is shown to further improve servoing performance

xvii

CHAPTER I

INTRODUCTION

1.1 Overview

This thesis introduces a control method for image-based robot guidance that exploits the

advantages of multiple cameras. It provides system survivability in the event of image

occlusion or camera failure and produces a control action based on statistically meaningful

data weighting without any prior knowledge of robot or camera parameters. The research

presents a novel control law that uses a Kalman filter and can track a moving target.

Adaptive filtering improves filter performance and it is decentralized for robustness and

distributed processing. System stability is shown and the control method is supported

experimentally and by simulation.

1.2 Motivation

Robots are employed in a variety of modern applications for tasks requiring repetitive high

precision motions. This typically requires foreknowledge of the environment in order to

program the robot controller. For example, a conventional robotic system for welding an

automobile chassis only functions properly if each new car is brought to the same position

relative to the robot. This requirement is a major limitation to expanding robot usage in

unstructured environments (those for which no knowledge can be assumed regarding the

relative position between the robot and the object to be manipulated).

Integrating visual sensing is one way to enhance robot capabilities. In the welding ex-

ample, if machine vision identifies the weld locations on the car frame then this information

can be used to guide the welding tool. When done in a closed-loop form this control is

referred to as visual servoing (VS). With recent increases in digital camera resolution and

sensitivity and higher processing speed, VS offers ever-more potential for the placement of

robots in unstructured environments. Applications include agricultural tasks, food process-

ing, explosive ordinance disposal, and disaster-zone inspections.

1

In VS systems cameras can be either mounted on the robot end-effector (eye-in-hand)

or at a distance such that the end-effector of the robot is in the field of view (eye-to-hand).

The camera data is used to track either the robot end-effector, a target object for the robot

to follow, or both by identifying a set of features in the images. The aim of VS is to actuate

the robot so that the features y from the vision system match a desired set y∗. In other

words, the robot joint displacements θ are controlled to minimize the error

f(θ, t) ≡ y(θ, t)− y∗(θ, t) (1)

There are two main components in a visual-servoing system, Jacobian estimation and

the control law. The Jacobian relates robot velocity in joint space to the velocity of the end-

effector in the image space. Once this relationship is estimated the control law determines

an action that best reduces f . Most VS literature focuses on the first component, Jacobian

estimation. This research deals with the control law formulation.

VS has been an active field of study for decades and it is commonly thought of as

having two branches: image-based and position-based. Image-based visual servoing (IBVS)

forms y based only on data available at the camera level, coordinates in the image space.

In position-based visual servoing (PBVS) y are Cartesian coordinates with respect to a

global frame, thus requiring knowledge of the camera position. There are advantages and

disadvantages to each method.

The primary benefit of PBVS is that it can provide optimized trajectories in Euclidean

space. On the other hand, PBVS requires precise camera calibration. Here calibration

here refers to both the extrinsic (location and orientation) and intrinsic (for example, focal

length) camera parameters. A drawback to IBVS is that the robot trajectory in Euclidean

space can be unpredictable. A meritorious aspect of IBVS is that it is more accurate in the

presence of imprecisely estimated system parameters [12].

A different VS taxonomy is calibrated or uncalibrated. Calibration refers to kinematic

and optical parameters, for example link lengths of the robot, location of the camera, or pitch

of the sensor (pixels per mm). (By necessity then PBVS is calibrated visual servoing.) In a

calibrated system these parameters are utilized to generate the Jacobian estimate and the

2

Table 1: Known and unknown parameters in uncalibrated visual servoing

Known Unknown

Robot degrees of freedom Robot kinematic parameters

Robot joint angles Camera locations

Number of cameras Camera intrinsic parameters (for

example, focal length or sensor pitch)

Target geometry

robot commands. Uncalibrated visual servoing (UVS) is able to control the robot without

knowledge of these parameters. In UVS the effect of robot joint motions on image-plane

coordinates is estimated through measurements of image feature coordinates and robot joint

positions, rather than by analytical means. The known and unknown parameters for an

uncalibrated system are listed in Table 1.

Uncalibrated visual servoing is well-suited to unstructured environments because de-

termining robot and camera parameters can be difficult therein. Rough treatment (for

example, of an explosive ordnace disposal robot) can degrade calibration accuracy. Alter-

natively, consider a mobile robot carrying a camera over irregular terrain. If this camera

provides image data for servoing of another robot then accurate extrinsic camera parameters

are not reasonable to expect.

In an unstructured environment it might be desirable to have a VS system that is

generically applicable. With an uncalibrated approach the same system can in one instance

guide a robot having prismatic joints and in another an anthropomorphic arm (or even a

wheeled robot). In this way the same controller can be used for different robots that would

fit a scenario better, without retooling between tasks.

When precise calibration is available, calibrated VS achieves better performance over

UVS with metrics such as settling time and precision [6, 58]. However, two cameras can

yield better performance than one so when uncalibrated VS is required its performance

can be improved by adding a camera [41, 68, 43]. No studies have investigated the effects

of more than two cameras in uncalibrated visual servoing. With the ubiquity of digital

cameras there is merit in knowing if, for example, a dozen low-resolution units can provide

3

better performance than two high-cost cameras.

In addition to performance metrics, handling the loss of feature measurements such as

due to occlusion is a large concern in VS. In controlled scenarios it is possible to opti-

mize camera placement with regards to visibility or to servo the robot to avoid occlusions.

Unstructured environments, however, provide no guarantees about lines-of-sight. Multiple

cameras can also hedge against occlusion by providing redundant data. Scant research

has been done regarding occlusion handling or camera failure in UVS. One exception is

Jägersand et al. [37] who use two cameras and track redundant features. This serves as a

bulwark in case of occlusion and their approach can be extended to handling camera fail-

ure. It treats all data as equally valuable though, which might not be optimal in the case

of heterogeneous cameras or considering that some cameras will give more accurate image

feature coordinates due to lighting differences etc. No schemes for weighting or prioritizing

data from multiple sources in uncalibrated visual servoing exist in the literature.

In summary:

• There is benefit to be gained by using robots in unstructured environments.

• Uncalibrated visual servoing is well-suited to unstructured environments.

• Using two cameras in visual servoing is known to provide reduced tracking error

compared to using a single camera [41, 43, 68].

• Multiple cameras make a system more robust to occlusion or camera failure.

• There are no uncalibrated visual servoing examples in the literature simultaneously

employing more than two cameras.

• No methods for multi-camera UVS exist that weight data from each camera.

Thus, there are significant voids in using multiple cameras for UVS.

1.3 Contributions

This thesis makes the following specific contributions:

4

• Introduction of a Kalman filter based VS control method that reduces noise sensitivity

and uses a covariance matching technique to weight camera data

• Controller decentralization through established means to provide system survivability

with retention of algebraic equivalence to a centralized approach

• Controller verification through experiments and simulation, and comparison with a

traditional control method

The research is contingent on the following assumptions:

• Within the robot dynamic limits and workspace, the joint-level servo control can

attain any desired position in one time step.

• The servoing path starts with the robot in a full column rank configuration (that is, not

in a kinematic singularity) and passes through another full column rank configuration

at least once during servoing.

1.4 Outline

The remainder of this thesis has the following organization:

Chapter 2 A survey of visual servoing literature is presented that pertains to uncalibrated

and multi-camera visual servoing. It provides general information on visual servoing and

establishes the context for the research. Most existing efforts focus on Jacobian estimation

and use zero-memory methods for the control law. No UVS research efforts simultaneously

use more than two cameras or weight data. The Kalman filter is used in VS, but either for

Jacobian estimation in an uncalibrated system or in 3-D position estimation for calibrated

visual servoing.

Chapter 3 A traditional control law is described that uses the Gauss-Newton method.

A discussion of the Kalman filter follows with application to visual servo control. This

recursive method provides probabalistic smoothing compared to traditional methods. The

Kalman filter is compared to an existing closely related recursive approach, exponentially

5

weighted recursive least squares. It does not require Kalman filter system descriptions,

which is beneficial for uncalibrated systems, so it cannot achieve the Kalman filter’s opti-

mality. Stability of the Kalman filter method is assessed and the resulting system is shown

to be observable and controllable.

Chapter 4 Adaptive filtering as means for updating system noise descriptions is discussed.

The suitability of four adaptive filtering categories is assessed with respect to the current

research. A covariance matching approach is selected, which adapts the measurement noise

description so that a theoretical covariance is brought into alignment with its estimated

value. The result is a positive definite covariance matrix describing measurement noise.

Chapter 5 To make allowance for data interruption, the Kalman filter control method

is decentralized. A traditional approach to handling data interruption is first discussed,

as is the general data fusion problem. Derivation of a fusion method for a decentralized

architecture is presented; the resulting estimate is shown algebraically equivalent to the

centralized estimate, thus retaining optimality.

Chapter 6 Pseudo-code algorithms for decentralized adaptive Kalman filter based visual

servoing are presented. Descriptions of the experimental testbed are also provided.

Chapter 7 Simulations of the experimental setup are performed to investigate the effects

of multiple cameras on uncalibrated VS, to test for stability with camera failure, and to

compare the new control method to GN for different camera scenarios. Both moving- and

static-targets are used for servoing. Special attention is given to the effects of adaptive

filtering on data weighting and the resulting control. The data show that the Kalman filter

method provides meaningful camera weighting, which improves VS performance. Additional

conclusions are made about the control methods.

Chapter 8 Visual servoing experimental results are presented. Performance is assessed

for the Kalman filter control method and GN in the following scenarios: stationary target,

moving target, single fixed camera, multiple fixed cameras with and without noise added,

6

multiple fixed cameras with episodic data interruption. Both control methods are shown

to survive the event of camera failure. Results also show that the Kalman filter controller

outperforms the traditional approach, especially for a stationary target. Results are in

agreement with simulation.

Chapter 8 The final chapter summarizes contributions and results. It also provides

suggestions for implementation and future work.

7

CHAPTER II

REVIEW OF PERTINENT VISUAL SERVOING LITERATURE

2.1 Visual Servoing Overview

Visual servoing for closed-loop robot guidance was introduced by Shirai and Inoue [70]

in 1973. Their aim was to desensitize the robot-and-vision system to calibration errors

compared to previous, open-loop architectures. They use image data to calculate the 3-D

position of both a box and a robot-mounted square prism. Using robot inverse kinematics

they move the joints to decrease the error between the measured and target positions of the

prism. This imaging-and-movement cycle is performed iteratively until the prism reaches

its desired state (inside the box). They demonstrate insertion with 2.5 mm of clearance.

Subsequently, there have been many different approaches developed to visual servoing.

Four classifications for VS were introduced by Sanderson and Weiss [66]:

1. Dynamic look-and-move

2. Direct visual servo

3. Position-based

4. Image-based

Joint-level control is the subject of items 1 and 2. In the first VS calculates the desired

joint positions for the robot joint angle servo control system. For the second, desired joint

torques are calculated directly by VS. Items 3 and 4 differ in how the feature coordinates

are computed. For position-based the feature Cartesian coordinates are given with respect

to the robot base. The work of Shirai and Inoue is dynamic look-and-move position-based

visual servoing. Another example is Ficocelli and Janabi-Sharifi [24] who use an analytical

camera model and an adaptive extended Kalman filter to estimate the Cartesian target

coordinates for visual servoing. In image-based visual servoing the measurements are tra-

ditionally the image-plane coordinates of a set of points [12].

8

The work of this thesis is classified as image-based VS since position-based requires

system calibration.

2.2 Various Feature Types

Alternatives to using points as features have been studied [13]. In one departure from con-

vention, Collewett et al. [16] circumvent image processing by using the intensity value of

each pixel as the feature vector. Their approach can improve VS performance by sidestep-

ping the requirements for feature identification and tracking but requires robot and camera

calibration. The use of lines instead of points is furthered by Espiau et al. [23] and Andreff

et al. [3] but require calibrated systems. The need for intrinsic camera parameters (focal

length, for example) is obviated by Malis et al. [49] who use lines for features. These ex-

amples are all dynamic look-and-move types of VS. In Wang et al. [78] feature lines are

used for a direct visual servo system without requiring intrinsic or extrinsic parameters for

an eye-in-hand camera, the extrinsic parameters being a Cartesian transformation from the

camera frame to the robot tool flange.

All of these approaches use the kinematic parameters of the robot. In an approach using

no robot or extrinsic camera parameters, Marshall et al. [50] employ the relative Cartesian

displacements of an eye-in-hand 3-D time-of-flight camera as feature measurements. The

current research uses points as features.

2.3 Estimating the Composite Jacobian (Interaction Matrix)

In addition to the four classifications listed in §2.1, the use of physical system parameters

in VS formulation serves as a taxonomic scheme so a system can be classified as either

calibrated or uncalibrated (see Table 1). To guide a robot based on data from a camera the

relationship between joint displacements and image-plane displacements must be modeled.

The relationship is non-linear and can be high dimensional. A linearization of this map is

called the (composite) Jacobian matrix, J , where

J ≡ ∂y

∂θ
(2)

9

where y comprises the feature image coordinates and θ is the robot joint displacement.

Formulating this matrix can be done analytically [14] using the system physical parameters

including robot kinematics, camera location, lens focal length and radial distortion param-

eter, and the size of the pixels. Alternatively the mapping can be estimated numerically.

Using a numerical approach constitutes uncalibrated visual servoing, introduced by

Hosoda and Asada [34]. They estimate the Jacobian through recursive least squares (RLS)

techniques and are limited to fixed targets and cameras. A planar case developed by Yoshimi

and Allen [81] has a robot place a peg in a hole. The control is driven by data from a camera

about which neither intrinsic nor extrinsic parameters are known but a model of the robot is

assumed. Jägersand [36] shows improved reliability with a Broyden update and an adaptive

trust region. Using a different RLS method to estimate the Jacobian, Piepmeier et al. [62]

demonstrate the ability to track a moving target with a robot-mounted (thus moving) cam-

era. Hao et al. [31] use the same algorithm but with an adaptive tuning factor. Rather than

estimating it iteratively, Sebastián et al. [68] use only the most “reliable” measurements in

their estimation of the Jacobian. They rank measurements based on the magnitude of the

associated movement (so as to mitigate the effect of noise) and the proximity to the current

position. A different method to obviate calibration is to use neural networks [32, 10]. These

systems do not require foreknowledge of the hardware parameters. The controller learns

the relationship between image data and robot coordinates via an extensive teaching phase.

Qian and Su [64] define state variables formed from elements of the image Jacobian matrix

and employ a Kalman-Bucy filter to estimate them online. Large performance losses are

noted in this type of controller as system noise increases [69].

The algorithm in Piepmeier et al. [63] is used herein for the Jacobian estimation. It

has been shown that the population-based method for Jacobian estimation presented by

Bonkovic et al. [8] tracks a moving target better than the recursive approach of Piepmeier,

though the latter performs better for stationary targets and yields smoother robot motion

[30]. A reason for eschewing the population-based method for multi-camera uncalibrated

visual servoing is that population length increases with the number of images and this leads

to computational requirements comparable to the cycle time of the robotic system.

10

Once a map between robot motion and image motion is obtained, servoing requires the

implementation of a control law. The majority of the work in VS centers on formulation of

the Jacobian matrix and this is especially true for uncalibrated VS. The work herein uses

the Jacobian estimation algorithm of Piepmeier et al. [63] and introduces a novel control

law in Chapter 3 based on Kalman filtering.

2.4 Control Laws

The control law determines robot commands based on feedback and the state of the system.

In visual servoing the state pertains to the positions (possibly also velocities and acceler-

ations) of the robot and target as measured by the robot joint encoders and by machine

vision. In a direct visual servo system commands are in the form of joint torques/forces

with Liu et al. [46] and Wang et al. [78] as examples. The more typical dynamic look-and-

move paradigm commands joint positions (or velocities) and there are many different such

control laws in the literature.

The most common control law is the Gauss-Newton algorithm detailed in Chapter 3.

Alternatives exist to achieve various ends. For example, classical control laws (see §3.1.1)

fail with the feature types (image pixel intensity values) used by Collewet et al. [16], so the

authors detail a new control law that minimizes a cost function using an approximation of

its second derivative and a tuning parameter.

Some unique control laws that are applicable only to calibrated systems are included here

for context. Dame and Marchand [18] servo a robot to maximize the mutual information

between the current and goal image. This alignment is robust to occlusions and variations of

illumination. Alternatively, Malis [48] introduces a second-order approximation for a quasi-

Newton method (see Chapter 3) that uses only first-order terms, but it cannot be applied

to uncalibrated VS since one of those terms is the Jacobian at the goal pose, requiring a

model.

2.5 Occlusion Handling

Loss of sensor data is an important issue to consider for visual servoing because a feature can

easily leave the field of view or have its line of sight to the camera blocked (occlusion). Triggs

11

and Laugier [76] present a method for predetermining optimal camera position based on

several factors, such as visibility. This is not feasible for unstructured environments, where

foreknowledge of the situation is not guaranteed.

One approach to dealing with the specter of occlusions is to avoid conditions that lead

to them. In a multi-robot work cell Lippiello et al. [43] predict self and mutual occlusions

using CAD models of the robots and objects in conjunction with an extended Kalman filter.

Use of such models is inconsistent with uncalibrated VS. Another approach to occlusion

avoidance in calibrated visual servoing is Cowan et al. [17] using navigation functions to

provide almost globally guaranteed convergence to a goal image while maintaining line of

sight of all the feature points.

Another approach is to utilize redundant information, though means of handling extra

data vary widely. As mentioned above, Collewet et al. [16] use the intensity of every pixel

in an image as features and for loss of visibility minimize a cost function based on the un-

occluded pixels. The Jacobian used in this approach is calculated analytically. Yoshihata et

al. [80] also use an analytically-formed Jacobian matrix and redundant feature data. They

track the image-plane position of four points on a miniature helicopter though only three

are needed to determine its position and orientation. The system allows occlusion of only

one point at a time. Early work by Jägersand et al. [37] discusses a method for dealing with

occlusions in uncalibrated VS. The image feature vector y (and also the target feature vector

y∗) contains redundant information so that if one (or more) features becomes occluded that

component of y is removed, as are the corresponding rows of the Jacobian. This technique

will serve as a benchmark against which to compare the Kalman filter approach presented

in Chapters 3, 4, and 5.

2.6 Multiple Cameras in VS

There are reasons beyond occlusion handling to use multiple cameras in visual servoing. Gao

and Su [27] guide a wheeled robot through an area using three fixed cameras where the robot

passes from one camera view to another. It is a kinematically uncalibrated system (only the

camera intrinsic parameters are required). They develop a switching method that passes

12

control off from one camera to the next as the robot moves through the different fields of

view by creating a weighted combination of the control actions generated from each camera

with the weights being dynamic. Gao and Su identify this as “control-level fusion” and

make the claim that its counterpart, “sensor-level fusion,” is not possible for uncalibrated

visual servoing but the centralized-architecture examples in Chapter 5 perform this type

of fusion. In Kühnlenz and Buss [40] an optimal camera (as determined by performance-

and task-related criteria) is selected from an available set, though in practice it was only

applied to an eye-in-hand pair.

Obtaining a higher control frequency is the aim of Schuurman and Capson [67] in their

application of multiple cameras to visual servoing. They interleave frames from multiple

cameras to achieve a sampling rate high enough for direct control (as opposed to dynamic

look-and-move).

Use of two cameras can improve tracking performance compared to systems with just

one camera, as demonstrated by Lamiroy et al. [41], Lippiello et al. [43], and Sebastián et

al. [68]. This thesis explores how far improvements extend with additional cameras.

A stereo rig is a common device used in two-camera visual servoing, as in the calibrated

eye-in-hand case of Lamiroy et al. [41]. Sebastián et al. [69] use a pair of fixed cameras

in an uncalibrated scheme. They reduce sensitivity to noise by using the epipolar geome-

try when estimating the Jacobian. Their approach relies on the ability to generate point

correspondences between images.

Another common camera pair is the “eye-in-hand/eye-to-hand” arrangement, which is

intended to take advantage of eye-in-hand camera maneuverability and high precision data

and the wide eye-to-hand camera field of view. Usually their data are used for separate tasks

rather than fusing them. For example, Flandin et al. [25] employ data from the eye-to-hand

camera to govern the translational motions of the robot end effector and the eye-in-hand

camera is used for orientation. Zhang et al. [82] safeguarded visibility with the eye-to-hand

camera and precision is afforded by the eye-in-hand camera. By default servoing is done

with the eye-in-hand camera unless the target is occluded, then servoing is switched to the

eye-to-hand camera. There are also studies in (position based) visual servoing that use data

13

from the two cameras simultaneously.

Data are completely integrated in an eye-in-hand/eye-to-hand scenario by Lippiello et

al. [44]. They use the extended Kalman filter (EKF) to create a pose estimate from both

cameras for position based (and thus calibrated) visual servoing. Assa et al. [4] also use

the EKF to estimate pose in a calibrated eye-in-hand/eye-to-hand scenario but they fuse

estimates from multiple EKF’s via ordered weighted averaging aggregation operators.

Stavnitzky and Capson [71] use a simple weighted linear combination of pose vectors

from two stationary cameras using a model-based system that is quasi-uncalibrated since

the robot kinematics are not required. These are all instances of sensor-level fusion of

camera data for visual servoing requiring calibration.

2.7 Summary

In summary, various feature types can be used in VS though all existing uncalibrated sys-

tems track points. The Jacobian matrix can be numerically estimated using many different

techniques and a well-established algorithm is selected for this research. Few control law

options are reported for UVS. Conversely, there exist numerous control laws for calibrated

visual servoing. In the existing literature weighted sensor-level fusion of vision data is only

performed for calibrated systems. It has been stated that this is not possible for uncal-

ibrated visual servoing [27] but this thesis demonstrates otherwise. Much work has been

done in VS with two cameras. No studies simultaneously employ more than two.

14

CHAPTER III

A KALMAN FILTER BASED CONTROL LAW

This chapter presents a visual servoing control law based on the celebrated Kalman filter,

which estimates a changing state based on a process model and noisy measurements. In

the current context the filter estimates the joint-space distance between the robot and the

target. Given accurate statistical process and measurement error models the filter is known

to provide optimal estimates, minimizing the expected estimate error. Using the Kalman

filter also facilitates an adaptive decentralized system that automatically weights camera

data and is robust to data interruption. The Kalman filter’s recursive nature provides

control less sensitive to noise than traditional VS methods.

For comparison, the most common approach to designing a VS control law is discussed.

It uses a version of Newton’s root finding method to minimize the error f between robot

and target image-plane coordinates. The Gauss-Newton variation is favored in practice

because the difficult Hessian matrix (H = ∂2y
∂2θ

= ∂J
∂θ) computation is not required.

3.1 Gauss-Newton Control Law

3.1.1 Newton’s method

Newton’s method is an iterative approach to solving the scalar equation g(x) = 0 and is

often applied to VS. Making an affine approximation of g at the initial guess x0 gives

g(x) ≈ m0(x) = g(x0) + g′0(x− x0)

where g′0 ≡ g′(x0). An improved estimate solves the affine approximation m0(x) = 0, as

g(x0) + g′0(x1 − x0) = 0

to yield the new estimate

15

Figure 1: Two iterations of Newton’s method

x1 = x0 −
g(x0)

g′0

as the intersection of the x-axis and the tangent to g(x) at x0, see Figure 1.

To reach an acceptably accurate solution, the iteration continues until the difference

between successive estimates is within some predetermined threshold value. The estimates

are calculated as

x2 = x1 −
g(x1)

g′1
...

xk+1 = xk −
g(xk)

g′k

3.1.2 Newton’s method in visual servoing

Visual servoing systems are often over constrained where the number of image features is

greater than the robot degrees of freedom, and so in general (due to camera noise) there

is no robot position that makes the error zero. Therefore, the computation of the desired

16

joint positions is routinely treated as a minimization problem, usually of the error-squared

objective function G,

G(θ, t) = fT(θ, t)Wf(θ, t) (3)

where the weighting matrix W typically is the identity matrix I and f ≡ y − y∗ is the

image-plane error defined in (1), y is the robot image features and y∗ is the target image

features.

The robot position that solves the minimization problem at a given time tk is denoted

θ∗,

G(θ∗, tk) = minG(θ, tk) (4)

Newton’s method is useful in minimization since local minima (or maxima) of a function

can be obtained by solving

g′(x) = 0

To find θ∗ using Newton’s method for an unweighted system first represent the objective

function (3) by its Taylor series about θ and t,

G(θ + hθ, t+ ht) = G(θ, t) +Gθhθ +Gtht + . . .

where Gθ and Gt are partial derivatives and hθ and ht are small steps. Holding t fixed, G

is minimized over θ by solving

∂G(θ + hθ, t+ ht)

∂θ
= 0

via Newton’s method,

Gθ +Gθθhθ +Gtθht = 0

hθ = − (Gθθ)
−1 (Gθ +Gtθht)

17

where

Gθ = JT
k fk

Gθθ = JT
k Jk +

∂JT
k

∂θ
fk = JT

k Jk + Sk

Gtθ = JT∂y
∗(t)

∂t
and

Jk =
∂y(θ)

∂θ

From Chapter 1, y(θ, t) and y∗(θ, t) are the image-plane coordinates of the robot end-

effector and the target, respectively. This yields what Piepmeier et al. [60] dub the dynamic

Newton’s method

φ̂k =
(
JT
k Jk + Sk

)−1
(
JT
k fk − JT

k

∂y∗(t)

∂t
ht

)
(5)

where φ ≡ θ − θ∗ is the joint-space vector between the current robot position and the one

that minimizes fTf , that is, the goal robot position θ∗ introduced in (4). The notation hθ

is not used here because the distance θ − θ∗ can be large.

The term ∂y∗(t)
∂t ht in (5) facilitates servoing to moving targets. Leaving it out gives the

more standard Newton’s equation for visual servoing

φ̂k =
(
JT
k Jk + Sk

)−1
JT
k fk (6)

With uncalibrated VS the Jacobian J is estimated as Ĵ by one of the methods outlined

in Chapter 2. The S term in (6) and (5) is both difficult to compute and small when near

the target so it is often left out, yielding the Gauss-Newton (GN) method.

φ̂k =
(
JT
k Jk

)−1
JT
k fk (7)

An exception to this practice is the work of Fu et al. [26] who retain S by using a

secant approximation. The use of approximations for both of these first- and second-order

derivative terms qualifies their approach as quasi-Newton. Munnae [53] also retains the full

Hessian matrix Gθθ and as the robot approaches its goal uses heuristic criteria to switch

18

from an initial quasi-Newton method to a quasi-Gauss-Newton method (J is estimated

using the algorithm of Piepmeier [59]).

Besides Newton and Gauss-Newton, other minimization-based control laws are described

in the literature. Examples include the Jacobian Transpose control (or steepest descent)

method,

φ̂k = JT
k fk

and the Levenberg-Marquardt minimization method, which blends the Gauss-Newton and

steepest descent methods and offers protection against problems with singularities,

φ̂k =
(
JT
k Jk + λD

)−1
JT
k fk

where D comprises the diagonal elements of JTJ . Also, a recursive Gauss-Newton is intro-

duced by Gumpert [28] with details given in §3.2.6.2.

The Gauss-Newton control law is the most common in visual servoing. For example,

Deng and Jägersand [19] use it to compare three different Jacobian estimation methods. It

serves as the benchmark for the Kalman filter control law described below.

3.2 Kalman Filter Control Law

This section introduces a VS control law that mitigates the effects of noise and paves the

way for a statistically meaningful method of sensor fusion discussed in Chapters 4 and 5.

It uses the Kalman filter (KF) to efficiently estimate a changing state in the presence of

noise. It provides the best linear unbiased estimate for systems with Gaussian noise. For

non-Gaussian noise KF still provides the best linear estimator but a non-linear estimator

might do even better. As discussed in Chapter 2, KF is used in visual servoing literature for

Jacobian estimation in image-based visual servoing and 3-D pose estimation for the target

in position-based VS. Here KF estimates the joint-space error φ ≡ θ− θ∗ (and possibly its

velocity) where the goal robot position θ∗ is introduced in (4).

Derivations of the Kalman filter abound in technical literature (for example, [15, 72])

and are not repeated here. Instead, some of its salient features are discussed.

19

3.2.1 Background

The state estimate x̂ given by KF results from a prediction and a correction at each step

in time. The prediction comes from a process equation and the correction is by means of a

measurement z. It is a one-step process where the new estimate only requires values from

the previous step, since all the older values are built into the previous estimate. Also, the

estimation is a linear function of the previous estimate and the current measurement,

x̂new = Lx̂old +Kznew

Alternatively, the estimate is based on the difference between the expected and current

measurements,

x̂new = x̂old +K (znew −Hnewx̂old)

K is the “Kalman gain matrix” and depends on the relative certainty of the prediction

and the measurement. The difference between the actual measurement and a predicted one

(znew −Hnewx̂old), or the innovation, is multiplied by K to yield the correction to the last

estimate.

The Kalman filter also provides a measure of the estimate’s reliability in the form of the

error covariance matrix,

P = E
[
(x− x̂) (x− x̂)T

]
where E denotes the expected value. This estimate is based on statistical properties of the

system model, rather than any specific measurements z or state estimates x̂.

3.2.2 Static and dynamic recursive least squares

The KF is dynamic recursive least squares. That is, it provides estimates of a changing

state x by referring to its previous estimate of the state. Before dealing with KF further,

consider the non-recursive least squares approach to estimating a static x

20

xk = xk−1 = x (8)

There are two reasons that regular (static) least squares is important to consider. First,

it provides insight into KF and secondly, it enables comparison between a recursive least

squares (RLS) control law [28] and the KF control law introduced here.

The goal of least squares is to estimate a static vector x through sequential noisy mea-

surements

zi = Hx− vi

where the noise vi is assumed to be zero-mean, Gaussian white noise with covariance Ri.

After an initial measurement the system is given by H0x = z0 − v0 and we want to

estimate x as x̂0. When the dimension of z0 is greater than that of x and H0 has full rank

then there is either no solution or there is one solution. The latter scenario is for an exact

measurement (v0 = 0) so x̂0 = x. When noise is present x̂0 is calculated as a least squares

solution weighted by the inverse of the covariance matrix R0,

x̂0 =
(
HT

0 R
−1
0 H0

)−1
HT

0 R
−1
0 z0

When a new measurement z1 arrives

H0

H1

x =

z0

z1

−
v0

v1

the new estimate x̂1 reflects both z0 and z1 through the weighted least squares,

x̂1 =

[HT
0 HT

1

]R0 0

0 R1

−1 H0

H1

−1 [

HT
0 HT

1

]R0 0

0 R1

−1 z0

z1

 (9)

At time k the complete system is

21

H0

H1

...

Hk

x =

z0

z1

...

zk

−

v0

v1

...

vk

(10)

or

Ax = z− e

where the calligraphic script indicates the complete system up to time k. It follows that

the latest estimate of x is just

x̂k =
(
ATΣ−1A

)−1
ATΣ−1z (11)

where Σ is block diagonal comprising R0 . . . Rk as in (9).

Static recursive least squares is able to generate the same estimate as (11) with reduced

requirements for storage and computation [9],

x̂k = x̂k−1 +Kk (zk −Hkx̂k−1)

where Kk = PkH
T
k R
−1
k and Pk is the covariance of the estimate,

P−1
k = P−1

k−1 +HT
k R
−1
k Hk

For a dynamic x (the case for which KF was developed) there are measurements taken

at each step

zk = Hkxk + vk (12)

but (8) no longer applies because the state is changing over time. The change in state is

predicted by the following linear equation,

xk = Fk−1xk−1 +wk (13)

22

The error w, like v, is assumed to be zero-mean Gaussian white noise, this time with

covariance Qk. They are assumed to be uncorrelated,

E
(
wiv

T
j

)
= 0

for all i, j.

Up to time k, the complete system defined by (13) and (12) is

H0

−F0 I

H1

−F1 I

. . .

−Fk−1 I

Hk

x0

x1

x2

...

xk−1

xk

=

z0

0

z1

0

...

0

zk

−

v0

w1

v1

w2

...

wk

vk

(14)

or

Ax = z− e

The weighted least squares solution is given by (11) using A and z from (14) and

Σ =

R0

Q1

. . .

Rk−1

Qk

Rk

For this case the estimate x̂ is the best estimate for the entire history up to time k.

23

x̂ =

x̂0|k
...

x̂k−1|k

x̂k|k

The second subscript shows that the computation used all information up to and including

time k. Estimates x̂0|k . . . x̂k−1|k are called smoothed values; estimates of past states change

with subsequent measurements. With static RLS each step adds a new (block) row to A in

(10) but for the dynamic case a new column is also added, (see (14)).

3.2.3 Kalman equations

The Kalman equations recursively solve weighted least squares for a system with the fol-

lowing process and observation equations,

xk = Fk−1xk−1 +wk, wk ∼ N(0, Qk)

zk = Hkxk + vk, vk ∼ N(0, Rk)

(15)

(16)

where N(µ,Σ) refers to Gaussian noise with expected value µ and covariance Σ.

At time k, the Kalman filter provides an estimate x̂k|k and its error covariance matrix

Pk|k according to

x̂k|k−1 = Fk−1x̂k−1|k−1

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk

)−1

x̂k|k = x̂k|k−1 +Kk

(
zk −Hkx̂k|k−1

)
Pk|k = (I −KkHk)Pk|k−1

(17)

(18)

(19)

(20)

(21)

The prediction step comprises (17) and (18), and the correction step comprises (19)–(21).

3.2.4 System definition

The state being estimated is based on the difference between the current and goal robot

positions θ − θ∗ of (4). This joint-space error generally is a function of both θ and time.

24

Following sections present four different filters: zeroth order representation without input,

zeroth order representation with input, first order representation without input, and first

order representation with input.

The measurement of an image-based visual servoing system is the error f ≡ y − y∗

in image-plane coordinates defined by (1). It is necessary to relate the measurements to

the state in order to use the Kalman filter. The measurement model uses the following

approximation to (1)

fk ≡ yk − y∗k ≈ Jk(θk − θ∗k) (22)

where Jk is the composite Jacobian at time k mapping robot velocity in joint space to the

velocity of the end-effector in the image space. Due to non-linear robot kinematics the

approximation (22) is generally valid in the area around θk.

3.2.4.1 System using zeroth order state space representation without input

Here the estimated state is the joint-space error

x = φ ≡ θ − θ∗ (23)

The process equation predicts a constant error

xk = φk = φk−1 +wk (24)

which more faithfully represents tracking of a moving target than servoing to a stationary

one. The error term wk allows for the possibility that the joint-space error is changing with

time. Using approximation (22) the prediction is updated via the measurement equation

zk = fk = Jkφk + vk (25)

Once the noise covariance matrices Q and R are determined (see §3.2.7), equations (24)

and (25) enable the use of the Kalman equations (17)–(21) with Fk = I and Hk = Jk.

25

3.2.4.2 Zeroth order system with input

An input u can be applied to the process equation. The canonical form is then

xk = Fk−1xk−1 +Bkuk +wk

with input matrix B and the new state prediction

x̂k|k−1 = Fk−1x̂k−1|k−1 +Bkuk (26)

The rest of the Kalman equations (18)–(21) are unaltered.

A reformulation of the VS process equation (23) uses the change in joint angles as input

xk = φk = φk−1 + hθ,k +wk (27)

where hθ,k ≡ θk − θk−1 and B = I.

This implements a stationary-target assumption, as shown by substituting for φ and hθ

in (27) to get

θk − θ∗k = θk−1 − θ∗k−1 + θk − θk−1 +wk (28)

which reduces to

θ∗k = θ∗k−1 −wk (29)

This assumption can improve estimation with static targets but it lessens the system gen-

erality. However, in practice it is often known beforehand whether or not the target is

stationary so the trade-off is favorable. The measurement equation for this system is (25).

3.2.4.3 System using first order state space representation without input

A more detailed state description includes the error velocity as

x =

φ
φ̇

 (30)

26

Assuming a constant error velocity and no input, the process equation is

xk =

φk
φ̇k

 =

I htI

0 I

φk−1

φ̇k−1

+wk (31)

where ht is the elapsed time between iterations. Since there is no direct measurement of

image-plane error velocity the measurement equation is

zk = fk = [Jk 0]

φk
φ̇k

+ vk (32)

The system modeled by (31) represents one where the robot is steadily closing on the

target. The process error w allows for a varying rate of change. The measurement equation

(32) provides means for updating the error velocity estimate. Using F and H from (31)

and (32) the current estimate via (17), (19), and (20) is

̂̇
φk|k =

̂̇
φk−1|k−1 + p3,k|k−1J

T
k

[
Jkp1,k|k−1J

T
k +Rk

]−1 [
fk − Jkφ̂k|k−1

]
(33)

where p3 and p1 are blocks of P as

P =

p1 p2

p3 p4

To gauge the effects of different terms on the velocity estimate responsiveness to mea-

surements expand p3,k|k−1 and p1,k|k−1 using (18)

p3,k|k−1 = p3,k−1|k−1 + htp4,k−1|k−1 + q3,k (34)

p1,k|k−1 = p1,k−1|k−1 + ht
(
p2,k−1|k−1 + p3,k−1|k−1

)
+ h2

t p4,k−1|k−1 + q1,k (35)

where q3 and q1 are blocks of Q as

Q =

q1 q2

q3 q4

27

The salient points from (33)–(35) are that
̂̇
φ changes more rapidly with decreasing R and

q1 and increasing q3.

3.2.4.4 First order system with input

Similar to §3.2.4.2, input u can be added to the process equation (31) imposing some

assumptions on the independent motion of the target and possibly the robot. Three possible

forms are

uk =

 0

hω,k

 , uk =

hθ,k
0

 , or uk =

hθ,k
hω,k

where hω,k ≡ θ̇k − θ̇k−1. Including u in (31) with the definitions of φ, hθ and hω shows

that only one of these forms is logical. The three resulting versions of the process equation

are

θk − θ∗k
θ̇k − θ̇∗k

 =

θk−1 − θ∗k−1 + htθ̇k−1 − htθ̇∗k−1

θ̇k−1 − θ̇∗k−1 + θ̇k − θ̇k−1

+wk

θk − θ∗k
θ̇k − θ̇∗k

 =

θk−1 − θ∗k−1 + htθ̇k−1 − htθ̇∗k−1 + θk − θk−1

θ̇k−1 − θ̇∗k−1

+wk

θk − θ∗k
θ̇k − θ̇∗k

 =

θk−1 − θ∗k−1 + htθ̇k−1 − htθ̇∗k−1 + θk − θk−1

θ̇k−1 − θ̇∗k−1 + θ̇k − θ̇k−1

+wk

which reduce to

 φk
−θ̇∗k

 =

φk−1 + htφ̇k−1

−θ̇∗k−1

+wk (36)

−θ∗k
φ̇k

 =

−θ∗k−1 + htφ̇k−1

φ̇k−1

+wk (37)

−θ∗k
−θ̇∗k

 =

−θ∗k−1 + htθ̇k−1 − htθ̇∗k−1

−θ̇∗k−1

+wk (38)

28

Process equation (36) assumes a target moving with constant velocity. In (37) the target

is moving with velocity equal to the (constant) error velocity, thus the robot moves with

twice this velocity. In order for both top and bottom blocks of (38) to hold it follows that

θ̇ = 0 so the restriction is that the robot is not moving. This is an invalid assumption for

visual servoing and (37) imposes an unlikely restriction so only the constant target velocity

case (36) is feasible, where uT =
[
0 hT

ω,k

]
, yielding the process equation

xk =

φk
φ̇k

 =

I htI

0 I

φk−1

φ̇k−1

+

 0

hω,k

+wk (39)

and the measurement equation is (32).

3.2.4.5 Summary of formulations

The system

xk = Fk−1xk−1 +Bkuk +wk (40)

zk = Hkxk +Dkuk + vk (41)

has been formulated for image-based visual servoing in four ways:

1. zeroth order without input

2. zeroth order with input

3. first order without input

4. first order with input

In this section the vectors and matrices are identified for each formulation.

Zeroth order without input The system equation terms are

xk = φk ≡ θk − θ∗k, uk = 0, zk = fk

Fk = I, Bk = I, Hk = Jk, and Dk = I

29

which yield the equations

φ̄k = φ̄k−1 + w̄k

f̄k = Jkφ̄k + v̄k

Zeroth order with input The system equation terms are

xk = φk ≡ θk − θ∗k, uk = hθ,k ≡ θk − θk−1, zk = fk

Fk = I, Bk = I, Hk = Jk, and Dk = 0

which yield the equations

φk = φk−1 + hθ,k +wk

fk = Jkφk + vk

First order without input The system equation terms are

xk =

φk
φ̇k

 , uk = 0, zk = fk

Fk =

I htI

0 I

 , Bk = I, Hk = [Jk 0] , and Dk = I

which yield the equations

φk
φ̇k

 =

I htI

0 I

φk−1

φ̇k−1

+wk

fk = [Jk 0]

φk
φ̇k

+ vk

30

First order with input The system equation terms are

xk =

φk
φ̇k

 , uk =

 0

hω,k

 =

 0

θ̇k − θ̇k−1

 , zk = fk

Fk =

I htI

0 I

 , Bk = I, Hk = [Jk 0] , and Dk = 0

which yield the equations

φk
φ̇k

 =

I htI

0 I

φk−1

φ̇k−1

+

 0

hω,k

+wk

fk = [Jk 0]

φk
φ̇k

+ vk

3.2.5 Control action

The joint-space error φ ≡ θk − θ∗k estimated by the Kalman filter is used to set the robot

joint offset command as

∆θk+1 =

−φ̂k|k, if

∥∥∥φ̂k|k∥∥∥ < µ

−µ
φ̂k|k∥∥∥φ̂k|k∥∥∥ , otherwise

(42)

where µ is the maximum allowable joint offset norm, which is necessary to keep the robot

motion confined to one VS control period. This also aids Jacobian estimation since too

great a displacement renders the update less accurate. That is because the chosen Jacobian

estimation algorithm [63] is recursive and the map is only locally valid so a previous estimate

at distant θk−1 pulls the current estimate towards an invalid value.

3.2.5.1 Stability of Kalman filter control law

It is assumed that the joint-level servoing can attain any desired joint offset in one time

step for sufficiently small µ. Thus, the state equation for the robot position is

31

θk+1 = Fθk +B∆θk+1

and the reachability matrix C =
[
B FB F 2B . . . F a−1B

]
has rank a, the robot

degrees of freedom, because both F and B are the a × a identity matrix. A full-rank

reachability matrix is the criterion for a fully controllable discrete linear time-invariant

system. Therefore the robot is completely controllable under the assumption above.

The Kalman filter acts as an observer of the state x = φ (or
[
φT φ̇T

]T
for first order

representation). A linear system is said to be observable at t0 if x0 can be determined from

the output sequence z0 . . . zj for t0 ≤ tj , where tj is some finite time. If this is true for all

t0 and x0 then the system is said to be completely observable [9]. This property ensures the

convergence of P and bounded uncertainty (that is, error covariance).

In order for the system (40) and (41) to be completely observable at k = 0 there must

exist some finite index N such that the square matrix

X =

N∑
k=0

ΦT
k,0H

T
k HkΦk,0 (43)

is positive definite, where Φ is the transition matrix. Provided the input sequence u0 . . .uk

is zero then given the state xj , the state at any other time k is given by the mapping

xk = Φk,jxj [9].

For the formulations of §3.2.4.5 the process matrix F is constant. In such a case the

transition matrix is Φk,j = F k−j and (43) reduces to

X =

N∑
k=0

[(
F k
)T

HT
k HkF

k

]
This observability criterion is examined for the two state space representations of §3.2.4.5

and sufficient conditions are derived to ensure positive definite X for all N ≥ 1.

Zeroth order representation In this case F = I and Hk = Jk so X =
N∑
k=0

JT
k Jk. To

ensure positive definite X a sufficient condition is that Jl has full column rank for some

l, where 0 ≤ l ≤ N . The robot must be in a full column rank configuration at least once

32

during servoing. In that case X is the sum of a positive definite matrix and N positive

semidefinite matrices and is therefore positive definite.

First order representation In this case F =

I htI

0 I

 and Hk =

[
Jk 0

]
, where

0 < ht ≤ 1, which leads to the block matrix

X =
N∑
k=0

 JT
k Jk khtJ

T
k Jk

khtJ
T
k Jk k2h2

tJ
T
k Jk

X is positive definite if J0 and some Jm, 0 < m ≤ N are both full column rank.

Proof.

X =

JT
0 J0 + JT

mJm mhJT
mJm

mhJT
mJm m2h2JT

mJm

+
m−1∑
k=1

 JT
k Jk khtJ

T
k Jk

khtJ
T
k Jk k2h2

tJ
T
k Jk

+

N∑
k=m+1

 JT
k Jk khtJ

T
k Jk

khtJ
T
k Jk k2h2

tJ
T
k Jk

 (44)

Let Mk ≡
[
Jk khtJk

]
, then the block matrices for k 6= 0, m of (44) are MT

kMk and thus

are always positive semidefinite. Further, let

A =

JT
0 J0 + JT

mJm mhJT
mJm

mhJT
mJm m2h2JT

mJm

and subtract 1/mh times column 2 of A from the first column of A to get A′

A′ =

JT
0 J0 mhJT

mJm

0 m2h2JT
mJm

which has the same determinant as A. The determinant of a block triangular matrix is the

product of the determinants of its diagonal entries, so

det(A) = |JT
0 J0| · |m2h2JT

mJm| > 0

33

since JT
0 J0 and JT

mJm are both positive definite. Since A is positive definite and the block

matrices in the summation are positive semidefinite then X is positive definite.

Regarding the formulations in §3.2.4.5, the zeroth order systems are completely ob-

servable if the robot passes through a full column rank configuration at least once during

servoing. Complete observability of the first order systems necessitates the additional con-

dition that servoing begin with the robot in a full column rank configuration.

3.2.6 Comparison of static and dynamic RLS control laws

There is a difference between using the Kalman equations for an assumed static state and

using static RLS. An example using non-recursive forms shows a difference stemming from

the error wk in the process equation (15).

3.2.6.1 The steady model example

RLS and KF are used to estimate a scalar variable x based on scalar measurements z1 . . . zk.

zk = xk + vk (KF and RLS)

Errors vk are independent with variance Rk = 1. The difference in the approaches is that

while both assume x is unchanging, KF allows for the possibility that it does change via

the process error term wk, also with variance Qk = 1. For RLS the process equation is

xk = xk−1 (RLS)

and the KF form is

xk = xk−1 + wk (KF)

The RLS estimate after n measurements is the average

x̂n−1|n−1 =
z0 + z1 + . . .+ zn−1

n

34

as is seen in (11) with the n× 1 matrix A = [1 1 . . . 1]T and Σ = I with dimension n× n.

For KF, the complete system has the form of (14), where Hk = Fk = [1].

As an illustration, consider applying KF to this system for cases where n = 2 and n = 3

(with Σ = I of dimensions 3 × 3 and 5 × 5, respectively). The weighted normal equations

ATΣAx̂ = ATΣz are

 2 −1

−1 2

x̂0|1

x̂1|1

 =

z0

z1

 and

2 −1 0

−1 3 −1

0 −1 2

x̂0|2

x̂1|2

x̂2|2

 =

z0

z1

z2

 (45)

and the inverses
(
ATΣA

)−1
are

1

3

2 1

1 2

 and
1

8

5 2 1

2 4 2

1 2 5

For n = 2 (45) yields two estimates,

x̂0|1 =
2z0 + z1

3

x̂1|1 =
z0 + 2z1

3

whereas regular least squares gives

x̂1|1 =
z0 + z1

2

The KF estimate responds to the possibility of change in x by weighting recent mea-

surements more heavily than early ones. Also, the estimate x̂0 of the state at time 0 is

refined to include the new measurement (though weighted less than the old one), by the

smoothing process. Repeating this for the n = 3 case yields

x̂0|2 =
5z0 + 2z1 + z2

8
, x̂1|2 =

2z0 + 4z1 + 2z2

8
, and x̂2|2 =

z0 + 2z1 + 5z2

8

35

and least squares gives

x̂2|2 =
z0 + z1 + z2

3

The treatment of data approaches an exponential weighting (the Fibonacci numbers, in

fact). This example illustrates how RLS and Kalman filtering produce different results for

the same static system.

3.2.6.2 Exponentially weighted RLS control law example

Static RLS is simpler to implement than Kalman filtering because it does not require es-

timation of process noise. This is advantageous because process noise can be difficult to

quantify for complex systems. The downside of a noiseless process model is that the state

estimate responds slowly to parameter variations. A compromise is to discard old data in

static RLS estimation using a moving window. A popular method uses a weighting func-

tion, which “controls the way in which each measurement is incorporated relative to other

measurements” [21].

Exponentially weighted recursive least squares (EWRLS) uses an exponential of a con-

stant forgetting factor 0 < λ ≤ 1. The number of past measurements used for the estimate

is approximately 1
1−λ . Higher λ results in longer memory (a larger window), so “remem-

bering ratio” might be a more informative alliterative term than the common “forgetting

factor.”

EWRLS is a special case of the Kalman Filter. Its equations can be written in the

following Kalman form for comparison [21],

x̂k|k = x̂k−1|k−1 +Kk

(
zk −Hkx̂k−1|k−1

)
(46)

Kk = Pk−1|k−1H
T
k

(
HkPk−1|k−1H

T
k + λI

)−1
(47)

Pk|k =
1

λ
(I −KkHk)Pk−1|k−1 (48)

The double subscripts now are superfluous because there is no prediction step (for example,

x̂k|k−1 = Ix̂k−1|k−1) but they are left in for easy comparison with the Kalman equations

36

(17)–(21). Again, EWRLS assumes a static state (Fi = I) and makes no allowance for drift

(Qi = 0), the result of which is the smoothed value x̂i|k = x̂j|k. The other differences are

that Rk in (19) is replaced by λI in (47), and the inclusion of 1/λ in the estimate of P .

EWRLS can be said to be a special case of KF because both provide a recursive solution

to the weighted least squares problem,

Minimize (z− Ax)TW (z− Ax)

where W is a weighting matrix. The components of this problem have different values for

EWRLS and KF. They are given below for a system at time k with measurements z of

dimension n × 1 and a state vector x of dimension m × 1. This form shows that KF with

F = I, Q = 0, and R = I is equivalent to EWRLS with λ = 1.

37

EWRLS z− Ax =

z0

0

z1

0

...

0

zk

−

H0

−I I

H1

−I I

. . .

−I I

Hk

x

x

...

x

W =

λk−1In

0m

. . .

λIn

0m

In

KF z− Ax =

z0

0

z1

0

...

0

zk

−

H0

−F0 I

H1

−F1 I

. . .

−Fk−1 I

Hk

x0

x1

...

xk

W =

R−1
0

Q−1
1

. . .

R−1
k−1

Q−1
k

R−1
k

38

Solving the least squares problem with the EWRLS components z, A, x, and W , above,

is equivalent to minimizing the cost function,

εk =
k∑
i=1

(
λk−i ‖zi −Hixk‖2

)
(49)

To gain a sense of what εk means for the current application, substitute from (23)–(25)

and employ the approximation (22) to get

εk =

k∑
i=1

[
λk−i ‖fi − Jiφk‖2

]
This is an exponentially weighted sum of the squares of the differences between the measured

image plane error at time i and the expected value using the Jacobian at i and the current

joint-space error.

Gumpert [28] introduces a visual-servoing control law using EWRLS by extending the

dynamic Gauss-Newton method to have less sensitivity to noise and calls it a recursive

Gauss-Newton algorithm (RGN). He defines the state being estimated as the relative joint

offset necessary to minimize the weighted sum of the squares of the errors. In other words,

he uses RGN to estimate the state xk = hθk = θk+1 − θk so as to minimize (49). The

observation model Hk in his formulation is the composite Jacobian Jk. The control action

is

θk+1 = 2θk − θk−1 −Kk

(
fk +

∂fk
∂t

(tk+1 − tk) + Jk (θk − θk−1)

)
Kk = Pk−1J

T
k

(
JkPk−1J

T
k + λI

)−1

Pk =
1

λ
(I −KkJk)Pk−1

Data exist comparing the performance of this control law with dynamic Gauss-Newton.

Gumpert does so via a simulated two degree-of-freedom robot. Even without noise the

Gauss-Newton controller is more susceptible to instabilities than RGN, but the latter re-

quires slightly more time for convergence. With noise (±1 pixel) added the average RMS

error using RGN is lower than with the Gauss-Newton control law. Experiments performed

39

by Piepmeier [61] for a 2-DoF planar robot show similar performances between the two

controllers, yet her simulation of a 6-DoF Puma 560 manipulator tracking a target through

a circular path with ±0.5 pixel noise added to the image data gives slightly better results

for the dynamic Gauss-Newton controller than for RGN [62].

These data provide some validation of the impetus behind the RGN but overall there

is little gain is to be had over the classic Gauss-Newton control law. For this reason the

control laws introduced in Chapters 3, 4, and 5 are compared only to Gauss-Newton.

3.2.7 Noise covariance

The covariance matrices for the process and measurement noise vectors characterize short-

comings in the models and noise in the sensors. Conceptually, the difference in magnitude

between Q and R influences the filter in favor of either the process model or the mea-

surements. The covariance matrices also play integral roles in the behavior of the error

covariance of the state estimate. Influences on the process and measurement noise covari-

ance matrices are now examined.

Process error w is due to unfit robot-target motion assumptions. For example, servoing

to a stationary target using (23) and (24) merits larger Q elements than using (30) and

(31) does since VS is designed to guide the robot closer to the target at every step. The

covariance R of the measurement error pertains to the following sources:

• Inaccuracy of Jacobian estimate in the neighborhood of θk

• Inappropriateness of the linear approximation (22), which increases as robot gets

farther from the goal position (that is, large φ)

• Noise in robot joint sensors and discretization errors

• Noise in camera sensors and discretization errors

These sources of noise are harder to quantify than in the process equation. This is especially

true for an uncalibrated system where no prior information about sensors or kinematics is

known.

40

The fact that these values for Q and R are static (they do not change during servoing)

hinders performance of the filter, as discussed in Chapter 4. Furthermore, they are not in

keeping with the spirit of uncalibrated visual servoing since they require knowledge about

the system. Methods that address these issues are discussed in the next chapter

3.2.8 Initialization of the algorithm

The algorithm requires initialization of two quantities: x̂0|0 (that is, φ̂0|0) and P0. The

initial state estimate x̂0 is obtained from the Gauss-Newton method (7) using θ0, f0, and

J0

x̂0|0 =
(
JT

0 J0

)−1
JT
k f0

P0 is set to a diagonal matrix βI and theory states that for a controllable and observable

Kalman filter (see §3.2.5.1) the error covariance estimate converges regardless of its initial

value.

3.3 Summary

A traditional VS control law is described. The Kalman filter is applied to VS, estimating the

joint-space offset between the current robot position and that minimizing the image-plane

error norm fTf . Four versions are introduced, each with a different robot-target motion

assumption

• Constant joint-space error (zeroth order state space representation)

• Stationary target (zeroth order state space representation, with input)

• Constant joint-space error velocity (first order state space representation)

• Constant (joint-space) velocity target (first order state space representation, with

input)

The stability of these four filters is studied, the conclusion being that the robot must

begin servoing from a full column rank configuration and pass through at least one other

41

full column rank configuration during servoing to guarantee stability. The control action

resulting from the KF implementation is described, and the overall system is shown con-

trollable.

The sources of the noise covariances Q and R are discussed. Further discussion of these

matrices is presented in Chapter 4.

42

CHAPTER IV

ADAPTIVE KALMAN FILTER CONTROL LAWS

The Kalman filter control law of Chapter 3 is introduced to improve upon traditional control

laws for visual servoing. It uses two assumptoins: that the covariances of the process and

measurement noises are known and that they are constant (see §3.2.7). The present chapter

discusses the shortcomings of this second assumption and alternatives to it.

The Kalman equations (17–21) constitute a linear, unbiased, and minimum error vari-

ance algorithm; they provide an optimal estimate in the sense that the standard deviation

of the error probability density is minimized. To achieve optimality requires complete

knowledge of the process and measurement noise statistics, but in practice determining sat-

isfactory Q and R can be a struggle. Values for these matrices are often based on knowledge

of system parameters and on experience. Determining these for uncalibrated applications or

manual tuning can be difficult. Further, constant noise covariance matrices are problematic

for time-varying error sources.

Poor characterization of Q and R can lead to either unreliable estimates or divergence

of the filter, which typically means that the covariance matrix of the state estimate error

P does not adequately reflect the true error. Therefore, adaptive Kalman filtering has

been developed to adjust the noise covariance matrices as measurements become available.

Research has been active in this field for more than forty years and numerous techniques

exist. Mehra [52] describes the following four categories for adaptive filtering methods:

• Bayesian

• Maximum likelihood

• Correlation

• Covariance matching

43

Neither Bayesian nor maximum likelihood methods are favored in practice due to their

sometimes excessive computational requirements. This chapter reviews the other two types

of methods, provides references to implementations, and assesses the suitability of both

categories for the VS control law presented in Chapter 3.

4.1 Correlation Approaches

Two correlation approaches to adaptive Kalman filtering are discussed here. The classical

approach is presented by Mehra [51]. The more recent method comes from Odelson et al.

[57] and is called ALS for autocovariance least-squares. Different terms, “autocorrelation”

and “autocovariance,” are used in the two works, but they refer to the same quantity: “the

expectation of the data with some lagged version of itself” [57].

Mehra develops two different correlation methods, one based on the measurements zk

and the other on the innovation

νk ≡ zk −Hkx̂k|k−1 (50)

The innovation method is more efficient because innovations are less correlated than mea-

surements and is the preferred approach. “It is known from the theory of Kalman filtering

that the innovation sequence is a zero-mean Gaussian white noise sequence for an optimal

filter. However, for a suboptimal filter, the innovation sequence is correlated . . . ” [51]. The

measurement method is less efficient because zk does not represent totally new information,

as a portion of it is in the prediction Hkx̂k|k−1.

In both the classic approach and the ALS method the foundational quantity is the j-th

lag autocovariance of the innovation νk,

Cj,k ≡ E
[
νkν

T
k−j

]
This expectation is estimated as

Ĉj,k =
1

N − j

N−j−1∑
i=0

νk−iν
T
k−i−j (51)

where N is the sample size.

44

The classic approach, and those based on it, take three steps to estimate Q and R. The

first step uses (51) in a least squares problem to estimate PHT. The second calculates

R̂ = Ĉk −H
(
P̂HT

)
(52)

and the final step determines Q by employing the estimates of PHT and R.

Neethling and Young [56] point out that this results in statistical estimates with large

variances. One cause, according to Odelson et al. [57], is splitting the estimation of Q and

R into two stages. They improve upon the above method with the ALS technique.

ALS is a single-step procedure and, for a reported example, results in estimates with at

least an order of magnitude less variance than the classical approach. It is possible, though,

that the estimates of Q and R may not be positive semidefinite. Since such estimates are

without physical meaning, the authors add constraints to guarantee positive semidefinite

covariances. Åkesson et al. [1] introduce a specialized algorithm to solve this semidefinite

programming problem.

The ALS method is used by Wu et al. [79] to characterize the effects of plant mis-

match and unmodeled disturbances on estimates of zone temperatures for use with Model

Predictive Control of the ventilation system in a large scale livestock barn. They report

significant performance improvement with the adaptive filter compared to the traditional

manually-tuned system. This is one of only a handful of implementations of ALS reported

in the literature.

4.2 Covariance Matching Approaches

This category is the most widely used, most intuitive, and provides acceptable results (see

Chapters 7 and 8). These methods work to adjust either Q or R (or both) so that estimated

covariances are consistent with the theoretical values.

For example, the estimated covariance of the innovations is

Ĉν,k =
1

N

N−1∑
i=0

νk−iν
T
k−i (53)

45

Note the difference between this and (51) that here there is no lag between the data samples

in the outer product.

The theoretical covariance of the innovations can be obtained by applying the law of

covariance propagation to the innovation (50). This law states that if Y = BX + l and l is

known then the covariances of Y and X are related by

ΣY = B ΣXB
T

Proof.

ΣY = E
[
(Y − E[Y])(Y − E[Y])T

]
= E

[
(BX + a−BE[X]− a)(BX + a−BE[X]− a)T

]
= E

[
(BX −BE[X])(BX −BE[X])T

]
= BE

[
(X − E[X])(X − E[X])T

]
BT = B ΣXB

T

For the case where the vector l is subject to zero-mean noise (independent of X) its

covariance is included

ΣY = B ΣXB
T + Σl

Applying this to the innovation
(
νk = zk −Hkx̂k|k−1

)
yields

E[νkν
T
k] = (−Hk)Σxk|k−1

(−Hk)
T + Σzk = HkPk|k−1H

T
k +Rk (54)

or, using (18) for Pk|k−1,

E[νkν
T
k] = Hk

(
Fk−1Pk−1|k−1F

T
k−1 +Qk

)
HT
k +Rk

Note that these two equations are only approximate, since for a suboptimal filter (inaccurate

Q and R) Pk|k−1 and Pk−1|k−1 are not true representations of the error covariance of the

state estimate.

46

A covariance matching technique using the innovation yields an estimate of the mea-

surement noise covariance by combining (53) with (54) as

Ĉν,k =
1

N

N−1∑
i=0

νk−iν
T
k−i ≈ E[νkν

T
k] = HkPk|k−1H

T
k +Rk (55)

and subtracting HPHT from both sides yields the estimate for R at time k

R̂ν,k =
1

N

N−1∑
i=0

νk−iν
T
k−i −HkPk|k−1H

T
k (56)

This is the same form as (52) except here Pk|k−1 comes from the Kalman filter. The

value of N is chosen empirically to provide balance between statistical significance (large

N) and reactiveness (small N). One consolation about the need to manually tune this

parameter is given by Almagbile et al. [2], who report little effect on adaptive filtering

performance with changes in the window size.

Myers and Tapley [55] introduce an approach to estimate both Q and R at every it-

eration, whereas the above method estimates only R. The Myers-Tapley method for R

adaptation is similar to (56) except that instead of assuming a zero-mean it uses the sample

mean of ν

ν̂k =
1

N

N−1∑
i=0

νk−i

as the expected value in the estimated covariance of the innovation

Ĉν,k =
1

N

N−1∑
i=0

(νk−i − ν̂) (νk−i − ν̂)T

The resulting estimate of the noise covariance is

R̂k =
1

N

N−1∑
i=0

[
(νk−i − ν̂) (νk−i − ν̂)T −Hk−iPk−i|k−i−1H

T
k−i

]
To estimate Q they follow the same line, except with the following approximation for

the process error wk instead of the innovation

qk ≡ x̂k|k − Fk−1x̂k−1|k−1

47

with the result that

Q̂k =
1

N

N−1∑
i=0

[
(qk−i − q̂) (qk−i − q̂)T −

(
Fk−iPk−i−1|k−i−1F

T
k−i − Pk−i|k−i

)]
It is noted by Blanchet et al. [7] that using this as a basis to estimate both covariance

matrices might give poor performance, “since it is not easy to distinguish between errors

in Q and R.” Furthermore, the best results with the covariance matching approach are

obtained for the case in which Q is known but R is unknown [52]. The Myers-Tapley

algorithm has nevertheless been successfully implemented and remains highly cited.

For example, Lippiello et al. [45] update both Q and R for an EKF estimating the

position and orientation of a moving object. Despite the warning by Blanchet et al. cited

above about simultaneously updating the two noise covariance matrices, Lippiello et al.

report smaller errors in the estimate by doing this than by updating only one or the other

(or neither).

Another example using covariance matching to update both matrices comes from Han

et al. [29] who by doing so decrease the error in estimating the charge state of lead-acid

batteries compared to static covariances. They do not test the filter when estimating only

one of the covariances.

Ficocelli and Janabi-Sharifi [24] partially implement Myers-Tapley. They update Q in

their extended Kalman filter estimation of target pose for visual servoing. They estimate

the 6-D position of a target moving relative to a camera and compare the adaptive extended

Kalman filter with an EKF using static Q and R. For both filters, they perform two trials.

In one trial the object goes from rest to moving at constant velocity and then back to rest.

In the other it undergoes a variety of maneuvers. The dynamic model (F) for their filter

predicts constant-velocity motion of the target. For their standard EKF experiments they

set the values of Q to be low (zero, in fact) for the first trial and conservatively high for the

second trial. They find that the adaptive EKF outperforms the non-adaptive filter in both

instances.

The biggest concern [5] about the covariance matching approaches described is that they

48

do not guarantee positive semidefinite estimates of Q and R. The methods of the following

section always generate positive semidefinite estimates.

4.2.1 Fading and scaling factors

A covariance matching technique introduced by Jwo and Weng [39] combines conventional

KF with an adaptive tuning system that generates two scalar multipliers (λP and λR) for

updating Pk|k−1 and Rk.

Pk|k−1 = λP

(
FkPk−1|k−1F

T
k +Qk

)
, λP ≥ 1

Rk = λRRk−1

The purpose of the multipliers is to create a unity ratio from the traces of the estimated

value of the innovation covariance (53) and its theoretical value (54).

Multiplier λP is the fading factor and increasing it influences the filter towards mea-

surements (and away from the process model) during periods of high dynamic change in the

actual state. The authors test its efficacy alone and in conjunction with the measurement

noise scaling factor λR. Simulated navigation trials fusing data from the Global Position-

ing System (GPS) and an inertial navigation system (INS) show that the adaptive filter

is nearly ten times more accurate when using both λP and λR than when using only the

fading factor λP .

A similar work by Almagbile et al. [2] compares the performance of two covariance-

matching based adaptive filters. One assumes R is known and applies a scaling factor to Q,

and the other assumes Q is known and uses (56) to update R. The authors observe that the

Q-scaling method is less sensitive to inaccuracies in the assumed R value than the method

of estimating R is to errors in the assumed value of Q. On the other hand, the Q-scaling

method provides less accuracy in the state estimate than does the R adaptation.

The scaling approaches are based on the traces of covariance matrices, which discards

some information contained in (53) and (54). They are not used in the present work.

49

4.2.2 Fuzzy logic

Covariance matching is used as the basis for many fuzzy logic systems that tune Kalman

filter noise covariances (for example, [47, 11, 77, 42, 38, 35]). A recent and illustrative

instance is the work of Sung et al. [74], who use an adaptive Kalman filter as part of an

ultra-precision positioning controller to provide a better position estimate than a capacitive

displacement sensor alone yields. They define the “degree of matching” (DoM) as the

difference between the theoretical and estimated covariances of the innovation.

DoMk = HkPk|k−1H
T
k +Rk −

1

N

N−1∑
i=0

νk−iν
T
k−i

This is a scalar since the filter estimates a 1-D state. It is the input to a single-input-single-

output (SISO) fuzzy inference system (FIS) that adjusts Rk using the rule base

1. IF DoMk = 0 THEN No change in Rk

2. IF DoMk > 0 THEN Decrease Rk

3. IF DoMk < 0 THEN Increase Rk

The updated value of the measurement noise covariance is Rk = Rk−1 + ∆Rk.

The membership functions used for DoM and ∆R are shown in Figure 2. The shapes

and boundary layers for these are tuned through trial and error.

This is true of most fuzzy controllers. The shapes of the membership functions are

typically designed by using knowledge of the system [75, 83]. Since one goal of uncalibrated

visual servoing is to allow operation with little foreknowledge of the system (cameras, robot,

etc.) then the fuzzy-logic approach to adaptive filtering is not suitable for UVS.

4.3 Adaptive Measurement Noise Covariance in Uncalibrated Visual
Servoing

This section discusses how adaptation of the Kalman noise covariance matrices is treated

for the present research. The questions to be answered when choosing an adaptive Kalman

filtering technique are “Which covariance matrices are estimated?” and “What is the esti-

mation method?”

50

Figure 2: Membership functions of DoM and ∆R for the “adaptive fuzzy Kalman filter”
of Sung et al.

Since it is difficult to differentiate between effects of errors in Q and errors in R, one

of these matrices is assumed to be known. There are several reasons to choose Q as the

assumed covariance. Mehra states that better results are obtained for this case than for

the assumed-R-adaptive-Q case. Further, the process equation (24), for example, has fewer

sources of error than the corresponding measurement equation (25) (see §3.2.7). Finally,

one of the research goals is VS improvement by prioritizing data from accurate cameras over

noisy cameras. Therefore, in this work Q is assumed known and R is updated adaptively.

Q is set to a diagonal matrix βI, where β can be treated as a tuning parameter.

Of the four estimation categories listed at the outset, Bayesian and maximum likeli-

hood are rejected due to excessive computational requirements. In the realm of correlation

methods, the new autocovariance least-squares method is promising but relatively untested

compared to the number of covariance-matching implementations. Covariance matching is

the basis for many systems and it is used in the present research to estimate the measure-

ment noise covariance.

It is common in covariance matching techniques to use ad-hoc methods for guaranteeing

positive semidefinite estimates. Myers and Tapley advocate always resetting the diagonal

elements of R̂ (and Q̂) to the absolute values of their estimates. While this is an instinctive

step, consideration of (55) and (56) reveals it to be unsound. According to those equations

51

R̂ν,k is negative when the estimated innovation covariance Ĉν,k is less than the contribution

made by the covariance of the prediction error HkPk|k−1H
T
k to the theoretical innovation

covariance. The theoretical value is bigger than the estimate even if R = 0; using R =
∣∣∣R̂ν,k∣∣∣

only exacerbates the problem.

The adaptation technique for this research resembles the covariance matching method

of Mehra with two alterations made to (56). First, R is diagonalized by setting the off-

diagonal terms to zero to improve filter stability [33] while yielding comparable accuracy

as retaining the off-diagonal elements [7]. Second, a diagonal element is set equal to that

of R̂ν,k from (56) only if it is positive, otherwise it reverts to the value in R0. Thus the

positive definiteness of R is assured.

The result is the following update equation for the estimate of R,

R̂k(i, j) =

δi,jR̂ν,k(i, j), if R̂ν,k(i, j) > 0

R0(i, j), otherwise

(57)

where R0 = κI. Like β for Q, κ can be treated as a tuning parameter. Also,

R̂ν,k =
1

N

N−1∑
i=0

νk−iν
T
k−i −HkPk|k−1H

T
k

and

νk = zk −Hkx̂k|k−1

4.4 Summary

An adaptive filtering technique is selected and modified to ensure positive semidefinite es-

timates of the measurement covariance matrix. Four categories of adaptive filtering are

discussed. The first two, comprising Bayesian and maximum likelihood techniques, are

disregarded because of possibly high computational loads. The third, correlation meth-

ods, have recently been improved with the ALS approach but successful applications are

few compared to the fourth category which is covariance matching. Covariance match-

ing techniques abound. Of those, scaling-factor approaches forfeit information present in

52

the innovation covariance and fuzzy logic methods require system experience to design the

membership functions that is not compatible with uncalibrated visual servoing.

Some covariance matching techniques adapt only R, while others update estimates of

both Q and R. It is reported in the literature that accurately estimating both Q and R

can be difficult and that better results are obtained when assuming Q and adapting R

than for the opposite scenario. Furthermore, a goal of the research being to apply relative

weighting to cameras it is logical to adapt R. Chapter 5 presents a decentralized version

of the Kalman filter and discusses another reason to adapt R and not Q. Chapter 7 gives

data from simulations comparing VS performance with adaptive and non-adaptive Kalman

filter methods.

53

CHAPTER V

DECENTRALIZED ADAPTIVE KALMAN FILTER FOR UVS

Results from experimentation and simulation (Chapters 8 and 7) demonstrate that the

Kalman filter based control law of Chapter 3 yields improved tracking performance over the

conventional Gauss-Newton approach in the presence of noise, and that further gains are to

be had by employing the adaptive technique of §4.3. However, a goal of the present research

is multiple-camera visual servoing to deliver system survivability and improved tracking over

one camera. This chapter realizes that goal by extending the adaptive Kalman filter control

law to multiple-camera systems. For comparison, the Gauss-Newton control law (7) is also

extended for multiple cameras.

5.1 Data Fusion

Using multiple sensors to monitor a state has several advantages. The system can be robust

to failure of any given sensor whereas a single-sensor system collapses. Likewise, inaccurate

readings from one of many sensors may have an insignificant effect on system performance.

Finally, sensor selection becomes more flexible as multiple units can act more effectively

than a single one. This means that cheaper and less precise sensors can be employed en

masse compared to a single expensive sensor.

When multiple sensors are used to monitor the state of a system they provide varied

and sometimes inconsistent information. In order to maximize the potential benefits of

multiple sensors the information from each must be combined in an intelligent way. This is

referred to as data fusion. In multisensor fusion the data from many measurement devices

are combined to form a coherent description of the state being observed. Fusion meth-

ods are either quantitative or qualitative. Quantitative approaches are numerically based,

often stochastically, with particle filtering and Kalman filtering as examples. Qualitative

techniques use abstractions to describe the state being measured, such as expert systems.

The quantitative sensor fusion method utilized herein for uncalibrated visual servoing is

54

referred to as the decentralized Kalman filter. More generally, there are three arrangements

for sensors and filters: centralized, hierarchical, and decentralized.

In the centralized architecture information from all sensors is directly incorporated in

a single fusion process, see Figure 3. For example, it is implemented for a KF with zeroth

order state space representation (see §3.2.4.1) using C cameras by stacking the measurement

vector and observation matrix of (25),

zk =

f
(1)
k

f
(2)
k

...

f
(C)
k

and Hk =

J
(1)
k

J
(2)
k

...

J
(C)
k

(58)

A centralized Kalman filter provides an optimal estimate, but at the cost of fragility

(the system is dependent a single fusion site) and computational load (multiplication and

inversion of a 2mC × 2mC matrix, where 2m is the number of image feature coordinates

being tracked in each camera).

The imposition of such a high computational burden is addressed by a hierarchical

architecture, exemplified in Figure 4. This design employs low-level fusion nodes to generate

estimates with sensor subsets. Higher-level processors combine these estimates and possibly

provide feedback to lower-level nodes. A hierarchical architecture retains a central processor

but its load is less than for a centralized architecture. The hierarchical scheme lends itself

to systems with sets of different sensor types. For example, in a mobile robot one node

could fuse data from sonar sensors and another could generate an estimate using data from

optical ranging devices, with both estimates then fused at the central fusion site.

The decentralized architecture (Figure 5) mitigates problems associated with central-

ized and hierarchical designs. There is a processing node associated with each sensor that

generates a local estimate of the state, which is shared among nodes according to the topol-

ogy of the system and fused at every node. This improves system survivablity (it’s not

dependent on a global filter), reduces communication requirements (for a centralized mul-

tisensor system the state variable is generally of smaller dimension than a measurement),

55

Figure 3: Centralized architecture example

and parallelizes the computation.

5.2 Gauss-Newton Control Law for Multiple Cameras

The traditional multi-camera approach in the UVS literature is a centralized architecture

using two cameras. The image-plane coordinate vectors are thus concatenated,

y =

y(1)

y(2)

where y(1) is the feature coordinate vector from camera 1 and y(2) is from camera 2. As-

suming that the same number of features are tracked in both cameras, the dimension of y

is double that of single-camera VS. The Jacobian grows accordingly,

J =

J (1)

J (2)

where J (1) is the Jacobian mapping robot velocity in joint space to the velocity of the

end-effector in the image space of camera 1 and J (2) corresponds to camera 2.

The control law for this system is often obtained via Guss-Newton (7). For C cameras

the control law is

56

Figure 4: Hierarchical architecture example

Figure 5: Decentralized architecture example

57

φ̂k =

J (1)

J (2)

...

J (C)

T

J (1)

J (2)

...

J (C)

−1

J (1)

J (2)

...

J (C)

T

f (1)

f (2)

...

f (C)

(59)

where φ ≡ θ − θ∗ per §3.1.2 and f (i) is the error in the image plane of camera i,

f
(i)
k = y

(i)
k − y

∗(i)
k

This constitutes a control law that minimizes fTf , the norm of concatenated of error

vectors from all cameras. This method requires no tuning or robot-target motion assump-

tions but it treats data from all cameras as equally valid and does not provide noise filtering.

Another reported approach for UVS with multiple cameras is hierarchical, applying

Gauss-Newton (7) to data from each camera then averaging these solutions,

φ̂k =
1

C

C∑
i=1

(
Ĵ

(i)T
k Ĵ

(i)
k

)−1
Ĵ

(i)T
k f

(i)
k (60)

A weighted version is employed by Gao and Su [27] in UVS of a mobile robot using three

fixed cameras (but only two at a time). For weights η(i), i = 1 . . . C the resulting control

law is

φ̂k =
1

C∑
i=1

η(i)

C∑
i=1

η(i)
(
Ĵ

(i)T
k Ĵ

(i)
k

)−1
Ĵ

(i)T
k f

(i)
k

Camera weighting is based on the proximity of the target image features to the optical axis,

the camera resolution, and the focal length. The resolution and focal length are unavailable

for UVS, therefore this approach is not used in the present research. The unweighted

version (60) is not used either because in general it does not satisfy the error squared

objective function (3). Since the Kalman filter satisfies (3) the centralized Gauss-Newton

approach is used for comparison in experiments and simulations.

58

5.2.1 Dealing with sensor failure

The probability of either the robot end-effector or the target becoming occluded or leaving

the field of view of at least one camera increases with the number of cameras. So does the

chance of hardware or communication failure. Therefore the ability to handle interruption

of camera data is an important feature for a robust multiple-camera VS system.

Jägersand et al. [37] describe a method of truncating the stacked Jacobian in the event

of data loss. When information from a camera becomes unavailable its corresponding rows

in J and f are removed, and the control law is thence carried out as before. For example,

if the target becomes occluded in camera 2 then (59) becomes

φ̂k =

J (1)

J (3)

...

J (C)

T

J (1)

J (3)

...

J (C)

−1

J (1)

J (3)

...

J (C)

T

f (1)

f (3)

...

f (C)

If data from a new camera becomes available during servoing or if a new camera is

added to the system then this information can be added to the control loop after first

allowing the system to generate a suitably accurate estimate of its Jacobian matrix. Since

this is an iterative technique (see Algorithm 4, Chapter 6) it can require more iterations

for a new camera to be incorporated than for one returning from an offline state where the

last calculated estimate of J can be stored. This old value is used as Ĵk−1 in Algorithm 4

when the camera returns to operation. For a new camera Ĵk−1 can be initialized arbitrarily

with proper dimension since the estimate eventually converges [59]. Some criterion must be

chosen for judging when the estimate of a camera Jacobian has reached a sufficient level of

fidelity to be included in the control loop.

One approach is to compare the control law generated by the erstwhile set of cameras

using the concatenated GN (59) with that of the new camera using the individual GN (7).

When the similarity between the directions of the two control vectors reaches some threshold

value then the Jacobian estimate and error vector from the new camera are concatenated

with the rest. For example, given a system with C established cameras and a new one C+1

59

the current Jacobian estimate is

Ĵk =

Ĵ

(1)
k

...

Ĵ
(C+1)
k

 , if
φ̂

(1...C)
k∥∥∥φ̂(1...C)
k

∥∥∥ · φ̂
(C+1)
k∥∥∥φ̂(C+1)
k

∥∥∥ > α

Ĵ

(1)
k

...

Ĵ
(C)
k

 , otherwise

(61)

where φ̂
(1...C)
k is from (59) using cameras 1 . . . C and φ̂

(C+1)
k is from (7) using camera C+ 1.

The threshold value α is some constant less than unity.

This method is implemented with multiple cameras in simulation and experimentally

for comparison with a decentralized adaptive Kalman filter control law introduced below.

5.3 Decentralized Kalman Filter Derivation

Rao and Durrant-White [65] derive a decentralized Kalman filter algorithm for a fully

connected system, one where each local estimate is broadcast to every other node (see Figure

6). The estimate after fusion is the same at each node, is called the global estimate, and is

equivalent to a centralized Kalman filter estimate. The derivation follows and application

is made to the Kalman filter VS control method in §5.4.

First the prediction and update equations for the local Kalman filter are presented. Next

the information matrix is introduced and its update equation is derived as background for

the subsequent derivation of the fusion equations that yield the same optimal estimate as

a centralized Kalman filter.

5.3.1 Local equations

Each local filter in a decentralized system computes local state and error covariance pre-

dictions then updates them using the local measurement z(i). The estimated information

is then communicated to other nodes (and other local estimates are received) for the fusion

step. In this section the local prediction and update equations are presented.

60

Figure 6: Fully connected decentralized architecture example

For a centralized filter the measurement vector z, the measurement model H, and the

measurement noise v are partitioned by the C sensors,

zk =

[
z

(1)T
k z

(2)T
k . . . z

(C)T
k

]T
(62)

Hk =

[
H(1)T H(2)T . . . H(C)T

]T
(63)

vk =

[
v

(1)T
k v

(2)T
k . . . v

(C)T
k

]T
(64)

The partitions of the noise vector are assumed to be uncorrelated so

E
[
vTk vk

]
= Rk = diag

{
R

(1)
k , R

(2)
k , . . . , R

(C)
k

}
The process model F and process noise covariance Q are the same for every node in a

fully-connected decentralized Kalman filter. The prediction step

x̂
(i)
k|k−1 = Fk−1x̂

(i)
k−1|k−1

P
(i)
k|k−1 = Fk−1P

(i)
k−1|k−1F

T
k−1 +Qk

61

is performed locally before communication with other nodes. Here x̂
(i)
k−1|k−1 and P

(i)
k−1|k−1

are the global estimates at time k−1. They are the same at every node of a fully-connected

decentralized system so

x̂
(i)
k|k−1 = x̂

(j)
k|k−1

P
(i)
k|k−1 = P

(j)
k|k−1

for all i and j.

For filters with identical predictions the local correction step is

K
(i)
k = Pk|k−1H

(i)T
k

(
H

(i)
k Pk|k−1H

(i)T
k +R

(i)
k

)−1

x̃
(i)
k|k = x̂k|k−1 +K

(i)
k

(
z

(i)
k −H

(i)
k x̂k|k−1

)
(65)

P̃
(i)
k|k =

(
I −K(i)

k H
(i)
k

)
Pk|k−1 (66)

where (̃·) indicates an estimate that is based on the current measurement of only the i-th

node.

After the local estimates are computed communication takes place between all nodes.

Fusion of the entire set is carried out at each node. The fusion equations are derived in the

following section. First consider the following equality for diagonal matrix B and m × 1

column vectors a and c.

aTBc =
m∑
i=1

a(i)TB(i, i)c(i) (67)

This also holds for a block diagonal matrix and two block vectors such as the partitioned Rk,

Hk, and zk above. It might then seem acceptable to obtain a global estimate by summing

the updates from all sensors as,

x̂k|k = x̂k|k−1 +

C∑
i=1

K
(i)
k

(
z

(i)
k −H

(i)
k x̂k|k−1

)
(68)

62

since Kk and νk ≡ zk −Hxk|k−1| are C × 1 block column vectors. Doing so is not possible

however, due to the fact that the local innovations ν
(i)
k ≡ z

(i)
k −H

(i)
k x̂k|k−1 are correlated be-

tween different sensors. This is because every local innovation contains the same prediction

x̂k|k−1 and is visible in the off-diagonal terms of the theoretical innovation covariance

Cν = HPHT +R =

H(1)

H(2)

...

H(C)

P

H(1)

H(2)

...

H(C)

T

+

R(1) 0 · · ·

0 R(2)

...
. . .

R(C)

=

H(1)PH(1)T +R(1) H(1)PH(2)T · · ·

H(2)PH(1)T H(2)PH(2)T +R(2)

...
. . .

H(C)PH(C)T +R(C)

Since the expected innovation covariance Cν of the centralized filter is not block diagonal

(and the local innovations are correlated) then (68) is an impermissible method of unstacking

the Kalman equations [54]. A different fusion method is therefore required, one that properly

unstacks the centralized equations using (67).

5.3.2 Information matrix

The decentralized Kalman filter fusion equations use the information matrix update equa-

tion. The information matrix is the inverse of the covariance matrix, and its product with

the state vector is called the information state vector. When a Kalman filter uses the

information matrix it is referred to as an Information filter.

The Information filter is algebraically equivalent to the Kalman filter assuming Gaussian

noise and optimal estimation, but has advantages in a decentralized architecture [54]. It

requires inversion of smaller matrices and is simpler to initialize. Mutambara [54] derives

a non-fully connected decentralized Information filter that provides the same results as a

centralized filter and minimizes communication.

63

The transformation from the Kalman filter to the Information filter requires the Wood-

bury matrix identity.

(A+ UCV)−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1 (69)

Inverting the Kalman covariance update equation Pk|k = (I −KkHk)Pk|k−1 with the

definition of the Kalman gain K,

P−1
k|k =

[
(I −KkHk)Pk|k−1

)−1

=
(
Pk|k−1 −KkHkPk|k−1

)−1

=

[
Pk|k−1 − Pk|k−1H

T
k

(
HkPk|k−1H

T
k +Rk

)−1
HkPk|k−1

]−1

and using

A = Pk|k−1

U = −Pk|k−1H
T
k

C =
(
HkPk|k−1H

T
k +Rk

)−1

V = HkPk|k−1

in (69) yields the information matrix update

P−1
k|k = P−1

k|k−1 + P−1
k|k−1Pk|k−1H

T
k ×(

HkPk|k−1H
T
k +Rk −HkPk|k−1P

−1
k|k−1Pk|k−1H

T
k

)−1
HkPk|k−1P

−1
k|k−1

= Pk|k−1 +HT
k

(
HkPk|k−1H

T
k +Rk −HkPk|k−1H

T
k

)−1
Hk

= P−1
k|k−1 +HT

k R
−1
k Hk (70)

From §5.3.1, the local covariance update equation (66) becomes the local form of the

information matrix update (70)

P̃
(i)−1

k|k = P−1
k|k−1 +H

(i)T
k R

(i)−1

k H
(i)
k (71)

64

5.3.3 Derivation of fusion equations

Now that the information matrix update equation is available valid fusion equations can be

developed. The partitioning of (62–64) yields

HT
k R
−1
k Hk =

C∑
i=1

H
(i)T
k R

(i)−1

k H
(i)
k (72)

Rearranging (70) and (71),

HT
k R
−1
k Hk = P−1

k|k − P
−1
k|k−1 (73)

H
(i)T
k R

(i)−1

k H
(i)
k = P̃

(i)−1

k|k − P−1
k|k−1 (74)

and substituting in (72) gives the centralized error covariance update

P−1
k|k = P−1

k|k−1 +
C∑
i=1

(
P̃

(i)−1

k|k − P−1
k|k−1

)
with the equivalent decentralized form

P
(i)−1

k|k = P−1
k|k−1 +

C∑
i=1

(
P̃

(i)−1

k|k − P−1
k|k−1

)
Here the variance error information is introduced as E(i) ≡ P̃ (i)−1

k|k − P−1
k|k−1.

Fusion of the error covariance estimate is complete. To obtain a fusion equation for the

state estimates the covariance update equation (21) is rearranged as

Kk = H−1
k − Pk|kP

−1
k|k−1H

−1
k (75)

Next, premultiplying the update equation of the state estimate (20) by P−1
k|k and using K

from (75) gives

65

P−1
k|k x̂k|k = P−1

k|k x̂k|k−1 + P−1
k|k

(
H−1
k − Pk|kP

−1
k|k−1H

−1
k

) (
zk −Hkx̂k|k−1

)
= P−1

k|k x̂k|k−1 +
(
P−1
k|kH

−1
k − P

−1
k|k−1H

−1
k

) (
zk −Hkx̂k|k−1

)
= P−1

k|k x̂k|k−1 + P−1
k|kH

−1
k zk − P−1

k|k x̂k|k−1 − P−1
k|kH

−1
k zk + P−1

k|k−1x̂k|k−1

=
(
P−1
k|k − P

−1
k|k−1

)
H−1
k zk + P−1

k|k−1x̂k|k−1

and using (73) yields

HT
k R
−1
k zk = P−1

k|k x̂k|k − P
−1
k|k−1x̂k|k−1 (76)

In like fashion, combining (65), (66), and (74) produces the local form of (76)

H
(i)T
k R

(i)−1

k z
(i)
k = P̃−1

k|k x̃
(i)
k|k − P

−1
k|k−1x̂k|k−1 (77)

The final step in obtaining a fusion equation for the local state estimates is made possible

by the partitioning (62–64), which results in

HT
k R
−1
k zk =

C∑
i=1

H
(i)T
k R

(i)−1

k z
(i)
k (78)

Substituting (78) into (76) and (77) and rearranging gives the state fusion equation for a

central node,

x̂k|k = Pk|k

[
P−1
k|k−1x̂k|k−1 +

C∑
i=1

(
P̃

(i)−1

k|k x̃
(i)
k|k − P

−1
k|k−1x̂k|k−1

)]
with the equivalent decentralized form

x̂
(i)
k|k = P

(i)
k|k

[
P−1
k|k−1x̂

(i)
k|k−1 +

C∑
i=1

(
P̃

(i)−1

k|k x̃
(i)
k|k − P

−1
k|k−1x̂k|k−1

)]

Here the state error information is introduced as e(i) ≡ P̃ (i)−1

k|k x̃
(i)
k|k − P

−1
k|k−1x̂k|k−1.

5.3.4 Summary of decentralized Kalman equations

C local filters begin each iteration with the same global error covariance and state estimates.

Every filter has identical local predictions since they share a process model F and also Q.

66

Each filter updates the predictions via the local measurement z(i) to generate the local

estimates x̃
(i)
k|k and P̃

(i)
k|k. The proper method for fusing these estimates is derived in §5.3.3.

The steps are summarized equations.

Every node begins an iteration by generating predictions from the common previous

estimates

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk

x̂k|k−1 = Fk−1x̂k−1|k−1

(79)

(80)

With the measurement z
(i)
k each node updates the predictions

K
(i)
k = Pk|k−1H

(i)T
k

(
H

(i)
k Pk|k−1H

(i)T
k +R

(i)
k

)−1

P̃
(i)
k|k =

(
I −K(i)

k H
(i)
k

)
Pk|k−1

x̃
(i)
k|k = x̂k|k−1 +K

(i)
k

(
z

(i)
k −H

(i)
k x̂k|k−1

)
(81)

(82)

(83)

The variance error information E(i) and state error information e(i) are transmitted from

each node to all the other nodes

E(i) = P̃
(i)−1

k|k − P−1
k|k−1

e(i) = P̃
(i)−1

k|k x̃
(i)
k|k − P

−1
k|k−1x̂k|k−1

(84)

(85)

Fusion is then carried out at each node

P−1
k|k = P−1

k|k−1 +

C∑
j=1

E(j)

x̂k|k = Pk|k

P−1
k|k−1x̂k|k−1 +

C∑
j=1

e(j)

(86)

(87)

A fully-connected system results in identical estimates at every node.

5.4 Decentralized Adaptive Kalman Filter For VS Control

The previous section describes a method for fully-connected decentralized estimation with

the Kalman filter. This technique allows for sensor failure since missing data are left out of

67

the summations in fusion equations (86) and (87).

Besides improving the survivability of a multi-camera UVS system, another goal is to

improve tracking performance by prioritizing measurements from the most precise cameras.

To that end the adaptive Kalman filter of Chapter 4 is combined with the decentralized

Kalman filter. The following reasons help elucidate the choice between providing adaptation

of the covariance matrix Q or R.

For the fully-connected decentralized Kalman filter Q is identical at all nodes; there are

global values for the process model F and for the process error covariance Q. Adaptation

of Q can provide performance improvements by increasing the accuracy of the process noise

description but does not give any means of data weighting. On the other hand R(i) is a

measure of confidence for the i-th sensor. Adapting R(i) generates a description of the error

vi associated with camera i. This provides a means of data weighting since the Kalman

equations recursively solve weighted least squares with the block diagonal Rk as part of

the weighting matrix. Adaptation of R
(i)
k transpires before the update equations (81–83)

according to the covariance matching technique of (57).

5.4.1 Alternate examples of weighted data fusion

From the literature, four examples are presented of weighted data fusion. The first two

are similar to the local R adaptation method used here in that they adapt individual

measurement covariances. The third and fourth examples employ somewhat ad-hoc methods

for fusion of local estimates, methods that make no claims as to optimality.

Escamilla-Ambrosio and Mort [22] use a fuzzy inference system similar to that of Sung

et al. [74] (see §4.2.2) for adaptation of the local measurement covariance R(i). The DKF

equations of §5.3.4 are used in order to obtain an estimate, resulting in what they term

a fuzzy logic-based adaptive decentralized Kalman filter. By means of simulation, they

compare this approach with two other fusion methods and find that it yields the most

accurate estimates.

Subramanian et al. [73] make use of a “fuzzy logic enhanced Kalman filter” for au-

tonomous navigation of citrus grove rows. Theirs is a centralized Kalman filter, which

68

provides estimates identical to those of a fully-connected decentralized Kalman filter. It

does not allow for failure of any sensors. They assume a diagonal R as,

R =

σXc 0 0 0 0

0 σXl 0 0 0

0 0 σθc 0 0

0 0 0 σθimu 0

0 0 0 0 σV

where the different variances σ are determined experimentally prior to operation. The fuzzy

system is used to alter the variances for a machine vision system and a LIDaR sensor (σXc

and σXl) in order to dictate on which sensor the filter relies for its estimate of the vehicle’s

lateral position relative to the trees on either side of a grove row. However, in their fuzzy

inference system the resulting variance can have one of only three values: 0, 0.5, or 1.

Drolet et al. [20] perform data fusion for the positioning of an underwater vehicle.

Their technique is to create a bank of Kalman filters, each of which employs a different

combination of the available sensors. The fusion tool is an averaging of the low-level state

estimates weighted according to the local information matrices as,

x̂k|k =

 C∑
j=1

P̃
(j)−1

k|k

−1
C∑
j=1

P̃
(j)−1

k|k x̃
(j)
k|k

except that their application estimates only a one-dimensional state and so they report the

following fusion equation

x̂k|k =

C∑
j=1
x̃

(j)
k|k / P̃

(j)

C∑
j=1

1 / P̃ (j)

(88)

This estimate might then be fused with another, making this an example of the hierarchical

architecture. The fusion equation (88) has the problem of only being applicable to one

dimensional problems. Furthermore, the optimality of this method is not investigated.

The fourth example is from Stavnitzky and Capson [71] who generate local estimates

of the Cartesian position and orientation of an object in a multi-camera quasi-uncalibrated

69

visual servoing system. There is no Kalman filter in their system. Instead, they employ

a nonlinear variation of Gauss-Newton optimization to get local estimates. The global

estimate is a weighted linear sum of the local values where each weight comes from an

ad-hoc measure of confidence in the local estimate. They verify the approach through

experimentation with two cameras.

They are concerned with the task of mating two parts, one attached to the robot end-

effector and the other stationary. Pose estimates of both parts are generated at every time

step. This allows the system to simultaneously estimate the mating pose of the mobile part

(based on that of the stationary object) and the Jacobian relating motion of the end-effector

in Cartesian space to its motion in joint space. The system is not uncalibrated because even

though it estimates the Jacobian without needing the robot kinematic parameters, the 6-D

pose estimation uses camera parameters and CAD models of the object.

5.4.2 Dealing with sensor failure

In the event that data from a sensor in the decentralized adaptive Kalman filter (DAKF)

become unavailable then the corresponding local filter is suspended and the summations

in the fusion equations (87) and (86) exclude that data. If the sensor comes back online

then its local filter is resumed, it receives the latest global estimate and calculates its local

predictions and estimates, but it is not returned to the control loop for W time steps (the

window size for the approximated innovation covariance Ĉν of (53)).

5.5 Summary

Three sensor fusion architectures are discussed. An example of each is applied to visual

servoing.

The traditional multi-camera VS paradigm employs a centralized architecture and the

Gauss-Newton method for the concatenated matrices as (59). It satisfies the objective

function (3) for the concatenated error vector and requires no tuning or robot-target motion

assumptions but it treats data from all cameras as equally valid and does not provide noise

filtering. A method of handling camera failure with this scheme is described.

70

A hierarchical version of the Gauss-Newton control law with camera weighting is dis-

cussed. The weighting method is deemed unsuitable for UVS and the hierarchical fusion

equation does not satisfy (3). The centralized Gauss-Newton method is therefore chosen as

the benchmark for the Kalman filter approach developed in this research.

Decentralized Kalman equations are derived and the adaptive technique of §4.3 is ap-

plied to the local filters to yield a multi-camera visual servoing method that is robust to

sensor failure and provides statistically meaningful camera weighting in an uncalibrated

setting. The decentralized Kalman filter provides global estimates that are equivalent to

the (optimal) estimates of a centralized filter and has the benefits of parallelized processing

and protection against sensor failure.

Chapter 6 provides a DAKF algorithm implementing the methods of Chapters 3–5 and

describes the setup used for visual servoing experiments and simulations that employ these

methods and also the traditional Gauss-Newton method.

71

CHAPTER VI

ALGORITHM AND SETUP FOR EXPERIMENTS AND

SIMULATIONS

The decentralized adaptive Kalman filter based visual servoing control method developed

in Chapters 3–5 is supported through simulation and experimentation and compared to the

traditional Gauss-Newton approach. Results of simulations and experiments are presented

in Chapters 7 and 8. The present chapter discusses the methods and means for performing

these trials.

Visual servoing pseudo-code with the zeroth order KF formulation (24) and (25) is

provided in Algorithm 1. The other three KF formulations of Chapter 3 can be implemented

with minor changes to the algorithm.

The physical setup for experiments is described in this chapter. For simulations this

setup is idealized using the robot manipulator’s kinematic model and a pinhole camera

model, see §7.1. The simulations differ from experiments in that they implement GN and

all four of the KF formulations, whereas the experiments employ GN and just the zeroth

order KF formulation (24) and (25). Also, more camera scenarios are tested in simulation

than in experiments, varying the camera parameters (both intrinsic and extrinsic) and the

number of cameras.

6.1 Algorithm Summary

The following system parameters are used in the visual servoing algorithm:

• a — robot degrees of freedom

• C — number of cameras

• λ — remembering ratio for Jacobian estimation Ĵ

• N — window size for estimating the innovation covariance

72

• Q — process covariance matrix

• R0 — initial measurement covariance matrix

• µ — maximum allowable norm for a joint offset command to the robot

• ∆θinit — displacement to use for measuring the initial Jacobian estimate

The matrices Q = βI and R
(i)
0 = κI for camera i with β and κ as tuning parameters per

§4.3. The remembering ratio for the Jacobian-estimation algorithm λ = 0.95. The sample

size for R adaptation is N = 12.

Algorithm 1 presents pseudo-code for an uncalibrated visual servoing system using a

decentralized adaptive Kalman filter with zeroth order state space representation. Several

subroutines are presented in Algorithms 2–6.

Algorithm 2, a subroutine for generating initial Jacobian estimates Ĵ
(i)
0 , is not required

for servoing. The local Jacobians can be initialized as arbitrary matrices with proper dimen-

sion and the online estimator for J (i) eventually converges [59] but in the process the robot

is liable to move erratically. For safety concerns with the physical robot and because the

purpose of the present research is not to evaluate Jacobian estimation schemes, Algorithm

2 is carried out prior to servoing.

The subroutine of Algorithm 3 imposes the joint offset command limitation discussed in

§3.2.5. Algorithm 4 implements the iterative Jacobian estimation technique of Piepmeier

[59]. The local measurement error covariance matrix is updated via the covariance match-

ing technique of §4.3 in Algorithm 5, which verifies that a statistically significant number

of innovation samples are available before adapting R(i). The final subroutine, shown in

Algorithm 6, computes the local variance error information and state error information (see

§5.3.3) for fusion.

6.2 Setup for Experiments

A Windows-based computer (PC) acts as the visual-servoing controller. It extracts image

feature coordinates from the camera data and receives robot joint coordinates from the robot

73

Algorithm 1 Visual servoing algorithm using DAKF control law

1: function main(a, C, N , λ, P
(i)
0 , Q, R

(i)
0 , µ, ∆θinit)

2:

(
Ĵ

(1)
0 . . . Ĵ

(C)
0

)
= initializeJacobians(a,C,∆θinit)

3: for i = 1→ C do
4: get f

(i)
0

5: f0 = concatenate
(
f0,f

(i)
0

)
. Append to global error vector

6: Ĵ0 = concatenate
(
Ĵ0, Ĵ

(i)
0

)
. Append to global Jacobain

7: covarianceSamples(i) = new list . Each filter has a list of up to N samples
8: end for
9: get θ0

10: x̂0|0 =
(
JT

0 J0

)−1
JT
k f0 . Initial state estimate from Gauss-Newton

11: moveRobotTowardsTarget(x̂0|0, µ) . Command robot towards estimate
12: k = 1
13: while servoing do . Main loop
14: get θk
15: x̂k|k−1 = x̂k−1|k−1 . Global state prediction
16: Pk|k−1 = Pk−1|k−1 +Q . Global error covariance prediction
17: for i = 1→ C do . Go through each local filter
18: if camera “i” data is available then
19: get y

(i)
k and y

∗(i)
k

20:

(
J

(i)
k , D

(i)
k

)
= updateJEstimate

(
y

(i)
k , y

(i)
k−1, θk, θk−1, Ĵ

(i)
k−1, D

(i)
k−1

)
21: z

(i)
k = y

(i)
k − y

∗(i)
k

22: ν
(i)
k = z

(i)
k − J

(i)
k x̂

(i)
k|k−1

23: covarianceSamples(i).add
(
ν

(i)
k ν

(i)T
k

)
24: R

(i)
k = updateREstimate

(
covarianceSamples(i), J

(i)
k , R0, Pk|k−1, N

)
25: if (covarianceSamples(i).length = N or k < N) then

26:
(
E(i), e(i)

)
= getErrorInformation

(
Ĵ

(i)
k , Pk|k−1, R

(i)
k , x̂k|k−1, z

(i)
k

)
27: e

+
= e(i)

28: E
+
= E(i)

29: covarianceSamples(i).remove(1) . Discard oldest sample in list
30: end if
31: else
32: covarianceSamples(i) = new list . R adaptation starts anew
33: end if
34: end for . End loop through every local filter
35: P−1

k|k = P−1
k|k−1 + E . Global information matrix estimate

36: x̂k|k = Pk|k

(
P−1
k|k−1x̂k|k−1 + e

)
. Global state estimate

37: moveRobotTowardsTarget(x̂k|k, µ)

38: k
+
= 1

39: end while
40: end function

74

Algorithm 2 Exploratory moves to populate initial Jacobian estimates

1: function initializeJacobians(a, C, and ∆θoffset)
2: for j = 1→ a do
3: for i = 1→ C do
4: get y

(i)
home

5: end for
6: θ(j)

+
= ∆θoffset . Jog the j-th joint

7: for i = 1→ C do
8: get y

(i)
new

9: Ĵ
(i)
0 (: , j) = 1

∆θoffset

(
y

(i)
new − y(i)

home

)
. Populate the j-th column

10: end for
11: θ(j)

−
= ∆θoffset . Return to home position

12: end for
13: return Ĵ

(1)
0 . . . Ĵ

(C)
0

14: end function

Algorithm 3 Send (possibly limited) joint offset command to robot

1: function moveRobotTowardsTarget(∆θdesired, µ)
2: if ‖∆θdesired‖ < µ then
3: ∆θcommand = ∆θdesired

4: else
5: ∆θcommand = µ

∆θdesired
‖∆θdesired‖

6: end if
7: moveRobot(∆θdesired) . Send command to robot controller
8: end function

Algorithm 4 Sub-routine to compute newest local Jacobian estimate

1: function updateJEstimate(yk, yk−1, θk, θk−1, Ĵk−1, Dk−1)
2: ∆y = yk − yk−1

3: hθ = θk − θk−1

4: Ĵk = Ĵk−1 +
(
λ+ hT

θDk−1hθ
)−1

(
∆y − Ĵk−1hθ

)
hT
θDk−1

5: Dk = 1
λ

[
Dk−1 −

(
λ+ hT

θDk−1hθ
)−1 (

Dk−1h
T
θ hθDk−1

)]
6: return Ĵk, Dk

7: end function

75

Algorithm 5 Perform adaptation of measurement covariance matrix

1: function updateREstimate(innovationOuterProductList, Jk, R0, Pk|k−1, N)
2: if innovationOuterProductList.length = N then . Check number of samples
3: n = numrows(R0)
4: R = 0n×n . Initialize estimate

5: Ĉνk = 1
N

N∑
j=1

innovationOuterProductList.get(j)

6: R̂νk = Ĉνk −HkPk|k−1H
T
k

7: for i = 1→ n do . R to be diagonal and positive
8: if R̂νk(i, i) > 0 then

9: R(i, i) = R̂νk(i, i)
10: else
11: R(i, i) = R0(i, i)
12: end if
13: end for
14: return R
15: else
16: return R0 . Not enough samples for adaptation
17: end if
18: end function

Algorithm 6 Compute variance error information and state error information

1: function getErrorInformation(Ĵk, Pk|k−1, Rk, x̂k|k−1, zk)

2: Kk = Pk|k−1J
T
k

(
JkPk|k−1J

T
k +Rk

)−1

3: P̃k|k = (I −KkJk)Pk|k−1

4: x̃k|k = x̂k|k−1 +Kk

(
zk − Jkx̂k|k−1

)
5: E = P̃−1

k|k − P
−1
k|k−1

6: e = P̃−1
k|k x̃k|k − P

−1
k|k−1x̂k|k−1

7: return E, e
8: end function

76

Figure 7: Overall system layout

controller via Ethernet, see Figure 7. It computes the desired joint offset and transmits this

command to the robot controller, which then executes the joint-level servoing.

The robot manipulator is a KUKA KR 15 SL pictured in Figure 8. The maximum reach

of its wrist point is 909 mm. It has a 15 kg payload capacity and maximum joint speeds

ranging from 156 deg/s (axis 1) to 609 deg/s (axis 6). It is observed that the joint level

accuracy is approximately ±0.01 deg.

6.2.1 Image data

Four stationary cameras observe the manipulator, as shown in Figure 9. They are Chameleon

USB cameras from Point Grey Research with 1280×960 pixel resolution. Image processing

for all four cameras as well as visual servoing control is carried out on the PC, which has

one USB bus.

The maximum frame rate of a Chameleon camera operating at its highest resolution is

18 Hz. Including image processing reduces the frequency to 10 Hz. Since the visual servoing

77

Figure 8: Six-axis KUKA KR 15 SL robot arm

computer has a single USB bus, simultaneously employing four cameras at the maximum

resolution requires that the data transmission speed of each one must be lowered, resulting

in an overall frequency of just 3 Hz.

The cameras are labeled Camera 1, Camera 2, Camera 3, and Camera 4 referring to

their locations on the bus. One camera is placed in each of the four quadrants of the robot

base coordinate system with Camera 3, Camera 2, Camera 4, and Camera 1 in quadrants

I-IV, respectively as in Figure 9.

Figure 10 shows a checkerboard pattern mounted to the robot tool flange. Twelve ver-

tices are tracked using OpenCV software and are shown circled. Figure 11 shows images

from all four cameras at one instant during servoing. In each image note the feature de-

tection and another camera in the view (circled). The image-plane coordinates of the four

outermost vertices make up the image feature vector of the i-th camera

y(i) = [u
(i)
1 v

(i)
1 u

(i)
2 v

(i)
2 u

(i)
3 v

(i)
3 u

(i)
4 v

(i)
4]T

The checkerboard squares are 27 mm wide and the rectangle described by the four

outermost vertices is 81×52 mm (see Figure 10). The focal length for every camera is

approximately 10 mm and all are placed about 2.5 m from the starting position of the robot

78

Figure 9: Fixed camera locations in experiments

Figure 10: Image feature extraction comprises twelve checkerboard vertices.

79

Figure 11: Images from the four cameras; counterclockwise from top left, view from Camera
3 (circled in the image is Camera 1), view from Camera 2 (circled in the image is Camera
4), view from Camera 4 (circled in the image is Camera 2), and view from Camera 1 (circled
in the image is Camera 3)

80

tool with their optical axes pointed towards the servoing volume. The resulting dimensions

of the rectangle in the images range from approximately 100×65 to 220×140 pixels during

servoing. VS provides a control action so the vertices approach a target position y∗(i) in

the image plane.

6.2.1.1 Pre-recorded target coordinates

Two different tasks are performed requiring the visual servoing system to either servo to a

stationary target or to track a moving one. Each trial begins with the robot at a starting

position: θ0,static for the static-target trials and θ0,moving for the moving-target trials. The

target values at time j = 0 . . . S (where S is the total number of iterations in a trial)

for cameras i = 1 . . . 4 denoted y
∗(i)
j are determined by recording the coordinates of the

checkerboard corners from the camera while the robot is in the position θ∗j prior to servoing.

Pre-recorded data are used since having the robot position the target checkerboard pro-

vides accurate Cartesian and joint-space coordinates for analyzing VS performance. Doing

so also means that different VS controllers are compared using identical target data. Fur-

thermore, since using prerecorded data results in only one checkerboard in a camera view

it simplifies the image processing task, which is outside the scope of this research.

Goal data for moving target The target joint positions for the moving-target case are

determined by the inverse kinematics of the robot controller such that the checkerboard

traces the following path:

1. Translate 320 mm in the world z direction

2. Translate 320 mm in the world y direction

3. Translate 320 mm in the world x direction

4. Translate -320 mm in the world z direction while rotating 15 degrees about an axis

through the checkerboard center, parallel to world z

5. Translate -320 mm in the world y direction while rotating -15 degrees about an axis

through the checkerboard center, parallel to world y

81

6. Translate -320 mm in the world x direction while rotating 15 degrees about an axis

through the checkerboard center, parallel to world x

7. Simultaneously translate 320 mm in each of the principal directions while rotating 15

degrees about the three axes

The initial robot position θ0,moving places the checkerboard coincident with the start

of this path. The linear displacement of the checkerboard center (the tool center point, or

TCP) between each image acquisition is 20 mm for the first six sections of the path and

34.6 mm in the final section.

Goal data for static target For the static target the robot is left motionless at θ∗

and a few hundred images are acquired, enough to assure convergence during trials. The

starting position θ0,static for the static-target case is offset from the goal position θ∗ by

[−11.79 18.66 − 37.60 − 5.6 24.66 − 6.34]T deg. In Cartesian space the change

between these two positions for the checkerboard is a 200 mm translation in each of the

three principal directions of the ground coordinate system (346.4 mm total) and a 5.63 deg

rotation in three directions: first about the world z-axis, then about the new checkerboard

y-axis, and finally about the new checkerboard x-axis.

6.3 Process Flow and Termination

Prior to servoing, an initial Jacobian estimate is measured for each camera according to

Algorithm 2.

Once the Jacobians are initialized servoing commences following Algorithm 1 with y
∗(i)
j

from the j-th pre-recorded image and y
(i)
j from the real-time image of camera i. The control

action comes from either the Gauss-Newton method or decentralized adaptive Kalman filter

developed in Chapters 3–5. The joint offset command sent to the robot is limited as in §3.2.5.

The offset norm limit is µ = 8 deg for moving-target trials and µ = 1 deg for a static-target.

The static- and moving-target trials also have different termination criteria. Static-

target trials are concluded when either the image-plane error norm in each camera is less

than some threshold value ε

82

∥∥∥f (i)
∥∥∥ < ε for i = 1. . .C

or the number of iterations reaches a preset value, which is considered failure. Servoing for

the moving-target lasts 112 steps, the number of images recorded for the path.

6.4 Summary

Algorithms for VS with DAKF are given in pseudo-code. An experimental setup is described

that comprises a six-axis industrial robot arm, its controller, four fixed cameras, and a PC

that executes image processing and Algorithms 1–6. The target data for trials are pre-

recorded feature image coordinates. The Cartesian-space descriptions of the target robot

positions for both moving- and static-target trials are described.

Results of from visual servoing with simulations of the described setup are presented in

Chapter 7. Experimental data is given in Chapter 8.

83

CHAPTER VII

SIMULATION RESULTS

DAKF effectiveness is investigated. Simulations for a wide array of scenarios using the

setup discussed in Chapter 6, with a select few tested experimentally in Chapter 8.

Briefly, the important results are:

• For a moving target, using more than three cameras provides little reduction in track-

ing error.

• No number of low-cost cameras can match the performance of two high-cost cameras

for a moving target.

• With regard to positional accuracy for static targets, the point of diminishing returns

is two high-cost cameras or six low-cost cameras.

• Six or more low-cost cameras perform as well as any number of high-cost cameras.

• DAKF and GN are shown to be robust to camera failure.

• If covariance Q is chosen well then the Kalman filter approach outperforms Gauss-

Newton for both moving and static targets, especially as noise increases or mixtures

of high- and low-cost cameras are used.

• DAKF outperforms the non-adaptive Kalman filter technique

The results are presented in the following sections:

High- and low-cost camera performance Section 7.3 details simulations to test multiple-

camera effectiveness in VS. Moving and stationary target trials are performed with C =

1 . . . 10 cameras. In each scenario all cameras are either high-cost or low-cost models. The

relationships between performance and number of cameras is explored and comparison is

84

made between multi-sensor systems using high-cost cameras and those using low-cost cam-

eras. Tests are performed with three different controllers: the Gauss-Newton method and

two DAKF formulations (zeroth order with input and first order without input). The latter

two are used twice (window sizes N =12, 20).

Camera-failure handling Section 7.4 presents moving and stationary target simulations

with four high-cost cameras, each of which has a 75% chance of failure during the trial.

Three controllers are tested: GN, 0th order DAKF with input, and 1st order DAKF. All

are shown to be robust to camera failure. Average moving-target tracking error is better

than for two uninterrupted high-cost cameras but worse than three.

Heterogeneous camera sets Section 7.5 uses four sets of three cameras, all possible

combinations of high- and low-cost cameras. Every Kalman filter formulation is tested (see

§3.2.4) with adaptive and non-adaptive R(i). Different values of Q, R
(i)
0 , and window size

N are tested. Gauss-Newton is also used for comparison.

7.1 Setup for Simulations

Visual servoing simulations are performed for a six-axis manipulator with a rectangle

mounted to the tool flange that is observed by fixed cameras similar to the experimen-

tal setup except: more cameras are simulated, they are placed in different locations, and

the focal lengths are varied.

7.1.1 Robot model

The robot kinematic parameters are for the Kuka robot in §6.2. The feature points are

the same checkerboard corners mounted on the laboratory robot in §6.2.1. Robot joint

positioning errors are modeled by 0.01 degree white noise for each joint.

7.1.2 Camera model

Image data is obtained using a pinhole camera model with

85

up
vp

 =
l

zc

xc
yc

where l is the focal length and (up, vp) are the image-plane coordinates of a point located

at [xc yc zc]
T relative to the pinhole camera. White noise is added to up and vp in order

to more closely approximate a real camera,

u
v

 =

px 0

0 py

u
v

+ Υ

sin(γ)

cos(γ)

where px and py are the horizontal and vertical pitches (pixels per unit length) of the image

sensor, Υ is a random scalar that determines the magnitude of added noise, and γ is a

random angle between 0 and 2π.

In a physical system feature image coordinate noise depends on several factors. Image

noise plays a factor; for the same lighting conditions image noise increases with decreasing

sensor size or reduction in lighting. Noise is influenced by feature type, for example, the

coordinates for the centroid of a sphere are noisier than those of a checkerboard vertex due

to color artifacts and lighting effects at the edge of the sphere image. Physical pixel size

(or focal length, or depth) directly affects accuracy.

Sensor size (and thus image noise) and focal length both affect camera cost. The

Chameleon from Point Grey Research serves as the high-cost camera model with a 10

mm focal length and a maximum additive noise magnitude of 0.5 pixels. A low-cost camera

likely has a wide-angle lens and a smaller sensor and is modeled as l = 3.95 mm with 2 pixels

of noise. The pitches are equal for both camera models because the relationship between

physical pixel size and camera cost is uncertain compared to that of sensor size and camera

cost. To illustrate the effect of the camera model differences on the image data Figure 12

shows coordinates from twenty images of a static target for the different camera models.

7.2 General Description of Simulations

Simulations are performed for a moving target and a stationary one. The target coordinates

are the same as used for the experiments, the pre-recorded robot positions θ∗j of Chapter 6

86

Figure 12: Simulation image data from twenty frames of a static target acquired by the
high-cost camera model (left) and the low-cost model (right) placed at identical positions

are used as input to the simulated system. Various camera scenarios are tested. For each

scenario a number of trials are run with a different random-number-generator seed that is

used for:

• The noise added to robot joint commands

• The noise added to the pixel coordinates

• The position and orientation of each camera

• If modeling camera failures, then

– Selecting which of the C cameras experience failure during a trial

– Choosing the iterations for which a camera fails

When comparing controllers, the same seed is used. For example, Trial 10 of the two-

camera, static-target case using zeroth order DAKF has the same noise seed as Trial 10 of

the two-camera, static-target case using Gauss-Newton. Ramifications include identically

positioned cameras for both trials and identical target pixel coordinates.

87

Moving target trials last 112 iterations. For static-target scenarios the threshold value

for termination is ε pixels; once the image-plane error norm is less than ε in all C cameras

servoing is terminated,

Halt when
∥∥∥f (i)

k

∥∥∥ < ε, for i = 1 . . . C

7.3 Comparing High-Cost and Low-Cost Cameras for Visual Servoing

Using multiple sensors can improve state estimates. Part of the impetus behind a multi-

sensor system is to get a state estimate from many low-cost sensors comparable in fidelity

to an estimate from one high-cost sensor. This section details simulations intended to

determine

• How VS performance changes with increasing camera number

• If numerous low-cost cameras can rival performance of a few high-cost cameras

Moving- and static-target trials are performed for twenty camera scenarios: CH = C =

1 . . . 10 and CL = C = 1 . . . 10, where CH is the number of high-cost cameras in the system,

CL is the number of low-cost cameras, and C is the total number of cameras in the system.

7.3.1 Moving target

For a moving target twenty-five trials are performed for each of the twenty camera scenarios.

The performance metric for a scenario is the Cartesian error norm for the checkerboard

corners, averaged over all T × S iterations, where T is the number of trials and S is the

number of iterations in a given trial

ēcheck,T,S =
1

T × S

T∑
l=1

S∑
j=1

∥∥pcheck,l,j − p∗check,j

∥∥ (89)

where pcheck,l,j = [p1,l,j p2,l,j p3,l,j p4,l,j]
T comprises the pi,l,j position vectors to the

the i = 1 . . . 4 corners of the checkerboard at time step j of trial l. In the current case

T = 25 and S = 112.

88

Figure 13: Average checkerboard-corners error norm using either high-cost or low-cost
cameras and different control laws (Q = 5I for DAKF). The top five lines represent Low-
cost camera trials and the bottom five lines are for high-cost camera trials.

Five controller variations are tested in each scenario: zeroth order with input DAKF

(N = 12), zeroth order with input DAKF (N = 20), first order DAKF (N = 12), first

order DAKF (N = 20), and GN. The resulting values of ēcheck are plotted in Figure 13, the

most pertinent aspects of which are the diminishing returns for systems with more than

two high-cost cameras or three low-cost cameras and the inability of low-cost cameras to

achieve errors as low as a single high-cost camera.

It is also notable that for three or more cameras the control-law utilized has little

impact on performance. Below that number the zeroth order with input DAKF grossly

under-performs the other controllers.

Image-plane data are plotted for a trial using the first order DAKF with two high-cost

cameras in Figure 14 and the corresponding 3-D data are shown in Figure 15. The target

points (y(i)∗ for 2-D and p∗check for 3-D) are shown in black while the actual points (y(i)

89

Figure 14: Image plane data from two high-cost cameras, moving target trial

and pcheck) are colored. The target image-plane data are noisy, while the 3-D target data

are the pre-recorded points given by the robot forward kinematics.

Similar plots for a trial with four low-cost cameras are provided in Figures 16 and 17. The

error is ēcheck,1,112 = 8.7 mm for the trial with two high-cost cameras and ēcheck,1,112 = 15.1

mm with four low-cost cameras. The higher error is evident when comparing the proximity

of the servoed path to the ideal path in Figures 15 and 17.

Comparing Figures 14 and 16 shows the relative value of data from high- and low-cost

cameras. The signal-to-noise ratio (SNR) is higher for the high-cost camera. There the

rectangle size is approximately 50 × 100 pixels and for the low-cost camera it is about

20 × 30. This directly translates to a higher sensitivity to robot motions in the high-cost

camera, a higher precision measurement. The problem with the low sensitivity of the low-

cost camera is compounded by the higher noise in its data. It is the relatively low SNR of

the low-cost camera that causes poorer tracking error than with high-cost cameras.

7.3.2 Static target

The metric for evaluating static-target trials is the average final tool center point (TCP)

error

90

Figure 15: 3-D data using two high-cost cameras, moving target trial

ēTCP,T =
1

T

T∑
l=1

‖pTCP,l,S − p∗TCP‖

where pTCP,l,S is the position vector from the origin of the robot base frame to the center

of the checkerboard at the final iteration of trial l (when
∥∥∥f (i)

k

∥∥∥ < ε, for i = 1 . . . C). This

error is a function of camera geometry at the final position so the control law has no bearing

on the matter.

Meeting the termination criterion becomes more difficult with increasing camera count.

For these trials the termination threshold ε is higher for low-cost cameras because of their

noisier data. For high-cost camera trials ε = 0.5 pixels and ε = 1 pixel for low-cost camera

trials. Resulting ēTCP,T values for CH = 1 . . . 10 and CL = 1 . . . 10 are plotted in Figure 18.

With the checkerboard and cameras used the minimum positional error is about 0.5

mm. The point of diminishing returns for high-cost cameras comes at two cameras while

for low-cost cameras improvement is seen up to six cameras, at which point positional error

is comparable to that of high-cost camera systems. Reaching this position requires more

iterations with low-cost cameras. For example, one trial with ten high-cost cameras required

91

Figure 16: Image plane data from four low-cost cameras, moving target trial

92

Figure 17: 3-D data using four low-cost cameras, moving target trial

Figure 18: Average ending position error norm using either high-cost or low-cost cameras

93

69 steps for convergence and a trial with ten low-cost cameras took 108 steps.

For moving-target visual servoing multiple low-cost cameras are unlikely to provide

tracking error comparable to two high-cost cameras. If servoing to a static target multiple

low-cost cameras can be a feasible alternative to high-cost cameras.

7.4 Handling Camera Failure

To assess whether or not the methods for handling camera failure discussed in Sections 5.2.1

and 5.4.2 are functional they are utilized in both moving- and static-target simulations. Four

high-cost cameras are used, each with a 75% chance of experiencing a failure episode during

servoing. Each camera undergoes at most one episode of failure during a trial. Which

cameras fail and during what iterations they fail are chosen randomly. For example, the

following camera outages are possible for some trial:

• camera 1 — always on

• camera 2 — off for k = 41 . . . 51

• camera 3 — off for k = 1 . . . 13

• camera 4 — off for k = 44 . . . 54

The failure episodes are identical for the control laws so that comparison is as meaningful

as possible.

Two DAKF formulations as well as GN are tested. The DAKF controllers and the

centralized Gauss-Newton (59) method all continue servoing through camera failure. For

DAKF the window size, which determines when to reintroduce a camera to the control loop,

is N = 12. For Gauss-Newton the camera inclusion threshold of (61) is α = 0.7.

Seventy-five trials are performed with each controller. The average checkerboard error

in the moving-target trials is shown in Table 2 for all three controllers. Also shown are

ēcheck,T,112 values for three high-cost camera scenarios of §7.3 to evaluate the intermittent-

data effect on performance. The average tracking error using four intermittent cameras is

better than with two constant cameras but worse than with three. This shows that both

the DAKF and GN methods provide safeguards against camera failure.

94

Table 2: Average checkerboard-corners error norm (mm) for different moving target, high-
cost camera scenarios and different controllers. The notation for the DAKF filters is “state
space representation order”, “Y or N using input”, “β”, “κ”, and “N”.

C DAKF0,Y,5,0.1,12 DAKF1,N,5,0.1,12 GN Remarks

1 22.4 13.8 9.9 Always on

2 8.9 8.8 8.8 Always on

3 7.9 7.9 7.8 Always on

4 8.3 8.3 8.2 Intermittent

The static-target trials display a similar resilience, exemplified in Figure 19 where image

plane data are plotted for one trial using zeroth order with input DAKF Q = 5I N =

12. Image plane data are plotted as points in this figure instead of lines to make the

camera outages (in cameras 1, 3, and 4) apparent. Seventy-five iterations are required for

convergence in this trial.

The number of iterations to convergence with four intermittent high-cost cameras are

S̄ = 57.1 for DAKF0,Y,5,0.1,12, 57.1 for DAKF1,N,5,0.1,12, and 58.6 for GN. Here the conver-

gence speed is faster than reported in §7.3 because of a more relaxed termination threshold,

ε = 10 pixels.

The multiple-camera VS control methods of Chapter 5 are shown to provide continued

servoing in the event of camera failure.

7.5 Using Heterogeneous Sets of Cameras

Though camera models in these simulations are termed “high-cost” and “low-cost” they

can be thought of as high-SNR and low-SNR cameras. It is shown in §7.3 that low camera

signal-to-noise ratio degrades VS performance. The simulations thus far use homogeneous

camera sets (either all high-cost or all low-cost) but this can be unrealistic for unstructured

environments, where camera placement options and lighting conditions vary. For given

lighting and camera model, a camera far from the robot will have a lower SNR than one

close. Poor lighting also degrades the SNR. Thus it is important to simulate using sets

combining high- and low-cost camera models.

Moving- and static-target simulations in this section use all possible combinations of

95

Figure 19: Image-plane coordinates using DAKF controller with four high-cost cameras,
each given 75% chance of failing during servoing — static target

96

Table 3: Kalman filter control law variations used in heterogeneous camera sets simulations
state space order input β κ N

0, 1 with, w/o 1, 3, 5
0.1 12, 20
1, 5 ∞

high- and low-cost cameras for a three-camera system. That is, CH + CL = C = 3 with

CH = 0 . . . 3. In addition to Gauss-Newton, a wider range of DAKF parameters are tested

than in previous sections. Non-adaptive versions are also used. Table 3 summarizes the

different Kalman filter settings used, where Q = βI and R0 = κI. All combinations of

parameters from the rows of that table are used. The adaptive filters use κ = 0.1 with

two values of window size N = 12, 20. For the non-adaptive filters (N = ∞) two different

values of κ are used, 1 and 5. One hundred trials are run for each combination of camera

scenario and controller.

This section presents average performance metrics for both moving- and static-target

three-camera scenarios using forty-nine controllers: Gauss-Newton and those of Table 3.

The moving-target data is given first, followed by discussion, and more data for three

of the best controllers are presented. Plots of the robot path in camera views and 3-D

are presented for comparison between different controllers tracking a moving target. The

same treatment is repeated for the static-target simulations. The section concludes with

discussion of adaptive-R effectiveness and tuning considerations for DAKF.

7.5.1 Moving target

Figure 20 plots ēcheck,100,112 (average checkerboard-corners error over 100 moving-target

trials, each lasting 112 iterations) for GN and the twenty-four non-adaptive decentralized

Kalman filter formulations of Table 3. Figure 21 does the same for GN and the twenty-four

DAKF controllers of Table 3. These figures show ēcheck,100,112 (mm) along the vertical axis

and different camera scenarios along the horizontal. “HHH” stands for CH = 3, “HHL” is

for CH = 2, “HLL” is for CH = 1, and “LLL” is for CH = 0.

Figure 20 shows that using input has negligible effect on the non-adaptive KF versions,

as evidenced by the identical heights in the column pairs “0, N”-“0, Y” and “1, N”-“1, Y”.

Also, the “Q = 5I, R = I” plot shows that a large Q and small R combination performs

97

Figure 20: Average checkerboard-corners error norm using combinations of high- and low-
cost cameras with GN and 24 variations of DAKF, “0” or “1” refers to the state space
representation order and “Y” or “N” refers to with or without input

98

Figure 21: Average checkerboard-corners error norm using combinations of high- and low-
cost cameras with GN and 24 variations of non-adaptive decentralized Kalman filter, “0” or
“1” refers to the state space representation order and “Y” or “N” refers to with or without
input

99

best, prioritizing camera data over the process model. For a system with such well chosen Q

and R the non-adaptive Kalman filter formulation performs as well or better than the Gauss-

Newton method in all camera scenarios, demonstrating its capacity to reject sensor noise.

For poorly chosen noise covariances (for example, Q = I and R = 5I) GN outperforms the

non-adaptive Kalman filter method in all camera scenarios.

Figure 21 displays some traits of the DAKF that are similar to the non-adaptive versions

and some traits that are different. Like non-adaptive KF, DAKF does poorly when Q is

chosen too low and the best performances are for Q = 5I cases. The “Q = I, N = 12”

and “Q = I, N = 20” plots in this and Figure 20 show that too-low Q has more effect on

DAKF than on the non-adaptive version. Reasons for this are explored in §7.5.3.

It is also apparent that including input affects DAKF performance more than the non-

adaptive cases because the adaptive system responds to predictions via the innovation. This

is seen most with the zeroth order state space representation, there are dramatic differences

within some “0, N”-“0, Y” column pairs.

The larger window size N = 20 improves tracking error over the smaller size N = 12.

Larger N also improves resiliency to poorly chosen Q, as shown in the changes between

Q = I plots and Q = 5I plots for the two window sizes.

Both Figures 20 and 21 show that in general the zeroth order and first order formulations

have about equal tracking error.

For all camera scenarios tested the first order DAKF with Q = 5I and N = 20 has lower

tracking error than Gauss-Newton and the non-adaptive KF variations. Table 4 gives the

average error over all trials ēcheck,100,112, the smallest average error of all trials ēcheck, min, and

the largest average error of all trials ēcheck, max for all four camera scenarios with the best

controller tested from each category (zero-memory, non-adaptive, and adaptive): Gauss-

Newton, non-adaptive zeroth order Kalman filter with Q = 5I and R = I, and first order

DAKF with Q = 5I and N = 20. The biggest performance gain is with DAKF for the

scenario with one high-cost camera and two low-cost cameras, a 15% improvement over

Gauss-Newton and 5% over non-adaptive Kalman filter.

A representative scenario is depicted for GN and a DAKF. Figure 22 shows image-plane

100

Table 4: Minimum, average, and maximum average checkerboard-corners error (mm) for
best controllers tested from three categories. The notation for the DAKF filters is “state
space representation order”, “Y or N using input”, “β”, “κ”, and “N”.

CH = 3, CL = 0 CH = 2, CL = 1 CH = 1, CL = 2 CH = 0, CL = 3

ēmin ē ēmax ēmin ē ēmax ēmin ē ēmax ēmin ē ēmax

GN 6.1 8.0 14.9 7.3 11.3 80.5 9.7 17.8 87.5 10.4 20.8 113.6

DAKF0,N,5,1,∞ 6.1 8.1 16.9 7.3 10.8 54.6 9.2 16.0 137.5 11.6 18.3 103.9

DAKF1,N,5,0.1,20 6.2 8.1 16.2 7.5 10.6 38.1 9.5 15.1 41.0 11.2 18.3 72.4

coordinates with GN and CH = 1. The target robot coordinates, shown with black lines,

provide a sense of the relative noisiness of Camera 1 to Cameras 2 and 3. The 3-D path is

depicted in Figure 23. Similar plots are given in Figures 24 and 25 for a first order DAKF

with Q = 5I and N = 20. The paths resulting from the two controllers appear similar but

the average checkerboard-corners error norm for this trial is 10% better with DAKF.

DAKF improves moving-target visual servoing by more than lowering the average error,

it yields a system less sensitive to disturbances compared to GN or DKF. This is shown

by the maximum error values ēcheck, max for the three controllers in Table 4: for scenarios

with at least one low-cost camera the maximum average error with DAKF is at most 64%

of the maximum average error with Gauss-Newton. Sensitivity to variations can be seen in

Figures 26 and 27, which plot the ēcheck for each of the 100 trials with first-order DAKF

and GN. The same number of cameras is used in each trial but the placemenet varies, as

do the image noise and joint noise. Figure 26 is for trials with three high-cost cameras and

the two controllers have nearly equivalent performance. Figure 27, on the other hand, is

for trials with one high-cost camera and two low-cost cameras and the two controllers have

similar average performance but GN results in higher outliers than DAKF.

7.5.2 Static target

Identical camera scenarios are used (CH = 0 . . . 3) as the moving-target simulations and

one hundred trials using each controller of Table 3 are performed for each scenario using a

static target. The performance metric for static-target servoing is the average number of

iterations to convergence

101

Figure 22: Image-plane coordinates using GN controller with one high-cost camera (Camera
1) and two low-cost cameras — moving target

102

Figure 23: 3-D coordinates using GN controller with one high-cost camera (Camera 1) and
two low-cost cameras — moving target

S̄ =
1

T

T∑
l=1

Sl

Here the number of trials is T = 100. Convergence means the image-plane error norm is less

than ε in all C = 3 cameras. For these trials the threshold is ε = 10 pixels. Figures 28 and

29 show S̄ for the forty-eight controllers of Table 3 plus Gauss-Newton. A missing column

in those figures indicates that in one trial the termination threshold was not reached within

six hundred iterations, discussed further in §7.5.3.1.

Examining Figure 28 reveals that non-adaptive KF is less sensitive toQ values for a static

target than for a moving one; when servoing with the first order non-adaptive formulation

using R = I for CH = 1, S̄ varies 1% with changing Q while ēcheck,T,S of the moving-target

trials changes 10% with different Q values (see Figure 20). All tested non-adaptive KF

methods perform better than GN for all values of Q and R, which is also different from the

moving-target case where some Q and R combinations fare worse than GN.

A difference between moving-target and static-target VS with DAKF is that a smaller

window size works better for a static target. This is seen comparing the “Q = 5I, N = 12”

103

Figure 24: Image-plane coordinates using DAKF controller with one high-cost camera
(Camera 1) and two low-cost cameras — moving target

104

Figure 25: 3-D coordinates using DAKF controller with one high-cost camera (Camera 1)
and two low-cost cameras — moving target

and “Q = 5I, N = 20” plots in Figure 29. A probable reason for this behavior is that the

innovation outer product at time k,

νkν
T
k =

(
zk −Hkx̂k|k−1

) (
zk −Hkx̂k|k−1

)T
fluctuates more with the moving-target path described in §6.2.1.1 than when servoing to a

static target. This is evident comparing Figures 30 and 31. Spikes appear in the former

at every eighteen iterations, the number of pre-recorded images per section of the moving-

target path. Larger window size helps smooth the estimated innovation covariance Ĉν,k of

(53) when there are such rapid state changes. For the static-target case such smoothing is

not necessary and thus the more responsive adaptation with N = 12 provides better VS

performance.

The moving- and static-target cases are also different in that the adaptive technique

yields larger improvements for a static target than a moving one. Table 5 gives S̄ for all

four camera scenarios with the best controller tested from each category (zero-memory, non-

adaptive, and adaptive): Gauss-Newton, non-adaptive zeroth order with input Kalman filter

105

Figure 26: Average checkerboard-corners error (mm) for each of 100 trials with three high-
cost cameras using first order DAKF and GN, moving target

106

Figure 27: Average checkerboard-corners error norm (mm) for each of 100 trials with one
high-cost camera and two low-cost cameras using first order DAKF and GN, moving target

107

Figure 28: S̄ using combinations of high- and low-cost cameras with GN and 24 variations
of DAKF, “0” or “1” refers to the state space representation order and “Y” or “N” refers
to with or without input

108

Figure 29: S̄ using combinations of high- and low-cost cameras with GN and 24 variations of
non-adaptive decentralized Kalman filter, “0” or “1” refers to the state space representation
order and “Y” or “N” refers to with or without input

109

Figure 30: Innovation (pixels) for all three filters at every iteration of a moving-target,
three-camera trial with CH = 1 (“cam 1”)

Figure 31: Innovation (pixels) for all three filters at every iteration of a static-target,
three-camera trial with CH = 1 (“cam 1”)

110

Table 5: Minimum, average, and maximum iterations to convergence S for best controllers
tested from three categories. The notation for the DAKF filters is “state space representa-
tion order”, “Y or N using input”, “β”, “κ”, and “N”.

CH = 3, CL = 0 CH = 2, CL = 1 CH = 1, CL = 2 CH = 0, CL = 3

Smin S̄ Smax Smin S̄ Smax Smin S̄ Smax Smin S̄ Smax

GN 50 60.5 169 49 92.8 274 48 111.3 436 48 96.0 461

DAKF0,Y,5,1,∞ 50 58.0 106 50 78 288 47 81.1 305 46 72.4 273

DAKF0,Y,5,0.1,12 50 58.4 121 50 61.6 138 47 62.9 136 47 67.0 303

using Q = 5I and R = I, and zeroth order with input DAKF using Q = 5I and N = 12.

Also presented are the minimum and maximum number of iterations of any trial S̄min and

S̄max in each scenario.

The largest gains from the adaptive Kalman filter method again come for the CH = 1

scenario: 43% improvement over Gauss-Newton and 23% over non-adaptive KF. Further-

more, the DAKF yields a more stable system as evidenced by the fact that of the 100 trials

simulated for the CH = 1 case with each controller, the largest number of iterations required

for convergence S̄max is only 136 for DAKF compared to 436 for Gauss-Newton and 293 for

non-adaptive KF. This sensitivity to variations can be seen in Figures 32 and 33, which plot

the S for each of the 100 trials with first-order DAKF and GN. Figure 32 is for trials with

three high-cost cameras and the two controllers have nearly equivalent performance. Figure

33 is for trials with one high-cost camera and two low-cost cameras and the two controllers

have significantly different average performance and GN also has much higher outliers than

DAKF.

The robot path for a static trial using GN is shown in Figures 34 (image-plane coor-

dinates) and 35 (3-D). The black dots in Figure 34 are the target image coordinates. The

same trial is run using DAKF of Table 5 and the resulting path is shown in Figures 36 and

37. Examining Figures 34–37 reveals that DAKF yields a more direct path to the target:

the GN trajectory lasts 368 steps, while DAKF servos the robot to the target in just 59

steps. The adaptive measurement covariance technique engenders this improvement, as

evidenced by the fact that the DKF of Table 5 requires 305 steps for convergence.

For the static-target case the DAKF method shows pronounced insensitivity to camera

111

Figure 32: Number of iterations to convergence S for each of 100 trials with three high-cost
cameras using first order DAKF and GN, static target

112

Figure 33: Number of iterations to convergence S for each of 100 trials with one high-cost
camera and two low-cost cameras using first order DAKF and GN, static target

113

Figure 34: Image-plane coordinates using GN controller with one high-cost camera (Camera
1) and two low-cost cameras — static target

114

Figure 35: 3-D coordinates using GN controller with one high-cost camera (Camera 1) and
two low-cost cameras — static target

noise compared to GN. For example, using a zeroth order with input DAKF having Q = 5I

and N = 12, S̄ changes only 8% for CH = 0 . . . 3, whereas using Gauss-Newton S̄ varies

84% (see Figure 29).

Data show that when using cameras of various signal-to-noise ratios DAKF can provide

improved performance over non-adaptive KF and the traditional Gauss-Newton approach.

The mechanism responsible for this improvement, local measurement noise covariance adap-

tation, is explored in the following section.

7.5.3 Evaluation of camera weighting

It is reasonable to expect R̂(i) of (57) to have larger elements for a low-cost camera than for

a high-cost camera, but this is not borne out by Figure 38 which for each camera scenario of

the moving-target simulations shows the average trace of R̂(i) in the three local first order

DAKF filters with Q = 5I and N = 20. If the expectation were realized then the third

column of the “HHL” scenario would be higher than the other two and the first column in

“HLL” would be the shortest. A corresponding plot for static-target simulations is given

115

Figure 36: Image-plane coordinates using DAKF controller with one high-cost camera
(Camera 1) and two low-cost cameras — static target

116

Figure 37: 3-D coordinates using DAKF controller with one high-cost camera (Camera 1)
and two low-cost cameras — static target

in Figure 39, this time for zeroth order with input DAKF having Q = 5I and N = 12. In

that figure the “HLL” group appears as expected but “HHL” does not.

These figures show R̂(i) is not always dependent on camera type. Camera location is

influential too. For example, consider two cameras observing a robot describe a circle in

Cartesian space. The optical axis of one camera is in the plane of motion, the other camera

is placed above the circle with its optical axis perpendicular to said plane. While the robot

end-effector moves along the circle, the linear model for the first camera Ĵ (1) does a better

job predicting image coordinate changes than Ĵ (2) since the motion appears more linear

in image-plane 1 than in image-plane 2. The innovation for the first camera ν
(1)
k will be

smaller than for the second camera, which bears directly on the measurement covariance

estimates R̂(1) and R̂(2).

Even small changes in R̂(i) can affect servoing performance. The moving target trials

of Figures 22–25 have average error ēcheck = 19.1 mm for Gauss-Newton and 17.3 mm for

DAKF, for which the trace of R̂(i) is plotted in Figure 40. With R
(i)
0 = 0.1I adaptation

only occurs at three iterations for R̂(2) (trace
(
R

(i)
0

)
= 0.8 pixels2), nonetheless DAKF has

117

Figure 38: Average trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = 5I and N = 20 —

moving target

Figure 39: Average trace
(
R̂(i)

)
(pixels2) using zeroth order with input DAKF Q = 5I and

N = 12 — static target

118

Figure 40: trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = 5I and N = 20 with CH = 1

(“cam 1”) — moving target

significantly lower tracking error for this trial than non-adaptive KF with Q = 5I and

R = I: 17.3 mm compared to 137.5 mm. The error for non-adaptive KF is reduced to 19.0

mm by setting R = 5I but DAKF provides this adjustment automatically.

As stated above, the static-target trials depicted in Figures 34–37 have convergence

times S = 368 iterations for Gauss-Newton and S = 59 for the DAKF. The non-adaptive

KF in Table 5 requires 305 steps to converge to the goal. Changing the covariance matrix

to R = 5I reduces this to 251 steps, which combined with the 59 steps for DAKF indicates

that automatic R adjustment is responsible for the improved performance. The trace of

R̂(i) is plotted in Figure 41 for the DAKF trial, illustrating the adjustments during servoing.

The large initial spike at k = 12 is due to high innovation ν
(i)
1 = ẑ

(i)
1 −H

(i)
1 x̂1|0, visible in

Figure 42.

Examining this history of R̂
(i)
k and comparing DAKF and DKF performances shows

that adaptive R simplifies parameter selection since, as noted above, window size N has

little effect — it’s easier to choose N than R. Choosing an appropriate value for Q is still

119

Figure 41: trace
(
R̂(i)

)
(pixels2) using zeroth order with input DAKF Q = 5I and N = 12

with CH = 1 (“cam 1”) — static target

Figure 42: Innovation ν
(i)
k (pixels) using zeroth order with input DAKF Q = 5I and N = 12

with CH = 1 (“cam 1”) — static target

120

Figure 43: Average trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = 3I and N = 20 —

moving target

required. The next section discusses the effect of this choice on R adaptation.

7.5.3.1 Tuning DAKF

Figures 43 and 44 extend the data of Figure 38 by providing the average trace of R̂(i) for

trials with different process noise covariances Q = 3I and Q = I. The trends of Figure 38

are exaggerated in Figure 43. The local filters retain their rankings for highest, middle, and

lowest average trace
(
R̂(i)

)
in each camera scenario, but the magnitudes of and differences

between these averages are greater with Q = 3I. That is, this change in Q makes R more

adaptive. The trends do not continue to Q = I. In fact, Figure 44 shows that the trends

are reversed with the high-cost cameras receiving higher average R̂(i) than the low-cost

cameras. The R adaptation behavior is dramatically changed with such low Q.

The traces of R̂(i) for the moving-target scenario of Figures 24, 25, and 40 are plotted

for Q = 3I in Figure 45 and for Q = I in Figure 46. The increased adaptiveness in Figure

45 improves tracking error compared to the Q = 5I trial of Figure 40: ēcheck = 15.6 mm

versus 17.3 mm. Lowering the process noise covariance to Q = I makes adaptation (Figure

46) inaccurate and harms performance: ēcheck = 19.0 mm. The paths in Cartesian space

121

Figure 44: Average trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = 1I and N = 20 —

moving target

for these three trials (Q = 5I, 3I, and I) are shown in Figures 47–49, examination of which

shows most accurate tracking in the Q = 3I case.

Figures 50 and 51 extend the static-target data of Figure 39 by providing the average

trace of R̂(i) for different process noise covariances Q = 3I and Q = I. Comparison of these

three figures is similar to those of the moving-target case in that when Q = 5I or 3I the

high-cost cameras have lower covariance than the low-cost cameras and this is reversed for

Q = I. The traces of R̂(i) for the static-target scenario of Figures 36, 37, 41, and 42 are

plotted for Q = 3I in Figure 52 and for Q = I in Figure 53. The effect of varying Q in

these trials is that S = 59 with Q = 5I, S = 60 with Q = 3I, and S = 179 with Q = I

(still lower than the 368 steps required for GN and 305 for non-adaptive KF with Q = 5I

and R = I).

Plots for a CH = 1 static-target trial in which the first order DAKF with Q = I and

N = 20 fails to converge are presented in Figures 54–57. The high SNR data of Camera 1

is ignored due to the deleterious effects of having Q too small, thus the controller gets stuck

ignoring this data despite the large image-plane error in that camera. Measurements from

Camera 3 are prioritized, as evidenced by the low trace
(
R̂(3)

)
values and small image-plane

122

Figure 45: trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = 3I and N = 20 with CH = 1

(“cam 1”) — moving target

Figure 46: trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = I and N = 20 with CH = 1

(“cam 1”) — moving target

123

Figure 47: 3-D coordinates using DAKF controller Q = 5I with one high-cost camera
(Camera 1) and two low-cost cameras — moving target

Figure 48: 3-D coordinates using DAKF controller Q = 3I with one high-cost camera
(Camera 1) and two low-cost cameras — moving target

124

Figure 49: 3-D coordinates using DAKF controller Q = I with one high-cost camera
(Camera 1) and two low-cost cameras — moving target

Figure 50: Average trace
(
R̂(i)

)
(pixels2) using zeroth order with input DAKF Q = 3I and

N = 12 — static target

125

Figure 51: Average trace
(
R̂(i)

)
(pixels2) using zeroth order with input DAKF Q = 1I and

N = 12 — static target

Figure 52: trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = 3I and N = 20 with CH = 1

(“cam 1”) — static target

126

Figure 53: trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = I and N = 20 with CH = 1

(“cam 1”) — static target

error in that camera view. Inaccurate Q degrades controller performance but the penalty is

much higher when Q is too low than when it is too high. Therefore Q ought to be assumed

conservatively high.

7.6 Summary

Several conclusions can be drawn from the simulation data presented:

• §7.3, “Comparing High-Cost and Low-Cost Cameras for Visual Servoing”:

– For moving targets Figure 13 shows diminishing returns for more than three

cameras and an inability of low-cost cameras to achieve errors as low as a single

high-cost camera.

– For static targets Figure 18 shows a minimum positional error of about 0.5 mm

and diminishing returns with more than two high-cost cameras or six low-cost

cameras, at which point positional error is comparable to that of high-cost camera

systems.

127

Figure 54: Image-plane coordinates using DAKF controller Q = I with one high-cost
camera (Camera 1) and two low-cost cameras — failure to converge to static target

128

Figure 55: 3-D coordinates using DAKF controller Q = I with one high-cost camera
(Camera 1) and two low-cost cameras — failure to converge to static target

Figure 56: trace
(
R̂(i)

)
(pixels2) using first order DAKF Q = I and N = 20 with CH = 1

(“cam 1”) — failure to converge to static target

129

Figure 57: Innovation ν
(i)
k (pixels) using first order DAKF Q = I and N = 20 with CH = 1

(“cam 1”) — failure to converge to static target

• §7.4 demonstrates that the multiple-camera VS control methods of Chapter 5 continue

servoing in the event of camera failure.

• Using input has little effect on the KF method (for example, Figure 20).

• For heterogeneous camera systems tracking a moving target:

– Figure 20 shows that larger Q and smaller R yield lower tracking error.

– Figure 20 shows that DAKF is more sensitive to too-lowQ than DKF and exhibits

greater effects from using input.

– Zeroth and first order systems perform about equally as well.

– First order DAKF with Q = 5I and N = 20 has lower tracking error than GN

and DKF in all camera scenarios tested.

• For heterogeneous camera systems tracking a static target:

– Figure 28 shows that DKF is less sensitive to Q than with a moving target.

130

– Figure 29 demonstrates that DAKF with small N converges faster than with

large N and that DAKF is insensitive to camera noise compared to GN.

– DKF and DAKF formulations with Q = 5I perform better than Gauss-Newton

in all camera scenarios tested.

• Tables 4 and 5 show that DAKF improves average performance and also improves

overall system stability, exhibited by smaller outliers.

• Greater gains are had using DAKF with static targets than with moving targets and

when CH = 1 than for other camera scenarios.

• It can be seen from Figures 20, 30, and 31 that large window size N is good for a

highly dynamic system.

• Figure 38 of §7.5.3 indicates that R̂(i) is not always dependent on camera model.

• §7.5.3 also shows that using DAKF simplifies parameter selection compared to DKF.

Since Gauss-Newton has no parameters it is the simplest to use.

• In §7.5.3.1 it is observed that small Q can improve performance up to a point, beyond

which servoing quality rapidly degrades. Conservative estimates of Q are therefore

recommended.

These data show visual servoing performance improves with DAKF over a traditional

method, though at the price of greater complexity. Experiments are performed in order to

obtain further validation, results of which are presented in Chapter 8.

131

CHAPTER VIII

EXPERIMENTAL RESULTS

Simulation data in Chapter 7 indicate that DAKF can improve visual servoing performance

over the traditional Gauss-Newton technique. Experiments are performed using the setup

in §6.2. Comparison is made between zeroth order with input DAKF (Q = 3I) and GN for

several moving- and static-target camera scenarios.

There are some differences between the simulations and experiments. First, the static-

target maximum allowable norm for a joint offset command to the robot is µ = 2.5 deg

instead of 1.0 deg as in simulations. Another difference is that the physical cameras are

identical and located somewhat symmetrically. To better model an unstructured environ-

ment, where neither identical cameras nor optimal camera locations might be available,

three different levels of added noise are used in the three-heterogeneous-cameras trials: 1

pixel for the first camera, 2 pixels for the second, and 4 pixels for the third camera. The

simulations and experiments are different for the intermittent camera trials in that for sim-

ulations the outages are random, while for experiments they are fixed (see Table 6). The

last difference is that for a given simulation camera scenario (for example, CH = 1 and

CL = 2) numerous trials are run with those cameras positioned differently in each, while for

an experimental camera scenario five trials are run with the cameras identically positioned.

Simulation and experimental results generally agree: the zeroth order with input DAKF

Q = 3I is outperformed by GN for a moving target and DAKF converges more quickly to

a static target than GN. Experimental tracking error and iterations to convergence are also

on the same scale as in simulations.

The experiments explore three topics:

1. Verification that the hypothesis that accuracy improves with increasing number of

cameras

2. Validation of the camera-failure-handling methods of §5.2.1 and §5.4.2

132

Table 6: Experimental scenarios

Moving target

1. One camera, constant operation, no added noise

2. Three cameras, constant operation, 1 pixel noise added to one camera,

2 pixels for the second camera, and 4 pixels for the third

3. Four cameras, three of them failing at certain times: iterations 16–65 for one camera,

32–81 for the second, and 48–97 for the third

Static target

4. One camera, constant operation, no added noise

5. Two cameras, constant operation, no added noise

6. Three cameras, constant operation, 1 pixel noise added to one camera,

2 pixels for the second camera, and 4 pixels for the third

3. Comparison between a decentralized adaptive Kalman filter control law and the Gauss-

Newton method

Six different scenarios are used for each of the two control methods and are summarized

in Table 6. Scenarios 1 and 4 are visual servoing with one fixed camera. Scenario 5

uses two fixed cameras. Scenarios 2 and 6 have three cameras operating with white noise

superimposed on the feature coordinates to model an effect of using a low-cost camera since

a smaller (cheaper) sensor has higher noise. The maximum possible magnitude of additive

noise is constant for each camera but varies from one camera to the next. Scenario 3 uses

four cameras with data from three of them becoming unavailable at different times during

servoing. Three cameras are simultaneously offline for several iterations during servoing.

For illustration, the image-plane and Cartesian data from a scenario-4 trial are plotted

in Figures 58 and 59. The coordinates used for Figure 58 come directly from the image

processing. The 3-D coordinates are from a forward kinematic analysis of the manipulator

using the measured θj . The sensed paths of the checkerboard corners are shown with colored

lines. The target points are black in Figure 58, but they are practically obscured by the

colored lines of the servoing path. In Figure 59 black lines represent the checkerboard path

that is ideal in both image space and Cartesian space. The legend refers to the four target

133

Figure 58: Image feature coordinates for the DAKF controller with one camera (Camera
4) — stationary target

points as ta1–ta4 and to the four points on the robot end-effector as te1–te4.

Five trials are performed for each of the scenarios in Table 6 and the performance metrics

are averaged for each of the scenarios. Results are presented and discussed for each.

8.1 Moving-Target Trials

Figure 60 shows the paths traveled by the checkerboard corners for scenario 1 with the

Gauss-Newton controller. The largest errors are visible just after the corners of the target

path, where the Jacobian estimate becomes less accurate. A simulated trial using two

high-cost cameras shown in Figure 15 looks similar, indicating fidelity in the simulation.

For the moving-target scenario the error norms for the checkerboard corners ēcheck (89)

are averaged over the iterations of the five trials. There are a fixed number of iterations per

trial so repeatable periods of camera outages are possible over different trials for verifying

the camera-failure-handling methods of the Chapter 5. The camera inclusion threshold α

134

Figure 59: 3-D coordinates for the DAKF controller, scenario 1 (one camera — Camera 4)
— stationary target

Figure 60: 3-D coordinates using GN controller, scenario 1 (one camera — Camera 4) —
moving target

135

Table 7: Experimental results for moving target

Scenario 1 Scenario 2 Scenario 3

DAKF GN DAKF GN DAKF GN

Checkerboard error norm (mm) 18.2 10.7 21.7 18.3 18.3 15.5

in (61) is set to 0.98.

The results for the camera scenarios with a moving target are presented in Table 7.

These data do not facilitate conclusions about the relationship between tracking error and

number of cameras because the multiple-camera scenarios have extra variables, namely

added noise and camera failure episodes.

Comparing scenarios 1 and 3, Table 7 shows that the addition of intermittent cameras

slightly improves the Cartesian tracking error for the DAKF controller, while it degrades

the performance of the Gauss-Newton controller. This shows that the methods described

in §5.2.1 and §5.4.2 for handling camera failure provide stable servoing to a moving target.

The image-plane data from all four cameras are shown in Figure 61 for a scenario-3 trial.

The pre-recorded paths of the feature points are drawn with black lines and the locations

of the checkerboard corners during servoing are shown as colored points. In this way it is

possible to see the times during servoing that data are unavailable from Camera 2, Camera

3, and Camera 4. The corresponding 3-D path is shown in Figure 62. No extraordinary

disturbances in the path are visible from camera failure, indicating system reliability.

It is expected from theory and simulations that zeroth order with input DAKF (27)–(29)

is less capable than GN for moving targets since it imposes a stationary-target assumption

on the process equation. Direct comparison between the two controllers in Table 7 shows

that GN outperforms DAKF for each of the camera scenarios tested (C = CH = 1; C =

CH+CL = 3, CH = 1; and CH = 4, intermittent), which agrees with theory and simulation.

Table 8 shows average tracking error from simulations and experiments for their common

moving-target camera scenarios: one high-cost camera (scenario 1) and three heterogeneous

cameras (scenario 2). Differences between simulation and experiment range from 2% to 19%.

Since the simulation data are averages over 100 different camera layouts while experimental

136

Figure 61: Feature image coordinates for the DAKF controller, scenario 3 (four cameras,
three of which — Camera 2, Camera 3, and Camera 4 — go offline for portions of servoing)
— moving target

137

Figure 62: 3-D coordinates for the DAKF controller, scenario 3 (four cameras, three of
which — Camera 2, Camera 3, and Camera 4 — go offline for portions of servoing) —
moving target

Table 8: Simulated and experimental average tracking error (mm) for similar moving-target
scenarios

Scenario 1 Scenario 2

DAKF GN DAKF GN

Simulation 22.4 9.9 18 17.8

Experiment 18.2 10.7 21.7 18.3

data are averages over five trials in a single camera layout and since Table 4 indicates that

controller performance varies greatly with camera layout a 19% difference is reasonable.

This, combined with the small differences for other cases suggests simulation validity.

8.2 Static-Target Trials

To gauge the error reduction from multiple cameras the final Cartesian error norm is cal-

culated as the distance between the checkerboard center when the image-plane stopping

criterion is met (at that point the robot position is θ = θS) and at the pre-recorded lo-

cation (θ = θ∗). The final error norm is compared for the one- and two-camera cases

138

Figure 63: 3-D coordinates for the DAKF controller, scenario 5 (two cameras — Camera
2 and Camera 4) — stationary target

(scenarios 4 and 5) with the stopping threshold ε = 1 pixel. The results are 2.0 mm for

scenario 4 in Figure 59 and 0.5 mm for scenario 5 in Figure 63. The figures show that two

cameras yield a servoing path closer to linear, which is shortest in both image space and

Cartesian space.

The performance metrics for comparing the DAKF and Gauss-Newton for a stationary

target are the number of iterations S required for convergence (that is, image-plane error

norm below the threshold value ε = 10 pixels) and d, the norm of the absolute distance

traveled in joint space.

d =

N∑
j=1

‖θj − θj−1‖ (90)

The results in Table 9 show comparable performance between the controllers in scenarios 4

and 5 and a marked improvement with DAKF over Gauss-Newton for scenario 6. This, too

agrees with simulations.

The image-plane coordinates for scenario-6 trials are plotted in Figures 64 and 65 for

the Gauss-Newton and DAKF controllers. Examining y∗j (shown in black) for each camera

139

Table 9: Experimental results for stationary target

Scenario 4 Scenario 5 Scenario 6

DAKF GN DAKF GN DAKF GN

Iterations to convergence 23.8 24.6 28.6 27.2 25.8 35.6

Total joint distance norm (deg) 52.8 52.7 61.7 58.9 60 83.2

Figure 64: Feature image coordinates using GN controller with three noisy cameras (Cam-
era 1, Camera 3, and Camera 4) — stationary target

illustrates the different magnitudes of the noise added (Camera 4 is noisier than Camera

3, which is noisier than Camera 1). The 3-D data are depicted in Figures 66 and 67. To

allow for the additive noise in this scenario ε = 10 pixels, otherwise the stopping criterion is

unlikely to be met. This relatively high threshold value explains the gap between the goal

position and final robot position evident in the figures.

Comparing Figures 64 and 66 with 65 and 67 reveals benefits of DAKF for multiple-

camera static-target VS in that the GN path strays much farther from the ideal (straight

line) than does the DAKF path.

8.3 Summary

Experimental results are in general agreement with simulation data:

• Zeroth order with input DAKF servos worse than Gauss-Newton for a moving target

but better than GN for a stationary target.

• Positional accuracy increases with additional cameras for a static target.

140

Figure 65: Feature image coordinates for the DAKF controller with three noisy cameras
(Camera 1, Camera 3, and Camera 4) — stationary target

Figure 66: 3-D coordinates using GN controller with three noisy cameras (Camera 1,
Camera 3, and Camera 4) — stationary target

141

Figure 67: 3-D coordinates for the DAKF controller with three noisy cameras (Camera 1,
Camera 3, and Camera 4) — stationary target

• The camera-failure handling methods of Chapter 5 engender system survivability.

Particular experimental data points based on a single camera layout offer poor correspon-

dence to simulation data averaged over numerous layouts but VS performance can be sen-

sitive to camera placement so this is unsurprising. Other data points in Table 8 show

close correspondence between experiment and simulation. These results serve to bolster the

conclusions drawn in Chapter 7.

142

CHAPTER IX

CONCLUDING REMARKS

A Kalman filter based visual servo control method is developed and analyzed. Four formu-

lations are discussed and tested in simulation that vary in state space order and the use

of input. The Kalman approach employs an adaptive filtering technique to weight multi-

camera data to simplify tuning and provide superior performance over non-adaptive KF.

The controller is decentralized for system survivability in the event of camera occlusion or

failure.

Numerous control laws exist in the uncalibrated VS literature. Few options are available

for uncalibrated VS, with a Gauss-Newton based method being the de facto standard. Com-

parison is made between this conventional VS control law and the decentralized adaptive

Kalman filter approach, and with sufficiently high estimates of the covariance matrix Q,

the first order adaptive Kalman filter is shown to outperform GN in all camera and target

scenarios tested.

The Kalman filter has previously been applied in position based visual servoing for target

pose estimation and in uncalibrated VS for Jacobian estimation. In this work Jacobian

estimation is assumed. The recursive least squares technique of Piepmeier [59] is used in

the simulations and experiments.

9.1 Major Contributions

This thesis makes the following specific contributions:

1. Developing an uncalibrated visual servoing control method using the Kalman filter

that outperforms Gauss-Newton for both moving and static targets in the presence of

noise

2. Applying an adaptive filter technique to visual servoing allowing camera weighting

without any prior knowledge of robot or camera parameters

143

3. Implementing the above in a decentralized architecture to allow continuous servoing

with occlusions or camera failure

4. Experimentally verifying the decentralized adaptive Kalman filter control method and

comparing it to the Gauss-Newton technique

5. Exploring the relationship between uncalibrated VS performance and number of cam-

eras

9.2 Controllability and Observability

The Kalman filter application to uncalibrated visual servoing is shown to be stable (§3.2.5.1).

It estimates the joint-space offset between the current robot position and the position where

the image plane error is minimized. The system is completely controllable and observable

under the following assumptions:

• Within the robot dynamic limits and workspace, the joint-level servo control can

attain any desired position in one time step.

• The servoing path starts with the robot in a full column rank configuration (that is, not

in a kinematic singularity) and passes through another full column rank configuration

at least once during servoing.

9.3 Noise Estimates

To generate optimal estimates the Kalman filter requires accurate descriptions of the noise

covariances. The process noise covariance Q represents errors in the robot-target motion

assumptions while the measurement noise R is due to many sources such as inaccuracy of

the Jacobian estimate in the neighborhood of θk. In order to achieve improved performance

and to provide camera weighting an adaptive filtering technique is applied to the Kalman

filter visual servoing method. It is shown to yield lower tracking error, faster convergence,

and simplified filter design compared to a non-adaptive Kalman filter.

Four adaptive filtering approaches are mentioned in Chapter 4, with close attention paid

to covariance-matching methods. The suitability to VS of several such methods is explored.

144

The chosen technique is from Mehra [52], with modifications made to assure positive definite

matrices. Rather than attempting to adapt Q and R simultaneously, adaptation is provided

only for R. This is well suited to a decentralized architecture with a common Q and local

adaptation of the covariance matrix R(i) associated with each camera.

9.4 Decentralized Architecture

The final step in the Kalman filter uncalibrated visual servoing control method is to im-

plement a decentralized architecture for robustness. Assuming measurement noise that is

uncorrelated between cameras, optimal fusion equations allow for camera failure during

servoing.

9.5 Simulation Results

From simulation results it is concluded that:

• The Kalman filter formulations using input (whether joint offset hθ or joint velocity

change hω) perform, on average, no better than those without.

• For moving targets, low-cost cameras are unable to provide tracking comparable to

just two high-cost cameras.

• For static targets, maximum positional accuracy is possible with either two high-cost

cameras or six low-cost cameras.

• Camera occlusion is successfully handled via the decentralized architecture.

• DAKF provides performance superior to the conventional Gauss-Newton approach in

the presence of noise, especially if there is a high-fidelity camera in the system.

– Tables 4 and 5 and Figures 27 and 33 show that DAKF improves average perfor-

mance and also improves overall system stability, exhibited by smaller outliers.

• The DAKF controller is simpler to design and yields better servoing than a non-

adaptive version.

145

• The adapted local measurement covariance R(i) depends not only on image noise and

focal length but also on camera location.

9.6 Experimental Results

Experiments are performed on the setup described in Chapter 6 that comprises a 6 DoF

robot arm, the industrial robot controller, four cameras, and one personal computer imple-

menting image processing and VS control. This thesis reports the first uncalibrated visual

servoing experiments using more than two cameras simultaneously. Experimental data are

in general agreement with simulation data:

• Zeroth order with input DAKF servos worse than Gauss-Newton for a moving target

(Table 7) but better than GN for a stationary target (Table 9).

• Positional accuracy increases with additional cameras for a static target: 2.0 mm

with a single high-cost camera and 0.5 mm with two (for the stopping threshold ε = 1

pixel). This result is a function only of camera geometry and so is independent of

control method.

Thus credence is lent to the conclusions from Chapter 7.

9.7 Summary

In summary, uncalibrated visual servoing can potentially extend robot usage to unstructured

environments where calibrated systems can completely fail after reconfiguration such as

a change in camera position [59]. Multiple cameras are known to improve accuracy of

uncalibrated VS. The decentralized adaptive Kalman filter formulation in this thesis exploits

the advantages of multiple cameras by weighting cameras and allowing for occlusion.

9.8 Recommendations

The following practices are recommended for DAKF implementation:

• Do not use input in process equation because it imposes assumptions on target and/or

robot motion with little performance gain even when those assumptions are valid.

146

• Regarding filter design, a recommendation is that Q be set conservatively high to

avoid poor servoing results. For example, β ≥ 5 for Q = βI.

• Increasing target dynamis should be treated with larger window size N in the adaptive

technique, ranging between N = 12 and N = 20.

9.9 Future work

In order to assure a positive definite measurement noise covariance matrix an ad-hoc tech-

nique is presented here. Further performance improvements could be seen by instead im-

plementing the new autocovariance least-squares (ALS) method of Odelson et al. [57]. This

solves a constrained ALS problem to ensure positive semidefinite estimates and it estimates

both Q and R with more accurate covariances than classical methods. This would obviate

the need for DAKF tuning and could yield better performance since it is shown in this

thesis that Q selection is important. ALS has not been applied to a multisensor system

so adapting it to a decentralized architecture where local filters share a common process

model and Q but have individual R matrices represents a challenge.

The adaptive measurement covariances (camera weighting) could help determine optimal

camera placement.

The VS control method developed in this thesis uses a fully-connected decentralized

Kalman filter. Using the Information filter instead would allow for a non-fully-connected

system with the same estimate and minimal communication. Adaptive methods for the

Information filter formulation could be explored in future work.

The decentralized architecture currently allows for camera failure or occlusion by remov-

ing that filter from the summations in (87) and (86). This does not consider the possibility

of partial occlusion. If redundant image features are tracked in a camera then with par-

tial occlusion the associated filter may still be able to compute a local joint error estimate

(φ̂) using some technique for Kalman filtering with intermittent data. Applying such a

technique could further improve system reliability.

The reported gains from DAKF are more pronounced when servoing to a static target

than when tracking a moving one. A possible reason is that static-target trials use a

147

smaller joint offset limit (µ) than moving-target trials. Reducing the control period could

improve moving-target performance by having smaller robot and target motions between

steps, providing more measurements for the state estimate.

Multiple cameras have been shown to improve accuracy of uncalibrated visual servoing

and though further improvements are possible the Kalman filter based approach presented

here goes further in maximizing this multi-camera potential than a traditional VS control

method.

148

REFERENCES

[1] Akesson, B. M., Jrgensen, J. B., Poulsen, N., and Jorgensen, S. B., “A
generalized autocovariance least-squares method for kalman filter tuning,” Journal of
Process Control, vol. 18, no. 78, pp. 769 – 779, 2008.

[2] Almagbile, A., Wang, J., and Ding, W., “Evaluating the performances of adaptive
kalman filter methods in gps/ins integration,” Journal of Global Positioning Systems,
vol. 9, pp. 33–40, 2010.

[3] Andreff, N., Espiau, B., and Horaud, R., “Visual servoing from lines,” in Robotics
and Automation, 2000. Proceedings. ICRA ’00. IEEE International Conference on,
vol. 3, pp. 2070 –2075 vol.3, 2000.

[4] Assa, A., Janabi-Sharifi, F., Moshiri, B., and Mantegh, I., “A data fusion
approach for multi-camera based visual servoing,” in Optomechatronic Technologies
(ISOT), 2010 International Symposium on, pp. 1 –7, oct. 2010.

[5] Bavdekar, V. A., Deshpande, A. P., and Patwardhan, S. C., “Identification of
process and measurement noise covariance for state and parameter estimation using
extended kalman filter,” Journal of Process Control, vol. 21, no. 4, pp. 585 – 601, 2011.

[6] Bilen, H., Hocaoglu, M., Ozgur, E., Unel, M., and Sabanovic, A., “A compar-
ative study of conventional visual servoing schemes in microsystem applications,” in
Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference
on, pp. 1308 –1313, 29 2007-nov. 2 2007.

[7] Blanchet, I., Frankignoul, C., and Cane, M., “A comparison of adaptive kalman
filters for a tropical pacific ocean model,” Monthly Weather Review, vol. 125, pp. 40–58,
1997.

[8] Bonkovic, M., Hace, A., and Jezernik, K., “Population-based uncalibrated visual
servoing,” Mechatronics, IEEE/ASME Transactions on, vol. 13, pp. 393 –397, june
2008.

[9] Brogan, W. L., Modern Control Theory Third Edition. Prentice Hall, 1991.

[10] Carusone, J. and D’Eleuterio, G., “The feature cmac: a neural-network-based
vision system for robotic control,” Proceedings of the 1998 IEEE International Con-
ference on Robotics and Automation, vol. 4, pp. 2959–2964, 16-20 1998.

[11] Chang, C.-F., Tsai, C.-C., Hsu, J.-C., and Lin, C.-C., “Laser pose tracking for a
mobile robot using fuzzy adaptive extended information filtering,” in American Control
Conference, 2003. Proceedings of the 2003, vol. 3, pp. 2471 – 2476 vol.3, june 2003.

[12] Chaumette, F. and Hutchinson, S., “Visual servo control, part I: Basic ap-
proaches,” IEEE Robotics and Automation Magazine, vol. 13, pp. 82–90, Dec. 2006.

149

[13] Chaumette, F. and Hutchinson, S., “Visual servo control, part II: Advanced ap-
proaches,” IEEE Robotics and Automation Magazine, vol. 14, pp. 109–118, Mar. 2007.

[14] Chaumette, F. and Rives, P., “Vision-based-control for robotic tasks,” in Intelligent
Motion Control, 1990. Proceedings of the IEEE International Workshop on, vol. 2,
pp. 395 –400, aug 1990.

[15] Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki,
L., and Thrun, S., Principles of Robot Motion Theory, Algorithms, and Implementa-
tions. MIT, 2005.

[16] Collewet, C., Marchand, E., and Chaumette, F., “Visual servoing set free from
image processing,” in Robotics and Automation, 2008. ICRA 2008. IEEE International
Conference on, pp. 81 –86, may 2008.

[17] Cowan, N., Weingarten, J., and Koditschek, D., “Visual servoing via navigation
functions,” Robotics and Automation, IEEE Transactions on, vol. 18, pp. 521 – 533,
aug 2002.

[18] Dame, A. and Marchand, E., “Improving mutual information-based visual servo-
ing,” in Robotics and Automation (ICRA), 2010 IEEE International Conference on,
pp. 5531 –5536, may 2010.

[19] Deng, Z. and Jagersand, M., “Evaluation of model independent image-based visual
servoing,” in Computer and Robot Vision, 2004. Proceedings. First Canadian Confer-
ence on, pp. 138 – 144, 17-19, 2004.

[20] Drolet, L., Michaud, F., and Cote, J., “Adaptable sensor fusion using multiple
kalman filters,” in Intelligent Robots and Systems, 2000. (IROS 2000). Proceedings.
2000 IEEE/RSJ International Conference on, vol. 2, pp. 1434–1439 vol.2, 2000.

[21] El-Hawary, F., “A comparison of recursive weighted least squares estimation and
kalman filtering for source dynamic motion evaluation,” in OCEANS ’89. Proceedings,
vol. 4, pp. 1082 –1086, sep 1989.

[22] Escamilla-Ambrosio, P. and Mort, N., “Hybrid kalman filter-fuzzy logic adaptive
multisensor data fusion architectures,” in Decision and Control, 2003. Proceedings.
42nd IEEE Conference on, vol. 5, pp. 5215 – 5220 Vol.5, dec. 2003.

[23] Espiau, B., Chaumette, F., and Rives, P., “A new approach to visual servoing in
robotics,” Robotics and Automation, IEEE Transactions on, vol. 8, pp. 313 –326, jun
1992.

[24] Ficocelli, M. and Janabi-Sharifi, F., “Adaptive filtering for pose estimation in
visual servoing,” in Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ
International Conference on, vol. 1, pp. 19 –24 vol.1, 2001.

[25] Flandin, G., Chaumette, F., and Marchand, E., “Eye-in-hand/eye-to-hand co-
operation for visual servoing,” in Robotics and Automation, 2000. Proceedings. ICRA
’00. IEEE International Conference on, vol. 3, pp. 2741 –2746 vol.3, 2000.

150

[26] Fu, Q., Zhang, Z., and Shi, J., “Uncalibrated visual servoing using more precise
model,” in Robotics, Automation and Mechatronics, 2008 IEEE Conference on, pp. 916
–921, sept. 2008.

[27] Gao, Z. and Su, J., “Switch images based on fusion in uncalibrated visual servoing,”
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE
Cat. No. 06CH37780D), pp. 3803–8, 2006.

[28] Gumpert, B. A., “A recursive gauss-newton method for model independent eye-in-
hand visual servoing,” Master’s thesis, Georgia Institute of Technology, 2001.

[29] Han, J., Kim, D., and Sunwoo, M., “State-of-charge estimation of lead-acid batteries
using an adaptive extended kalman filter,” Journal of Power Sources, vol. 188, no. 2,
pp. 606 – 612, 2009.

[30] Hao, M. and Sun, Z., “A universal state-space approach to uncalibrated model-free
visual servoing,” Mechatronics, IEEE/ASME Transactions on, vol. PP, no. 99, pp. 1
–14, 2011.

[31] Hao, M., Deuflhard, P., Sun, Z., and Fujii, M., “Model-free uncalibrated visual
servoing using recursive least squares,” Journal of Computers, vol. 3, no. 11, 2008.

[32] Hashimoto, H., Kubota, T., Kudou, M., and Harashima, F., “Self-organizing
visual servo system based on neural networks,” Control Systems Magazine, IEEE,
vol. 12, pp. 31–36, Apr 1992.

[33] Hide, C., Moore, T., and Smith, M., “Adaptive kalman filtering algorithms for
integrating gps and low cost ins,” in Position Location and Navigation Symposium,
2004. PLANS 2004, pp. 227 – 233, april 2004.

[34] Hosoda, K. and Asada, M., “Versatile visual servoing without knowledge of true
jacobian,” Proceedings of the IEEE/RSJ/GI International Conference on Intelligent
Robots and Systems, vol. 1, pp. 186–193, 12-16 1994.

[35] Ip, Y. L., Rad, A. B., Wong, Y. K., Liu, Y., and Ren, X. M., “A localization
algorithm for autonomous mobile robots via a fuzzy tuned extended kalman filter.,”
Advanced Robotics, vol. 24, no. 1/2, pp. 179 – 206, 2010.

[36] Jagersand, M., “Visual servoing using trust region methods and estimation of the
full coupled visual-motor jacobian,” IASTED Applications of Robotics and Control,
1996.

[37] Jagersand, M., Fuentes, O., and Nelson, R., “Experimental evaluation of uncali-
brated visual servoing for precision manipulation,” in Robotics and Automation, 1997.
Proceedings., 1997 IEEE International Conference on, vol. 4, pp. 2874 –2880 vol.4, apr
1997.

[38] Jwo, D.-J. and Chang, F.-I., “A fuzzy adaptive fading kalman filter for gps naviga-
tion,” in Advanced Intelligent Computing Theories and Applications. With Aspects of
Theoretical and Methodological Issues (Huang, D.-S., Heutte, L., and Loog, M.,
eds.), vol. 4681 of Lecture Notes in Computer Science, pp. 820–831, Springer Berlin /
Heidelberg, 2007.

151

[39] Jwo, D.-J. and Weng, T.-P., “An adaptive sensor fusion method with applications
in integrated navigation,” Journal of Navigation, vol. 61, pp. 705–721, 2008.

[40] Khnlenz, K. and Buss, M., “On sensor switching visual servoing,” International
Journal of Optomechatronics, vol. 2, no. 3, pp. 233–256, 2008.

[41] Lamiroy, B., Espiau, B., Andreff, N., and Horaud, R., “Controlling robots
with two cameras: how to do it properly,” Proceedings of the 2000 IEEE International
Conference on Robotics and Automation, vol. 3, pp. 2100–2105, 2000.

[42] Lin, H.-H., Tsai, C.-C., Hsu, J.-C., and Chang, C.-F., “Ultrasonic self-localization
and pose tracking of an autonomous mobile robot via fuzzy adaptive extended infor-
mation filtering,” in Robotics and Automation, 2003. Proceedings. ICRA ’03. IEEE
International Conference on, vol. 1, pp. 1283 – 1290 vol.1, sept. 2003.

[43] Lippiello, V., Siciliano, B., and Villani, L., “Eye-in-hand/eye-to-hand multi-
camera visual servoing,” in Decision and Control, 2005 and 2005 European Control
Conference. CDC-ECC ’05. 44th IEEE Conference on, pp. 5354 – 5359, dec. 2005.

[44] Lippiello, V., Siciliano, B., and Villani, L., “Position-based visual servoing in
industrial multirobot cells using a hybrid camera configuration,” Robotics, IEEE Trans-
actions on, vol. 23, pp. 73 –86, feb. 2007.

[45] Lippiello, V., Siciliano, B., and Villani, L., “Adaptive extended kalman filtering
for visual motion estimation of 3d objects,” Control Engineering Practice, vol. 15, no. 1,
pp. 123 – 134, 2007.

[46] Liu, Y.-H., Wang, H., Wang, C., and Lam, K. K., “Uncalibrated visual servoing
of robots using a depth-independent interaction matrix,” Robotics, IEEE Transactions
on, vol. 22, pp. 804 –817, aug. 2006.

[47] Lv, X. and Huang, X., “Fuzzy adaptive kalman filtering based estimation of image
jacobian for uncalibrated visual servoing,” in Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, pp. 2167 –2172, oct. 2006.

[48] Malis, E., “Improving vision-based control using efficient second-order minimization
techniques,” in Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE
International Conference on, vol. 2, pp. 1843 – 1848 Vol.2, 26-may 1, 2004.

[49] Malis, E., Borrelly, J.-J., and Rives, P., “Intrinsics-free visual servoing with
respect to straight lines,” in Intelligent Robots and Systems, 2002. IEEE/RSJ Inter-
national Conference on, vol. 1, pp. 384 – 389 vol.1, 2002.

[50] Marshall, M., Matthews, M., Hu, A.-P., McMurray, G., and Lipkin, H.,
“Uncalibrated visual servoing for intuitive human guidance of robots,” in Robotics and
Automation (ICRA), 2012 IEEE International Conference on, pp. 4463 –4468, may
2012.

[51] Mehra, R., “On the identification of variances and adaptive kalman filtering,” Auto-
matic Control, IEEE Transactions on, vol. 15, pp. 175 – 184, apr 1970.

[52] Mehra, R., “Approaches to adaptive filtering,” Automatic Control, IEEE Transac-
tions on, vol. 17, pp. 693 – 698, oct 1972.

152

[53] Munnae, Uncalibrated Robotic Visual Servo Tracking For Large Residual Problems.
PhD thesis, Georgia Institute of Technology, 2010.

[54] Mutambara, A. G., Decentralized Estimation and Control for Multisensor Systems.
CRC Press, 1998.

[55] Myers, K. and Tapley, B., “Adaptive sequential estimation with unknown noise
statistics,” Automatic Control, IEEE Transactions on, vol. 21, pp. 520 – 523, aug
1976.

[56] Neethling, C. and Young, P., “Comments on ”identification of optimum filter
steady-state gain for systems with unknown noise covariances”,” Automatic Control,
IEEE Transactions on, vol. 19, no. 5, pp. 623–625, 1974.

[57] Odelson, B. J., Rajamani, M. R., and Rawlings, J. B., “A new autocovariance
least-squares method for estimating noise covariances,” Automatica, vol. 42, no. 2,
pp. 303 – 308, 2006.

[58] Pari, L., Sebastian, J., Traslosheros, A., and Angel, L., “A comparative study
between analytic and estimated image jacobian by using a stereoscopic system of cam-
eras,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Con-
ference on, pp. 6208 –6215, oct. 2010.

[59] Piepmeier, J., A Dynamic Quasi-Newton Method for Model Independent Visual Ser-
voing. PhD thesis, Georgia Institute of Technology, 1999.

[60] Piepmeier, J., McMurray, G., and Lipkin, H., “A dynamic quasi-newton method
for uncalibrated visual servoing,” vol. 2, pp. 1595 –1600 vol.2, 1999.

[61] Piepmeier, J., “Experimental results for uncalibrated eye-in-hand visual servoing,”
pp. 335 – 339, 2003.

[62] Piepmeier, J. and Lipkin, H., “Uncalibrated eye-in-hand visual servoing,” Interna-
tional Journal of Robotics Research, vol. 22, no. 10-11, pp. 805–19, 2003.

[63] Piepmeier, J., McMurray, G., and Lipkin, H., “Uncalibrated dynamic visual ser-
voing,” IEEE Transactions on Robotics and Automation, vol. 20, pp. 143–147, feb.
2004.

[64] Qian, J. and Su, J., “Online estimation of image jacobian matrix by kalman-bucy filter
for uncalibrated stereo vision feedback,” Proceedings of the 2002 IEEE International
Conference on Robotics and Automation, vol. 1, pp. 562–567, 2002.

[65] Rao, B. and Durrant-Whyte, H., “Fully decentralised algorithm for multisen-
sor kalman filtering,” Control Theory and Applications, IEE Proceedings D, vol. 138,
pp. 413 –420, sep 1991.

[66] Sanderson, A. and Weiss, L., Robot Vision, ch. Adaptive Visual Servo control of
Robots, pp. 107–116. Springer-Verlag, 1983.

[67] Schuurman, D. and Capson, D., “Robust direct visual servo using network-
synchronized cameras,” Robotics and Automation, IEEE Transactions on, vol. 20,
pp. 319 – 334, april 2004.

153

[68] Sebastian, J., Pari, L., Gonzalez, C., and Angel, L., “A new method for the
estimation of the image jacobian for the control of an uncalibrated joint system,” Pro-
ceedings of the 2005 IbPRIA Conference on Pattern Recognition and Image Analysis,
Part I (Lecture Notes in Computer Science), vol. 3522, pp. 631–8, 2005.

[69] Sebastin, J., Pari, L., Angel, L., and Traslosheros, A., “Uncalibrated visual
servoing using the fundamental matrix,” Robotics and Autonomous Systems, vol. 57,
no. 1, pp. 1–10, 2009.

[70] Shirai, Y. and Inoue, H., “Guiding a robot by visual feedback in assembling tasks,”
Pattern Recognition, vol. 5, no. 2, pp. 99–106, IN3, 107–108, 1973.

[71] Stavnitzky, J. and Capson, D., “Multiple camera model-based 3-d visual servo,”
Robotics and Automation, IEEE Transactions on, vol. 16, pp. 732 –739, dec 2000.

[72] Strang, G. and Borre, K., Linear Algebra, Geodesy, and GPS. Wellesley-
Cambridge, 1997.

[73] Subramanian, V., Burks, T., and Dixon, W. E., “Sensor fusion using fuzzy logic
enhanced kalman filter for autonomous vehicle guidance in citrus groves,” Transactions
of the ASABE, vol. 52, pp. 1411–1422, 2009.

[74] Sung, W., Lee, S., and You, K., “Ultra-precision positioning using adaptive fuzzy-
kalman filter observer,” Precision Engineering, vol. 34, no. 1, pp. 195 – 199, 2010.
¡ce:title¿CIRP-CAT 2007¡/ce:title¿.

[75] Takagi, T. and Sugeno, M., “Fuzzy identification of systems and its applications
to modeling and control,” Systems, Man and Cybernetics, IEEE Transactions on,
vol. SMC-15, pp. 116 –132, jan.-feb. 1985.

[76] Triggs, B. and Laugier, C., “Automatic camera placement for robot vision tasks,”
in Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference
on, vol. 2, pp. 1732 –1737 vol.2, may 1995.

[77] Tsai, C.-C. and Lin, H.-H., “Improved global localization and pose tracking of an
autonomous mobile robot via fuzzy adaptive extended information filtering,” in Com-
puter Aided Control System Design, 2006 IEEE International Conference on Control
Applications, 2006 IEEE International Symposium on Intelligent Control, 2006 IEEE,
pp. 1813 –1818, oct. 2006.

[78] Wang, H., Liu, Y.-H., and Zhou, D., “Adaptive visual servoing using point and line
features with an uncalibrated eye-in-hand camera,” Robotics, IEEE Transactions on,
vol. 24, pp. 843 –857, aug. 2008.

[79] Wu, Z., Rajamani, M., Rawlings, J., and Stoustrup, J., “Application of an
autocovariance least - squares method for model predictive control of hybrid ventilation
in livestock stables,” in American Control Conference, 2007. ACC ’07, pp. 3630 –3635,
july 2007.

[80] Yoshihata, Y., Watanabe, K., Iwatani, Y., and Hashimoto, K., “Multi-camera
visual servoing of a micro helicopter under occlusions,” in Intelligent Robots and Sys-
tems, 2007. IROS 2007. IEEE/RSJ International Conference on, pp. 2615 –2620, 29
2007-nov. 2 2007.

154

[81] Yoshimi, B. and Allen, P., “Active, uncalibrated visual servoing,” Proceedings of
the 1998 IEEE International Conference on Robotics and Automation, pp. 156–161,
8-13 1994.

[82] Zhang, G., Wang, B., Wang, J., and Liu, H., “A hybrid visual servoing control of 4
dofs space robot,” in Mechatronics and Automation, 2009. ICMA 2009. International
Conference on, pp. 3287 –3292, aug. 2009.

[83] Zhang, S.-T. and Wei, X.-Y., “Fuzzy adaptive kalman filtering for dr/gps,” in Ma-
chine Learning and Cybernetics, 2003 International Conference on, vol. 5, pp. 2634 –
2637 Vol.5, nov. 2003.

155

VITA

Matthew Marshall was born in DeLand, Florida where he graduated from high school as

a National Merit Scholarship finalist. Matthew received a B.S. in Mechanical Engineering

from the University of Florida and then earned an M.S. for work in tensegrity mechanisms.

Matthew and his wife, Laura, moved to Atlanta, Georgia where he embarked upon Ph.D.

work at the Georgia Institute of Technology. In the nonce he worked for GTRI FPTD,

Plastic Omnium, and Phoenix Engineering and Consulting, Inc. and taught as an adjunct

professor at Southern Polytechnic State University. He’s thankful for so much.

156

