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Abstract

Most of the distributed energy resources, loads and energy storage systems in a

DC microgrid are equipped with power electronic converters. With the integration of

advanced power electronics devices, a microgrid is able to utilize a broader range of

technologies in its design and operation. A key feature of power electronic converter

based systems is the ability to direct energy flow within a system with their coordi-

nated operation. A system level control is needed for coordination where converters

execute reference points dictated by a system-level control in order to achieve system

level goals. System goals can be expressed as a cost function solved by a real-time

optimization algorithm. This work develops a framework for the coordinated op-

eration of converters with a distributed optimization method for use in a real-time

system-level control system.

In order to validate the optimization based control method developed in this

research, a simplified shipboard DC power distribution system is used for case studies.

It is an isolated microgrid with converters between all sources of energy and the main

buses as well as between all load centers and the main buses. The example cost

function used in the study minimizes distribution losses in the DC power system.

Initially, the optimization problem is solved using a centralized method in order to

provide a baseline for evaluating other schemes. Primal-dual interior point method

is applied successfully to provide optimal operating points. The centralized structure

relies on one central controller to support the entire system control such that the

system is vulnerable to single points of failure and not easily expandable.

To address the robustness and expandability shortcomings, a distributed coor-
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dinating optimization algorithm is developed. The coupling constraints formed by

nodal current balance result in control variable coupling, therefore, techniques are

required to perform an appropriate decomposition. The main task of this disser-

tation is to develop a practical distributed algorithm via the decomposition of the

optimization problem. The method developed here combines dual decomposition and

Alternating Direction Method of Multipliers (ADMM) together. This is an iterative

based method. By utilizing a decomposition method, the microgrid is partitioned into

multiple subsystems. The global target is achieved by interaction of the subsystems

which operate on local information. The solutions from the decomposition method

and centralized method are compared in diagrams and in numbers using the ship-

board DC microgrid test system. Results show that the numerical results from both

methods match closely. Analysis of the effect of the number of microgrid subsystem

partitions on convergence speed of the decomposition method is also performed.
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Chapter 1

Introduction

1.1 Microgrids

In traditional grids, electrical energy is usually generated by regional power plants

and then distributed to serve load centers which are often distant from generation

sites [3]. Changes are taking place in this pattern because of the increasing emer-

gence of smaller Distributed Energy Resources (DERs). DERs are energy resources

that are small scale but located close to loads. They include not only generators

and energy storage systems but also, for some classes of systems, advanced power

electronics conversion equipment between the energy sources and their surrounding

systems [20][30]. The potential of DERs can be more fully developed when organized

into a microgrid [33][21][19]. Microgirds are discrete energy systems consisting of

DERs and loads capable of operating in parallel with, or independently from, the

power grid. Microgrids are designed to support Alternating Current (AC) or Direct

Current (DC).

In DC microgrids, sources and loads are generalized into three types: distributed

generation units, storage systems, and distributed loads. Firstly, distributed genera-

tors are able to be connected to DC systems through converters [23]. This structure

provides benefits by combining together different generation types such as photo-

voltaic cells, micro turbines, and fuel cells. Synchronization between the new energy

sources and the DC network is not required, and frequency regulation is not necessary.

Secondly, energy storage systems are interconnected through converters to improve
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power quality. This plays an important role to balance power between generation and

consumption, especially when rapid changes in the load occur to low inertia systems.

Finally, the load centers connected in DC mircogrids are also interfaced via DC/DC

or DC/AC converters. Stable voltages should be ensured by the control strategies

applied on those converters even in the presence of varying loads.

Well-designed DC grids can improve efficiency by decreasing losses associated

with conversion stages. For example, Variable Speed Drives (VSDs) powered by DC

have 5% less power consumption than those powered by AC due to avoid out of

a rectification stage[13]. This is especially important for microgrids such as a ship

where a large amount of the generation is used in the propulsion system which is a

type of VSD.

Power electronic devices are coordinated by Energy Management Systems (EMSs)

to achieve system level goals. The real time data is used for planning and determina-

tion of converter operating points. Orders are sent to various converters [22][17] such

that an optimum operation of the entire system can be achieved. Some research has

been performed on system-level optimal power flow [2][14] most of which focus on the

optimization of a traditional AC distribution power system [10][28][29]. The focus of

this research is on DC distribution systems with power converters isolating AC power

on the sides of generators or loads. There are two basic structures to achieve the

system level control: centralized and distributed architectures [17]. In this research,

a distributed energy management solution for DC microgrid system is developed.

1.2 Statement of Problem and Approach

Developing an optimization method to manipulate the power electronic devices

and thereby direct optimal energy flow in the system is desirable to reduce losses.

Various optimization techniques can be used to solve nonlinear sets of equations rep-

resenting the grid. A centralized method using primal dual interior-point algorithm
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provides a baseline for comparison. To apply this centralized method, the optimiza-

tion problem is formulated as a convex programming problem [5] incorporating ca-

pacities of generation, batteries, and power electronics devices. Any measured change

happening in the system can be immediately handled by the centralized controller, so

this method can be efficient. However, it is not very expandable and fault tolerant.

Changes in system states require a system-wide recalculation. Here a distributed

optimization architecture is proposed.

In this distributed framework, main controllers in subsystems perform local man-

agement functions while coordinating with each other to fulfill global objectives. Ro-

bustness and scalability are brought into the microgrid by the distributed control

structure [9]. Subsystem controllers, as a distributed and autonomous unit towards

problem solving, play a key role to inhibit system collapse when one or more of their

components fail. The system is more robust since single points of failure are avoided.

In addition, the distributed structure provides a base for easy system expansion with

intelligent local controllers when load increases. In other words, each controller is

allowed to join or leave the system easily.

The distributed control developed in this dissertation incorporates dual decom-

position and Alternating Direction Method of Multipliers (ADMM) together. Dual

decomposition is based on applying Lagrange multipliers (dual variables) to the cou-

pling constraints. ADMM extends the decomposition idea by using augmented La-

grangian. The optimal solution from decomposition method matches closely to cen-

tralized method.

1.3 Overview

A shipboard DC power system [7] as an isolated DC microgrid is used in this study

to verify the decomposition-based power management. The dissertation is organized

as follows.
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In chapter 2, a shipboard DC microgrid is electrically analyzed and modeled as

an appropriate optimization function and system constraints all identified.

In chapter 3, using a centralized framework, the problem is directly formulated

based on the proposed model and solved with the primal-dual interior-point method.

This optimization determines the set points of power electronic converters to imple-

ment an efficient energy dispatch. The results from this centralized method provides

data about attributes of the studied system which can be used as a baseline by de-

centralized methods.

This research then focuses on distributed optimization in chapter 4. In this study,

by partitioning the studied system to three subsystems, mathematical model applica-

ble to decomposition is built up. Then a flow chart detailing the distributed algorithm

involving dual decomposition and ADMM is presented.

Simulation results from Matlab Simulink are shown in Chapter 5. More test cases

to verify the algorithm convergence are also present in Chapter 5.
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Chapter 2

System Outline and Electrical Analysis

A shipboard DC power distribution system is used as the object of study. Fig-

ure 2.1 shows the layout of this system comprised of two power sources, two load

zones, one energy storage system (ESS), and one pulsed load [31][18]. Power con-

verter modules (PCMs) in Figure 2.1 operate as controllable current sources. Their

current reference values come from an EMS. The EMS proposed in this dissertation

is restricted to the problem of power distribution efficiency. More specifically, in the

case of this study, in order to minimize distribution power loss, branch currents are

controlled by coordinating the action of PCMs.

An electrical model for this shipboard power system is introduced as shown in

Figure 2.2. This steady-state model depicted in this figure is based on the represen-

tation of converters by controllable current sources. The figure has also integrated

the equivalent transmission line resistances of the shipboard DC system.
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Figure 2.1: Studied shipboard power system with two generators, an ESS, two zones,
and a pulsed load charging system
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Figure 2.2: System model with current sources

An example objective function is selected as the minimization of power loss, which

can be expressed as

f =
∑
m∈D

i2mRm. (2.1)

where D is the set of all branches in the grid. The system shown in Figure 2.2 has

six buses. Current equality at each bus gives constraint equations as follows.

iA1 = iB2 + iB4 − iT1 + iC1 (2.2)

iA2 = iL2 + iT1 (2.3)

iL1 = iD1 + iB1 (2.4)
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iL2 = iL1 + iB3 (2.5)

iB1 + iB2 = iLoad1 (2.6)

iB3 + iB4 = iLoad2 (2.7)

Ohms’ Law defines the relationship among variables on the linear branches. This

brings about three more constraints.

v2 − v1 = RT1iT1 (2.8)

v2 − v3 = RL2iL2 (2.9)

v3 − v4 = RL1iL1 (2.10)

The power injected in system by the two generators can be calculated in terms of

currents and voltages as:

PA1 = iA1v1 + iA12RA1 (2.11)

PA2 = iA2v2 + iA12RA2. (2.12)

Voltage stabilization function has been embedded into the lower level control system

in which voltage v1 is controlled to be 500V, and voltages vZ1 and vZ2 are maintained

at 400V. As illustrated in the equation (2.13), based on the flow conservation, total

input current is equal to the sum of load currents in per unit system. This can also be

achieved by adding equations (2.2) to (2.7) together. The load in this system includes

zonal loads, a pulsed power load, and an energy storage system which can operate as a

load or source at different times depending on the system requirements. Furthermore,

due to the existence of charging capacitor on pulsed power load, transients are handled

such that a sudden current change is not directly imposed on the system but only a

steady charging current iD1.

iA1 + iA2 = iC1 + iD1 + iLoad1 + iLoad2 (2.13)
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Table 2.1: Inequality Constraints of Test Systems

Capacities On Test Systems [11] Inequality constraints
30kW main generator
per 10kW auxiliary generator

iA1 ≤ 30/15
iA2 ≤ 10/15

10kW ship service loads per zone iB1,iB2,iB3,iB4 ≤ 10/15
350kJ Pulsed Load local storage
with a peak power draw of 20kW iD1 ≤ 20/15

Energy Storage System: 10kW converter
attached to a 1.2MJ storage system |iC1| ≤ 10/15

In practical settings, generator capabilities have limits and transmission line cur-

rents are also bounded to avoid overloading of the PCMs. Therefore values of those

variables should be defined within specific limits. Moreover the laboratory-scale test

system is scaled down by a factor of approximation of 1/500 as compared to a notional

ship system [11]. Table 2.1 summarizes specific current limits on test system and its

corresponding constraints on control variables in per unit system with base voltage

500V and base power 15kW. Notice every quantity used in the study is normalized.

So when rated voltage of an equipment is equal to base voltage, ip.u. has the same

value of pp.u. since

ip.u. = pp.u.

vp.u.
= pp.u.

1 = pp.u. (2.14)
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Chapter 3

Optimization Formulation with Centralized

Method

Energy management for shipboard integrated power system is essentially a global

optimization problem whose objective is to determine the flow on each line in such

a way that transmission loss is minimized [17]. The solution can be viewed as a

sequence of commands to the control systems of PCMs at each instant that leads to

the optimization goal. Here, centralized control is implemented mainly because of the

higher efficiency as compared to distributed control methods which rely on iteration

among controllers. Centralized control methods require the knowledge of the entire

topology of the system and the system limits ahead since system equations are created

based on this information [18]. In fact, the solutions obtained by solving the equations

are greatly affected by how to formulate the problem. If the overall system model is

developed accurately enough and equations can be solved in real-time, good control

performance can be expected using centralized control methods.

3.1 Optimization Formulation

In Chapter 2 system, variables are comprised of three sets of components: currents

on each branch, voltage on each bus, and generator output power values PA1 and

PA2. However, from equations (2.8) - (2.12), it can be concluded that all system

voltages and generation values totally depend on currents around the circuit. It is

feasible to ignore them to reduce the variable numbers and only take into account
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currents as unknown problem variables. Therefore, the problem variables shrink to

x = (iA1, iA2, iB1, iB2, iB3, iB4, iL1, iL2, iC1, iT1). In this way, the loss function shown

as equation (2.1), the equality constraints defined by equations (2.2) - (2.7), and

inequality constraints following Table 2.1 are in the form of
minimize f(x) = xTRx

subject to Ax = b

xmin ≤ x ≤ xmax

(3.1)

where R = diag(RA1, RA2, RB1, RB2, RB3, RB4, RL1, RL2, 0, RT1),

A =



1 0 0 −1 0 −1 0 1 −1 0

0 1 0 0 0 0 −1 −1 0 0

0 0 0 0 −1 0 1 0 0 −1

0 0 −1 0 0 0 0 0 0 1

0 0 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0



,

b =
[
0 0 0 0 iLoad1 iLoad2

]T
,

xmin and xmax are the bounds defined by Table 2.1. This formulated problem is

convex because it consists of the minimization of a quadratic form function subject to

linear constraints [5]. After the optimization equations are solved in the management

system, a subset of the solutions is transmitted to low level control of PCMs as current

reference values. The control hierarchy is shown in [11]. In the case of this research,

the values that are dispatched to local controls include the value of bus-tie current

as well as the sharing ratios for each load zonal current. Here, load sharing ratios

describe how loads in each zone are shared between the two feeding branches. One

may assume that one of the bus-tie breakers is open, as in the normal operational of

the system. Therefore, the target is formed to issue three unknown values including

two zonal load ratios and one bus-tie current, which lead to minimum transmission

11



loss.

3.2 Primal-Dual Interior-point Optimization Method

Authors in [16] give rise to a great breakthrough in the field of interior-point meth-

ods [35][36][34][38] which is an important part in conventional optimization method.

This field has experienced rapid development. A primal-dual algorithm performs

better on practical problems than other interior-point methods [37]. Among the im-

plementation of primal-dual interior-point algorithm, the free code MATPOWER [40]

is used here. In this tool, loss function and its gradient, constraints and their gradi-

ents, the Hessian of the Lagrangian, and an unnecessarily feasible starting point are

required as solver inputs. The problem formulated above can be further generalized

to:
minimize f(x) = xTRx

subject to G(x) = 0

H(x) ≤ 0

(3.2)

where f(x) is objective function, G(x) and H(x) are respectively termed as equality

and inequality constraints that are defined as:
G(x) = Ax− b

H(x) =

−x+ xmin

x− xmax

 (3.3)

By adding slack variable Z and using barrier function with the parameter of pertur-

bation γ, equation 3.2 is formed as:
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minimize
[
f(x)− γ

ni∑
m=1

ln(Zm)
]

subject to G(x) = 0

H(x) + Z = 0

Z > 0

(3.4)

where ni is the number of inequality constraints. For a given number γ the Lagrangian

with dual term λ and µ is

Lγ(x, Z, λ, µ) = f(x) + λTG(x) + µT (H(x) + Z)− γ
ni∑
m=1

ln(Zm) (3.5)

The Karush-Kuhn-Tucker(KKT) condition, first-order optimality condition, is satis-

fied when:
F (x, Z, λ, µ) = 0

Z > 0

µ > 0

(3.6)

where F (x, Z, λ, µ) =



fTx +GT
xλ+HT

x µ

µZ − γe

G(x)

H(x) + Z


.

In primal-dual interior-point method, Newton’s method is always applied to solve

KKT conditions. In a matrix form:



Lγxx 0 GT
x HT

x

0 µ 0 Z

Gx 0 0 0

Hx I 0 0





∆x

∆Z

∆λ

∆µ


= −



Lγx
T

µZ − γe

G(x)

H(x) + Z


(3.7)
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where Lγxx is the Hessian, e = [1, ..., 1]T . After obtaining ∆x, ∆Z, ∆γ, ∆µ, by using

(3.8), αp,αd are computed as follows in order to maintain strict feasibility.

αp = min
(
ξ min

∆Zm<0

(
− Zm

∆Zm

)
, 1
)

αd = min
(
ξ min

∆µm<0

(
− µm

∆µm

)
, 1
) (3.8)

where scalar ξ is set to 0.99995 in code. Following (3.7) and (3.8) variables can be

updated as (3.9).
x← x+ αp∆x

Z ← Z + αp∆Z

λ← λ+ αd∆λ

µ← µ+ αd∆µ

(3.9)

After each iteration, γ is updated to σZTµ
ni

(where σ is set to 0.1) due to this pertur-

bation parameter needs to converge to zero.

3.3 Simulation and Results

During the simulation, after loads (zonal loads, ESS, and Pulsed power load)

are switched on into the circuit, quantities are measured at each instant to update

the equations. Then, the algorithm determines the optimal current distribution that

minimizes the loss, while providing the loads and respecting the constraints. Sub-

sequently, lower level control tries to follow the equivalence factors calculated from

optimal distribution until next update arrives. Although one cycle of optimization

calculation takes a few milliseconds, which is a reasonable time frame, a period of

45ms is given to the algorithm to deal with problem, because in real world commu-

nication delay should also be considered.

The following scenario is used in the simulation to assess the approach. Initially,

both zones are loaded at 10kW and a power of 10kW is moved across the bus tie to-

wards the aux generator which is running at 40% rating. The optimization command
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is given at 1s, and the values of currents are set accordingly. The pulsed power load

is activated at 2.5s. This in turn activates its charging system. The energy storage

system is also connected at 2.5s. After almost half a second, the energy storage sys-

tem is shut down by its control system, since the State Of Charge (SOC) hits its

lower limit. At 9s, the Zone1 load drops off by 50% and the Zone2 load decreases to

25%. Three seconds later, at 12s, an increment is made at Zone2 to 75% of its initial

value, 7.5kW, while the Zone1 load remains unchanged.

The simulation results of the periodically refreshed current values over a 15 second

interval are plotted in Figure 3.1. These orders from systematic optimization are

implemented in real-time. It is worth noticing that the Zone1 sharing ratio has no

significant change because the current splitting ratio essentially is not sensitive to

load variation. But due to limited generator capacities, an obvious ratio change is

imposed to Zone2. Additionally, quantities of system resistances especially bus tie

breaker resistance highly affects the optimization results.

Figure 3.1: Commands from centralized system-level control

Commands are in the form of load sharing ratio, bus tie current or storage current
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Figure 3.2 compares the system losses between the system with optimization ap-

plied and the system with fixed sharing rules. The system loss is decreased when

optimization is applied.

Figure 3.2: Losses with and without centralized optimization

Solutions of optimization which are sets of current flow in branches are shown

in Figures 3.3 and 3.4. It is seen that actual currents of PCM-A1 and PCM-A2 are

effectively controlled to stay within generation current limits except for a few spikes

in the current. Furthermore, bus voltages depicted in Figure 3.5 are all maintained

within acceptable tolerance.

Figure 3.6 shows the values of current flows. In this figure, [CURRENT] / [CUR-

RENT] / [CURRENT] / [CURRENT] shows current flows at state 1/2/3/4. State

1 is when pulsed load is activated and zones are at full load (10kW for each zone).

State 2 happens when ESS is shut down. State 3 is when Zone1 load is reduced to

50% and zone two being reduced to 25%. At state 4 Zone2 load is increased to 75%.

This figure depicts that optimum dispatch tends to supply a load from the generation

unit which is electrically closer to it until the limits of that unit collegese. To ensure
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Figure 3.3: Current flows on bus connected converters under centralized system-level
control

Figure 3.4: Current flows on zonal converters under centralized system-level control

that flows are within the capabilities of each generator, bus tie current is adjusted as

needed.
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Figure 3.5: Measured bus voltages

Figure 3.6: Approximate numerical results

To demonstrate the validity of primal-dual interior-point algorithm in minimiza-

tion of loss, one randomly selected instance time is considered at 2.9s. At this mo-

ment, pulsed load is applied and ESS is actively supplying power which introduce

iD1 to be around 30A, and iC1 be -12A. Because there are three free variables in the
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formulated problem, one randomly chosen variable is set to be the value originated

from the optimal operation (iL1 is 40.3636A). The other two variables are able to

form a three-dimensional Cartesian coordinate with loss as shown in Figure 3.7. It

can be seen that the shape of loss is paraboloid as two currents vary over the sur-

face. The minimum power loss point calculated above from the algorithm happens

at iA1 = 53.9576A and iL2 = 55.0497A which depicts a very close agreement with the

Figure 3.7. This can be repeated by changing the chosen instance of time or chosen

variables for the two dimensions, and the results from 3-d figures are consistant with

the optimum values from the optimization algorithm.

Figure 3.7: Power loss with variations of iA1 and iL2 (x = iA1, y = iL2, z = loss)
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Chapter 4

Optimization Formulation with Distributed

Method

Because the centralized structure relies on one central controller to support the

entire system, it is vulnerable to single points of failure. To solve this problem, a

decentralized system is developed. In a decentralized system, each component is

equally responsible for contributing to the global optimum, so it is more robust and

naturally eliminates single points of failure. In such a system, instead of gathering the

information from the whole system, controllers only use local information. This type

of controlling scheme is called distributed control. A distributed control algorithm

is developed here to perform converter coordination in order to optimize the cost

function presented in equation (2.1)

From the point of view of calculation time, if the electrical system has greater size,

it is not practical to have the planning and optimization done by a single controller.

This is especially true in the case computational time grows more than linearly with

the problem size. A distributed method is proposed to handle this problem. Here,

a decomposition method is used to iterate among subsystems to achieve a solution.

Unlike centralized coordination in which local controllers receive set points from single

specific central controller, here controllers make decisions locally. But still, the major

task of each controller is not necessarily to maximize the budget of its corresponding

unit but to improve overall performance of the system.

This work is based on the research of decomposition optimization [39][1][8][25].
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The main idea of distributed method is to reduce the whole problem into individual

small problems, introducing small cost functions that depend only on local variables

[26][27]. The relation among the small problems are the public variables. They are

synced in between each optimization step via a reliable communication system.

As the case study, the shipboard power system is used to demonstrate how this

approach works in real time with the results from centralized method as the ground

truth.

4.1 Decomposition Framework of General Problem

Consider a distributed optimization problem [6] with K subsystems, each of the

subsystems contains one or more power converter modules with local information

collection and distribution. In subsystem i, xi ∈ Rni and yi ∈ RPi are used to denote

the private and public variables, fi : Rni × Rpi is a local objective function. These

subsystems are coupled through public variables, which have equal individual scalar

components. Thus the overall system has the objective function

f(x, y) = f1(x1, y1) + f2(x2, y2) + ...+ fK(xK , yK). (4.1)

With the local variables constrained by the set Ci ⊆ Rni × Rpi , it follows that

(xi, yi) ∈ Ci. Furthermore, let N be the number of nets in the system. A net

is a hyperedge which connects two or more subsystems in the hypergraph. A net

corresponds to a public variable, so z ∈ RN is introduced to present common values

of the public variables on the nets. The set of all public variables is denoted by

y ∈ Rp, where y = (y1, ..., yK) and p = ∑K
i=1 pi. Then the relationship between y and

z can be described as

yi = Eiz (4.2)
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where Eij =


1 (y)i is in net,

0 Otherwise.

Here, (y)i denotes the ith component of vector y. The ith row block of E is denoted

as Ei ∈ Rpi×N which specifies the complete net list. The problem given by (3.2) now

has the form:
min. f(x, y) = f1(x1, y1) + f2(x2, y2) + ...+ fk(xk, yk)

s.t. (xi, yi) ∈ Ci i = 1, ..., K,

yi = Eiz i = 1, ..., K.

(4.3)

The problem now is in the form of a distributed architecture.

4.2 Dual Decomposition Algorithm

Dual decomposition, which provides a mechanism to deal with problems in paral-

lelized manner [6][32][15], is used here to solve the DC microgrid optimization problem

in a distributed form as in (4.3). By incorporating constraints into objectives, the

Lagrangian of the problem can be formed as

L(x, y, z, v) =
K∑
i=1

f(xi, yi) + vT (y − Ez)i

=
K∑
i=1

(fi(xi, yi) + vTi yi)− vTEz,
(4.4)

where v = (v1, ..., vk)T is the Lagrange multiplier associated with y = Ez. The

Lagrange dual function g(v) is the optimal cost under the prices v. To ensure g(v) >

−∞, ETv = 0 is drawn as a problem constraint. After vTEz is diminished, the items

left in the Lagrangian is completely separable.

Define gi(vi) as the solution of problem
min. fi(xi, yi) + vTi yi

s.t. (xi, yi) ∈ Ci.
(4.5)
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The dual problem can then be expressed as

max. g(v) =
K∑
i=1

gi(vi)

s.t. ETv = 0.
(4.6)

With this master problem solved by projected subgradient method, the dual decom-

position algorithm [6] is shown below.

Given initial price vector v that satisfies ETv = 0(e.g., v = 0)

Repeat

Optimize subsystems (separately).

Solve subproblem (4.5) to obtain xi,yi.

Compute average of public variables over each net.

ẑ := (ETE)−1ETy

Update the dual variables.

v := v + αk(y − Eẑ).

Until stopping criterion satisfied

4.3 Alternating Direction Method of Multipliers

Alternating Direction Method of Multipliers (ADMM) is a simple but practical

decentralized algorithm. It is based on augmented lagrangians and advanced with

dual decomposition. The theoretical part of the algorithm has been developed in

the eighties. Nowadays, it has started to support distributed calculation of big data

and has broad application in statistics and machine learning. At first, a optimization

problem with the following form is considered.
min. f(x) + g(y)

s.t. Ax+By = c,

(4.7)
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where x and y are control variables. Here, constraints are affine. By incorporating

constraints into objective function, the augmented lagrangian of this problem is

Lα(x, y, v) = f(x) + g(y) + vT (Ax+By − c) + α/2‖Ax+By − c‖2
2, (4.8)

where α is the penalty vector. The introduction of augmented lagrangian yields

convergence without objective function being strict convex or finite. ADMM iteration

can be updated as follows.

xk+1 := argmin
x

Lα(x, yk, vk), (4.9)

yk+1 := argmin
y

Lα(xk+1, y, vk), (4.10)

vk+1 := vk + α(Axk+1 +Byk+1 − c). (4.11)

Here, x and y are alternating descended which is where the name comes from. Then

lagrangian multipliers are updated. If x and y can be efficiently optimized locally,

ADMM is particularly practical [4].

4.4 Consensus Optimization

Let’s consider the objective function be decomposed into N parts as:

min. f(x) =
N∑
i=1

fi(x), (4.12)

where fi(x) are all local functions. This problem can be reformulated to fit ADMM

form. It is also known as global variable consensus optimization as follows.

min. f(x) =
N∑
i=1

fi(xi)

s.t. xi − y = 0, i = 1, ..., N.
(4.13)

The updates from applying ADMM on this problem is the following:

xk+1
i := argmin

xi

(fi(xi) + vkTi (xi − yk) + (α/2)‖xi − yk‖2
2), (4.14)

yk+1 := 1
N

N∑
i=1

(xk+1
i + (1/α)vki ), (4.15)
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vk+1
i := vki + α(xk+1

i − yk+1). (4.16)

The above updates are able to be simplified to the following when using ∑N
i=1 v

k
i = 0.

xk+1
i := argmin

xi

(fi(xi) + vkTi (xi − x̄k) + (α/2)‖xi − x̄k‖2
2), (4.17)

vk+1
i := vki + α(xk+1

i − x̄k+1), (4.18)

where x̄k = (1/N)∑N
i=1 x

k
i .

4.5 Problem Formulation

The shipboard power system with two zonal loads is used to demonstrate how the

approach works in real time.

Splitting Graph Structure

The first step of distributed control is to decompose the problem into subproblems

(smaller ones) by exploring the network structure [24]. The corresponding graph of

the studied power distribution system has vertices and edges induced in Figure 4.1.

This graph merely focuses on the distribution network of the original system. The

vertices represent the buses who distribute, consume, or generate power. Vv1, Vv2, Vv3,

and Vv4 as power distributing nodes, VSource1, VSource2, VESS, VPulseLoad, VLoad1, and

VLoad2 as power generating or consuming nodes are all elected as vertices. Vertices are

connected by edges. Here, the edges represent power cables with the assumption that

resistances of converters are ignored. The branches that have PCMs equipped are

treated as independent buses. Other dependent currents are enforced by controlling

the independent currents. In this system, the number of independent circuit equations

is six and the number of unknown variables is nine, so three free branch variables

need to get reference values from system-level control. In this work, the current

through PCM-B1, PCM-B3, and PCM-A2 are chosen as independent variables. Thus
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these three PCMs behave like local main controllers. Figure 4.1 is the split graph

according to this arrangement. Please note that it is absolutely workable to choose

other controller combinations like PCM-B2, PCM-B3, and PCM-A1. This feature

also provides a powerful support to system fault tolerance. For example PCM-B2 is

totally capable of being a backup of PCM-B1 when emergency happens.

Figure 4.1: Split graph of system

A pre-planned strategy for power grid splitting is necessary. A good partition of

the graph can significantly reduce the amount of communication between different

areas [12]. Here this system is partitioned into three subsystems as shown in Figure

4.1 . One is for two generators and other two are for two load-zones. This partition

method is suitable for this shipboard system because the generator two is just the

backup of the main generator. This microgrid works as a self-sufficient system and

most loads are fed from the main generator. Due to the low capacity of the backup

power source, two generators are put into the same control subsystem. Besides,

partition is based on each zonal load area because all zonal loads are running in

parallel and they are independent to each other. If each zonal load is governed by its
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own controllers, then the extension of the load zones would have no impact on the

existing programs.

Decomposed Problem

With currents as variables and current flows as constraints, the centralized prob-

lem is formulated in (2.1) - (2.7). These functions are separated according to the

partition pattern mentioned above. Each elected main controller deals with its corre-

sponding subproblem. The overall centralized problem is equivalent to the addition

of three small ones shown below.

PCM-B1:
min. fB1 = i2B1RB1 + i2B2RB2 + i2L1RL1 + i2D1RD1

s.t. iB1 + iB2 = iLoad1,

iB1 − iL1 = −iD1

(4.19)

where iB1, iB2, and iL1 are variable. The constraint functions can be written in the

form of A1x = b1, here

A1 =

1 1 0

1 0 −1

, b1 =

iLoad1

−iD1

.

PCM-B3:
min. fB3 = i2B3RB3 + i2B4RB4 + i2L2RL2

s.t. iB3 + iB4 = iLoad2,

iB3 + iL1 − iL2 = 0

(4.20)

where iB3, iB4, iL1, and iL2 are variable. As in the form of A2x = b2, we have

A2 =

1 1 0 0

1 0 1 −1

 , b2 =

iLoad2

0

,
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PCM-A2:
min. fA2 = i2A1RA1 + i2A2RA2 + i2C1RC1 + i2T1RT1

s.t. iA1 − iB2 − iB4 − iC1 + iT1 = 0,

iA2 − iL2 − iT1 = 0

(4.21)

where iA1, iA2, iB2, iB4, iC1, iL2, and iT1 are variable. As in the form of A3x = b3, we

have

A3 =

1 0 −1 −1 −1 0 1

0 1 0 0 0 −1 −1

 , b3 =

0

0

,

In such a way, the whole problem is partitioned into three subproblems.

Figure 4.2: System hypergraph

In Figure 4.2, a simple hypergraph is used to represent this decomposition struc-

ture. The problems with PCM-B1, PCM-B3, and PCM-A2 are indexed by subprob-

lem 1, 2, and 3 respectively as shown. The nodes, which are shown as squares, are

associated with local subproblems consisting of objective and constraints. The nets

that connect two or more boxes are associated with complicating variables. Evidently

there is some coupling between variables. The coupling variables between subproblem

1 and 2 is iL1, the coupling variables between subproblem 2 and 3 are iB4 and iL2,

the coupling variables between subproblem 1 and 3 is iB2. In total, the complicating

variables in the networks are iB2, iB4, iL1, and iL2. Based on the fact that variables
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of the master problem are the complicating variables of the original problem, this

master problem is formed as follows.
min. fB1(iB1, iB2, iL1) + fB3(iB3, iB4, iL1, iL2)

+ fA2(iA1, iA2, iB2, iB4, iC1, iL2, iT1)

s.t. (iB1, iB2, iL1) ∈ C1

(iB3, iB4, iL1, iL2) ∈ C2

(iA1, iA2, iB2, iB4, iC1, iL2, iT1) ∈ C3

(4.22)

The problem can be further written as
min. fB1(iB1,m1,m2) + fB3(iB3,m3,m4,m5)

+ fA2(iA1, iA2,m6,m7,m8, iT1)

s.t. (iB1,m2,m1) ∈ C1

(iB3,m4,m3,m5) ∈ C2

(iA1, iA2,m8,m6,m7, iT1) ∈ C3

m1 = m6

m2 = m4

m3 = m7

m5 = m8

(4.23)

In order to reach the desired form, public variables are collected for each subsys-

tem. In our case, subsystem 1 has public variable y1 ∈ R2 and local variable x1 ∈ R.

Subsystem 2 has public variable y2 ∈ R3 and local variable x2 ∈ R. Subsystem 3 has

public variable y3 ∈ R3 and local variable x3 ∈ R4. There are four nets here associated

with coupling constrains, the consistency constraint m1 = m6 is expressed for net 1,

m3 = m7 is represented for net 2, m2 = m4 is for net 3 and m5 = m8 is for net 4. In

other words, the public variables of subsystem 1 and 3 should be equal on the account

that they both represent iL1 physically. For the same reason, other three coupling con-

strains can be achieved. Further more, all public variables are collected to form one

29



vector variable y = (y1, y2, y3)T ∈ R8. The net vector z = (z1, z2, z3, z4)T ∈ R4 gives

the common variable values on nets. The partition of E = [ET
1 , E

T
2 , E

T
3 ]T ∈ R8×4

denotes the block of E associated with each subsystem where E1 =

1 0 0 0

0 0 1 0

,

E2 =


0 1 0 0

0 0 1 0

0 0 0 1

, E3 =


1 0 0 0

0 1 0 0

0 0 0 1

, E =



1 0 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 1 0 1 0 0 0 0

0 0 0 0 1 0 0 1



T

.

Our problem shown below finally fits in the standard form.
min. fB1(x1, y1) + fB3(x2, y2) + fA2(x3, y3)

s.t. (xi, yi) ∈ Ci, i = 1, 2, 3

yi = Eiz, i = 1, 2, 3

(4.24)

Based on this form, the original problem is settled by solving master problem and

subproblems alternately. In this paper, we use subgradient method and interior point

method to solve master problem and subproblems respectively. In this way, each

controller tackles part of problem while trying to reach overall objectives together

with coordination.

System Analysis with Decentralized Model

As an advantage of distributed control, not all information about the system need

be collected by main controllers beforehand. So in this section specific information

known ahead by the main controllers PCM-B1, PCM-B3, and PCM-A2 is defined.

Only with that information are subproblem equations able to be constructed. These

parameters are summarized in Table 4.1 and illustrated in Figure 4.3.
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Table 4.1: Information needed beforehand

Current Value
Needed Beforehand

Resistance Value
Needed Beforehand

PCM-B1 iLoad1,iD1 RB1,RB2,RL1,RD1
PCM-B3 iLoad2, RB3,RB4,RL2
PCM-A2 None RA1,RA2,RT1

Figure 4.3: Communication about pre-information

As shown in Figure 4.3, information marked in red goes to PCM-B1, blue goes

to PCM-B3, and green goes to PCM-A2. All information is collected and used in

problem formulation. After this step, during the process of problem solving, main

controllers PCM-B1, PCM-B3, and PCM-A2 share and exchange coupling variables

to assist each other to converge.

The whole problem is separated into several subproblems. However, the sub-

problems are not completely independent of each other as the existence of coupling
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variables. In each iteration, three subproblems are solved in parallel to evaluate their

local optimal value. During this process the coupling variable is fixed. That allows

the subproblems to be solved independently. After this inner loop of local optimiza-

tion, master problem constructs an average value with which the coupling variables

are updated. It has been proven that this average moves in the direction to improve

the values globally [6].

Flow Chart
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Figure 4.4: System working flow
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The Figure 4.4 illustrates the structure of the program to solve the problem in

decentralized manner. The black arrows indicate program progress and the blue lines

show the information transmission between subprograms. In each inner loop, interior

point method is applied to achieve local optimization. In the outer loop, ADMM and

dual decomposition method is combined together. Besides, the program is advanced

by using average value to update public variables in each outer iteration. The average

value behaves better globally than the local optimized value. By using such a better

value as a fresh start point for next iteration promises a faster convergence in total.
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Chapter 5

Results and Convergence

In order to demonstrate the feasibility of the algorithm proposed in Chapter 4, it is

evaluated on the shipboard DC microgrid test case for 15s on a detailed model. Then

the test case is extended to 50s on a simplified average model which only contains

the basic electrical circuit abstraction of the shipboard microgrid. By stripping away

the time consuming parts of simulation, the test maintains relevant attributes from

the optimization algorithm perspective and allows more cases to be run. Finally the

convergence test was fulfilled for three shipboard power models with 3, 5, and 10

zonal loads respectively.

5.1 Simulation Results

Decentralized detailed test

A 15s test case is applied to the shipboard power model in Matlab Simulink. In

the beginning, the energy storage system is set up to charge itself, so SOC increases

from initial value 0.6 to upper bound 0.7. The decomposition algorithm doesn’t apply

until 1s. Then at 2.5s, the pulsed load is enabled. Once the pulsed load is detected,

the distributed system control enforces the ESS to discharge to accommodate this

load until the SOC reaches its lower bound. At 9s, the Zone1 load is decreased to

half of its original value and the Zone2 is reduced to one quarter. At 12s, the Zone2

load changes from one quarter to three fourths. The results are shown from Figure

5.1 to Figure 5.5.
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Figure 5.1: Commands in 15s case from decentralized system-level control in the form
of bus tie current and sharing ratios of two zones

Figure 5.2: Losses in 15s case with decentralized optimization
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Figure 5.3: Current flows on bus connected converters in 15s case under decentralized
system-level control

Figure 5.4: Current flows on zonal converters in 15s case under decentralized system-
level control
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Figure 5.5: Measured bus voltages in 15s case under decentralized system-level control
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This test setup is similar to the test case of centralized algorithm. It can be

noticed that the decentralized method takes a process to converge to global optimal

value. Thus after measuring the change of circuit states, controllers start to operate

to reach the new global optimum but it requires several iterations.

Decentralized 50s simplified test

To better show the trend of the convergence of the proposed distributed algorithm,

another test lasting 50s is completed with a simplified model of shipboard DC system.

This model has the same outputs as the shipboard model used in 15s centralized case.

In other words, the optimization algorithm is handling the same input data as the

not-simplified test system.

In the test setup, optimization is applied at 10s, pulsed load is not active until

25s, and the changes of loads happen at 35s and 45s respectively. With the similar

test environment as the centralized case, the converged data obtained are directly

comparable. 10-25s here corresponds to 1-2.5s in centralized 15s case. Similarly 25-

35s, 35-45s, and 45-50s here correspond to 2.5-9s, 9-12s, and 12-15s respectively in the

15s centralized test case. Figure 5.6 depicts SOC, bus tie current, and load sharing

ratios in two zones. By comparing it with Figure 3.1 , it can be seen that all steady

values are very close. For instance, the sharing ratio for Zone2 is converged to about

0.5 from Figure 3.1 when load in Zone1 is decreased to a half and load in Zone2 is

reduced to one quarter. This value can also be reached in the decentralized control

as shown in Figure 5.6. Figure 5.7 depicts the losses during the process and Figure

3.2 is very similar to it. Figure 5.8 and Figure 5.9 are corresponding to Figure 3.3

and Figure 3.4 respectively.
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Figure 5.6: Commands in 50s case from decentralized system-level control in the form
of bus tie current and sharing ratios of two zones

Figure 5.7: Losses in 50s case with decentralized optimization
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Figure 5.8: Current flows on bus connected converters under 50s decentralized system-
level control
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Figure 5.9: Current flows on zone converters under 50s decentralized system-level
control
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Numerical Results Comparison

To illustrate that all results from the centralized and decentralized methods are

consistant, Table 5.10 lists the numerical results for each load status in 15s centralized

and 50s decentralized cases.

Figure 5.10: Numerical results for studied cases

Result Analysis

Step size

Step size is one of the key parameters that can affect system convergence. In the

experiences above, a fixed step size is shared by all main controllers. Dynamic step

size can also be applied in this decomposition frame but it is shown that dynamic

step size does not provide many benefits. The following four figures are collected with

step size setup to 0.01
k
, 0.1

k
, 0.01√

k
, and 0.1√

k
.
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Figure 5.11: Commands with step size set to 0.01
k

Figure 5.12: Commands with step size set to 0.1
k
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Figure 5.13: Commands with step size set to 0.01√
k

Figure 5.14: Commands with step size set to 0.1√
k
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One disadvantage of the dynamic step size is that it requires a reset to all main

controllers wherever change happens. When a sudden change happens in one subsys-

tem, a local recalculation would occur first. Then all main controllers share the same

step length to reach global convergent result. This action enforces main controllers in

other subsystems being aware of the change. This sharing conflicts with the concept

of decomposition method which is each local main controller only cares its own local

changes.

Tests merging both fixed and dynamic step sizes are also considered. Figure 5.15

shows the case with step size of 0.2 for first 6 iteration after change then 0.1 ever.

By comparing it with Fiugre 5.6, it is noticed that 0.2 provides quicker transient

convergent process than 0.1. So the procedure value of step size has influence on the

transient performance.

Figure 5.15: Commands with step size set to 0.2 then to 0.1

In this work, error and trial is implied to pick up a proper step size. The figures

showed ahead in the 50s and 15s tests are obtained from a step size of 0.1. The

46



system turns out to be not convergent with this value set to 1. Figure 5.16 shows

control commands when this step size is 0.01.

Figure 5.16: Commands with step size set to 0.01

Transition

By comparing Figure 5.16 with Figure 5.6, we notice that in Figure 5.16 the

sharing ratios going down to zero after load changes such as those occurring at 36s.

These drops are caused by the nature of decomposition optimization. Take Zone2

as an example because it is the worst case compared to Zone1. This sharing ratio is

defined as current through PCM_B4 over the load in Zone2. It is calculated by main

controller PCM_B4. At the moment of load decreasing, PCM_B4 who is monitoring

iLoad2 inspects the changes, but this influence from its adjacent systems is low for this

moment. PCM_B4 isn’t aware of the load in Zone1 has changed too. So in the

very beginning time, the commands are for local optimum. Because the resistance

in distribution line from PCM_B3 side is 0 and the resistance from PCM_B4 side

47



is 0.097, local optimization orders the power through PCM_B4 drop to about zero.

Then gradually the influence from outside is coming in through coupling variables,

this sharing ratio starts to converge to global optimum through iteration. So this

value is bounced back to the optimum value after the drop.

The reason why there is no obvious drop in Figure 5.6 is because the step size there

is bigger. With a bigger step size, the effect from coupling variables is enhanced, so

the convergent trend is more obvious in the beginning of iteration. If we over-adjust

this number, overshoot can be observed at the instance of a change. For instance,

Figure 5.17 shows the step size as 0.8 for initial 6 steps then back to 0.1 further.

Figure 5.17: Commands with step size set to 0.8 then to 0.1

When fixed step size is used, the system has the best transient performance before

a specific value. Figure 5.18 indicates result with the step size of 0.8. The result here

is better than step size of 0.1 as shown in Figure 5.6. However, any value higher than

this will lead the system to un-convergent. In this shipboard microgrid model, the

system is not able to converge when step size is bigger than 0.9.
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Figure 5.18: Commands with step size set to 0.8

Sampling Time

The sampling time used in the previous simulations is 20ms. By changing this

time to 10ms, we reach a new set of commands as shown in Figure 5.19. Here the

convergence speeds up because convergence time is proportional to sampling time if

iteration number is fixed. However, the computation requirements increase since all

iterations must complete in a shorten time frame.
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Figure 5.19: Commands under 10ms sampling time

5.2 Convergence analysis

In order to show the convergence behavior of the proposed decomposition al-

gorithm, it is applied to two more microgrid systems with five and ten load-zones

respectively. The status of loads applied to the system at 35s to 45s in the 50s test

case illustrated before is applied on all these three microgrids. Difference of system

loss and difference of dual variables are plotted versus iteration number. Figure 5.20

depicts the evolution of these variables for the studied system with two zones. This

system is partitioned as shown in Figure 4.1. In Figure 5.20, we plot three lines to

indicate that dual variables decreased 70%, 95%, and 99% of its initial value. The

according iteration numbers are also listed in the same figure. It takes 9 iterations to

drop to 70%, 61 more iterations to 95%, and 74 more iterations to 99%.

The system with five zones is separated into six subsystems as shown in Figure

5.21 , one is about the generators and the other five are related to five load-zones

respectively. Figure 5.22 shows that the convergence speed is slower comparing to
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Figure 5.20: Iterations in System with Two Zones

the system with two zones. It takes 12 iterations to drop to 70%, 88 iterations from

70% to 95%, and 134 iterations from 95% to 99%.
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Figure 5.21: Partition in System with Five Zones

Figure 5.22: Iterations in System with Five Zones
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Figure 5.23 shows the partition of the system with 10 load-zones. One subsystem

for the generators plus ten for the load-zones makes eleven subsystems in total. They

only communicates with adjacent systems. When there is some changes happening

in the far left zone, it firstly spreads out to its neighbor on the right hand with one

iteration, then to neighbor’s neighbor and gradually propagate to the whole system.

So the generator zone in the far right could not be aware of the load change in the

first few iterations. That’s why this system takes more iterations to converge. Figure

5.24 shows the convergence evolution. It takes 21 iterations for the difference of dual

variables to drop to 70%, 155 iterations from 70% to 95%, and 188 iterations from

95% to 99%.

Figure 5.23: Partitions in System with Ten Zones
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Figure 5.24: Iterations in System with Ten Zones

The above analysis is about the process of convergence which is one of the most

obvious differences of the decentralized control from the centralized control. Due to

the evolution of convergence, decentralized control is slower than centralized control.

To reach the same performance as centralized control, decentralized method needs

higher sampling rate. However, the decentralized method immunes to one points of

failure by its nature. And each controller requires only local information and deals

with relatively small problems comparing to centralized methods. The local problem

size depends on the partition of the system. By introducing more subsystems, the

problem could be split into more local problems which run in parallel and work

coordinately to reach global optimum.
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Chapter 6

Conclusion

DC microgrid power systems typically include various power electronics devices

which can be coordinated by system-level control to achieve system level goals such as

efficient energy distribution. This requires a framework to determine how to perform

coordination to achieve a given system level goal.

Managing energy distribution to minimize costs is achieved through system level

optimization. In this dissertation, the interior point method is deployed on the ship-

board DC microgird to calculate an optimal coordination solution centrally. The

centralized method could achieve an optimal solution within a sufficiently small time-

frame. For instance, 45ms is used as the sampling period in an example shipboard DC

microgrid with centralized optimization method. However a centralized framework is

vulnerable to single points of failure as well as not being easily scalable.

To address these concerns, a distributed optimization method is proposed and

implemented. In this framework, the entire power grid is split into several subgrids

with the interior point algorithm applied to achieve local optimization individually.

The value of coupled variables across the subgrids are then averaged and pushed

back to each local optimization problem under the dual decomposition and ADMM

framework. In this way, variables would eventually reach a global optimal across the

entire grid.

Although both methods reach the same optimal results, they naturally differ from

each other. With the centralized method, only one single iteration is needed to

update orders to lower level control. However, for the decomposition method, it
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takes steps to propagate local information and update public variables around the

grid. For instance, it requires 70 iterations to reach 95% accuracy in the case of the

two load zone test system which is divided into three subsystems. Moreover, in the

decentralized system the communication is localized within subsystems. Local main

controllers handle local changes rather than a remote central controller. Only public

variables are transmitted between relevant main controllers. Furthermore, during the

iteration of the decomposition method, the objective function value reduces faster

at the early stage compared to when it is approaching the optimal. As shown in

Chapter 5, for the example microgrids with 2, 5, and 10 zones, 70% accuracy is

achieved within 9, 12, and 21 steps respectively as compared to 144, 234, and 364

steps for 99% accuracy. So the decomposition method can be used to find a solution

within a few percent of the optimum value in a reasonable period of time instead of

cases that very accurate results are required.

The simulation results also show how other factors affect the performance of the

decomposition method. Firstly we consider the effects of different sampling rates.

From the point of decomposition algorithm itself, higher sampling rate speeds up

convergence as shown by comparing Figure 5.6 and Figure 5.19. Secondly, simula-

tion experiments conducted with dynamically adjusted step size demonstrated that

transient performance is not improved much. Furthermore, because dynamic step

size requires the sharing of information in the entire system, it increases the infor-

mation that must be shared. Experiments with different fixed step length are also

conducted. The decomposition algorithm keeps convergent if the step size is under

0.8 in this specific case. Although higher value leads to unstable system, the value

as closer to 0.8 provides better performance during system state transitions. Thus,

the selection of step size is an important factor and should in general be as large as

possible for stable operation.

The objective function for the test shipboard microgrid doesn’t involve the gen-
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erator loss, so unit commitment problem is not incorporated. The unit commitment

problem deals with on/off schedule of the generators set. More constraints including

spinning reserve or ramp-up time need to be considered. These can be added into

future work.

57



Bibliography
[1] Dimitrios Athanasiadis and Stephen McArthur, Active network management us-

ing distributed constraint optimisation, 2013 IEEE Power & Energy Society Gen-
eral Meeting, IEEE, 2013, pp. 1–5.

[2] Rahmat Azami, Mohammad Sadegh Javadi, and Ghasem Hematipour, Economic
load dispatch and dc-optimal power flow problem-pso versus lr, Int. J. Multidscip.
Sci. Eng 2 (2011), no. 9, 8–13.

[3] Faycal Bouhafs and Michael Mackay, Active control and power flow routing in
the smart grid, Newsletter (2012).

[4] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein,
Distributed optimization and statistical learning via the alternating direction
method of multipliers, Foundations and Trends® in Machine Learning 3 (2011),
no. 1, 1–122.

[5] Stephen Boyd and Lieven Vandenberghe, Convex optimization, Cambridge uni-
versity press, 2004.

[6] Stephen Boyd, Lin Xiao, Almir Mutapcic, and Jacob Mattingley, Notes on de-
composition methods, Notes for EE364B, Stanford University (2007), 1–36.

[7] KL Butler and M Ehsani, Flexible ship electric power system design, Proc of the
Symposium of Engineering the Total Ship, 1998.

[8] EM Davidson, MJ Dolan, SDJ McArthur, and GW Ault, The use of constraint
programming for the autonomous management of power flows, Intelligent System
Applications to Power Systems, 2009. ISAP’09. 15th International Conference
on, IEEE, 2009, pp. 1–7.

[9] Shilpa B Ganesh, Multiagent autonomous energy management, Ph.D. thesis,
West Virginia University, 2005.

[10] SY Ge and TS Chung, Optimal active power flow incorporating power flow control

58



needs in flexible ac transmission systems, IEEE Transactions on Power Systems
14 (1999), no. 2, 738–744.

[11] H.L. Ginn, Ginn onr program review, Office of Naval Research, 2012.

[12] Ibrahim Abou Hamad, Per Arne Rikvold, and Svetlana V Poroseva, Floridian
high-voltage power-grid network partitioning and cluster optimization using sim-
ulated annealing, Physics Procedia 15 (2011), 2–6.

[13] Nikos Hatziargyriou, Microgrids: architectures and control, John Wiley & Sons,
2013.

[14] Rabih A Jabr, Modeling network losses using quadratic cones, IEEE Transactions
on Power Systems 20 (2005), no. 1, 505–506.

[15] Björn Johansson, Pablo Soldati, and Mikael Johansson, Mathematical decompo-
sition techniques for distributed cross-layer optimization of data networks, IEEE
Journal on Selected Areas in Communications 24 (2006), no. 8, 1535–1547.

[16] Narendra Karmarkar, A new polynomial-time algorithm for linear programming,
Proceedings of the sixteenth annual ACM symposium on Theory of computing,
ACM, 1984, pp. 302–311.

[17] Farid Katiraei, Reza Iravani, Nikos Hatziargyriou, and Aris Dimeas, Microgrids
management, IEEE Power and Energy Magazine 6 (2008), no. 3, 54–65.

[18] Faridaddin Katiraei and Mohammad Reza Iravani, Power management strategies
for a microgrid with multiple distributed generation units, IEEE transactions on
power systems 21 (2006), no. 4, 1821–1831.

[19] Benjamin Kroposki, Robert Lasseter, Toshifumi Ise, Satoshi Morozumi, Stavros
Papathanassiou, and Nikos Hatziargyriou, Making microgrids work, IEEE Power
and Energy Magazine 6 (2008), no. 3, 40–53.

[20] R Lasseter, A Akhil, C Marnay, J Stevens, J Dagle, R Guttromson, AS Me-
liopoulous, R Yinger, and J Eto, White paper on integration of distributed energy
resourcesâĂŤthe microgrid concept, Consortium for Electric Reliability Technol-
ogy Solutions (CERTS) April (2002).

[21] Robert H Lasseter, Microgrids, Power Engineering Society Winter Meeting, 2002.
IEEE, vol. 1, IEEE, 2002, pp. 305–308.

59



[22] Yunwei Li, D Mahinda Vilathgamuwa, and Poh Chiang Loh, Design, analysis,
and real-time testing of a controller for multibus microgrid system, IEEE Trans-
actions on Power Electronics 19 (2004), no. 5, 1195–1204.

[23] Xiong Liu, Peng Wang, and Poh Chiang Loh, A hybrid ac/dc microgrid and its
coordination control, IEEE Transactions on Smart Grid 2 (2011), no. 2, 278–286.

[24] Xin Lou and Chee Wei Tan, Convex relaxation and decomposition in large resis-
tive power networks with energy storage, Smart Grid Communications (Smart-
GridComm), 2013 IEEE International Conference on, IEEE, 2013, pp. 642–647.

[25] Sam Miller, Sarvapali D Ramchurn, and Alex Rogers, Optimal decentralised dis-
patch of embedded generation in the smart grid, Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent Systems-Volume 1,
International Foundation for Autonomous Agents and Multiagent Systems, 2012,
pp. 281–288.

[26] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo, An
asynchronous complete method for distributed constraint optimization, AAMAS,
vol. 3, 2003, pp. 161–168.

[27] , Adopt: Asynchronous distributed constraint optimization with quality
guarantees, Artificial Intelligence 161 (2005), no. 1, 149–180.

[28] James A Momoh, ME El-Hawary, and Ramababu Adapa, A review of selected
optimal power flow literature to 1993. part i: Nonlinear and quadratic program-
ming approaches, IEEE transactions on power systems 14 (1999), no. 1, 96–104.

[29] , A review of selected optimal power flow literature to 1993. part ii: New-
ton, linear programming and interior point methods, IEEE Transactions on Power
Systems 14 (1999), no. 1, 105–111.

[30] The Institution of Engineering and Technology, What is a smart grid?, The IET,
2013.

[31] Daniel F Opila and Luke Solomon, Optimal control of dynamic pulse power loads
in naval power systems using the pontryagin minimum principle and dynamic
programming, 2012 IEEE Power and Energy Society General Meeting, IEEE,
2012, pp. 1–7.

60



[32] Daniel Pérez Palomar and Mung Chiang, A tutorial on decomposition methods
for network utility maximization, IEEE Journal on Selected Areas in Communi-
cations 24 (2006), no. 8, 1439–1451.

[33] Paolo Piagi and Robert H Lasseter, Autonomous control of microgrids, 2006
IEEE Power Engineering Society General Meeting, IEEE, 2006, pp. 8–pp.

[34] Florian A Potra and Stephen J Wright, Interior-point methods, Journal of Com-
putational and Applied Mathematics 124 (2000), no. 1, 281–302.

[35] Victor H Quintana, Geraldo L Torres, and Jose Medina-Palomo, Interior-point
methods and their applications to power systems: a classification of publications
and software codes, IEEE Transactions on power systems 15 (2000), no. 1, 170–
176.

[36] Margaret Wright, The interior-point revolution in optimization: history, recent
developments, and lasting consequences, Bulletin of the American mathematical
society 42 (2005), no. 1, 39–56.

[37] Stephen J Wright, Primal-dual interior-point methods, Siam, 1997.

[38] Yinyu Ye, Interior point algorithms: theory and analysis, vol. 44, John Wiley &
Sons, 2011.

[39] Makoto Yokoo, Distributed constraint satisfaction: foundations of cooperation in
multi-agent systems, Springer Science & Business Media, 2012.

[40] Ray Daniel Zimmerman, Carlos Edmundo Murillo-Sánchez, and Robert John
Thomas, Matpower: Steady-state operations, planning, and analysis tools for
power systems research and education, IEEE Transactions on power systems 26
(2011), no. 1, 12–19.

61



Appendix A

Matlab Code For Testing The Decentralized

Algorithm

Three similar sets of Matlab codes run in parallel for the subsystems. The set in

PCM-B1 is shown as follows.

Listing A.1: AgentPCM-B1

1

2 function Update(block)

3

4 s = 15000; % Base power in P.U. is 15kw

5 vh = 500; % Base voltage in P.U. is 500V

6 rh = vh^2/s; % Base resistance

7 rD1 = 0.05/rh; % Rd1 Resistance in P.U.

8 rB1 = 0.12/rh; % Rb1 Resistance in P.U.

9 rB2 = 0.2/rh; % Rb2 Resistance in P.U.

10 rL1 = 1e−7/rh; % RL1 Resistance in P.U.

11

12 i_load1 = block.InputPort(1).data(1); %Zone1 load as input

13 i_D1 = block.InputPort(1).data(2); %Pulsed load as input

14 y1 = block.Dwork(2).data; %Variables updates from

Previous step

15 y1_p = y1(2:3); %Public variables updates
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from itself

16 y2_p = block.InputPort(3).data ; %Public variables updates

from PCM−B3

17 y3_p = block.InputPort(4).data ; %Public variables updates

from PCM−A2

18

19 A1 = [1 1 0; %Local constraints system matrix

20 1 0 −1];

21 beq1 = [i_load1;−i_D1]; %Local constraints system inputs

22 lb1=[0;0;−5]; %Lower bound for variables

23 ub1=[10/15;10/15;5]; %Higher bound for variables

24 E = [1 0 0 0; %Matrix defined by public variable

and net vector

25 0 0 1 0;

26 0 1 0 0;

27 0 0 1 0;

28 0 0 0 1;

29 1 0 0 0;

30 0 1 0 0;

31 0 0 0 1;];

32 alpha_k = 0.1; %Fixed step size

33

34 %Interior point method is used for inner loop.

35 options = optimset('Algorithm','interior−point', 'Diagnostics', '

off', 'Display', 'off');

36

37 v = block.Dwork(3).Data; %Dual variables
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38 y = [y1_p; y2_p; y3_p]; %All public variables

39 Zcap = (inv(E' * E)) * E' * y; %Average of public variables

40 v = v + alpha_k*( y − E * Zcap); %Update the dual variables

41 y1(2) = Zcap(1); %Update the public variable

with PCM−B3

42 y1(3) = Zcap(3); %Update the public variable

with PCM−A2

43

44 %Inner loop optimization

45 x = fmincon(@net1, block.Dwork(2).Data, Aineq, bineq, A1, beq1, lb1

, ub1, nonlcon, options);

46 x1 = x;

47

48 %Local loss

49 loss1 = rB1*x1(1)^2 + rB2*x1(2)^2 + rL1*x1(3)^2 + rD1*i_D1^2;

50

51 %Store values for next iteration

52 block.Dwork(1).Data = loss1;

53 block.Dwork(2).Data = x1;

54 block.Dwork(3).Data = v';

55

56 end

Listing A.2: Augmented subsystem 1 loss

1

2 function a=net1(x)

3
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4 global v; %Dual variables

5 global y1; %Public variables

6 alpha = 0.3; %Penalty vector

7

8 %The augmented lagrangian of the subproblem

9 a = rB1*x(1)^2 + rB2*x(2)^2 + rL1*x(3)^2 + rD1*(i_D1)^2 + v(1)*(x

(2)−y1(2)) + v(2)*(x(3)−y1(3)) + (alpha/2)*(norm(x−y1))^2;

10

11 end
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