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ABSTRACT 

A microgrid may have numerous multi-functional power electronic converters 

connecting sources, loads, and storage to the system. Systems where converters are the 

interface between many of the main sources of energy and load centers have the ability to 

direct the flow of energy if the control of the converters is coordinated. The influence of 

energy flow in a microgrid by coordinated action of converters is referred to here as 

‘energy routing’. Energy routing allows for reduction of systems losses by optimizing 

source operating points and reducing transmission and distribution path losses. Energy 

ramp rates at various points in the system can also be manipulated by coordinated control 

of energy flow through the converters. 

Converters can be coordinated centrally or in a distributed fashion. A distributed 

coordination system approach can enable system level converter control while avoiding 

single points of failure that are inherent in a centralized hierarchical control system, and 

that is robust and expandable. Research performed in the area of distributed control 

indicates that a control based on a multi-agent system (MAS) has the potential to satisfy 

the distributed converter control requirements. Here an optimization technique is 

developed that can be distributed for parallel computation by MAS type control systems.  

An optimization algorithm will be presented that dynamically determines global 

optimal values of discretized command variables to the converters in a distributed fashion 

in order to ensure most economic fuel usage of the sources and minimization of
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distribution loss simultaneously. Converter command variables are discretized in order to 

formulate the optimization problem as a Mixed Integer Quadratic Programming (MIQP) 

problem. The MIQP framework allows decomposition of the optimization algorithm as 

well as pruning of the search span by a factor of hundreds. Thus, it provides very fast 

convergence to the optimal solution and ensures that the communication requirements are 

feasible for real-time system level coordination. 

In order to validate the distributed optimization and control method developed in this 

research, a simplified shipboard DC power distribution system and CERTS (Consortium 

for Electric Reliability Technology Solutions) microgrid are used for case studies. These 

are isolated microgrids with converters between all sources of energy and the main buses 

as well as between all load centers and the main buses. Energy routing through the 

branches is directly maintained by controlling the command variables input to the 

converters. Sources as well as storage are indirectly manipulated to their optimal set 

points by these discretized command variables. Simulation based validation is performed 

for both test systems. 
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CHAPTER I 

INTRODUCTION TO MICROGRIDS 

 
A Microgrid (MG) is a special category of distributed generation and load system that 

is distinguished by its size and the ability to operate independently as a self-contained 

power system. Energy sources in a microgrid are commonly interfaced through power 

electronic converters. A microgrid may take the form of shopping center, industrial park, 

college campus, an electric ship and so on. A microgrid may be or may not be connected 

to a large scale utility grid [1].  

Microgrids can be classified into several types based on the position they have and 

the type of power they provide. Common types of microgrids are Grid Connected 

Microgrid, Islanded Microgrid, AC Microgrid, DC Microgrid and Hybrid Microgrid. 

Power electronics and their coordination by a system level control system play a very 

important role to control power flow in a microgrid. 

Microgrids that are connected to a large scale power grid are called grid connected 

microgrid. Figure 1.1 depicts a grid connected microgrid. Its connection to the grid 

doesn’t mean that it’s always exchanging power with the grid. Power flow can be 

controlled (inflow, outflow, no flow) by using an energy management system (EMS).   

Microgrids that operate freely without any connection with large scale power grids are 

called islanded microgrids. Shipboard power systems are a good example of this type. 

Islanded microgrids must be fully self-subsistent. Microgrids that deal with AC power 
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only are called AC Microgrid. If a grid connected microgrid provides AC power only, it 

would be called as grid connected AC microgrid. DC Microgrids provide DC power only. 

If an islanded microgrid deals with DC power only, it would be called as islanded DC 

microgrid.  Microgrids that deal with both DC and AC power are called Hybrid 

Microgrids [2]. 

 

 
Figure 1.1. General architecture of a Microgrid  

 

1.1 LITERATURE REVIEW 

 Researchers have suggested many methods for control of microgrids. Suggestions 

vary depending on the objectives considered. Some place emphasis on global optimal 

solution, some on time of convergence, and others on stability, reliability, scalability or a 
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mix [3-18]. In order to ensure greater command on the system, some sort of 

communication is a must. Hence droop based or decentralized communication free 

articles are not considered here.   

Authors in [3] presented a scheme for an energy management system in the form of 

distributed control agents. The control agents’ task is to ensure supply of the various load 

demands while taking into consideration system constraints and load priorities. A graph 

theoretic self-stabilizing maximum flow algorithm for the implementation of the agents’ 

strategies has been developed to find a global solution using local information and 

minimum amount of communication. The algorithm has been adapted there to find a 

solution to the power flow problem of the electric shipboard system. Communication 

among agents makes use of the blackboard architecture. A fundamental problem in graph 

theory is the maximum flow problem for which parallel algorithms run in 

polylogarithmic time on a polynomial number of processors. Solutions to the 

reconfiguration problem have been found in 0.5 to 1.5 seconds which makes it not good 

enough for real-time reconfiguration.  

A dynamic load management method to support for the next generation integrated 

shipboard power system has been validated in [4]. The problem is formulated as a 

dynamic optimization problem to maximize the energized loads in the system without 

violating any constraint. The objective of dynamic load management is to serve as many 

loads as possible considering priorities subject to the constraints of system. The 

simulation results indicated that the dynamic load management could maximize the 

energized loads without violating any system constraints in real-time. Though it’s a real 
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time load management system, it doesn’t intend to optimize the system loss. The 

objective function of this management doesn’t deal with a cost function.  

Authors in [5] have suggested particle swarm optimization combined with improved 

pre-prepared power demand (IPPD) table to optimize fuel consumption of a multi-

machines microgrid. The work consisted in its entirety in a techno-economic study whose 

objective was to minimize fuel consumption and thereby generated pollution of a small 

central cogeneration multi-machine. This work was carried out by Secant method 

combined with Improved Pre-prepared Power Demand (IPPD) table which obtains the 

unit status information and then the optimal solution is achieved by Secant method at 

each power demand for 24 hours. It doesn’t provide dynamic solution to load 

management and also is not applicable to distributed control.   

Feasibility of employing modified Particle Swarm Optimization (PSO) approaches 

for efficient solving of Economic Dispatch Problems (EDP) considering generator 

constraints has been demonstrated in [6]. To enrich the searching behavior and to avoid 

being trapped into local optimum, a chaotic sequence based on logistic map is 

incorporated as a randomizer instead of traditional uniform random function approaches. 

This paper includes network loss or distribution loss in its objective function. But 

distribution loss is lumped together and expressed as function of generating units which 

doesn’t truly represent simultaneous EDP and transmission loss optimization.  

A decentralized economic dispatch approach for microgrids has been analyzed in [7] 

such that each DG unit makes local decisions on power generation based on a multi-agent 

coordination with guaranteed convergence. Heterogeneous wireless network architecture 

is established. Each node uses an ad hoc communication device for basic information 
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exchange, while some dual-mode nodes are equipped with optional cellular 

communication devices which can be activated to improve the convergence speed of 

multi-agent coordination. Two multi-agent coordination schemes are proposed to utilize 

the cellular communication links based on the single-stage and hierarchical operation 

modes, respectively. However, the basic objective function of this article is considered as 

a Linear Programming problem and so it can’t fit non-linear distribution loss into its 

structure.  

A dynamic economic dispatch method has been proposed in [8]. Considering 

microgrid as a discrete time system, the dynamic economic dispatch is to find the optimal 

control strategy for the system in finite time period. Based on this idea, the dynamic 

economic dispatch model for microgrids has been established and then the corresponding 

dynamic programming algorithm is designed. An energy storage system has also been 

used in the proposed model. This method is computation costly and may not work for 

real-time coordination.  

Economic dispatch using reduced gradient method is implemented in [9] for the 

optimization of energy in an islanded microgrid. Renewable energy sources like Wind 

Turbine and Solar system along with Battery storage has been modeled in the discussed 

article. Cost functions of the sources include operation, maintenance and investment 

costs. Optimization is obtained by minimizing the cost function of the system while 

meeting the load demand.  However, ramp rates of the fuel based sources and distribution 

loss have not been considered in this article and it can’t support distributed control 

configuration.  
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Time of convergence in most of the discussed articles varies around 0.5 to 2 seconds. 

The work to date coordinates microgrids at a top level and does not seek to coordinate the 

power electronic converters in real-time for controlling the flow of energy and hereby 

dictate the sources rather they command directly on the sources to achieve objectives.  

However, direct communication based coordination at the converter level may provide a 

greater degree of energy flow control aimed at system optimization. 

  

1.2 RESEARCH OBJECTIVE 

A microgrid may have numerous multi-functional power electronic converters 

connecting sources, loads, and storage to the bus. Systems where converters are the 

interface between many of the main sources of energy and load centers have the 

possibility to direct the flow of energy if the control of the converters is coordinated. The 

influence of energy flow in a microgrid by coordinated action of converters is referred to 

here as ‘energy routing’. Energy routing allows for reduction of systems losses by 

optimizing source operating points and reducing transmission and distribution path 

losses.  

Converters can be coordinated centrally or in a distributed fashion however, 

centralized control is vulnerable to a single point of failure. A distributed coordination 

system approach can enable system level converter control while avoiding single points 

of failure that are inherent in a centralized hierarchical control system, and that is robust 

and expandable. Distributed control provides an avenue to expand the system with an 

evenly distributed computation workload, hence it becomes useful for larger system 

optimization. A Multi-Software platform that can work autonomously in a particular 
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environment having intelligence to choose optimum strategies (commonly known as 

Multi-agent System, MAS in short) can be implemented to achieve distributed control of 

the converters in a microgrid [19-21]. 

The main objective of this research is to establish a framework for distributable 

optimization algorithms used in system level control of microgrids that would ensure 

system optimization dynamically. Multiple agents, having little or weak communication 

among themselves, will take part in the process to determine optimum power sharing for 

the converters. Optimal energy routing would ensure minimum ohmic losses and 

maximize efficiency of the sources while maintaining their operating limits. Any change 

in loads would be followed by new operating points of the system dynamically. 

In order to validate the distributed control method developed in this research, a 

shipboard power distribution system and CERTS (Consortium of Electric Reliability 

Technology Solutions) microgrid structure will be used for case studies. The shipboard 

system is an isolated microgrid with converters between all sources of energy and the 

main buses as well as between all load centers and the main buses. CERTS microgrid is 

radial in structure with three feeders having energy manager, microsource controller and 

protection scheme.  Both of the test systems are described in detail in Chapter III.  

The goal is to establish a multi-agent based distributed control system that determines 

the optimal operating points of the converters that would minimize system loss. These 

two test systems have attributes that form a superset of attributes found in other 

microgrids. Therefore, a distributable optimization framework that can optimize 

operation for these microgrids in real-time should be broadly applicable for most other 

microgrid systems.  
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1.3 ORGANIZATION OF THE DISSERTATION 

Components of Microgrids are discussed in Chapter II. Battery model and its state of 

charge estimation methods have also been reviewed in this Chapter. Chapter III is about 

description of the notional shipboard distribution system and the CERTS Microgrid. 

Components of system loss of a power system such as Unit Commitment, Economic 

Dispatch, Distribution Loss etc. would be discussed in Chapter IV. Optimization 

algorithm and its formulation would be explored in Chapter V. Chapter VI is about 

software agent, multi-agent system and communication among them. Results of the 

optimization algorithm on the discussed microgrids would be presented and discussed in 

Chapter VII. Chapter VIII outlines key conclusions and contributions of this work along 

with ideas for continuation of the research. 
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CHAPTER II 

COMPONENTS OF MICROGRIDS 

 
Microgrids are self-subsistent systems, therefore they should have many of the 

components that a large scale power grids have. Some of the most common components 

of a microgrid are briefly described in this chapter.  

 

2.1 SOURCES 

Microgrid’s sources are responsible to provide its own load demand. If the microgrid 

isn’t grid connected and the demand is higher than capacity, some loads would be unfed. 

Microgrids’ sources are mainly of two broad types, Fuel based Generators and 

Alternative Energy Sources. 

Fuel based generators like gas turbine or diesel generators are most common sources 

in the microgrids where some priority loads must be fed on demand. Fuel based 

generators constitute a reliable and steady solution for load demand. Generators used in 

the microgrids may or may not be of same rating.  

Alternative energy sources play very important role in microgrids. Photo Voltaic (PV) 

panel and Wind Turbine are currently the most common types of renewable energy 

sources in microgrids. As they are dependent on nature, for example PV panels for 

sunlight and Wind Turbines for air flow, their output isn’t as steady as the Fuel 

Generators. Special control measures need to be used to harness energy from nature.
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2.2 LOADS 

Microgrid may have loads of different types and priority. Grid connected microgrids 

have the provision to exchange power between microgrid and large scale grid. If the 

grid’s demand is higher than its generating capacity, it can request the microgrid to 

provide some power. In that case, the grid itself appears as a lumped load to the 

microgrid. Microgrids have their own electrical, electro-mechanical, and electro-chemical 

loads. If the load demand is higher than the microgrid sources’ generation capacity, then 

a grid connected microgrid would ask the grid to provide power to feed excess load. 

Islanded microgrids have to shed low priority loads to meet the microgrids capacity 

constraint if installed total load is ever greater than generation capacity.  

  

2.3 CONVERTER / INVERTER 

Power Electronic Converters are used to connect sources, storage systems and loads 

to a microgrid. They can be used for AC to DC, DC to AC conversion or AC to AC, DC 

to DC scaling. The application level control dictates the operation of the power 

electronics system in order to meet the goal determined by the system level control. From 

the viewpoint of the application level controller, they appear as one of the three possible 

equivalent devices: Controlled Voltage Source, Controlled Current Source, or Controlled 

Impedance. Converters are used as controlled voltage source when particular components 

of a voltage need to be added or controlled into the voltage drop across a line. Active 

filter, Static Synchronous Series Compensator, Interline Power Flow Controller etc. are 

some of the applications of converters used as controlled voltage source.   

 Converters are used as controlled current source when particular components of the 
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current need to be drawn from or injected into a system. STATCOM, mini-HVDC, 

Energy Storage System Interface are some of the applications of converters used as 

controlled current source. Differences between the ‘Controlled Voltage Source’ and 

‘Controlled Current Source’ converters lie mainly in the data acquisition and application 

level control that deals with the reference signal generation [19].  

 

Figure 2.1. Controlled Voltage/Current Source 

 

Figure 2.1 depicts the typical control hierarchy for grid connected converters. The 

Application Level Control generates either the voltage reference or the current reference 

signal for the converter according to the mission determined by the system level control. 

The converter level and hardware level controls cause the power electronics hardware to 

behave accordingly. Controlled Impedances are quite similar to their voltage sourced 

converter based counterparts with the exception of their operating range. The operating 
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limits for this class of device vary dynamically with the state of the power system. Static 

Var Compensator (SVC) is a good example of this type.  

  

2.4 ENERGY STORAGE SYSTEM 

Energy storage systems (ESS) are used to serve different purposes in different types 

of microgrids. Often they are used as peak shavers which means the ESS supplies energy 

when load demand at its peak and recharged while demand is low and there is adequate 

supply available. A typical peak shaver profile is shown in Figure 2.2 [22]. 

 

Figure 2.2. ESS used as Peak Shaver 

 

Sometimes ESS is used dynamically as other sources to ensure minimum system loss. 

Two types of energy storage are mostly used in microgrids, Mechanical Energy Storage 

and Electro Chemical Energy Storage. There is a number of mechanical energy storage 

systems among which flywheel fits the best for the microgrid. Flywheels store kinetic 

energy which is then converted to electrical energy. Current flywheels can store up to 
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about 125 Wh kg-1 of energy [22]. Electro chemical batteries are the most popular storage 

system. They can be used for a wide range of applications, from assisting the very large-

scale electrical grid down to tiny portable devices. The amount of charge a battery 

contains at a specific time (with respect to full charge) is called ‘State of Charge’. State 

of charge (SOC) plays a very important role to prevent over-charging, over-discharging 

and to ensure battery life. SOC estimator plays key role behind using a battery 

dynamically in a microgrid. In a Battery, SOC tells the amount of Charge that the 

systemcan still provide. In simple mathematical form, it can be expressed as, 

100
Q

availableSOC
Q

ref

                 (2.1)

 

SOC measurement is important not only to know about residual capacity, it ensures 

system efficiency. Incorrect determination of SOC may cause Overcharging or over 

discharging which may lead permanent damage to the Battery or accelerate ageing [23]. 

As electrochemical energy storage is an integral part of the discussed shipboard power 

system, battery model and its SOC estimation methods are briefly discussed next.   

  

2.4.1 BATTERY MODEL 

Batteries revolutionized the way electricity can be stored. From portable cell phones 

to high-tech space equipment, batteries find innumerable applications. A battery stores 

chemical energy and converts it into electrical energy as and when required through an 

external circuit. Batteries used for the microgrid level operation consists of many 

electrochemical cells. Although the terms battery and cell are often used used 

interchangeably, cells are the building blocks of which batteries are constructed. Batteries 
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consist of one or more cell connected electrically. Series combination adds terminal 

potential whereas parallel combination boost up energy capacity. The basic components 

of a cell are electrodes (positive and negative), separator and electrolyte. During cell 

operation, ions are created and consumed at the electrode-electrolyte interfaces by 

oxidation/reduction reactions. The electrolyte can either be a solid or liquid chemical. It 

has high conductivity for ions. Electrolyte completes the internal circuit between the 

electrodes. Parameters associated with battery modeling like Internal Resistance, 

Polarization Capacitance, Rate of Charge and Discharge are briefly discussed below.  .  

Internal resistance can also be categorized into three sub-types like 

Charging/Discharging resistance, Overcharging/Over-discharging resistance and self-

discharge resistance. Charging/Discharging resistances are associated with the resistance 

of the electrolyte, plate and fluid resistance. Value of these resistances varies over battery 

age, frequency of use and temperature. Self-discharge resistance is caused by the 

electrolysis of water at high voltage levels and slow leakage across the battery at low 

voltage. This resistance is more temperature sensitive and inversely proportional to 

temperature. Overcharge or over-discharge resistances are associated with electrolyte 

diffusion during over charging and over discharging.  

Polarization capacitance is associated with the chemical diffusion within the battery. 

It depends on SOC and temperature [24]. 

Rate of charge and discharge should not be too high to ensure service life of the 

battery. Also frequency of charging and discharging cycles affect the battery life 

significantly. Most commonly used battery model is shown in Figure 2.3. It consists of an 

ideal battery along with an internal resistance Rint. While this model seems to be very 
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simple, it does not take into consideration the varying nature of the internal resistance due 

to temperature and electrolytic concentration. Also it does not distinguish between 

charging and discharging resistances.  

 

Figure 2.3. Simple Battery Model 

 

Figure 2.4. Modified Thevenin Equivalent Battery Model [23] 

 

Battery Model that would be used to estimate SOC is shown in Figure 2.4. This is 

called Modified Thevenin Equivalent Battery Model. Two ideal diodes have been used in 
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the model just to show direction of use of the internal resistance. RC is the internal 

resistance while charging and Rd while discharging. Charging and discharging impedance 

of the battery are not always equal. That is why they have been separated by using two 

ideal diodes to avoid interference in the estimation process. Here V0 is the Open Circuit 

Voltage, Rt is the Terminal resistance and CP is the Polarization Capacitance. 

   

2.4.2 SOC ESTIMATION METHODS  

A battery is a chemical energy storage source, and this chemical energy cannot be 

directly accessed. This issue makes the estimation of the SOC of a battery difficult. 

Accurate estimation of the SOC remains very complex and is difficult to implement, 

because battery models are limited and there are parametric uncertainties. Many 

examples of poor accuracy and reliability of the estimation of the SOC are found in 

practice. 

The various methods of estimation are classified according to methodology. The 

classification of these SOC estimation methods differs in different literatures [25-37]. 

However, they can be broadly categorized into four types as Direct Measurement, Book-

keeping Estimation, Adaptive Systems and Hybrid Methods.  

Direct measurement uses physical battery properties, such as the voltage and 

impedance of the battery. Open circuit voltage method, Terminal voltage method, 

Impedance method, Impedance spectroscopy method fall in this category. 

Book-keeping estimation uses charging-discharging current as the input and 

integrates it over time to calculate the SOC. Coulomb counting method, Modified 

Coulomb counting method are two examples of this type.      
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 Adaptive systems are self-designing and can automatically adjust the SOC for 

different discharging conditions. Various new adaptive systems for SOC estimation have 

been developed. Back Propagation (BP) neural network, Radial basis Function (RBF) 

neural network, Support vector machine, Fuzzy neural network, Kalman filter represent 

adaptive systems. Adaptive systems can be automatically adjusted in changing systems.  

Hybrid models benefit from the advantages of each SOC estimation method and 

allow globally optimal estimation performance. Hybrid methods generally produce better 

estimation of SOC compared to individual methods. Coulomb counting and EMF 

combination, Coulomb counting and Kalman filter combination, Per-unit system and 

EKF combination are some examples of Hybrid methods [27]. 

Back Propagation (BP) neural network is the most popular type in artificial neural 

networks. The BP neural network is applied in SOC estimation due to their good ability 

of nonlinear mapping, self-organization, and self-learning. As the problem defined, the 

relationship between the input and target is nonlinear and very complicated in SOC 

estimation. The artificial neural network based SOC indicator predicts the current SOC 

using the recent history of voltage, current, and the ambient temperature of a battery. The 

architecture of BP neural network contains an input layer, an output layer and a hidden 

layer. Input layer has 3 neurons for terminal voltage, current, and temperature [28]. 

Radial basis Function (RBF) neural network is a useful estimation methodology for 

systems with incomplete information. It can be used to analyze the relationships between 

one major (reference) sequence and the other comparative ones in a given set [29].  

The Support Vector Machine (SVM) has been applied for classification in various 

domains of pattern recognition. The SVM has also been applied for regression problem. 
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The SVM used as a nonlinear estimation system is more robust than a least-squares 

estimation system because it is insensitive to small changes. Hansen and Wang [30] 

investigated the application of a SVM to estimate the SOC of lithium-ion battery. Results 

show that SVM produces very good SOC estimates. 

Fuzzy neural network (FNN) has been used in many applications, especially in 

identification of unknown systems. In nonlinear system identification, FNN can 

effectively fit the nonlinear system by calculating the optimized coefficients of the 

learning mechanism. Lee et. al. [31] investigated a soft computing technique for 

estimating battery SOC of individual batteries in a battery string. The soft computing 

approach uses a fusion of an FNN with B-spline membership functions and a reduced-

form genetic algorithm. 

Yatsui and Bai [32] presented a Kalman filter based SOC estimation method for 

lithium-ion batteries. Experimental results validate the effectiveness of Kalman filter. An 

extended Kalman filter (EKF) is presented in [33] to estimate the concentrations of the 

main chemical species which are averaged on the thickness of the active material in order 

to obtain the SOC of the battery, by using the terminal current and voltage measurements. 

A novel SOC estimation method is proposed in [34] based on unscented Kalman filter  

(UKF) theory. The results show that UKF method is superior to extended Kalman filter 

method in SOC estimation for battery.  

Electrochemical Impedance Spectroscopy (EIS) is a kind of electrochemical 

measurement method, during EIS experiments a small amplitude ac sinusoidal potential 

excitation signal usually a voltage between 5 to 50 mV, over a range of frequencies of 

0.001 Hz to 100,000 Hz is applied to the system being studied. Since the perturbation ac 
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signal is very small, on the one hand, significantly disturbing of the properties being 

measured can be avoided, on the other hand, the resultant polarization of the system is in 

a linear potential region, which makes process of measuring results becomes simple and 

easy.  

Electrochemical impedance spectroscopy is used in [35] for the purpose of predicting 

the state of charge of Lithium-ion rechargeable battery. The experiment data of 

impedance spectroscopy is comprised of an inductive arc in the high-frequency region 

and two capacitive arcs in the low-frequency region, and by which the reasonable 

equivalent circuit of battery was established. The component parameters obtained at 

several state of charge values of the battery had been analyzed by a non-linear least-

squares fitting procedure and some electrochemical knowledge. Through researching the 

changing regulation of parameters with the different States of charge, the frequency of 

maximum of the semicircle (fmax), the phase angle φ, the equivalent series capacitance 

(Cs) had been substantiated to be the suitable parameters for analyzing and predicting the 

state of charge values of the lithium-ion battery. 

Researchers have suggested many methods to determine SOC of the battery. 

Unfortunately none of these is perfect under all conditions. For example, a longer rest 

period is required after charge or discharge before specific gravity can be accurately 

measured due to electrolyte diffusion. So measuring ‘Specific Gravity’ to determine SOC 

is not a feasible solution for a dynamic system. Again some methods give better result but 

require manual intervention which makes it useless for dynamic operation. Some have 

significant advantage in one condition and disadvantages in other conditions. So it’s 

better to combine different process in such a way that the hybrid system will enjoy 
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advantages and avoid disadvantages of individual methods. A hybrid of Look up Table, 

Open Circuit Voltage and Coulomb Count method would be used here in this research to 

get a better, feasible and dynamic result. 

Look up Table will consist of three graphs having Rd vs. Temperature, RC vs. 

Temperature & CP vs. Temperature data. During no load condition, these values will be 

picked to calculate Open Circuit Voltage.  

Open Circuit Voltage, V0 , has a linear relationship with Battery SOC. So accurate 

determination of SOC depends on correct measurement of Open Circuit Voltage. This 

method will be used during no load condition i.e. while the battery is neither being 

charged nor discharged (rest condition). At no load condition, voltage drop due to the 

Terminal Resistance, Rt, equals zero which means, t CV V . Vc can then be converged 

exponentially towards V0 by using values of Rd/Rc and Cp in the Look Up Table. Then we 

will use the linear relationship between V0 and SOC as below: 

0( ) ( )V t aS t b                    (2.2) 

Here S(t) is SOC at specific time ‘t’ and ‘a’, ‘b' are constants. 

Values of ‘a’ and ‘b’ can be calculated using extreme conditions of the battery. When S(t) 

equals zero, from Equation (2.2) we get,  

0 ( )b V t                     (2.3) 

During full charge, S(t) equals 100% or 1. It gives us the value of ‘a’ as, 

 

0( )a V t b                     (2.4)  

 
During no load condition, the SOC measurement process has the following steps: 

 
1) Measure terminal voltage, Vt   
 

2) Measure Temperature 
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3) Calculate Open Circuit Voltage V0(t)
 

using Rd/RC and CP at the measured 
Temperature.  

 
4) Calculate SOC(t).    

Coulomb Count Method will be used to measure SOC under Loaded Condition, i.e. 

while | ( ) | 0LI t  . Main disadvantage of this method individually is, initial condition must 

be correct and any error accumulates over time. To get rid of this disadvantage, latest 

S(t), calculated by Open Circuit Method will be used as initial value. So there is no 

chance of error accumulation. However as load current of a Microgrid Storage will be 

much higher than current through the polarization capacitance, we will neglect 

capacitance current during loaded condition. If we consider discharge, 

2
( )

( )
1( 1) ( ) ( )

t

I d
LQ t t

dS t S t S t
Q Q

ref ref

 

                (2.5) 

While we consider charging, 

2
( )

( ) 1( 1) ( ) ( )

t

I d
LtQ tcS t S t S t

Q Q
ref ref

 

                (2.6) 

Every time when Battery will neither charge nor discharge, SOC will be measured by 

Open Circuit Voltage & Look up Table methods and this value will be working as the 

initial value of Coulomb Count Method during Loaded Condition to avoid error 

accumulation. Ageing effect can be incorporated by changing Qref(t) 
with respect to step 

size or charging/discharging number. Frequency of use could also be covered under 
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ageing effect. In Figure 2.5, ESS doesn’t respond to the system controller demand while 

it hits its SOC limit. Rather it sends a notification to the controller that it’s unable to obey 

its demand and the power flow is redesigned accordingly.  

 

Figure 2.5. ESS behavior around its SOC limit
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CHAPTER III 

DESCRIPTION OF THE EXAMPLE MICROGRIDS 

 
A notional DC shipboard power system and CERTS (Consortium for Electric 

Reliability Technology Solutions) microgrid would be used as case studies in this 

research. The shipboard system is an islanded microgrid but the CERTS microgrid can be 

grid-connected. As this research is about the islanded microgrids only, CERTS microgrid 

is only considered during the grid-disconnected condition [38-40]. 

 

3.1 SHIPBOARD POWER SYSTEM  

The system that would be first used for discussion and validation of this research is a 

DC shipboard islanded microgrid. The example system, shown in Figure 3.1 is a subset 

of a notional DC shipboard distribution system. All major sources and load centers are 

interfaced to the system by appropriate converter systems also referred to as power 

conversion modules (PCMs). It has both fuel based generators (of different rating) and an 

electrochemical energy storage system (ESS). The ESS can serve the shipboard microgrid 

both as source and load depending on the system need and battery state of charge (SOC) 

condition. It also has two zones of utility loads and two PCMs interfacing each of the 

zones share the zonal load demand. The load center PCMs are assumed to be 

unidirectional converters which means they cannot allow energy to flow from one bus to 

the other. 
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Figure 3.1. Architecture of example Ship Microgrid 

 

 The pulsed load is a high priority high energy load and therefore it has its own pulsed 

load local storage (PLLS).  The rate of change of demand due to charging the PLLS is 

higher than the zonal loads. PLLS mitigates the impact of higher load ramp rates on the 

main bus. It buffers the power system from pulsed type loads and is charged from the 

main bus at a tolerable ramp rate [41-42].  

An example charging and regeneration profile of a notional PLLS is shown in Figure 

3.2. It may operate in Current Control, Power Control or Voltage Control modes. PLLS 

can also work bi-directionally as ESS, i.e. it can source power to the microgrid if there is 

a need from the system while no demand from the pulsed load. 
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.                                    

Figure 3.2. Pulsed Load Characteristics 

 

Two main buses form the backbone of the microgrid, the Starboard side bus and the 

Port side bus. They are connected by two cross-tie disconnect switches. These 

disconnects are used to connect the two main buses, control flow of energy, maintain 

voltage levels and to disconnect them as necessary. To ensure control of the above 

requirements, one of the two cross-ties must be disconnected every moment.   

Energy flow in the shipboard system is dictated by the coordination method for the 

converters. For a zonal system such as this it is desirable to dictate paths of energy flow 

into each zone and generator loading at the main buses. These flows will be determined 

by system level objectives in the form of a cost function subject to constraints.  

Zonal and main bus level control systems enable flexible routing of energy within the 

test system. Each zone is managed by a zonal level control with a master-slave sharing 

scheme. The zonal PCM converter designated as the master for that zone regulates in-
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zone voltage while the slave PCM converter tracks a designated percentage of the master 

converter's output (sharing percentage). System control above the zonal level designates 

which converter is the master as well as the sharing percentage. Sharing of zonal load by 

the slave zonal PCM may vary from 0% to 100% depending on the system level 

optimizer decision. The PCMs connected with the load center are assumed to be 

unidirectional converters. Control of the system energy flow above the zonal level is 

accomplished by the main bus level control. Within the main bus level control, a bus-tie 

controller regulates the total bus-tie current for the sum of all parallel bus-tie branches 

connecting the two buses. Thus, the system level control can dictate how energy flows 

into each zone and how energy flows across a bus-tie.  

Each zone or load center introduces one variable (sharing variable). Storage as well as 

Bus-Tie currents also introduce variables into the cost function. These variables 

determine the role of ESS (either source or load), flow of energy between the main buses 

through the bus ties, and the sharing into each zone and thereby determine the generators’ 

operating points. An optimization algorithm would be presented that would determine 

values of these variables dynamically to minimize system loss.  

 

3.2 CERTS MICROGRID  

The CERTS microgrid structure assumes an aggregation of loads and microsources 

operating as a single system. Microsources are power electronic based to provide the 

required flexibility to insure controlled operation as a single aggregated system. This 

control flexibility allows the microgrid to present itself to the bulk power system as a 

single controlled unit, have plug-and-play simplicity for each microsource, and meet the 
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customers’ local needs. Key issues that are part of the microgrid structure include the 

interface, control and protection requirements for each microsource as well as microgrid 

 

Figure 3.3. CERTS microgrid architecture 

 

voltage control, power flow control, load sharing during islanding, protection, stability, 

and overall operation. The ability of the microgrid to operate connected to the grid as 

well as smooth transition to and from the island mode is another important function [1]. 

The electrical system is assumed to be radial with three feeders – A, B, and C – and a 

collection of microsources and loads. In Figure 3.3, there are two feeders with 
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microsources and one without any generation having non-sensitive loads. During 

disturbances on the bulk power system, Feeders ‘A’ & ‘B’ can island using the separation 

device (SD) to minimize disturbance to the sensitive loads. Of course islanding does not 

make sense if there is not enough local generation to meet the demands of the sensitive 

loads. The traditional loads on Feeder ‘C’ are left to ride through the disturbance. This 

eliminates nuisance trips of the traditional load when the microgrid islands to protect 

critical loads. Feeder ‘A’ & ‘B’ (Zone – 2, 3, 4, 5 & 6) along with microsources and 

sensitive loads form the islanded microgrid system.  The microsources are either 

microturbines or fuel cells interfaced to the system through power electronics. The power 

and voltage controller near each microsource provides the control signals to the source, 

which regulates feeder power flow and bus voltage at levels prescribed by the Energy 

Manager. As downstream loads change, the local microsources’ power is also changed to 

hold the total power flow at the dispatched level. Microsource controllers respond in a 

few milli-seconds. The basic inputs to the microsource controller are set points for power, 

P, and bus voltage, V. The energy manager is responsible to provide those set points to 

each microsource controller. The optimization algorithm would work within the energy 

manager to find out the global optimal set point that would minimize the system loss and 

ensure overall system efficiency and stability. Feeder ‘C’ along with the bulk power 

system gets disconnected while the microgrid runs in islanded mode. According to Figure 

3.3, Feeder ‘A’ & ‘B’ belongs the same electrical structure. To introduce non-uniformity 

and for simplicity, Figure 3.4 is the test case that would be discussed later to validate the 

research objective. Here Feeder ‘A’ is having a lumped load and a generating system. 

Feeder ‘B’ has two lumped loads with two generators.  
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Figure 3.4. CERTS microgrid test case during islanded operation 
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CHAPTER IV 

SYSTEM LOSS OF A POWER SYSTEM AND ITS COMPONENTS 

 
Inefficiency of power system components and heat loss are generally attributed to 

power system loss. But the actual bulk loss appears from other factors. Generators’ set 

points, impedances and even improper use of storage system cause the largest share of 

total loss. The most important components of microgrid system losses are briefly 

discussed in this chapter. 

 

4.1 UNIT COMMITMENT 

Unit commitment (UC) aims to schedule the most cost-effective combination of 

generating units to meet forecasted load and reserve requirements, while adhering to 

generator and transmission constraints. Generally, UC is completed for a specific time 

horizon and determines which sources will be operating when. This commitment 

schedule takes into account the inter-temporal parameters of each generator (minimum 

run time, minimum down time, ramp rate, notification time, start-up cost etc.) but does 

not specify production levels. The objective is to minimize the power generation costs 

while meeting the power demands. The UCP is an important area of research which has 

attracted increasing interest from the scientific community due to the fact that even small 

savings in the operation cost for each hour can lead to major overall economic savings. 



 

31 

 

                              

Figure 4.1. Unit Commitment problem 

 

Run/Down time differs significantly over the type of generators. Steam turbine 

generators have higher run/down time than the gas turbine ones. Start-up cost also varies 

significantly over the types. In the example microgrid, all the generators are gas turbine 

based. So run/down times can be ignored. The only parameter that affects commitment 

for optimization is start-up cost. Unlike steam turbine sources (Steam turbine generators 

have three levels of start-up costs. They are hot, intermediate and cold start-up cost which 

takes the shape of step changed discrete values), each gas turbine generator has its own 

constant start-up cost. Start-up cost has non-zero positive value only when the generator 

state changes from offline to online [43-44].  

 

4.2 ECONOMIC DISPATCH 

Economic Dispatch Problem (ED) has become a crucial task in the operation and 

planning of power systems. The objective of ED is to schedule the committed generating 

units output so as to meet the required load demand at minimum cost satisfying all unit 

and system operational constraints. Improvement in scheduling the unit outputs can lead 

to significant cost saving.  
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Figure 4.2. Economic Dispatch problem 

 

Efficiency or Fuel Loss factor of any generating system varies over its operating 

points. Figure 4.3 & Table 4.1 show a typical variation of specific fuel consumption 

(SFC) in per-unit for a 36 MW MT30 generating system. For this particular curve in 

Figure 4.3, when the load is 20% of rated power, the specific fuel consumption is about 

twice the rated SFC [45-46].  

Table 4.1. Specific Fuel Consumption of Main Generator 

Power (MW) Power (pu) 
SFC 

(kg/KWhr) 

2 0.055555556 0.95 

3 0.083333333 0.713 

6 0.166666667 0.45 

9 0.25 0.356 

12 0.333333333 0.313 

15 0.416666667 0.275 

18 0.5 0.256 

21 0.583333333 0.244 

24 0.666666667 0.231 

27 0.75 0.225 

30.5 0.847222222 0.219 

33 0.916666667 0.213 

36 1 0.206 
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Efficiency characteristics can be derived from its specific fuel consumption (SFC) 

data. SFC data provided by the ONR for main generator (gas turbine generator) is shown 

in Table 4.1. 

 
Figure 4.3. Output Power vs Specific Fuel Consumption in p.u. [45] 

 

Heating value of natural gas,  

13.8912
KWh

HV
Kg

                  (4.1) 

Efficiency can be calculated from the given data using the relationship, 

1

*SFC HV
                    (4.2) 

Corresponding fuel loss can be calculated using the relationship,  

 

1
( 1)*Loss Load


                   (4.3) 
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Operating points and corresponding fuel loss/cost characteristics of the generator can be 

availed from the data in Table 4.2 & Table 4.3 using 2 degree polynomial trend line.  

Table 4.2. Efficiency of the Main Generator 

Power 

(MW) 
Power (pu) 

SFC 

(kg/KWhr) 
Efficiency 

2 0.055555556 0.95 0.075776864 

3 0.083333333 0.713 0.100964967 

6 0.166666667 0.45 0.15997338 

9 0.25 0.356 0.202213543 

12 0.333333333 0.313 0.229993678 

15 0.416666667 0.275 0.261774623 

18 0.5 0.256 0.281203208 

21 0.583333333 0.244 0.295032874 

24 0.666666667 0.231 0.311636455 

27 0.75 0.225 0.319946761 

30.5 0.847222222 0.219 0.328712426 

33 0.916666667 0.213 0.33797193 

36 1 0.206 0.349456414 

  

Table 4.3. Efficiency and Loss of the Main Generator 

 

Power 
(MW) 

Power (pu) 
SFC 

(kg/KWhr) 
efficiency Loss 

2 0.055555556 0.95 0.075776864 0.677591111 

3 0.083333333 0.713 0.100964967 0.742035467 

6 0.166666667 0.45 0.15997338 0.875173333 

9 0.25 0.356 0.202213543 0.9863168 

12 0.333333333 0.313 0.229993678 1.115981867 

15 0.416666667 0.275 0.261774623 1.175033333 

18 0.5 0.256 0.281203208 1.2780736 

21 0.583333333 0.244 0.295032874 1.393847467 

24 0.666666667 0.231 0.311636455 1.472578133 

27 0.75 0.225 0.319946761 1.59414 

30.5 0.847222222 0.219 0.328712426 1.730174178 

33 0.916666667 0.213 0.33797193 1.795590133 

36 1 0.206 0.349456414 1.8615872 



 

35 

 

 

Figure 4.4. Fuel loss characteristics of the Main Generator 

 

Figure 4.4 gives a clear indication (also established by [33] ) that cost due to fuel 

usage inefficiency of an ith generator can be expressed as: 

2

i i i iC a P b P c                    (4.4) 

Where ai, bi and ci are turbo-generator dependent constants.  

If we assume that the bus-tie impedance of the notional shipboard system is not so 

significant, cost for the generator systems can be expressed as, 

2( )gm m gm m gm mC a I b I c  x                (4.5) 

2( )gx x gx x gx xC a I b I c  x                 (4.6) 
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Where am, bm, cm, ax, bx, cx are main and auxiliary turbo-generator dependent 

constants respectively. 

The cost function for the system due to fuel usage inefficiency can be expressed as a 

linear form of the loss components as: 

( ) ( ) ( )fuel gm gxC C C x x x                (4.7) 

For overall fuel usage minimization, which is an economic dispatch problem, the 

weighting of generator loss functions must be equal [47-52].  

 

4.3 DISTRIBUTION LOSS 

Distribution or Ohmic loss is the waste of energy due to the impedance of distribution 

lines. While distribution losses are negligible for a shipboard distribution system virtual 

impedances can be added to direct energy flow in order to meet operational requirements 

beyond the fuel cost within the same loss cost function framework.  

 

Figure 4.5. Ohmic loss basics 
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Ohmic loss is a non-linear function of current. Due to its non-linearity, minimization of 

distribution loss isn’t straightforward. A simple electrical circuit is shown in Figure 4.5 to 

illustrate Ohmic loss problem. Energy can be delivered through both of the ohmic paths 

‘aR’ and ‘bR’ to the load. Suppose we have the provision to control energy routing 

through the branches. As distribution loss is a non-linear function of current, optimal 

solution is not to let the whole energy route through the low impedance path. In real life 

power system where there are many sources, loads, storages and numerous transmission 

lines, distribution or ohmic loss minimization itself becomes a complex optimization 

problem. 

 

Figure 4.6. Simplified Ship Microgrid 

 

A simpler microgrid with two generators (one main, another auxiliary), one ESS, one 

Pulsed Load and two zones within the same architecture of the ship system would be 
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discussed for simplicity. The simplified microgrid in Figure 4.6 covers all the 

complexities any islanded microgrid can have. Any control algorithm that optimizes this 

model will equally fit for any other DC microgrid system. Electrical conversion of the 

example microgrid in Figure 4.6 is shown in Figure 4.7.  

Here I1 is the load of Zone1, I2 of Zone2, I5 of pulsed load. I4 is the maximum 

charging/discharging current of ESS and I3 is the maximum allowed cross-tie (inter-bus) 

current. The variables x, y, z, u are ratios that would determine flow of energy through all 

the branches and must be optimized by the system controllers in a distributed fashion that 

would ensure minimal loss of the system. Value of ‘x’ and ‘y’ may vary from 0 to 1 with 

a step size of 0.1; On the other hand, ‘z’ and ‘u’ may have any value between -1 to +1 

with a step size of 0.2 (as bi-directional). Distribution loss of the mentioned microgrid 

can be expressed as: 

2 2 2 2 2 2( ) ( ) ( ) ( )
1 1 1 2 2 2 2 2 3 2 2 3

2 2( ) 2 ( ) 2 ( )
5 5 54 2 4 1 1 1 1 2 2 2 1 2 2 1 2 2

2 ( ) 2 ( ) 2 ( ) 2
53 1 2 2 1 2 2 2 1 3 2 2 1 4 2

2 (
2 3 2 2

C x I R R R R y I R R z I R R R
dr

u I R R xI I R I R I R I R I R yI I I I R

zI I I I R xyI I R R xzI I R R xuI I R

yzI I R R

           

              

         

 

x

) 2 2 Const
2 4 2 3 4 2

yuI I R zuI I R  

  (4.8) 

where Cdr(x) is distribution loss, I1 is Zone 1 load current, I2 is Zone 2 load current, I3 is 

the maximum allowed cross-tie (inter-bus) current, I4 is the maximum 

charging/discharging current of ESS and I5 is the pulsed load charging current. Variable 

‘x’ controls the flow of energy in Zone1, variable ‘y’ controls energy routing in Zone2.  

Variable ‘z’ determines the amount of energy that needs to be routed through the tie. 

Variable ‘z’ may get both positive and negative value to ensure that energy may flow 

from any bus to the other. Variable ‘u’ dictates behavior of the ESS. Based on the value 

of ‘u’ (positive or negative), ESS may serve as a source or load.     



 

39 

 

 

.      Figure 4.7. Electrical representation of the simplified ship microgrid 

 

The cost function for the system including fuel and distribution losses can be expressed 

as a linear form of the loss components as: 
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( ) ( ) ( ) ( )sys gm gx drC C C C  x x x x              (4.9) 

Supply current limits and ramp rate constraints are 

( ) ( )max1 1 2 3 4
g xI yI zI uI Igm    x            (4.10) 

g ( ) (1 ) (1 ) ( )max52 1 2 3
x I y I I zI Igx      x         (4.11) 

( ) ( )max3
g I Igm gm   x                (4.12) 

( ) ( )max4
g I Igx gx   x                (4.13) 

where (Igi)max denotes the ith generator maximum current  and ΔIgi is the rate of change of 

generator current within the interfacing PCM controller measurement time step. 

 

                         Figure 4.8. Electrical representation of CERTS microgrid test case  
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Electrical representation of the CERTS microgrid test case is shown in Figure 4.8. Here 

G1 and G3 have different generation characteristics than G2. P1, P2 & P3 are sensitive 

loads. Non-sensitive loads are disconnected from the microgrid using the SD to protect 

the sensitive loads from grid’s quality issue. 

Generators’ fuel usage inefficiency and loss due to line impedances provide similar 

relations described in Equations (4.4) – (4.8). Cost relations for the CERTS microgrid are 

described in detail in Appendix B.  

 

4.4 STORAGE SYSTEM LOSS 

Static inefficient use of storage system may cause significant loss to the power 

system. Usually terminal or line impedance of any ESS is much smaller than the 

distribution system’s impedance. So without any intervention storage system appears like 

an almost lossless source component to the system that always tends to discharge at full 

capacity in any dynamic system. But we must remember storage gets its energy from 

others sources which have their fuel cost along with inefficiency characteristics. To 

address this issue and to ensure most economic use of the ESS, a virtual equivalent fuel 

consumption impedance is added in series to the terminal resistance R4 in the Figure 4.7. 

This virtual impedance changes along with battery SOC. Expression of the battery 

equivalent fuel consumption virtual impedance is: 

(1 )*R SOC av t                  (4.14)     

 Here ‘a’ is the slope by which value of virtual impedance changes. Virtual impedance 

value is low when SOC is higher. It makes energy from ESS cheaper while fully charged 

and costlier during low value of SOC [53]. It would have significant effect on the 

dynamic optimization set points which would be shown elaborately in Chapter VIII. 
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4.5 OVERALL SYSTEM LOSS 

System losses may include many other considerations such as power system 

components’ efficiency, maintenance cost, depreciation etc. Here we would discuss an 

optimization algorithm that can provide real-time simultaneous solution of Economic 

Dispatch & Distribution Loss along with dynamic usage of storage system. Unit 

commitment, maintenance cost, components depreciation is out of the scope of this 

research objective.   
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CHAPTER V 

OPTIMIZATION ALGORITHM  

  
There are several properties that measure how good a distributed optimization 

algorithm is. They are: Latency, Convergence, Workload Distribution, Optimality etc. In 

any real-time dynamic system, latency is one of the most important properties to be dealt 

with. If a pulsed load appears suddenly and the EMS takes too long time to make 

decisions, then it may violate the sources’ capacity constraints and also the load might 

not be adequately supplied due to ramp rate limitations. If the algorithm doesn’t ensure 

gradual convergence to global optimal points, then it becomes useless. Distribution of 

workload can ensure system expandability within time limits [54].   

An optimization algorithm has been developed that dynamically determines optimal 

values of the  converter coordinating control variables in a distributed fashion in order to 

ensure generator system economic dispatch and minimization of distribution loss 

simultaneously. In any real-time dynamic system, control cycle determinism is one of the 

most important control system design constraints. Failure of the real-time optimization 

based system control to converge within the time boundaries means that the system 

would run with old set points for an indeterminate interval which may violate constraints 

and destabilize the system. Here the cost function formulation is modified from the initial 

definition into a framework suitable for a distributed system control. Distribution of 

workload ensures system expandability within the control system limit. 
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The granularity of the solution space must be considered for a distributed 

implementation since distribution of the optimization algorithm requires the use of 

communication channels. In order to reduce bandwidth requirements the control variables 

are discretized with a fixed step size. In the example shipboard system values of ‘x’ and 

‘y’ dictate the zonal PCM sharing ratio and may vary from 0 to 1. They are discretized 

with a step size of 0.1. The bidirectional variables for bus-tie current and ESS current, ‘z’ 

and ‘u’ may have any value between -1 to +1 with a step size of 0.2. 

Optimality and Convergence is guaranteed by this algorithm. If the microgrid has 

many zonal load centers and number of variables to be dealt with are more, some other 

pruning techniques like ‘reduction of variables’, ‘sliding’ ‘check and eliminate’ etc. can 

be adopted that would ensure convergence with sub-optimality.  

 

5.1 SCALING AND CHANGE OF VARIABLES 

The objective of this research is to minimize the overall cost/loss of the microgrid. It 

includes sources’ operating cost (fuel cost & cost due to storages’ virtual impedance) and 

distribution loss. Thus the objective function in Equation (4.9) becomes: 

2 2 2 2( )
11 22 33 44 1 2

3 4 12 13 14 23 24 34

C Const a x a y a z a u a x a ysys

a z a u a xy a xz a xu a yz a yu a zu

      

       

x
     (5.1) 

where ‘x’, ‘y’, ‘z’, ‘u’ are variables and the rest are load dependent constants.    

  In Equation (5.1), Loss is a quadratic function where the variables are coupled with 

each other. As they are not loosely coupled, basic objective function in the straight 

forward expression is not useful for Distributed Control. This type of problem falls within 

the category commonly named as ‘Mixed Integer Problem’ or MIP in short. Depending 
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on the nature of constraints, MIPs are sub-divided. MIP models with quadratic constraints 

are called Mixed Integer Quadratically Constrained Programming (MIQCP) problems. 

Models without any quadratic features are often referred to as Mixed Integer Linear 

Programming (MILP) problems. MIP models with a quadratic objective function but 

without quadratic constraints are called Mixed Integer Quadratic Programming (MIQP) 

problems. As seen in Equations (4.10), (4.11), (4.12) and (4.13), constraints are not 

quadratic. So our system falls within the category of ‘Mixed Integer Quadratic 

Programming’ (MIQP) problem [55-60].            

 The rate of convergence is enhanced if interaction between the variables can be 

eliminated or at least reduced by defining new variables in terms of old ones. Changing 

the scaling of variables to obtain contours circular or parabolic in shape will boost its 

convergence by enabling the pruning off of a large portion of the search tree. If we 

assume, 

1
1 1 2

k
z b x                      (5.2) 

2
2 1 2 2

k
z c x c y                     (5.3) 

3
3 1 2 3 2

k
z d x d y d z                    (5.4) 

4
4 1 2 3 4 2

k
z e x e y e z e u                  (5.5) 

where b1, k1, c1, c2,  k2,  d1, d2, d3,  k3, e1, e2, e3, e4, k4 are load dependent constants, then 

(5.1) can be redefined as, 

2 2 2 2 2( )
1 2 3 4 1

n
C z z z z zsys i

i
     


x             (5.6) 
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In the case of Equation (5.6) it is apparent that Csys(x) is minimized if all ‘zi
2’ are 

minimized independently. Hence the objective is reformulated as n one-dimensional 

search problem which makes the system distributable and saves a considerable amount of 

convergence time. In this form, ‘z1’ is independent of any other variable and becomes 

leader to initiate a search tree whereas ‘z2’, ‘z3’ & ‘z4’ acts as consecutive follower.  

 

5.2 SEARCH AND PRUNE 

Conversion of the basic variables into ‘zi’ domain variables makes them 

unidirectional interacting. In the basic cost function of Equation (5.1), every variable is 

coupled and dependent on others; but in the converted cost function in Equation (5.6), 

this dependency is unidirectional.  

All variables are squared in the converted cost function which contributes to total loss 

in parabolic form. It gives an advantage to prune off a significant number of search trees. 

Loss due to z1 is shown in Figure 5.1. 

     
            Figure 5.1. Loss due to z1 

 

As loss due to z1 is 
2

1z , it would always have positive value with a shape of parabola as 

shown in Figure 5.1. The value of z1 that makes the loss component minimum is very 

important, because all lesser values of z1 would be pruned out.   
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              Figure 5.2. Loss due to pruned z1 

 

Pruning as shown in Figure 5.2 reduces iteration number significantly and does not 

introduce any approximation or sub-optimality. Only lesser values of z1, left to the 

minimum loss value (depends on the constraint), would be truncated.  

Each value of existing ‘z1’ would initiate a search tree. This would get another span of 

‘z2’ values and corresponding loss component for every ‘z1’. Values of ‘z2’ would also be 

pruned as it was done for ‘z1’ values and the same would be done for others. The capacity 

constraint truncates the span of ‘z4’ values and negates the need to consider all the 

available values of ‘z4’. 

One search tree is shown in Figure 5.3 along with pruning and optimal solution. 

Dashed line branches are pruned off without introducing any approximation. It provides a 

significant advantage in computation burden. For example, if there are 4 variables each 

with 11 steps as in the discussed case: 

Number of computation tree without pruning 11*11*11*11 14641   

Number of computation (around, as observed) tree with pruning 4*6*5*1 120   

If the number of required operation with the basic cost function is compared, then the 

reduction is from (14641*51) 746,691  to (120*11) 1320 . 
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Figure 5.3. Search tree 

 

Thus, this algorithm provides the opportunity to distribute the search tree among the 

agents with a two-step inter-communication. Each of the agents can solve its part 

independently without overlapping.  

 

5.3 AGGRESSIVENESS VS SUB-OPTIMALITY 

In Figure 5.1 & 5.2, each variable provides clear indication of the optimal cost or loss 

region. This gives us an opportunity to discard search tree from the opposite region too.  

 
       

Figure 5.4. Optimal Region 

 



 
 

 

49 

 

If we do so, we may get closer sub-optimal solution rather than the global optimal. If 

there were no capacity constraint of the sources, we could have pruned all values other 

than the ones that provide minimum loss. So it is basically a tradeoff between 

aggressiveness and sub-optimality. From our observation in simulation, it has been found 

that the more independent the variable is, the narrower its optimal region becomes. 

We can adopt several other attributes which have been found very effective in simulation. 

‘Sliding’ method can reduce the search tree significantly. It extends the pruning area on 

the next dependent variable (on the left). Suppose we want to slide over z2. In that case 

we would consider those values of z3 that has higher absolute values than those 

considered for the previous value of z2. This method has been found very effective 

though the result isn’t always global optimum. 
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CHAPTER VI 

SOFTWARE AGENT AND COMMUNICATION  

  
As mentioned in Chapter I, multi-agent systems (MAS) have been shown to be a 

viable method for system level distributed control. Thus a MAS framework has been 

selected to accomplish a communication based implementation of the distributable 

optimization algorithm presented in Chapter VI. An agent is a software (or hardware) 

entity that is situated in some environment and capable of autonomously reacting to 

changes in the environment. Agents are intelligent entities that are capable of 

communication and are able to alter their behaviors. An agent carries out tasks based on 

user request and has some intelligence such as choosing optimum strategies to achieve its 

goals. The concept of agent-hood can be summed up by the following definition: 

An agent is a computational entity that, 

1) acts on behalf of other entities in an autonomous fashion, 

2) performs its actions with some level of proactivity and/or reactiveness, 

3) exhibits some level of the key attributes of learning, co-operation and mobility. 

A multi-agent system (M.A.S.) is a computerized system composed of multiple 

interacting intelligent agents within an environment. Multi-agent systems can be used to 

solve problems that are difficult or impossible for an individual agent. It tends to find the

best solution for the problems without intervention, provides enhanced speed and 

reliability. In other words a multi agent system can be defined as a loosely coupled 
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network of problem solvers that work together to solve problems that are beyond their 

individual capabilities. The motivations for the increasing interest in MAS research 

include the following abilities, 

1) to solve problems that are too large for a centralized single agent to do due to 

resource limitations or the sheer risk of having one centralized system; 

2) to enhance speed (if communication is kept minimal), reliability (capability to 

recover from the failure of individual components, with graceful degradation in 

performance), extensibility (capability to alter the number of processors applied 

to a problem), the ability to tolerate uncertain data and knowledge; 

3) to offer conceptual clarity and simplicity of design [61-67].  

 

6.1 COMMUNICATION OF THE DISCUSSED ALGORITHM 

A simple communication diagram for three agents is shown in Figure 6.1. The 

number of agents could be equal or less than the number of converters. Load information 

is collected by the sensors at the converters. If there is any change in system load (Zone1 

or Zone2 or Pulsed Load or Battery Condition), new measurement is passed to the agent. 

Each agent then starts intercommunication, passes its own measurement value to other 

agents. At this point all the agents have the knowledge of the system. Each agent runs its 

own algorithm, works individually without any interaction with others to find out its local 

optimal solution. Local solutions are string of 4 values in the converted ‘zi’ domain (for 

example in the shipboard test system z1, z2, z3, z4). After getting the local solutions, 

agents send those local values (string of z1, z2, z3, z4) to another agent who is responsible 

to compare and find out global optimal solution. This is a very quick process taking time 
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in the µs level only. Global optimal solutions which are the optimal value for each ‘zi’ are 

then passed to the individual agents. Agents then convert the ‘zi’ domain variable back to 

plant domain variable and send the command to the converters.         

 

 
    

Figure 6.1. Communication design of the control system [35] 

 

Flow diagram of the communication system is shown in Figure 6.2. 

 



 
 

 

53 

 

 

                     Figure 6.2. Flow diagram of the distributed control 
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6.2 MULTI-AGENT BASED COMMUNICATION 

Communication design of intelligent agent systems for real-time coordination of 

power converters in microgrid has been extensively discussed in [62]. The authors have 

highlighted and compared among several methods like Belief-Desire Intention, Facilitator 

Agent, Publish/Subscribe Technology etc. To manage the coordination among local 

controllers, a message count is defined and used as a metric value to evaluate system 

complexity and calculate the upper-time limit for task management. Applying agent 

technology for optimization and comparing its complexity with the other algorithms 

using metric values indicate that publish-subscribe technology is one of the most efficient 

and scalable agent-based solution for each controller action in the case study system. 

 

Figure 6.3. Asynchronous message passing paradigm based on content-based publish-

subscribe design 
 

Publish-subscribe technology as indicates in Figure 6.3 is a messaging pattern where 

senders (publishers) program the messages to be sent directly to specific receivers 

(subscribers) [63]. Subscribers express their interest in some topics or contents in 

advance and receive only those messages. Publish-subscribe model decouples time, 

space, and flow between senders and receivers and reduces program complexity and 

resource consumption.    
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Figure 6.4. Comparison between complexity of bidding and publish-subscribe agent 

technologies 
 

Figure 6.4 displays a computational comparison between complexities of two agent 

technologies for a microgrid with a variation from 1 to 50 converters. As seen variable 

number of converters does not affect the upper-time limits of message exchange in 

publish-subscribe model compared to one of the most used agent technologies known as 

bidding algorithm. Assuming a network consisting of N nodes, publish-subscribe can 

route to the numerically closest node to a given key in less than log2
bN steps under 

normal operation (2b is a configuration parameter with typical value 2, and N is the 

number of nodes). The number of message counts for bidding algorithm is calculated by 

2N which grows faster than publish-subscribe method by increasing the number of nodes.    

Agent platform is designed using JADE that is compatible with publish-subscribe 

technology and capable of developing communication with hardware devices and 

simulators such as MATLAB. In addition, all of the Java libraries are accessible through 
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JADE that led to increasing its functionality. The adopted communication paradigm is the 

asynchronous message passing. Receiver (subscriber) agents send messages to supplier 

(publisher) agents to request a variable. Each agent has a sort of mailbox (the agent 

message queue) where the JADE runtime posts messages sent by other agents. Whenever 

a message is posted in the message queue, the receiving agent is notified. A receiver 

agent which is previously subscribed for a particular content activates an action method 

to start communication if there is any matching message, while ignoring all non-matching 

messages. 

Figure 6.5 illustrates a high level design of agent-based system where four converters 

are individually assigned to converter agents who communicate through the agent 

platform. Converter agents are grouped in two containers based on system design. Two 

other agents including Directory Facilitator (DF) and Agent Management System (AMS) 

run in the main container. DF provides a directory who announces which agents are 

available on the platform. AMS is the only one that is able to create and destroy other 

agents, destroy containers and stop the platform. Coordinator agent (AgCo) is developed 

to facilitate communication among Simulink ports and the agent platform, optimized 

values then return to the Simulink model and converters. All of routing tables are located 

in AgCo that communicates with the other agents at the beginning and the end of 

optimization processes. 

Figure 6.6 displays the top level flowchart of designing agent based control system 

simulated using MATLAB. Load values measured by the converter activate the agent 

model. Consequently the JADE platform creates four individual agents called Ag1, Ag2, 

Ag3, and Ag4 upon trigger receipt through AgCo. These agents use individual search 
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trees to optimize values of z1, z2, z3, and z4. Since all of the agents run simultaneously, 

they concurrently extract zi optimization values from input values (current values of 

Zone1, Zone2, pulsed load and ESS that are represented as I1, I2, I5 and I4 respectively in 

Figure 4.7). Subsequently the four agents communicate and exchange data based on 

publish-subscribe design. After each agent optimization routine has completed, agents 

with the minimum zi values locate received data from peer agents. This agent calculates 

x, y, z, u values and send them back to Simulink through a AgCo. After receiving the 

confirmation of data delivery, each agent terminates and finishes its life cycle. 

   

 

Figure 6.5. Integrated agent-based system including MATLAB model in lower section 
and JADE platform in upper section, joined using MACSim toolbox 
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Figure 6.6. Work flow diagram of designing integrated agent-based controller 
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CHAPTER VII 

RESULTS  

 
Simulation results have been obtained for several case studies using the notional DC 

distribution system and the CERTS microgrid. The algorithm provides optimal set points 

for the converters which in turn control energy flow through each of the zones, branches, 

manage inter-bus energy flow, dictates storage behavior and thereby enforce sources’ 

generation settings. Generators impose capacity limits and ramp rate constraints and 

minimum generation setting to the algorithm. Results would be shown and discussed step 

by step for the below four different cases: 

1) Minimization of Distribution Loss 

2) Economic Dispatch and minimization of Distribution Loss simultaneously 

3) Economic Dispatch and minimization of Distribution Loss simultaneously 

considering minimum generation setting 

4) System Loss minimization of CERTS Microgrid.   

Tests for both the Shipboard system and CERTS microgrid were conducted with the 

MATLAB Simulink models shown in Figure 7.1 & Figure 7.2. Figure 7.1 shows 

electrical plant with converters, controllers (Zone1 Control, Zone2 Control, Pulsed Load 

Control, Battery Control) and the system optimizer. The algorithm for the energy 

management system runs within the System Optimizer. Outputs of the system optimizer 

feed the input of the controllers.  
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Figure 7.1. Shipboard Power system for the test scenario 
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Figure 7.2. CERTS Microgrid for the test scenario 

 

7.1 MINIMIZATION OF DISTRIBUTION LOSS 

 The first test case minimizes only the distribution losses described by Equation (4.8) 

with capacity limits and ramp rate constraints. Neither fuel cost nor the minimum 

generation setting for the generators have been considered in this case. Load profile and 

corresponding output of the notional Shipboard DC Distribution system is shown is 

Figure 7.3 and Figure 7.4 respectively. In normal operating condition, any of the two bus-
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ties would be disconnected. The following results have been obtained keeping the stern 

cross-tie disconnect open and the port cross-tie closed.   

 

Figure 7.3. Load profiles in the shipboard system for the test scenario 

 

The pulsed load storage system is charged rapidly beginning at time t=0.67s. Due to 

new loading conditions, the ESS increases its supply and Zone1 sharing variable changes 

twice to ensure minimum distribution loss. At time t=2s when Zone1 load changes, all 

system configuration changes. To ensure maximum efficiency, Zone1 sharing variable 

decreases, Zone2 sharing variable increases, the ESS increases its supply to its maximum 
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limit and Starboard side bus provides 20% of its maximum allowable inter-bus energy 

flow to the Port side bus. 

 

Figure 7.4. Converter operating points for minimization of Distribution Loss 

 

Sharing of load between zone1 converters is shown in Figure 7.5. This load sharing is 

dictated by the value of ‘x’ (Zone1 ratio). As the value of ‘x’ increases as shown in 

Figure 7.4, we see the corresponding change in load sharing in Figure 7.5. At around 0.8 

sec when ‘x’ becomes 1, one converter carries 100% of zone1 load and the other one runs 

at no load (0% load). Zone1 Load changes at t=2 sec, so does the ratio ‘x’. Similar 

change in load sharing is observed in Figure 7.5. 
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As seen in Figure 7.4, value of ‘y’ (zone2 ratio) is 0.3 and it doesn’t change until t=2 

sec. So PCM-B4 is carrying 30% and PCM-B3 the rest 70% of the Zone2 load till t=2 

sec. At t=2 sec, its value switches to 0.6. Zone2 Load sharing exactly follows the new set 

point. PCM-B4 now carries 60% and PCM-B3 the rest 40% of the Zone2 load.   

 

Figure 7.5. Load sharing in Zone1 

 

Generators settings are shown in Figure 7.7. Generators impose capacity limit and 

ramp rate constraint only (not fuel cost) in the discussed case. That is why Auxiliary 

generator is providing more energy than the Main generator most of the time. Both of the 

generators contribute to the charging of the pulsed load local storage. When Zone1 load 

doubles up at t=2 sec, both of the generators respond to the new set points maintaining 

the ramp rate limitation. 
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Figure 7.6. Load sharing in Zone2 

 

     Figure 7.7. Generators’ contribution for minimization of Distribution Loss 
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Zonal voltages have been shown in Figure 7.8. Zone voltages are maintained at 400V 

DC. We see some minor shifts due to change in loads and operating points which are 

quickly recovered by the controllers.  

      

 

Figure 7.8. Zonal Voltages 

 

7.2 ECONOMIC DISPATCH AND MINIMIZATION OF DISTRIBUTION LOSS 

SIMULTANEOUSLY 

 

This test case minimizes fuel usage and the distribution losses simultaneously with 

generators' capacity limits and ramp rate constraints. Fuel usage cost has been extracted 

from the data at Table 4.3. The same Load profile, used for minimization of distribution 

loss of the notional Shipboard DC Distribution system, has been used here. It would 

enable us to visualize clearly the change of the system configurations or set points. 
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Outputs of the distributed coordinating control system for converter operating points 

are shown in Figure 7.9. As seen in Figure 7.3 Zone1 load (solid line) is almost 0.3 per-

unit until t=2s. It doubles at t=2s. Zone2 load (dashed line) is 0.4 per-unit and it remains 

unchanged throughout the entire simulation time frame. The pulsed load storage system 

is charged rapidly beginning at time t=0.67s. The PLLS is in the current control mode of 

the charging cycle shown in Fig. 4.2.  

 

 

         Figure 7.9. Converter operating points dictated by the system control 

 

Outputs of the system control, shown in Figure 7.9, correspond to the control variable 

labels of Figure 4.7. Initially the Storage system is kept idle until the PLLS begins the 

charging mode. Optimal value of ‘x (solid line in Figure 7.9)’, ‘y (dashed line)’ and ‘z 
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(dash-dot line)’ ensure economic dispatch of the fuel based sources and minimum 

distribution loss of the microgrid simultaneously. As the PLLS begins charging at 

t=0.67s, several set point changes are observed until the system loads comes to fixed 

values at t=0.77s. Though both of the zonal loads remain unchanged during this period, 

both zonal settings change to ensure minimum system loss during this period. ESS set 

point steps to its maximum as it has very low inertia and enables enforcement of ramp 

rate constraints when the PLLS charging cycle begins. After t=0.77s, there is no change 

in system load until t=2s. Still several changes in the ratio values can be observed. This is 

because of the cost of ESS varies with respect to the change of its SOC. ESS current and 

SOC are shown in Figures 7.10 & 7.11. The controller keeps track of the battery SOC 

and corresponding change in the cost function by modification of a virtual resistance at 

the coupling point of the ESS to the system. The virtual resistance is added to R4 in 

Figure 4.7. During low SOC values, which results in higher values of cost by increase of 

R4, it becomes optimal for the system to reduce ESS participation. Due to change in 

Zone1 load starting at t=2s, all of the system variables change to ensure minimum cost 

within the constraints. At this point there is sudden rise of ESS participation despite low 

SOC to support generators’ ramp rate limitations. At t=2.5s, ESS stops to source any 

energy as it reaches its lower SOC boundary. 

Generators settings are shown in Figure 7.12. Before t=0.67s, the main generator 

sources all the demand of the system. During this period, ESS is idle and it becomes more 

efficient to run the main generator only. As the PLLS charging begins at t=0.67s, 

auxiliary generator just starts to contribute whereas main generator’s contribution 

changes along with the sharing of ESS and keeping ramp rate constraint met. As Zone1 
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load doubles up at t=2s, contribution from both of the generators keep rising smoothly. 

As ESS stops to source any demand at t=2.5s due to its lower SOC limit, that energy 

must be supplied by other sources. The balance is fully supplied from the Auxiliary 

generator as the Main generator has already reached its full load condition.  

 

Figure 7.10. Power contribution of ESS due to different loading conditions in the 
shipboard system 

 

 

 

Figure 7.11. Change of SOC due to discharge of the ESS 
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 Figure 7.12. Generators’ contributions in the shipboard system 

 

All these generator set points come indirectly from the optimal converter setting due 

to dynamic loading condition so that the system cost is always minimum. It would save a 

good amount of fuel/cost than using traditional source or converter rating based power 

sharing. Comparison of loss due to dynamic optimization vs traditional rating based 

energy sharing has been plotted in Figure 7.13. Rated capacity of the Main generator has 

been considered as the base for this discussion. The solid line stands for the actual loss in 

p.u. due to Optimization based coordination (neglecting virtual resistance), dashed line 

stands for the loss in p.u. due to Optimization based coordination considering virtual 

resistance and the dashed-dot line stands for the loss due to traditional rating based 

equivalent sharing. Cost incurred due to the set points during t <= 0.67s is slightly more 
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than 1.5 per unit. If the same load had been supplied using sources’ and converters’ rating 

based equivalent sharing where Auxiliary generator contributes 60% of the Main 

generator, zonal converters share equally and ESS contributes only to buffer the sources’ 

ramp rate limitation, it would cause loss to be around 1.9 p.u. So the optimization based 

sharing has the potential to save almost 25% of the loss by using the dynamic distributed 

algorithm.  

 

Figure 7.13. Comparison of loss due to dynamic optimization vs rating based sharing 

       

After the pulsed load saturates at t=0.77s, a continuous increase in dynamic loading 

cost considering virtual resistance is observed until t=2s. This is due to continuous 

change of battery SOC and corresponding increase of the virtual battery resistance. After 

t=2.5s, both of the Optimization based sharing curves merge as the battery is offloaded at 
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that period. Optimization based coordination saves a significant amount of loss 

throughout the simulation time.  

 

Figure 7.14. Bus cross-tie current 

 

Figure 7.14 shows flow of energy from one bus to the other through the tie. As seen 

in Figure 7.9, the value of ‘z’ (dash-dot line) is 0.8 until t=2s. The positive value 

indicates that energy is flowing here from the bus connected to the Main Generator to the 

bus connected to the Auxiliary Generator.   

Load current sharing between the PCMs that supply Zone 1 and Zone 2 are shown in 

Figure 7.15 & 7.16 respectively. The solid line stands for the master PCM and the dashed 

line for the slave. Load currents follow control variables as expected. For example, the 

value of Zone1 sharing variable ‘x’ is 0.6 up to t=0.67 sec. Thus, one converter is sharing 
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0.18 per-unit and the other 0.12 per-unit of the load current.  The value of Zone 2 sharing 

variable ‘y’ is 0.7 up to t=0.67 sec. and master converter is sharing 0.28 per-unit and the 

slave 0.12 per-unit of load current. 

    

Figure 7.15. Load sharing in Zone1 
 

 

Figure 7.16. Load sharing in Zone2 
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7.3 ECONOMIC DISPATCH AND MINIMIZATION OF DISTRIBUTION LOSS 

SIMULTANEOUSLY CONSIDERING MINIMUM GENERATION SETTING 

 

This test case minimizes fuel usage and the distribution losses simultaneously 

considering generators' capacity limits, ramp rate constraints and minimum generation 

settings. A minimum generating set point has been considered on the Main Generator as 

an added constraint. In power industry, even in the case of Hybrid Electric vehicle, fuel 

based generating system has minimum loading set point. Load profile used for Economic 

Dispatch and minimization of Distribution Loss simultaneously considering minimum 

Generation setting is shown in Figure 7.17.  

Outputs of the control system for converter operating points are shown in Figure 7.18. 

As seen in Figure 7.17, both Zone1 load (solid line) and Zone2 load (dashed line) are 0.6 

per-unit until t=1.8s. Then Zone1 load changes to 0.2 per-unit and remains unchanged the 

entire time frame. Zone2 load changes twice, once at t=1.8 sec to 0.5 per-unit and then at 

t=2.2 sec to 0.2 per-unit. The pulsed load storage system is charged rapidly beginning at 

time t=0.67s. The PLLS is in the current control mode of the charging cycle.  

Outputs of the system control, shown in Figure 7.18, correspond to the control 

variable labels of Figure 4.7. Optimal value of ‘x (solid line in Figure 7.18)’, ‘y (dashed 

line)’, ‘z (dash-dot line)’ and ‘u (dotted line)’ ensure economic dispatch of the sources 

and minimum distribution loss of the microgrid simultaneously.  As the PLLS begins 

charging at t=0.67s and cost of energy from the ESS keeps increasing, several set point 

changes are observed before the zonal load changes. This is because of the cost of ESS 

varies with respect to the change of its SOC. ESS current and SOC are shown in Figure 

7.19 & 7.20. As the SOC decreases which results in higher values of cost by increase of 
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the virtual impedance to R4, it becomes optimal for the system to reduce ESS 

participation. 

 

 

Figure 7.17. Load profiles in the shipboard system for the test scenario 
 

Due to change in both Zone1 and Zone2 load at t=1.8s, all of the system variables 

change to ensure minimum cost within the constraints. At this point there is sudden rise 

of ESS participation despite low SOC and higher corresponding impedance because it 

becomes more efficient to increase bus-tie energy flow. At t=2.2s, ESS starts to respond 

as a load and charge itself with the additional energy that the Main Generator is 

producing due to its minimum generation setting. 
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Figure 7.18. Converter operating points dictated by the system control 

 

 

 

Figure 7.19. Power contribution of ESS due to different loading conditions in the 
shipboard system 
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Figure 7.20. Change of SOC due to discharge of the ESS 

 

Generators settings are shown in Figure 7.21. The main generator is running close to 

its rated power condition until t=1.8s. So we observe PLLS energy is mostly balanced by 

the Auxiliary generator. ESS keeps changing it participation to meet the system cost 

efficient along with buffering ramp rate constraint. As both of the zonal loads drop 

significantly at t=1.8s, it becomes most cost effective to produce energy from the Main 

generator along with a little contribution from ESS. At t=2.2s Zone2 load drops once 

more to 0.2s which hits the minimum generation setting of the Main Generator. The 

balance is obtained as the ESS starts to behave as a load and keeps charging as shown in 

Figure 7.19. ESS had been discharging at various rates until t=2.2s which causes SOC to 

drop to 0.7. SOC rises again after t=2.2s as the ESS is charging at this stage.  
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  Figure 7.21. Generators’ contributions in the shipboard system 

 

 

Figure 7.22. Bus cross-tie current 
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 Figure 7.23. Load sharing in Zone1 

 

 

  Figure 7.24. Load sharing in Zone2 
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Load sharing between the PCMs that supply Zone 1 and Zone 2 are shown in Figure 

7.23 & 7.24 respectively. Solid line stands for the master PCM and the dashed line for the 

slave. Load currents follow control variables as expected.  

 

7.4 SYSTEM LOSS MINIMIZATION OF CERTS MICROGRID 

Load changes and corresponding optimal ratios of the CERTS Microgrid are shown 

in Figure 7.25 and Figure 7.26 respectively. Optimal ratios are the decisions of the energy 

manager to the generating system’s controllers. Figure 7.25 shows dc values of the 

dynamic loads and corresponding generators’ set points are shown in Figure 7.27.   

 

 

   Figure 7.25. Loads in the CERTS Microgrid 
 



 
 

 

81 

 

 
Figure 7.26. Optimal Ratios 

 

 
 Figure 7.27. Generators’ Set Points 
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Figure 7.28. Generator1’s Contribution 

 

 

Figure 7.29. Generator2’s Contribution 
 

 

Figure 7.30. Generator3’s Contribution 
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Figure 7.31. Total Load of the System  

 

 

Figure 7.32. Total Generation of the System  
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AC values of the generators’ contributions are shown in Figure 7.28, 7.29 & 7.30. 

Total load and total generation have been shown in Figure 7.31 & Figure 7.32. As we 

have used an averaged Model for CERTS Microgrid and the energy manager works 

perfectly, the load and generation matches exactly as shown in the two figures.    



 

85 

 

CHAPTER VIII 

CONCLUSION  

 
A distributed optimization based system control for microgrids with many power 

electronic converter interfaces has been developed and validated in this dissertation. The 

optimization algorithm ensures the most economic fuel usage and simultaneous 

minimization of distribution loss in microgrids by coordination of the power electronic 

converters.  

In order for an optimization method to be used for system control it must converge to 

solutions in a time-frame sufficiently small for real-time system level control. The 

developed system is based on an appropriately framed Mixed Integer Quadratic 

Programming optimization algorithm that can be solved dynamically with each local 

converter controller solving a subset of the resulting search tree. Furthermore, the method 

prunes off significant number of search trees in order to reduce communication 

requirements between control nodes. It also offers scope to use other more aggressive 

pruning methods like reduction of variables, sliding over variables, greedy algorithm etc. 

within its structure that would make it useful for larger power systems as well. 

The developed distributed control method was applied to two microgrid test systems, 

a shipboard power distribution system and CERTS (Consortium of Electric Reliability 

Technology Solutions) microgrid structure. These two test systems have attributes that 



 

86 

 

form a superset of attributes found in many other microgrids. As shown in the results, 

dynamic load management could save a significant amount of fuel usage. A storage 

system has also been used dynamically with state-of-charge based control, instead of 

being operated as a traditional peak shaver. An equivalent fuel cost function has been 

scaled and added to the energy storage system to ensure its best use. Simulation results 

demonstrate the effectiveness of the proposed distributed coordinating control in 

managing energy flow within the test systems. 

   The unit commitment problem is not incorporated into the developed objective 

function. The optimization algorithm can work on both linear and two degree non-linear 

function still not equipped to work with exponential terms. As start-up costs of the 

thermal units can be expressed as exponent of time, it must have the ability to deal with 

both two degree functions along with exponentials to achieve the simultaneous solution 

of Unit Commitment, Economic Dispatch and Distribution Loss.   

The test microgrids do not have any renewable energy sources.  Renewables have 

different characteristics cost curve than fuel based sources. Though the cost of generation 

for the renewables is almost free, their investment cost along with depreciation is 

incorporated into the characteristic cost curves. Renewables have not been discussed in 

this research, however, future work could add Unit Commitment along with the addition 

of renewables to the optimization cost function. 
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APPENDIX A - LOSS IN SHIPBOARD MICROGRID 

Fuel usage cost of a turbo-generator is expressed as: 

2C a P b P ci i i i                    (A.1) 

where ai, bi and ci are turbo-generator dependent constants. 

If we assume that the bus-tie impedance of the notional shipboard system is not so 

significant, cost for the Main and Auxiliary generator systems can be expressed as: 

2( )C a I b I cgm m gm m gm m  x              (A.2) 

2( )C a I b I cgx x gx x gx x  x                (A.3) 

Again in the shipboard system, current through the Main generator, 

1 2 3 4
I xI yI zI uIgm                     (A.4) 

and current through the Auxiliary generator, 

 

(1 ) (1 )
51 2 3

I x I y I I zIgx                   (A.5) 

Putting the expression of Igm from Equation (A.4) into Equation (A.2), we get fuel usage 

cost of the Main generator,  
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2 2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 3 4 1 2

( ) ( ) 2 2 2 2
3 4 1 2 1 3 1 4 2 3

2 2
2 4 3 4

C a I x a I y a I z a I u b I x b I ygm m m m m m m
b I z b I u a I I xy a I I xz a I I xu a I I yzm m m m m m
a I I yu a I I zu cm m m

     

     

  

x

 (A.6) 

Putting the expression of Igx from Equation (A.5) into Equation (A.3), we get fuel usage 

cost of the Auxiliary generator,  

2 2 2 2 2 2( ) ( ) ( ) ( ) (2 )
1 2 3 1 1

(2 ) (2 ) 2 2
2 2 3 3 1 2 1 3

22 ( )
2 3

C a I x a I y a I z a I I b I xgx x x x x xt
a I I b I y a I I b I z a I I xy a I I xzx x x x x xt t

a I I yz c b I a Ix x x xt t

    

     

   

x

    (A.7) 

,  
51 2

where I I I It     

Distribution loss of the notional shipboard power system, 

2 2 2 2 2 2( ) ( ) ( ) ( )
1 1 1 2 2 2 2 2 3 2 2 3

2 2( ) 2 ( ) 2 ( )
5 5 54 2 4 1 1 1 1 2 2 2 1 2 2 1 2 2

2 ( ) 2 ( ) 2 ( ) 2
53 1 2 2 1 2 2 2 1 3 2 2 1 4 2

2 (
2 3 2 2

C x I R R R R y I R R z I R R R
dr

u I R R xI I R I R I R I R I R yI I I I R

zI I I I R xyI I R R xzI I R R xuI I R

yzI I R R

           

              

         

 

x

) 2 2 Const
2 4 2 3 4 2

yuI I R zuI I R  

(A.8) 

So the System loss (fuel usage and distribution loss) becomes, 

2 2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )
1 2 3 4 1

( ) ( ) ( ) 2 2 2
2 3 4 1 2 1 3 1 4

2 2 2 22 2 2 ( ) ( )
2 3 2 4 3 4 1 2

2 2( ) (2 ) (2 )
3 1 1 2 2

C a I x a I y a I z a I u b I xsys m m m m m
b I y b I z b I u a I I xy a I I xz a I I xum m m m m m

a I I yz a I I yu a I I zu a I x a I ym m m x x

a I z a I I b I x a I I b Ix x x x xt t

    

     

    

    

x

(2 )
3 3

2 22 2 2 ( )
1 2 1 3 2 3 1 1 1 2 2

2 2 2 2 2 2( ) ( ) ( )
2 2 2 3 2 2 3 4 2 4

2 ( ) 2 ( )
5 5 51 1 1 1 2 2 2 1 2 2 1 2 2

2 ( ) 2 ( )
53 1 2 2 1 2 2 2

y a I I b I zx xt

a I I xy a I I xz a I I yz x I R R R Rx x x

y I R R z I R R R u I R R

xI I R I R I R I R I R yI I I I R

zI I I I R xyI I R R

 

       

       

            

      2 ( ) 2
1 3 2 2 1 4 2

22 ( ) 2 2 ( )
2 3 2 2 2 4 2 3 4 2

Const

xzI I R R xuI I R

yzI I R R yuI I R zuI I R c c b I a Im x x xt t

  

       



  (A.9) 



 

96 

 

APPENDIX B - LOSS IN CERTS MICROGRID 

Power flow from Generator1,  

1 1 3g tieP xP yP zP                    (B.1) 

Putting this expression of Pg1 into Equation (A.1), we get fuel cost due to Generator1, 

2 2 2 2 2 2

1 1 1 1 1 3 1 1 1 1 3 1 1

1 1 3 1 3 1

( ) ( ) ( ) ( ) ( ) ( ) (2 )

(2 ) (2 )
g tie tie tie

tie

C a P x a P y a P z b P x b P y b P z a PP xy

a PP xz a P P yz c

      

  
  (B.2) 

Power flow from Generator2,  

2 2g tieP P yP                     (B.3) 

which gives cost due to Generator2, 

  2 2 2

2 2 2 2 2 2 2 2 2 2( ) (2 ) ( )g tie tie tieC a P y a P P b P y a P b P c              (B.4) 

Contribution from Generator3, 

3 1 3 1 3gP P P xP zP                    (B.5) 

This gives cost due to Generator3, 

2 2 2 2

3 3 1 3 3 3 1 1 3 3 1 3 3 1 3 3 3
2 2

3 1 3 3 1 3 3 3 1 3 3 3 1 3 3

( ) ( ) [2 ( ) ] [2 ( ) ]

(2 ) ( 2 )
gC a P x a P z a P P P b P x a P P P b P z

a PP xz b P b P a P a P a PP c

       

      
   (B.6) 

So, system loss of the CERTS Microgrid,  
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2 2 2 2 2 2

1 1 1 1 3 1 1 1 1 3
2 2

1 1 1 1 3 1 3 1 2
2 2 2 2 2

2 2 2 2 2 2 2 2 3 1 3 3

3 1 1 3 3 1 3

( ) ( ) ( ) ( ) ( ) ( )

(2 ) (2 ) (2 ) ( )

(2 ) ( ) ( ) ( )
[2 ( ) ] [2

sys tie tie

tie tie tie

tie tie

C a P x a P y a P z b P x b P y b P z

a PP xy a PP xz a P P yz c a P y

a P P b P y a P b P c a P x a P z
a P P P b P x a P

     

    

      
    3 1 3 3 3 3 1 3

2 2

3 1 3 3 3 1 3 3 3 1 3 3

( ) ] (2 )

( 2 ) dr

P P b P z a PP xz

b P b P a P a P a PP c C

  

      

      (B.7) 

And the constraints are, 

( ) ( )max1 1 3 1
g xP yP zP Ptie g

   x              (B.8) 

( ) ( )max2 2 2
g P yP Ptie g

  x               (B.9) 

  ( ) (1 ) (1 ) ( ) max3 1 3 3
g x P z P P

g
    x              (B.10) 



 

98 

 

APPENDIX C - SCALING AND CHANGE OF VARIABLES 

 
Let,  

1

/
1

z b x                     (C.1) 

1 2

/
2

z c x c y                     (C.2) 

1 2 3

/
3

z d x d y d z                    (C.3) 

1 2 3 4

/
4

z e x e y e z e u                   (C.4) 

 

Equation (5.1) can then be converted as, 
 

2 2 2 2/ / / / / / / /
1 1 1 2 2 2 3 3 3 4 4 4

C z k z z k z z k z z k z Constsys              (C.5) 

where k1, k2, k3 and k4 are load dependent constants.  

If we assume, 

/ / / /31 2 4[ ],  [ ],  [ ],  [ ],  
1 1 2 2 3 3 4 42 2 2 2

kk k k
z z z z z z z z        Equation (5.1) can then be 

expressed as, 

2 2 2 2 2 2 2 2

1 2 3 4 1 2 3 4

1
( )

4
sysC z z z z Const k k k k                 (C.6) 

We need to optimize variable portion of the cost function only. So the ultimate cost 

function that needs to be taken care of is, 

2 2 2 2 2( )
1 2 3 4 1

n
C z z z z zsys i

i
     


x             (C.7)  
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