SUPPORTING MULTIDISCIPLINARY ANALYSIS USING SYSTEM
ARCHITECURES IN SYSML

A Thesis
Presented to
The Academic Faculty

By

Jaclyn Marie Branscomb

In Partial Fulfillment
of the Requirements for the Degree of
Master of Science in Mechanical Engineering

Georgia Institute of Technology

August 2012

SUPPORTING MULTIDISCIPLINARY ANALYSIS USING SYSTEM
ARCHITECURES IN SYSML

Approved by:

Dr. Chris Paredis, Advisor

School of Mechanical Engineering
Georgia Institute of Technology

Dr. Bert Bras
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Judy Che

Electrification Research & Advanced
Engineering

Ford Motor Company

Date Approved:
May 2, 2012

ACKNOWLEDGEMENTS

After having spent 5 years at Georgia Tech completing my undergraduate degree
and my master’s degree, my time at Tech is finally coming to a close. I have grown
tremendously as an individual and an intellectual, and I couldn’t have done so without the

invaluable help and support of many different people.

First and foremost, | would like to thank my parents, Chuck and Tia, for their
continued unconditional love and support. They have always been the first people that |
turn to vent my frustrations when | have problems, and there have been many. They tell
me to look at the big picture, take it one step at a time, and remember that | can
accomplish anything to which I set my mind. | wholeheartedly thank them; I am not sure
| would have survived Tech without them. 1 would also like to thank my loving fiancé,
Ash, for all of his help and encouragement. Over the last 5 years, he has been a constant
source of inspiration, and it means so much to me how much he believes in me. Finally, |
must thank my grandfather, Charles, for his assistance in funding my studies at Georgia
Tech. As a third generation master’s degree in mechanical engineering, | know I have
made him proud.

| have had many inspirational teachers over the years, but one who stands out
most in my mind is Dr. Chris Paredis. He has helped me gain the confidence I need to be
successful in the professional engineering world. | came into his research group knowing
practically nothing about model-based systems engineering, and | feel that | have learned
much from him in a very short time. He has such a deep knowledge in a vast number of

subjects and that continuously impresses me.

I must also thank my lab mates of MARC 264, Alek Kerzhner, Ben Lee, Roxanne
Moore, and Sebastian Herzig. Especially | must thank Alek Kerzhner for all of his help
in teaching me Java and helping fix the bugs in my Java code. | learned a tremendous
amount from Alek about how to program and debug, and | am very grateful. Due thanks
also goes to Axel Reichwein, who was my mentor in the early stages of my research. |
definitely look up to each of my lab mates for their perseverance through the Georgia
Tech doctoral program.

I would also like to thank Mark Jennings and Judy Che from Ford Motor
Company for their support of this research project. It truly has been a pleasure working
with both of them, and | am very grateful for their patience. | hope | have been able to
contribute to their overall systems engineering goals at Ford.

Finally, | acknowledge the support of the George W. Woodruff School of
Mechanical Engineering and Ford Motor Company. Also, | appreciate the academic

software licenses provided by No Magic Inc.

TABLE OF CONTENTS

ACKNOWIEAGEMENTS......c.eiiiiei e re e iii
LASE OF FIQUIES ...ttt vii
SUMMIAIY .ttt ettt ettt s st e s st e s ab et e sab e e e sbb e e e e bb e e e nnb e e e nbn e e e e X
Chapter 1: INTrOQUCTIONc.eoiiieiiic e 1
1.1 Using SysML in Support 0f MBSE ... 2
1.2 Shortcomings Of SYSMLc.coiviiiiiiiiee e 2
1.3 Modeling Vehicle Systems using MBSE............ccocoiiiiiiniiiiiiine 3
1.4 Motivating QUESTIONS........c.cceeiiieiesiesie et 4
1.5 ThesSiS Organizationccoceiiierieiienieeie e 7
Chapter 2: Related work and language reVIewccccooevvreiieienenene s 9
2.1 An Introduction to SysML, Modelica and Simulinkcccceviennens 9
2.1.1 Relevant SYSML CONSEIUCESccoevieierieriinieiisiesiseeeesee e 9
2.1.2 Modelica/Dymola REVIEWc.cccveveeiiiieiecie e 11
2.1.3 SIMUINK REVIBW......eieiiiiieciieie et 13
2.1.4 Justifications for Selecting these Languages and Tools 14

2.2 RelAted WOIK ..ot e 17
Chapter 3: Vehicle modeling ProCesscoevviiieiieii i 22
3.1 Overview of Vehicle Modeling with MBSEccccoceiviiiiieiece, 22
3.2 Approach to Achieving a Complete Vehicle Model with Analysis...... 27
Chapter 4: The Vehicle architecture modeling framework...........cccccooceniiiiennee. 29
4.1 Approach for the VAMEF ... 29
4.1.1 Naming Conventions used throughout the VAMF ... 29
4.1.2 Generic Vehicle Model ArchiteCture............ccoovevevereieienciesenen, 30
4.1.3 Specialization of the generic Vehicle Model Architecture................ 43

4.2 Generation Of ANAIYSES........cccuiiiiiiiiiee e 46
4.2.1 Creating Analysis Architecture for Translation to Modelica............ 46
4.2.2 Defining the Translation to Simulinkc.cccooiiiiiiic i, 52

4.3 SUMMAIY ittt st e et e e s e e e s e e e ssae e e nnreeenees 54
Chapter 5: Example: Acceleration analysis for the ¢100 vehicle model 55
51 Introduction to the C100 Specialized Vehicle Example.............c......... 55
5.2 Aptness of the C100 and the 0 to 100 kph Performance test................ 55
5.3 Guide to Creating Specific Vehicle C100 Examplecccccovevveennens 56
5.3.1 Defining the SysML Model of the C100 Vehicle...........c..ccovervennen. 59

5.3.2 Importing the Global and Local Signals...........ccccccoeeviiiiiiincieenne. 60

5.3.3 Translating the SysML C100 Model to Modelica and Simulink...... 65
5.3.4 Connecting the Plant and Controller Models in Simulink................ 75

O 4 SUMIMAIY ..ottt 77
CRAPLET B . 78
6.1 Reviewing the Motivating QUESLIONS..........ccccvverieriiieiie e 78
6.2 CONIIDULIONS.ouviieieeiiiciecc e e 81
6.3 Limitations and FUture WOork...........cooeveiein e 82
6.4 SUMIMAIY .eeiiiiiii et nee s 84
Appendix A: Step by Step Guide to Creating Specialized Vehicle...................... 86
Appendix B: Matlab and Dymola: Set up to runccccvvveeiiieiciccncee 100
Appendix C: DocBook USer’s GUIAEccceerveeiiiiiiiciie e 103
RETEIBNCES ...ttt et st et nreene s 110

Vi

LIST OF FIGURES

Figure 1. BDD of the Vehicle DOMaiNccccociiiiiieiiece e 10
Figure 2. IBD representing the internals of the Powerplant block ... 11
Figure 3. Dymola BIOCK Librariescccooeiieiieii e 12
Figure 4. Example of Simulink's modeling capabilities [3].........cccooooeiiieniniiiiie 13
Figure 5. Simulink predefined block library..........ccccocovveii i 14
Figure 6. The SysML to Modelica transformation framework [12]ccccovinininnnn. 19
Figure 7. Overall vehicle modeling process flowccccvovveviciiiie i, 22
Figure 8. Domain and vehicle model development ... 23
Figure 9. Activity diagram showing the process flow of modelers............ccccoevviernnnn. 26
Figure 10. Framework of vehicle modeling approach............c.ccoovvvieiiicnencncnesnee 28
Figure 11. Package structure for the VIMAc.oooi i 31
Figure 12. Vehicle Domain BDD showing components of the Vehicle Domain............. 31
Figure 13. Generic Subsystem definition: Controller VIEWccccooveveeieiiecicie s 33
Figure 14. Generic Subsystem definition: Plant VIeW...........ccocoovviiniiienenc e 33
Figure 15. Example of a generic subsystem IBDcccccoveiiiiiiiic v 35
Figure 16. Generic CtrlGloblBus block with the global vehicle signal ports................... 36
Figure 17. Vehicle's Global Signals Control System..........cccceovvevviievveve e 37

Figure 18. Vehicle Domain IBD describing the Driver's interactions with the Vehicle... 38
Figure 19. Vehicle Domain IBD describing all the interactions between the Vehicle's

SUbSYStemMS and the DIIVENooiiiiiiicecee e 38
Figure 20. Definition Of NEW UNItS.........cccvciiiiiiice e 39
Figure 21. Energy flows hierarchy for the VIMA ... 40
Figure 22. Definition of the DocB0o0K Profilecccoovoiviieiicii e 42
Figure 23. Vehicle_ProgramID block specialized from generic Vehicle block................ 43
Figure 24. Specific Powerplant BDD showing the specialization from the generic
POWEIPIANT ... 44
Figure 25. Control Global Bus signal redefinition............ccccccoovveveiie v, 45
Figure 26. Specialized Control System IBD for the specialized vehicle.......................... 45
Figure 27. The analysis template for the total vehicle as defined in the SysML4Modelica
PIOTIIE o 47
Figure 28. The Correspondence between the generic Modelica Vehicle model and the
generic SySML Vehicle BIOCK..........cooiiiiiii 48

Figure 29. IBD of the “Analysis Correspondence” association block showing the relations
between the SysML Vehicle model and the Modelica Vehicle model......... 49

Figure 30. Analysis Configuration Matrix for three example analyses..........c.ccccccvevueenee. 51
Figure 31. Example of a Simulink subsystem model ... 53
Figure 32. Example of a generated subsystem template that needs to be further defined 53
Figure 33. Process flow modelers of the VAMF ... 58
Figure 34. (Left) Generic specialized vehicle package, (Right) C100 Vehicle package.. 59
Figure 35. Local Signals for the C100 Excel file with XML mapping.........c.ccocevvvvvrienne. 60
Figure 36. Export File to XML using the Export Function of the Developer Tab 61
Figure 37. Import Signals PIUG-IN.........cccooiiiiiiiie s 62
Figure 38. File Browser with the Local Signals for the C100 XML File...........cccccovenee. 62

Vil

Figure 39. The Imported Local Signals augment the C100 Vehicle Model 64

Figure 40. Running the Modelica Analysis PIUG-IN..........cccccoiiviiiiiie i 66
Figure 41. Choosing the desired analysiscccoeiieiieie e 66
Figure 42. Choosing the desired ProgramiDc.ccccovveviiiieieeie e 67
Figure 43. Performance Analysis for the C100 vehicle..........c.ccocoiiiiiiiinne 68
Figure 44. Generating the file containing the SysML to Modelica translation 69
Figure 45. TransmissionPlant_C100 subsystem showing its local Control Buses and

Rotational Connections to the Powerplant and Driveline.............cc.ccccveue. 70
Figure 46. Vehicle_C100 system fully-defined ... 71
Figure 47. Initiating SysML to Simulink Transformation..............cccccoevevveieiieenecie s, 72
Figure 48. Example of the TransmissionController_C100 Subsystem............c.ccccvevrene. 73
Figure 49. Internals of the C_100 Transmission Controllerccccccoeveveiienicveseenn, 73
Figure 50. Fully-defined internals of the TransmissionController_C100 subsystem....... 74
Figure 51. Replacing controller subsystems with updated controllersc.ccccccevueeee. 75
Figure 52. Connecting the physical Modelica model to the logical Simulink model....... 76
Figure 53. Output speed of vehicle in the 0 to 100 Kph testcccccevvvevviieiieeceee e 77

Appendix A

Figure A 1. (a) Vehicle Specialization package with generic “ ProgramID” block names.
(b) C100 Specific Vehicle Package with specific “ C100” block names. . 86

Figure A 2. Import Signals PIUG-IN.........ccooiiiiiiiie s 87
Figure A 3. The Imported Local Signals augment the C100 Vehicle Model 89
Figure A 4. Running the Modelica Analysis PIug-iN..........ccccoiiiiiiiii 90
Figure A 5. Choosing the desired analysiS..........ccccviveiieieiieiieese e 90
Figure A 6. Choosing the desired ProgramiD ..o 91
Figure A 7. Performance Analysis for the C100 vehicle..........ccccoovevieiiiiciiecece e 91
Figure A 8. Generating the file containing the SysML to Modelica translation............... 92
Figure A 9. TransmissionPlant_C100 subsystem showing its local Control.................... 93
Figure A 10. Vehicle_CL00 SYSIEIMccoiiiiriiiiieiieieie et 94
Figure A 11. Vehicle_C100 after replacing subsystems with existing models 95
Figure A 12. Initiating SysML to Simulink Transformationccccceveveniicieninnne. 96
Figure A 13. Example of the TransmissionController_C100 Subsystem..............c.......... 96
Figure A 14. Fully-defined internals of the TransmissionController_C100 subsystem ... 97
Figure A 15. Controller view of Simulink modelcccoovviieii i 98
Figure A 16. Connecting the physical Modelica model to the logical Simulink model... 99
Figure A 17. Output Speed of Vehicle _C100..........ccevieieiieiiee e 99
Appendix B
Figure B 1. Dymola model under analysSiS..........ccoouuiriiieiiiiiiniiisieee e 101
Figure B 2. Dymola parameter window in SImulink.............ccccceviiiiiiiniiicsic e 102
Appendix C
Figure C 1. Creating a DocBook “BO0K”cooiiiiiieceee e 103

Figure C2. Entering BOOK INfOrMAatioNcccooviiiiiiiiiiieiise e 104

Figure C 3. Creating a Chapter, Part, or Prefacecccoovvviie i 104
Figure C 4. DocBOOK Edit Panel...........cccooiiiiiiiiiicec e 105
Figure C 5. Creating book elements in the Edit Panel.............cccccevviveiieci i, 106
Figure C 6. Specification window for a «paragraphccoceeveieieieneneneseneseeeas 107
Figure C 7. Specification window for a Query showing the Tags..........cccecvevvevverieennnnn. 108

SUMMARY

To develop competitive vehicles with ever increasing complexity, automotive
designers need to improve their ability to explore a broad range of system architectures
efficiently and effectively. Whereas traditional vehicle systems are based upon internal
combustion (IC) engines, today’s environmentally conscious vehicle manufacturers must
consider alternatives to the IC engine-only systems such as hybrid or electric systems.
To help the engineers to model these multiple alternatives, it would be ideal to start from
a base vehicle architecture. To design a good vehicle, it is necessary for each of these
system architectures to be analyzed from a variety of attributes including performance,
fuel economy, or even thermal behavior. Creating the necessary analysis models for each
system architecture would be time-consuming, expensive, and could be error prone. To
aid in overcoming such challenges, we have developed an approach for supporting the
generation of subsystem model templates to support the integration of analysis models.
The approach is based on formally modeling the system architecture in the Systems
Modeling Language (OMG SysML™) and then using model transformations to generate
stubs for corresponding analysis model templates in Modelica and Simulink. In this
manner, we assist designers in managing large systems with multiple analyses, ensuring
that the systems remain consistent, and enabling the reuse of generic architectures
through specialization and redefinition. The starting point is a reference architecture,
called the Vehicle Model Architecture or VMA, in which all the key subsystems and
interactions between subsystems are formally modeled. In addition, we have created a
generic template that is a specialized version of the VMA. This specialized template can

then be adapted by the systems engineer to represent a specific vehicle program. In

addition, pre-defined, generic analysis templates can be redefined for the specific vehicle
program under analysis. The SysML VMA system model is transformed through two
model transformations, one that translates the physical portion of the system to Modelica,
and one that transforms the logical controls portion of the system to Simulink. By
automating these transformations and reusing a set of fixed templates for further
specialized architectures, this approach helps to manage the complexity, and reduces the
modeling time by enabling system model reuse. The entire approach taken in this thesis
has been named the Vehicle Architecture Modeling Framework, VAMF, which includes
the SysML VMA, the corresponding analysis templates, and the tools developed to
support this approach. Throughout this thesis, the specific (fictitious) vehicle program
“C100” and a 0-t0-100 kph performance analysis test are used as examples for

demonstration.

Xi

NOMENCLATURE

VAME: The Vehicle Architecture Modeling Framework is the name for the entire
approach to vehicle modeling in this thesis. The VAMEF includes a reusable reference
architecture, templates for common vehicle analyses, tools to support the generation
of analysis model templates, and a process flow for vehicle modeling.

VMA: The Vehicle Model Architecture is the reference architecture that is modeled
in SysML. The VMA models the vehicle’s key subsystems and the interaction of
energy and signal flows between subsystems.

MBSE: Model-Based Systems Engineering is the approach to modeling complex
systems through the use of models as opposed to traditional document-based
approaches.

SysML.: The Systems Modeling Language is used in this thesis to formally model the
VMA, specialized vehicles, and analysis architectures.

Modelica: Modelica is a text-based, object oriented modeling language used to model
the physical aspects of the VAMF

Dymola: Dynamic Modeling Language, Dymola, is a tool that is based off of the
analysis language Modelica

Simulink: Simulink is the analysis language and tool used to model the controls

aspect of the VAMF

xii

CHAPTER 1:

INTRODUCTION

There are numerous challenges when designing and modeling complex vehicle
systems. Some of these challenges include making many design decisions, designing with
knowledge from different disciplines, and modeling the system architectures in a concise
and easy to understand manner while representing the true complexities of the system
[24]. Also, because alternatives to the conventional IC engine are being explored, it is
desirable to develop a method to formally capture these alternatives in a reusable manner.
Traditionally, a document based approach to systems engineering has been employed,
which is inefficient, not reusable, and it creates a large potential for human modeling
error [9]. This thesis presents the Vehicle Architecture Modeling Framework that
encompasses the entire approach to support complex vehicle modeling. Included in the
VAMF is a Vehicle Model Architecture in SysML to formally model the energy and
signals flows and interactions between subsystems. Also included in the VAMF are
analysis architecture templates for common analyses such as a 0 to 100 kph performance
analysis, and tools to help system engineers generate the specialized analyses in order to
validate different vehicle alternatives. Finally, a process flow for the VAMF has also
been developed in order to formally guide engineers in the definition, analysis, and
validation of vehicle models. Before getting into the details of the VAMF, this chapter
provides justification for choosing SysML to develop the vehicle architecture, the
shortcomings of SysML, how the VAMF supports Model-Based Systems Engineering,

and proposes motivating questions to be answered in this thesis.

1.1 Using SysML in Support of MBSE

As a result of the issues above, model-based techniques are becoming more
widely employed by designers. Model-Based Systems Engineering (MBSE) is one of
these methods, and it allows engineers to encapsulate their knowledge of these complex
systems in a set of models [6, 10]. This model-based approach differs from conventional
engineering design approaches in that the models are continuously growing and changing
whereas the traditional document-based approach tends to adhere to a “waterfall” design
model beginning with system definition and ending with design qualification [9]. MBSE
methods encompass a wide variety of ways to represent systems including representing
the definition of the systems, the system requirements, and analyzing the different design
solutions in order to validate the requirements. The Object Management Group (OMG)
has created the System Modeling Language (SysML™) to support MBSE. SysML is a
language based on the Unified Modeling Language (UML™), but with an emphasis on
systems engineering applications. SysML is a general-purpose modeling tool that uses
diagrams and clear, well-defined modeling constructs to characterize engineered systems
[2]. Designers can implement SysML to represent and document complex systems in a
manner that is understandable, and these systems can be revised and reused with relative

ease.

1.2 Shortcomings of SysML

It is increasingly advantageous to have a method that formally captures the

entirety of the engineering design problem using system architectures, and SysML makes

this possible. However, in addition to a purely static system architecture model, it is also
necessary to have analysis models to evaluate and compare design alternatives.

There is one main weakness in using SysML as the modeling language for MBSE.
MBSE centers on the design and specification of engineering systems and how they
should be communicated to stakeholders. To actually analyze systems modeled in
SysML, models must be manually translated into additional tools by the modeler. This
process can be time consuming and costly, and the analysis models would need to be
repeated for every slight change to the original system. Therefore, it is desirable to assist
engineers in this transformation process. It is necessary to be able to compare, through
analysis, a variety of system architectures, and completing this task manually would
consume a lot of valuable modeling time and be error prone. However, there is a plug-in
for MagicDraw called Paramagic that can analyze algebraic equations, but it is not suited
for this work because it cannot handle differential algebraic equations [23]. Paramagic is

discussed further in the Related Work of Chapter 2.

1.3 Modeling Vehicle Systems using MBSE

Currently, many vehicle manufacturers are not implementing MBSE practices in
their vehicle models. It is common practice for different users to create portions of the
vehicle system, and there may be no overall repository where these models can be stored.
Each different modeling group, such as the Powerplant team or the Transmission team,
must ensure that their models will interface with the rest of the vehicle system model and
that they are using the most up to date models from each team. The problem of the

vehicle modeling becomes less of a focus on the accuracy and results of the model and

more on checking whether the all of the models and data used in an analysis are
consistent and current. When a new vehicle model is tested, the analyzers must first
check to ensure the correct models were used from every subsystem before deciding if an
anomaly is a true output of the new vehicle. Managing the consistency is paramount to
the success of vehicle modeling to get accurate results. Also, if it is desired for a model
to be translated into another modeling language, it must be done manually because there
is little integration between modeling languages. All of these processes described above
leave a potential for human modeling error, another problem with the current vehicle

modeling practices.

1.4 Motivating Questions

As modern vehicles are increasing in complexity, it is necessary to find a method
to model the entire vehicle system and perform analyses on that system to trade-off on
attributes such as fuel economy or performance. The goal of this thesis is to create an
overall specific vehicle template and support the generation of analysis model templates
that can then be fully defined with appropriate domain models and analyze the specific
vehicles.. This would save automotive companies a tremendous amount of cost and time
to production, and by automatically supporting the generation of analysis model
templates, this approach would also aid in reducing the potential for human error.

SysML has been chosen as the language to represent the Vehicle Model
Architecture for its ability to capture complex systems. In order to advance SysML’s

capability to support MBSE design process, the following question should be answered.

Motivating Question:
How can engineers use SysML to model complex vehicle system architectures and the

corresponding multidisciplinary analyses effectively, consistently, and accurately?

As stated above, the solutions of this question should support the MBSE design
process in the following ways: modeling systems with multidisciplinary domains
accurately, improving model consistency, and supporting the generation of analyses
templates for model consistency verification. By incorporating the knowledge and
information from vehicle systems engineering problems into SysML, engineers can
ensure that the structure of various models remains consistent throughout the vehicle
system using dependencies and associations. Through this traceability, engineers can
create analysis templates that remain consistent with the structural vehicle model. This
traceability also allows for the generation of analysis model templates to be automated,
which saves modeling time and cost and reduces the potential for user error.

Because the motivating question is broad, it has been narrowed into three sub-
questions which are given below. This thesis focuses on defining the Vehicle Model
Architecture in SysML, which answers Question 1, creating a framework of analysis
architectures, which answers Question 2, and generating analysis templates in Simulink

and Modelica, which answers Question 3.

Question 1:
How can engineers effectively model vehicle architectures in SysML representing the

energy and signal flows between all aspects of the vehicle?

The answer to this question is the groundwork for the Vehicle Model

Architecture. If the entire vehicle system can be accurately represented by the current

SysML modeling constructs, then the model traceability and consistency can be
authenticated.

However, purely representing the VMA in SysML is not the desired outcome. It
IS necessary for each vehicle to undergo certain analyses in the design process. These
analyses must also be maintained and be compatible with the VMA structure. This

results the formation of Question 2.

Question 2:
How can engineers create analysis architectures that can be reused for different vehicles

while remaining consistent with the base vehicle architecture?

It would be ideal if these analysis architectures could be contained within SysML
in order to preserve the model traceability and remain consistent with the rest of the
VMA. The approach to solve this question is to create a framework and base set of
generic, reusable analyses templates in SysML and associate them with the generic
vehicle model architecture. Then, all of the necessary modeling structure and
interference information is contained within the analysis architectures, and they can be

translated to analysis languages, which leads to Question 3.

Question 3:
How can Vehicle Model Architecture be used to generate analysis templates in

Simulink and Modelica?

Because SysML does not have the internal capability to simulate various analysis
tests, the virtual vehicle models must somehow be validated. Creating analysis models
manually in both Simulink and Modelica without the use of generated templates would

be time consuming and error prone because there is no traceability between the

architecture and analysis models. Modelers would have to constantly ensure that model
interfaces in each language remain consistent. This thesis explores automatic generation
of analysis model templates based off of the Vehicle Model Architecture to support the
integration between SysML, Simulink, and Modelica. Previous approaches to systems
architecture modeling have used either Modelica or Simulink as analysis languages,
which are discussed in more detail in Chapter 2. This approach however, suggests that a
combination of languages is used in order to capture the best aspects of each language.
Modelica is chosen for its abilities in modeling physical energy flows, and Simulink is
picked for its prowess with logical control signals. This thesis presents the integration of
the three languages, SysML, Modelica, and Simulink, in creating a logical Vehicle Model
Architecture, specializing it for a specific vehicle, and then generating corresponding

analyses to evaluate the specific vehicle.

1.5 Thesis Organization

The remaining chapters of this thesis are organized as follows: Chapter 2 gives a
brief review of the relevant SysML modeling constructs and reviews of the analysis
languages, Modelica and Simulink. Chapter 2 also includes a review of the recent
research on the subject of multidimensional system architecture modeling in SysML and
supplementing these architectures with analyses. Before delving into the Vehicle
Architecture Modeling Framework, Chapter 3 gives some background as to why the
approach in this thesis is an improvement from current vehicle modeling practices. The
overall process flow of creating an entirely new vehicle project is also described in this

chapter. Chapter 4 first defines the naming convention followed in this approach, and

then illustrates the approach of the Vehicle Architecture Modeling Framework by
describing how the base architecture is structured along with the structure for the vehicle
specialization template. The analysis architecture framework is also described in this
chapter. To demonstrate the capability of the VAMEF in validating a particular vehicle,
Chapter 5 goes into detail how an engineer would create a specialized vehicle and run
analyses on the vehicle. Finally, Chapter 6 gives the contributions of this work, along

with a few limitations, and the desired future work.

CHAPTER 2:

RELATED WORK AND LANGUAGE REVIEW

2.1 An Introduction to SysML, Modelica and Simulink

Prior to discussing the details of using SysML to define the Vehicle Architecture
Model and translating the SysML model to Modelica and Simulink templates to support
building models for analyses, first a review of the relevant SysML constructs that will be
used in the Vehicle Model Architecture is provided in this section. Also the modeling

constructs for Modelica and Simulink will be briefly described in this section.

2.1.1 Relevant SysML Constructs

In SysML the basic unit of modeling is the block, and it can be employed to
describe a type of a system, components, entities that flow through a system etc. as
described in Chapter 7 of the SysML specification [11]. In the example problem used
throughout this thesis, blocks represent anything from a vehicle’s subsystem, such as the
Powerplant, to its physical and logical parts, the Powerplant Plant and Powerplant
Controller, respectively, to the type of energy that flows between two subsystems, such as
MechRotatE (mechanical rotational energy). In this thesis, the block represents the basic
building unit for the characterization and breakdown of a system into its logical and
physical components.

A Block Definition Diagram (BDD) is used to declare blocks, their
characteristics, and the structural connection with other blocks. Several BDD’s can be

used to define one system, and it is not required to represent all of a system’s

relationships in a single diagram. For each application, it is acceptable to only give a
certain level of detail needed for that specific application. For example, Figure 1 depicts
a BDD for the Vehicle Domain. Within this BDD, the Vehicle Domain is portrayed as the
top level of abstraction. Contained as a component within the Vehicle Domain is the
Environment, Driver, and the Vehicle itself, and the contained within the Vehicle block
are all of the Vehicle’s subsystems. Figure 1 only shows down to a certain level of
abstraction; each subsystem also contains ports and parts, but these are represented on

separate diagrams.

bdd [Package] Vehicle Domain [L‘% Vehicle Domainu

«blocks
Vehicle Domain

drv | env veh

«blocks «blocks «blocks
Driver Environment Vehicle
pwp
ele | J X " f trn din cha | “brk ste | vsc
ablocks || <blocks ablocks ablocks LR ablocks | [eblocks | | eblocks ablocks

Electrical | |Auxiliary | Powerplant | Trapnsmission Driveline Chassis Brake Steering VehicleSystem Controller

Figure 1. BDD of the Vehicle Domain

An Internal Block Diagram (IBD) is used to represent the connections between
parts of a block. The frame of the diagram represents the block in which contains the
content represented in the IBD. Ports on a block can be connected to ports on the frame
of the diagram or to other blocks within the IBD using connectors. In this example, the
ports are typed by either energy flows or control signals. For example, Figure 2 shows an

IBD of the Powerplant subsystem, where the Powerplant block is the frame of the

10

diagram. The Powerplant’s two parts, the Powerplant Plant and Powerplant Controller
are connected with two ports, a sensor signal and an actuator signal. The Powerplant
Plant is connected to the vehicle’s other subsystem Plant components for the Driver, the
Auxiliary, Transmission, and Electrical Subsystems. The Powerplant Controller receives
signals from the Global Bus through the “ctriGlobIBusMs” port, and sends signals to the

Global Bus through the “pwpGloblBusMs” port.

ibd [Block] Powerplant [@]} Powerplant U HrvAPdl . TiateMechE
aux : RotatMechE |drvAPdl : TlateMechE
B 5 ctriGloblBus : CtriGloblBusifis
3 | wpCtrl : PowerplantController
aux: Rotathecht PwpPInt : PowerplantPlant ‘ ctriSns : PwpSnshs Lol L J_ ctriGloblBus : CtriGloblBusis
pIntSns : PwpSnsMs E
‘ ctrlAct : PwpActis
’ =
trn : RotathechE ‘ pintAck: PwpAcing ‘ PWRCHrIGIobiBus : PwpGlobills
E_ = J pwpCtriGloblBus : PwpGlobivs
trn : RotatMechE ele EleE
ele : EleE

Figure 2. IBD representing the internals of the Powerplant block

2.1.2 Modelica/Dymola Review

In this thesis, the Modelica language is implemented as the analysis language for
the physical aspects of the system. We use the Dynamic Modeling Language, Dymola,
as the modeling environment for Modelica. The structure of Dymola is similar to SysML
in that they both are object-oriented, using predefined models in diagrams, except that
Modelica is text-based, based upon the Modelica language. Modelers can either begin
with one of the predefined objects and add more functionality to it by modifying the
Modelica code, or they can start with a blank model and create their own object.

Dymola has several multidisciplinary pre-made block libraries that modelers can use or

modify. For example, Dymola has a standard library, which contains common logical,

11

continuous, discrete, and interfaces blocks. Dymola also has other libraries for electrical,
mechanical, translational, fluid, and thermal systems. Figure 3 shows how the standard

libraries appear in Dymola.

Packages
+ €¥Modelica Reference

= I"«"Iu:uu:lelica

+ lﬁlUser's Guide
+ BI::u:ks

+ Cu:umplexBIu:u:ks
+ fedl5tateGraph
+ E|El:tI'iCE||

+ Magneﬁc

+ Mechanics

+ [JIFluid

+ Media

+ [J[Thermal

+ Maﬁﬁ

+ Cu:umplexl"«"laﬂﬁ
+ [Jutiities

+ Cu:unstanm

+ Iu:u:uns

: [JIstunits

Figure 3. Dymola Block Libraries

In order to interface SysML and Dymola, a SysML profile is defined that
stereotypes SysML constructs to Modelica constructs. This profile is the
SysML4Modelica profile [19], and it supports the generation of Modelica models from
SysML. In this thesis, the physical portion of the SysML model that defines the energy
flows between subsystems is translated to a Modelica template with input and output
interfaces defined. This template is given to the domain model developer to populate with
appropriate model content with desired physics. Then, the Modelica model is imported

into the Simulink environment as an S-Function for analysis.

12

2.1.3 Simulink Review

Simulink, produced by MathWorks, is a multidisciplinary simulation environment
that also supports Model-Based Systems Engineering [14]. Simulink is widely used in
many different industries for its ability to handle complex control systems and time-
varying signal processing. An example of Simulink’s capabilities can be seen in the
example of a combat aircraft flight control system in Figure 4 [3]. Simulink is also
currently a staple of the automotive industry because it can be used to map, test, and
design the control systems that can be directly translated to actual vehicle controllers.

S 5P
=1 f14_digital [_0lx] oy

O —
Flo Edt View Smustion Format Tools Help i
D SEHES| 2R (Sz(rafo m-] RSy pEETSF] | E

F-14 digital fiight confrol
system modeled in
Simulink. The Signal &
Scope Manager enables
you fo connect sources

and scopes o models
without adding blocks.

Figure 4. Example of Simulink's modeling capabilities [3]

Simulink also has a hierarchical structure similar to SysML and Dymola.
Modelers in Simulink can use predefined blocks from the Simulink library, shown in

Figure 5 to create models for analysis.

13

8 Simulink Library Browser [=[E] ®]

[& » Entersearchierm N . RE |
Libraries Library: Simulink | Search Results: (none) | Most Frequently Ussd Blocks. |
- Tl Simulink -
- T Aerospace Blockset
- J| Communications Blockset
B Control System Toolbox
-8 Data Acquisition Toolbox

ﬂ Dymola Block

Commonly Used
Blooks

Discontinuities

- | EDA Simulator Link ;f;;:::sal‘ Leckup Tables
- W] Embedded IDE Link
78 Fuzzy Logi Tokox Onertions Vetston
-8 Image Acquisition Toolbox
ﬂ Instrument Control Toolbox Madel-Wide Paorts &
- Tl Model Predictive Control .. Utilities Subsystems

- Mooelica

ﬂ Neural Network Toolbox
+ W Real-Time Workshop
- 19| Real-Time Workshop Em.

Signal Attributes Signal Routing

HE S
7 4 [0 B2 | (@ [[

: Sinks Sources

- 9| Robust Control Toolbox

£ 8l Siunal Processing Blockset User-Dfined Additicnal Msth
& Tl SimPowerSystems Functi & Disorste

- Simscape

o ﬂ Simulink 30 Animation

E Simulink Control Design

- B Simulink Design Optimiza

- W] Simulink Extras

Tl Stateflow

i 1| System dentification Too...

+ WA Target Support Package hd

Showing: Simulink

Figure 5. Simulink predefined block library

In this work, Simulink is the program that is the base simulation environment for
the entire system. The control portion of the overall system is imported into Simulink,
and then the physical portion of the system can been imported from Dymola into
Simulink. The physical and control halves of the vehicle system are connected then
connected in Simulink by connecting the corresponding input and output ports. Finally,

the analysis model is complete and the system is ready to be tested and analyzed.

2.1.4 Justifications for Selecting these Languages and Tools

SysML, Modelica, and Simulink are all languages commonly used in systems
engineering, but they are not currently being integrated to combine the best aspects from
each language. No Magic’s MagicDraw with the SysML plug-in is selected to model the
overall vehicle system problem for several reasons. MagicDraw is currently the tool that

best supports SysML through its complete integration with the SysML plug-in. Also, No

14

Magic publishes their application programming interface (API), which gives the ability to
increase the functionality of MagicDraw by creating additional plug-ins to customize the
language.

The Modelica language has the capability to model complex systems over a
variety of environments from mechanical, to electrical, thermal, and hydraulic. Modelica
implements acausal modeling, which allows models to be evaluated simultaneously at
each time step [18]. Relations in the models act as constraints between variables and the
models interact through these constraints. Through these acausal models, symbolic
manipulation can be used to achieve very efficient simulations. The prowess of Modelica
is in modeling physical interactions between components. Dymola is chosen as the tool
to model and simulate the Modelica models generated from SysML because of its
predefined libraries and ability to interface with Simulink.

Finally, Simulink is used to model the controls interactions within the Vehicle
Architecture Modeling Framework. Currently, Simulink is a standard for modeling
controllers in the automotive industry. It has very well supported code-generation
capabilities so that production code can be generated from control-block-flow diagrams,
eliminating the opportunity for software implementation errors, and reducing the time
needed for software implementation tremendously. Simulink excels at modeling logical
flows between the controllers of the vehicle system, and it also has the capability to
import a Dymola model into Simulink to integrate these two programs. By using SysML
for the overall system architecture model, Modelica to model the physical energy flows,

and Simulink to model the control and signal flows, this approach implements the best

15

aspects of each language and integrates them to support efficiently generating templates
used for creating analysis models.

Through the integration of these three languages, a base generic architecture, and
analysis templates, the VAMEF allows the use and reuse of the vehicle architecture models
to support quantitative analysis and design. By incorporating Simulink and Modelica
with SysML, different analysis tests can be defined for any system. Both Simulink and
Modelica can be used separately from SysML to model systems in their own
environment, but these analytical system models are not linked back to an overall system
architecture in SysML. However with the VAMF, the three system models that are
created, the overarching system architecture model in SysML, the structures of the
physical portion of the system in Modelica, and the control side of the system in Simulink
can be traceable and consistency can be maintained. Without this approach, all three
models would have to be continuously manually updated every time a change is made to
one of the models. Other than the tedious nature of this task, it also introduces the
possibility for human modeling error. The motivation of this research is to be able to
formally model multiple system architectures, support creation of models for multiple
analyses on the system, and automatically cascade changes to the architecture models to
keep the analysis model templates consistent. This thesis describes how to formally
model complex system architectures and how the generation of analysis model templates

is supported.

16

2.2 Related Work

As system engineering problems continue to grow in complexity, more
researchers are recognizing the benefits of Model-Based Systems Engineering and
integrating system architectures in SysML with analysis programs. Managing complex
system architectures in a formal way is necessary, but very challenging, as discussed in
[16], which described the model management effort for combat submarines. [16]
discusses the difficulty in managing several product configurations simultaneously,
which is also true for the automotive industry. In this section, a synopsis of several
approaches to combine the formal model architectures created in SysML with analysis
languages is presented. Also, additional background in the area of MBSE is discussed.

First, there is a plug-in for MagicDraw called Paramagic that can solve equations
within SysML that are linked to a SysML model [20]. Parametric modeling in SysML
implements constructs that are not defined in UML such as constraint blocks, parameters,
and value properties. This plug-in gives the ability for a SysML model to be analyzed
within SysML, however it is constrained to analyzing only algebraic equations. Therefore
Paramagic is not suitable for this research because it cannot analyze differential algebraic
equations.

In [15], McGinnis and Ustun integrate SysML with the simulation language
Arena [4], which is a discrete event simulation software by Rockwell Automation. They
have created a translator from SysML to Arena by using MS Access, which can easily
interface with Arena. In order to accomplish the translation, McGinnis and Ustun
developed an Access domain specific language (DSL) in SysML because both SysML

and MS Access can import and export XMI files. However, this translation process was

17

only completed on a limited example, so there is uncertainty whether this approach can
scale up to larger more complex systems.

One such approach for implementing the Modelica analysis language with SysML
formal model architectures has been discussed by Johnson et al. [12]. A major
shortcoming of SysML is its inability to explicitly analyze the complex system models
created with the SysML language. This approach recognizes the value in creating a
formal architecture in SysML and exporting the model to Modelica for analysis. To
integrate these two languages, triple graph grammar (TGG) transformations are used.
TGG’s are used to map SysML constructs to their corresponding Modelica constructs
through the use of a correspondence relationship. Through these relationships, tools can
be used to automatically generate code that executes the language transformation. Figure
6 shows a high-level overview of how the models are transformed from SysML to
Modelica. While this approach gives analysis capability to complex system architectures
modeled in SysML, it does not include the ability to use a combination of Simulink and
Modelica in order to better model the logical control signals and the physical plant

signals.

18

OpenModelica
Compiler

MagicDraw UML + SysML Plugin

SysML to Modelica Plugin

MagicDraw : odelicz
Plugin Code Pretty P

SysML Simulation Model

Simulation \
Characteristics

Instance of
|

UML + SysML Transformation from Modelica

Metamodel References SysML to Modelica References Metamode!

Defined in MOFLON |

Figure 6. The SysML to Modelica transformation framework [12]

Another approach was completed by Fritzson and Pop [21], who created a
ModelicaML profile for UML/SysML in order to aid in modeling and simulation of
continuous dynamic models. The ModelicaML profile is intended to allow users to
represent a Modelica simulation model along with the UML/SysML informational
models. This profile reuses some UML and SysML constructs, but it also establishes an
entire new set of language constructs. Examples of these new constructs are the Modelica
class diagram, the simulation diagram, and the equation diagram. The weakness with this
approach is that instead of modifying the existing UML/SysML modeling constructs,
many new potentially unnecessary constructs are added.

Similar to the previous approach, Nytsch-Geusen [17] also created an additional
profile named UML", which is a specialized version of UML. In this work, it is used to
develop model-based hybrid systems in Modelica. The Modelica models utilized in this
approach are based on differential algebraic equations (DAESs) and the Modelica state

chart extension. Then a UML" editor and a Modelica tool that assists in code generation

19

can be implemented to automatically create stubs generated from the UML" diagrams.
The user then only needs to insert the equation-based behavior of the system into the
Modelica model stubs. This approach also implements TGG style model transformations
in order to translate between SysML and Modelica.

Where the last three approaches focused on the SysML to Modelica
transformation, there has also been research on integrating SysML with Simulink.
Qamar, During, and Wikander have implemented a translation from Simulink to SysML
through the use of a plug-in that parses an mdl file containing the Simulink model and
transforms it to an Eclipse UML2 framework according to a mapping design [22]. The
model constructs from the Simulink model are stored for the transformation to the UML2
framework, which is recognized by SysML. In this manner, Simulink models can be
generated in SysML. This approach allows for a better connection between a functional
system and a logical architecture, but it begins with a functional Simulink model and
translates that to a SysML architecture. In this thesis, the opposite approach is used. We
suggest that the system architecture framework should be created first, which would
allow engineers to completely define the systems engineering problem before creating
analysis models.

The approach taken in this thesis for the translation from SysML to Modelica
centers on the SysML4Modelica profile, which is one step in defining the bidirectional
SysML to Modelica translation given in [19]. The goal of [19] is to better integrate
Modelica and SysML through the SysML4Modelica profile, which is an addition to
SysML that represents the most common Modelica language constructs. To implement

this profile, modelers first create a SysML model, and then decide which elements need

20

to be analyzed in Modelica, and stereotype the SysML model with «ModelicaContructs»

to be translated to Modelica for analysis.

21

CHAPTER 3:

VEHICLE MODELING PROCESS

3.1 Overview of Vehicle Modeling with MBSE

As vehicle systems are continuously increasing in complexity, it is essential that
there is a process flow to handle the modeling of the vehicle system from beginning to
end. Ford Motor Company has created a process flow of how they envision virtually

creating this vehicle system, given in Figure 7 [7].

| Reay

/“'\ Rational
(cTosi SR e >
GPDS
\ =
NG &= - — e ——
= SCM Version
Model Coordinator Domain Model Control
& P Requirements
\ efine Matrix
f Project \ |
{ Kickoff \ Use Cases |
’ Tedo | v
| | etosor || | Teamcenten
\ GPDS / | T
Project Initiation 3 Project Manager -
- Assemble Team | - Create TeamCenter Vehicle & Domain
- Coordinate work | Level Analysis Packages (AP)
| - Link SCM Objects and VOB's
- Initiate Work Flow & Issue Management
Define SysML |
Analysis Plan |
EBBEE==
[=18 =]
|
Kick off domain model
dev and integration work
f—————————
(- = N\
\ - Dev, Verify CC o
Dev, Verify, Release — Y
P N Release L
s 4 B
[& i —> e hgptpeamis s e
b >, B v v e s i s whe ke
Component Models)
p— Vehicle System Model —> & Feed into
: 2 <
- v
TEAMCENTER Model Integrator TEAMCENTER Perform Analysis
Domain Model LTI— L Cr—
Development Rational Rational v
op Use MRS AP Ese— Use MRSAP prersssss /,
/ GTDS\‘

Release Domain Vehicle Model | ePDs |
Model Analysis Package WorkPacka \ /
\ ysis g Vi ge 2/ \T\esxo@

Use MRS AP

Figure 7. Overall vehicle modeling process flow

Figure 7 shows how a project would begin by the Global Technical Development
System (GTDS) or the Global Program Development System (GPDS) deciding a new

vehicle system modeling work stream should be kicked-off. Then a team would be

22

assembled, the use cases of the new vehicle models would be defined, and the SysML
analysis plan for the new vehicle would be created. This step leads to creating Model
Coordination Matrix (MCM), which is a table that shows the desired level of fidelity
required for each subsystem and which models need to be coordinated. From the MCM,
the process flows into the red box, which defines the scope of the VAMF. Inside this box
is where the specific SysML vehicle model templates are created and the corresponding
analyses are generated and validated. The main work in this thesis supports the
generation of the elements contained within the red box. Figure 8 more clearly illustrates

the details contained within the red box of Figure 7 [8].

JE— .
SyeML Mode! SysML Analysis
Use Cases Flan
| - =
Update as nesded— i ale as needed |
" [FES e
5 [y ,]
SysML Generic L | — P
Analysis Architecture - Component
Template (FE,Perf) Models

Domain Dymola Domain plant model

Ptant Template developer

T NPUTS l l = |

‘ P = Export Templates @E_' 3 |
v | Ty Vehicle System
- Made! Integrator Ve 1
’ Syl - Mode's

u — F; SysML ProgramSpec
SyshIL VMA | Aﬂa\-,-csl% TanElE ate -

¥ o
Reference Architecturs t e] ket |
— —_—

|
| =
| '

|

| = f

| E g = Domain Simulink Domain control model Simulink
B Control Template developer Subsystem
1 Control Medels
Vehicle Program Specific
Specialization Interface
|_ Program_ID Iterate as nesded.
UTPUT:
J ‘
Program 55
information <

Perform Analysis

Figure 8. Domain and vehicle model development

In Figure 8, a simplified work flow that modelers would follow to create a

specialized vehicle system model for a given scenario is illustrated. The goal of the

23

SysML model is to create a template for a specific vehicle for a specialized analysis. To
achieve this model, several inputs are needed. The first input is the SysML analysis plan,
which is fed by the SysML use cases. Another input is the generic VMA reference
architecture template and the SysML generic analysis template, described in Chapter 4.
The final input is the vehicle program specific information for a given vehicle. All of
these inputs are required to create a formal specialized vehicle model and specialized
analysis templates. From the program specific, specialized SysML vehicle model,
transformations can be performed to translate the specialized vehicle model architecture
to the templates in the analysis languages Modelica and Simulink. Once these templates
have been translated to Modelica and Simulink, they are handed off to domain experts.
To fully define the analysis models, the domain experts need to supplement the analysis
templates with appropriate Modelica plant and Simulink controller models. The Modelica
model is then integrated with Simulink, and the entire vehicle system is analyzed.

An even more detailed view of the process flow is given in Figure 9. This figure
shows a SysML Activity diagram with different swim lanes that define which actions
should be performed by which people. The actions in the first swim lane are performed
by the Program Systems Analysis Coordinator, and this person is responsible for creating
the SysML use cases and analysis plans. Then he should also “check out” the generic
analysis architecture and determine whether a change is required. If so, then he should
initiate the change process on the generic architecture, and if not, then he should hand off
the analysis plan and architecture to the SysML Program Architect. This person should
take the specialized vehicle, analysis plan, analysis architecture, and the program specific

interface as inputs to the program specific analysis template. From the specific analysis

24

template, the specific analysis and architecture are inputs into the exportation of the
specific Modelica and Simulink template models. The SysML Program Architect sends
these outputs to the Domain Model Developer. This person then takes the model
templates and completes them with appropriate Modelica and Simulink models. He also
calibrates and validates these models. If changes are necessary, he determines whether
the change is needed at the domain level or the generic architecture level. Finally, he
outputs the validated relevant subsystem analysis models to the Model Integrator. This
person integrates the Modelica and Simulink models together in Simulink, calibrates and
validates the entire vehicle model. He also decides whether changes are needed, and if
so, at which level, domain or generic architecture. Finally, he outputs the complete
validated vehicle analysis to the Simulation Analyst, who performs the final vehicle
analysis. The entire work flow process described above guides system engineers in

implementing the VAMF.

25

act [Activity] Work Flow of Modeler [@Work Flow of Modeler U

.% [Create
£ .— SysML Model
'-'é % Use Cases |
S useCases
L
2 ¢ Initiate
= Create e s
E Analysis (" Check Out Change P Change
- Plan (Use |~ — — — — — Generic Required? o ’g:ﬁ:sﬁz"
£ Cases) Analysis [Yes) e oo
2 Architecture
Z ; |
[analysisPlan | |
g analysisArchitecture [No]
5 |
° |
£ |
Maintain !
’ . Vehicle vehicleSpecialization ﬁ |
P n ,
| Program_ID Create L _ _ _ 2,
SysML
Program
E " Maintain Z::g:li(s:
5 Program Template
-;-’ Specific \ /
Interface i T T
g rogramSpecificinterface specificAnalysis
g PL\ specificArchitecture
& [Export
= Export Program
2 Program Specific
L Specific Analysis
Analysis Specific
Specific Model to
Model to Modelica |
Simulink
2 modelicaModelShells
simulinkModelShells
‘L —L ~ Initiate
(Develop (Develop Change
Internals to _ Internals to e PB’”“.""
Simulink | Modelica | omain
5 Controllers Plant Model Models
5 — e ! !
° pl imlulink Controllers_ completeModelicaRlants |
K P
3 1 I e
3 Calibration | [Calibration thitiate
= of Domain — ‘ of Domain P Angs
£ Model Model e
g : | . X | ! Architecture
a calibratedVehicleAnalysis alibratedVehicleAnalysis 3 .
e EO > '
'Validation of | | [Validation of [
Domain — ‘ Domain szt
Model Model
validatedVehicleAnalysis validatedVehicleAnalysis
" Integrate | e
Simulinkand | initiate.
Mdslica E Procesg on
Models | Domain
= : ; z | Models
e integratedVehicleAnalysis | /
c .
= [Domain]
o
2 I 4 [Yes] /\ G
= Calibration hange ™ amain 67— | (I:w::;i
E °f3°";‘alm - Required? Architecture?~ — — Process.on
§ 3 S | [Architecture] AG;-’:QZ‘:
calibratedVehicleAnaly'sy | | INe] nitectures,
. ; [!
Validation of | |
Domain S
Model |
|
validatedVehicleAnalysis |
i |
s S IR J
< [Perform
s ‘ Vehicle
.‘j Analysis
=
£
@

Figure 9. Activity diagram showing the process flow of modelers

26

As described in Chapter 1, the many current practices of vehicle modeling are
archaic. There may be no central repository or central hard drive for storing models from
different engineers and no unifying overall vehicle systems model. Therefore, individual
subsystem groups, such as the Powerplant team or the Transmission team, must ensure
that their models remain consistent in terms of the correct interfaces, version, and
compatibility. Every time a change is made to one model, it needs to be manually
updated to every necessary model. The problem becomes more centered on consistency
rather than accuracy of the vehicle analysis outputs. If there is an anomaly in the output,
the analyzers much first check to ensure that the correct versions of each subsystem are
being used before considering other possibilities. Therefore, it is the goal of this thesis to
unify that process, ensure model consistency, and cascade changes to the models

automatically.

3.2 Approach to Achieving a Complete Vehicle Model with Analysis

Figure 10 takes the overview of the process described above and depicts the
model perspective of the framework of how the vehicle system architecture and analysis
templates are actually modeled in SysML. The top level of Figure 10 shows the generic
aspects of the VAMF, and the bottom level depicts how the generic models are
specialized for a specific vehicle. As can be seen on the left of Figure 10, the generic
vehicle architecture is specialized for a specific vehicle, and then global and local vehicle
signals are imported into the specialized model. Then, through an association
relationship, the generic vehicle architecture corresponds to the analysis template of the

total vehicle. Multiple analysis templates are created that depend upon the necessary

27

subsystems and ports of the total vehicle analysis template. From the analysis templates,

a specialized subset of analyses can be generated corresponding to the desired analyses

for a specific vehicle. Finally on the right of Figure 10, the tool specific models show

how generic analysis models can be expressed mathematically, not in any specific tool or

language. However, for these mathematical models to be solvable, they need to be

implemented in specific tools and languages, as designated by the Modelica and Simulink

model blocks. Then the specialized vehicle model, along with the specialized analyses

can be automatically translated into Modelica and Simulink model templates

Generic

Specific

Vehicle Total
Architecture Correspondence Vehicle - Tool Specific Models
Analysis Analysis A
Templates []
T Modelica Simulink
Models Models
e I 7
Vehicle Speciali —
L pecialized
Specialization g Subset Of | e Sp?;:lfrllltzed
e Analyses Models
T O Ea
N~ PP Specialized
Global and Automatic

Local Signals

28

code generation

Figure 10. Framework of vehicle modeling approach

Controller
Models

CHAPTER 4:

THE VEHICLE ARCHITECTURE MODELING FRAMEWORK

4.1 Approach for the VAMF

In this chapter, an approach is illustrated for representing the Vehicle Architecture
Modeling Framework using SysML modeling constructs and generating corresponding
analysis model templates. More specifically, the approach describes creating a generic
structure that can be reused to create specific architectures, which then can be the basis
for creating component models that can be analyzed for specific analysis tests. First, the
naming conventions used in the VAMF are described, then the generic architecture and
how it can be specialized for a specific vehicle is outlined, and finally the analysis

architectures are defined.

4.1.1 Naming Conventions used throughout the VAMF

When creating the Vehicle Architecture Modeling Framework, strict naming
conventions and abbreviations are followed. As with standard modeling convention
defined in [11], block names and types are always capitalized. Ports, parts, and anything
contained in a block are in camel case starting with a lowercased first letter, for example,
the “Vehicle” block is capitalized and it has a part “pwp” with the type of “Powerplant™.

For choosing the names of the subsystems, their abbreviations, and other system
details, the VMA [5], and the Ford New Product Architecture Abbreviations list are
employed [1]. The Vehicle Model Architecture has nine subsystems: Electrical,

Auxiliary, Powerplant, Transmission, Driveline, Chassis, Brake, Steering, and the

29

Vehicle System Controller. Each of these subsystems has a three character abbreviation:
ele, aux, pwp, trn, din, cha, brk, ste, vsc, respectively. These abbreviations are used in a
variety of places, such as in front of a signal corresponding to a given subsystem, e.g.
“pwpCtrlGloblBus” is the Control Global Bus signal coming from the Powerplant
subsystem. Also, these abbreviations are used for port names. For example, there is a
rotational mechanical energy port on the Powerplant subsystem, which is named “trn”
signifying that it connects to the Transmission subsystem. Similarly, there is an
analogous port on the Transmission subsystem that is named “pwp.” It is necessary to
adhere to a strict naming convention in order to maintain the model consistency

throughout the VAMF

4.1.2 Generic Vehicle Model Architecture

This section describes how the generic VMA has been created and structured in
SysML. The clearest way to illustrate the contents of the VMA is to describe the
contents of the generic VMA package, as seen in Figure 11. The top level package is
called the Vehicle Model Architecture. This model contains three sub-packages for the
Vehicle Domain, Units and Flows, and Documentation. The Vehicle Domain contains the
bulk of the Vehicle Model Architecture. The Vehicle Domain is a generic representation
of all of the subsystems and parts of the Vehicle Model Architecture [5]. To show that
this model is generic and needs to be specialized before further definition, all of the
blocks inside the Vehicle Domain are abstract, represented by the block names being
italicized. The Vehicle Domain BDD shows an overview of the components of the

Vehicle Domain, as shown by Figure 12.

30

EHE3 vehicle Model architecture
E Crocurnentation
E Units and Flows
EIE Wehicle Domain

- Relations

--E Driver

--E Ervironmnent
E}E Wehicle
Bl Relations
E Auxiliary
E1-F Erake
BE1-F Bus Struchure
Bl-F Chassis
E-F Driveline
E1-F Electrical
E Generic Subswskem
E Powerplant
B Skeering
El-B3 Transmission
E| Wehicle System Conkrol
BB vehide «Blocks
BB Vehicle Domain «Blocks
@ Yehicle Domain

Figure 11. Package structure for the VMA

bdd [Package] Vehicle Domain ehicle Domain U

«blocks
Vehicle Domain
drv env veh
«blocks «blocks eblocks
Driver | Environment | Vehicle
Wi
ele B 3 trn an cha brk ste vsc
ablocks || eblocks | | <blocks wblocks’ | | blocks ablocks | [eblocks | | eblocks | ablocks

Electrical | |Auxiliary | |Powerplant | transmission | (PVe!iM® | |Cpassis | |Brake | |Steering | |VehicleSystemController

Figure 12. Vehicle Domain BDD showing components of the Vehicle Domain

31

Inside the Vehicle Domain package, the Vehicle Domain is broken up into the
Driver, Environment, and Vehicle sub-packages. The Driver package contains the Driver
block, and this block contains the flow ports for all of the driver’s interactions with the
vehicle. The Environment package contains the Environment block, but for simplicity,
the environment is not analyzed in this work.

Because all of the Vehicle’s subsystems have the same structure, a Generic
Subsystem package, contained in the Vehicle package, defines the basic structure for a
subsystem. A subsystem is divided into a logical controller, which represents all of the
non-physical components of a subsystem, and a physical plant, which represents the
physical aspects of a subsystem. To define these relationships, an abstract Subsystem is
created that only contains two parts, “pInt” and “ctrl,” which are of type Plant and
Controller and each have a multiplicity of 1. Then, for each subsystem of the vehicle,
e.g. Electrical or Powerplant, generalization relationships are made from the generic
Subsystem block. On each specialized subsystem block, two parts are added, which are
each subsystem’s specific controller and plant components. For example, the generic
Powerplant block, specialized from the generic Subsystem block, contains a
PowerplantController and a PowerplantPlant. The usages of the each subsystem’s plant
and controller pieces are the three letter abbreviation for the subsystem, followed by
either “PInt” for plant or “Ctrl” for controller. For example, the “pwpCtrl” and
“pwpPInt,” are the usages of the PowerplantPlant and PowerplantController as parts of
the Powerplant subsystem. The usages are redefined and specialized from the generic

Plant and Controller blocks of the generic Subsystem. The Figure 13 and Figure 14 show

32

this specialization and redefinition relationships for each of the subsystems’ plant and

controller pieces.

bdd [Package] Generic Subsystem [B_i Generic Subsystem Controller U

’ L i ;Hock)J
X [eblocks :::':_I Sty
s:::. ’_‘Wk,_ l;::::j _ar-,iJ ey

|
ctrl l’ ancgiradmes sl PwpCtr {redefines ctri}
pit |1 <block A mm:mm locks ’] {nCulredefines ctr)
Y uxi)
eblocks Controller | =
e Transmission Controller
dinClyl {redefines ctrl)
| «blocks
\Mnh’namlhr et}
[eblocks
ChassisControtier | TornbreReMES) ooy redetines ct)
blocks a0 benblcocdcl
BrakeController | glechy
I

Figure 13. Generic Subsystem definition: Controller view

bdd [Package] Generic Subsystem [Generic Subsystem Plant U

«bhi,:k» <hlocks
Subsystem <blocks ‘:‘"“’ ing
«hlocks Brake
Chassis

<hlocks
Driveline
<blocks i
<blocks Powerplant armission
Efectrical R
Auxitiary
elePint | {redefines pint}

«blocks auxPint |{redefines pint}
[| «hlocks b
itiary pwpPint |{redefines pint}
== | «blocks |th|m (redefines pint}
[cdiand it <blacks L
ISSi t
':;ck 1 pint ; TransmissionPian InPint ines pint
«blocks
«hlocks «blocks
Controiier Piant DrivelinePiant
chaPInt |{redefines pint}
«blocks .
ChassisPiant | PrkPInt [fredefines pint}
<blacks)
BrakePiant stePint [{redefines pint}

«blocks
SteeringPiant

Figure 14. Generic Subsystem definition: Plant View

The Vehicle package contains all of the subsystems of the Vehicle in their

respective packages. The nine subsystem packages are Auxiliary, Electrical, Powerplant,

33

Transmission, Driveline, Chassis, Brake, Steering, and the Vehicle System Controller.
The generic subsystem block contains two parts, its respective plant and controller, as
shown in Figure 14 above. Each of these subsystem packages contains an abstract
subsystem block, e.g. Powerplant, a plant block, and a controller block. The generic
subsystem block also contains flow ports, which connect the subsystem to the rest of the
generic vehicle. An example of a port on the Powerplant subsystem is the “trn:
RotatMechE” port, which is the Powerplant’s hardware connection with the transmission.
The RotatMechE is the type of the port, which in this case it is rotational mechanical
energy. There is also a corresponding port on the generic Transmission block called
“pwp: RotatMechE.”

While the plant portion of the subsystem contains all of the ports that represent
energy flows or hardware connections of the vehicle, the controller portion maps the local
signals between subsystems and the global signals between each subsystem and the
Control Global Bus. There is one global input signal to a subsystem’s controller block,
which represents all of the signals sent from the Control Global Bus. The usage of the
signal is named “ctrlGloblBus” with its type named “CtrlGloblBusMs,” where Ms stands
for Mixed Signal. There is also one global output signal that represents all of the signals
sent from a given subsystem to the Control Global Bus. This signal is named
“pwpCtrlGloblBus” with its type named “PwpGloblMs,” for example.

In addition to the global signals described above, there are also local signal ports
between each plant and controller part of a subsystem, which are logical mixed signal
types. The signal port coming from the plant part going to the controller part represents a

sensor signal. The signal port coming from the controller part going to the plant part

34

represents the actuator signal. Examples of these two signal port types are PwpSnsMs
and PwpActMs for the Powerplant sensor and actuator signals, respectively.

Each subsystem block also has an internal block diagram (IBD) associated with it.
The IBD shows the subsystem’s two parts: the plant and controller. All of the physical
ports are shown on the border of the plant part, along with the two ports representing the
connection to the subsystem’s controller part. The logical ports are shown on the
controller part, along with the corresponding ports to connect the plant and controller
parts. The ports that appear on the border of the diagram are ports on the subsystem
itself, which is represented by the boundary of the diagram. An example of a subsystem

IBD is given in Figure 15.

ibd [Block] Powerplant [@] Powerplamu drvAPdl - TiateMechE
aux : RotatMechE drvAPdl : TlateMechE
ctriGloblBus : CtriGloblBusiiis
3 Y pwpCtrl : PowerplantController
aux : RotatMechE pwpPInt : PowerplantPlant ‘ ctriSns : PwpSnshs ‘ drlGIoblBus: CtriGloblBusMs
p=
pintSns : PwpSnsiis P
\ \
ctriAct : PwpActMs -
= =
IntAct : PwpActty : 3 Y
trn: RotathechE piRACEFwpAct “s pWpCtriGloblBus : PwpGlobits
BN — - pwpCtriGloblBus : PwpGlobiMs
trn : RotatMechE ele - EleE
ele : EleE

Figure 15. Example of a generic subsystem IBD

In addition to the Vehicle’s subsystem packages, there is a package that contains
the elements relating to the Global Bus Structure. Inside this package, there is a block
named “CtrlGloblBus”, or the Control Global Bus, which is a generic bus block that
receives each of the subsystem mixed signals and concatenates these signals to flow
through one output port, named “CtrlGloblBusMs.” The “CtrlGlobIBusMs” port has sub-
ports, which connect to each of the subsystems. For example, the “pwpCtrlGloblBus,”

which is of type “PwpGloblMs,” is the sub-port on the “CtrlGloblBusMs” that

35

encompasses all of the global signal ports relevant to the Powerplant subsystem. Figure

16 shows the CtrlGloblBus with its ports.

«blocks
CtriGloblBus

eleCtriGloblBus : EleGlobiMs eleCtriGloblBus : EleGlobiMs

]
auxCtriGloblBus : AuxGlobiMs auxCtriGloblBus : AuxGlobiMs

IpwpCtriGloblBus : PwpGlobiMs

I I e

— | pwpCtriGloblBus : PwpGlobiMs

trnCtriGloblBus : TrnGlobiMs

] trnCtriGloblBus : TrnGlobiMs

ctriGloblBusOut : CtriGloblBushs

dinCtriGloblBus : DInGloblMs dinCtriGloblBus : DinGlobiMs

chaCtriGloblBus : ChaGlobiMs chaCtriGloblBus : ChaGlobiMs

brkCtriGloblBus : BrkGlobiMs brkCtriGloblBus : BrkGlobiMs
]

steCtriGloblBus : SteGloblMs steCtriGloblBus : SteGloblMs

—]

vscCtriGloblBus : VscGlobiM; vscCtriGloblBus : VscGlobiMs

[—]

— -0 -

Figure 16. Generic CtrlGloblBus block with the global vehicle signal ports

Also contained within the Vehicle package is the Vehicle block itself. This block
contains all of the subsystems as parts. Each usage of a subsystem part is named with its
corresponding three letter abbreviation [1]. For example, the Powerplant part name is
“pwp.” There is also an IBD within the vehicle block that shows an overview of the
global signals of the vehicle, Figure 17. This figure shows the CtrlGloblBus, the Control
Global Bus, with all of its ports and sub-ports, and then all of the subsystem parts with
their respective input and output mixed signals. For example, the “pwp” part has an
output signal “pwpCtrlGloblbus” of type “PwpGloblMs” that connects to the
“pwpCtrlGloblBus” port on the CtrlGloblBus, and this port passes through the Control
Global Bus to the “PwpCtrlGloblBus™ port on the output “CtrlGloblBusMs,” which then
connects to the Powerplant’s input signal from the Control Global Bus, the

“ctrlGloblBus” of type “ctrlGloblBusMs.”

36

ibd [Block] Vehicle [i Control System 1]

ctriGlobiBus : CtriGloblBus |

eleCiriGlobiRus : Fle (s leCtriGloblBus : EleGlobiMs leCtriGloblBus : EleGlobiM: ele: i L ctriGloblBus : CtriGloblBusMs
i |
[uxCtriGiobiBys : AuxGldgis L auxCtriGloblBus : AuxGlobiMs auxCtriGloblBus : AuxGlobiis L aux: Auxiliary | ciriciohiBus : CtriGiobiBusits
WpCHriGloblBus : PwpGipbils | o wsciiSiciitue : Swicionis PWRCtriGlobiBus : P pwp:] ciriciobiBus : CiriGiobiBusMs|
\Ti
tmCiGlobius : TrnOlggiMe mCtriGloblBus : TrnGlobit HrCHHGlobBus : TrGlohive g ETETSIRTRRIONI] e s
rnCtriGlobiBus : TrGlobiMs rnCtriGlobiBus : TrGlobits riGloblBus : ClriGloblBustis
out: cf [
les|
b din : Driveline
dinCtriGlobiBus : DinGIffEiis L dinCtriGloblBus : DinGlobiMs dInCtriGloblBus : DinGlobiMs ctriGloblBus : CtriGloblBushts
=
s —|
haCt :C chaCtr[G\uhlBus ChaGlobiMs chaCtriGloblBus : ChaGlobiMs iﬁ';;i;mrlGlublEus CtriGloblBusMs
brkCtriGlobiBus : BrkGlopils
B brk : Brake
L brkCtriGloblBus : BrkGlobiiMs briCiricipuiBum; SkGlobiMs | ctriGiobiBus : CtriGioblBusi
SteCtriGlobiBus : SteGipbijts
5199‘"5'0‘”5“53 SteGlobiis steCtriGloblBus : SteGlobils ste : Steering c\rIGIobIBus‘ CtriGloblBushls
= =
vscCtriGlobiBus : VsdGigbiMs ‘
vscCtriGloblBus : VscGlobits vscCtriGiobiBus : VscGlobiMs — — = ctro)
[vec: VehiciesystemContralier EdrlGloblEus.Cﬂl loblBushts

Figure 17. Vehicle's Global Signals Control System

The Vehicle Domain package also contains an abstract Vehicle Domain block,
which has three parts, the Environment (env), the Vehicle (veh), and the Driver (drv).
There are two IBDs that describe the internal interactions within the vehicle domain.
First, the Driver Subsystem IBD shows the driver’s interactions with the vehicle, as seen
in Figure 18. The driver has translational mechanical energy connections with the
Powerplant, Transmission, and Brake subsystems, rotational mechanical energy
connections with the Steering subsystem, and mixed signal connections with the

Electrical and Chassis subsystems.

37

ibd [Block] Vehicle Domain [Driver Subsystem u

veh : Vehicle

ele : Electrical ’ pwp : Powerplant ‘ [un : Transmission cha: Chassis ‘ brk : Brake ‘ ste : Steering
L =1 L
& = - & B
drv : Mi ignal drvAPd: TI E drvGearSelPostn : TlgteMechE drvBrkRdl : TlateMechE 4V : RotatMechE

drv : MixedSignal

trnGearSelPostn : TlateMechE
cha : RotatMechE

PWPAPI : E (3] &1 __ brkBrkPdi : Tia
. drv : Driver .

l ste : RotatMechE
. 4

teMechE

€ele : MixedSignal IEI

Figure 18. Vehicle Domain IBD describing the Driver's interactions with the Vehicle

The second IBD, labeled the Vehicle Domain, describes all of the interactions
between the parts of the vehicle along with the connections to the driver, as shown in

Figure 19.

[[#d [Biock] Vehicie Domain(f Vehicie Domain 1|

veh : Vehicle
ele : Electrical

lpwp : EleE aux : EleE trn : EleE din: EleE |ste : EleE [cha : Elerk : ElE
l | .brktﬁnk! tuwsn\pm TlateMechE
lele - EleE S ERE] SR
] ele : EleE ele : EleE cha - RotatMéchE
pwp : Powerplant
Fuzy trn : Transmission | din ' RotatMechE = din : Driveline - brk : RotatMeLhE
WpPInt : PowerplantPlant || pwp: RotatMechE ele: Ele
Ll il = ia B oMo cha | RotatMeche- | i
] aPdiSns : AcceleratorPedalSensor | [t - Rotatiectie 1 R s :
drvGearsSelPostn - TlateMechE TR RUGRIEEDE
drvAPdI : TiateMeehE: ste - TlateMechE
ele ; EleE
aux : RotatMechE ste : Steeringll]
tha - TlateMechE
pwp . RotatMechE ele: EleE
aux : Auxiliary .
.cha TlateMechE
trnGearSelPostn : TlateMechE brkBrkPd! : TlateMechE

PWPAPdI ; TlateMechE
L)

drv : Driver

Figure 19. Vehicle Domain IBD describing all the interactions between the Vehicle's
subsystems and the Driver

The Vehicle Model Architecture package also contains a package named Units
and Flows. Inside the Units package are all of the units created that are not predefined in
the standard SysML unit library and might be useful in the definition of the VAMF.
Each new unit has three parts. For example, “newtonMeter” is of type DerivedUnit and

stereotyped by «Unit». Then it has a «QuantityKind» stereotype named “torqueQK,” and

38

finally, there is a «ValueType» stereotype named “Nm.” Each of the new units is created

in this fashion. An example of some of the defined units can be seen in Figure 20.

bdd [Package] Units [[Defined Units]

<ValueTypes
Real

sure «ValueTypes
T Energy

<ValueTypes <ValueTypes <ValueTypes <ValueTypes <ValueTypes <ValueTypes <ValueType»
Nm g/(kW*hr) hp kals m*3is Jkg L

<\ValueTypes cValueTypes <\alueTypes c\alueTypes <ValueTypes \alueTypes

<ValueTypes
unit= @ unit= cagramP unit= @ unit= Caki unit= @ rSecond unit= C@joul unit= CaLiter

«ValueTypes «ValueTypes
radis revis

ValueTypes <ValueTypes
unit= 03 rSecond | |unit= @ i

Figure 20. Definition of new units

The Flows package includes Energy, Fluid, and Mixed Signal packages. There is
a Flow BDD that defines the hierarchy of energy flow for the VMA system, and it is
shown in Figure 21. Three blocks are within the Energy package, which are EleE, for
electrical energy, RotatMechE, for rotational mechanical energy, and TlateMechE, for
translational mechanical energy. Each energy type has two value properties, one across
variable and one through variable. For example, the RotatMechE block has an across
variable angle, measured in radians, and a through variable torque, measured in Newton
meters. The Fluid package contains blocks for the different types of fluids that could
possibly flow through the vehicle system. Finally, the Mixed Signal package includes all
of the global and local system mixed signals (e.g. PwpGloblMs, PwpSnsMs, and Pwp

ActMs).

39

bdd [Package] Flows [[&Flows
[Package] Flows| [} Flows 1 eblocks

EnergyFlows
A
«blocks «blocks «blocks «blocks

EleE RotatMechE TlateMechE FlowE

values valves values values
cur : A{unit = ampere} an : rad{unit = raclian} disp : m{unit = metre} enthalpy : J{unit = joule}
U Vi{unit = volt} itq: Nm{unit = newtomMeter } F: N{unit = newton} flowRate : kgis{unit = kilogramPerSecond}
—————— P : Pafunit = pascal)

specificEnthalpy : Jkg{unit = joulePerkilogram
Fa3

«hlocks «blocks | |«blocks «blocks
Fuel Coolant Air Water

Figure 21. Energy flows hierarchy for the VMA
The last package of the Vehicle Model Architecture package is the
Documentation package, where the VMA project can be documented using the DocBook
profile [13]. DocBook is a plug-in for MagicDraw that aids modelers in documenting his
work in SysML and generates a PDF that can be re-generated if there are updates in the
model or model’s documentation. Using the plug-in, modelers can create a “Book” that

99 ¢¢

contains “Chapters,” “Sections,” “Paragraphs,” “Figure Diagrams,” “Queries,” and many
other elements, as shown in Figure 22. DocBook’s plug-in assists the modeler assigning
the stereotypes listed in the previous sentence to SysML constructs. For example, the
modeler can right click on a package and “Create Book™ and a new SysML package is
created with the additional stereotype of «book». The plug-in will also ask the user to
choose a title for the book, issue, volume, and other descriptors to help define the book.
From the newly created «book», modelers can use the Edit Panel to add chapters,

sections, paragraphs, etc. to their book, more information as to how to use the DocBook

plug-in is given in Appendix C.

40

DocBook will support the generation and regeneration of documentation for the
VAMEF. Because the DocBook elements such as diagrams and blocks reside in the VMA
model, any change made automatically updates the DocBook elements. Therefore, to
update the documentation, all the modeler needs to do is regenerate the DocBook

«book».

41

package DocBookProfile [[£] DocBook_Definition U

Modification date [4/16/12 10:48 AM

ESETOpE? Last modified by |joranscomb3 2 ETCOER
docbookdocum author
ent [Element]
[Package] -firstname : String
rmr—— -surname : String
T «stereotype» -organization : String
xreference

«stereotype» «stereotype» [Element] «stereotype»
set article revisi y «stereotype»
[Package] [Package] T [Class] revhistory
-book : book [2. *}{ordered} -sections : section [0..*){ordered} -author : author [1] [Package]
gioypey -date : String +revisionEntry : revisionEntry [0. *]{ordered}
component -revnumber : String
«stereotype» [NamedElement] -revremark : String
book -revdescription : String
[Package]
~divisons : division [0.*]{ordered} T
-bookCompanent : companent [0.*}{ordered} [T
-issue : String
documenthumber - String «stereotype» <<sterqupe» T
-issueDate : String preface section i P
-releaser : author [1] [Package] [Package] g“ks"v
-programme : String [1] = E-ELT PROGRAMME ||-prefaceSection : section [0."J{ordered} -blockelements : blockelement [0. *J{ordered} [Package]
-publisher : String -prefacePara : paragraph [0. *|{ordered} -subsection : section [0..*]{ordered}
-authors : author [1..%] -bibliography : bibliography
-owner : author [1]
-wpManager : author [1] «stereatype»
-revhistory : revhistary [1] hapter
[Package] «stereotype»
«stereotype» «stereatype» -sections : section [0 *){ordered} appendix
aivision bibliography -blackelements : blockelement [1.*]{ordered} [Package]
[Package] [Package]
-biblioEntry : biblioEntry [0..*]{ordered
-abbrevPrefix : String = RD
«stereotype»
part
[Package]
-companents : component [0..*]{ordered}
«stereotype» «stereotype» ™
blockelement xreference «comment»
[Element] [Element] having associations has drawbacks when
modularizing books, authars, etc:

T assuming that the navigation is always downwards,

[| | i and that a component never needs ta know which

«stereotype» book it is contained in, (both participants in an
VP «stereotype» association have association ends)
paragraph «stereatype» biblioEntry b)
(Gommeri] formalexample [Class] Also, the backward association end will always contain
-xref : xreference [0.*]{ordered} [Element] _issueNumber - String the reference to the last 'parent' element (e.g. book).
T :grgz?uacttiluitl;?rg String Tnlijs Ialsp_ generates orphaned proxies when
tite - String modularizing.
«stereotype»
query |
[Comment] «stereotypen «stereatype»
-type : QueryTypeKind = documentation figure table
-element : NamedElement [1..*){ordered) [Element] [Element]
-representation : QueryResultRepresentationkind [1] = table = = _captionText : String [0..1
-showQueriedElementDocumentation : Boolean = true -gggf;:?irngxgdles;rr:ngt[Pdé1] 8 T glot
-property : PropertyTypeKind [0..*] el N
-useQueryText : Boolean = true -width : Integer = 100
-showTypesDocumentation : Boolean [1] = true -contentdepth : Integer = 100
-showPropertiesDocumentation : Boolean = true 805
-showQualifiedName : Boolean = false 9_9 «stereotype» «stereotype»
-showDefaultvalue : Boolean tableDiagram tableParagr
[Class] aph
«stereatype» «stereotype» _diagramTable - DiagramTable [0.1] [Comment]
T TR «enumeration» figureDiagram figureimage
usageTextKind PropertyTypeKind [Comment] [Comment] «stereotype»
owner -diagram : Diagram -imageContainer : Class xreference
ngore baseClassifier -useText : usageTextkind | |-useText : usageTextkind [Element]
after realizedinterface
«enumeration» «enumeration»
QueryTypeKind Query p i ind
documentation table EStETEOnEs
constraintProperties| |paragraph query
operations [Comment]
rec:ptluns -element : NamedElement [1.*]{ordered)
[25ln) / -representation : QueryResultRepresentationkind [1] = table
E?r;:::rr(tjipezmes -showQueriedElementDocumentation : Boolean = true
: -property : PropertyTypekind [0..4]
oL IR -useQueryText : Boolean = true
JEEIENERIpEItEs -showTypesDocumentation : Boolean [1] = true
valuetPrp;tnemes -type : QueryTypekind = documentation
Eansir=ints -showPropertiesDocumentation : Boolean = true
-showQualifiedName : Boolean = false
-showDefaultvalue : Boolean

Figure 22. Definition of the DocBook Profile

42

4.1.3 Specialization of the generic Vehicle Model Architecture

The Vehicle Model Architecture package gives a framework for a generic model
of a vehicle. However, in order to actually implement this framework, a Vehicle
Specialization package is created for a specific ProgramID, which is the specific name
given to a specific vehicle. The structure of the Vehicle Specialization package is very
similar to the VMA’s Vehicle package in that there are sub-packages for each of the
subsystems. The counterpart to the generic Vehicle block from the VMA package is the
corresponding specialized Vehicle ProgramID block. The Vehicle ProgramID’s BDD
describes how the Vehicle_ProgramID block is a specialized and redefined version of the

abstract Vehicle block, as shown in Figure 23.

bdd [Package] Vehicle [E‘%Vehicle_ProgramIDU

zblocks
Vehicle Architecture Model::\Vehicle Domain::Vehicle::
Vehicle

[

«blbckx
Vehicle_ProgramiD

parts
aux : Auxiliary_ProgramiD
brk : Brake_ProgramiD
cha : Chassis_ProgramiD
ctriGloblBus : CtriGloblBus_ProgramiD
din : Driveline_ProgramiD
ele : Electrical_ProgramiD
pwp : Powerplant_ProgramiD
ste : Steering_ProgramiD
trn : Transmission_ProgramiD
vsc : VehicleSystemController_ProgramiD

Figure 23. Vehicle_ProgramID block specialized from generic Vehicle block

Inside each subsystem package, there is a specific subsystem block, e.g.
Powerplant_ProgramID. This block specializes and redefines the generic Powerplant

block. The parts of the block are also specialized and redefined versions of the

43

subsystem’s Plant and Controller blocks. Figure 24 shows a BDD of this redefinition

mapping.

bdd [Package] Powerplant [Powerplam_ProgramIDU

«blocks
Vehicle Model Architecture ::Vehicle Domain::Vehicle::Powerplant::
Powerplant

parts
pwpCtrl : PowerplantController{i edefines ctrl}
pwpPint : PowerplantPlant{redefines pint}

«FlowPortsaux : RotatMechE{direction = inout, isAtomic}
«FlowPortzele : EleE{direction = inout, isAtomic}

«FlowPortstrn : RotatMechE{direction = inout, isAtomic}
«FlowPort»pwpCtriGloblBus : PwpGlobiMs{direction = out, isAtomic}
«FlowPortsctriGloblBus : CtriGloblBusMs{direction = in, isAtomic |
«FlowPortsdrvAPdI : TlateMechE{direction = inout, isAtomic}

|

«block»
Powerplant_ProgramiD

parts
pwpCtrl : PowerplantController_ProgramiD{iedefines pwpCtrl}
pwpPint : PowerplantPlant_ProgramiD{redefines pwpPlint ;

«FlowPortspwpCtriGlobiBus : PwpGloblMs_ProgramiD{redefines pwpCtriGloblBus direction = out, isAtomic}
«FlowPortsctriGloblBus : CtriGloblBusMs_ProgramID{redefines ctriGloblBus direction = in, isAtomic}

«hlocks
Vehicle Model Architecture ::Units and Flows::Flows::Mixed Signals::Powerplant Signals::
PwpGlobINVs

|

«blocks
PwpGloblMs_ProgramiD

«hlocks «blocks
PwpActVs PwpSnsMVs
(Vehicle Model Architecture .Units and Flows Flows Mixed Signals.Powerplant Signals) (Vehicle Model Architecture .Units and Flows Flows Mixed Signals.Powerplant Signals)

]

«blocks ablocks
PwpActMs_ProgramiD PwpSnsMs_ProgramiD

Figure 24. Specific Powerplant BDD showing the specialization from the generic
Powerplant

The Bus Structure package shows how the CtrlGloblBus ProgramID and
CtrlGloblBusMs_ProgramID redefine and specialize their generic counterparts from the
VMA, as shown in Figure 25. Similar to Figure 17, Figure 26 shows the specialized

Control System IBD for the specialized vehicle.

44

bdd [Package] Bus Structure [Bus_ProgramiD u

eblocks
‘ehicle Model Architecture ::Vehicle Domain:: Vehicle::Bus Structure::Global Bus::
CtriGlobiBus

«blocks
CtriGloblBus_ProgramiD

«FlowPortstrnCtriGloblBus : TrnGlobiMs_ProgramiD{redefines trnCtriGloblBus direction =
«FlowPortzvscCtriGloblBus : \scGloblMs_ProgramiD{i edefines vscCtriGloblBus direction ,isAtomic}
«FlowPortsctriGloblBusOut : CtriGloblBusMs_ProgramiD{redefines ctriGloblBusOut direction = inout, isAtomic }
«FlowPortseleCtriGloblBus : EleGlobIMs_ProgramiD{radefines eleCtriGlobiBus direction = in, isAtomic}
«FlowPort»auxCtriGloblBus : AuxGlobiMs_ProgramiD{redefines auxCtriGloblBus direction = in, isAtomic }
«FlowPortspwpCtriGloblBus : PwpGlobiMs_ProgramiD{redefines pwpCtriGlobiBus direction = in, isAtomic}
«FlowPort=dinCtriGloblBus : DInGlobiMs_ProgramiD{redefines dinCtriGlobiBus direction = in, isAtomic }
«FlowPortschaCtriGloblBus : ChaGlobiMs_ProgramiD{redefines chaCtriGloblBus direction = in, isAtomic}
«FlowPortsbrkCtriGlobiBus : BrkGloblMs_ProgramiD{redefines brkCtriGloblBus direction = in, isAtomic }
«FlowPort»steCtriGloblBus : SteGloblMs_ProgramiD{redefines steCtriGlobiBus direction = in, isAtomic}

«blocks
Vehicle Model Architecture ::Vehicle Domain::Vehicle::Bus Structure::Global Bus::
CtriGlobiBusNs

«blocks
CtriGloblBusMs_ProgramiD

«FlowPortstrnCtriGloblBus : TrnGlobiMs_ProgramiD{redefines trnCtriGloblBus direction = out, isAtomic}
«FlowPortsvscCtriGloblBus : VscGlobIMs_ProgramiD{redefines vscCtriGloblBus direction = out, isAtomic)
«FlowPor CtriGloblBus : AL ProgramiD{redefines auxCtriGloblBus direction = out, isAtomic}
«FlowPorteleCtriGloblBus : EleGloblis Program!D(redef ines eleCtriGloblBus direction = olt, isAtomic}
«FlowPortspwpCtriGloblBus : PwpGlobiMs_ProgramiD{redefines pwpCtriGloblBus direction = out, isAtomic}
«FlowPortsdinCtriGlobliBus : DInGlobIMs_ProgramiD{redefines dinCtriGloblBus direction = out, isAtomlc)
«FlowPortssteCtriGlobiBus : SteGloblMs_ProgramiD{redefines steCtriGloblBus direction = out, isAtomic}
«FlowPortsbrkCtriGlobiBus : BrkGloblMs_ProgramiD{redefines brkCtriGloblBus direction = out, isAtomic}
«FlowPortschaCtriGloblBus : ChaGlobiMs_ProgramiD{redefines chaCtriGlobiBus direction = out, isAtomic}

Figure 25. Control Global Bus signal redefinition

ibd [Block] Vehicle_ProgramiD|[[ControlSystem_ProgramiD U

CtriGloblBus : EleGlobiMs_ProgramiD ele : Electrical_Prog: g G
eleCtriGloblBus : EleGloblMs_Programt

CHrIGIobiBus : AuxGioblls_Programid -y o Axitiary. e
auxCti : _Progri I:|_-|

;_ProgramiD

_ProgramiD

CtriGloblBus : PwpGlobits ProaramiD Lawp : X 16
PWhCtriGloblBus : PwpGlobitts_Progi {

_ProgramiD

trnCtriGloblBus : TrnGlobIMs_Progrsmngn H ion_| : I ch

rnC H _ProgramiD

St : CtriGloblBushs_ProgramiD

dinCtriGlobiBus : DinGloblMs Programl

;_ProgramiD

dinCtriGloblBus : DinGlobiMs_ProgramiD d'“:n'i"e'i"e—?"'""'“mdrlGIobIBus:Ct'lGIobIBusMs_PragrsmlD
| =]

chaCtriGloblBus : ChaGloblMs_ProgramiD éh-:chnsis_
haCt :cl _ProgramiD Elj

briCt : _Programid e

;_ProgramiD

;_ProgramiD

steCtriGloblBus : SteGlobils_ProgramiD g;:mmng_ 1 e
;_Programll Ej

\

scCtriGloblBus : VscGloblMs_ProgranfiD

_ProgramiD

ark : Brake_Program| ‘Tl
prkct _Programid

cCtriGloblBus : VscGlobiMs: Prograﬂ\ibéu i ontroller |

1
=

JSCCtI’lGlOblBuS VscGlobIMs_ProgramiD

_Programip

Figure 26. Specialized Control System IBD for the specialized vehicle

45

One addition to the Vehicle package within the Vehicle Specialization is the
Signals package. This package contains sub-packages for each subsystem, and within
each subsystem signal package, the corresponding global and local signals are located.
For example, the global signal, PwpGloblMs_ProgramID, and the local signals,
PwpSnsMs_ProgramID and PwpActMs_ProgramID, are located within the Powerplant

Signals package within the Signals package.

4.2 Generation of Analyses

4.2.1 Creating Analysis Architecture for Translation to Modelica

In order to evaluate specific vehicles, these vehicles must pass certain analysis
tests set by the company or other government regulations. It would be ideal if a
framework for the analyses could be represented in SysML, so that the modeler would
know which analyses need to be run, and it would greatly reduce modeling time if
modelers could easily generate the analysis architecture for a specific vehicle. This
section describes how the analysis templates for the translation to Modelica are defined.
The templates are defined in SysML with «Modelica» stereotypes added to the SysML
blocks, parts, ports, connections, etc. using the SysML4Modelica profile [19]. The
SysML4Modelica profile allows modelers to assign the «Modelica» stereotypes, and each
stereotype additionally has tags for Modelica constructs. For example, a block
stereotyped by «ModelicaModel» can have Boolean tags defining the model as being
partial or replaceable. An overall generic analysis template for the physical portion of the

total vehicle is defined, as shown in Figure 27. In order to ensure the consistency

46

between the analysis template and the base VMA, there is an association relationship
between the structure SysML Vehicle block and the analysis Vehicle Modelica model, as

depicted in Figure 28.

ibd [Block] Vehicle [alysisTotafVehicle |

eleCiriAct : ContrpiBus eleCtrisns © ControlBus
ModelicaConnsctiorfs «MadeficaConnectiong
chAct .oomroibuy 5‘"'5"9 ControlBus eModslicaCannactions
{ ., ctrisns - ControlBus _ brikCtriSns : ControiBus |
«ModslicaParts ‘ bm;:"‘"““:‘;":‘“;] " \T'l {1
elePint : ElectricalPlant el Pin O
ctriact : ControlBus
{sReplacsable, | { 0 briCtriAct Cuntrmsus‘ |
scope = none} | scope = poos) oy <ModslicaConnections
—_—" [m m! 1 sy — T
{ {} {]
pwp : Pin trn: Pin din: Pin ste : Pin fha Pinprk: Pin cha - Wheels
aux : Pin
<ModelicaConnections| iMadalicaCantiagions M}delicaConnsctions
«ModslicaConnsctions|
eMoffelicaConngctions
| Modslica YAHERaComnecions ,
e el | 5 8 | { }—————haCtriSns : ControlBus
«ModelicaConnections cvodalicaParts prE— «ModelicaParts «ModalicaConnactions [
. | pwpPint : PowerplantPlant n-Flangs| trmPint: TransmissionPlant trn: Flange_a «ModelicaParts [din - Wheels chaPint : ChassisPlant \T'—T |
ctriAct : CoftralBus {isReplaceable, pwp|: Flange_a. {sReplaceaple, 1,0 : Flange_a | dinPint:DrivelinePlant [cna: wnegis | (isReplaceable, T cModlicaConnections |‘
| SHVR scope = none} |} p—————— e " \ ‘et scope = nonej ctriAct . ControlBus |
L MagaTicaConnections o F,, Anections SCOpe S Do) scope = ModalicaCdnnact =3 hatiakte CConessss
. aeifaComnscio - 5 ——
1 1 r ste F\ange a
fwpCtriAct : ContralBus c =
aux: Flange_a ctriAct - ControlBus ctrisns - ControlBus
s X ctrisns : ControlBys AL CoptiolB(s «ModelicaConnections
«ModelicaConnactions
ele: Pin cha : Flange_a steCtrisns - ControlBus|
eMoftelicaConnactions } } <gdelicaConnacions
pwp.; Flange_a lele - Pin SelicaConnektion ModelicaParts ctrisns : ControlBus
= hadabar L R SSEInE it |
Ium‘m,“xmm'ﬂ‘m «ModelicaConnactions «ModslicaConnections {isReplaceable, - CtriAct : ControlBus
: {sReplaceable, scope = none} SteCtriAct : ControlBus
scope = none} <ModelicaConnections
B, «| elicaConnection; 1
‘ R, s GOt oS Cantolgus anctact: [controus
lauctriact - Controlus auxCiriSns : ControlBus trnCtriAct : ControlBus dinCtrisns : ControlBus
olf al , X L @

Figure 27. The analysis template for the total vehicle as defined in the SysML4Modelica

profile

47

bdd [Package] Correspondence Library [@Correspondences U

«blocks
Vehicle
(Vehicle Model Architecture .\Vehicle Domain.\ehicle)
parts
aux : Auxiliary
brk : Brake
cha: Chassis
ctriGloblBus : CtriGloblBus
din : Driveline
ele : Electrical
pwp : Powerplant
ste : Steering
trn : Transmission
vsc : VehicleSystemController

«blocks
———————— AnalysisCorrespondence
AnalysisCorrespondence

parts
analysis : Vehicle
structure : Vehicle

1
«ModelicaModel»
«blocks
Vehicle
(Vehicle Analysis Architectures.Total Vehicle)

auxPInt : AuxiliaryPlant{isFe, pe = nonej}

dinPInt : DrivelinePlant{is
elePInt : ElectricalPlant{isRey:
pwpPInt : PowerplantPlant;
stePint : SteeringPlant{is!
trnPInt : TransmissionPlant{isReplac:

references
: Vehicle [1]

Figure 28. The Correspondence between the generic Modelica Vehicle model and the
generic SysML Vehicle block

Figure 29 depicts an IBD that is associated with the “Analysis Correspondence”
block, which is shown in Figure 28. The left side of Figure 29 illustrates the generic
structure of the SysML Vehicle, and the right side of the figure illustrates the generic
analysis Modelica stereotyped Vehicle. This IBD shows how the Modelica analysis

template corresponds to the SysML structure template.

48

ibd [Block] i o i U

: AuxActMs
: AuxSnshs

ctrlAct :
ctriSns : ControlB

ctriSns : Cor

pwp: Fla
din: Fla

ctrlAct : Cont

ctriSns : Contr

ctriAct : Col

ctriSns : Co

cl

ctrlAct : Ci

ctriSns : Cf

Figure 29. IBD of the “Analysis Correspondence” association block showing the relations
between the SysML Vehicle model and the Modelica Vehicle model.

49

Because not all of the subsystems, ports, and parts are needed in each analysis,
originally separate templates were created for each analysis, for example fuel economy,
performance, etc. However, some of the analyses templates are identical, except they
analyze different aspects of the vehicle. This issue may have led to inconsistencies in the
model because these identical templates would not be correlated with each other. To
solve this problem, one generic template of the entire vehicle is created with all of the
subsystems, ports, and parts that are stereotyped by «Modelica» stereotypes defined by
the SysML4Modelica profile. A new SysML block stereotyped by «ModelicaModel» is
created for each analysis, and this new analysis relates to the entire vehicle model
through dependencies. Each new analysis is automatically updated to the analysis

configuration matrix, as shown in Figure 30.

50

EE vehicle 12 24 15
2 %Jg “qf—) T +auxCtrlact : vehicle A... 4
2| b +auxCtrisns : vehicle A... e
% % %’ [# -auxPInt : Vehicle Analy... Ve
) =] o T +brkCtrlact : vehicle An... Pl
55 Toralvehide E] T +brkCtrisns : vehicle An... v
£3.[F SteeringPlant 4 C8 -brkPInt : Yehicle Analysi... P4
T +cha: Vehicle Analysis ... o b +chactrlact : vehide an...| v~ «
.. 0 +ctrlct : vehicle Analys... e I +chaCtrisns : vehicle ... |/ "
.. B +ctrlsns : Vehicle Analy... 7 @ -chaPint : vehicle analys...| v "
.. B +ele : Vehicle Analysis A... s T +dinCriact : vehice an... |
E3-[/] ChassisPlant R R b +dinCtrisns : vehicle an... | v
.. 0 +brk : Vehicle Analysis ... | 8 -dinPInt : vehicle analysi...| v~ «
.. +ctrlact : Vehicle Analys...| v ' T +eleCtrlact : vehicle An... e
.. |0 +ctriSns : Vehicle Analy... | v T +eleCtrisns : vehicle An... v
- 7 +din : Vehicle Analysis .| v " @ -elePInt : Yehicle Analysi... v
.. |2 +ele : Yehicle Analysis &... v b +pwpactsns : vehide A... | v
.. 0 +ste : Vehicle Analysis ... Ve T +pwpCtrisns : Vehice a... |
E2-[] BrakePlant 4 3 B -pwpPInt : Yehicle analy... | v «
- J7 +cha : vehicle Analysis ... v 7 b +steCtrlact : Vehicle an... Ve
- 3 +ctrlact : Vehicle Analys... v T +steCtrisns : Vehicle An... 2
-1 +ctriSns : vehicle Analy... ¢ 8 -stePlnt : Vehicle Analysi... e
- T cheles: Vehicle Analysis .. % T +tnCtrlact : vehide an... | v«
E1-[F] TransmissionPlant 40 558 FF ;
.. B +ctrlact : Vehicle analys...| v v FeHmciions :‘\Iehlcle An 7
s s b 1 T CB -trPint : Vehicle Analysi... | v "
.. 0 +din : Yehicle Analysis A...| v " [F4] AuxdlaryPlant 4
. +ele : Vehicle Analysis A... 2 T +ctrlact : vehicle analys... '
T +pwp : Vehidle Analysis .. | & T +ctrisns : vehicle Analy... Ve
E1[F] PowerplantPlant 3 5 3 T +ele : vehicle Analysis A... e
.. 1 4aux : Vehicle Analysis ... v T +pwp : vehicle Analysis ... e
. 1 +ctrlact : Vehicle dnalys...| v " ElectricalPlant 9
. Jp +ctrlsns : Vehicle Analy... |/ " T +aux : Vehicle Analysis ... e
.. |7 +ele : Yehicle Analysis A... Ve b +brk : vehicle Analysis ... Ve
.. 0 +trn @ Vehicle Analysis &...| " b +cha : Vehicle Analysis ... e
E1[F] DrivelinePlant 4 5 4 b +ctrlact : vehicle analys... e
- +cha : Vehicle Analysis ... | " " b +ctrisns : vehicle analy... v
-0 +ctrlact : vehicle Analys...| v ' T +din : vehicle Analysis 4... &
b +ctrisns : vehicle analy... | v v To +pwp : Vehicle Analysis ... 7
T +ele : vehicle Analysis A... Ve T +ste : Vehicle Analysis ... P
r—.:b +trn : Vehicle Analysis A...| v " T+t : Vehicle Analysis 4... 7

Figure 30. Analysis Configuration Matrix for three example analyses

To aid the modeler in creating a specific analysis for a specific vehicle, a plug-in
for MagicDraw has been developed that asks the modeler which of the pre-defined
analyses he wishes to implement for a specific vehicle program. The plug-in then
generates a specialized analysis for the given vehicle program by copying the template
and renaming the blocks and parts to represent the specific program. Once the chosen
analysis has been specialized for a specific program, it can then be translated into
Modelica through another developed MagicDraw plug-in. The plug-in takes the analysis,

which is stereotyped by «Modelica» stereotypes and generates a “.mo” file that can be

51

opened in a Modelica based program, such as Dymola. The file only generates the
framework template for each of the subsystems. The internals of each subsystem must be
populated with the appropriate Modelica model content. This entire translation process

from SysML to Modelica is further discussed in the example in Chapter 5.

4.2.2 Defining the Translation to Simulink

In addition to generating analyses for the physical portions of the VMA that will
be translated into Modelica, the controls logic portion of the vehicle system architecture
will be translated to Simulink. From the vehicle program specific package in SysML, the
modeler can run another developed MagicDraw plug-in that will transform the program
specific SysML model into an “.m” file, which can be opened in the Matlab editor and
run to generate corresponding Simulink models. A separate Simulink model is created
for each subsystem depicting the subsystem’s inputs and outputs, and within the
subsystem there are the local and global program specific signals connected by buses, as
seen in Figure 31 and Figure 32. The subsystem templates can be used by the modeler to
fill in the appropriate control models. This process of translation the SysML model to

Simulink is further described in Chapter 5.

52

e

plnt=ns plntAct

e

ctrliGlablBus pwpCriGloblBus

PowerplantCaontroller_17

Figure 31. Example of a Simulink subsystem model

trnCirlGloblBus

cirlGloblBus

nClGloblBus

GlobalinputBus

GlobslOutputBus

I
»<lfypasEngaged] | e
[clutch1 [clutch1] clutchi
pintAct
» [:>utputSpEE:l| jsmpuﬁpss 5 — plntAct
q clutehZ
[clutch3] -—;[duwha'
clutchd
[clutch4] [clutch4] EEy
LocalinputBus clutc
clutch

LocalCutputBus

Figure 32. Example of a generated subsystem template that needs to be further defined

ol

3

4.3 Summary

In summary, the Vehicle Architecture Modeling Framework is an approach to
formally support the vehicle system model development process for complex modern
vehicles. It gives engineers the capability to adapt, adjust, and reuse the base architecture
while ensuring consistency throughout the model. First a generic vehicle architecture is
created, and from this architecture, a template for a specialized and redefined vehicle is
defined. From the specialized vehicle, engineers can create an architecture model for a
vehicle with a specific Program ID, for example, “C100”. Because SysML does not have
the ability to analyze and validate alternatives, the specific vehicle is then translated into
Modelica and Simulink component model templates through the use of several plug-ins.
The model templates for the physical side of the specific vehicle containing all of the
hardware connections and energy flows are transformed to Modelica. Then the
subsystem templates are handed off to the domain experts to be augmented with
appropriate Modelica subsystem models. Similarly, the framework for the controls side
of the specific vehicle containing the logical signals flows is transformed to a Simulink
template. Again the subsystem templates are given to the domain experts to be
supplemented with existing Simulink controllers to complete the model. Once these
processes have been completed, the Modelica model is imported into Simulink and the
two models are connected using Simulink constructs. Then the entire vehicle model can
undergo simulation and validation. An example of this whole approach is given in

Chapter 5 for the C100 specific vehicle and a 0 to 100 kph performance analysis.

54

CHAPTER 5:
EXAMPLE: ACCELERATION ANALYSIS FOR THE C100

VEHICLE MODEL

5.1 Introduction to the C100 Specialized Vehicle Example

The example model analyzed in this chapter is intended to demonstrate the
capabilities of using the VAMF approach given in Chapter 4 as a basis for creating
specialized vehicles and validating these specialized vehicles through multiple analyses.
If the example of the specific performance analysis test of “0 to 100 kph time” is able to
be verified for the specialized vehicle, named “C100”, then the VAMF approach is
proved successful and would greatly support engineers creating complex vehicle system

models.

5.2 Aptness of the C100 and the 0 to 100 kph Performance test

The “C100” Program ID was chosen as the specific vehicle to be used in this
example; however, this process can be completed for any vehicle Program ID. The 0 to
100 kph Performance test is a simple example that is used to demonstrate the capability
of the entire VAMF approach. Only a subset of the vehicle’s nine subsystems is

necessary, and the number of local and global signals is minimized for simplicity.

55

5.3 Guide to Creating Specific Vehicle C100 Example

The purpose for this work is to use model-based systems engineering to structure
a vehicle architecture model that includes an overall logical framework, which can be
specialized for a specific vehicle, and then perform different scenario analysis testing
incorporating both the logical and physical portions of the vehicle. The process flow
developed for this thesis can be seen in Figure 33. This chapter will highlight portions of
the process flow and describe the steps necessary in creating and analyzing a new
vehicle.

Before the process flow can begin, an overall generic system model in SysML is
created, which represents the vehicle’s subsystems, logical signals, physical energy
flows, and connections between the logical and physical portions of the vehicle. Once
the generic model is created, then it can be specialized within SysML for a specific
vehicle, which corresponds to 5 and 6 in Figure 33. Several analysis tests must be
performed on each specific vehicle. To complete these analyses, the analysis architecture
template must be checked out, as in 3 of Figure 33, and then the specific vehicle and
program information can be combined with the analysis template to create a specific
analysis for a specific vehicle, as in 7 of Figure 33.

Then the structure and interfaces of the model are translated into the Modelica
language in order to run analyses on the plant side of the vehicle, as in 9 of Figure 33.
The translation process includes adding «Modelica» stereotypes to the specific physical
portions of the specialized vehicle model and converting the SysML constructs into
Modelica constructs. In parallel with this progress, the structure and interfaces of the

controls logical side of the vehicle model is translated into Simulink, as in 10 of Figure

56

33. Then the internals of the Modelica plant and Simulink controls models are developed
and populated. This process is done by several Domain Model Developers in both
Modelica and Simulink. The Modelica Domain Model Developers receive the plant
model templates and the Simulink Domain Model Developers receive the control model
templates from the SysML Program Analyst and each adds in appropriate domain models
in their environments. In order to link the logical and physical portions of the vehicle
together, shown by 18 of Figure 33, we implement the Dymola block, which interfaces
between Simulink and Modelica in order to simultaneously solve Modelica models
during Simulink simulations. Through the Dymola block’s parameter window, the
complete Modelica vehicle model containing all of the physical portions of the model can
be imported into Simulink. Then buses were used to link the signals between the local
plant and controllers. Once this process is complete, the analyses can be run in Simulink
and the results examined, as in 23 of Figure 33. A general guide to completing these
tasks for the C100 vehicle and the 0 to 100 kph performance analysis is given in this

section, and a step by step guide is given in Appendix A.

57

act [Activity] Work Flow of Modeler [@Wark Flow of Modeler u

" Create 1
4 . SysML Model
k: % Use Cases
© useCases
'_ - Craste Initiate
: Analysis | 5 “ Check Out Change BCharge 4
Plan (Use |4 — — — — Generic Required? o r(t;cess.on
Cases) Analysis - [Yes] A garc
/ Architecture rchitecture
» F - | -
v analysisPlan
s analypisArchitecture ! [No]
5 ’ !
= |
s .
[Maintain I
5 ‘c Vehicle vehicleSpecialization !lﬁ |
Program_ID [Create Ve B
SysML
Program 7
H Maintain Sncnc
z Program _?nalylsls
s 6 Specific emplate
£ Interface 1o gramSpecificinterface g :
H specificAnalysis
E’ 3% specificArchitecture
& [" Export
= Export Program
2 Program Specific 9
»n 8 Specific Analysis
Analysis Specific
Specific Model to
Model to Modelica
Simulink ~F
T modelicaModelShells
simulinkModelShells
Initiate
Devel i Develop Change
Intemals to Internals to _11 _— Process_ on 16
10 Simulink Modelica | Domain
= Controllers Plant Model Models
g — I
fg q ompIeteSln'luIlnkC[ongoll_ers_ completeModelicaFlants |
@ |
a
3 L rer =
s ' Calibration | Calibration (I:'l"“'a‘e
= 12 of Domain — of Domain ange 17
£ Model Model Eiocession
: | |
rchitecture
2 calibratedVehicleAnalysis alibratedVehicleAnalysis
|
Validation of | | (Validationof | 15 |
14 Domain — ‘ Domain s sz w
Model Model
validatedVehicleAnalysis validatedVehicleAnalysis
Integrate TR
18 |simulinkand | _ _ Sl
Modelica
Models | 21 Process on
Domain
= ; ; 7 | Models
e integratedVehicleAnalysis |
s [Domain]
=
2 (l [Yes] /l\ Initiate
= Calibration 8 omain or- ChERE
3 19 ‘ of D:’::I'" - 3%% Architecture2” — =~ 2 proSon 22
= : | [Architecture] ensric
calibratedVehicleAnal | | [No] Architecture 3
? " | !
Validation of | | |
20 Domain S
Model !
|
validatedVehicIeAnaIyFis |
i |
! [e ——)
< Perform
£ ‘ Vehicle
€ Analysis
=
E
I

Figure 33. Process flow modelers of the VAMF
58

5.3.1 Defining the SysML Model of the C100 Vehicle

Chapter 4 describes how a generic specialized vehicle is created through
redefinition and specialization. This specialized vehicle is for a generic “ProgramID”
template that can be used to create a specific vehicle. To accomplish this task, the
modeler must make a copy of the Vehicle Specialization package and rename all of the
blocks by removing the “ProgramID” generic name and replacing it with “C100,” which
is completed in 5 of Figure 33. For example, the “Powerplant ProgramID” block would
be renamed ‘“Powerplant C100”. Once every block has been renamed, the new

specialized vehicle package would look like Figure 34 (Right).

48

L'i‘ 0 R 1-.‘7 7 Relstions
Relations e
e - #
&l ol -
ek &
e &
& =)
8- G-l
o -
&l ' -
g™ A
o =
&0 e
[~ g &l G
o (4 (‘; &
&bl [y -]
ek LA
P . 8- 0
o =
) e 8-
: e
8- eh —
80 s ED
E 4 L J
= b

Figure 34. (Left) Generic specialized vehicle package, (Right) C100 Vehicle package

59

Each of the blocks in this package still are specialized and redefined versions of
their generic, abstract VMA counterparts. In this manner, the new specific vehicle can

remain consistent with the base vehicle template.

5.3.2 Importing the Global and Local Signals

Before the specific vehicle component templates can be exported to Modelica and
Simulink, the modeler must first setup and then import the specific vehicle’s global and
local signals, which is accomplished during 6 of Figure 33. The global signals are the
signals that pass between each subsystem on the Control Global Bus, and the local
signals are signals that pass between each subsystem’s local plant and controller pieces.

The local signals are setup in an Excel file whose cells have been designated by
an Extensible Markup Language Schema Definition (XSD) to map to the correct nodes
when generating an Extensible Markup Language (XML) file. The modeler can modify
the Excel template to add the necessary local signals, as shown in Figure 35, and then

export the file to XML using the export function of the Developer tab, as depicted in

Figure 36.

| Subsystem B4 MessageType B SignalName EQunits K3 Description &3
Chassis Sensor outputSpeed double velocity
Powerplant Actuator pedal double pedal actuatar
Transmission |Actuator bypassEngaged boolean

Transmission |Actuator clutch_a boolean

Transmission |Actuator clutch_b boolean

Transmission |Actuator clutch_c boolean

Transmission |Actuator clutch_d boolean

Transmission |Actuator clutch_e boolean

Figure 35. Local Signals for the C100 Excel file with XML mapping

60

LocalSignals.xlsx - Microsoft Excel

Home Insert Page Layout Farmulas Data Review View Developer Add-Ins
5 ==] Record Macro I ol % Properties E “f Map Properties jlmport &
=l =3 ﬁ Use Relative References Q,:J\fiew Code :r;j Expansion Packs ﬂ:ﬂ Export %
Visual Macros Insert Design Saurce Drocument
Basic i\, Macro Security - Maode # Run Dialog ‘9] Refresh Data Panel
Code Controls XML Modify
I M3 - 5~ | Export XML Data
A B C D Export an XML data file.
Ml Subsystem B4 MessageType M SignalName K4 E
2 Chassis Sensor outputSpeed double velocity
3 Powerplant |Actuator pedal double pedal actuator
4 Transmission |[Actuator bypassEngaged boolean
5 Transmission |Actuator clutch_a boolean
G Transmission |Actuator clutch_b boolean
7 Transmission |Actuator clutch_c boolean
4 Transmission |Actuator clutch_d boolean
9 Transmission |Actuator clutch_e boolean

Figure 36. Export File to XML using the Export Function of the Developer Tab

To support the modeler in adding these signals, a plug-in has been developed. By

right-clicking on the specialized vehicle block, in this case “Vehicle C100”, the modeler

can click on the plug-in named “Import Signals” and then either select “Import Global

Signals” or select “Import Local Signals” as depicted by Figure 37.

61

24 [Vehicle Specialization : Venide_1/ ey
E}-[7 Wehicle Specialization : Vehicle_C100 ,1:' Allocate
- Analysis e FrreT
E-F3 Structurs
-2 vehich New Element » Image Shap:
@-F R NewDiagram , Diagram Ove
E ; New Relation v Padkage Diat
&% Block Definiti
B Open in New Tab T
-F
E = Unlock ' @Ccnswamtﬁ
5 Specification Enter Q Domain
- P 4 [¥] Value Type
o GoTe 3 &l Enumeration
s :
B Refactor » Signal
CIV8 | Selectin Structure Tree Elinstance
N —o Interface
m Select in Inheritance Tree
_— [=] Flow Spexific
-7 Vehicle Specig Related Elements 3 .
Bl Matrix Temply Tools , T eor
BB SysML [Syshil Interface Re
g SysMLAModel] Stereotype 3 A Link
£ Code engineering| — = = o]
G| Copy CurleC 7" Directed Ass
Copy URL o Directed Agg
. o Directed Cor
a Ctrl=V
A Generalizatic
o Cut CrlX -
N A Usage
W | Delete Delete Internal slod
Create Symbol Ctrl+Shift+V Information f
Generate Code Framework Cirl+G %] use Case Diz
Check Syntax Bequiement
Properties | ¢34 Profiing Med
ssages Window Find... m B X [Stereotype
lear Generate Report... 4 5] MetaClass
Reverse from Classpath /" Extension
MBSE » Import Global Signals
Impert Signals 3 Import Local Signals |
jed in as:jbranscomb3 Create Instance...

Figure 37. Import Signals Plug-in

Then a graphical user interface (GUI) window appears with the file browser
asking the modeler to select the XML file that contains either the global or local signals,

depending on which option the modeler chooses, as seen in Figure 38.

| £ Open U — b (|

Lookin: | |, ThesisExample > & El
- LocalSignalsC100.ml|

5

Recent Items

Desktop

E
My Documents

19

-

Computer (]

=3 ([
File name: LocalSignalsC 100.xml
Bk s ot [5

Figure 38. File Browser with the Local Signals for the C100 XML File

62

Once the XML file is opened, the plug-in then creates the signals as flow
properties of the corresponding subsystem’s signal blocks. In this example, the C100 has
a local Powerplant actuator signal named “pedal” which is added as a property of the
PwpActMs_C100 signal block. The added local signals for the C100 example can be

seen in Figure 39.

63

El-E7 Yehicle Specialization : Yehide_C100
D Analysis
E|E| Skructure
E}B Yehicle

El-* Relations

E Auiliary

E-F7 Brake

D Bus Structure

D Chassis

D Civeline

D Electrical

D Powerplant

Bl Signals
--E Auxiliary Signals
--E Brake Signals
--E Chassis Signals
--E Contral alobal Bus Signals
--E Driveling Signals
--E Electrical Signals
EIE Powerplant Signals
El-E PwpactMs_C100 «Elocks
B} O3 -pedal : SyshL::Elocks::Real «FlowPropertys
E-= PwpEloblMs_C100 «Elock:
----- B PrwpsnsMs_C100 «Blocks
[Steering Signals
=0 Transmission Signals
Bl TrnactMs_£100 «Hlocks
--I] -bwpassEngaged : SysML:Elocks: Real «FlowPropertys
--IE -clubch_a @ SyshL:Elocks::Real «FlowProperty:
--IE -clubch_b ¢ SeystL:Elocks::Real «FlowProperty:
--IE -clukch_c ¢ SysML:Blocks:: Real «FlowPropertys
--IE -clutch_d @ SvshL::Elocks::Real «FlowProperty:
B} 03 -clutch_e : SysML: Blacks: :Real «FlowPrapertys
BB TrniElobiMs_C100 «Blocks:
----- B TrnsnsMs_C100 «EBlocks
[Wehicle System Controller Signals
H--£] Skeering
H--£] Transmission

Figure 39. The Imported Local Signals augment the C100 Vehicle Model

A similar process is followed for adding the global signals to the specific vehicle
model. The global signals list can be exported to XML using Vector CAN tool features.
However instead of adding properties to the Sensor and Actuator signals of the
subsystems, the global signals for the Powerplant are added to the “PwpGloblMs_C100”
block, for example. Once the signals have been imported to the specialized vehicle

model, the specific analysis can be added for the specialized vehicle, as in 7 of Figure 33.

64

5.3.3 Translating the SysML C100 Model to Modelica and Simulink

After the local and global signals have been imported into the specialized vehicle
model, the model is ready to be translated into Modelica and Simulink for analysis, which
occurs in 8 and 9 of Figure 33. These transformations are a multi-step process, which is
also supported by plug-ins.

5.3.3.1 SysML to Modelica Translation

Translating the C100 SysML model to Modelica is a two-step process. First the
modeler must run the plug-in that creates SysML4Modelica models corresponding to the
necessary subsystems for the desired analysis. As described in Chapter 4 there are pre-
defined, program generic analysis templates. These generic analysis templates must be
made specific to a specific vehicle program before translated to Modelica. Therefore, the
modeler again right-clicks on the “Vehicle C100” block and runs the “SysML
Transformations” plug-in choosing the “Generate Modelica Analysis” option, as shown
in Figure 40. Then a GUI window appears asking the modeler to choose the desired
analysis, as seen in Figure 41. Once the analysis is chosen, another GUI asks the user to

input the desired ProgramID, “C100” in this example, which is depicted in Figure 42.

65

-7 Vehicle Specialization : Yehicle_C100 ,-’R' Allocate
E-E3 Analysis - Separator
E-E3 Struct
-6 vel New Element 3 Image Shape
B New Diagram 3 [°] Diagram Overvie
g g New Relation 3 [Package Diagram
- 2] Block Definition D
o] New Tab
- pen in New Tal] lock
g g Lok 4 Constraint Block
B Specification Enter =] pomain
=0 Behavior Diagram 2 [value Type
@0 GoTo N [zl Enumeration
= Signial
B Refactor e
-0 Select in Structure Tree Il
=5 . . —o Interface
.. @ Select in Inheritance Tree)
E Flow Specificatio
B3 Vehicle Spef Related Elements 3 Port
B3 g Matrix Tem Tools , Peer
B[R SyshL [Sy: A Interface Re...
B Eg SysML4Mo Sterectype 4 /4 Link
8 Code engineeri — = &5 Assodation Blod
M Copy Crl+C /" Directed Ass...
Copy URL " Directed Agg...
_ f Directed Com...
B | Paste Ctrl+V
! Generalization
¥ Cut Ctrl+X P
i Usage
W Delete Delete = =
Create Symbol Ctrl+ Shift+Y Fj Information Flow
Generate Code Framework Ctrl+G Use Case Diagrar
Check Syntax
Proper Prof Mechani:
:ssages Window Find.. = B ox Stereotype
Clear Generate Report... 3 g MetaClass
Reverse from Classpath /" Extension
MBSE 3 Generate Simulink Analysis
— SysML Transformations Ul Generate Modelica Analysis
ged in as:jbranscon Create Instance...
:t “Import Local Signals” as demicted by Fizure XXX

' (S5

Choose desired analysis

Vehide FuelEmtmI -

Vehicle_FuelEconomy

Vehicle_Performance
Vehide_0To100kph

Figure 41. Choosing the desired analysis

66

Input Lﬁj
'g' Enter Program ID
& ci00

’ QK] | Cancel

Figure 42. Choosing the desired ProgramID

After the specific ProgramID has been entered, a new package for the specific
analysis of the specialized vehicle appears in the Analysis package. Because the 0 to 100
kph performance test does not require all of the subsystems for analysis, only a subset of
the vehicle’s subsystems appear, as seen in Figure 43. The Powerplant subsystem and the
Vehicle are expanded for demonstration. These newly created subsystems are Modelica
models, as can be seen by their «<ModelicaModel» stereotype. They also only have the
necessary ports to capture the interactions between the necessary subsystems. The

analysis model is now ready to be translated into Modelica as in 9 of Figure 33.

67

E}D ehicle Specialization @ Yehicle_C100

El-E7 Analysis

B} Relations

EFE vehicle_0Ta100kph

E1-{I] Wehicle_0To100kph_C100 «ModslicaPackages

[uses(Model, ., «Modelicasnnotation:

B[] ChassisPlant_C100 «Modelicalodels «Blacks

B[] DrivelinePlant _C100 «<ModelicaModels «Blacks

I:—}-Iﬁl PowerplantPlant_C100 «Modelicarodels «Block:

[Diagramiar ... «Modelicadnnokations

- Iconfgraph,.. <Modelicasnnotation:

-0 +ctrlSns : Wehicle Specialization : Yehicle_C100::Analysis:: Yehicle_0Tol00kph: vehicle_0Ta100kph_C100:: ContralBus_C100 <MaodelicaPorts
]:I +ckrlact ¢ Vehicle Specialization : Yehicle_C100:: Analysis::vehicle_0Tol00kph: :vehicle_0To100kph_C100:: ControlBus_C100 «<ModelicaPorts
]:I +trn ¢ Wehicle Analysis Architectures::Modelica Definitions: Modelica:: Mechanics::Rotational: :Interfaces: :Flange_a «ModelicaPort:

I:]--|E| TransmissionPlant_C100 «ModelicaModels «Blocks

B[] Yehicle_C100 «MadelicaMadels «Blacks

- Relations

[Diagramigr ... «Modelicasnnotation:

+]--CE -trnPInt @ Yehicle Specialization @ Yehicle_C100::Analysis: Vehicle_0To100kph::Yehicle_0Tol00kph_C100:: TransmissionPlant_C100 «ModelicaPart:
---I__n| -pwpPInt : Wehicle Specialization : Wehicle_C100::Analysis: vehicle_0To100kph:: vehicle_0Tol00kph_C100: :PowerplantPlant_C100 «ModelicaParts
-8 -dInPInt : Yehicle Specialization : Wehicle_C100::anakysis: :Wehicle_0To100kph: :vehicle_0Tol00kph_C100::DrivelinePlant_C100 «ModelicaParks:
-8 -chaPInt : vehicle Specialization : Yehicle_C100:: Analysis::Wehicle_0Tol00kph: vehicle_0Tol100kph_C100::ChassisPlant_C100 «ModelicaParts
-8 +pwpiCtrsns : Yehicle Specialization : Yehicle_C100:: Analysis:: Yehicls_0To100kph: :¥ehicle_0To100kph_C100::ContralBus_C100 «ModelicaParts
; -1 +pwpCtrlact ; Yehicls Sperialization : Yehicls_C100::Analysis:Yehicle_0To100kph: ¥ehicle_0To100kph_C100:: ControlBus_C100 «ModelicaPorts
- +trnChrlsns : Wehicle Spedialization : Yehice_C100::Anakysis: Vehicle_0Tol00kph::¥ehicle_0To100kph_C100:: ControlBus_C100 «ModelicaPorts
H- 1 +rnickrlset : vehicle Specialization : vehicle_C100:: Analysis::vehicle_0Tal00kph: :vehicle_0To100kph_C100:: ContralBus_C100 «MadelicaPorts
- +dinCtrlsns ; Wehicle Specialization : Yehicle_C100::Anakysis:Yehicle_0Tol00kph: vehice_0To100kph_C100:: ControlBus_C100 «ModelicaPort:
- +dinChelact : vehicle Specialization : Yehicle_C100:: Analysis::Vehicle_0To100kph: Wehicle_0To100kph_C100:: ControlBus_C100 «ModelicaPorts
- +chaCtriSns : Wehicle Specialization : Yehicle_C100::Analysis: Vehicle_0Tol00kph::Vehicle_0Tol00kph_C100: :ControlBus_C100 «MaodelicaPorts
- T +chaClrlfct : Yehicle Specialization : Yehicle_C100: :Analysis::¥ehicle_0Tol00kph:: Yehicle_0Tol00kph_C100::CantrolBus_C100 «MaodelicaParts
B[] Wheels_C100 «Blacks «ModelicaConnectors

B[] ControlBus_C100 «ModelicaConnectors «Blocks

Figure 43. Performance Analysis for the C100 vehicle

5.3.3.2 Supplementing Transformed Modelica Model with Preexisting Models

The analysis SysML4Modelica architecture model is now able to be translated to
Modelica, through the use of another plug-in. The modeler right-clicks on the
Vehicle_C100 «ModelicaModel», which is under the newly created Vehicle_0T0100kph
package within the Analysis package of Vehicle Specialization: Vehicle_C100, as seen in
Figure 44. The modeler runs the plug-in named “SysML to Modelica” and chooses the
“Generate Modelica” option. The output of this file is a “.mo” file which can be opened
in Dymola. The newly created Modelica file is a template Modelica model, only
containing templates of the subsystems with input and output ports. The subsystems
must be augmented with fully defined subsystem models. An example of the C100

Transmission subsystem template is given in Figure 45.

68

EID ‘ehicle Specialization : Vehicle_C100

b

BB Analysis

= D ‘ehicle_0To100kph
B

i analysisfrchitecture_C100 «Blocks

@ AnalysisConkexk
B~ Structure
B[vehicle
R

- uses{Model... «Modelicasnng
EH-[I] ChassisPlant_C100 «Modslicd
B[] CvivelinePlant_C100 «Madelid
B[] PowerplantPlant_C100 «Hod

i .. eModelicad
[Icon(graph... «Modelicad
B +ctrlsns : vehicle Special
B +ctrlact : Yehicle Speciali
B +trn : wehicle Analysis &
TransmissionPlant_C100 «[o
Yehicle_C100 «ModelicaMods
A Relations
[Diagrar{gr... «Modelical
CHE -trnPlnk : Vehicle Specialig
CH -pwpFlnt : Yehicle Special
A -dInPlnt : Vehicle Specialig
A -chaPint : Yehicle Special
b +pwpCtrisns : Yehicle Sp
b +pepCtrlack : Yehicle Sp
T +trnCtelsns @ Vehicle Spe
T +trnChelact @ Vehicle Spe
T +dinCtelsns @ Vehicle Spe
T +dinCtelact : Vehicle Spe
T +chattrlsns @ Vehicls Spd
T +chaCtrlact : Vehicle Spe
B[] Wheels_C100 «Blacks «Made|
B[] CantrolBus_C100 sMadelicad]

%5 Zoom r@ Dccumeniatiqp/y ¥ Messages Wi

=ssages Window

Clear

1ged in as:jbranscomb3

EF R B

Mew Elernent
MNew Diagram
Mew Relation

Open in Mew Tab

Specification

GoTo

Refactor

Select in Structure Tree
Select in Inheritance Tree
Related Elements

Tools

Sterectype

Rename

Copy
Copy URL

Cut

Delete

Create Symbol
Generate Code Framework
Check Syntax

Find...

Generate Report...
ParaMagic

Reverse from Classpath
Util

Create Instance..
Import Signals

SyshL to Modelica
SysML Transfermations

4
3
L3
Enter
3
3
»
3
3
3
F2
Ctrl+C
Ctrl+V
Ctrl+X
Delete
Ctrl+Shift+Y
Ctrl+G
»
4
3
3
L3
3

cle_0Tol00kph_C100::ControlBus _C100 «ModelicaPorts
Cle_0Tol00kph_C100::ControlBus_C100 «ModelicaPorts
Jkational: . Inkerfaces: :Flange_a «ModelicaPorts

le_0Tol00kph_<100:: TransmissionPlant_C100 «ModelicaParts
icle_0Toi00kph_C1i00::PowerplantPlant_C100 «ModelicaParts
le_0Tal00kph_<100:: DrivelinePlant _C100 «ModelicaP arts
cle_0Tolookph_C100::ChassisPlant_C100 «ModelicaPark:
Yehicle_0Tol00kph_C100::ControlBus_C100 «ModelicaPorks
Wehicle_0Tol100kph_C100:: ControlBus_C100 «ModelicaPorts
ehicle_0Tol00kph_C100: :ContralBus_C100 «ModelicaPorts
ehicle_0Tal00kph_C100: :ControlBus_C100 «ModelicaPorts
ehicle_0Tol00kph_C100: :ContralBus_C100 «ModelicaPorts
ehicle_0Tal00kph_C100: :ControlBus_C100 «ModelicaPorts
Wehicle_0Tol100kph_C100::ControlBus_C100 «MadelicaPorts
chicle_0Tol00kph_C100::ContralBus_C100 «MadelicaPorts

G te Modelica

Figure 44. Generating the file containing the SysML to Modelica translation

69

ctriAct ctriSns

pwp din

Figure 45. TransmissionPlant_C100 subsystem showing its local Control Buses and
Rotational Connections to the Powerplant and Driveline

In order to complete the models, the modeler must fill in the details of each
subsystem and the vehicle with pre-existing Modelica models, as in 11 of Figure 33. If
there is a preexisting subsystem model, the domain expert needs to open the file
containing the existing model in the same Dymola window as the template. Then in the
overall Vehicle_C100 system view, domain expert can right-click on the plant
subsystems and choose “Change class.” Then they can browse through the existing
Modelica models and select the corresponding model. If a subsystem model does not
already exist, then the domain expert can develop the physical model inside the template
generated from SysML, seen in Figure 45, using Modelica blocks and modifying the
Modelica text to represent the desired fully defined subsystem model. The fully defined

Vehicle_C100 system would then appear as in Figure 46.

70

realPassThrough
outputSpeed DLI‘D UtSpEEU

>

oy LR
o

chaCtiAct chaCtriSns dinCtiAct dinCtiSns tmCtiAct tmCtiSns pwpCtiAct pwpCtriSns

o SRR tncipCiyiSns anciiba =" chatHAkEEns

P T =

Figure 46. Vehicle_C100 system fully-defined

5.3.3.3 SysML to Simulink Translation
In conjunction with the translation of the physical plant analysis architecture

model to Modelica, the logical controls architecture model is exported to Simulink
through the use of another plug-in, which is completed as part of 8 in Figure 33. To begin
the plug-in, the modeler would again right-click on the “Vehicle C100” block within the
“Structure” package of the C100 specialization package. The modeler again chooses the
“SysML Transformations” plug-in, but this time picks the “Generate Simulink Analysis”

option, as seen in Figure 47.

71

- —u .

E MD Customization For SyskL [MD_customization_For_SysML.mdzip]

E QDY Library [MD_cuskam
E-Bg UML Standard Profils [UML
--D ‘ehicle Analysis Archibecty
B3 Vehicle Madel Architechure
--D Vehicle Specialization
BB Vehicle Specialization : Yeh
D Analysis

EID Skruckure

BB vehicle

72 Relations
- Auxiliary

- Erake

- Bus Skructure
-7 iChassis

- Driveline

- Electrical

- Povwerplant
-7 Signals

- Steering

-3 Transmission
-3 Wehicle Svsten
sl ehjcle C100 «
b fE vehicle_C100
-3 Wehicle _0Tol00kmb
B} g Matriz Templates Profile [
B Eg SysML [SysML Profile. mdzi
B Eg SysML4Modelica [SysML4
@ Code engineering sets

[E3 Properties | £33 Zoom | B

-operties

lement | Language properties

= H £y &
E g = BE B
T e

Type here to filter properties

ady

= f B

Mew Element
Mew Diagram

Mew Relation

Open in New Tab

Specification

GoTo

Select in Structure Tree
Select in Inheritance Tree

Related Elements

Tools

Copy
Copy URL

Create Symbaol

Generate Code Framework
Check Syntax

Find...

Generate Report...

Reverse from Classpath
MBSE
SysML Transformations

Create Instance...

2
2
2
2
Enter
2
k
4
3
2
4
F2
Ctrl+C
Ctrl+V
Ctrl+X
Delete
Ctrl+5Shift+Y
Ctrl+G
k
2
k

Generate Simulink Analysis

Generate Modelica Analysis

Figure 47. Initiating SysML to Simulink Transformation

The plug-in generates an “.m” file script, which can be opened in a Matlab editor
and run to create the necessary Simulink subsystem controller models.
contains all of the local and global signal information to populate the 9 subsystem

controller models. As can be seen in Figure 48 each subsystem controller has two input

and output pairs, one for the local signals and one for the global signals.

72

The script

plrtSn= plrit 2t -

ctGloblBus tm Ctrd GloblBus |-

TransmissionContreller_C100

Figure 48. Example of the TransmissionController_C100 Subsystem

Inside of each subsystem, there are 4 buses, which are connected to each of the
inputs or outputs. Connected to the buses are signal pairs, in the form of Simulink’s
“Goto” and “From” tags. Each signal has a pair of these tags that link the signals to the
bus and to the internals of the subsystem, as shown by Figure 49. The next step in this
process is for the domain expert to supplement the template models of each subsystem

with appropriate Simulink controller models.

Gooarpuss
Chn0UpBs

4|_.<] 1]
Ot

priSas

|[e

7 I ;
] I ;
[

T | -

S -

Localimnits LocaiOuputSus

I =1 A

Figure 49. Internals of the C_100 Transmission Controller

5.3.3.4 Supplementing Transformed Simulink Models with Appropriate Models
In order to complete each of the logical controllers, the domain expert must

populate each subsystem with the desired controls algorithms for the specialized vehicle,

as in 10 of Figure 33. An example of a completed subsystem can be seen in Figure 50.

73

—ctriGiobiBus, !
B

'I <putputSpead>
cirlGlob|Bus

tnCtrlGloblBus

Scope GlobalQutputBus

@—D} ShiftStrategy
pintSns "
- ByrassEngag=d L]
oliteh_a
ciutch_a
- clutc?
raquestadGear clutch ¢ ——— - pintAct
Slutch_d - uteh_g clutch_c] A
el =] (e e P
clutch &
clutcnController
utch
Jutch,

LocalCutputBus

Figure 50. Fully-defined internals of the TransmissionController_C100 subsystem

5.3.3.5 Replacing Simulink Controllers

Once the controllers have been fully defined, they need to be inserted into the
overall Simulink VMA model. This top level model was created by hand because the
organizational framework of the Simulink VMA remains the same, and it only needs to
be updated with the latest controllers and Modelica model to be complete and validated.
In the VMA_Simulink_C100.mdl, the modeler needs to navigate to the Vehicle
Subsystem Controller view and replace each subsystem with the updated version, Figure

51.

74

s

[criGioniBus] crmcoms secrekoEs

ElectricaiContraller_C100

T

I

s

e

AudliaryCorérolier_C100

S ey

s

[EATGROE] ot

PONeTpIarComolir_C100

S cwoCTEooEs,

[eiriGiniEus] crmoNEs TChGRNES

TramsmisskonContmoller_C100

g

B SeCnERNEE

CrivelineCoriralier_C100

wsns

R SN S

CrzssComDier_C100

By
piiETE
Er—
----- =
e
—|§t21 ==

B TGRS

EraeCortrolier_C100

A CHIGIDEUS
S
PHECITICKOBS "
e =
mCHnGkeEus
L=t
oraCHCkoEws
e
oGBS

Figure 51. Replacing controller subsystems with updated controllers

5.3.4 Connecting the Plant and Controller Models in Simulink

Finally, the last step in this process is to import the fully-defined Modelica model

75

into Simulink as an S-Function and connect the physical plant models to their logical
controller counterparts, using a harness, shown in Figure 52, which occurs during 18 of
Figure 33. This integration of models is accomplished in Simulink through the use of a
“Dymola Block.” By double clicking on the Dymola block, the modeler can specify the
Dymola model he wishes to analyze, which in this case is the overall vehicle model in
Dymola, as seen in Figure 46. Once the Modelica model has been imported, its scalar

signals are grouped into appropriate buses. One shortcoming of this approach is that the

Control Bus blocks in Modelica are not fully supported by Dymola in the translation to
Simulink. In Modelica, these buses contain multiple signals, and it would be ideal if these
buses were mapped to Simulink as buses with multiple signals. However, the signals
map from Modelica to Simulink as scalars, and every scalar signal can be seen on the
Dymola Block, as can be seen in Figure 52. To solve this problem, we have created a
wrapper around the Dymola Block, which again groups the scalar signals into buses. The
hope is that in the near future the importation of Control Buses from Modelica into
Simulink is supported. In Figure 52, only the necessary ports are connected to the

Dymola block.

eleCiriSns
eleCtrlAct
auxCtriSns
auxCriact
T
2 pyvpCtriact ltnCirlAct_gearboxController_clutch_a pwpClriSns
pwpCtrial r
<b; D)
2) 1 trnCtriSns.
tr'nt:trL»Cu}lmCm“\‘:t L <eluteh_a> CirlAct_gearboxControlles * " °
clutch_b> AgEarme)

5
=}
@
E
@

<clutch_c= L
<clutch_d> P, ~
jtrnCirlAct_gearboxControlles haTtrns
dinCtrlAct

[‘ g
= (7]
chaCtE S s
[-mftmCirlAct_gesrboxControllen cutputSpeed —3
@ oufputSpeed
chaClrlct
steCirlSns

(He{tinCtrlAct_gearboxControlles
brkCtriact

[y

. N
steCtrlact pwpCtrlAct_pedal

Scope

Lp{trCirlAct_bypass

Figure 52. Connecting the physical Modelica model to the logical Simulink model
After all of the signals have been connected, the entire vehicle model can be run
in Simulink. The results of the analysis test from 0 to 100 kph for the Vehicle_C100
model are given in Figure 53. In the process flow of Figure 33, the Simulation Analyst
would take Figure 53 and determine whether the output is desirable. If it is, then the

process flow continues to 23 of Figure 33, and if not, then the iteration process continues.

76

It is not the goal of this research to generate Figure 53, but to support the entire vehicle

modeling process to be able to generate Figure 53.

0 to 100 kph Performance Analysis
140 T T T T T T T

1201 _ ' : : :’]
100} 1 : : : 5 ’
8- E é g : z 7

60 v . : : : : 1

kph

20- : : , .

20 1 I | | 1 I | 1 1
0 2 4 6 8 10 12 14 16 18 20
Time

Figure 53. Output speed of vehicle in the 0 to 100 kph test

5.4 Summary

This chapter describes how an engineer would approach implementing the VMAF
by reusing the generic VMA to specialize it for a specific vehicle and then analyzing the
results from the vehicle models for a variety of different analysis tests. The example used
throughout this chapter is the C100 vehicle and the example analysis is the 0 to 100 kph
performance test. The process flow in Figure 33 is followed in creating and analyzing a
new vehicle. This procedure in creating the C100 vehicle, generating, and simulating the
analysis is aided by several plug-ins, which have been developed to reduce the modeling
time and the potential for user error. If changes are made to the C100 model in SysML,

the analysis architectures can be easily regenerated and updated.

77

CHAPTER 6:

CONCLUSIONS AND FUTURE WORK

In this thesis, an approach for supporting Model-Based Systems Engineering of a
multidisciplinary vehicle system is introduced. The approach starts from a formal
SysML-based specification of a generic vehicle architecture that can be specialized for
specific vehicle programs. From the SysML model, the systems engineer can also
generate corresponding vehicle analysis model templates by automatically transforming
part of the SysML model into integrated analysis models in Modelica and Simulink. This
last chapter reviews the motivating questions from Chapter 1 and discusses the
contributions of this approach to the MBSE field, the limitations of this approach, and the
future work that would be desirable to enhance the VAMF. Finally, the thesis is brought

to a close with some concluding comments.

6.1 Reviewing the Motivating Questions

In Chapter 1, there is a discussion of the problem at hand: vehicle systems are
growing in complexity, which in turn gives rise to a need to formally model these
complex systems accurately and consistently. There are many aspects that must go into
representing modern vehicle systems due to their span over multidisciplinary domains.
The approach taken in this research is to create a vehicle system architecture that
encompasses the entire system including structure and analysis. The overall motivating

question for this thesis is repeated below.

78

Motivating Question:
How can engineers use SysML to model complex vehicle system architectures and the

corresponding multidisciplinary analyses effectively, consistently, and accurately?

In response to the first part of this question, the Vehicle Architecture Modeling
Framework was devised in order to formally represent the architecture of modern,
complex vehicle systems. Because this question contains multiple important parts, it was

divided into three sub-questions, as given below.

Question 1:
How can engineers effectively model vehicle architectures in SysML representing the

energy and signal flows between all aspects of the vehicle?

As part of the VAMF, the Vehicle Model Architecture is defined in SysML using
the necessary modeling constructs, as described in Chapter 4. The VMA definition
contains the vehicle’s nine essential subsystems, and diagrams depict how the subsystems
interact through physical energy flow ports and logical signal flow ports. By formally
modeling the VMA in SysML, the consistency is maintained and changes to the structure
are cascaded throughout the model.

As to the second part of the motivating question, Question 2 is restated below.

Question 2:
How can engineers create analysis architectures that can be reused for different vehicles

while remaining consistent with the base vehicle architecture?

79

It would be ideal to have all of the different analyses that are necessary to test vehicle
system alternatives and can be reused for different vehicle system alternatives within the
VMA SysML model. The solution to Question 2, as presented in this thesis, is to employ
the SysML4Modelica profile and create a vehicle analysis template for the entire vehicle.
Then, each new analysis can depend upon the necessary parts of the entire vehicle
template. Dependency matrices are employed to aid in the new analysis definition.

In order to analyze the VAMF alternatives, it is necessary to integrate analysis
languages with SysML because SysML does not inherently contain the ability to

internally analyze systems. This shortcoming leads to the rise of Question 3.

Question 3:
How can Vehicle Model Architectures be used to generate analysis templates in

Simulink and Modelica?

Previous works have explored exporting SysML models to an analysis and
simulation language in order to analyze multiple system alternatives. This thesis
proposes integrating both Modelica and Simulink with SysML to more accurately
analyze each alternative. Modelica is implemented for its abilities in analyzing physical
energy flows, and Simulink, on the other hand, is employed for its prowess with logical
control flows. Combined, the two languages provide a more accurate representation of
the analyses for each alternative. The physical plant side of the Vehicle Model
Architecture can be translated to Modelica to model the physical energy flows between
the subsystems. Then the logical control side of the VMA can be translated to Simulink.

Through the use of plug-ins, this translation process from SysML is supported for the

80

automatic generation of Modelica and Simulink templates. In this manner, changes in the
SysML model can be easily cascaded through to the analysis languages. Also, by reusing
the analysis templates, multiple vehicle architectures can be created based off of the

VMA to analyze different vehicle alternatives.

6.2 Contributions

The research described in this thesis has produced several contributions to
complex system modeling and the modeling process itself. First, the research
contributions consist of creating the entire Vehicle Architecture Modeling Framework
that formally models all of the essential aspects of modern vehicles. The generic Vehicle
Model Architecture, which models all of the vehicle’s essential subsystems, physical and
control interfaces, and the interaction between subsystems in a standardized fashion, is
defined in SysML. This architecture can be redefined and specialized for a specific
vehicle including adding specific messages and signals to the specialized vehicle for
defining the global signals and local sensors and actuators. In order to analyze the
specialized vehicle, common vehicle simulation analysis templates have been created,
and through developed tools, these templates can be also specialized for a specific
vehicle.

Another academic contribution is integrating the specialized vehicle and analysis
architecture models in SysML with analysis simulation models in the languages Modelica
and Simulink through the support of developed tools. In this manner, the generated
interface model templates can easily be filled by domain experts for each of the

subsystems, and such that they can subsequently be seamlessly combined into a complete

81

vehicle-level simulation model. The whole process of creating the VAMF and validating
different vehicle alternatives enhances the current Model-Based Systems Engineering
practices by enabling more efficient consistency management, reducing modeling time,
and decreasing the potential for human modeling error.

This research has also contributed to the MBSE practices by developing a process
flow for system engineers, depicted in Figure 33, which shows how the VAMF can be
used to create and analyze a new vehicle alternative. Figure 7 and Figure 8 show how the
entire vehicle modeling process flows from the initial decision to create a new vehicle to
the final validation of the model. The VAMEF fits into the red box depicted in Figure 8,
which shows how the architecture models are defined, specialized, and translated to

analysis models to be validated.

6.3 Limitations and Future Work

Even though the VAMF approach can greatly reduce the necessary modeling
time, there still are some limitations of this approach. The limitations are given below,

and for each limitation, suggestions for future work are also provided.

e Program specific architecture: In the VAMF approach, a generic vehicle
architecture is defined. From the generic structure, specific vehicles can be created
through redefining and specializing the base VMA. This modeling mechanism is
currently quite cumbersome. It is suggested that a different modeling approach
should potentially be adopted, such as including the variant modeling constructs
being defined in the upcoming SysML 1.4 release, or developing better tool support

to make the specialization and redefinition process easier.

82

e Generating signal stubs in Modelica: The local plant signals are not currently
supported by the SysML to Modelica conversion. Stubs for these signals should be
added automatically as “Reallnputs” or “RealOutputs,” but currently these signals are
manually added to the Modelica model. Also, it would be ideal if the SysML to
Modelica transformation took into account the difference between signals that are
sensors and actuators versus signals that are only monitored for analysis.
Additionally, it would be desirable if Modelica “Sensors” could be added
automatically to the Modelica models, such as adding a torque sensor which connects
to the “RealOutput” for a torque signal stub.

e Active consistency checking: The VAMF approach does greatly increase the ability
to maintain the consistency in complex models through the developed plug-ins and
formal modeling. However, if the modeler realizes that a local signal has been left
out of the translated Simulink model, the modeler must go back to SysML and add
the signal to its proper block and regenerate the Simulink model in order to remain
consistent. It would be convenient if all three languages, SysML, Modelica, and
Simulink could actively interact and changes in one program would be updated by
the other two, but this is a lofty goal.

e Better support for Modelica-Simulink interface: The Control Bus blocks in
Modelica are not fully supported in the Dymola Block importer in Simulink. It would
be ideal if the local signals could be put onto these Control Buses in Modelica, and
then these Control Buses would appear on the border of the Dymola Block in

Simulink as buses. However, at this point each signal on the bus appears as a scalar

83

signal. To adapt to this in the short term, Simulink Bus Selector and Bus Creator
blocks are used to rewrap the local Modelica signals into buses.

e Analysis Configuration matrix support: The SysML Analysis Architectures model
would also be easier to use if functionality was added to MagicDraw’s dependency
matrix, as depicted in Figure 30. Currently, the dependencies must be added manually
to the matrix by the modeler. The modeler must either create a new BDD and add the
new analysis and connect dependencies to the specific parts of the generic analysis by
hand, or add the dependencies through the specification window. Either way, this
task is cumbersome. It would be ideal if the modeler could just create a new analysis
and then double-click on the specific subsystems, ports, and parts in the analysis
matrix that correspond to the new analysis to turn on or off the dependencies.

e Additional diagrams in the VAMF: Finally, the VAMF would be improved if the
future work includes adding representations of the VAMF Use Cases to SysML
through Use Case diagrams. These diagrams would contain the different vehicle
operating scenarios and help to better define the entire vehicle system. Also, a
Vehicle Program Analysis Plan should be created, which includes the domain model
requirements and the list of desired analyses that need to be completed by analysts.
Adding these additional items to the current Vehicle Architecture Modeling

Framework would greatly benefit the approach and better define the vehicle system.

6.4 Summary

As engineering systems are becoming more complex, engineers must be able to

effectively manage a considerable amount of design information and knowledge.

84

Previously, this information and knowledge was captured in a document-based fashion
[9], but continuously updating these documents leads to human error, and this process is
becoming antiquated with the advent of Model-Based Systems Engineering. This thesis
presents an alternative method to document-based engineering, namely using MBSE,
which gives designers the capability to actively update models and propagate these
changes throughout system models.

To advance the MBSE process, this thesis presents a method to create and analyze
vehicle system architectures that encompass multidisciplinary domains. SysML is used
to formally model the vehicle system architecture through the approach of the Vehicle
Architecture Modeling Framework. Because SysML does not inherently contain the
ability to analyze various alternatives, the SysML models are translated into Modelica
and Simulink to be analyzed. This process is aided by the use of several developed plug-
ins for MagicDraw that aid modelers in creating a specific vehicle and translating the
analysis architectures to Modelica and Simulink. These plug-ins reduce the modeling
time and the potential for human translation error. They also give the ability to
automatically cascade changes made in the SysML model to the Modelica and Simulink
analysis models.

Hopefully, the work in this thesis not only gives engineers the ability to model
and analyze vehicle architectures, but also gives direction to future researchers who wish
to further multiple model integration and the overall MBSE process. MBSE in general is
a relatively new concept and it is gaining momentum in the industrial world as companies

understand the benefits MBSE provides over current modeling practices.

85

APPENDIX A:

STEP BY STEP GUIDE TO CREATING SPECIALIZED VEHICLE

1. Copy-paste “Vehicle Specialization” package at the top level of the SysML
project and rename it to specify the desired Program ID (ex: Vehicle Specialization:

Vehicle_C100).

2. Open each sub-package of the newly created specialization package and
rename all blocks from “ ProgramID”, Figure Al(a), to the desired ProgramID (ex:

“ C100”), Figure A1(b).

o-a&{]

o1 [0

80 B} Relstions

]

=) -l
e o =]
ekl A
é% 9
e 38|
e -
; B &
ek &
i 3]
20 8-
8 &
i =
ekl N =]
-] L
b &8
o =
i e 8-
[—d 611"
8- 8-
80 &0
E "',3

&
Figure A 1. (a) Vehicle Specialization package with generic “ ProgramID” block names.
(b) C100 Specific Vehicle Package with specific “ C100” block names.

3. Local Signals Excel Setup

a. Open the Local Signals Excel file

86

b. Make desired changes to the Local Signals file
c. For Excel 2003, on the Data menu, click on XML and then
Export to export the Local Signals as an XML file
4. Import Global Signals
a. Right click on the newly created Vehicle_C100 (or whichever
ProgramID is specified).
b. Run the plug-in named “Import Signals” and choose the “Import Global

Signals” option, Figure A 2.

bh-[] Vehicle Specialization ; Yehicle_L/ ey
FJEl Vehicle Specialization : Yehicle_C100 A3 Alocate
E-E3 Analysis - Separator
E-E37 Structure
E"EI Yehich Mew Element » =] image Shapi
B New Diagram v Diagram Ove
New Relation , Package Diag
Block Definiti
Open in New Tab %;d‘ SHR
o
pnicck 4 Constraint B
Specification Enter g Domain
3 [Value Type
GoTo » =] Enumeration
Refactor b Signal
Select in Structure Tree Sl ake
. - —0 Interface
Select in Inheritance Tree
E Flow Specific
B Vehicle Specdiy Related Elements 3]:‘ port
B Matri: Templd Tools , =
B SysiL [Syshlf " Interface Re
BHEg SystLaadel Stereotype 3 /1 Link
g Code enginesring Rename = é Association|
@ Copy Crl+C A Directed Ass
Directed A
Copy URL o Dire o
Directed Cor
a Cirl+V 4
1 Generalizatit
of | Cut Ctrl+X n
N 1, Usage
I Delcte petce Internal Blod
Create Symbol Ctrl+Shift+Y Information f
Generate Code Framework Ctrl+G @ Use Case Diz
- Check Syntax fsgucement
Properties | ¢34 Profiling Med
szages Window s ® & X Stereotype
Jear Generate Report... 3 @ MetaClass
Reverse from Classpath /" Extension
MBSE 3 Import Glebal Signals
Import Signals b Import Local Signals]
RS Create Instance...

Figure A 2. Import Signals Plug-in

c. Choose the XML file for the C100 global signals from the file browser.
The global signals should appear in the Wehicle Specialization:

Vehicle_C100::Structure::Vehicle::Signals package as flow properties of

87

each of the subsystems global signals blocks (ex. PwpGlobIMs_C100

should have flow properties for the Powerplant global signals)®.

5. Import Local Signals

a. Right click on the newly created \Vehicle_ C100 (or whichever
ProgramlD is specified).

b. Run the plug-in named “Import Signals” and choose the “Import Local
Signals” option.

c. Choose the XML file for the C100 global signals from the file browser.
The local signals should appear in the Wehicle Specialization:
Vehicle_C100::Structure::Vehicle::Signals package as flow properties of
each of the subsystems local signals blocks (ex. TrnActMs_C100 should
have flow properties for the Transmission local actuator signals, Figure A

4).

! The Global Signals XML file came directly from the CAN DBC export

88

B3 Yehicle Specialization
D Analysis
B3 Struckure

B3 vehide

+ehicle_C100

- Relations
B3 Auxiliary
-7 Brake
B[Bus Structure
-7 Chassis
B Drivedine
B Electrical
B Powerplant
B Signals
--E Auxiliary Signals
--E Brake Signals
--E Chassis Signals
--E Control Global Bus Signals
--D Driveline Signals
--D Electrical Signals
L—__}D Powerplant Signals
Bl PrpActis_C100 «Blocks
B0 -pedal : SysML:EBlocks::Real «FlowPropertys
- PwpaEloblMs_C100 «Elocks:
----- E Pwp3nsis_C100 «Elock:
B Steering Signals
B WELES Signa jbra
B1-E5 TrnactMs_C100 «Elocks
--I?u! -bypassEngaged ; SvsiL:Elocks:Real «FlowProperty:
BH-C1 -clutehl SysML:iBlocks: Real «FlowPropertys
[0 -clukch @ SysiL:Blocks: Real «FlowPropertys:
--Ij] -clukch3 ¢ SyshL:Blocks: :Real «FlowPropertys
--Ij] -clukchd ¢ SysML:Blocks: :Real «FlowPropertys
-0 -clutehs SysML:iBlocks: Real «FlowPropertys
B TrnaloblMs_C100 «Block:
E-E Trnsnsts_C100 «Elocks
B0 -outputSpeed @ SyshL:Blocks: :Real «FlowPropertys
B~ Yehicle System Contraller Signals
B[Steering
B Transmission
[Wehicle System Controller
B Yehicle_C100 «EBlocks
... {2 Wehicle_C100

Figure A 3. The Imported Local Signals augment the C100 Vehicle Model

6. Run the SysML Transformations plug-in to setup Modelica transformation.

a. Right click on the same Vehicle_C100 block as in Step 3. Run the

plug-in named “SysML Transformations” and choose the “Generate

Modelica Analysis”, Figure A 4.

89

E}E Vehicle Specialization : Vehicle_C100 ,l’n' Allocate
t-F Analysis - Separator
B3 Struct
EH-E vek Mew Element » Image Shape
- Mew Diagram b Diagram Overvie
gg New Relation 3 Package Diagram
@ Block Definition D
B Open in Mew Tab E =
o
gg pniock ' Constraint Block
- Specification Enter g Domain
- Behavior Diagra 2 [value Type
SE Go To ¥ [l Enumeration
Signal
H-F7 Refactor 3
=8 Select in Structure Tree (=] Instance
=5 . . — Interface
@ Select in Inheritance Tree EI e
ow Spedificatio
[Wehicle Spe Related Elements 3 0
B-Eg Matrix Tem Tapar
Tools » P Interface R
g SysML [Ty ' Interface Re...
B[R SyvsMLaMa Stereotype 3 . Link
-8 Code engineer| Rename 2 & Association Blod
[Copy Cirl+C /" Directed Ass...
Copy URL o " Directed Agg...
alr ChrlsV .”Direcbed Com...
acte eV
1 Generalization
% Cut Ctrl+X Ay
) Usage
i Delete Delete Internal Dia
Create Symbol Ctrl+Shift+Y [Information Flow
Generate Code Framework Ctrl+G Use Case Diagrar
EE | Check Synta
Properties | Profiing Mechani
:ssages Window s LI S Stereotype
Clear Generate Report.., 3 E MetaClass
Reverse from Classpath /" Extension
MBSE 3 Generate Simulink Analysis
SysML Transformations » Generate Modelica Analysis P
ged in as:jbranscon Create Instance...
= ————l
:t “Tmoort Local Signals” as depicted bv Fioure XXX 1

Figure A 4. Running the Modelica Analysis Plug-inm

b. Specify the desired analysis from the drop down menu, Figure A 5.

[Input ﬁ]

Choose desired analysis
;Uel'ide_FuelEmtmy

Vehicle_FuelEconomy
Vehicle_Performance
Vehide_0To100kph

Figure A 5. Choosing the desired analysis

c. Specify the specific ProgramID (ex: C100), Figure A 6.

90

— e
Enter Program ID
100

| ok || cancel |

Figure A 6. Choosing the desired ProgramID

d. The analysis should appear in the Analysis package under the Vehicle

Specialization: Vehicle_C100 package, Figure A 7.

=t 3 vehicle Spedalization : Yehicle_C100

ERE Analysis

-- 2 Relations

ElE Yehicle_0Tol00kph

B[] Yehicle_0Tol00kph_C100 «ModelcaPackages

- uses(Model. .. «Modelicannaotation:

B[] ChassisPlant_C100 «Madelicatodels «Blacks

B[] DrivelinePlant_C100 «ModelicaModels «Blocks

[—}--Lﬁ_| PowerplantPlant_C100 «Modelicaladels «Blacks

-4 Diagramiar. .. «Modeicasnnatation:

- Iconigraph, .. «Modelicasnnotations

B0 +ctrlSns : Vehicle Specialization : Vehicle_C100::Analysis::Vehicle_0To100kph::¥ehicle_0To100kph_C100::ContralBus_C100 «ModelicaParts
-0 +ctlct : Yehicle Specialization : Yehicle_C100::Anakysis: :Vehicle_0Tal00kph::Yehicle_0Ta100kph_C100:: ConkralBus_C100 «MadelicaPart:
B +ten s Vehicls Analysis Architectures: :Maodelica Definitians: :Madslica::Mechanics: Rokational:: Inkerfaces: Flange_a «MadslicaParts

[}--IE TransmissionPlant_C100 «Modelicatodels «Blocks

B[] Yehicle_C100 «Modelicalodel: «Elocks

[-% Relations

[Diagramigr .. «Modelicasnnotation:

E-CE -krmPInt ¢ Vehicle Speciglization @ Yehide_C100: Analysis::Yehicle_0Tol00kph:vehicle_0Tol00kph_C100:: TransmissionPlant_C100 eModelicaParts
[l CE -pwipPint : Yehicle Specialization : vehicle_C100::Analysis::Vehice_0Tal00kph::vehicle_0To100kph_C100: :PowerplantPlant_C100 «Modelicarart:
E-CE -dinPint : Wehicle Speciglization @ Yehide_C100:: Analysis::Yehicle_0To100kph: vehicle_0Tol00kph_C100::DrivelinePlant_C100 «ModelicaParts
-8 -chaPint ; Vehicle Specialization : Yehicle_C100::Analysis::¥ehicle_0Tol00kph::Yehicle_0To100kph_C100::ChassisPlant_C100 «<ModelicaParts
BT +pwipCriSns @ Vehicle Specialization @ Yehicle C100::Analysis vehicle_0Tal00kph:Vehicle_0To100kph_C100::ContralBus_C100 «ModelicaPorts
BB +pwpClritict ; Wehicle Specialization : Wehicle_C100:: analysis::vehicle_0To100kph: vehicle_0Ta100kph_C100::ContralBus_C100 «ModelicaPort:
B0 +rnChrSns : Yehidle Specialization : Yehicle_C100::Analysis: :Vehicle_0Tol 00kph: :Yehide_0Ta100kph_C100:: ContralBus_C100 «MadelicaPorts
B HrnCtelact ; Yehicls Spedialzation ; Vehicle_C100;:Analysis:Yehicls_0Tol 00kph: :Yehice_0To100kph_C100: ControlBus_C100 «MadslicaPort:
BT +dinCheisns ; Yehicle Speciaization ; Yehicle_C100::Analysis: Vehicle_OTol00kph: Vehice_0Tal00kph_C100: ContralBus_C100 «ModelicaPorts
B +dinCtrlact ¢ vehicle Specialization @ vehicle_C100::Analysis: :Wehicle_0Ta100kph::Vehicle_0Ta100kph_C100:: ControlBus_C100 «MadelicaPort:
10 +chaChrlsns : Yehicle Specialization : Yehicle_C100: Anaklysis::Vehicle_0Tol00kph: :Vehicle_0Ta100kph_C100:: ContralBus_C100 «ModelicaPorts
-1 +chaCtelAct ; Yehicle Specislization : Vehide_C100::Analysis:¥ehicls_0Tal00kph: :Wehicle_0Ta100kph_C100:: ControlBus_C100 «MadslicaPorts
[}--IE wheels_ 100 «Elocks «ModelicaConnectors

B[] ControlBus_C100 sMadelicaConnectars «Blocks

Figure A 7. Performance Analysis for the C100 vehicle

7. Run the plug-in to generate the Modelica code.
a. Open the Vehicle Specialization: Vehicle_C100::Analysis package and
expand the analysis package created in Step 4.
b. Right click on the Vehicle_ 0To100kph C100 «ModelicaPackage»
stereotyped block, and run the plug-in “SysML to Modelica” and choose

the option “Generate Modelica,” Figure A 8.

91

E| 3 vehide Specialization : Yehicle_C100

B Analysis

h_C1c ode
. «Modelicasinng
Eit-[F] ChassisPlant_C100 «Modelicd
[-[F] DrivelinePlant_C100 «Modelid
EH{[F] PawerplantPlant_C100 «Hod
[Diagramigr... «Madelicad]
- Icon{graph... «Modelicad
BB +ctriSns Yehicle Special
[0 4etrifct : Yehicls Speciali
B~ 18 +trn s Vehicle Analysis &
[-[F] TransmissionPlant_C100 </
Er-[F] vehicle_C100 «MadelicaModd]
-2 Relations
- Diagramigr... «Modelicad
(3-8 -trnPlnt @ Vehicls Specialii
[H-CE -pwpPlnt : vehicle Special
-8 -dinPInt : vehicle Specialiy
(-8 -chaPlint : vehicle Speciali
BB +pwpiCtrisns : Yehicle Sp)
-0 +pwpCtelact @ Yehicle So
[E
[E
[
[E
[E

H- 1 +hrniCtrisns ¢ vehide Spe
i 1 +erniCtrlact @ Yehicle Spe
H- 1 +dinCtrlsns : vehide Spe
i B +dinChrlact : Yehicle Spe
i~ 1 +chaCtrlsns : Vehicle Spd
B~ +chaCtrlact : vehicls Spq
E-[F] Wheels_C100 «Blocks «Mode]
B[] ControlBus_C100 «Maodelicad]
B Analysisarchitecture_C100 «EBlocks
@ AnalysisContext
E-E7 Struckure

B[Wehicle

= Ao .

%5 Zoom

2ssages Window

Clear

Bl Documentation ¥ Messages W

iged in as:jbranscomb3

MNew Element
MNew Diagram
New Relation

Openin Mew Tab

Specification

Go To

Refactor

Select in Structure Tree
Select in Inheritance Tree
Related Elements

Tools

Stereotype

Rename

Copy
Copy URL

Cut

Delete

Create Symbol
Generate Code Framework
Check Syntax

Find...

Generate Report...
ParaMagic

Reverse from Classpath
Util

Create Instance...
Import Signals

SysML to Modelica
SysML Transformations

Enter

-

-

F2
Ctrl+C

Crl+V
Ctrl+X
Delete
Ctrl+Shift+Y
Ctrl+G

3
3
3

cle_0Tol00kph_C100::ControlBus_C100 «ModelicaPort:
cle_0Tol00kph_C100::CantralBus_C100 «MaodelicaPort:
ok ational: :Intetfaces: Flange_a «ModelicaPorts

le_0Tai00kph_C100: TransmissionPlant_C100 «ModelicaParts
icle_0Tol00kph_C100::PowerplantPlant_C100 «ModelicaParts
le_0To100kph_C100: DrivelinePlant_C100 «ModelicaPart:
cle_0Tol00kph_C100::ChassisPlant_C100 «ModelicaParts
vehicle_0Tol00kph_C100:ControlBus_C100 «MaodelicaPorts
Wehicle_0Tol00kph_C100::ControlBus_C100 «ModelicaPorts
‘ehicle_0Tol00kph_C100::ControlBus_C100 «ModelicaPort:
ehicle_0To100kph_C100::CantralBus_C100 «ModelicaParts
ehicle_0Tol00kph_C100::ControlBus_C100 «ModelicaPorts
ehicle_0Tol00kph_C100::ControlBus_C100 «ModelicaPorts
ehicle_0Tol00kph_C100: ContralBus_C100 <ModelicaParts
ehicle_0Tol00kph_C100::ControlBus_C100 «ModelicaPorts

—

Generate Modelica

Figure A 8. Generating the file containing the SysML to Modelica translation

c. The plug-in creates a “.mo” file which can be opened in Dymola.

8. Open the newly created “.mo” file in Dymola and fill in the subsystems with

Modelica models. There are 2 ways to fully define the vehicle plant templates. The first

method is summarized in a-f, and the second method is summarized in g.

a. Figure A 9 shows an example of the template of a subsystem generated

from the SysML model?.

b. Navigate to the Vehicle_C100 system diagram, Figure A 10. Ensure

that the desired existing Modelica models are loaded in the Dymola

window

2 Eventually need to add scalar signal inputs in the translation from SysML to Modelica

92

c. Open up libraries of Modelica models with existing Plant content in
Dymola

d. Right click on one of the subsystem block, e.g. Powerplant_C100 and
select “Change class.”

e. Choose “Browse” and find the corresponding existing Powerplant
model

f. ?fter replacing all of the subsystems, model should look like Figure A
11°.

g. Alternatively, if there are no pre-existing plant models, the domain
expert must create the models using the Modelica model library or

manually using the Modelica language.

ctrisct ctriSns

pwp din

Figure A 9. TransmissionPlant_C100 subsystem showing its local Control

® 1t may be necessary to add some Modelica blocks to model the outputs because the buses aren’t
yet fully supported in the Modelica to Simulink conversion. In this example, the realPassThrough
block with the outputSpeed Real Output were added

93

pw‘%p&c’t pw%@ns

oy

[Z 5T P

dinCtdAct dinCitdSns tmctdAct tmCidSns

chaCtiSns
chaCiACt

pwp

- —— 1y B s, dINCHR e |
T L - =
R il"ii Drivelin.._

.—I..—.ﬂ—ﬂ

=L

gl

chaC
]

Figure A 10. Vehicle_C100 system

94

chaCtiact chaCtriSns dinCtriAct dinCtriSns tmctiAct tmCtiSns pwpCtiAct pwpCiriSns

realPassThrough

outputSpeed outputSpeed
. D
i
pwﬁﬂﬁ&ﬁ's"s trn_cttHLC s dancfRdr=ns eSS
o oo
E et ey
e kg T .
é\fﬂ = [

Figure A 11. Vehicle_C100 after replacing subsystems with existing models

9. Return to SysML, run SysML to Simulink plug-in.

a. Right click on the WVehicle_ C100 block within the Vehicle

Specialization: Vehicle_C100::Structure::Vehicle package.

b. Run the “SysML Transformations” plug-in again, but choose the

“Generate Simulink Analysis” option, Figure A 12.

95

T —u . - - - s
-E M0 Customization For SyskL [MD_customization_for_SystL.mdzip]
Bg Quow Library [MD_customn

Mew El t »

g UML Standard Profiie [LML Ew Hemen
Wehicle Analysis Architectul Mew Diagram r
3 vehicle Model Architecture Mew Relation »

-D ‘ehicle Specialization
BB Wehicle Specialization ; Yeh
- -E Analysis 3
E-E3 Structure
E}-F vehicle
¥ Relations
D Auriliary GoTo »
7 Brake
D Eus Struckure
B3 Chassis Select in Structure Tree
-7 Driveline
E-£7 Electrical
El Powerplant
B0 Signals Tools 3
B~ Steering
D Transmission
D Vehicle Systen| 2
m }yehicle_C100 <

Open in MNew Tab

Specification Enter

Select in Inheritance Tree

Related Elements 3

£ {E] ehirle_cton | B | Copy EikE
B[] Wehicle_0To100kmb Copy URL
B-[Eg Matrix Templates P.roﬁle [a8 Ctrl+V
B[SysML [SysL Profile. mdzi _
B-BR SysMLaMadslica [SysLan] ¥ Ctrl+X
-8 Code engineering sets W Delete
Create Symbol Ctrl+Shift+Y
Generate Code Framework Ctrl+G
Check Syntax
Properties | #3% Zoom | B Find...
~operties

Generate Report... 4

lement | Language properties

Reverse from Classpath

2 oa 55 5%
2 = = il MESE » Generate Simulink Analysis
T s

Type here to filter properties SysML Transformations » Generate Modelica Analysis

ady Create Instance...

Figure A 12. Initiating SysML to Simulink Transformation

c. An “.m” file is created, which can be opened in a Matlab editor.
10. Open the newly created “.m” file in a Matlab editor and run the script.
a. Simulink models for each subsystem are created in the present

directory, Figure A 13.

plrit Sns plrit Aot f

et GloblBus tmCtd GloblBus

TransmiszionController_C100

Figure A 13. Example of the TransmissionController_C100 Subsystem

b. The models are just the framework for the controller, so the model must

be supplemented with fully-defined controller models, Figure A 14.

96

ariGlablBus

tmCHriGIoblBus

Scope GlobalOutputBus

transmissionOutSpeed
e

-
pintSns

pintAct o

pintAct

LocalGutputBus

Figure A 14. Fully-defined internals of the TransmissionController_C100
subsystem

11. Replace controllers in the VMA_Simulink model
a. Navigate to the VMA_Simulink::VVehSys::VehSubSysCtrl window and
replace the necessary controller subsystems, Figure A 15.

b. Re-connect any connections that get deleted in this process

97

cIGkoEus

1 e pieanc |
e

[e ;.s—b@

eleCIGhEus

ElcanicalControlier_C100

loimzes pims] »

[eAriGioniEus] e sucTi ;54@

FCinGhalE:

AudlliarController_C100

[#nChoEs] R e Y)

DWDCHIGI0IE
PoweritContralier_C:100
—|-.-;—-:1 == P)
miEes e

S e

®_;> [earEhaEuE] B T
prtse

TransmissknCartraller_C100

= e

[eniGionius] oGBS gnCTiEReEs

AmCHriGkoEus

anCHiGkalEs

i DrvelineContraller_C100
==
[eriChoniEus] oot cutwassal———#{%)
= caCiriGlobBus
CrassisControlier_C100
B

[riGibiEus] SrEesEs DlTmeeEs

e DICHTIGIonES
SrakeControlier_C100

Figure A 15. Controller view of Simulink model

12. Replace Plant model in Simulink
a. Navigate to the VMA_Simulink_C100::VehSys::
VehSubSysPInt::VehiclePlant_C100.
b. Double click on the Dymola Block and choose the overall vehicle
model in Dymola (Figure A 11) and compile the model.
c. Ensure that the scalar signals on the boarder of the Dymola Block to

group the signals to Simulink buses are connected, Figure A 16.

98

sleClriSns
eleCtrlAct
auxCirlact auxCtriSns
(D
pwp;rmmvpmrlﬁxm [bllnCU\r'\cx_gEErb:}xC:mU:}HEr_dulm_s pwpChriSns
b > {8
@ 1 trnCtriSns.
Ctriact <clutch_a>»
trnCtriadf L = Colact_gesmoxConmlle T
<clutch_b= -2 5
<clutch_c= L dinCtrisns
=cluteh_d= - - D
eivton e trnCtrl Act_gearb ntrolles Chatins
dinCiridct —>I-' 3 iP
chaCtrign’:
[{tmCiriAct_gearboxContraller cutputSpesd —] BikCtriSns
oufputSpeed
chaClriAct
[{tmCiriAct_gearboxContraller steCiriSns
briCtriact
L
steCtria pwpCtrlAct_pedal
Scope
Lp{trCirlAct_bypass

DymolaBlock

Figure A 16. Connecting the physical Modelica model to the logical Simulink model

13. Run the Simulation in Simulink and analyze results.
a. Navigate back to the overall VMA_Simulink_C100 view and open the
scope by double clicking on it.

b. Press play and analyze results, Figure A 17.

0 to 100 kph Performance Analysis
140 T T T T T T T T

120+

100_ . — L $ I -
80_. B AN 2

kph

20 i i i i i j i i i
0 2 4 6 8 10 12 14 16 18 20
Time

Figure A 17. Output Speed of Vehicle_C100

99

APPENDIX B:

MATLAB AND DYMOLA: SET UP TO RUN

Matlab Setup

1. Install Matlab 2010a Win32 version (Matlab 2007b has formatting issues, but
other Matlab versions might work too)
a. 64-bit Matlab is not compatible with Dymola 7.4
2. Run "mex —setup” in the Matlab command prompt. Select same compiler as
Dymola.
3. Add Dymola Folders to Matlab path
a. C:\Program Files (x86)\Dymola 7.4\Mfiles
b. C:\Program Files (x86)\Dymola 7.4\Mfiles\dymtools
c. C:\Program Files (x86)\Dymola 7.4\Mfiles\tmf
d. C:\Program Files (x86)\Dymola 7.4\Mfiles\traj
Dymola Setup
1. This research uses Dymola 7.4 with the Modelica 3.2 library.
To Simulink/Dymola Run Model
1. Open the Dymola model containing the specialized vehicle analysis model (C100

0 to 100 kph performance analysis in this case)

100

2. Navigate to Vehicle_C100 model, Figure B 1

Vehicle_C100 - TotalVehicleOto100kphPackage.Vehicle_0Tol00kph_C100.Vehicle_C100 - [Diagram] - —

Package Browser

g X

Packages
+ €WModelica Reference

+ Modelica

+Unnamed

5 [Totalvehicledto 100kphPackage
<| [T vehicle_0To100kph_C100

© L. ChassisPlant_C100

B-DrivelinePlant_C100

iPowerpIantPIant_C 100

i-TransmissionPIant_C 100

- [F 3| wheels_c100

-

e B L€ %

s

Component Browser

=)

X

i=]FiIe Edit Simulation Plot Animation Commands Window Help

BHQAS N /OO ARL- 2[R Z- B-¢) mGHE E o -

Components

= I'I'otal'v'ehicleﬂto 100kphPackage. Viehicle ...

trnPint
pwpPInt
dinPint
chaPint
- lpwpCtriSns
- lpwpCtrlAct
- [l trnCirlSns
- [l trnCirlact
- Wl dinCrlSns
- [l dinCirlact
- Il chaCirlSns

-

m

chaly... SR8 dinglr.. ding. MG, 1mG.. PR, - PR, -

redlPassTh. .

outputSpeed
outputSpeed

| Madeling |:\C Simulation

3. Open Simulink model containing the VAMF, “VMA_Simulink_C100.mdI" for

this example

4. Go to Dymola Block and double click on it. The Dymola parameter window

Figure B 1. Dymola model under analysis

opens, Figure B 2

5. Click on "Select from Dymola" and "Compile model" buttons

101

- |-
| Parameters for Simulink block VMA_Simulink_C100/VehSys/VehSubSys/VehSubSysPint/Vehicle.., =nli=hi

Eile Edit View Insert Tools Desktop Window Help 7\

A Dymola model is a compied block alowing acausal physical modeing.
For further reference see the Dymola manual.
Dymola blocks must be compiled before the simulation is started, or you get an error message.
Model Settings _
ModelName 1o1anehicleOto100kmhPackage. Vehicie_0To100kmh_C100.Vehicle_t
Select from Dymola> hie N
C:/Users/iche/Documents/SysiL_VMA/Demo/TotalVehicleOto100kmt

Edt model Compile mom Reset Parameters

& , [Generate result
Advanced: 7| Hierarchical Connector as Bus [7] Compiler flag /digobj [7] Auto-load
[¥] Asow muttiple copies of block ———
Parameter Settings
trPint gearbox Jc1 30.0001 | -

trPint gearbox Jc2 o oo

Figure B 2. Dymola parameter window in Simulink

6. Run the Simulink Model

102

APPENDIX C:

DOCBOOK USER’S GUIDE

1. Decide where the documentation package should reside in the SysML model
a. Create a SysML package called “Documentation” in that location
b. Right-click on the Documentation package and select the plug-in “MBSE”

and choose the option “SE2: create Book”, Figure C 1

C.

B UML Standard Profie | UM Standard Profile. xml| Il El anche -
1] vehicle Analysis Arch Mew Element ¥ lment -
371 Wehicle Model Archit New Diagram R | R
=S mm)Documentation || g. Hency
EF-E7 The Powerpl New Relation [" | A
El-C Powerpl Open in New Tab tor -
T s lhape |
Specification Enter T SETE || .-
. E Diagram
N Use Case Numbering...
B Simpy . ° . Efinition Div.. ||
-7 Units and Flows Requirement ID Numbering... A
B Vehicle Domain
GoTo b oGintBlock | |} i
G- vehicle Specializatior] i
-] Vehicle Specializatior] Refactor L -
BH-Gg DocBookProfile [Cocl Select in Structure Tree ype v | |[[
D"E Matrix Templates P.r Related Elements » [fation
B~ SystiL [SysML Profilg .-
BB SystL4Modelica [Sy: Tools 3
- be
g Code engineering sets Stereotype v B
ce =
Rename F2 S i | A S
[Copy Ctrl+C -
Copy URL e
a Ctrl+V ———
] ¥ Cut Ctrl+X tion Bl...
. 4 A, w
Delete Delete = I | A
Properties | #3% Zoom| & e o : 4
Messages Window Create Symbol Ctrl+Shift+Y bz o - auxPInt - A
Generate Code Framework Ctrl+G = o | ZLEP"I-r'?dEg
Orphaned proxies found in Check Syntax | Block Dia... ||~ glgmé Elrz
them, read the resolution i Find... tion Flows - pprln_t: f
in the Active Validation resi ke Diagram || tﬁe;:_"{-?_
Search function, with the Modules 3 . <[!
Element Diagram Correspor| e m——— , EnEIEERE .
Element Package Correspor] Enerate Report.. Mechanism | Vehict |
jbranscomb3 ParaMagic Yowee (]
Elerment Diagram Correspon| Util b lass e
BuzzToys MyroMagic bjion L.l
BuzzToys Panorama 3 SE2:getTemplate
MBSE 3 SE2: create Book
Logged in as:jbranscomb3 SysML Transformations 3

Figure C 1. Creating a DocBook “Book”

103

Name the book, and enter desired information in the GUI, Figure C2.

Multiline Dialog

Enter Book Name
The Powerplant Subsystem

Enter Document Number

1
Enter Issue

1

1

Enter Issue Number

OK

| [cancel |

BBB@[E

Figure C2. Entering Book information

Chapter” etc, Figure C 3.

[} Correspondence Library

create the beginning of the book: “SE2:

2. Right-click on the newly created package stereotyped by «book»
a. Again navigate to the “MBSE” plug-in and choose one of the options to

create Part”, “SE2: create

matriz templates [matriz_templates_moduls
g MD Custornization far SyshL [MD_custamizal]
BBy QUDY Library [MD_rustomization_for_SyskL|
B-Eg UML Standard Profils [UML_Standard_Profils|
[Wehicle Analysis architectures

EHF3) Yehicle Model Architecture

EJ-F7 Powerplant Subsystem schapter,

B3 Definition «section:

[Parts on the Powerplant Sub|

[Ports on the Powerplant Sub)

7 Powerplant in SysML «sectio
£ Simplified Representation «:

£ Units and Flows

-1 Yehicle Domain

G- Wehicle Specialization : Yehicke_C100

[i-F] Wehicle Specialization

BB DocBookBrafile [DocBaokBrofls #1]

BB Matrix Templates Frofile [Matrix_Templates_|

£

[

- [ER, SyshiL [SyshL Profile.mdzip]
- [g SystLaModelica [SystlaMadelics #1]
= @ Code engineering sets

<[u

Properties | 55 Zoom | [Documentation

Messages Window

Clear

Orphaned proxies found in module DocBookProfi
thern, read the resolution instructions, Crpharne
in the Active Validation resuits and can also be d
Search function, with the "Crohaned prosies onl
Element Diagram Correspondences is already lodl
Elernent Package Correspondence Library is alres|
joranscomb3

Element Diagram Correspondences is already ol

Logged n asijbranscomba

i

R B

"

Mewr Element

Mew Diagram

Mew: Relation

Open in MNew Tab
Unlock

Specification

Use Case Numbering...
Requirernent ID Murnbering...
GoTo

Refactor

Selectin Structure Tree
Related Elernents
Tools

Stereotype

Renarne

Copy

Copy URL

Cut

Delete

Create Symbol
Generate Code Framework
Check Syntax

Find...

Modules

Generate Repaort,..
Paratagic

Uil

BuzzToys Myrohagic
BuzToys Panorama
MBSE

SysML Transfarrmations

Enter

F2
Ctrl+C

Chrl+4
Chrl+X
Delete
Crl+Shift+Y
Crl+G

ahlo

Vahi
(Vehicle Model Architecture
pan
....... aux : Auxiliary
brk : Brake
cha: Chassis
criGloblBus : CiriGloblBus
din: Driveline
ele ; Electrical
pwp : Powerplant
ste : Steering

trn: Transmission
wsc : VehicleSystemContro

Analysi

«ModelicaModels
«hlocks
Vahicle
(Vehicle Analysis Architectures.Tot

SE:
SE2:
SER
SEX:

create Part
createChapter
create Preface

createRevisionHistary

SE2iGenerate XML
SEZiGenerate PDF
SE2;Show Edit Panel
SE2iGenerate XML to PDF

Figure C 3. Creating a Chapter, Part, or Preface

framework for the book

104

b. Name the chapter, part, or preface and repeat this process to generate the

3. Instead of creating the book through by right-clicking on the stereotyped
elements, modelers can also create the book in the Edit Panel.
a. Right-click on the «book» and select “MBSE” and choose the option
“SE2: show Edit Panel”
b. The Edit Panel appears on the right side of the SysML diagram frame,

Figure C 4.

1 u° Edit Panel !
:| | Edit Panel 28 ox)
[The Powerplant Subsystem <<Package=> : Content I

| || B[] Powerplant Subsystem < <Package>> The Powerplant Subsystem o

= [Definition «<Package:>

e D Far the purposes of use in an expandable modular vehi
D The Powerplant accepts mechanical signals directly Frar

. D The Powerplant has the capacity to accept electrical co
E [Parts on the Powerplant Subsystem < <Package=>

e D Block Powerplant <<Comment > >

(] Ports on the Powerplant Subsystem < <Package>

o D EBlock Powerplant <<Comment =3

B[] Simplified Representation <<Packags»>

D Simplified Representation of the Powerplant < <Commes

Chapter | : Powerplant Subsystem

Section 1.1 : Definition

For the purposes of use it an expandable modular vehicle model, the Powerplant is
defined as a subsystem that develops a motive torque capable of propelling the wehicle,
where energy conversion devices such as an internal combustion engine and/or eleciric
motors produce the torgue. This motive torgue is delivered to the transmission subsystem
The Powerplant accepts mechanical signals directly from the Driver, electrical control
signals from the Controller Bus, 2 mechanical load from the Auziliaries subsystem and
plant signals from the Environmoent subsystem. The Powerplant also has an electrical L
current flow associated with it for energy exchange with the Electrical subsystem. i
The Powerplant has the capacity to accept electrical control signals for the purpose of
modifying its internal states, whilst also producing electrical signals of its own for use by
other subsystems.

Section 1.2 : Parts on the Powerplant Subsystem

Query : Block Powerplant

Section 1.3 : Ports on the Powerplant Subsystem

Query : Block Powerplant

Section 1.4 : Simplified Representation

T

o D 1t is sufficient to consider the Powerplant as a black bo

o D The Pawerplant subsystem also has a direct connection

"t Fhea Sam e et | Sep e et 1

< mn 3 9- L) kk

Figure C 4. DocBook Edit Panel

c. From the Edit Panel, modelers can right-click on any stereotyped element

and create portions of the «book», Figure C 5.

105

m1 Edit Panel
Edit Panel ERAS ¢
E_] The Powerplant Subsystem < <Package =3 Content
= Pi lank Subsystem < <Package> >
D LD b Section 1.1 : Definition g
Open Specification Dialog Wular vehid |For the purposes of use in an expandable modular vehicle model, the Powerplant is
Select in containment tree ectly fro defined as a subsystem that develops a motive torque capable of propelling the vehicle,
'where energy conversion devices such as an internal combustion engine andfor electric
create Section Ectrical co . . " .
— 5 N motors produce the torgue. This motive torque is delivered to the transmission subsystem
create Paragra
.g i The Powerplant accepts mechardcal signals directly from the Driver, electrical control
create Dibliography N signals from the Controller Bus, a mechanical load from the Auxiliaries subsystem and
Y] create Query plant signals from the Environment subsystem. The Powerplant also has an electrical
5 5 Simell create FigureDiagram current flow associated with it for energy exchange with the Flectrical subsystem
Ly create Figurelmage <«Cammer | 1e Powerplant has the capacity to accept electrical control signals for the purpose of
O create tableDiagrarn black bo |MOthEying its mternal stales, whilst also producing electrical signals of its own for use by
! D T create tableParagraph onnection other subsystems. T
Section 1.2 : Parts on the Powerplant Subsystem
Query : Block Powerplant
Section 1.5 : Ports on the Powerplant Subsystem
CQuery : Block Powerplant
Section 1.4 : Sunplified Representation
[s o s
. ; e N

Figure C 5. Creating book elements in the Edit Panel

4. 1If there is text that is not contained within any block’s documentation, then
modelers can use «paragraphs» to add any desired text
a. In the containment tree of the MagicDraw project, either from a «chapter»
or «section» within the «book», right-click, navigate to “MBSE” and
select “SE2: create Paragraph”
b. Double-click on the newly created paragraph to open the specification

window, and entire the desired text in the “body” field, Figure C 6.

106

P* Comment - <> = T ﬁ

Specification of Comment properties &
Spedify properties of the selected Comment in the properties specification table. Choose the Expert or All options =
from the Properties drop-down list to see more properties.

N
L

B -[@]-[#] @ & = Hstory{ DY [vehicle Model Architecture :Documentation::The Powerplant Subsyst... ||
<z

Documentation/typerinks | \[ge] o [S] =2 =f Properties: Al + [customize

Usage in Diagrams

E Comment
Active Hyperlink

L B Constraints Applied Stereotype Instance =1 : DocBookProfile :paragraph [Vehicle Mo...
Owned Comment
Owner 3 Definition [Yehicle Model Architecturs 10,
Applied Stereotype «# paragraph [Comment] [DocBookProfile]
Owned Element = : DocBookProfile: :paragraph [Yehicle Mode|
Owning Element B
Annotated Element
The desired text goes here. |
| [} Body 0
i Image
Tole
Documentation

Specifies a string that is the comment.

Q- Type here to filter properties

Figure C 6. Specification window for a «paragraph»

c. Alternatively, modelers can right-click on an element in the Edit Panel,
choose “create Paragraph”

d. Right-click on the new paragraph and select “Open Specification Dialog”

and repeat step 4. b)

5. To add diagrams that are contained within the SysML model, right-click on a
«section», under a «chapter» and run the “MBSE” plug-in and choose “SE2:
create Figure Diagram”

a. Enter the diagram caption

b. Select the diagram from the SysML project

107

6. To add tables containing the documentation for parts, ports, reference properties,
etc, right-click on a «section» and select “MBSE” and choose “SE2: create
Query”

a. Choose the block that contains the parts, ports, reference properties, etc

b. Once the query has been created, double click on it to open the
specification window

c. Navigate to the Tags and initiate the desired tags, Figure C 7. The most
important tag that must be selected is the “type.” As seen on the right side
of Figure C 7, modelers choose whether they wish to represent the part

properties, ports, etc.

P* Comment - Block Powerplant

Element tagged value specification
Select a tag and click the Create Yalue button to create new walue For it,

S
il g

% - iF1 - S ’..?, G = History || Black Powe.., [¥ehicle Madel Architecture :Documentation:: The Power,., = @,
[Block Powe. . Tags
Y| DocumentationfHyperlinks Profile: | <aLL=] Property:
Usage in Diagrams - .
nner Elements B BY - téi'lﬁg =] @ typeiQuen, [|
[Tags
: - E-## sparagraphz
to|B] Constraints : Value
e O ref = =
El-e5 squarys IpartPrnpertles -
& element rties -
i propetty
i representation = table LemplateParameters
& showDefault¥alue = false properties
i (2 showPropertiesDocumentation = true extensionPoint =
i & showQualifiedName = false FlaviProperties
i 2 showQueriedElementDocumentation = true referenceProperties
i (5 showTypesDocumentation = true valueProperties 5

B Jtype = partProperties

i (5 useQueryText = true

Forward

Figure C 7. Specification window for a Query showing the Tags

108

7. Finally, when the modeler is satisfied with the contents of the «book», they can
once again right-click on the «book» and choose “MBSE” and select “SE2:
generate PDF.”

a. The modeler then chooses the name and where to save the document and a

PDF is generated.

109

[1]
[2]

[3]
[4]

[5]

[6]

REFERENCES

"Ford New Product Architecture Abbreviations List," Ford Motor Company.
2006, SysML, OMG Systems Modeling Language (OMG SysML),
http://www.omgsysml.org.

2007, "F-14 Digital Flight Control System Modeled in Simulink," MathWorks.
2012, Arena Simulation Software, Rockwell Automation,
http://www.arenasimulation.com/Arena_Home.aspx.

Belton, C., Bennett, P., Burchill, P., Copp, D. et al., 2003, "A Vehicle Model
Architecture for Vehicle System Control Design,” SAE Technical Paper 2003-01-
0092.

Byung I. Min, A. A. K., Christiaan J. J. Paredis 2011, "Process Integration and
Design Optimization for Model-Based Systems Engineering with SysML," in
ASME 2011 International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference, Washington, DC, USA, pp. 9.

[7]
[8]

[9]
[10]
[11]

[12]

[13]

[14]
[15]

[16]
[17]

[18]

[19]

Che, J., 2012, "Process Flow of Vehicle Modeler," Ford Motor Company.

Che, J., 2012, "Detailed Process Flow of Domain Vehicle Modeler," Ford Motor
Company.

Estefan, J., 2007, "Survey of Model-Based Systems Engineering (MBSE)
Methodologies," Incose MBSE Focus Group, 25.

Fisher, J., 1998, "Model-Based Systems Engineering: A New Paradigm,”
INCOSE Insight, 1(3), pp. 3-16.

Friedenthal, S., Moore, A., and Steiner, R., 2008, A Practical Guide to SysML.:
The Systems Modeling Language, Morgan Kaufmann.

Johnson, T., Kerzhner, A., Paredis, C. J. J., and Burkhart, R., 2012, "Integrating
Models and Simulations of Continuous Dynamics into SysML," Journal of
Computing and Information Science in Engineering, 12(1), pp. 011002.

Karban, R., Zamparelli, M. et. all. , 2011, MBSE for Magicdraw: Plugin for
Magicdraw to Support MBSE with SysML
http://sourceforge.net/projects/mbse4md/.

Mathworks, S., 2008, "Simulink," vol. 2008.

McGinnis, L., and Ustun, V., 2009, "A Simple Example of SysML-Driven
Simulation,” Simulation Conference (WSC), Proceedings of the 2009 Winter, pp.
1703-1710.

Mitchell, S. W., 2011, "Efficient Management of Configurations in the Model-
Based System Development of a Common Submarine Combat System," pp. 8.
Nytsch-Geusen, C., 2007, "The Use of UML within the Modelling Process of
Modelica-Models," Link6ping University Electronic Press.

Paredis, C. J. J., Diaz-Calderon, A., Sinha, R., and Khosla, P. K., 2001,
"Composable Models for Simulation-Based Design,"” Engineering with
Computers, 17(2), pp. 112-128.

Paredis, C. J. J., Bernard, Y., Burkhart, R. M., de Koning, H.P., Friedenthal, S.
Fritzson, P., Rouquette, N. F., Schamai, W. , 2010, "An Overview of the SysML-
Modelica Transformation Specification,” in International Council on Systems

110

http://www.omgsysml.org/
http://www.arenasimulation.com/Arena_Home.aspx
http://sourceforge.net/projects/mbse4md/

[20]

[21]

[22]

[23]

[24]

Engineering (INCOSE), International Council on Systems Engineering, Chicago,
pp. 14.

Peak, R. S., Burkhart, R. M., Friedenthal, S. A., Wilson, M. W., Bajaj, M., and
Kim, 1., 2007, "Simulation-Based Design Using SysML-Partl: A Parametrics
Primer," in INCOSE Intl. Symposium, San Diego, CA.

Pop, A., Akhvlediani, D., and Fritzson, P., 2007, "Towards Unified Systems
Modeling with the Modelicaml UML Profile,” Linkdping University Electronic
Press.

Qamar, A., During, C., and Wikander, J., 2009, "Designing Mechatronic Systems,
a Model-Based Perspective, an Attempt to Achieve SysML-Matlab/Simulink
Model Integration,” Advanced Intelligent Mechatronics, 2009. AIM 2009.
IEEE/ASME International Conference on, pp. 1306-1311.

R. S. Peak, B.R. M. F. S. A. W. M. W. B. M., and Kim, I., 2007, "Simulation-
Based Design Using SysML-Partl: A Parametrics Primer."

Sage, A. P., and Armstrong, J. E., Jr., 2000, Introduction to Systems Engineering,
John Wiley & Sons, New York, NY.

111

