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NOMENCLATURE

a Crack depth.

b Crack half-width.

[C] Compliance matrix.

[D] Damping matrix.

[E] Matrix containing centripetal terms.

E Elastic modulus.

{F} Vector of applied forces.

[F ] Field matrix.

[G] Gyroscopic matrix.

I Area moment of inertia of uncracked shaft.

ICj Area moment of inertia of notched section about axis j.

Ip Polar mass moment of inertia of rotor.

It Transverse mass moment of inertia of rotor.

J(y) Strain energy release rate.

L Length of the undamaged shaft.

L1 Length of shaft to the left of the crack.

L2 Length of shaft to the right of the crack.

LC Length of notched section.

m Mass of the overhung rotor.

mε Imbalance mass.

[M ] Mass matrix.

Mj Bending moment about axis j.

n Shaft speed of system.

p Inertial frame eigenvalue.

[P ] Point matrix.
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Pi Load applied in the direction of axis i.

pr Rotating frame eigenvalue.

{q} Vector of rotor degrees of freedom.

R Radius of shaft.

{S}j State vector at jth node.

[U ] Overall transfer matrix.

ux Deflection of the rotor in the X direction.

uy Deflection of the rotor in the Y direction.

Vj Shear force in direction of axis j.

XY Z Rotating reference frame attached to hypothetical rotating undeflected
shaft.

Greek Symbols:

α Local crack depth along crack edge.

β Proportional damping coefficient.

ε Imbalance radius from rotor’s geometric center.

γ Total inertial frame angular response of the rotor.

γx Rotation of the rotor about the X axis.

γy Rotation of the rotor about the Y axis.

ψj Right eigenvector j.

ψ̃j Left eigenvector j.

ν Poisson ratio.

θ Imbalance orientation from rotor body-fixed axes.

{ξ} Vector of decoupled state space coordinates.

Ψj Mass normalized eigenvector j.

ξηζ Inertial reference frame.
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SUMMARY

To increase efficiency, shafts are made lighter and more flexible, and are de-

signed to rotate faster to increase the system’s power-to-weight ratio. The demand

for higher efficiency in rotordynamic systems has led to increased susceptibility to

transverse fatigue cracking of the shaft. Shaft cracks are often detected and repaired

during scheduled periods of off-line maintenance. Off-line maintenance can be ex-

pensive and time consuming; on-line condition monitoring allows maintenance to be

performed as-needed. However, inadequate (or a lack of) monitoring can allow rapidly

propagating cracks to result in catastrophic shaft failure. It is therefore imperative

to develop on-line condition monitoring techniques to detect a crack and diagnose its

severity. A particularly useful method for transverse shaft crack detection/diagnosis

is vibration monitoring.

Detection, and especially diagnosis, of transverse fatigue cracks in rotordynamic

systems has proven difficult. Whereas detection assesses only the presence of a crack,

diagnosis estimates important crack parameters, such as crack depth and location.

Diagnosis can provide the operator with quantitative information to assess further

machinery operation. Furthermore, diagnosis provides initial conditions and predic-

tive parameters on which to base prognostic calculations.

There is a two-fold challenge for on-line diagnosis of transverse fatigue crack pa-

rameters. First, crack characterization involves specifying two important parameters:

the crack’s depth and location. Second, the nature of rotating machinery permits

response measurement at only specific locations.

Cracks are typically categorized as breathing or gaping; breathing cracks open

and close with shaft rotation, while gaping cracks remain open. This work concerns

xiv



the diagnosis of gaping crack parameters; the goal is to provide metrics to diagnose

a crack’s depth and location. To this end, a comprehensive approach is presented for

modeling an overhung cracked shaft. Two linear gaping crack models are developed: a

notch and a gaping fatigue crack. The notch model best approximates experimentally

manufactured cracks, whereas the gaping fatigue crack model is likely more suited for

real fatigue cracks.

Crack diagnosis routines are established using free and forced response character-

istics. Equations of motion are derived for both crack models, including excitation

due to gravity and imbalance. Transfer matrix techniques are established to expedi-

ently obtain the steady-state system response. A novel transfer matrix technique, the

Complex Transfer Matrix, is developed to distinguish forward and backward whirl

components. The rotor’s angular response is primarily employed in this work for

crack detection and diagnosis. The overhung shaft induces an increased sensitivity to

variations in crack depth and location. In addition, an available overhung rotordy-

namic experimental test rig allows for comparison of the current analytic results to

previously obtained experimental results.

Under the influence of gravity, the steady-state response of the cracked system

includes a prominent 2X harmonic component, appearing at a frequency equal to

twice the shaft speed. The magnitude of the 2X harmonic is strongly influenced

by the shaft speed. A resonant response occurs when the shaft speed reaches half

of a system natural frequency. This work demonstrates that the profile of the 2X

harmonic versus shaft speed is a capable diagnostic tool. Identification of the 2X

resonance frequency restricts the crack parameters to certain pairs of location and

depth. Following this limiting process, the magnitude of the 2X harmonic is used to

identify the crack’s depth and location. Orbital shapes at the rotor are discussed,

as are orbital modes of the shaft deflection. Quantitative results and qualitative

observations are provided concerning the difficulty of crack detection and diagnosis.
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CHAPTER I

INTRODUCTION

Safe and economical operation of rotordynamic machinery necessitates adherence

to condition monitoring protocols. Condition monitoring assesses machinery health

on a periodic or continuous schedule to ensure continued successful operation. In

rotordynamic systems, condition monitoring is categorized as off-line or on-line. Off-

line condition monitoring is performed when the shaft has ceased rotation. Various

off-line condition monitoring methods exist, including visual inspection, ultrasound

techniques, static deflection tests, etc. These off-line condition monitoring techniques

require inspection and maintenance be performed on a periodic schedule, imposing

lengthy periods of costly downtime.

On-line condition monitoring is executed during normal (or pseudo-normal) op-

eration; costly and time-consuming downtime is therefore avoided. Pseudo-normal

operation entails deviation from normal operating conditions (for example, varying

the shaft speed away from the normal operational speed). This pseudo-normal run-

ning up and coasting down can provide valuable diagnostic information. Another

pseudo-normal form of condition monitoring involves exciting the system to observe

the transient response.

Judicious application of on-line condition monitoring for rotating machinery im-

parts numerous benefits to the operator. First, repairs can be made on an as-needed

basis rather than relying on scheduled periodic maintenance. The cost associated with

scheduled maintenance is often immense for large turbo-machinery systems, such as

power-generating steam turbines. Second, on-line condition monitoring can provide

a real-time diagnosis of fault severity. Based on the fault’s severity, the operator can
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Figure 1.1: Relationship between detection, diagnosis, and prognosis

make an informed decision on whether to continue operation or repair the machine.

Third, on-line condition monitoring decreases the probability of catastrophic failure

by providing a continuous assessment of fault progression.

Three levels of condition monitoring systems exist, according to their respective

objectives: detection, diagnosis, and prognosis. The relationship between detection,

diagnosis, and prognosis is summarized in Fig. 1.1. Detection is a binary fault judg-

ment; the condition monitoring system only indicates the presence of a fault, and a

signal indicating a fault is sufficient for the operator to take corrective action. Di-

agnosis improves upon detection by estimating the parameters of a fault, and is the

focus of this work. For example, a rotordynamic crack detection condition monitoring

system would alert the operator to the mere presence of a crack, whereas diagnosis

would also provide an estimate of the fault parameters (i.e., crack depth and location).

Prognosis is the most advanced stage of condition monitoring, and adds to diagno-

sis by employing the fault parameters to assess the machinery’s remaining life. To

continue with the example, prognosis would estimate the number of cycles remaining

until crack propagation resulted in shaft failure.

Rotordynamic systems are susceptible to mechanical faults in several key areas:
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bearings, seals, lubrication, and the shaft or rotor. The type of condition monitoring

system employed depends on the type of fault expected. For example, oil analysis has

proven well-suited for the detection and diagnosis of bearing faults and lubrication

issues, while vibration monitoring is used to diagnose faults associated with the shaft

or rotor. The wide array of rotordynamic faults has led to a broad range of condition

monitoring techniques.

The aspiration of any on-line condition monitoring system should be multiple

fault detection and diagnosis. Multiple fault condition monitoring describes a system

that can detect or diagnose significantly different faults, such as mechanical seal face

contact and transverse fatigue cracks. The difficulty of multiple fault condition mon-

itoring is that different faults often produce similar signatures when observed with

the same monitoring technique, such as vibration monitoring. A synthesis of moni-

toring techniques is therefore often employed to distinguish different faults. However,

simplicity and comparatively lower cost makes single-source condition monitoring at-

tractive and often advantageous.

The first step in developing an on-line condition monitoring system is to char-

acterize each fault. Multiple fault detection and diagnosis is possible only if each

fault is individually understood. The methods used to detect and diagnose each fault

serve as one facet of multiple fault condition monitoring. Only when the facets are

assembled is successful multiple fault detection attainable. The current work focuses

on one facet in particular: transverse fatigue cracking of the rotating shaft.

Transverse fatigue cracking of the shaft in a rotordynamic system is an increasingly

common problem. To increase efficiency, shafts are being made lighter and more

flexible, and they are designed to rotate faster to increase the system’s power-to-

weight ratio. This demand for increased efficiency of modern rotordynamic systems

heightens susceptibility to transverse fatigue cracking of the shaft. Shaft cracking

is particularly dangerous, as cracks are often difficult to detect until latter stages of
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propagation. Severe cracks can result in catastrophic shaft failure, an exceptionally

dangerous and expensive event. The ability to detect and diagnose transverse shaft

cracks soon after their onset is a vital component of any rotordynamic condition

monitoring system.

Vibration monitoring has proven to be a capable tool for fault detection and di-

agnosis [1, 2]. Vibration monitoring directly observes the system’s forced response;

in rotordynamic systems, forcing typically arises from gravity or imbalance. In this

work, monitoring the dynamic response of a system is referred to as vibration moni-

toring, due to identical measurement procedures and terminology. In rotordynamics,

the presence of a fault in conjunction with forcing (such as gravity) often generates

shaft speed harmonics occurring at integer multiples of the shaft speed. Most works

using vibration monitoring to detect rotordynamic faults employ these harmonics.

The primary goal of this work is to employ vibration monitoring to detect a trans-

verse fatigue crack and diagnose its parameters.

The success of an on-line crack diagnosis regimen hinges on the accuracy of the

crack model employed. Cracks are typically categorized as either gaping or breathing.

As the name suggests, gaping cracks remain open throughout rotation of the shaft,

resulting in a stiffness asymmetry which is time-invariant in a shaft-fixed rotating

reference frame. Contrary to gaping cracks, breathing cracks open and close period-

ically as a function of shaft rotation. The breathing behavior of the crack results in

a time periodic stiffness asymmetry even in a shaft-fixed reference frame. Regardless

of whether the crack is gaping or breathing, the crack model should account for the

crack’s depth and location, as both can have a profound impact on detection and

diagnosis. Negating the influence of crack location ignores a crucial component of

real cracks.

An on-line vibration monitoring procedure is proposed herein to assist in diag-

nosing the location and depth of a gaping transverse shaft crack. A gaping crack
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is selected for the analysis to provide a well-understood feasibility benchmark. It

is hypothesized that if the condition monitoring techniques are successful for gap-

ing cracks, the same techniques can be extended to incorporate breathing behavior.

An overhung rotordynamic system is employed to emulate an available novel rotor-

dynamic test rig capable of extracting the rotor’s dynamic angular response. The

overhung model is selected for several reasons. First, the model’s simplicity allows

the crack’s influence to be easily isolated. In addition, the rotor’s overhung nature in-

duces prominent gyroscopic effects, the magnitude of which assists in experimentally

measuring the rotor’s response. Similarly, the system is relatively flexible compared

to a similar simply-supported shaft; the crack’s influence on the dynamic response is

therefore easier to measure experimentally.

This introduction chapter presents concepts fundamental to rotordynamic condi-

tion monitoring. The problem of detection and diagnosis of transverse shaft cracks

in rotordynamic systems is motivated through its applicability to on-line multiple

fault detection. The difficulties and rewards of successful multiple fault detection are

elucidated, including a brief introduction to various crack models.

Works relevant to transverse shaft crack detection and diagnosis are reviewed

in Chapter 2. Furthermore, Chapter 2 examines the history of research leading to

this work, with particular emphasis on mechanical face seal detection. Various crack

models are discussed, as well as numerical and analytical techniques used to analyze

the crack models. Previous attempts to detect and diagnose transverse shaft cracks

using experimental methods are provided. Shortcomings of previous developments

are highlighted in relation to the goals of this work.

Chapter 3 develops two crack models: a finite-width rectangular notch and a true

gaping fatigue crack. A model of an undamaged (i.e., healthy) rotordynamic system is

first presented to provide a consistent framework for formulating the dynamics of the

system. By using a consistent dynamic framework, the differences between the crack
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models can be isolated and investigated. Basic characteristics of each crack model

are discussed, as well as the global stiffness of the overhung rotordynamic system

displaying each crack. The dynamic interplay between crack depth and location is

emphasized throughout. The previously constructed overhung rotordynamic test rig

is summarized, along with pertinent test rig parameters used in the analysis (Chapters

5 and 6 give a comparison to previously obtained experimental results).

The transfer matrix method is developed in Chapter 4. The method is a numeric

technique particularly useful for analyzing rotordynamic systems. Various transfer

matrix methods are presented, including transfer matrices corresponding to each crack

model. The advantages of transfer matrix methods are discussed. A novel transfer

matrix technique, the Complex Transfer Matrix, is developed to alleviate several

concerns typically associated with real-valued transfer matrix analysis (such as the

inability to distinguish forward and backward whirl).

Free and forced analytic results are presented in Chapters 5 and 6, respectively.

Results for both the notch and gaping fatigue crack are provided. Furthermore, two

cases for each crack model are examined: the first investigates a fixed-location crack,

while the second examines variations in both crack depth and location. Beyond

providing insight into the influence of crack depth, the fixed-location results allow

comparison to experimental and analytic results given by Green and Casey [1] and

Varney and Green [2]. The equations of motion are placed in a state-space form

and decoupled to provide for expedient solution. Expedient solution is crucial, as

the equations are solved for many combinations of crack locations and depths over a

range of shaft speeds. In addition, transformations necessary to move between the

rotating and inertial reference frames are developed. The influence of crack depth

and location on the system response is emphasized throughout Chapters 5 and 6.

The results from Chapters 5 and 6 are applied to crack detection and diagno-

sis strategies in Chapter 7 (experimental implementation is left for future work). A
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method employing the profile of the 2X harmonic versus shaft speed is used to di-

agnose crack depth and location. Practical considerations, qualitative observations,

and trends relevant for crack diagnosis are discussed.

The conclusions of the work, as well as avenues for further research, are provided

in Chapter 8.
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CHAPTER II

LITERATURE SURVEY

In the past several decades, a large volume of work has been performed on the mod-

eling and detection of transverse shaft cracks in rotordynamic systems. Beginning

in the 1960’s, several researchers (most notably A. D. Dimarogonas) began develop-

ing methods to detect transverse shaft cracks in the rotors of large steam turbines.

Since this preliminary investigation, significant gains have been made towards mod-

eling cracked rotordynamic systems and creating methods to accurately detect these

cracks shortly after initiation. The contributions of this work are discussed herein in

relation to this diverse body of previous research.

Efforts to increase the efficiency and power output of rotordynamic systems have

led to lighter and more flexible shafts designed to rotate faster. These changes increase

the propensity for transverse fatigue cracking, which can lead to catastrophic failure

if not detected at an early stage. Catastrophic shaft failure must be avoided, from the

perspective of both safety and economy. Bently and Muszynska [3] state that from

1976 to 1986, 28 significant rotor failures due to shaft cracking occurred in the United

States power industry. The review by Sabnavis et al. [4] states that the Electric Power

Research Institute estimates the financial losses due to shaft cracking in the power

industry at approximately US $1 billion. A successful and widely adaptable crack

detection and diagnosis routine is thus invaluable.

The relation of this work to research performed on seal face dynamics is first

discussed to contextualize the contribution of the present work.
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2.1 Mechanical Face Seal Dynamics

The current work on transverse shaft crack detection is an outgrowth of research per-

formed over the past two decades investigating the dynamics of a flexibly mounted ro-

tor (FMR) mechanical face seal system. In the 1980’s and early 1990’s, non-contacting

mechanical face seals were increasingly employed in high performance turbomachinery

applications. Though designed and utilized for their hypothetical long life and relia-

bility, non-contacting mechanical face seals were found to be susceptible to premature

failure. The dynamics of the non-contacting mechanical face seal were thoroughly in-

vestigated in an effort to understand these seemingly random failures.

The underlying kinematic model of the seal is essential to any work investigating

mechanical face seal dynamics. Green and Etsion [5] develop a kinematic model for

two seal types: a flexibly-mounted rotor (FMR) and flexibly-mounted stator (FMS)

seal configuration. Green [6] greatly expands upon the model by drawing a compar-

ison to the kinematic equivalence of the space cone/body cone system. These kine-

matic models, valid for many arrangements of anti-rotation and positive drive devices,

mathematically state that a constraint exists which forces corresponding points on

the seal rings to return to their original relative position following the completion of

each revolution of relative whirl. An integral contribution of their investigation to

this work is the presentation of the flexibly mounted rotor’s angular momentum.

Until the early 1990’s, much of the work concerning mechanical face seals did not

consider coupling of the shaft and seal dynamics. Lee and Green [7] develop a seminal

work on this subject, presenting the Complex Extended Transfer Matrix (CETM) for

investigating the coupled dynamics of a flexible shaft and a non-contacting mechanical

face seal riding on the shaft. The CETM is a transfer matrix technique allowing for

the inclusion of forcing (and thus, coupling) through an expansion of the system field

and point matrices (as summarized in Chapter 4). The CETM technique allows for a

numerical solution of the system dynamics at a given shaft speed, and thus provides
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Figure 2.1: Overhung rotordynamic test rig

a powerful tool for analyzing forced rotordynamic systems.

Following the development of the CETM, an overhung FMR non-contacting me-

chanical face seal test rig was constructed to investigate the mechanical face seal

dynamics experimentally [8] (the rotordynamic model used in this work emulates

the overhung test rig). Though only a summary is given here, the characteristics

of the test rig, as well as the data collection and analysis techniques, are discussed

extensively by Lee and Green [9]. The test rig consists of an overhung shaft with a

flexibly mounted rotor, as shown in Fig. 2.1. A carbon ring mounted on the rotor,

in conjunction with a cone-faced stator, forms a non-contacting mechanical face seal.

Hydrostatic effects generated by a water pump system are used to separate the faces,

while an air pressure supply maintains seal clearance. The angular response of the

rotor is extracted by a system of three stator-mounted eddy-current proximity probes.

During construction and testing of the experimental test rig, a unique vibratory

phenomenon was observed. In the steady-state rotor response, higher harmonic oscil-

lations occurring at frequencies equal to integer multiples of the shaft speed appeared

in the power spectral density (PSD) of the rotor’s response [8]. Furthermore, the
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periodic nature of these higher harmonic oscillations indicated that they originated

from the system operation itself rather than random noise. Following experimental

component isolation tests and an analytic investigation of non-linear effects, it was

determined that the higher harmonic oscillations were generated by seal face contact.

Similarities between an analytic Fourier analysis and the measured response were

used to verify the likelihood of seal face contact. In addition, specific changes to the

test rig were successfully employed to reduce the possibility of seal face contact, thus

eliminating higher harmonic oscillations from the response.

Seal failure is often precipitated by excessive seal face wear induced by rubbing

contact. Therefore, a seal condition monitoring system could incorporate seal face

contact detection to mitigate premature seal failure. Condition monitoring implies

real-time data collection and analysis to accurately detect the onset of a fault. Zou

et al. [10] modify the aforementioned test rig to allow real-time monitoring of the

rotor’s angular response. Furthermore, the angular orbit is introduced as a tool to

assist in real time seal face contact detection. Whereas a typical orbit gives a trace of

the rotor center as the shaft whirls (i.e., lateral deflections), an angular orbit provides

a trace of the rotor tilt (i.e., the path traced by the tip of a vector formed by the

orthogonal components of the rotor tilt).

Zou et al. [11] use two qualitative response signatures to detect seal face contact:

sudden deviation of the angular response orbit from a circular shape, and an increase

in the energy of the 2X and 3X higher harmonic oscillation peaks in the PSD. Once

detected, seal face contact must be remedied to avoid eventual seal failure. Zou

and Green [10] introduce a PI controller to maintain the clearance of the seal to a

set of prescribed values. Following this development, a feasibility study is performed

showing that contact can be eliminated through real time control of the seal clearance

[12]. Dayan et al. [13] develop an actively controlled contact elimination system to

eliminate seal face contact and reduce seal leakage.
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Rotordynamic systems are susceptible to many faults of vastly differing natures.

Thus, a successful condition monitoring system should be capable of detecting and

diagnosing a myriad of different faults. For simplicity and economy, it is desirable

that the system employ the same signal (e.g., angular response of the rotor) to detect

different faults. However, the difficulty in single-signal multiple fault detection is

that vastly different faults can generate similar response attributes. For example, a

transverse shaft crack also induces higher harmonic oscillations in a similar manner

to mechanical face seal contact.

Green and Casey [1] advance the aforementioned research by studying the feasi-

bility of using the current seal face contact detection system to detect a transverse

shaft crack. A gaping shaft crack (as will be discussed shortly) is introduced, and

the rotor’s angular response is obtained analytically and experimentally. Green and

Casey conclude that simultaneous detection of seal face contact and shaft cracks is

feasible due to differences in the angular response orbit; particularly, that the level

of orbit asymmetry is much greater for a cracked system than a system undergoing

mechanical face seal contact. The work by Green and Casey on transverse shaft crack

detection serves as the genesis of the current work.

The discussion of the research directly leading to this work serves several purposes.

Foremost, the evolution of the prior work (from investigation to multiple fault detec-

tion) contextualizes the desired outcome of the present work: to place a ‘piece’ into

the puzzle of rotordynamic multiple fault detection. Second, the works highlighted

above provide an invaluable resource for understanding the basis of the rotordynamic

model employed in this work, as the models here emulate the test rig discussed above.

Finally, the work on seal face contact detection provides a model for designing detec-

tion systems concerning other faults, from concept inception and analytical work to

experimental work and real fault detection.
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2.2 Modeling Transverse Shaft Cracks

The ability of a condition monitoring system to detect and diagnose transverse shaft

cracks hinges on how well the crack model emulates the actual cracked system: the

model must capture the same behavior on which the condition monitoring system

relies. The key aspect of any crack model is the reduction in stiffness introduced

by the crack. The localized reduction in stiffness is directly related to crack depth,

whereas the global reduction in stiffness is influenced by both crack depth and crack

location along the shaft. Unfortunately, many researchers opt to either ignore crack

location or mitigate its effects.

Transverse shaft cracks are typically categorized as either gaping or breathing.

Gaping cracks remain open regardless of the shaft’s angular orientation; the faces of

the crack never contact [14]. A breathing crack is defined by the opening and closing

behavior of the crack faces. As such, the shaft’s stiffness is a function of its angular

orientation. Breathing cracks are often modeled as having either smoothly varying

stiffness or stepped stiffness (i.e., the crack is either entirely closed or entirely open).

Physical characteristics, common modeling approaches, and response characteristics

of both crack models are discussed.

2.3 Gaping Cracks

Gaping crack approximations are common because the models are simple compared to

breathing cracks. Gaping cracks remain open regardless of the angular orientation of

the shaft; even when the crack is in compression, the faces of the crack do not contact.

The gaping crack therefore creates a stiffness asymmetry which is constant in a shaft-

fixed rotating frame. According to Papadopoulos [15], the assumption of a gaping

crack is valid only when static displacements are small. Another possible scenario in

which a crack remains open is when the crack is of finite width, such as a manufactured

notch [1]. In his review, Dimarogonas [16] provides a word of caution considering the
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(a) Notch (b) Gaping fatigue crack

Figure 2.2: A comparison of gaping cracks

treatment of notches versus cracks: many authors model cracks but manufacture

notches, when thin notches and real cracks behave very differently. Dimarogonas

states that in his experience, notches result in a substantially less stiffness reduction

than a crack of commensurate depth. Silva and Gomez [17, 18] verify this observation

experimentally. These observations are likewise corroborated by the results presented

herein. To summarize, it is crucially important to select an appropriate model of the

gaping crack’s compliance.

2.3.1 Physical Characteristics

There are several categories of physical characteristics for gaping cracks, shown ex-

aggerated in Fig. 2.2. The first category is finite-width notches, which are relatively

narrow asymmetric shaft segments. The asymmetric stiffness is generated by differ-

ing area moments of inertia [1, 19]. These notches have a finite measurable width,

and as such cannot propagate. The other category of gaping cracks is true fatigue

cracks, which propagate due to cyclic stresses in the shaft and a very large stress

concentration at the crack tip. Such gaping fatigue cracks are of negligible width and

terminate in a sharp edge.

Cracked shafts, and especially shafts displaying a gaping crack, behave similarly

to asymmetric shafts. The stiffness of both is constant in a rotating reference frame

but contingent on the shaft’s angular orientation in an inertial frame [1, 19, 20]. The
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connection between globally asymmetric shafts and gaping cracks is recognized in-

tuitively, as the cross-section of the shaft at the gaping crack is equivalent to the

cross-section at any location along a globally asymmetric shaft. Both Green and

Casey [1] and Rao [19] discuss the modeling of globally asymmetric shafts by char-

acterizing shaft stiffness using Euler-Bernoulli beam theory. Green and Casey [1]

use a globally asymmetric shaft to qualitatively understand the dynamic response of

an overhung rotordynamic system displaying a gaping crack. A globally asymmet-

ric shaft is created by replicating the depth of the crack across the entire shaft as

a ‘worst-case’ scenario. However, diagnostic condition monitoring systems must rely

on quantitative aspects of the dynamic response, necessitating a crack model whose

accuracy extends beyond the simple virtues of an asymmetric shaft model.

2.3.1.1 Notches

One such gaping crack model is the aforementioned notch. The difficulty in manufac-

turing true fatigue cracks has led many researchers to utilize finite-width notches in

both their analytical work [1, 2] and experimental work [1, 17, 21, 22]. This conclu-

sion is corroborated by the literature reviews performed by Sabnavis and Dimarogonas

[4, 16], which state that most experimental work focuses on notches because they are

simple to fabricate.

Many examples concerning the manufacture of notches can be found in the lit-

erature. Green and Casey [1] manufacture a rectangular notch of width 0.3 mm via

electrical discharge machining (EDM). Varney and Green [2] discuss such a notch

in detail, and provide a comparison to a gaping fatigue crack. Inagaki [21] likewise

manufactures a notch for experimental purposes, while Mayes and Davies manufac-

ture a small notch using EDM to facilitate formation of a true fatigue crack under

cyclic loading [20]. Silva and Gomez [17] manufacture a notch of width 0.5 mm using

a thin cutting tool in a milling machine, whereas Gomez and Silva [18] compare the
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compliance of the aforementioned notch to that of a true fatigue crack generated via

a three-point bending test. Their work concludes that a true fatigue crack results in

a greater loss of stiffness than a commensurate notch.

Though not quantitatively accurate compared to a true fatigue crack, the preva-

lence of notch models demonstrates the concept’s value for developing crack detection

and diagnosis condition monitoring systems. Understanding a simple model such as

the notch serves as a conceptual base for future work on more realistic crack models.

2.3.1.2 Gaping Fatigue Cracks

Fatigue is the primary mechanism driving the initiation and propagation of cracks in

real rotordynamic systems. Many authors have developed various techniques for esti-

mating the stiffness of rotordynamic systems displaying gaping fatigue cracks, though

a majority of methods employ concepts from fracture mechanics. Dimarogonas and

Papeitis [14, 23] pioneer a method for estimating crack compliance using strain energy

methods [24]. The technique employs fracture mechanics principles, and specifically

the strain energy release rate (SERR), to estimate the local crack compliance. Di-

marogonas et al. first employ the concept on non-rotating shafts [23, 25, 26, 27],

emphasizing the appearance of coupling effects induced by the crack. Dimarogonas

and Papadopoulos [25] expand the SERR-based crack compliances by developing a

six degree of freedom crack compliance matrix. These concepts are subsequently ex-

tended to rotating shafts [15, 28]. An excellent survey of the SERR approach for

modeling cracked rotordynamic shafts is provided by Papadopolous [29], who refer-

ences many works employing the SERR technique to estimate crack compliance.

Papadopoulos [30] provides a letter to the editor in which the nuances of the

crack compliance calculations are explained. A discussion is given concerning the

singularity which appears in the calculation when the crack depth is greater than the

shaft radius. Darpe et al. [31] give a thorough treatment of the crack compliances for
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a fully populated six degree of freedom compliance matrix. Such a matrix allows for

full coupling between the lateral, axial, and torsional degrees of freedom.

Dimarogonas et al. [14, 15, 23] place the crack at the mid-span of the rotor to ob-

tain an expression for the shaft’s global stiffness. Darpe et al. [31] likewise investigate

only the scenario in which the crack is centrally located on the shaft. Negating the

influence of crack location provides an understanding of the effect of crack depth, but

does little to provide useful diagnostic information for real cracks. In fact, as will be

seen, very deep cracks can remain undetected, given that the crack is located within

certain regions of the shaft.

Penny and Friswell [32] make it clear that though many techniques exist for es-

timating fatigue crack compliance, the best method remains unsettled. However,

several authors have experimentally obtained crack compliances. Papadopolous and

Dimarogonas [25] compare several such experimental analyses to the crack compli-

ances obtained from the SERR approach, and find good agreement between the mea-

sured and predicted values.

2.3.2 Modeling and Response Characteristics

The hallmark dynamic response signature of a cracked (gaping) or asymmetric shaft

is the appearance of a 2X shaft speed harmonic induced by radial forcing in a con-

stant direction, such as gravity [1, 15, 19]. The 2X harmonic appears in the frequency

spectra at twice the frequency of shaft rotation. The presence of a frequency compo-

nent at twice the shaft speed creates a resonance at half of a natural frequency; this

resonant shaft speed is referred to as the 2X resonance frequency. The 2X resonance

frequency is often referred to as the 2X critical speed or half critical speed.

As discussed later, the 2X harmonic is a widely-used indicator for crack detection

systems. Several authors [1, 2, 22] state that as the shaft speed is brought closer

to resonance, the magnitude of the 2X harmonic increases, reaching a maximum
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magnitude at the 2X resonance frequency. As the shaft speed deviates from resonance,

the magnitude of the 2X harmonic decreases pronouncedly. The profile of the 2X

harmonic during run-up and coast-down can thus provide meaningful detection and

diagnosis information.

The transfer matrix method is often used in rotordynamic analysis [1, 2, 33].

The transfer matrix is first developed by Pestel and Leckie [34]. The method gives

a matrix representation of the steady-state equations of motion for various system

components. Genta [35] demonstrates that the transfer matrix method and the finite

element method provide equivalent results, so long as the same discretization is used.

Inagaki [33] analyzes a generally asymmetric rotor-bearing system using the transfer

matrix technique. The analysis highlights the appearance of the 2X harmonic in

the presence of shaft asymmetry. In addition, the analytic results are compared

to measured results from a real turbomachinery system and found to be in good

agreement. Various transfer matrix techniques are discussed in the literature survey

by Papadopoulos [29].

Green and Casey [1] employ the Complex Extended Transfer Matrix method de-

veloped by Lee and Green [7] to analyze an overhung rotordynamic system. The

system contains a gaping fatigue crack 6.35 mm (0.25 inches) from the support. The

objective of the work is to demonstrate the feasibility of using the previously discussed

test rig [10] to also detect a gaping shaft crack. The influence of crack location on

dynamic response is not investigated. Green and Casey provide transfer matrices for

a four degree of freedom overhung rotor system including gyroscopic effects, damping

effects, and forcing due to gravity. In addition, the transfer matrices are provided in

a rotating reference frame such that the stiffness of the shaft is invariant relative to

the frame (Varney and Green [36] further expound upon the use of transfer matri-

ces in a rotating reference frame). The results of the analysis indicate that the 2X

harmonic is small when the shaft speed is far from the 2X resonance frequency. In
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addition, they demonstrate that as crack depth increases the magnitude of the 2X tilt

resonance increases while the 2X resonance frequency decreases. The analytic results

are verified experimentally, as discussed by Casey [37] and Varney and Green [2].

Though Green and Casey [1] employ a gaping fatigue crack in their analytic model-

ing, they manufacture a notch for experimental purposes. As such, some discrepancy

is found between the predicted and measured 2X resonance frequencies. The pre-

dicted 2X resonance frequency decreases more pronouncedly with crack depth than

the experimental results indicate. To model the experimental notch more accurately,

Varney and Green [2] develop a transfer matrix accounting for asymmetric beam

segments. The transfer matrix method utilized by Green and Casey accounted only

for the local compliance of the gaping fatigue crack, and did not account for the

finite-width nature of the asymmetric beam segment (i.e., the notch). As expected,

the predicted 2X resonance frequencies more closely align with those measured ex-

perimentally by Casey [37]. The less pronounced decrease in 2X resonance frequency

occurs because a notch represents a less severe decrease in stiffness than a commensu-

rate gaping fatigue crack. Dimarogonas [23] confirms this observation by comparing

analytic results for the stiffness of a gaping fatigue crack to experimental results for

a notched shaft obtained by Grabowski [38].

A majority of authors discussing transverse fatigue cracks and asymmetric shafts

solve the full equations of motion. Dimarogonas obtains a system of linear differential

equations for a system with a gaping crack at the shaft’s mid-span [23]. The degrees of

freedom employed are the lateral displacements of the rotor located at the midpoint of

the shaft. The equations of motion are solved analytically to expose the 2X harmonic

component of the system response. Dimarogonas, Papadopoulos, and Gounaris [23,

25, 26] obtain the equations of motion of various cracked beams (i.e., non-rotating

shafts) via finite element formulations. The results are extended to rotating shafts in

further works by the same authors [15, 28]. In both works, the equations of motion are
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solved via steady-state harmonic response techniques, and the crack’s influence on the

coupling between various rotor degrees of freedom is discussed. Gounaris et al. [28]

provide monograms giving the amplitude of the coupled response as a function of

crack location and depth. However, the coupled response is obtained from harmonic

forcing of the shaft, which is not a natural scenario. Wauer [39] develops a system

of six degree of freedom equations of motion for a cracked Timoshenko shaft, and

solves the equations analytically using variational principles. Wauer then provides

the first fundamental frequency decrease as a function of crack depth for several

crack locations.

Note that in all of the aforementioned works addressing equations of motion, only

those employing discrete formulations, such as finite element methods or the transfer

matrix, incorporate the effects of crack location. Furthermore, out of the references

employing finite element techniques, only a single reference [28] provides quantitative

results for the influence of crack location on the dynamic response.

2.4 Breathing Cracks

The incorporation of breathing behavior into a dynamic model of a cracked rotor-

dynamic system represents a significant increase in complexity over similar gaping

crack models. The nature of the breathing crack can introduce nonlinearities, which

complicate efforts to solve and interpret the system’s dynamic response. However,

breathing behavior often provides a more realistic transverse fatigue crack model [4],

as static displacements typically dominate vibration amplitudes.

2.4.1 Physical Characteristics

Breathing cracks differ from gaping cracks in that the stiffness of the cracked shaft is

time dependent even in a rotating reference frame. As the shaft rotates, forcing in a

constant inertial direction (such as gravity) keeps a portion of the shaft cross-section

in compression and a portion in tension. The section of the crack face under tensile
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stress opens, while the section of the crack face under compression closes. Therefore,

for cracks smaller than the radius of the shaft, there is an angular position at which

the crack is completely closed (the shaft behaves as if there is no crack) and an

angular position at which the crack is completely open. Most breathing crack models

rely on the assumption that vibration amplitudes are negligible compared to static

displacements [38, 40]. The small vibration amplitude assumption allows the shaft

stiffness to be calculated as a function of only the shaft’s angular position.

The complicated nature of breathing behavior in cracks results in a slew of ap-

proximations. These approximations are categorized in order of increasing complexity

as step models, sinusoidally-varying models, and vibration-dependent models. The

simplest breathing crack models are step models (also known as hinge or switching

models), which approximate the crack as either entirely opened or closed at any state

in time. Gasch [40, 41] discusses such a hinge model, in which the shaft’s stiffness is

bi-linear. Dimarogonas [23] uses a similar step function to approximate the switching

behavior of a breathing crack. Szolc [42] employs a switching crack model, though

the switching behavior is dependent on the shaft’s curvature at the crack’s location

rather than the angle of rotation.

Mayes and Davies [20] pioneered the use of smoothly varying breathing models to

describe shaft stiffness as a function of shaft angular position through the use of the

following steering function:

f(θ) =
1 + cos θ

2
, (2.1)

where θ is the angle of shaft rotation. Modulating the stiffness of the shaft by Eq.

2.1 provides a method for incorporating breathing behavior. Such a method better

approximates the breathing of the crack by allowing a smooth transition between

the opened and closed states of the crack. Several other authors [43, 44, 45] also

use such a steering function. Grabowski [38] also employs a method for determining

the stiffness of the cracked shaft as a function of angular position, and graphically
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provides the shaft stiffness as a function of shaft rotation.

The most complicated breathing models are those in which the open-closed state

of the crack is vibration-dependent. Darpe et al. [31] provide a robust method for

capturing the breathing behavior of a cracked rotating shaft using the Crack Closure

Line (CCL). The CCL is the position along the crack edge where the crack faces

switch from being opened to being closed. In the fully open state, the compliance

of the crack is calculated by the method of Papadopolous and Dimarogonas [15]. To

determine the position of the CCL, a total stress intensity factor (SIF) is found at

each location along the crack edge; the SIF depends on the nodal forces at the crack,

and thus, is vibration-dependent. Furthermore, the sign of this SIF dictates whether

the stress at that location is tensile or compressive. The position where the SIF

changes from positive to negative signifies where the crack faces have switched from

being opened to being closed. The crack’s compliance is then calculated by adjusting

the integration bounds found in [15]. Various other works incorporate this concept of

the CCL [46, 47, 48, 49].

Though only several examples of breathing crack models are provided here, Pa-

padopoulos [29], Dimarogonas [16], and Sabnavis [4] provide many references to var-

ious breathing crack models in their excellent literature reviews.

2.4.2 Mathematical Modeling and Response Characteristics

While gaping cracks produce only a 2X shaft speed harmonic, breathing cracks pro-

duce pX shaft speed harmonics, where p is any positive real integer [20, 23, 38, 40, 41].

The primary shaft speed harmonics induced by breathing behavior occur at the 1X,

2X, and 3X, though shaft speed harmonics exist at integer multiples above 3 [44]. In

fact, Sabnavis [4] suggests in his literature review that changes in the 1X harmonic

can serve as a more reliable crack indicator than the 2X harmonic.

The typical method for obtaining the response of a shaft displaying a breathing
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crack is numerical solution of the (often non-linear) equations of motion. Gasch [41]

numerically integrates gravity-forced two degree-of-freedom equations of motion for

a crack whose stiffness is bi-linearly dependent on the crack orientation (e.g., the

hinge crack model). The inertial frame degrees of freedom are the rotor’s trans-

verse displacements. The results clearly indicate multiple resonance peaks, where the

dominant peaks are induced by the 1X and 2X harmonics. The results are subse-

quently extended [40] to provide the direction (backward or forward) of the primary

shaft speed harmonics. Mayes [20] analytically solves the nonlinear cracked shaft

equations-of-motion to give a simple expression relating the change in natural fre-

quencies to crack location. Several measurement positions on a real rotor system are

used to estimate the crack depth and location, with mediocre results. Mayes discusses

the appearance of primarily 1X and 2X harmonics in the response.

Grabowski [38] demonstrates the appearance of 1X, 2X, and 3X harmonics, though

he shows the 3X harmonic is significantly smaller than both the 1X and 2X compo-

nents. The influence of crack location on system response is not provided quantita-

tively, though it is stated that the crack induced vibration is influenced strongly by

crack position relative to the excited mode of the shaft.

In the past decade, many works have addressed nonlinear aspects of the response

of breathing crack models. Sawicki et al. [45] develops a three degree of freedom mod-

ified Jeffcott model of a cracked rotordynamic system, including a torsional degree

of freedom. Breathing is accounted for using a smooth steering function, and three

forms of excitation are applied: gravity, imbalance, and harmonic torsional excita-

tion. The equations of motion are solved numerically, and the lateral and torsional

response is provided in the form of bifurcation diagrams, power spectra, and rotor

orbits. Coupling induces the appearance of torsional excitation frequencies in the

lateral vibration spectrum. In addition, chaotic behavior is observed; the authors

suggest that these response characteristics could be employed to diagnose the crack
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parameters, though crack location is not discussed in their results.

Wu [43] expands upon the work by Sawicki et al. [45] by modeling a two-mass

turbine-generator system; the presence of the additional mass necessitates the in-

clusion of an additional torsional degree of freedom. The equations are integrated

numerically, and various shaft speed harmonic peaks are observed when the torsional

and lateral natural frequencies are an integer fractional ratio (such as the 1X, 2X,

and 3X harmonics). For different ratios of the torsional to lateral natural frequencies,

the critical speeds are no longer integer fractional multiples of the torsional natural

frequency. Only a single crack location is discussed, and no conclusions are drawn

concerning crack detection and diagnosis.

Darpe et al. [31] employ a finite element formulation of a breathing crack system.

The stiffness is approximated using the aforementioned Crack Closure Line, and the

subsequent nonlinear equations of motion are integrated numerically. The shaft’s

stiffness is reevaluated at every degree of rotation.

Szolc [42] employs a unique hybrid model of a cracked rotordynamic system. A

real turbo-generator is modeled using 49 elements and seven fluid film bearings, where

the elements are continuous shaft models coupled through boundary conditions. The

crack is incorporated through a modification of the boundary conditions joining the

beam segments to the left and right of the crack. The boundary conditions are

modified such that an additional compliance, found using Dimarogonas’ method [23],

acts as a spring between two elements. Various shaft speed harmonics are shown to

appear in the results. Many crack depths and locations are investigated, as will be

discussed shortly.

2.5 Crack Detection and Diagnosis

Many works presenting shaft crack diagnosis routines share several common aspects.

Though the stated objective of many works is application to rotating shafts, stationary
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shafts are investigated [21, 50]. Complicated algorithms, in conjunction with many

measurement points along the shaft, are often used to provide only a marginally

successful estimation of the crack depth and location [28, 51].

For rotordynamic systems, it is desirable to develop an on-line crack diagnosis

routine. Furthermore, in rotordynamic systems, very few measurement locations are

available due to the nature of the system. Szolc [42] addresses this concern by only

using realistic measurement locations as the basis for his diagnostic routine (such

as lateral displacements at the bearings). Several diagnosis routines for stationary

and rotating shafts use mode shape analysis [20, 25, 50] or other similar techniques

requiring an array of measurement locations along the shaft [51]. Experimental mode

shape analysis is restricted by the number of measurement points available on the

shaft. A large number of measurement points is not only economically impractical,

but also infeasible for rotating systems. Many routines, including those employing

active magnetic bearings or coupled response measurements, use harmonic forced

excitations [25, 28, 50, 52] to diagnose the crack parameters. Such procedures em-

ploying application of harmonic forcing are often expensive, procedurally difficult,

and impractical [28, 32, 53].

The primary techniques for crack detection and diagnosis in rotordynamic sys-

tems are, in order of decreasing prevalence, vibration monitoring, experimental modal

analysis, and alternative techniques such as wavelet analysis. Vibration monitoring

observes the forced response, and specifically, phenomena such as shaft speed har-

monics or coupling. Transducers such as accelerometers or proximity probes measure

the forced dynamic response of the system, which is typically induced by imbalance

or gravity.

The difficulties of accurate crack detection and diagnosis using vibration monitor-

ing are well understood, especially for shallow cracks. Penny and Friswell [32] explain

that though a cracked shaft changes the dynamic response of the system, detecting
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these changes for small or even medium depth cracks is exceptionally difficult. Casey

and Green [1] expound upon this issue by highlighting that the magnitude of the 2X

harmonic introduced by the crack is very small away from the 2X resonance frequency.

If the machinery is not operating near the 2X resonance frequency, which it likely is

not, a true on-line condition monitoring system stands little chance of detecting the

crack if based only upon the presence of the 2X harmonic.

Many authors employ the presence of a 2X harmonic to detect a transverse shaft

crack. Bently et al. [54] reveal that their field experience with the early detection

of shaft cracks indicates that more than 70% of early warnings occur because of

changes in the 1X harmonic, whereas the remaining 30% occur with the 2X harmonic.

Changes in the 1X harmonic serve as an early warning signal because most cracked

shafts experience bow due to the crack, which generates a prominent 1X harmonic.

Several papers explore crack detection and diagnosis via coupled response mea-

surements [15, 25, 27, 28]. The presence of a crack introduces coupling between the

degrees of freedom; this coupling can indicate a crack. Gounaris [28] measures lateral

displacements induced by axial excitation to diagnose crack parameters in a rotordy-

namic system. Though the method provides a rigorous procedure to separate crack

depth and location, the need for axial excitation at a range of frequencies and shaft

speeds is often impractical. Several other authors [31, 43, 45, 46, 48, 49] suggest the

use of coupling to detect shaft cracks, though none suggest corresponding diagnostic

routines.

Experimental modal analysis extracts a system dynamic model by de-convolving

the measured response from the known forcing. Bucher [53] provides an excellent

review of experimental modal analysis for rotating structures. The limited number

of excitation and measurement points complicates experimental modal analysis in

rotating systems. Application of harmonic forcing to rotordynamic systems is difficult,

though some have seen limited success through the use of active magnetic bearings
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[52]. Though promising, active magnetic bearings suffer from a number of practical

shortcomings. Penny and Friswell [32] mention several shortcomings, namely, the

inability of the bearing to provide a true step excitation and the limited maximum

rate of change of the bearing force.

Many authors provide experimental crack detection and diagnosis procedures,

using both experimental test rigs and real turbomachinery systems. Mayes and Davies

[20] employ changes in pairs of natural frequencies of a stationary shaft (non-rotating),

and also changes in the shaft deflection modes, to estimate crack location and depth

in a large generator rotor. Though the predicted parameters are relatively close

to the actual values, extensive ultrasonic measurement is still required to pinpoint

the exact location and depth of the crack. Green and Casey [1] and Varney and

Green [2] discuss the feasibility of using an existing overhung rotordynamic test rig

to detect both transverse shaft cracks and mechanical face seal contact, though only

the influence of crack depth is discussed. Imam et al. [55] discuss the application of

a transverse crack detection regime to a real rotordynamic system. It is stated that

the method can detect cracks as shallow as one to two percent of the shaft diameter.

Other experimental techniques are discussed in the literature reviews provided by

[4, 16, 29].

Various alternative techniques have emerged in the past several years for crack

detection, such as wavelet analysis and stochastic methods. Wavelet analysis essen-

tially recovers transient information lost during frequency domain analysis. Sabnavis

[4] discusses wavelet analysis, as well as other atypical techniques, in his literature

review of crack detection in rotordynamic systems. Darpe [47] also discusses the

use of wavelets pertaining to cracked rotordynamic systems, as do Sinou [22] and

Nagaraju [56]. Szolc [42] implements a stochastic method relying on comparison be-

tween measured results and a large data base of response profiles generated from

many combinations of crack location and depth. An initial estimate is made, and the
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database is then refined in the neighborhood of the initial estimate. Szolc reports that

only very large databases produce usable results, and even then, the best accuracy

obtained is approximately 5 - 10% of the shaft length for crack location and 10 -

15% of the shaft diameter for crack depth. The error in crack depth is significant, as

cracks above 40% of the shaft diameter are often easily detected.

2.6 The Complex Transfer Matrix

A subsidiary contribution of this work is the development of the Complex Transfer

Matrix (CTM). Previous works employing transfer matrix methods, such as those by

Varney and Green [2], Green and Casey [1], and Lee and Green [7], rely on a transfer

matrix with real-valued coordinates. Though physically insightful, and often required

for analysis of non-isotropic systems, the real-valued transfer matrix results in an 8×8

formulation which is computationally inefficient, sometimes prone to inaccuracy, and,

most importantly, fails to distinguish between forward and backward whirl frequen-

cies. This method is deemed the Real Transfer Matrix, due to the size of the matrices

and the ability to account for deflections in orthogonal planes. A complex-valued

redefinition of the state variable elements is introduced to reduce the size of the

transfer matrix to 4 × 4. The mathematical nature of the redefined transfer matrix

gives a reduced order characteristic equation which intrinsically separates backward

and forward whirl. The Complex Transfer Matrix is provided herein for both inertial

and rotating reference frames, with discussion highlighting key differences between

analysis in each frame.

Determination of whirl frequencies is an integral component of rotordynamic anal-

ysis. Whirl frequency computation is a free (or natural) response analysis, and re-

quires solution of the corresponding eigenvalue problem. The importance of the free

response analysis has led to the development of many analysis techniques, both ana-

lytical and numerical. Prior to providing a detailed review of these techniques, several
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aspects of shaft whirl must be discussed.

Whirl is characterized by its direction relative to the shaft rotation. Whirl in

the direction of shaft rotation is deemed forward whirl, while whirl in the direction

opposite shaft rotation is labeled backward whirl [35]. Furthermore, synchronous

whirl occurs when the whirl frequency and shaft rotation frequency coincide [19]. As

many prevalent rotordynamic excitations occur at the shaft speed, such as imbalance,

operation of the system at a shaft speed equal to the synchronous whirl frequency can

produce a resonant-like response. Thus, shaft speeds at which the forcing frequency

coincides with the whirl frequency are deemed critical speeds.

Since specific faults excite either forward or backward whirl, or a combination

thereof, determining the whirl direction is important. It is well known that excitation

due to rotating imbalance excites forward whirl. On the other hand, rotor-stator rub

excites backward whirl [49]. According to Ding [57], this rotor/stator contact under

certain conditions induces synchronous backward whirl known as dry whip, which

can quickly lead to catastrophic failure. Moreover, Jiang [58] provides evidence that

backward whirl exists in a non-synchronous state well before the onset of dry whip.

Likewise, transverse shaft cracks [4, 59] have been shown to excite both forward and

backward whirl (this conclusion is also validated in this work). Determining whirl

frequencies and their directions is important for the safe operation of rotordynamic

machinery, and also important in the diagnosis of various common faults.

2.7 Conclusions

A great amount of research has been performed investigating the dynamics of cracked

rotating structures. Beyond merely modeling these structures, many experimental

works involving both experimental test rigs and real turbomachinery systems are

discussed. Despite this wealth of knowledge, standard procedures for on-line crack

diagnosis in rotordynamic systems is lacking. The reason for this is the difficulty

29



of diagnosing both crack location and depth while the machinery is in operation.

This difficulty is seen in the literature, as discussion of the influence of crack location

on system response is tenuous at best. Many techniques have arisen to address the

problem, such as vibration monitoring, experimental modal analysis, and alternative

techniques such as wavelet analysis or stochastic methods. In the authors opinion,

vibration monitoring is a preferred technique due to the simplicity of the measure-

ments and the avoidance of the issue of limited excitation and measurement locations

on a real rotordynamic system.

This work aims to discuss the feasibility of using simple vibration monitoring

techniques, such as observation of the 2X harmonic response component, to detect

transverse fatigue cracks in rotordynamic systems and to provide methods to diagnose

their parameters. For simplicity, a gaping crack is employed in the analytic modeling.

The profile of the 2X harmonic, particularly near resonance, is discussed as a simple

signal with applicability for transverse shaft crack diagnosis.

Many previous works on crack detection and diagnosis have ignored or vastly

simplified the influence of crack location; this work aims to robustly incorporate

the effects of crack location and depth. In addition, most works proposing crack

diagnostic procedures suggest complicated, expensive, and impractical procedures

for diagnosing the crack parameters of interest. This work hypothesizes that simple

vibration monitoring techniques can be successfully applied to diagnose multiple crack

parameters.
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CHAPTER III

THEORETICAL DEVELOPMENT: MODELING THE

CRACK

The ability to detect and diagnose cracks soon after initiation is imperative to avoid

catastrophic shaft failure and plan accordingly for repairs. A condition monitoring

system’s ability to diagnose crack parameters strongly depends on the accuracy of

the crack model. Transverse shaft crack models should account for the crack’s depth

and location, as both parameters significantly influence the dynamic response of the

system via a reduction of the stiffness. As discussed in Chapter 2, the influence of

crack location on the system response is often neglected in lieu of discussion on crack

depth, especially concerning crack diagnosis. Understanding the dynamic interplay

between crack location and depth is crucial for diagnosis.

Before the specific crack models can be discussed, it is necessary to provide a

consistent model of the undamaged overhung rotordynamic system. Adherence to

a consistent dynamic framework allows the differences between the crack models to

be isolated, investigated, and interpreted. Relevant degrees of freedom are presented

prior to derivation of the equations of motion of the undamaged overhung rotordy-

namic system.

Two gaping crack models are proposed following formulation of the rotordynamic

model of the undamaged system. The local stiffness of each crack is discussed, and

the stiffness matrix of the cracked overhung rotordynamic system is provided. The

first crack model represents a finite-width gaping crack typically manufactured for

experimental purposes, and is designated the notch model. The second model, the

gaping fatigue crack, assumes a true fatigue crack of negligible width. The crack
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Figure 3.1: Undamaged overhung rotordynamic system

compliance is obtained using fracture mechanics and energy principles. A gaping

fatigue crack is more likely to be encountered in the operation of real turbomachinery

systems.

In addition, an available overhung rotordynamic test rig is summarized. The

overhung test rig is pertinent to this work, as the models employed herein emulate

the test rig. Physical parameters of the test rig are provided, as well as a discussion

on damping.

3.1 Undamaged Rotordynamic System Model

An undamaged overhung rotordynamic system is shown in Fig. 3.1; this rotordynamic

model emulates the experimental test rig discussed in Chapter 2, Section 2.1. Beyond

being a simple and realistic model of many real rotordynamic systems, the test rig

model is used in this work for several reasons. First, direct comparison is allowed be-

tween this work’s results and previous analytic [1, 2] and experimental results [2, 37].

Second, the availability of the test rig allows for comparison to future experimental

results.

The single rotor (lumped mass) shown in Fig. 3.1 is modeled as having finite mass

and rotational inertia. The shaft’s mass is assumed to be negligible in comparison to

the rotor’s mass m. The XY Z reference frame is fixed to a hypothetical undeflected

rotating shaft (see Appendix A for details). The relationship between the rotating
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Figure 3.2: Relation between inertial and rotating reference frames, with gravity
shown

frame XY Z and the inertial frame ξηζ is shown in Fig. 3.2. The use of a rotating

reference frame is advantageous, as the gaping crack’s stiffness is constant relative to

the rotating XY Z frame. The frequency of shaft rotation n is assumed constant, and

the length of the shaft is L.

Whirl is a bulk precession of the shaft axis about its undeflected position. As

the shaft whirls, the rotor deflects. Two degrees of freedom, uX and uY , capture the

deflection of the rotor’s center of mass, while two orthogonal tilts, γX and γY , provide

the total angular motion of the rotor. Axial deflection along Z is neglected, as well

as torsional deformation of the shaft.

The rotor plane is shown in Fig. 3.3 to illustrate the degrees of freedom. The x′y′

axes, while not the axes used in the analysis, are shown for clarity in presenting the

angular degrees of freedom. In the absence of imbalance, the rotor center of mass

and geometric center coincide at point C. The undeflected shaft center is located at

point O, which is the undeflected position of point C. The reference frame is affixed

at O, and rotates at the shaft speed n.

The rotating-frame degrees of freedom uX , uY , γX and γY are used to formulate
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Figure 3.3: Rotor degrees of freedom

the equations of motion. The vector {q} is composed of the rotor degrees of freedom:

{q} = { uX uY γX γY }
T . (3.1)

The general linear equations of motion, as provided shortly, are

[M ] {q̈}+ ([D] + [G]) {q̇}+
(
[C]−1 − [E]

)
{q} = {F} , (3.2)

where [M ] is the mass matrix, [D] is the damping matrix, [G] is a matrix containing

gyroscopic and Coriolis terms, [C] is the compliance matrix, and [E] is a matrix

containing centripetal terms arising from rotating frame analysis. A general set of

external forces {F} is applied to the system.

The mass matrix [M ], gyroscopic matrix [G], and centripetal matrix [E] are found

using Newton-Euler mechanics. To accomplish this, Appendix A provides the accel-

eration of the rotor’s center of mass and the angular momentum. The compliance

matrix [C] is found later for an undamaged system, a notched system, and a system

displaying a gaping fatigue crack (the damping matrix [D] is proportional to the in-

verse of the compliance matrix). The four degree-of-freedom linear coupled equations
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of motion become
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γ̈Y
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+
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u̇X

u̇Y

γ̇X

γ̇Y
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+


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
= {F}

(3.3)

for a general damping matrix [D] and compliance matrix [C]. It is convenient to

obtain the compliance matrix prior to the stiffness matrix. The stiffness matrix [K]

and compliance matrix [C] are related by

[K] = [C]−1. (3.4)

The stiffness matrix of the undamaged overhung shaft is obtained from Euler-Bernoulli

beam theory, as discussed by Shigley [60]:

[K] =



12EI

L3
0 0 −6EI

L2

0
12EI

L3

6EI

L2
0

0
6EI

L2

4EI

L
0

−6EI

L2
0 0

4EI

L


, (3.5)

where the elastic modulus of the shaft is E, the length of the shaft is L, and the

area moment of inertia of the symmetric shaft is I. It is assumed that the crack does

not introduce additional damping into the system. As discussed in Section 3.4.1,
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and originally implemented in [1], the damping is assumed to be proportional to the

undamaged shaft’s stiffness by the coefficient β:

[D] =
1

2n
β[K]Undamaged, (3.6)

where n is the shaft speed of the system. Keep in mind that [M ], [G], [E],and [D]

are unaffected by the presence of a crack.

The dynamic model of the undamaged system establishes a framework on which

to formulate the cracked system model. To establish these models, the compliance

matrices of the cracked systems are obtained. Two crack models are discussed: a

notch and a gaping fatigue crack.

3.2 The Notch Model

3.2.1 Overview

The similarity between manufactured notches and true fatigue cracks allows a notch

model to be used as a development tool to establish crack detection and diagnosis

principles. Guidelines can be established using a notch model prior to the compli-

cated manufacture and characterization of a true fatigue crack. Finite-width notches

are manufactured for many experimental crack detection and diagnosis investiga-

tions [2, 20, 21, 38]. A commonly employed technique for notch manufacture is elec-

tric discharge machining (EDM). The finite diameter of the EDM wire generates a

rectangular-profiled notch, where the interior corners possess a radius commensurate

to the wire diameter. Herein, the corner radius is neglected in comparison to the

crack’s width and the depth.

A notched rotordynamic system is shown in Fig. 3.4, where the notch’s width is

LC . The length of the shaft from the support to the left end of the notch is L1,

while the length of the shaft from the right end of the notch to the free end is L2.

The axes in Fig. 3.4 are commensurate with those in Fig. 3.1. Figure 3.6 provides a
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Figure 3.4: Overhung rotordynamic system displaying notch of width LC

cross-sectional view of the notch. Appendix B provides the area moments of inertia

of the rectangular notch.

3.2.2 Notch Stiffness

The stiffness matrix of the notched shaft is central to the dynamics of the system. Cas-

tigliano’s Theorem is used in conjunction with Euler-Bernoulli beam theory to gener-

ate the compliance matrix, from which the stiffness matrix is obtained. Castigliano’s

Theorem employs strain energy expressions to determine the deflection caused by

application of a load [60, 61]. The application of load P (where P is either a force

or moment) induces an internal bending moment M ; in the following, subscripts on

these terms indicate the axis about which they act. In this case, the subscripts i and

j can represent axes X or Y , as shown in Fig. 3.4. In general, for a beam of constant

elastic modulus E, the linear deflection ui (that is, the linear deflection parallel to

axis i) caused by an internal bending moment generated by a force Pi (the force is

entirely in the direction of axis i) is

ui =

L∫
0

Mj

EIj

(
∂Mj

∂Pi

)
dz. (3.7)

Note that the internal bending moment generated by a linear force occurs about an

axis perpendicular to that force. Hence, though force P is applied in the direction

i, the internal bending moment is generated about axis j. Similarly, the angular
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deflection γi generated by a moment Pi (note that both the moment and angular

deflection occur about the same axis, i) is

γi =

L∫
0

Mi

EIi

(
∂Mi

∂Pi

)
dz, (3.8)

where it is important to recognize that external bending moment Pi generates an

internal bending moment about the same axis i. To account for the notch cross

section, the integrations in Eqs. 3.7 and 3.8 are evaluated piece-wise. In this case, the

external loads are applied at the rotor; hence, the deflections given in Eqs. 3.7 and

3.8 provide the deflections of the rotor.

An additional complexity to Castigliano’s Theorem exists. Equations 3.7 and 3.8

can only be used when the deflection is in the same direction as the applied load,

and of the same nature (i.e., linear deflections and forces, angular deflections and

moments). To obtain the linear deflection caused by an applied moment, or the

angular deflection induced by an applied force, a virtual load must be introduced.

This concept is discussed in detail by Shigley [60] and Hibbeler [61]. Appendix C

provides calculations of the compliance matrix terms. The appendix also explains

the use of virtual loads to obtain deflections in a direction contrary to that of the

applied load. The compliance matrix [C] is found to be:

uX

uY

γX

γY


=



C11Y 0 0 C12Y

0 C11X −C12X 0

0 −C21X C22X 0

C21Y 0 0 C22Y





FX

FY

MX

MY


, (3.9)

where, with subscript j indicating either axis X or Y ,

C11j =
1

3E

(
L3

2

Ij
+

(L2 + LC)3 − L3
2

ICj
+

(L2 + LC + L1)3 − (L2 + LC)3

Ij

)
(3.10)

C12j = C21j =
1

2E

(
L2

2

Ij
+

(L2 + LC)2 − L2
2

ICj
+

(L2 + LC + L1)2 − (L2 + LC)2

Ij

)
(3.11)
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C22j =
1

E

(
L2

Ij
+

LC
ICj

+
L1

Ij

)
. (3.12)

As expected, the compliance matrix of the notch reduces to that of the undamaged

system when the area moments of inertia are equivalent or the width of the notch is

set to zero.

3.3 Gaping Fatigue Cracks

3.3.1 Overview

A gaping fatigue crack differs from a notch in that the crack’s width is assumed to

be negligible. As the name suggests, the mechanism driving the formation of gaping

fatigue cracks is fatigue. Fatigue cracks terminate in a sharp edge and are capable of

propagation.

Gaping fatigue crack models are often analytically employed but rarely experi-

mentally tested, for two primary reasons. First, gaping fatigue cracks are difficult to

manufacture. A stress concentration must be introduced on the shaft at the desired

location of the crack. Then, the shaft must be subjected to prolonged cyclic bending

fatigue to initiate and propagate the crack. Second, even if a crack forms at the

desired location, the crack characteristics (depth, width, profile, etc.) are difficult to

control and quantify.

An overhung shaft displaying a gaping fatigue crack is shown in Fig. 3.5. The

length of the shaft from the support to the crack is L1, while the length of the shaft

from the crack to the free end is L2. The rotating XY Z frame shown in the figure is

the same as that shown in Figs. 3.1 and 3.3.

The crack cross section is shown in Fig. 3.6. The XY frame shown always main-

tains its orientation relative to the crack edge. The un-cracked section of the shaft of

radius R is designated by hatching. The half-width of the crack is b, and the depth

of the crack is a. The crack edge is defined as the edge of the crack which propagates

into the shaft.
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Figure 3.5: Overhung rotordynamic system displaying a gaping fatigue crack

Figure 3.6: Cross-section of a gaping fatigue crack
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Figure 3.7: Crack cross-section showing terms for compliance calculations

3.3.2 Gaping Fatigue Crack Stiffness

The compliance of a cracked shaft is a function of the uncracked shaft compliance and

the additional compliance induced by the crack [40]. The first step in determining

the cracked shaft’s compliance is to obtain the additional compliance introduced by

the crack. Dimarogonas et al. [14, 15, 23] are instrumental in developing a fracture

mechanics technique for estimating crack compliance. The technique employs the

strain energy release rate (SERR), along with linear elastic fracture mechanics theory,

to estimate the crack compliance.

The method was first proposed by Irwin [24] and subsequently extended to ro-

tordynamic systems of six degrees of freedom [15]. The compliance εi induced by a

transverse crack of depth a in the direction of load Pi is

εi =
∂

∂Pi

a∫
0

J(y)dy, (3.13)

where J(y) is the strain energy release rate and y denotes a coordinate variable in

the direction parallel to the crack depth, as shown in Fig. 3.6.

The SERR depends on several factors: the elastic modulus E and Poisson ratio

v of the shaft, the stress intensity functions corresponding to the geometry of the
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cracked section, and the applied loads. Papadopoulos and Dimarogonas [14] give the

stress intensity functions for a circular cross-section shaft. A general expression for

the SERR is provided by Dimarogonas [23]:

J(y) =
1− ν2

E

( 6∑
i=1

KIi

)2

+

(
6∑
i=1

KIIi

)2

+

(
6∑
i=1

KIIIi

)2
 , (3.14)

where the Kni terms denote the stress intensity factors. The stress intensity factors

define the stress amplitude at the crack tip singularity [62]. The subscript i denotes

the applied load, while the subscripts I, II, and III denote the respective modes of

crack formation. In general, for mode n, the stress intensity factor is given by

Kni = σi
√
παFn

(α
h

)
n = I, II, or III, (3.15)

where Fn is a general intensity function dependent on the mode of crack formation;

σi represents the stress at the crack. The quantities α and h are shown in Fig. 3.7.

Solutions for the intensity functions are only available for rectangular strips. The

compliance introduced by a rectangular strip dx is

cdxij =
∂2

∂Pi∂Pj

a∫
0

J(y)dy. (3.16)

To obtain the compliance in the ith direction due to a force in the jth direction,

Eq. 3.16 must be integrated along the crack width:

cij =
∂2

∂Pi∂Pj

b∫
−b

a∫
0

J(y)dydx. (3.17)

These terms are evaluated by Papadopoulos et al. [15] for various types of displace-

ments and couplings. The crack compliances can be arranged into a local compliance

matrix form, as shown by Dimarogonas [14]. Neglecting torsion and axial extensions
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reduces the size of the local crack compliance matrix from 6× 6 to 4× 4:

uX

uY

γY

γX


=



c22 0 0 0

0 c33 0 0

0 0 c44 c45

0 0 c54 c55





VX

VY

MY

MX


. (3.18)

Papadopoulos [15] provides the following crack compliances:

c22 =
2 (1− ν2)

πER

b∫
−b

a∫
0

yF 2
III

(y
h

)
dydx (3.19)

c33 =
2 (1− ν2)

πER

b∫
−b

a∫
0

yF 2
II

(y
h

)
dydx (3.20)

c44 =
16 (1− ν2)

πER3

b∫
−b

a∫
0

x2yF 2
IY

(y
h

)
dydx (3.21)

c45 = c54 =
64 (1− ν2)

πER3

b∫
0

a∫
0

xy
√

1− x2FIX

(y
h

)
FIY

(y
h

)
dydx (3.22)

c55 =
32 (1− ν2)

πER3

b∫
−b

a∫
0

y
(
1− x2

)
F 2
IX

(y
h

)
dydx, (3.23)

which are non-dimensionalized according to

c̄22 =
πER

(1− ν2)
c22 (3.24)

c̄33 =
πER

(1− ν2)
c33 (3.25)

c̄44 =
πER3

(1− ν2)
c44 (3.26)

c̄45 =
πER3

(1− ν2)
c45 (3.27)

c̄55 =
πER3

(1− ν2)
c55. (3.28)

43



The corresponding stress intensity functions, for a unit width rectangular strip, are

FIX

(y
h

)
=

[
tan βC
βC

]1/2 [
0.932 + 0.199(1− sin βC)4

]
/ cos βC (3.29)

FIY

(y
h

)
=

[
tan βC
βC

]1/2 [
0.752 + 2.02

(y
h

)
+0.37(1− sin βC)3

]
/ cos βC (3.30)

FII

(y
h

)
=

[
1.122− 0.561

(y
h

)
+ 0.085

(y
h

)2

+0.18
(y
h

)3
]
/
(

1− y

h

)1/2

(3.31)

FIII

(y
h

)
=

[
tan βC
βC

]1/2

(3.32)

where

βC =
πy

2h
. (3.33)

The non-dimensional crack compliances, Eqs. 3.24 - 3.28, are calculated via numeric

integration and plotted in Fig. 3.8. The results are corroborated versus the repre-

sentative values provided in reference [30], and found to be in agreement. Note that

singularities are present in the stress intensity functions, Eqs. 3.29 - 3.32, as discussed

by Papadopolous [30]. These singularities are avoided by ending the numeric inte-

gration just before the singularity is reached (the singularities occur when y is equal

to h). For small integration widths, the error provided by avoiding the singularity is

small.

The compliance matrix of the cracked shaft is obtained using the transfer matrix,

as discussed in Chapter 4 and Appendix D. The compliance matrix terms are the

following, where the cij terms are the crack compliances calculated in Eqs. 3.19 -

3.23:

[C] =



C11 −c45L
2
2 c45L2 C14

−c45L
2
2 C22 C23 −c45L2

c45L2 C32 C33 c45

C41 −c45L2 c45 C44


, (3.34)
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Figure 3.8: Non-dimensional crack compliances

where

C11 = c22 + c44L
2
2 +

(L1 + L2)3

3EI
(3.35)

C22 = c33 + c55L
2
2 +

(L1 + L2)3

3EI
(3.36)

C33 = c55 +
(L1 + L2)

EI
(3.37)

C44 = c44 +
(L1 + L2)

EI
(3.38)

and

C14 = C41 = c44L2 +
(L1 + L2)2

2EI
(3.39)

C23 = C32 = −c55L2 −
(L1 + L2)2

2EI
. (3.40)

When the additional compliances caused by the crack are negated, the compliance

matrix reduces to that of an Euler-Bernoulli beam of length L1 + L2, as expected.

3.4 Test Rig Description

The overhung rotordynamic model presented earlier in the chapter is based upon the

test rig discussed in Chapter 2. The overhung test rig was initially designed to monitor
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seal face dynamics [8, 9]. Following construction of the test rig, the coupled dynamic

effects of the mechanical face seal and the shaft [7] were investigated. Finally, the

feasibility of using the existing monitoring system to detect transverse shaft cracks

was investigated by Green and Casey [1].

An overhung test rig was chosen for several reasons. First, an overhung shaft

is considerably more flexible than a similar simply-supported shaft. The increased

compliance allows for larger deflections at the rotor. Second, the overhung rotor

prominently displays gyroscopic effects, which are important for the measured degrees

of freedom γX and γY . Finally, though not directly relevant to this work, the inclusion

of a mechanical face seal is facilitated by the overhung nature of the shaft

The test rig is discussed herein for several reasons. First, the analytic results

obtained in this work can be compared to the experimental results obtained previously

using the test rig. Comparison to experimental results allows the shortcomings and

advantages of the analytic models of this work to be discovered and discussed. Second,

the damping approximation used in the analytic models is estimated from the test

rig experimentally. Finally, the test rig can be used in the future to implement the

diagnostic procedure provided by this work experimentally.

A schematic of the test rig modified for shaft crack detection is shown in Fig. 3.9.

The rotordynamic test rig consists of an overhung shaft/rotor screwed into a precision

spindle, which is in turn driven by an electric motor. The nature of the spindle mount

is to provide cantilevered support to the shaft. For maintenance purposes, the test

rig is constructed from three main parts. Further details on the test rig are provided

by Varney and Green [2, 63], Casey [37], and Lee and Green [8].

A finite width rectangular notch was experimentally manufactured using electrical

discharge machining at a single prescribed location along the shaft. Though the works

by Varney and Green [2, 63, 64] and Green and Casey [1, 37] discuss the influence of

crack depth, the effects of crack location are not discussed. A primary goal of this
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Figure 3.9: Overhung rotordynamic test rig modified for transverse crack detection

work is to investigate the effects of both crack location and depth on crack detection

and diagnosis.

The test rig relies on three eddy-current proximity probes to measure the dynamic

response of the rotor tilts, γX and γY . A comprehensive discussion of the monitoring

system and data analysis techniques employed on the test rig is found in the works

by Varney and Green [2], Lee and Green [8], Dayan et al. [13], and Casey [37].

3.4.1 Shaft Damping

The system damping must be quantified to accurately capture the dynamic response of

the rotor. Though only summarized here, additional details concerning the damping

model and the procedure for experimentally measuring the damping parameters are

found in references by Green and Casey [1], Varney and Green [2], and Casey [37].

A frequency-independent damping model is used to incorporate energy dissipation.

Equivalent viscous damping constants for the system are then obtained. The energy

dissipated per cycle via viscous damping is

Edisv = πωcd|X|2, (3.41)
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while the energy dissipated via structural damping per cycle is

Ediss = πβk|X|2, (3.42)

where ω is the response frequency, cd is the equivalent viscous damping coefficient, k

is the stiffness, β is the damping constant, and |X| is the magnitude of the rotor’s

deflection (as measured following application of an impulse to the non-rotating can-

tilevered shaft). A value for an equivalent viscous damping coefficient ceq is obtained

by relating Eqs. 3.41 and 3.42 and solving for cd (which is now the equivalent viscous

damping coefficient, ceq):

ceq =
βk

ω
. (3.43)

Casey [37] describes a log decrement experimental procedure using the shaft from the

test rig to obtain an estimate for β of approximately 0.01. This estimate is employed

herein in Eq. 3.6.

3.4.2 Test Rig Parameters

The test rig parameters employed in this work’s analytic models are provided. Once

again, a detailed description is found in references [2, 8, 37].

The 10.2 mm diameter shaft is composed of AISI 4140 steel, and its length is 88.9

mm (as measured from the cantilevered base). The elastic modulus of the shaft is as-

sumed to be 207 GPa, with a Poisson’s Ratio of 0.33. The width of the experimentally

manufactured notch is approximately 1.0 mm.

The rotor is composed of 440C stainless steel, and its mass is 0.573 kg. The polar

mass moment of inertia is 3.85 × 10−4 kg m2, and the transverse mass moment of

inertia is 2.37 × 10−4 kg m2. Furthermore, the rotor center of mass is offset axially

from the end of the shaft by approximately 10.4 mm. The parallel axis theorem is

used to obtain the rotor’s rotational inertia properties at the end of the shaft.

The parameters of the overhung rotordynamic system are summarized in Table
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Table 3.1: Test rig parameters

m 0.573 kg
It 2.37× 10−4 kg · m2

Ip 3.85× 10−4 kg · m2

E 207 GPa
L 88.9 mm
d 10.2 mm
ν 0.33

3.1. Experimental results obtained by Casey [37] and presented by Varney and Green

[2] are discussed in Chapters 5 and 6.

3.5 Conclusions

An overhung model of an undamaged rotordynamic system is presented. Four degree

of freedom linear equations of motion are developed using Newton-Euler mechanics

in a rotating reference frame. Two gaping crack models are discussed, with emphasis

placed on the respective compliance of each. The first model, the notch model, is a

finite-width rectangular notch whose global reduction in stiffness arises from reduced

area moments of inertia. The second crack model, the gaping fatigue crack, employs

linear elastic fracture mechanics theory to estimate the crack compliance.

The mathematical models presented are used to obtain the dynamic response of

the cracked system. Several mathematical tools are employed, one of which has been

alluded to: the transfer matrix. Before discussing the dynamic response of each crack

model, the transfer matrix method is discussed in greater detail.
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CHAPTER IV

THE TRANSFER MATRIX METHOD: A NUMERICAL

TECHNIQUE

The transfer matrix method is a discretization technique adept at quickly and ac-

curately analyzing complex rotordynamic systems. The method seamlessly accounts

for various rotordynamic properties and phenomena such as differing boundary con-

ditions, support reactions (e.g., bearing stiffness and damping), external forcing (e.g.,

gravity, imbalance, etc.), and complicated geometry. The transfer matrix method

condenses the steady-state equations of motion of an element into a single matrix

relating the forces and displacements on one end of the element to those on the other.

The transfer matrix techniques employed herein assume lumped parameter sys-

tems. Inertial effects are incorporated into a point matrix, and elastic effects are

encapsulated into a field matrix. The point and field matrices use continuity and

force-moment balances to update a state vector across an element. By propagating

a state vector through the elements of a system, an overall transfer matrix is ob-

tained relating the boundary conditions of the system. The transfer matrix method

is capable of providing both the free and forced system response.

Transfer matrix methods and finite element techniques share several concepts.

Genta [35] proves that the two methods are equivalent, given the same discretization.

Furthermore, both methods rely on discretizing the system into a series of elemental

components. The transfer matrix is chosen over finite element analysis because of the

following:

1. Simplicity: sequential multiplication of transfer matrices is natural to rotordy-

namic systems.
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Table 4.1: Summary of transfer matrix methods

Technique Primary Purpose

RTM Inclusion of stiffness asymmetry

CTM Separation of forward and backward whirl

CETM Inclusion of external forcing

2. The ease of symbolic manipulations.

3. Expedience in extracting the system’s steady state response.

However, finite element analysis does have several advantages over the transfer ma-

trix method. First, finite element analysis allows for the incorporation of non-linear

effects. The non-linear nature of a breathing crack would necessitate the use finite

element methods. Second, the method’s robustness allows for analysis of many vari-

eties of rotordynamic systems (whereas the transfer matrix method is suitable only

for sequential, in-line systems).

This work provides several transfer matrix techniques to obtain the free and forced

system response. The Real Transfer Matrix (RTM) employs real-valued coordinates

to analyze orthotropic rotordynamic systems, such as a rotating cracked shaft. A

novel transfer matrix technique, the Complex Transfer Matrix (CTM), is provided

to distinguish forward and backward whirl. The Complex Extended Transfer Matrix

(CETM) is discussed in relation to its ability to incorporate external forcing [1, 7].

These transfer matrix techniques are summarized with their primary purposes in

Table 4.1. Prior to presenting the aforementioned transfer matrices, a brief discussion

of rotordynamic analysis in a rotating reference frame is given.
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4.1 Rotordynamic Analysis in a Rotating Reference Frame

While the analysis of cracked rotating systems is conveniently performed in a rotating

reference frame, diagnostics typically rely on inertial frame measurements. Thus,

understanding the relation between a rotating and inertial frame analysis is crucial

in developing the diagnostic routines suggested in this work.

Several aspects of rotating frame rotordynamic analysis must be discussed to elu-

cidate meaningful interpretation of later results. The eigenvalues of a rotordynamic

system represent the whirl speeds; whirl occurs when the shaft precesses about the

undeflected shaft axis. Whirl frequencies are synchronous or non-synchronous; syn-

chronous whirl occurs when the whirl frequency coincides with the frequency of shaft

rotation. Furthermore, whirl is characterized by its direction relative to the shaft ro-

tation. Forward whirl occurs in the direction of shaft rotation, while backward whirl

occurs opposite the direction of shaft rotation.

It is well known [1, 19, 41, 65] that rotating-frame eigenvalues are shifted from

the absolute eigenvalues by the shaft speed of the system according to

p = pr + n, (4.1)

where p is the absolute eigenvalue, pr is the relative eigenvalue, and n is the shaft

speed.

A useful visualization tool for rotordynamic analysis is the Campbell diagram. The

Campbell diagram is a locus of whirl frequencies plotted versus shaft speed. On the

Campbell diagram, the inertial synchronous whirl frequencies are found by locating

the intersections between lines p = ±n and the locus of eigenvalues. Equivalent

intersection lines for a rotating frame analysis are obtained by solving Eq. 4.1 for the

relative eigenvalue pr:

pr = p− n. (4.2)

To obtain forward synchronous whirl frequencies in a rotating frame, it is clear that pr
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Table 4.2: Campbell diagram intersection lines

Forward Whirl Backward Whirl

Inertial Frame p = n p = −n
Rotating Frame pr = 0 pr = −2n

Figure 4.1: Relative whirl on the Campbell diagram

must be set to zero in the characteristic equation (found from a transfer matrix anal-

ysis). Likewise, to obtain backward synchronous whirl, n must be set to −1
2
pr. The

inertial intersection lines p = ±n are shifted down by the shaft speed n to obtain the

corresponding rotating frame intersection lines, as shown in Fig. 4.1. The quantities

in the figure are shown normalized by the shaft speed. The normalization procedure

is performed to emphasize the slopes of the intersection lines. The intersection lines

highlighting synchronous whirl on the Campbell diagram are summarized in Table 4.2

for inertial and rotating reference frames. An intuitive explanation for these results

is provided by Varney and Green [36].
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(a) Bending in the XZ plane (b) Bending in the Y Z plane

Figure 4.2: Point element formulation

4.2 The Real Transfer Matrix

The Real Transfer Matrix (RTM) uses real-valued coordinates to model rotordynamic

systems where the properties of the system can be different in orthogonal planes.

The RTM is therefore capable of analyzing cracked rotordynamic systems where the

stiffness of the shaft is asymmetric.

The RTM suffers from several shortcomings. The principle shortcoming is the

method’s inability to distinguish forward and backward whirl (as will be seen, this

shortcoming leads to the development of the Complex Transfer Matrix). The RTM

state vector contains eight quantities; therefore, eight eigenvalues are expected per

discretized mass. The redundancy in eigenvalues leads to a duplication of each whirl

speed, concealing the direction of each. Also, the typical transfer matrix can result in

prohibitively large characteristic equations for systems with a relatively small number

of point masses. The high order of the characteristic equation results in loss of

computation speed and accuracy. The Complex Transfer Matrix remedies these issues,

as discussed shortly.

4.2.1 Inertial Effects: The Point Matrix

A general free-body diagram of a rigid element with finite inertia is provided in

Fig. 4.2, where the relevant degrees of freedom are shown (though coordinates X and
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Y are shown, the figure is equally valid for inertial coordinates ξ and η). The faces

of the point element are designated by the superscripts R and L, which refer to the

right and left faces of the point element, respectively. The face designation of any

element is maintained relative to the face of the point element which it contacts [19];

this concept is further discussed in the derivation of the field matrix.

Following the procedure dictated by Lee and Green [7], the 8×1 state vector at

the jth node in the rotating frame XY Z is

{S}j = { uX γY MY −VX −uY γX MX VY }T , (4.3)

where u, γ, M , and V denote linear displacement, angular displacement, bending

moment, and shear in the direction specified by the subscript X or Y . These terms

are shown in Figure 4.2. The corresponding inertial frame state vector is

{S}j = { uξ γη Mη −Vξ −uη γξ Mξ Vη}T , (4.4)

where once again the subscript indicates the corresponding direction. The point

matrix [Pj] updates the state vector from the left to the right end of element j

according to

{S}Rj = [Pj] {S}Lj . (4.5)

It is often convenient to express the stiffness of a cracked rotordynamic system in a

rotating frame. However, condition monitoring systems typically measure an inertial

frame response. For this reason, point matrices are provided in both inertial and

rotating reference frames.

4.2.1.1 Inertial Reference Frame

The derivation of the point matrix in an inertial reference frame is provided in Ap-

pendix E. The inertial point matrix [Pj] for the jth mass m (where the system is
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composed of j = 1, 2, ..., N lumped masses) is the following:

[Pj]
I
8×8 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 −Itp2 1 0 0 −iIpnp 0 0

mp2 − idξξp− kξξ 0 0 1 idξηp+ kξη 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 iIpnp 0 0 0 −Itp2 1 0

idηξp+ kηξ 0 0 0 mp2 − idηηp− kηη 0 0 1



,

(4.6)

where p is the inertial whirl frequency, n is the shaft speed, and the polar and trans-

verse mass moments of inertia are It and Ip, respectively. The superscript I indicates

that the matrix is defined in an inertial reference frame (thus, the state vector given in

Eq. 4.4 is employed). External stiffness and damping forces, such as those arising due

to a bearing or seal, are incorporated through the stiffness and damping coefficients

kij and dij, respectively.

4.2.1.2 Rotating Reference Frame

The rotating-frame point matrix (designated by superscript RF) is found from the

rotating frame angular momentum and acceleration (derived in Appendix A) to be

[Pj]
RF
8×8 =

 [D]4×4 −[G]4×4

[G]4×4 [D]4×4

 , (4.7)

where

[D]4×4 =



1 0 0 0

0 1 0 0

0 (Ip − It)n2 − It p2
r 1 0

m (p2
r + n2) 0 0 1


(4.8)
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(a) Bending in the xz plane (b) Bending in the yz plane

Figure 4.3: Field element formulation

and

[G]4×4 =



0 0 0 0

0 0 0 0

0 −i(2It − Ip)npr 0 0

2imn pr 0 0 0


. (4.9)

In this case the rotating frame state vector, Eq. 4.3, is used. It is important to rec-

ognize that the response occurs at the relative whirl frequency pr. Also, note that

external stiffness and damping forces have been excluded for the rotating frame anal-

ysis, as these forces would appear as forcing vectors rotating counter to the direction

of shaft rotation. In this case, application of the Complex Extended Transfer Matrix

would be required.

4.2.2 Elastic Effects: The Field Matrix

The field matrix for a massless beam segment is obtained from Euler-Bernoulli beam

theory. Figures 4.3a and 4.3b show a beam element undergoing two-plane bending;

the face designations are defined relative to the adjacent point element. The field

matrix updates the state vector from the right face of element j − 1 to the left face

of element j according to

{S}Lj = [Fj]{S}Rj−1, (4.10)
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which is valid for both rotating and inertial reference frames. Lee and Green [7]

develop the field matrix for a beam segment displaying a constant cross-section:

[Fj] =



1 L
L2

2EI

L3

6EI
0 0 0 0

0 1
L

EI

L2

2EI
0 0 0 0

0 0 1 L 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 L
L2

2EI

L3

6EI

0 0 0 0 0 1
L

EI

L2

2EI

0 0 0 0 0 0 1 L

0 0 0 0 0 0 0 1



. (4.11)

The length of beam segment j is L, the elastic modulus is E, and the area moment

of inertia about a transverse axis is I.

Varney and Green [2] employ a similar technique to develop a field matrix for

a beam segment with an asymmetric cross-section. The only stipulation for the

geometry of the cross-section is that either the XZ or Y Z plane must be a plane of

symmetry. The asymmetric field matrix is

[F ]asym =

 [FX ]4×4 [0]4×4

[0]4×4 [FY ]4×4

 , (4.12)

where

[FX ]4×4 =



1 Lc
L2
c

2EIȳ

L3
c

6EIȳ

0 1
Lc
EIȳ

L2
c

2EIȳ

0 0 1 Lc

0 0 0 1


(4.13)
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and

[FY ]4×4 =



1 Lc
L2
c

2EIx̄

L3
c

6EIx̄

0 1
Lc
EIx̄

L2
c

2EIx̄

0 0 1 Lc

0 0 0 1


. (4.14)

The subscript on the area moment of inertia indicates the axis about which it is

computed. The asymmetric field matrix is valid only for a rotating frame analysis.

A transfer matrix corresponding to a gaping fatigue crack is provided by Green and

Casey [1]. The compliance matrix of the gaping fatigue crack, Eq. 3.18, is rearranged

into a transfer matrix form:

[Fcrack]8×8 =



1 0 0 −c22 0 0 0 0

0 1 c44 0 0 0 c45 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 −c33

0 0 c54 0 0 1 c55 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



, (4.15)

where the cij terms are given in Eqs. 3.19 - 3.23.

4.2.3 The Overall Transfer Matrix: Assembling System Elements

Discrete system elements are related through the equivalence of coincident state vec-

tors. By propagating the state vector through the system, a single matrix is found to

associate the boundary conditions. A detailed explanation of the process is given by

Pestel and Leckie [34], Lee and Green [7], and Rao [19].

The transfer matrix technique is demonstrated using the simple system shown

in Fig. 4.4. The overhung system consists of three shaft segments of varying cross-

section, and a lumped mass on the free end. The shaft segments are numbered as
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Figure 4.4: General overhung rotordynamic system

indicated by the subscripts in the figure. Though an inertial frame is employed in this

example, the method is identical for a rotating frame analysis (except for the form

of the elemental matrices). The cantilevered boundary conditions for the overhung

shaft are captured by the state vector at the support:

{S}SU = { 0 0 Mη −Vξ 0 0 Mξ Vη}T , (4.16)

where SU designates the support boundary conditions. At the free end, no shear or

moment exists:

{S}FE = { uξ γη 0 0 −uη γξ 0 0}T (4.17)

where the superscript FE signifies the free end. The cantilever boundary conditions

are chosen for this example because they are identical to those of the overhung rotor

modeled elsewhere in this work. Beginning with the support, the state vector on the

right of shaft element one is

{S}R1 = [F1]{S}SU , (4.18)

where [F1] is the field matrix for shaft segment one. Enforcement of continuity ne-

cessitates the following:

{S}R2 = [F2][F1]{S}SU . (4.19)

It is important to recognize that the designation of right and left for a field element

is opposite that of a point element. Continuing in a similar fashion provides the

following relationship between the boundary conditions:

{S}FE = [P1][F3][F2][F1]{S}SU , (4.20)

60



where [P1] is the point matrix for the lumped rotor. The overall transfer matrix [U ]

results from multiplication of the individual element matrices:

[U ] = [P1][F3][F2][F1]. (4.21)

Application of the specific boundary conditions (Eqs. 4.16 and 4.17) gives the follow-

ing:

uξ

γη

0

0

−uη

γξ

0

0



=



U11 U12 U13 U14 U15 U16 U17 U18

U21 U22 U23 U24 U25 U26 U27 U28

U31 U32 U33 U34 U35 U36 U37 U38

U41 U42 U43 U44 U45 U46 U47 U48

U51 U52 U53 U54 U55 U56 U57 U58

U61 U62 U63 U64 U65 U66 U67 U68

U71 U72 U73 U74 U75 U76 U77 U78

U81 U82 U83 U84 U85 U86 U87 U88





0

0

Mη

−Vξ

0

0

Mξ

Vη



, (4.22)

where the entries of the overall transfer matrix [U ] are found from Eq. 4.21. Extracting

the eigenvalue problem gives a reduced overall transfer matrix:

0

0

0

0


=



U33 U34 U37 U38

U43 U44 U47 U48

U73 U74 U77 U78

U83 U84 U87 U88





Mη

−Vξ

Mξ

Vη


. (4.23)

The determinant of this matrix is a polynomial characteristic equation in p, the roots

of which are the eigenvalues of the system (see Rao [19] for more detail).

4.3 The Complex Transfer Matrix

A shortcoming of the RTM method is the inability to distinguish forward and back-

ward whirl directions. A novel complex redefinition of the state vector quantities is

proposed to reduce the 8 × 8 transfer matrix to a 4 × 4 form, and is deemed the
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Complex Transfer Matrix (see Varney and Green [36] for additional detail). The

new formulation results in several advantages: increased computational efficiency,

improved accuracy, and separation of forward and backward whirl.

The basis of the Complex Transfer Matrix is a complex coordinate redefinition of

the state vector elements, which is valid for both the inertial and rotating reference

frames (though rotating frame coordinates are shown below):

u = uX + i uY

γ = γX + i γY

M = MX + iMY

V = VX + i VY . (4.24)

This coordinate redefinition reduces the state vector from the form in Eq. 4.3 to

{S}j = { −u γ M V }T . (4.25)

The point and field matrices are reformulated using this complex coordinate redefi-

nition, for both an inertial and rotating reference frame.

4.3.1 Development in an Inertial Reference Frame

Application of the complex coordinate redefinition in Eq. 4.24 condenses the inertial

frame point matrix, Eq. 4.6, into

[Pj]
I
4×4 =



1 0 0 0

0 1 0 0

0 −It p2 + Ip n p 1 0

mp2 +Wext 0 0 1


, (4.26)

where Wext includes the effects of external stiffness and damping:

Wext = −(dξξ + i dξη) p− (kξξ − i kξη). (4.27)
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It is imperative to note that the reduction of external stiffness and damping depends

on the following assumptions: kξξ = kηη, kηξ = −kξη, dξξ = dηη, and dηξ = −dξη.

These limitations on the stiffness and damping coefficients should pose no problem

considering the stiffness and damping in the ξ and η directions are typically close in

magnitude. In the rare case when they are not, the values can be averaged to obtain

an approximate value.

The complex coordinate redefinition results in the following 4 × 4 complex field

matrix for symmetric beam element j:

[Fj]4×4 =



1 iL i
L2

2EI

L3

6EI

0 1
L

EI
−i L

2

2EI

0 0 1 −iL

0 0 0 1


, (4.28)

which is valid only for beams with a symmetric cross-section.

This method is designated the Complex Transfer Matrix due to the nature of

the transformation and the nature of the matrix elements themselves. The 4×4 field

matrix in Eq. 4.28 is inherently complex, and the 4×4 point matrix in Eq. 4.26

contains complex terms if dξη and kξη are non-zero.

4.3.2 Development in a Rotating Reference Frame

Application of Eq. 4.24 to the steady-state rotating frame equations of motion results

in the following 4× 4 point matrix for mass j:

[Pj]
RF
4×4 =



1 0 0 0

0 1 0 0

0 Ipn(pr + n)− It(pr + n)2 1 0

m(pr + n)2 0 0 1


. (4.29)

The absolute eigenvalue p is related to the relative eigenvalue pr by Eq. 4.2. When

p is replaced by pr + n, Eq. 4.29 reduces to Eq. 4.26. The rotating frame, complex
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field matrix [F ] is identical to Eq. 4.28. Appendix F discusses why the CTM sepa-

rates forward and backward whirl and provides a simple example demonstrating the

separation.

4.4 Incorporation of Excitation: The Complex Extended Trans-
fer Matrix

The transfer matrix techniques discussed thus far are valid only for free response anal-

ysis. However, understanding the forced response is crucial for vibration monitoring

diagnostics. Adapting the transfer matrix to allow the inclusion of forcing is impera-

tive. One such adaptation is the Complex Extended Transfer Matrix (CETM). The

CETM is developed by Lee and Green [7] to systematically incorporate forcing into

the transfer matrix. The premise underlying the CETM method is an expansion of

the field matrices from 8× 8 to 9× 9. As is demonstrated, this dimension expansion

allows for the inclusion of forcing. An expansion of the transfer matrices requires a

corresponding expansion of the state vector, where an entry of unity is concatenated

unto Eq. 4.3:

{S}j = { uX γY MY −VX −uY γX MX VY 1}T . (4.30)

Though the rotating frame state vector is used here as an example, the technique is

equally applicable to analysis in an inertial frame. Damping is introduced into the

system to calculate the forced response. Following the procedure of Green and Casey

[1], the point matrix for rotor j accounting for external excitation and damping is

[Pj]9×9 =

 [Pj]8×8 {0}

{0} 1

+
[
P̂j

]
9×9

, (4.31)
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where [P̂j]9×9 is a matrix incorporating excitation and damping effects, as derived

below. The material damping forces on the rotor are the following:

FD
X

FD
Y

MD
X

MD
Y


=



d11Y 0 0 −d12Y

0 d11X d12X 0

0 d21X d22X 0

−d21Y 0 0 d22Y





u̇X

u̇Y

γ̇X

γ̇Y


, (4.32)

where the damping coefficients are provided in Eq. 3.6. Forcing due to gravity is a

constant radial force in the inertial frame. Thus, in the rotating frame, gravity is

modeled as a vector rotating counter to the shaft speed (see Fig. 3.2):

Fg = mge−int (4.33)

or, in vector notation: 

F g
X

F g
Y

M g
X

M g
Y


=



mg cos(nt)

−mg sin(nt)

0

0


, (4.34)

where the gravitational constant is g and t is time. The total forcing due to gravity

and damping is the sum of the contribution from both:

F g
X + FD

X

F g
Y + FD

Y

M g
X +MD

X

M g
Y +MD

Y


=



mg cos(nt) + d11Y u̇X − d12Y γ̇Y

−mg sin(nt) + d11X u̇Y + d12X γ̇X

d21X u̇Y + d22X γ̇X

−d21Y u̇X + d22Y γ̇Y


. (4.35)

The steady-state response of the system is found by assuming a solution in the same

form of the excitation. In complex notation, cos(nt) becomes the real part of eint,

while sin(nt) become the real part of −ie−int. As forcing occurs at frequency n, the

response of the system is synchronous at n. The solution to each state vector quantity
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is then of the general form

qj = Qje
int. (4.36)

Adopting complex notation for the sinusoidal terms and assuming solutions for the

state variables gives the external forcing on rotor j:

F g
X + FD

X

F g
Y + FD

Y

M g
X +MD

X

M g
Y +MD

Y


j

=



mjg + i n d11Y uX − i n d12Y γY

imjg + i n d11XuY + i n d12XγX

i n d21XuY + i n d22XγX

−i n d21Y uX + i n d22Y γY


j

. (4.37)

Rearranging Eq. 4.37 into transfer matrix form provides the damped forced response

matrix [P̂j]9×9 for rotor j in the rotating frame:

[
P̂j

]RF
9×9

=



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

ind21Y −ind22Y 0 0 0 0 0 0 0

ind11Y −ind12Y 0 0 0 0 0 0 mg

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 ind21X −ind22X 0 0 0

0 0 0 0 ind11X −ind12X 0 0 −img

0 0 0 0 0 0 0 0 0



. (4.38)

A similar procedure could be followed for an inertial reference frame. The CETM

field matrix remains similar to Eq. 4.11, though expanded to maintain consistency:

[Fj]9×9 =

 [Fj]8×8 {0}

{0} 1

. (4.39)

A concept central to the CETM is synchronous whirl. Since forcing is applied to the

system at a known frequency, the response of the system occurs at that frequency. In

the common case that the excitation frequency is the shaft speed, the whirl becomes
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synchronous. Also, recognize that though the Real Transfer Matrix is employed to

motivate the CETM method, the procedure is equally applicable to the Complex

Transfer Matrix. However, the benefit of using the Complex Transfer Matrix arises

when solving the associated eigenvalue problem, as the order of the characteristic

equation is reduced. For a forced response analysis, the Complex Transfer Matrix

provides no practical reduction in computation time. It is also important to solve

separately for forward and backward whirl components when using the CETM. The

sign of the shaft speed in the gyroscopic effect should be taken as positive for forward

whirl, and negative for backward whirl.

4.5 Conclusions

To summarize, the transfer matrix method is a numerical discretization technique

relying on elemental transfer matrices. These matrices are used to propagate a state

vector through a rotordynamic system. Two transfer matrix techniques are developed:

the Real Transfer Matrix and the Complex Transfer Matrix. The RTM is suited for

analysis of orthotropic systems, such as cracked shafts. However, the method can be

computationally inefficient or even inaccurate for systems with many point elements.

Furthermore, the RTM does not distinguish between forward and backward whirl.

The Complex Transfer Matrix employs a complex coordinate redefinition to con-

dense the state vector employed in the RTM into a reduced form. This coordinate

redefinition decreases the state vector from 8 × 1 to 4 × 1. The resulting Complex

Transfer Matrix has increased computational efficiency and naturally distinguishes

whirl direction. Also, a method for incorporating external excitation and damping

effects is discussed. Incorporating these effects is important, as vibration monitoring

transducers observe the system forced response. Two analytical techniques are now

available to analyze the cracked rotordynamic system: the equations of motion and

the transfer matrix.
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CHAPTER V

ANALYTIC RESULTS: FREE RESPONSE

The 2X resonance frequency is a valuable diagnostic tool for cracked rotordynamic

systems. The 2X resonance occurs when the shaft speed equals half of a natural

frequency. To obtain the 2X resonance frequency, a free response analysis must be

performed.

The free response of the cracked rotordynamic system is obtained for both crack

models (the notch crack and gaping fatigue crack) using the equations of motion

derived in Chapter 3. For each crack model, the results presented are as follows.

First, the free response is obtained for a system displaying a fixed-location crack

with variable depth. These results are presented to compare with the analytic and

experimental results obtained by Green and Casey [1] and Varney and Green [2].

Next, variations in both crack depth and location are investigated for diagnostic

purposes. The 2X resonance frequencies are given for many pairs of feasible crack

depths and locations. A state space form of the equations of motion is presented to

facilitate the analysis.

Only the results of the free response analysis are presented in this chapter. These

results are interpreted in Chapter 7 in relation to the detection and diagnosis of

transverse shaft cracks.

5.1 State Space Representation of Equations of Motion

Recall the four degree-of-freedom coupled equations of motion for the cracked rotor-

dynamic system:

[M ] {q̈}+ ([D] + [G]) {q̇}+
(
[C]−1 − [E]

)
{q} = {F} , (5.1)
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where the vector of generalized coordinates {q} is

{q} = {uX uY γX γY }T . (5.2)

The equations of motion are solved using a state space formulation of Eq. 5.1. The

following state vector representation is employed:

{x} =

 {q}{q̇}
 . (5.3)

Following the procedure outlined by Ginsberg [65] provides the state space equations

of motion:

[S] {ẋ} − [R] {x} =

 {0}{F}
 , (5.4)

where the state matrices are

[S] =

 −([C]−1 − [E]) [0]

[0] [M ]

 (5.5)

and

[R] =

 [0] −([C]−1 − [E])

−([C]−1 − [E]) −([D] + [G])

 . (5.6)

The state space equations of motion are used to perform both free and forced response

analyses.

The equations of motion provide an expedient mechanism for performing a free

response analysis of the system. A free response analysis provides the natural fre-

quencies of the system, which are directly related to the 2X resonance frequency.

However, general symmetric eigenvalue techniques are not applicable to the problem

at hand, as the matrix [R] is asymmetric. An adjoint (i.e., right and left) eigenvalue

problem is applied to obtain the natural frequencies of the system. Ginsberg [65]

defines the right and left eigenvalue problems as

[[R]− λj [S]] {ψj} = {0} (5.7)
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Figure 5.1: Overhung rotordynamic system displaying a notch crack

and [
[R]T − λn [S]

]{
ψ̃n

}
= {0} , (5.8)

where ψj and ψ̃n are the right and left eigenvectors, respectively, and the eigenvalues

obey λj = λn. Note that the damping matrix [D] is neglected for the free response

analysis, as the system damping is small. Solving either eigenvalue problem provides

the full set of eigenvalues, which appear as complex conjugate pairs. Furthermore, the

eigenvalues obtained from Eqs. 5.7 and 5.8 are the relative (rotating frame) eigenvalues

of the system, and must be transformed to an inertial frame using Eq. 4.2.

5.2 Free Response: Notch Crack

An overhung rotordynamic system displaying a notch crack of width LC is shown in

Fig. 5.1. Reference frame XY Z is attached to a hypothetical undeflected shaft and

rotates at shaft speed n. The response of the notched system depends on the stiffness

reduction induced by the notch, which in turn depends on the notch’s area moments

of inertia. Closed-form expressions of the notch area moments of inertia are given in

Appendix B as a function of crack depth.

Two scenarios are investigated; the first analyzes a system in which the notch’s

location is fixed, while the second investigates the influence of both notch location

and depth. A fixed-location notch situation is assessed for two reasons. First, the

results allow direct comparison to analytical and experimental results given by Green
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Table 5.1: Test rig parameters

m 0.573 kg
It 2.37× 10−4 kg · m2

Ip 3.85× 10−4 kg · m2

E 207 GPa
L 88.9 mm
d 10.2 mm
ν 0.33

and Casey [1] and Varney and Green [2]. Second, the influence of notch depth can

be examined independently from notch location.

5.2.1 Fixed-Location Notch

A notch 6.35 mm (0.25 inches) from the support is investigated to facilitate com-

parison to earlier work by Green and Casey, [1]. Parameters of the rotordynamic

test rig discussed in Section 3.4 are employed in the analysis; these parameters are

summarized in Table 5.1. To compensate for experimental uncertainty, the nominal

length of the shaft is adjusted to equate the experimental [2, 37] and analytical first

natural frequency of the undamaged shaft. The adjusted length of the shaft is found

to be 86.4 mm (3.403 inches), which is less than a mere 2% of the actual shaft length.

Equation 5.7 is solved to find the eigenvalues of the notched system for a range of

shaft speeds, whereas the Complex Transfer Matrix is used to provide the Campbell

diagram (i.e., locus of inertial eigenvalues versus shaft speed) of the undamaged sys-

tem. The 2X resonance frequency is extracted by locating the intersection between

the locus of eigenvalues and a line of slope two, as shown in Figs5.2 - 5.5. Figure

5.2 provides the Campbell diagram of the undamaged rotordynamic system, while

Figs. 5.3 - 5.5 give the Campbell diagram for notches of 20%, 40% and 60% depth,

respectively. Regions of instability are indicated on the figures, along with the 1X

excitation line (i.e., synchronous response). Instability occurs when the eigenvalue’s

real part is positive. As the notch depth is increased, it is clear that the width of the
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Figure 5.2: Campbell Diagram: Undamaged system (generated using Complex Trans-
fer Matrix)

instability region increases.

The 2X resonance frequencies from a gaping fatigue crack model and a notch model

are compared in Fig. 5.6 and Table 5.2. Figure 5.6 plots the 2X resonance frequency

versus notch depth, and compares to experimental results (the experimental results

are discussed shortly). Table 5.2 compares the analytic 2X resonance frequency for a

range of notch depths to those found experimentally by Casey [37] and presented by

Varney and Green [2]. As expected [1, 2], the 2X resonance frequency decreases with

increasing notch depth, though the decrease is marginal until approximately 40%

depth. Green and Casey [1] employ a gaping fatigue crack in their analytic work,

though they experimentally manufacture a notch.

As expected, the results in Table 5.2 and Fig. 5.6 indicate that the experimental

results align closer to the notch crack than the gaping fatigue crack (discussed in

Section 5.3). From Fig. 5.6, it is also evident that the two models provide virtually

identical results until approximately 20% depth. The models remain similar from
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Figure 5.3: Campbell Diagram: Notch, 20% depth

Figure 5.4: Campbell Diagram: Notch, 40% depth
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Figure 5.5: Campbell Diagram: Notch, 60% depth

Figure 5.6: 2X resonance frequency versus crack depth for a fixed-location crack
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Table 5.2: Analytic and experimental 2X resonance frequencies, along with percent
difference from experimental results

% Crack Shaft Speed (Hz):
Depth Experimental [2, 37] Notch Crack Gaping Fatigue Crack

0 73.56 73.56 (0%) 73.56 (0%)
10 73.50 73.45 (-0.07%) 73.28 (-0.3%)
20 72.92 73.18 (0.4%) 72.12 (-1.1%)
30 71.67 72.70 (1.4%) 69.80 (-2.6%)
40 70.09 71.81 (2.5%) 65.83 (-6.1%)
50 – 70.07 59.29
60 – 66.37 48.18
70 – 57.91 30.68
75 – 50.30 21.75

20% to 40% depth, though the 2X resonance frequency for the gaping fatigue crack

begins to decrease more pronouncedly. Beyond 40% depth, the models diverge sig-

nificantly. The experimental results fall between those predicted by the two crack

models, though significantly closer to the predicted notch results. The deviation in-

dicates that the experimental crack contains an additional compliance not captured

by the notch model. It is hypothesized that the additional compliance arises due to

stress concentrations at the base of the notch.

5.2.2 Variable Notch Location

Investigating the influence of crack location on system response is a primary goal of

this work. The 2X resonance frequency is found for a range of notch locations and

depths by solving Eq. 5.7. Figures 5.7 and 5.8 provide the 2X resonance frequency

versus notch depth and location. Figures 5.7b and 5.8b demonstrate the small vari-

ation in the 2X resonance frequency for cracks less than 35% of the shaft diameter.

It is crucially important to recognize that different combinations of notch depth and

location can result in the same 2X resonance frequency. Measurement of only the 2X

resonance frequency is inadequate for diagnosing the notch parameters.

It is obvious from the flat regions of Figs. 5.7 and 5.8 that the limited variation
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(a) Extended crack depth range: 0 - 80%

(b) Limited crack depth range: 0 - 35%

Figure 5.7: Notch Model: 2X resonance frequency versus notch depth and location
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(a) Extended crack depth range: 0 - 75%

(b) Limited crack depth range: 0 - 35%

Figure 5.8: Notch Model: Contour plot of 2X resonance frequency versus notch depth
and location (given in Hz)
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Figure 5.9: Overhung rotordynamic system displaying a gaping fatigue crack

in the 2X resonance frequency precludes crack detection for certain regions of notch

depth and location (higher resolution is required to distinguish contours in these

regions of Fig. 5.8a). Furthermore, even relatively deep notches (such as 40% of

the diameter) can remain undetected if the notch is located far from the support.

Additional aspects of the results relevant to condition monitoring are interpreted in

detail in Chapter 7.

5.3 Free Response: Gaping Fatigue Crack

Recall that the gaping fatigue crack is a negligible-width crack terminating in a sharp

edge. An overhung rotordynamic system displaying a gaping fatigue crack is shown

in Fig. 5.9 with reference frame XY Z attached to a hypothetical undeflected shaft

and rotating at the shaft speed n.

Results comparable to those provided for the notch crack are given for a gaping

fatigue crack. First, a fixed-location gaping fatigue crack is investigated to isolate the

effect of crack depth. Following presentation of these results, variations in both crack

location and depth are investigated.

5.3.1 Fixed Location Gaping Fatigue Crack

The results for a fixed-location gaping fatigue crack 6.35 mm (0.25 inches) from the

support are provided. Figures 5.10 - 5.12 give the Campbell diagrams for systems
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Figure 5.10: Gaping Fatigue Crack: 20% depth

displaying gaping fatigue cracks of 20%, 40%, and 60% depth, respectively. Intersec-

tion lines corresponding to 1X and 2X excitation are indicated in the figures, along

with regions of instability. Just as with the notch, it is clear that the instability re-

gion widens as the crack depth increases. Additionally, a gaping fatigue crack results

in an increased range of instability for commensurate crack depths, as evidenced by

comparing Figs. 5.10 - 5.12 to Figs. 5.3 - 5.5.

The 2X resonance frequencies for crack depths of zero percent to 75% are plotted

in Fig. 5.6 and provided in Table 5.2. It is obvious that the 2X resonance frequency

for the gaping fatigue crack is more sensitive to changes in crack depth than the notch,

as the 2X resonance frequency declines at a greater rate with increasing crack depth.

The results indicate that a gaping fatigue crack results in a greater loss of stiffness

than a notch crack of commensurate depth. In practice, a notch would therefore be

more difficult to detect than a gaping fatigue crack of equal depth.
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Figure 5.11: Gaping Fatigue Crack: 40% depth

Figure 5.12: Gaping Fatigue Crack: 60% depth
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5.3.2 Variable Gaping Fatigue Crack Location

The 2X resonance frequency is provided versus crack depth and location. Figures 5.13

and 5.14 give the 2X resonance frequency versus crack location and depth. Comparing

Fig. 5.8 to Fig. 5.14 indicates that the 2X resonance frequency declines faster for a

gaping fatigue crack than a notch. It is vital to note that different combinations of

crack depth and location can result in the same 2X resonance frequency. Just as

with the notch, knowledge of the 2X resonance frequency by itself is insufficient to

diagnose the crack parameters. The 2X resonance frequency for the gaping fatigue

crack is shown in Figs. 5.13b and 5.14b over a limited crack depth to show additional

detail for shallow cracks. Just as with the notch, shallow cracks and cracks far from

the support result in very little change in the 2X resonance frequency. The resolution

of frequency measurements dictate the condition monitoring system’s ability to detect

small cracks.

5.4 Summary of Free Response Results

A free response analysis of the state space equations of motion is presented. Two

cases are investigated for both crack models: varying the crack depth while fixing the

crack location, and varying both the crack depth and location.

The free response techniques are applied to the fixed crack location system dis-

cussed by Green and Casey [1]. For the fixed crack location investigation, the Camp-

bell diagrams of the system are obtained through solution of the eigenvalue problem.

The 2X resonance frequencies are extracted and subsequently compared to those

found analytically and experimentally by Casey [37] and Varney and Green [2]. The

notch crack model better approximates the experimental results, which is unsurprising

considering the manufactured crack resembles a notch crack more so than a gaping fa-

tigue crack. It is hypothesized that additional unmodeled stress concentrations within

the experimental notch result in slightly lower measured 2X resonance frequencies,
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(a) Extended crack depth range: 0 - 80%

(b) Limited crack depth range: 0 - 35%

Figure 5.13: Gaping Fatigue Crack: 2X resonance frequency versus crack depth and
location
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(a) Extended crack depth range: 0 - 75%

(b) Limited crack depth range: 0 - 35%

Figure 5.14: Gaping Fatigue Crack: Contour plot of 2X resonance frequency versus
crack depth and location (given in Hz)
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compared to those predicted by the notch model. The 2X resonance frequency is

observed to decrease as crack depth increases for both models, which is reasonable

considering deeper cracks result in a greater decrease in stiffness.

A free response analysis is performed in which both the crack depth and location

are permitted to vary. The 2X resonance frequency is provided for both models as a

function of crack location and depth. The results indicate that different combinations

of crack depth and location can provide the same 2X resonance frequency. In com-

paring the crack models, it is once again found that the gaping fatigue crack model

results in a more pronounced decrease in the 2X resonance frequency for increasing

crack depth and locations nearer to the support.
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CHAPTER VI

ANALYTIC RESULTS: FORCED RESPONSE

Vibration monitoring based diagnostics rely on measurement of the system’s forced

response. The forced response is particularly important for cracked rotordynamic

systems, as the 2X harmonic appears only in the presence of forcing due to gravity

(or any other constant radial load). Just as in Chapter 5, the forced response of both

crack models is investigated for two scenarios. The first scenario involves a crack with

fixed location, while the second allows the depth and location of the crack to vary.

A forcing function is developed including gravity and imbalance. The forced equa-

tions of motion are integrated numerically, and the frequency spectra of the transient

and steady-state response is shown. The influence of imbalance on the cracked sys-

tem response is investigated. The Complex Extended Transfer Matrix (CETM) is

employed to extract the 2X component of the rotor’s angular response. Specifically,

the CETM is used to give three types of steady-state results: (1) the magnitude of

the 2X resonant response versus crack depth and location, (2) orbital plots of the

rotor’s lateral and angular displacement, and (3) orbital mode shapes of the shaft’s

lateral and angular response.

Before results are presented, a method for decoupling the state space equations of

motion is discussed. A transformation is given to relate the inertial frame response

to the rotating frame response.

6.1 Obtaining the Forced Response

6.1.1 Decoupling the State Space Equations of Motion

The equations of motion are solved using the state space formulation in Section 5.1.

Before the solution is given, the equations of motion are reduced to a system of eight
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decoupled single-degree-of-freedom equations. First, the eigenvalues and eigenvectors

are found using the procedure in Section 5.1. The eigenvectors are normalized using

the bi-orthogonality relations provided by Ginsberg [65]:

{Ψj} =
{ψj}[{

ψ̃j

}T
[S] {ψj}

]1/2
(6.1)

{
Ψ̃j

}
=

{
ψ̃j

}
[{
ψ̃j

}T
[S] {ψj}

]1/2
. (6.2)

The normalized left and right eigenvectors are then used to generate the following

identities: [
Ψ̃
]T

[S] [Ψ] = [I] (6.3)[
Ψ̃
]T

[R] [Ψ] = [λ] , (6.4)

where the modal matrices [Ψ] and [Ψ̃] decouple [S] and [R] into the identity matrix [I]

and a diagonal matrix of eigenvalues [λ]. Application of the coordinate transformation

{x} = [Ψ] {ξ} (6.5)

to Eq. 5.4 results in a system of decoupled single degree of freedom equations of

motion: {
ξ̈
}
− [λ] {ξ} =

[
Ψ̃
]T  {0}{F}

 . (6.6)

The elements of {ξ} are the modal coordinates of the decoupled system, and {F} is

a vector of forcing functions. Upon solution of Eq. 6.6, the results are transformed

back into the physical coordinate domain through application of Eq. 6.5.

6.1.2 Transformation from Rotating Frame to Inertial Frame

Equation 6.6 represents the single degree of freedom, decoupled equations of motion

expressed in a rotating reference frame. A rotating reference frame is judicious for

86



Figure 6.1: Relation between inertial and rotating reference frames, with gravity
shown

the analysis, as the stiffness of the cracked shaft is constant in a rotating frame.

However, most condition monitoring systems measure the inertial forced response

of the system. Figure 6.1 shows the relationship between the inertial (ξηζ) and

rotating (XY Z) reference frames. To obtain the inertial response, the rotating frame

coordinates are transformed into the inertial frame according to

uξ

uη

γξ

γη


=



cos (nt) − sin (nt) 0 0

sin (nt) cos (nt) 0 0

0 0 cos (nt) − sin (nt)

0 0 sin (nt) cos (nt)





uX

uY

γX

γY


, (6.7)

where the subscript on the generalized coordinates indicates the corresponding axis.

6.1.3 Forcing Functions

Forcing due to gravity in a rotating frame can be modeled as a complex exponential

rotating in a direction counter to the shaft speed n:

Fg = mg e−int, (6.8)
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where m is the mass of the rotor and g is the acceleration due to gravity. Expanding

Eq. 6.8 into components in the rotating XY Z frame gives

{Fg} =



mg cos (nt)

−mg sin (nt)

0

0


. (6.9)

These terms can be visualized intuitively through examination of Fig. 6.1.

An additional source of excitation common in most rotordynamic systems is rotat-

ing imbalance. Figure 6.2 demonstrates an imbalance of mass me on the rotor, which

is oriented a constant angle θ from the body-fixed x axis. The imbalance mass lies a

constant radial distance ε from the rotor’s geometric center, C. Fully accounting for

the dynamic effects of the rotating imbalance requires recalculating the acceleration

of the rotor’s center of mass (see Appendix A for details). In addition, the angular

momentum of the rotor is found by assuming that the vector r̄G/C , which locates

the rotor’s center of mass, is zero. For the purposes of this work, the influence of

imbalance is qualitatively accounted for through the following forcing function:

{FI} =



meεn
2 cos θ

meεn
2 sin θ

0

0


. (6.10)

In fact, it can be shown that the terms in Eq. 6.10 constitute a major component

of the actual imbalance excitation. The imbalance influences the angular degrees of

freedom by coupling the tilt of the rotor to the acceleration of its center of mass.

However, as Lee and Green [8] demonstrate, these nonlinear coupling effects are of

second order and can be neglected. As will be seen, the primary effect of the rotating

imbalance is to introduce a 1X shaft speed harmonic into the inertial frame response.
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Figure 6.2: Rotating imbalance on the rotor

The total forcing {F} is then a sum of the contributions from gravity and imbalance:

{F} =



mg cos (nt) +meεn
2 cos θ

mg sin (nt) +meεn
2 sin θ

0

0


. (6.11)

Since the system is linear, the solution to the problem is a superposition of the

response to imbalance and the response to gravity. As the gaping crack under the

influence of gravity solely generates a 2X harmonic in steady-state, while imbalance

generates only a 1X harmonic, it is hypothesized that the presence of imbalance

does not influence the 2X harmonic. This hypothesis is investigated in the following

analysis.

The solution to the forced equations of motion for both crack models is presented

herein. The state space equations of motion in Eq. 6.6 are solved numerically using

a 4th order Runge-Kutta routine. Numerical solution of the equations is sought for

two primary reasons: (1) the complexity of the equations, and (2) the robustness of

the method to quickly account for varying initial conditions and compliance matrices.

A time step is chosen in the solution such that sufficient resolution is achieved in the
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2X component of the steady-state response. The Complex Extended Transfer Matrix

is then employed to expediently extract the steady-state 2X component of the rotor’s

response.

Once again, two scenarios are investigated: the first provides the response of a

rotordynamic system with a fixed crack location at 6.35 mm (0.25 inches) from the

support, and the second investigates the interplay between crack location and depth.

6.2 Notch Crack

6.2.1 Fixed Notch Location

The forced equations of motion (see Eqs. 3.3 and 3.9) with a notch located 6.35

mm (0.25 inches) from the support are solved for several notch depths. Additional

model parameters are found in Section 3.4. Results are presented in the rotating and

inertial reference frames. Small initial conditions (10−4 m for uX and uY , and 10−4

rad for γX and γX) are provided such that the transient response of the rotor exposes

free response characteristics. The steady-state response is found by allowing the

transient component of the response to decay. The steady-state response is therefore

uninfluenced by the specific choice of initial conditions. However, different initial

conditions would result in different magnitudes of transient components.

First, the frequency spectra of the gravity-forced response of γX is provided for

an undamaged system. Only the response of γX and γξ is shown, though the other

degrees of freedom exhibit similar behavior. Figure 6.3a displays the response spectra

of γY in a rotating reference frame, while Fig. 6.3b provides the response spectra of

γξ in the inertial frame. Peaks located at the eigenvalues of the system are seen

in the figures, along with the appearance (or lack thereof) of 1X and 2X harmonic

components. Inclusion of the transient response exposes the appearance of response

peaks at the system eigenvalues.

A 1X harmonic response component exists in the rotating frame frequency spectra
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(a) Rotating frame: γX

(b) Inertial frame: γξ

Figure 6.3: Transient gravity-forced response of γX and γξ for an undamaged system
with a shaft speed of 100 Hz
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for the undamaged system. Rotating frame analysis gives a frequency spectra which is

relative to the shaft speed, according to Eq. 4.2. Therefore, the 2X frequency appears

as a 1X frequency in the rotating frame frequency domain. Intuition would suggest

that this 1X frequency should vanish in an undamaged system. However, static

deflection due to gravity in the inertial frame response appears as a 1X frequency

component in the rotating frame, just as forcing due to gravity is a vector rotating

at the shaft speed in a rotating reference frame. A 1X harmonic frequency is thus

present in the rotating frame response even in the absence of a crack. Removal of

gravity results in a disappearance of the rotating frame 1X component. As expected,

transformation of the response from a rotating to inertial frame does not result in a

2X frequency for an undamaged system.

A notch of depth 40% of the diameter and located 6.35 mm from the support is

investigated next. The frequency spectra of the transient response of γX is provided in

Fig. 6.4a, while Fig. 6.4b gives the same for the inertial response γξ. The shaft speed

is chosen to be 100 Hz so that it is sufficiently removed from resonance. Rotating

imbalance of magnitude meε = 5(10)−6 kg m is included at an orientation of θ = 0

rad. The eigenvalues are indicated in the figure by vertical lines, along with the 1X

and 2X shaft speed harmonics. As expected, the rotating frame response displays

only a 1X harmonic, while the inertial response prominently contains both 1X and

2X harmonics. For verification, in the absence of either a notch or gravity, the 2X

harmonic component fails to appear. Likewise, the magnitude of the 2X harmonic

is not influenced by imbalance; this result is expected due to the linearity of the

system. Comparing Figs. 6.4 and 6.3 shows that the crack excited both forward and

backward frequency components. Additionally, the inertial frame response possesses

an increased richness of the response as compared to the undamaged system, though

a discussion of such characteristics is not relevant to this work.

The steady-state response is obtained by extracting the response following the
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(a) Rotating frame: γX

(b) Inertial frame: γξ

Figure 6.4: Notch Crack: Transient response of γX and γξ for a fixed location notch
of 40% depth: n = 100 Hz, meε = 5(10)−6 kg m
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Figure 6.5: Notch Crack: Steady-state response of γξ for a fixed location notch of
depth 40%

decay of the transients. Figure 6.5 demonstrates the steady-state response of the

inertial coordinate γξ for the notch system discussed above. The steady-state response

clearly contains two components: a 1X harmonic due to imbalance, and a 2X harmonic

generated by a combination of the notch and forcing due to gravity. The presence

of imbalance does not influence the magnitude of the 2X harmonic, as seen by the

linearity of the system. Therefore, in the analyses that follow, imbalance is omitted

for clarity in presenting the 2X harmonic.

Figures 6.6a and 6.6b provide the inertial gravity-forced transient response for

a range of shaft speeds. Once again, a notch of 40% depth located 6.35 mm (0.25

inches) from the support is investigated. The transient response is displayed to em-

phasize that the 2X resonance occurs when the 2X harmonic coincides with a natural

frequency of the system. Figure 6.6a presents a shaft speed range of 95 to 105 Hz,

thus placing the 2X harmonic above the 2X resonant shaft speed of 71.81 Hz (see

Table 5.2). The magnitude of the 2X harmonic is relatively small when the shaft
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(a) Shaft speed above the 2X resonant shaft speed

(b) Shaft speed near the 2X resonant shaft speed

Figure 6.6: Notch Crack: Inertial frame gravity-forced response of γξ for a notch of
40% depth, located 6.35 mm from the support
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Figure 6.7: Notch Crack: Steady-state response of γξ for a shaft speed range encom-
passing resonance

speed is far from the 2X resonant shaft speed. Figure 6.6b presents a shaft speed

range of 66 to 75 Hz, which encompasses the 2X resonant shaft speed. As the shaft

speed nears the 2X resonant frequency, the magnitude of the 2X harmonic increases

considerably. The magnitude of the 2X harmonic near resonance and far from reso-

nance is important for crack detection and diagnosis, as will be discussed in Chapter

7.

The steady-state response of a fixed-location notch of 40% depth is found over a

range of shaft speeds. A shaft speed range encompassing resonance is investigated.

Just as in Fig. 6.7, the magnitude of the 2X harmonic increases considerably as the

shaft speed nears the 2X resonant frequency. Away from resonance, the magnitude

of the 2X harmonic pronouncedly decreases. Interestingly, the same resonance peak

is observed even when backward whirl is investigated (i.e., switching the sign of the

gyroscopic terms in matrix [G]).

96



The steady-state response can be directly extracted using the 9× 9 Complex Ex-

tended Transfer Matrix technique discussed in Section 4.4. The advantage of the

CETM method over the equations of motion is that the steady state response is cal-

culated directly, thus allowing for significantly decreased computational effort. Green

and Casey [1] provide an expression for extracting the 2X harmonic component of the

total angular response γ of the rotor (i.e., the rotor tilt) in an inertial frame:

γ =
1

2

[
(γXr − iγXi

+ iγYr + γYi) + (γXr + iγXi
+ iγYr − γYi ) ei 2nt

]
, (6.12)

where the subscript indicates the direction of the quantity and whether the quantity

is real (‘r’) or imaginary (‘i’). The rotor tilt γ thus executes a circular orbit of radius

1
2
|γXr + iγXi

+ iγYr − γYi |, offset by the vector quantity 1
2

(γXr − iγXi
+ iγYr + γYi).

The magnitude of the 2X harmonic component (i.e., the radius of the 2X orbit) of

the angular response of the rotor is found as a function of shaft speed and notch

depth. An analogous procedure gives the the lateral displacement of the rotor:

u =
1

2

[
(uXr − iuXi

+ iuYr + uYi) + (uXr + iuXi
+ iuYr − uYi ) ei 2nt

]
. (6.13)

Figures 6.8 and 6.9 display the 2X angular response of the rotor versus shaft speed

and notch depth. Figure 6.9 provides a color-map visualization for clarity, where

the warmer colors represent a larger angular resonant magnitude. The color-map is

provided to better demonstrate qualitative trends in the profile of the 2X harmonic:

as notch depth increases, the 2X resonance frequency decreases while the magnitude

of the rotor’s resonant 2X angular response increases. The 2X harmonic reaches reso-

nance as the shaft speed nears one-half of the first natural frequency. The magnitude

of the 2X resonant peak of the angular response increases as notch depth increases,

accompanied by a decrease in the 2X resonant frequency.

Several trends are evident in the forced response of the fixed-location notch. First,

as intuition suggests, the 2X resonant response of the rotor tilt increases as notch

depth increases. Second, as indicated by the previous free response analysis and the
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Figure 6.8: Notch Crack: Magnitude of 2X tilt response for a notch 6.35 mm from
the support

Figure 6.9: Notch Crack: Color-map representation of 2X tilt response for a notch
6.35 mm from the support
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current analysis, the 2X resonant frequency decreases as the notch increases in depth.

These results are interpreted further in Chapter 7 in relation to crack detection and

diagnostics.

6.2.2 Variable Notch Location

The Complex Extended Transfer Matrix technique is used to investigate the 2X com-

ponent of the rotor’s response for a range of notch depths and locations. Specifically,

Eq. 6.12 gives an expedient method for providing the steady-state magnitude of the

rotor’s angular and lateral response. The magnitude of the angular 2X resonant peak

is investigated versus notch depth and location. Orbits of the rotor’s center are given

for several notch depth and location pairs yielding the same 2X resonant frequency.

Lastly, orbital profiles of the shaft response are provided for these same notch depth

and location pairs.

The magnitude of the 2X resonance of the rotor’s angular response is given in

radians versus notch depth and location in Fig. 6.10. Figure 6.10 demonstrates that

as notch depth increases and location decreases, the magnitude of the 2X resonance

increases. This result is expected, considering Fig. 6.8, where for a single notch

location the resonance frequency decreases with increasing magnitude as the stiffness

of the system decreases. The leftmost region of the figure has a low density of contours,

indicating that notch detection and diagnosis in this regime is dictated by model

accuracy and monitoring equipment resolution.

The steady-state inertial angular orbit of the rotor is found by plotting γξ versus

γη. Likewise, the lateral displacement orbit is obtained by plotting uξ versus uη.

At steady-state, in the absence of imbalance, the response consists only of the 2X

harmonic component. The orbit’s shape, as well as the offset and radius, can serve as

important detection and diagnostic tools [2, 10, 13, 37]. Figures 6.11, 6.12, and 6.13

give the rotor’s angular and lateral orbits for shaft speeds below resonance (50 Hz), at
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Figure 6.10: Notch Crack: Magnitude (in radians) of 2X component of resonant
angular response versus notch location and depth

resonance (72 Hz), and above resonance (100 Hz), respectively. Three combinations

of notch depth and location are shown in each figure; these pairs of notch depth and

location yield the same 2X resonant frequency (72 Hz).

Prior to discussing the orbits, it is imperative to note that the orbital shapes

depend entirely on the unique system at hand. Few trends can be extrapolated to

have meaning for different rotordynamic systems (such as a simply supported Jeffcott

rotor, for example). However, observing the orbital shapes for a system in which a

specific model is known can provide meaningful and conclusive diagnostic information.

The 2X orbits shown in the figures are circular, as corroborated by Rao [19],

Bachschmid [51], and Papadopoulos [15]. The circular shape arises because in the

inertial response, for example, the coordinate γξ is phase shifted from γη by π/2,

while having the same peak-to peak amplitude. Additionally, averaging the inertial

frame stiffness matrix over one revolution of the shaft results in the following averaged
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stiffness matrix:

[K]avg =



k11y 0 0 k12y

0 k11x k12x 0

0 k21x k22x 0

k21y 0 0 k22y


, (6.14)

where k11y = k11x , k22y = k22x , and so forth. Hence, the coordinates uξ and uη, for

example, realize the same peak-to-peak value in the inertial frame over one revolution,

thus resulting in a circular steady state orbit in the inertial frame. However, Casey

[37] experimentally measures 2X orbits which are decidedly asymmetric. In Casey’s

experimental work, a small 2X resonant peak is observed even in the absence of a

crack; therefore, an additional phenomena must be present to generate this harmonic.

The zero crack depth 2X harmonic could be attributed to the presence of nonlinearities

in the experimental system, or additional aspects of the real test rig, such as shaft

misalignment or bow.

Interestingly, the figures indicate that the rotor’s angular response is more sensitive

to changes in notch depth and location than the lateral response. This conclusion

is not surprising, considering the crack essentially acts as a joint where the angular

stiffness is significantly less than the lateral stiffness (see Eq. 3.9). The offset of the

orbit indicates the static deflection of the system. Intuitively, forcing due to gravity

in the ξ direction should generate a positive uξ and γη, as evidenced in Figs. 6.11 and

6.13. At resonance, dynamic effects dominate the static displacements due to gravity,

and the rotor orbit is mostly centered at the origin.

Examination of only the rotor’s orbit fails to elucidate the difference in angular

orbits for different notch depth/location pairs (seen in Figs. 6.11 and 6.13). The

phenomena is examined further by plotting the orbital mode of the shaft deflection.

Figures 6.14, 6.15, and 6.16 provide the lateral and angular modes of the orbit at

shaft speeds of 50 Hz, 72 Hz, and 100 Hz, respectively. The orbits are obtained
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(a) Lateral response orbit (b) Angular response orbit

Figure 6.11: Notch Crack: Steady-state rotor orbits for several equal 2X resonance
frequency pairs at resonance (n = 50 Hz)

(a) Lateral response orbit (b) Angular response orbit

Figure 6.12: Notch Crack: Steady-state rotor orbits for several equal 2X resonance
frequency pairs at resonance (n = 72 Hz)
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(a) Lateral response orbit (b) Angular response orbit

Figure 6.13: Notch Crack: Steady-state rotor orbits for several equal 2X resonance
frequency pairs above resonance (n = 100 Hz)

using several field matrices in the transfer matrix analysis and subsequently applying

Eqs. 6.12 and 6.13 to each nodal state vector. Just as before, the orbits at each

point along the shaft are circular, though the aspect ratio of the plots may indicate

otherwise. To best visualize the results, the degrees of freedom are plotted such that

the coordinate displaying static deflection is along the vertical axis. Static deflection

is indicated in the figures.

The notch depth and location pair of L1 = 40.3% and a = 50% is investigated.

Once again, the figures indicate that the notch influences the angular response of

the rotor more drastically than the lateral response. Figure 6.14 shows that at shaft

speeds below the 2X resonance frequency, the system is dominated by stiffness effects.

The notch acts as a joint, and gravity exacerbates the shaft deflections following the

notch location. At the 2X resonance shaft speed, the angular and lateral responses

increase monotonically along the shaft length. Above the 2X resonance shaft speed,

inertial effects dominate the response; the rotor’s center of mass attempts to return to

its equilibrium, and the notch assists by introducing additional compliance. Hence,
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the orbits beyond the crack decrease in magnitude.

6.3 Gaping Fatigue Crack

The forced response results for the gaping fatigue crack are obtained in a manner

analogous to that of the notch crack results discussed previously. The qualitative in-

terpretation of the results is mostly identical to that of the notch results. Comparison

is made between the notch and gaping fatigue crack results.

6.3.1 Fixed Gaping Fatigue Crack Location

Figure 6.17 shows the frequency spectra of the gravity-forced response of γξ for a

system displaying a crack of 40% depth located 6.35 mm (0.25 inches) from the

support. It is clear upon comparison to the notch model (Fig. 6.4b) that a gaping

fatigue crack results in a larger 2X magnitude response than a notch of equal depth

and location. Eight inertial eigenvalues are present because the crack excites both

forward and backward response components.

Figure 6.18 gives the inertial steady-state gravity-forced response for a range of

shaft speeds. The shaft speed range encompasses the 2X resonance shaft speed for

both crack depths investigated (20% and 40%). Two crack depths are investigated;

Figs. 6.18a and 6.18b give the response for cracks of depth 20% and 40%, respec-

tively. Figure 6.18 shows that far from resonance, the 2X harmonic component of the

response is significantly diminished. The 2X harmonic component of the response

passes through resonance in both figures, as evident by the sudden increase in mag-

nitude. Also note that the magnitude of the 2X harmonic is significantly greater in

Fig. 6.18b than in Fig. 6.18a.

Just as with the notch, the Complex Extended Transfer Matrix is used to extract

only the steady-state 2X component of the rotor’s angular response. Figure 6.19

provides the 2X angular response as a function of crack depth and shaft speed, while

Fig. 6.20 shows a color-map representation of Fig. 6.19 for clarity.
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(a) Lateral response orbit

(b) Angular response orbit

Figure 6.14: Notch Crack: Steady-state orbital modes for L1 = 40.3%, a = 50% at a
shaft speed of 50 Hz
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(a) Lateral response orbit

(b) Angular response orbit

Figure 6.15: Notch Crack: Steady-state orbital modes for L1 = 40.3%, a = 50% at a
shaft speed of 72 Hz
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(a) Lateral response orbit

(b) Angular response orbit

Figure 6.16: Notch Crack: Steady-state orbital modes for L1 = 40.3%, a = 50% at a
shaft speed of 100 Hz
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Figure 6.17: Gaping Fatigue Crack: Gravity-forced response of γξ for a system dis-
playing a 40% depth crack located 6.35 mm from the support

An interesting phenomenon is observed in Figs. 6.19 and 6.20: the 2X magnitude

of the resonant tilt response reaches a constant value for cracks of approximately 60%

and greater. Fig. 3.8 demonstrates that the relationship between the crack compliance

coefficients (i.e., the cij values) qualitatively changes at approximately 60% crack

depth. At this point, the coupling term c45 draws very close in magnitude to c44

and c55. The compliance matrix of the cracked system (Eq. 3.34) demonstrates that

this coupling term can have a pronounced effect on the system response, given that

its magnitude is significant compared to that of the other terms. It is hypothesized

that the leveling of the 2X resonant tilt magnitude is strongly influenced by the

fundamentally changed nature of the crack compliance coefficient c45.

It is important to recognize the fundamental limitations of the gaping fatigue

crack model. The compliance of the gaping crack is determined by examining the

stress intensity factor along the crack edge. For deep cracks, a majority of the crack

surfaces are located far from the stress intensity factor. It is possible that for deep

cracks, such as those generating the constant region of the 2X response, the method
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(a) Crack depth: 20%

(b) Crack depth: 40%

Figure 6.18: Gaping Fatigue Crack: Steady-state response of γξ for a crack located
6.35 mm from the support
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Figure 6.19: Gaping Fatigue Crack: Magnitude of 2X harmonic of angular response
for a fixed location crack

employed to estimate the crack compliance is no longer quantitatively accurate.

6.3.2 Variable Gaping Fatigue Crack Location

Figure 6.21 presents the magnitude of the rotor’s 2X resonant angular response as

a function of crack depth and location. From the plot, it is clear that as the crack

becomes deeper and draws closer to the support, the magnitude of the 2X resonant

response increases. Once again, the changing relationship between the crack com-

pliance coefficients induces unexpected results for crack depths above approximately

60%. The previous case investigated a line of constant crack location. Figure 6.21

demonstrates that as crack depth increases for a constant crack location, the magni-

tude of the 2X resonance plateaus for constant crack location lines (as evidenced in

Figs. 6.19 and 6.20).

Orbital plots of the rotor’s center C are provided in Figs. 6.22, 6.23, and 6.24 for

shaft speeds of 50 Hz, 70 Hz, and 100 Hz, respectively. Several pairs of crack depth

and location yielding the same 2X resonance frequency of 70 Hz are investigated. Once

again, the response far from resonance is influenced strongly by the static deflection
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Figure 6.20: Gaping Fatigue Crack: Color-map representation of 2X angular response
magnitude for a fixed location crack

Figure 6.21: Gaping Fatigue Crack: 2X resonant magnitude of angular response
versus crack location and depth
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(a) Lateral response orbit (b) Angular response orbit

Figure 6.22: Gaping Fatigue Crack: Steady-state rotor orbits for several equal 2X
resonance frequency pairs at resonance (n = 50 Hz)

of the system. At resonance, dynamic effects dominate, thus reducing the magnitude

of the orbit’s offset compared to the radius. The angular response is once again

influenced more strongly by the crack than the lateral response. The diagnostic

implications of this observation are discussed in Chapter 7.

Comparing Fig. 6.24 to the corresponding notch results (Fig. 6.13) clearly indicates

that the profile of the response is qualitatively different for the two crack models. As

the notch moves closer to the rotor and increases in depth, the angular offset increases

faster than for the gaping fatigue crack. The primary difference between the notch

and gaping crack models is the presence of several additional coupling terms in the

gaping crack compliance matrix, Eq. 3.34. By setting these coupling terms to zero,

the profile of Fig. 6.24 shifts to resemble that shown in Fig. 6.13.

Just as with the notch, presentation of only the rotor’s orbit fails to explicate the

relationship between the orbits for different shaft speeds. Figures 6.25, 6.26, and 6.27

provide the orbital modes for a crack where a = 40% and L1 = 40.3%. To present

the results most clearly, the coordinate which is statically deflected is plotted on the
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(a) Lateral response orbit (b) Angular response orbit

Figure 6.23: Gaping Fatigue Crack: Steady-state rotor orbits for several equal 2X
resonance frequency pairs at resonance (n = 70 Hz)

(a) Lateral response orbit (b) Angular response orbit

Figure 6.24: Gaping Fatigue Crack: Steady-state rotor orbits for several equal 2X
resonance frequency pairs above resonance (n = 100 Hz)
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vertical axis (uξ and γη).

Once again, the orbital mode below the 2X resonance indicates that the system

is dominated by stiffness effects. The crack acts as a joint, and the load caused by

gravity increases the deflections (both lateral and angular) following the joint. At

resonance, the offset is negligible in comparison to the radius of the 2X harmonic,

and the displacements increase smoothly across the length of the shaft. Above the

2X resonance frequency, inertial effects dominate. The rotor attempts to return to

its equilibrium position, and the crack assists by providing additional compliance.

Aspects of the orbital modes relevant to condition monitoring are discussed in Chapter

7; specifically, the practicality of employing modes to diagnose the location of the

crack.

6.4 Summary of Forced Response Results

A forced response analysis of both crack models is presented, along with a method

for transforming the rotating frame results to the inertial frame. For each crack

model, two situations are investigated: a fixed-location crack and a crack where the

location and depth are allowed to vary. The gravity-forced response is obtained using

the equations of motion and also the Complex Extended Transfer Matrix. When

a crack and gravity are present, a 2X harmonic frequency appears in the system

response. Also, the transient response indicates that the crack excites both forward

and backward whirl components. The steady-state 2X response is shown to reach

its maximum at the 2X resonance frequency, and decrease substantially as the shaft

speed is varied away from resonance. The fixed-location investigation demonstrates

that as the crack increases in depth, the 2X resonance frequency decreases while the

magnitude of the resonance increases.

The magnitude of the steady-state 2X component of the rotor’s angular response

is provided versus crack depth and location for both crack models. Once again, the
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(a) Lateral response orbit

(b) Angular response orbit

Figure 6.25: Gaping Fatigue Crack: Steady-state orbital modes below resonance (n
= 50 Hz, L1 = 41.3%, a = 40%)
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(a) Lateral response orbit

(b) Angular response orbit

Figure 6.26: Gaping Fatigue Crack: Steady-state orbital modes at resonance (n = 72
Hz, L1 = 41.3%, a = 40%)
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(a) Lateral response orbit

(b) Angular response orbit

Figure 6.27: Gaping Fatigue Crack: Steady-state orbital modes above resonance (n
= 100 Hz, L1 = 41.3%, a = 40%)
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trend indicates that as the system stiffness is reduced, the 2X resonance frequency

decreases while the magnitude of the resonance increases. Orbits of the steady-state

response of the rotor are given for several crack depth and location pairs yielding the

same 2X resonance frequency and over several shaft speeds. The concept is extended

to the orbital modes, and the profile of the steady-state shaft deflection (both lateral

and angular) is provided. The relation between the orbits is discussed qualitatively.

Chapter 7 extensively interprets the results given in this chapter, in the context

of crack detection and diagnosis. Specifically, the results presented for the scenario

in which crack depth and location are free to vary are employed to diagnose the

parameters of the crack.
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CHAPTER VII

CRACK DIAGNOSTICS

Crack detection provides the operator of a rotordynamic system information con-

cerning only the presence of a crack; the operator does not know where the crack

has formed or its depth, which are two important indicators of crack severity. This

work investigates the feasibility of employing the 2X shaft speed harmonic to de-

tect a crack and diagnose its parameters (i.e., location and depth). Furthermore, a

successful crack diagnosis system should employ simple methods and procedures for

extracting and processing the dynamic response of the system.

The difficulty in employing a simple measurement system (both hardware and

signal processing techniques) to diagnose crack depth and location is that often a

single piece of information is sought to provide two crack parameters. However, the

results from the previous chapter indicate that a single measurement, such as the

2X resonance frequency, is inadequate to diagnose multiple crack parameters (see

Figs. 5.14 and 6.21).

In accordance with the results presented in Chapters 5 and 6, two signals are

proposed for diagnosing the parameters of the crack: the 2X resonance frequency and

the magnitude of the rotor’s angular response at resonance. The suggested procedure

is presented, along with qualitative observations relating to practical fault diagnosis.

Orbital shapes (of the rotor and the shaft) are discussed as a possible detection and

diagnosis tool. Distinctions between the notch and gaping fatigue crack are discussed

pertaining to crack diagnosis. First, a discussion on crack detection is presented to

contextualize the discussion on crack diagnostics.
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7.1 Employing the 2X Shaft Speed Harmonic for Crack De-
tection

Using only the presence of the 2X harmonic to detect a transverse shaft crack is

problematic. For example, Sanderson [66] investigates crack detection in the turbo-

generator of a nuclear power plant and finds that a crack was not detected until it

had reached 25% depth. A majority of the condition monitoring systems relying on

the 2X shaft speed harmonic for crack detection assume the machinery is in a normal,

on-line state of operation (that is, operation is occurring at a single predetermined

shaft speed).

Figure 6.6a provides the gravity-forced response of the notched system over a

range of shaft speeds far from the critical 2X resonance frequency. The response for

a shaft speed range encompassing the 2X resonance frequency is given in Figs. 6.7

and 6.18 for the notch and gaping fatigue crack, respectively. Though the figures are

for a single crack depth and location, a = 40 % at 6.35 mm (0.25 inches) from the

support, practical observations for real crack detection are drawn.

The magnitude of the 2X shaft speed harmonic is minute when the shaft speed is

far from the 2X resonance frequency (as seen in Fig. 6.6a). Near the 2X resonance

frequency, the magnitude of the 2X harmonic greatly increases (Figs. 6.7 and 6.18b).

Comparison of the aforementioned figures elucidates that even for a crack of 40%

depth, the magnitude of the 2X harmonic can be prohibitively small if the operational

shaft speed of the system is far from resonance. Compared to operational noise and

measurement error, the 2X harmonic may in fact be undetectable in these regimes.

Furthermore, the detection of a crack depends on the shaft speed and the crack’s

depth and location. Figures 6.10 and 6.21 provide the magnitude of the angular re-

sponse at the 2X resonant shaft speed for both crack models, over a range of possible

crack depths and locations. From the plots, it is clear that the angular 2X resonant

magnitude is relatively small for many combinations of crack depths and locations,
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particularly when the crack is shallow or close to the rotor. Detecting the 2X har-

monic even at resonance is dependent on the properties of the specific measurement

apparatus, e.g., the sensor’s accuracy or the measurement location. Therefore, even

for operation near the 2X resonant shaft speed, crack detection is a complicated pro-

cedure and cannot be assured. It is also seen through comparison of Figs. 6.10 and

6.21 that a notch crack is substantially harder to detect than a commensurate gaping

fatigue crack. This result is expected, as the gaping fatigue crack results in a greater

loss of stiffness than a notch of equal depth and location.

The steady-state orbits of the rotor center can also provide detection information.

Away from resonance, static deflections dominate the offset of the rotor’s orbit. Recall

that Figs. 6.13b and 6.24b provide the rotor’s angular orbit at a shaft speed of 100

Hz for the notch and gaping fatigue cracks, respectively. The radius of the orbit is

substantially less than the offset. Comparing the offset (either angular or lateral) to

that for an undamaged system could provide useful diagnostic information.

The use of orbits for crack detection is complicated by the presence of additional

phenomena such as imbalance. Figure 7.1 provides the angular orbit for a gaping

fatigue crack system (a = 40%, L1 = 41%) with a small imbalance (meε = 5(10)−6

kg m) at 100 Hz. Clearly, the orbit shape changes dramatically from that seen in

Fig. 6.24b. Caution must be taken to filter the signal such that only the 2X component

remains.

An ideal condition monitoring system employs real-time methods to detect a fault.

As discussed previously, typical on-line methods entail that the machinery resides in

normal operation while condition monitoring occurs. Though not ideal, it is judicious

and practical to vary the shaft speed across the 2X resonance frequency if a crack

is suspected (for example, a start-up/shut-down procedure can be employed). If a

crack is indeed present, the magnitude of the 2X shaft speed harmonic should increase

considerably as the shaft speed nears the 2X resonance frequency. The variation of
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Figure 7.1: Total orbit for a gaping fatigue crack (a = 40%, L1 = 41%) with a small
imbalance (meε = 5(10)−6 kg m)

the shaft speed across the 2X resonance frequency requires the operator to have a

reasonable estimation of the 2X resonance frequency. To obtain an a priori estimate

of the 2X resonance frequency, an accurate system model is required.

7.2 Crack Parameter Diagnosis

The crack’s depth and location both influence the system’s stiffness, and therefore,

both influence the profile of the 2X harmonic. Though crack depth is often empha-

sized due to trepidation of catastrophic failure caused by deep cracks, crack location

can be equally hazardous due to high stresses at the crack cross-section. Crack propa-

gation depends on the amplitude of the cyclic stress present at the crack cross-section.

The highest stresses in an overhung shaft occur at locations closest to the support be-

cause the load due to gravity causes the greatest internal bending moments at these

locations. High stresses are also experienced at locations with high stress concen-

trations; cracks are most likely to initiate and propagate quickly at these locations.
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Therefore, the location of the crack determines its propagation rate; cracks in re-

gions experiencing diminished stress propagate slower than cracks in regions of high

stress. Diagnosing the crack’s location is crucially important for safe operation of

rotordynamic systems.

A crack diagnosis procedure is presented here, in relation to the analytic results

provided in Chapters 5 and 6. When a crack is suspected, the first step in determining

these parameters is to determine the profile of the 2X harmonic by varying the shaft

speed across the 2X resonance frequency. Recall that Figs. 5.8 and 5.14 provide the

2X resonance frequency versus crack depth and location for the notch and gaping

fatigue crack models, respectively. Measuring the 2X resonance frequency restricts

the crack parameters to pairs of depths and locations comprising a contour of equal

2X resonance frequency.

Once the 2X resonance frequency is known, pairs of crack locations and depths

comprising a 2X resonance frequency contour are extracted by finding an equivalent

crack location corresponding to a set of crack depths. For example, if the target 2X

resonance frequency is 71.0 Hz, a free response analysis is performed for a range of

crack depths, iterating the crack location until the target frequency is obtained. A

crack location and depth pair yielding the target 2X resonance frequency is a point

on the contour line, and the entire contour line is composed of many such points. In

this fashion, crack locations are found for any given target 2X resonance frequency

and crack depth range. Figure 7.2 highlights an example measured 2X resonance

frequency contour, with a sample pair of crack depth and location shown.

Several practical qualitative observations applicable to both crack models are

made by observing trends in Figs. 5.8 and 5.14. First, the difficulty in detecting

small cracks or cracks far from the support is immediately clear by the lack of con-

tours in the leftmost region of the plot. The 2X resonance frequency is fairly stable

in this region; that is, changes in crack depth and/or location do not result in large
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Figure 7.2: Obtaining the 2X resonance frequency of the system

changes in the 2X resonance frequency. To detect cracks in the leftmost region, the

2X resonance frequency must be measured with a high degree of accuracy (this prac-

tical limitation will be discussed shortly). However, comparing the notch crack model

(Fig. 5.8) and the gaping fatigue crack model (Fig. 5.14) shows that a gaping fatigue

crack is easier to detect than a notch of commensurate depth and location, as the

2X resonance frequency for the gaping fatigue crack changes more pronouncedly with

variations in crack parameters. This conclusion is expected considering that a gaping

fatigue crack results in a greater loss of stiffness than a notch of equal depth/location.

Each 2X resonance frequency contour begins at a specific crack depth and likewise

terminates at a particular crack location. This observation has important implica-

tions for qualitatively assessing the severity of a crack, given only the 2X resonance

frequency. For example, from Fig. 5.14, assume that the 2X resonance frequency

is measured to be approximately 66.3 Hz, and a gaping fatigue crack is suspected.

The minimum depth of the crack obtained from the figure is approximately 38%, and

the crack can be no further from the bearing than approximately 90% of the shaft
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length. Recognition of this possible range of crack depth and location provides the

operator with an immediate sense of crack severity, requiring no further measure-

ment. Though the results are interpreted here using a gaping fatigue crack, the same

conclusions can be drawn concerning a notch. Given a specified (or measured) 2X

resonance frequency, knowledge of a permissible range of crack depths and locations is

often inadequate. Additional analysis or measurement must be performed to extract

the actual pair of crack location and depth from the additional pairs comprising the

target 2X resonance frequency contour.

The magnitude of the 2X resonant angular response provides an additional pa-

rameter to assist in distinguishing crack location and depth. The magnitude of the

2X resonant tilt response of the rotor is obtained along a constant 2X resonance fre-

quency contour line using the Complex Extended Transfer Matrix. Figure 7.3 gives

the magnitude of the 2X resonant tilt versus pair number for a notch with a 2X reso-

nance frequency of 73.0 Hz. The term ’pair’ refers to combinations of notch locations

and depths yielding the same 2X resonance frequency. The pair number corresponds

to the notch’s depth expressed as a percent of shaft diameter. Also, since the pairs

begin with a crack of 0% depth, each 2X resonance frequency does not exist for the

entire range of crack depth and location pairs, as evident on the contour plot provided

in Fig. 5.8.

Figure 7.3 shows that the magnitude of the 2X resonant tilt response of the rotor

varies for different pairs of notch depths and locations giving a 73.0 Hz 2X resonance

frequency. Measurement of the 2X resonant tilt magnitude specifies (or at least limits)

the range of possible notch depth/location pairs. For example, if the 2X resonance

frequency was measured to be 73.0 Hz, and the magnitude of the 2X resonant tilt

found to be 1.8(10)−4 radians, then the notch depth/location would correspond to

pair 63 (that is, a notch depth of 63% and the corresponding notch location necessary

to generate a 73.0 Hz 2X resonance frequency). A similar plot is provided in Fig. 7.4
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Figure 7.3: Notch Crack: Locus of 2X resonant tilt magnitudes for a target 2X
resonance frequency of 73 Hz

for an example 2X resonant frequency of 70.0 Hz. In this case, not all values of the

2X resonant tilt magnitude are unique. However, given a measured 2X resonant tilt

magnitude, it is likely that given the nature of propagation the crack depth/location

pair is at the location of highest stress. This example indicates that it is not always

possible to distinguish crack depth from location, though the procedure reduces the

possible combinations.

For reference, a locus of curves such as those found in Figs. 7.3 and 7.4 is provided

in Fig. 7.5. Figure 7.6 provides the same information as Fig. 7.5, but plotted versus

pair number rather than notch depth and location. The figures immediately signify

that it is easier to separate notch depth from location for lower values of the 2X

resonance frequency, as the locus demonstrates a larger magnitude of response along

with an increased defining structure. This conclusion is intuitive considering that

lower 2X resonance frequencies correspond to a greater loss of stiffness. A greater

loss of stiffness implies that smaller changes in parameters (i.e., notch location and

126



Figure 7.4: Notch Crack: Locus of 2X resonant tilt magnitudes for a target 2X
resonance frequency of 70 Hz

depth) result in larger changes in the 2X resonant tilt magnitude. In addition, the

2X resonant tilt magnitude is larger for curves corresponding to lower values of the

2X resonance frequency.

Equivalent results are presented for the gaping fatigue crack model. Figure 7.7

demonstrates the 2X resonant tilt magnitude locus for crack depth/location pairs

providing a 73.0 Hz 2X resonant frequency. Figure 7.7 provides the 2X resonant

tilt magnitude locus for a 70.0 Hz 2X resonance frequency. Comparing the results

from the two models shows that the gaping fatigue crack results in a greater drop in

magnitude as the crack depth/location pair number increases. The higher resolution

in 2X resonant tilt magnitude allows shallower gaping fatigue cracks to be identified

with greater confidence as compared to notches producing the same 2X resonance

frequency.

Figure 7.9 provides a locus of crack depth/location pairs for a range of 2X res-

onance frequencies. The figure implies that it is easier to distinguish crack depth

and location for lower values of the 2X resonance frequency, as a larger magnitude
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Figure 7.5: Notch Crack: Locus of 2X resonant tilt magnitudes for a range of target
2X resonance frequencies versus notch location and depth

Figure 7.6: Notch Crack: Locus of 2X resonant tilt magnitudes for a range of target
2X resonance frequencies
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Figure 7.7: Gaping Fatigue Crack: Locus of 2X resonant tilt magnitudes for a target
2X resonance frequency of 73 Hz

Figure 7.8: Gaping Fatigue Crack: Locus of 2X resonant tilt magnitudes for a target
2X resonance frequency of 70 Hz
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Figure 7.9: Gaping Fatigue Crack: Locus of 2X resonant tilt magnitudes for a range
of target 2X resonance frequencies versus crack location and depth

of 2X resonant tilt response is observed. Figure 7.10 provides the same information

as Fig. 7.9, but plots the 2X resonant tilt magnitude versus pair number rather than

crack location and depth.

The diagnostic procedure is summarized in the following steps:

1. Vary the shaft speed of the system, and record the 2X resonance frequency.

2. Identify the measured 2X resonance frequency contour (this provides a range of

possible crack depths and locations).

3. Measure the magnitude of the 2X resonant response.

4. Compare the 2X resonant magnitude to a known locus of magnitudes for the

specified 2X resonance frequency contour, generated by a high-fidelity rotor

system model.

5. Identify the specific crack depth and location, or provide a reasonable range of

estimates.
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Figure 7.10: Gaping Fatigue Crack: Locus of 2X resonant tilt magnitudes for a range
of target 2X resonance frequencies

7.3 Employing Orbital Shapes for Crack Diagnostics

Orbital shapes are often used for rotordynamic condition monitoring, as the orbit

shape can indicate the fault type or severity. A gaping fatigue crack is discussed here,

though the conclusions are equally valid for the notch. Figures 6.22 - 6.24 provide

the rotor’s orbit for shaft speeds below, at, and above the 2X resonance frequency,

respectively. For each shaft speed, three pairs of crack depth and location are in-

vestigated; these pairs are selected because they generate the same 70 Hz resonance

frequency.

In all three cases, the lateral orbits are virtually indistinguishable for different

pairs of crack location and depth. However, the angular orbits below and above

the 2X resonance frequency display prominent deviations. Figure 6.23 indicates that

the resonant response is very similar for crack location/depth pairs generating the

same 2X resonance frequency. In Section 7.2, only the magnitude of the rotor’s 2X

harmonic at resonance is employed. By observing the rotor’s steady-state orbit below
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and above the 2X resonance, equal 2X resonance frequency crack pairs can be readily

distinguished. If sufficiently accurate instrumentation is available, the radius of the

orbit and the orbit offset provides a robust mechanism for distinguishing crack depth

from location (along with a measurement of the 2X resonance frequency).

Practically, the deflections observed in Figs. 6.22 and 6.24 are very small. The

smallest deflection which can be measured by the available experimental test rig is

0.1 µm. The orbital radii and offsets are clearly either on the threshold of this range

or below this range, depending on the specific crack depth/location pair of interest

(for the angular orbits, the probes are mounted 12.4 mm from the rotor’s center;

this radius along with the angle dictates the measured distance of the rotor from the

probe). The orbits would perhaps be experimentally separable for shaft speeds closer

to resonance, or for a system with increased mass or decreased stiffness.

The orbital mode shapes likewise have diagnostic potential. Recall the angular

modes for a gaping fatigue crack below and above resonance (Figs. 6.22b and 6.22b,

respectively). The figures clearly indicate the location of the crack by a discontinuity

in the angular orbit. Once the location of the crack is identified, a measurement of the

2X resonance frequency could provide the crack depth. However, practical implica-

tions limit the use of angular orbital modes for crack diagnostics. First, measurement

of the angular deflection along the shaft would require many measurement positions.

The cost of these sensors, as well as typically harsh conditions between the shaft and

housing, limit the success of mode shape measurement. Furthermore, the angular

deflections far from the 2X resonance frequency are minute, requiring very accurate

sensors.

7.4 Practical Implications and Shortcomings

Application of the methods discussed above must account for practical implications

and various shortcomings. To realize the aforementioned procedure experimentally for
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diagnosis of crack location and depth, a high degree of accuracy in measurement of the

2X resonance frequency and 2X resonant tilt magnitude must be obtainable, especially

to detect shallow cracks. The difficulty in detection of shallow cracks or cracks close

to the rotor is qualitatively evident by the large regions displaying little change in

Figs. 5.8 and 5.14, and quantitatively evident in Figs. 7.6 and 7.10. The magnitude

of the rotor’s 2X resonant tilt is much smaller for small cracks, or cracks close to the

rotor, than for more severe cracks, and is less sensitive to variations in crack depth

and location. Observing Fig. 7.7 for a gaping fatigue crack, tilt magnitudes as small

as 0.5(10)−4 rad must be measured to distinguish the crack location and depth.

Furthermore, the operator must have the ability to access many 2X resonance

frequency curves, such as those shown in Figs. 7.6 and 7.10. Either the operator must

be proficient enough to execute the required software to generate the curves, or the

operator must have access to a sufficiently large database of crack depth and location

pairs. Overall, it is shown that a gaping fatigue crack is easier to detect than a notch

crack. This is important, as the gaping fatigue crack is more likely to be encountered

in real operation.

Most importantly, the model of the system must emulate the actual system to

a high degree of fidelity to distinguish crack depth and location realistically. The

model must accurately account for damping, support conditions, and the distributed

nature of the shaft mass to obtain a reasonable estimate of the 2X resonance fre-

quency and the 2X resonant tilt magnitude as a function of crack location and depth.

A sensitivity analysis could be performed to assess the threshold of realistically de-

tectable/diagnosable faults; this task is left to future work.

It is also important to recognize that the results and conclusions given in this

work are valid primarily for the overhung rotordynamic system discussed in Chapter

3. The diagnostic procedures rely on the overhung nature of the rotor; because of

this, the results may not be even qualitatively similar for other rotor systems (such
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as the Jeffcott rotor, for example). Crack diagnostics is intimately dependent on

the specific system under investigation. Related to the nature of the specific system

is the position of the measurement probes. In this case, the probes were placed to

measure the rotor’s angular deflection. Typically, probes are placed on the bearings.

However, the deflection of the shaft is often minuscule at the bearings, leading to a

low resolution vibration signal. The probes should be placed such that they extract

the largest response possible. It is also observed in this work that cracks closer to

the rotor (the measurement point) are much more difficult to detect. The relation

between probe placement and the specific fault under investigation should dictate the

optimum location of the probes.

The primary goal of the work is not to present a fool-proof method to distinguish

crack position and depth, but instead to demonstrate that it is possible to employ

sensible, simple, and typical condition monitoring signals to diagnose crack location

and depth. Many qualitative aspects of the results presented in this chapter can be

employed by a savvy operator to narrow down the possible combinations of crack

depth and location when a crack is suspected. In this manner, the dynamic interplay

between crack depth and location can be better understood and accounted for in

transverse fatigue crack detection and diagnosis.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The principal motivation of this work is to perform gaping crack diagnostics in an

overhung rotordynamic system using simple vibration signatures. The primary sig-

nature employed is the profile of the rotor’s angular 2X harmonic. Specifically, this

work uses the behavior of the 2X harmonic near the 2X resonance frequency as a

tool for crack detection and diagnosis. Qualitative and quantitative aspects of the

response are sought for crack detection and the diagnosis of the crack’s depth and

location.

First, a dynamic model of a undamaged rotordynamic system is developed to

provide a consistent dynamic model. A linear set of four-degree-of-freedom, coupled

differential equations of motion are derived using Newtonian methods in a rotating

frame. The degrees of freedom are the lateral displacements of the rotor’s center and

the rotor’s angular tilt. This consistent dynamic model is employed to study the

effects of two gaping crack models.

The first of these models is a rectangular-profiled notch crack. A notch has a

finite width, and the rectangular profile of the notch prohibits its direct propagation.

The stiffness of the notch is determined by its area moments of inertia. The stiffness

matrix of a notched Euler-Bernoulli shaft is developed using Castiglianos Theorem.

Though rarely appearing in real crack scenarios, notches are often manufactured for

experimental crack detection investigations. Even though a notch fails to emulate a

true fatigue crack, the notch can serve as an excellent model for qualitatively under-

standing crack detection and diagnosis.
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A more realistic crack model is the gaping fatigue crack. The gaping fatigue crack

models a true fatigue crack, as the width of the crack is negligible. A gaping fatigue

crack is capable of propagation due to the infinite stress at the crack tip. The stiffness

matrix of a shaft displaying at a gaping fatigue crack is derived through application

of transfer matrix methods. Analytic results presented in this work indicate that a

gaping fatigue crack results in a greater loss of stiffness than a notch of commensurate

depth and location.

Transfer matrix techniques provide an expedient method for extracting the rotor’s

steady-state response. Various transfer matrix methods are discussed in detail, for

both inertial and rotating reference frames. A summary of the Real Transfer Matrix

is provided. The Real Transfer Matrix employs real-valued coordinates and is best

suited for the analysis of orthotropic systems. The Real Transfer Matrix suffers from

several inherent deficiencies; most notably, the inability to distinguish forward and

backward whirl. The Complex Transfer Matrix overcomes the deficiencies of the Real

Transfer Matrix. Specifically, a complex-valued coordinate redefinition is introduced

which naturally separates the whirl directions. A detailed discussion of the Complex

Transfer Matrix is provided. The Complex Extended Transfer Matrix provides a

mechanism to include forcing in the analysis.

Two scenarios for both crack models are investigated. In the first, a fixed-location

crack 6.35 mm from the support is analyzed. The analysis is presented for two primary

reasons: to investigate the influence of only crack depth, and to provide a benchmark

to compare to previous results. The second scenario investigates variations in both

crack depth and location.

The system’s dynamic characteristics must be understood well to develop a suc-

cessful crack diagnosis routine. A free response analysis of the equations of motion for

both crack models is performed. From the free response analysis, the 2X resonance

frequency is obtained versus crack depth and location. The results indicate that the
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2X resonance frequency is insufficient for crack diagnosis. The same 2X resonance

frequency is obtained for many distinct pairs of crack depths and locations. How-

ever, a contour plot of the 2X resonance frequency can provide a lower bound of the

crack depth (i.e., a best case scenario), as specific 2X resonance contours originate at

specific crack depths.

A forcing function is provided in a rotating frame, including gravity and rotating

imbalance. Solution of the forced equations of motion indicates that the 2X harmonic

only appears in the presence of a crack and gravity. It is observed that a rotating

imbalance only generates a 1X harmonic in steady-state, while a crack solely induces

a 2X harmonic. The linearity of the system necessitates that the imbalance does

not influence the 2X harmonic, and vice versa. A transient solution of the equations

of motion demonstrates that the 2X resonance occurs when the 2X harmonic inter-

sects a system eigenvalue. Furthermore, the results indicate that the 2X harmonic’s

magnitude is minute when the shaft speed is far from the 2X resonance frequency.

Consequently, crack detection and diagnosis is difficult when the shaft speed is far

from the 2X resonance frequency. Practical crack condition monitoring necessitates

that the operator be free to vary the shaft speed across the 2X resonance frequency.

Transfer matrix methods are employed to extract the rotor’s steady-state 2X angular

response versus shaft speed. The magnitude of the 2X resonant tilt magnitude is

provided versus crack depth and location.

Two unique sources of information are presented to distinguish two crack pa-

rameters. The analytic results (i.e., contour plots of 2X resonant frequency and 2X

resonant magnitude) demonstrate that one measurement is insufficient for separation

of crack depth and location. A procedure for crack diagnosis is provided relying on

the 2X resonant frequency and angular 2X resonant magnitude. Measurement of

the 2X resonance frequency restricts the possible values of crack location and depth

to a certain locus of pairs. The magnitude of the measured angular 2X resonance is
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compared to the crack depth and locations comprising the measured 2X resonance fre-

quency contour. Following comparison, the crack depth and location is either known

or limited to a certain range.

Rotor orbits are provided for several crack depth and location pairs giving the

same 2X resonance frequency. Shaft speeds below resonance, at resonance, and above

resonance are investigated. In all cases, the 2X steady-state response induces a cir-

cular orbit. Dynamic effects dominate at resonance, and the radius of the orbit is

much greater than the static deflections. Hence, the orbits for both the lateral and

angular response are primarily indistinguishable concentric circles, even for very dif-

ferent crack depth/location pairs. The angular orbits above and below resonance are

distinctly different for different pairs of crack depth and location pairs. However,

the magnitude of the orbit is small, as the shaft speed is removed from resonance.

The accuracy of the instrumentation therefore dictates the ability to employ orbits

as crack diagnostic tools. The concept of steady-state orbits is extended to provide

the orbital mode shapes at various shaft speeds. It is obvious that the angular mode

could hypothetically provide a valuable tool for diagnosing crack location. Unfortu-

nately, practical limitations mostly preclude the ability to incorporate real-time mode

monitoring of a real rotordynamic system.

In all cases, it is found that a gaping fatigue crack introduces a greater loss of

stiffness than a notch placed at a commensurate location. Hence, smaller gaping

fatigue cracks result in greater changes in the measurable parameters (2X resonant

frequency and magnitude) as compared to a notch. The larger change in parameters

allows for smaller gaping fatigue cracks to be realistically detected than notches of

equivalent depth. This result is important, as it implies real fatigue cracks are easier

to diagnose than notches of equivalent depth and location.

The procedures highlighted above do not propose a panacea for crack diagnosis;
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several shortcomings must be discussed and contextualized when attempting crack di-

agnosis. First, and most importantly, the accuracy of the model is imperative towards

comparing measured results to analytic results, as diagnosis of crack parameters relies

on the ability to distinguish relatively small changes in the 2X resonance frequency

and tilt magnitude. Many effects, such as stiffness, damping, and support conditions,

must be precisely represented in the system model. Likewise, the instrumentation

employed to measure the dynamic response of the rotor must possess a high degree of

accuracy to detect small variations in the signals of interest. Furthermore, the results

presented in this work are valid only for an overhung rotordynamic system; analysis

of different systems would likely result in vastly different results and conclusions.

As with all crack detection and diagnosis routines, the results presented in this

work indicate that shallow cracks are difficult to detect and diagnose. Moreover, the

results presented herein demonstrate that cracks close to the rotor (or the measure-

ment location, more generally) can be very difficult to detect. However, it is likely

that these cracks present a less severe impact on the system, as the relatively un-

changed 2X resonance frequency and 2X resonant tilt magnitude are indicative of

a smaller loss of stiffness. Understanding the interplay between crack location and

depth is essential. To disregard or over-simplify the effect of crack location presents

a grossly oversimplified model incapable of diagnosing real transverse fatigue cracks.

Crack location and depth play an equally important role in determining the system’s

stiffness.

8.2 Future Work

The most important consideration for future work is inclusion of crack breathing be-

havior. Breathing behavior introduces shaft speed harmonics in addition to the 2X,

such as the 1X and the 3X harmonics. It is plausible that this increase in informa-

tion provides more robust crack diagnosis routines. The analytic techniques required
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to investigate the dynamics of a cracked system displaying breathing behavior are

significantly more involved than those used to investigate a gaping crack. Foremost,

transfer matrix techniques would no longer be applicable, as the system’s stiffness

even in a rotating frame would contain at best linear time periodic coefficients. Nu-

meric solution of the nonlinear equations would be required to obtain the rotor’s

steady-state response.

It is well known that transverse cracks introduce coupling between the lateral,

axial, and torsional degrees of freedom. This coupling phenomena has been previously

employed to detect transverse fatigue cracks [28, 31, 44]. The equations of motion

given in this analysis should be expanded to include additional torsional and axial

degrees of freedom, as the coupling is a robust crack indicator.

Many real world turbomachinery systems are simply supported rather than over-

hung. The analysis could be repeated for a simply supported case, though measure-

ment of the rotors angular response would be experimentally challenging. A more

realistic approach would be to incorporate fluid film bearings at the support, and

measure the corresponding deflection of the shaft at the bearing. It is hypothesized

that the difference in signals measured at both bearings could be used to diagnose

the crack depth and location.

A finite element method should be developed to incorporate the aforementioned

changes (breathing behavior, coupling, and fluid film effects). Fortunately, a wealth

of research exists on the application of finite elements for rotating cracked shafts. The

use of a finite element method would allow for the inclusion of a wide array of differ-

ent tribo-elements and nonlinear effects. As such, the effects of simultaneous multiple

faults could be assessed (such as seal face contact, breathing cracks, shaft misalign-

ment, etc.). Multiple fault detection is important, as real rotordynamic systems are

susceptible to a wide array of potential faults.

An improvement in calculating the true compliance of a real fatigue crack could
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provide more accurate crack compliance predictions for deep cracks. The crack com-

pliance coefficients determined via the strain energy release rate are local; for deep

cracks, a portion of the cracked surface may no longer be considered local. A hy-

brid model where a portion of the crack remains open while a portion experiences

breathing could provide more accurate results for deep cracks.

An important reason for performing crack diagnostics is to assess the remaining

lifetime of the machine (prognostics). To fully understand crack prognostics, the

phenomenon of crack propagation must be understood. Crack growth is typically

described in relation to the parameter da/dN, which is a measure of the crack growth

per cycle. Knowledge of this parameter as it relates to the depth and location of the

crack could provide meaningful prognostic information. An estimate of the remaining

cycles until failure allows the operator to keep the machine in operation while plans

are made to either repair or replaced the cracked shaft.
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APPENDIX A

DYNAMICS OF THE ROTOR: ACCELERATION AND

ANGULAR MOMENTUM

Formulation of the rotor’s acceleration and angular momentum are critical to the

dynamic model of the overhung rotordynamic system. The acceleration and angular

momentum of the rotor are developed in an inertial and rotating reference frame.

A.1 Acceleration of the Center of Mass

A.1.1 Inertial Reference Frame

Figure 3.3 provides the rotor plane and degrees of freedom, and is reproduced here

in Fig. A.1 for clarity (see Fig. 3.2 for a presentation of the reference frames). The

position of the rotor’s center of mass C with respect to origin O (the undeflected

location of the rotor’s center) is given by the position vector

r̄C/O = uξêξ + uηêη, (A.1)

where êξ and êη are unit vectors in the inertial reference frame. Since the reference

frame is inertial, the second derivative of Eq. A.1 is

¨̄rC/O = üξêξ + üηêη. (A.2)

Equation A.2 is used directly to obtain the dynamic forces māC acting on the rotor

in the inertial reference frame.

A.1.2 Rotating Reference Frame

The general acceleration of one point P2 with respect to another point P1 is

āP2 = āP1 + ˙̄ω × r̄P2/P1 + ω̄ ×
(
ω̄ × r̄P2/P1

)
+ 2ω̄ ×

(
˙̄rP2/P1

)
xyz

+
(
¨̄rP2/P1

)
xyz

(A.3)
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Figure A.1: Rotor degrees of freedom

where ω̄ is the angular velocity of the rotating reference frame (in this case, ω̄ = nK̂),

r̄P2/P1 is a position vector from point P1 to P2, and the subscript XY Z denotes the

motion as observed by an observer in the XY Z frame. Point O is selected as the

reference point for determining the acceleration of point C, as O is stationary and thus

has zero velocity and acceleration. Using these points in a reference frame rotating

at constant n, Eq. A.3 reduces to

āC = n̄×
(
n̄× r̄C/O

)
+ 2n̄×

(
˙̄rC/O

)
XY Z

+
(
¨̄rC/O

)
XY Z

, (A.4)

where the position vector r̄C/O in the rotating frame XY Z is

r̄C/O = uX Î + uY Ĵ . (A.5)

Evaluation of Eq. A.4 provides the components of the acceleration of the center of

mass, C, in the rotating reference frame:

aXC = üX − n2uX − 2n u̇Y

aYC = üY − n2uY + 2n u̇X

aZC = 0

(A.6)

143



Figure A.2: Rotating reference frames

A.2 Angular Momentum

A.2.1 Rotating Reference Frame

Green and Etsion [5] first provide the general angular momentum of the flexibly

mounted rotor. Green [6] expands the formulation and employs Lagrange’s method

to derive the rotor equations of motion. Several reference frames are crucial towards

understanding the origin of the angular momentum. These reference frames, shown

in Fig. A.2, are the following:

1. ξηζ: Inertial reference frame, fixed at the undeflected location of the rotor’s

geometric center, O (where C is the rotor’s center).

2. XY Z: Rotating reference frame where X and Y remain perpendicular to the

shaft. The frame is still attached at the rotor’s geometric center, and rotates

with a hypothetical undeflected shaft at frequency n.
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3. x1y1z1: Frame shifted from XY Z by the relative precession ψ about axis Z (not

shown in Fig. A.2).

4. xyz: Rotating reference frame shifted from x1y1z1 by the nutation γ, which

occurs about the x axis (and the x1 axis). The axes x and y remain in the plane

of the rotor’s face, though the frame is not fixed to the rotor (the rotor spins

relative to the frame at φ̇).

Several crucial rotations must likewise be defined:

1. nt: The angle between ξ and X, where n is the shaft speed.

2. ψ: The relative precession angle between x and X.

3. ψr: The absolute precession angle, defined such that ψr = ψ + nt.

4. γ: The nutation of the rotor about the x axis.

5. φ: The spin angle of the rotor relative to the xyz frame.

Green and Etsion [5] develop a transmission law stating that

φ̇ = −ψ̇, (A.7)

which is true so long as γ2 << 1. Essentially, the statement requires that all points

on the rotor must return to their original position following one revolution; this

conclusion is visualized by Green [6] through the use of space and body cones. In

addition, it can be shown that

ψ̇r = ψ̇ + n. (A.8)

The angular momentum of the rotor’s center of mass, {hC}, is given by

{hC} = [IC ]{λ}, (A.9)

where {λ} is the absolute angular velocity of the rotor and [IC ] is the inertia tensor.

The inertia tensor is most easily defined in the xyz frame, as the rotor is symmetric
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with regard to the frame. The absolute angular velocity is the sum of the rotor’s

precession ( ˙̄ψr), nutation ( ˙̄γ), and spin ( ˙̄φ) components:

λ̄xyz = ˙̄ψxyzr + ˙̄γxyz + ˙̄φxyz, (A.10)

where the superscript xyz indicates that the vectors are formed in the xyz reference

frame. Evaluating Eq. A.10 gives:

λ̄xyz = γ̇x̂+ ψ̇r sin γŷ +
[
n+ ψ̇r(cos γ − 1)

]
ẑ, (A.11)

where x̂, ŷ and ẑ denote unit vectors in the xyz frame. The angular momentum of

the rotor is then found to be:

{hC}xyz =


Itγ̇

Itψ̇r sin γ

Ip

[
n+ ψ̇r(cos γ − 1)

]
 . (A.12)

Defining this result in the XY Z frame is desirable, as the generalized degrees of free-

dom are also defined in XY Z. Hence, several rotation transformations are necessary.

First, a rotation transformation is developed which moves a general vector {A} from

XY Z to x1y1z1:

{A}x1y1z1 = [R1] {A}XY Z (A.13)

where, since the rotation is of magnitude ψ and about the Z axis,

[R1] =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 . (A.14)

Similarly,

{A}xyz = [R2] {A}x1y1z1 , (A.15)

where, since the rotation is of magnitude γ and about the x1 axis,

[R2] =


1 0 0

0 cos γ sin γ

0 − sin γ cos γ

 . (A.16)
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The angular momentum of the rotor is thus found through application of these trans-

formations:

{hC}XY Z = [R1]T [R2]T {hC}xyz . (A.17)

The final expression is linearized by assuming γ2 << 1, such that sin γ ' γ and

cos γ ' 1. In addition, tilts in the X and Y directions (γX and γY , respectively) are

found from the following relations:

γX = γ cosψ (A.18)

γY = γ sinψ. (A.19)

These relations can be verified using the previously given rotation transformations.

To find γ̇X and γ̇Y , Eqs. A.18 and A.19 are differentiated:

γ̇X = γ̇ cosψ − γ sinψψ̇ (A.20)

γ̇Y = γ̇ sinψ + γ cosψψ̇. (A.21)

The terms γ̈X and γ̈Y are likewise found via differentiation of Eqs. A.20 and A.21.

Substituting Eqs. A.18 - A.21 into the result from Eq. A.17 gives the following form

of the angular momentum following linearization:

hC,X = It(γ̇X − nγy) + IpnγY

hC,Y = It(γ̇Y + nγx)− IpnγX

hC,Z = It(ψ̇ + n)2γ2 + Ipn.

(A.22)

However, keep in mind that the dynamic moments on the rotor must be evaulated

prior to linearization. The dynamic moments are calculated from∑
M̄C =

dh̄C
dt

=
∂h̄C
∂t

+ n̄× h̄C , (A.23)

where n̄ is the angular velocity of the rotating frame XY Z. Evaluation of Eq. A.23

gives

Mx = It (γ̈X − n2γX − 2nγ̇Y ) + Ip (nγ̇Y + n2γX)

My = It (γ̈Y − n2γY + 2nγ̇X)− Ip (nγ̇X − n2γY )

Mz = O(γ2) ≈ 0

, (A.24)
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where Mz is negligible, as it is of order γ2.

A.2.2 Inertial Reference Frame

The inertial dynamic moments are similarly obtained by recognizing that the angular

momentum can be transferred directly from x1y1z1 to ξηζ by rotating through the

angle ψr. The tilts γξ and γη are then defined by

γξ = γ sinψr (A.25)

γη = γ cosψr. (A.26)

Repeating an analogous process to that described above gives the following inertial

frame dynamic moments, as derived by Green [67]:

Mξ = It γ̈ξ + Ipnγ̇η

Mη = It γ̈η − Ipnγ̇ξ

Mζ = 0.

(A.27)
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APPENDIX B

AREA MOMENTS OF INERTIA

The notched shaft stiffness depends on the area moments of inertia of the notch cross-

section. The notch cross-section is shown in Fig. B.1, where the notch depth is a and

its half-width is b. The centroid is designated C̄. The area moments of inertia ĨCx

and ĨCy about the x and y axes are

ĨCx =

∫
A

y2dx dy (B.1)

and

ĨCy =

∫
A

x2dx dy, (B.2)

which are calculated about the center of the uncracked cross-section, where the ref-

erence frame is attached. Evaluation of Eqs. B.1 and B.2 leads to expressions for the

area moments of inertia of the notch cross-section:

ĨCx =
1

4

(
R3 −R2a

)
µ1/2 − 1

2
(R− a)µ3/2 +

R4

4
tan−1

(
R− a
µ1/2

)
+

1

8
πR4 (B.3)

ĨCy =
1

6
(R− a)µ3/2 +

1

4

(
R3 −R2a

)
µ1/2 +

R4

4
tan−1

(
R− a
µ1/2

)
+

1

8
πR4 (B.4)

where

µ = 2Ra− a2. (B.5)

The parallel axis theorem is now employed to transform the area moments of inertia

from the center of the uncracked shaft (point C) to the centroid of the notch section.

As the centroid is along the y axis, the centroidal area moment of inertia about y is

the following:

Iy = ĨCy . (B.6)
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Figure B.1: Notch cross-section

The parallel axis theorem gives the area moment of inertia Ix:

Ix = ĨCx − Aȳ2, (B.7)

where A is the area of the notch cross-section and ȳ is the distance from the center

of the uncracked section to the centroid of the notch section. These parameters are

found to be

A = (R− a)µ1/2 +R2sin−1
(

1− a

R

)
+
πR2

2
(B.8)

and

ȳ =
2

3A
µ3/2. (B.9)

As expected, the expression for the area of the uncracked cross-section is equal to

that of a half circle when the notch depth is 50%. Furthermore, the location of the

centroid reduces to the center of the circular cross-section when the depth of the notch

is zero. The area moments of inertia about the centroid of the notch cross-section are

evaluated and plotted in Fig. B.2, being normalized by the area moment of inertia

of the uncracked cross-section. As expected, the normalized area moments of inertia

are equal to those of an uncracked circular cross-section for a zero-depth notch and

decay to zero as the depth of the notch becomes equal to the diameter of the shaft.

In addition, the area moments of inertia were calculated by numerically integrating
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Figure B.2: Normalized notch area moments of inertia

Eqs. B.1 and B.2. The numerically-determined area moments of inertia were found

to be equal to those obtained analytically using Eqs. B.3 and B.7.
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APPENDIX C

NOTCH COMPLIANCE

The compliance matrix of the notched shaft is determined using Castigliano’s Theo-

rem. For brevity, only two example calculations are presented here, with the remain-

der following an analogous procedure. The first example gives the linear deflection

of the shaft caused by a force, while the second gives the angular deflection caused

by a force. For convenience, the coordinate system is attached to the free end of the

shaft, with the z-axis pointing towards the cantilevered end; this assists in reducing

the complexity of the calculations. According to Castigliano’s Theorem, the linear

deflection δy due to an applied load Fy at the end of the shaft (i.e., the rotor) and in

the same direction is

δy =
∂U

∂Fy
=

L∫
0

M
Fy
x

EIx

(
∂M

Fy
x

∂Fy

)
dz. (C.1)

The first step in determining the deflection is to obtain a closed-form expression of

the internal bending moment generated within the shaft segment. A shaft segment

with applied loading and corresponding coordinate system is shown in Fig. C.1 to

assist in this task. The internal bending moment induced by application of a force in

Figure C.1: Internal bending moments in the shaft due to applied load Fy
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Figure C.2: Internal bending moments in the shaft due to applied loads Fy and Mi

the y direction is found through static balance to be

MFy
x = Fyz, (C.2)

where z is the distance along the z-axis to the cross-sectional plane of interest. The

concept is now applied to the full notched shaft shown in Fig. 3.4. Substitution of

Eq. C.2 into Eq. C.1 yields

δFy
y =

L2∫
0

Fyz

EIx
(z)dz +

L2+Lc∫
L2

Fyz

EICx
(z)dz +

L2+Lc+L1∫
L2+LC

Fyz

EIx
(z)dz, (C.3)

where Ix and ICx are the area moments of inertia of the uncracked and notched cross-

sections, respectively. Evaluation of the integrals in Eq. C.3 provides the following

expression for the deflection δy:

δFy
y =

Fy
3E

(
L3

2

Ix
+

(L2 + LC)3 − L3
2

ICx
+

(L2 + LC + L1)3 − (L2 + Lc)
3

Ix

)
. (C.4)

Note than when either the area moments of inertia are equal or the width of the

notch is set to zero, Eq. C.4 reduces to an undamaged cantilevered Euler-Bernoulli

beam. The process for obtaining angular deflections due to applied moments is applied

analogously.

Determining the angular deflection caused by a force or the linear deflection caused

by a moment is more involved. Castigliano’s Theorem is only valid for finding de-

flections in the same direction as the applied force. To compensate for this caveat, a
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virtual force or moment in the direction of the desired displacement must be applied.

This virtual load is then set to zero after all derivatives in Eqs. 3.7 and 3.8 are eval-

uated. This process is demonstrated in the following example. Figure C.2 displays a

shaft segment with an applied force Fy. Since the angular deflection about the x-axis

is desired, a virtual moment must be applied about that axis. The virtual moment

Mi is shown in Fig. C.2. The internal bending moment generated by this system of

real and virtual loads is

MFy
x = Fyz +Mi. (C.5)

The angular deflection found using Eq. 3.8 is

γFy
x =

L∫
0

M
Fy
x

EIx

(
∂M

Fy
x

∂Mi

)
dz. (C.6)

Following evaluation of the derivative, the virtual applied moment Mi is set to zero.

Piece-wise integration over the length of the notched beam shown in Fig. 3.4 gives

γFy
x =

L2∫
0

Fyz

EIx
(1)dz +

L2+Lc∫
L2

Fyz

EICx
(1)dz +

L2+Lc+L1∫
L2+LC

Fyz

EIx
(1)dz. (C.7)

Evaluation of the above integral relates the applied force Fy and the angular deflection

γx according to:

γFy
x =

Fy
2E

(
L2

2

Ix
+

(L2 + LC)2 − L2
2

ICx
+

(L2 + LC + L1)2 − (L2 + Lc)
2

Ix

)
. (C.8)

Once the deflection at the rotor is found, the compliance coefficient is found by

setting the corresponding applied load to unity. The remainder of the compliance

matrix terms are analogously found, where the super-subscript indicates either axis

x or y:

C11j =
1

3E

(
L3

2

Ij
+

(L2 + LC)3 − L3
2

ICj
+

(L2 + LC + L1)3 − (L2 + LC)3

Ij

)
(C.9)

C12j = C21j =
1

2E

(
L2

2

Ij
+

(L2 + LC)2 − L2
2

ICj
+

(L2 + LC + L1)2 − (L2 + LC)2

Ij

)
(C.10)
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C22j =
1

E

(
L2

Ij
+

LC
ICj

+
L1

Ij

)
. (C.11)

The first subscript (e.g., ‘11’) represents the nature of the element; ‘11’ would rep-

resent a direct compliance term relating a deflection to an applied linear force. The

subscript ‘22’ denotes the direct relationship between angular deflections and applied

moments. Coupling terms are likewise recognized through the use of a subscript such

as ‘12’ or ‘21’. Arranging these coefficients into the general compliance matrix gives

ux

uy

γx

γy


=



C11y 0 0 C12y

0 C11x −C12x 0

0 −C21x C22x 0

C21y 0 0 C22y





Fx

Fy

Mx

My


. (C.12)

As expected, the aforementioned terms of the compliance matrix reduce to those of

a constant cross-section cantilevered beam when either the area moments of inertia

are equivalent or when the width of the notch LC is set to zero (see Fig. 4.3 for a

physical intuition concerning the compliance matrix).
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APPENDIX D

GAPING FATIGUE CRACK COMPLIANCE

An overhung shaft displaying a gaping fatigue crack is shown below in Fig. D.1, with

a set of applied loads on the free end. The compliance matrix of the cracked overhung

shaft is found using the transfer matrix. To accomplish this, the crack compliance

matrix (Eq. 3.18) must first be rearranged into a transfer matrix form:

[Fcrack] =



1 0 0 −c22 0 0 0 0

0 1 c44 0 0 0 c45 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 −c33

0 0 c54 0 0 1 c55 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


8×8

. (D.1)

The stiffness of the system is gleaned through three elements: the left-most Euler-

Bernoulli beam segment L1, the compliance introduced by the crack, and the beam

Figure D.1: Overhung shaft displaying gaping fatigue crack and applied loadings
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segment of length L2 to the right of the crack. The overall transfer matrix is formed

by multiplying the individual element transfer matrices:

[U ] = [F2][Fcrack][F1] (D.2)

such that

{S}AP = [U ]{S}SU , (D.3)

where AP denotes the applied boundary conditions on the free end, and SU denotes

the support boundary conditions generated at the cantilevered end. The goal is to find

the displacements at the free end induced by the loading conditions at that location.

The state vector of boundary conditions on the free end, including applied loadings,

is:

{S} =

{
ux γy MA

y −V A
x −uy γx MA

x V A
y

}T
, (D.4)

while the boundary conditions at the cantilevered end are

{S} =

{
0 0 MR

y −V R
x 0 0 MR

x V R
y

}T
. (D.5)

The superscripts R and A denote ‘reaction’ and ‘applied’, respectively. Applying

these boundary conditions allows for Eq. D.3 to be split into two relationships. The

first relates the deflections at the free end to the support reactions:

ux

γy

−uy

γx


=



U13 U14 U17 U18

U23 U24 U27 U28

U53 U54 U57 U58

U63 U64 U67 U68





MR
y

−V R
x

MR
x

V R
y


, (D.6)

where the subscript on the entries denotes position within the overall transfer matrix

[U ]. The second relates the applied loading conditions to the support reactions:

MA
y

−V A
x

MA
x

V A
y


=



U33 U34 U37 U38

U43 U44 U47 U48

U73 U74 U77 U78

U83 U84 U87 U88





MR
y

−V R
x

MR
x

V R
y


. (D.7)
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Equations D.6 and D.7 are re-written as:

{δ} = [Z1]{F}R (D.8)

and

{F}A = [Z2]{F}R. (D.9)

Relating the above two equations provides an expression for the compliance matrix

of the entire system:

{δ} = [Z2][Z1]−1{F}A = [C]{F}A (D.10)

where the overall compliance matrix is [C], the vector of applied loadings is {F}A,

and the vector of displacements is {δ}. The components of [C] are the following (keep

in mind that the cij terms are the additional compliances introduced by the crack, as

discussed in Chapter 3):

[C] =



C11 −c45L
2
2 c45L2 C14

−c45L
2
2 C22 C23 −c45L2

c45L2 C32 C33 c45

C41 −c45L2 c45 C44


(D.11)

where

C11 = c22 + c44L
2
2 +

(L1 + L2)3

3EI
(D.12)

C22 = c33 + c55L
2
2 +

(L1 + L2)3

3EI
(D.13)

C33 = c55 +
(L1 + L2)

EI
(D.14)

C44 = c44 +
(L1 + L2)

EI
(D.15)

and

C14 = C41 = c44L2 +
(L1 + L2)2

2EI
(D.16)

C23 = C32 = −c55L2 −
(L1 + L2)2

2EI
. (D.17)
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As expected, the compliance matrix reduces to that of an Euler-Bernoulli beam of

length L1 + L2 when the crack compliances are set to zero.
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APPENDIX E

DEVELOPMENT OF THE REAL TRANSFER MATRIX

Recall the general 8×1 state vector for the Real Transfer Matrix defined in a rotating

reference frame

{S}j = { uX γY MY −VX −uY γX MX VY }T , (E.1)

and an inertial reference frame

{S}j = { uξ γη Mη −Vξ −uη γξ Mξ Vη}T , (E.2)

where the state vector quantities have been previously defined in Chapter 4. A point

element is shown in Fig. E.1 for clarity. Though coordinates X and Y are shown, the

figure is equally valid for inertial coordinates ξ and η. The point matrix is derived in

an inertial and rotating reference frame; the works by Lee and Green [7] and Varney

and Green [2] provide comprehensive derivations for the Real Transfer Matrix and

asymmetric field matrix, respectively.

(a) Bending in the XZ plane (b) Bending in the Y Z plane

Figure E.1: Point element formulation
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E.1 Point Matrix Derivation

E.1.1 Inertial Reference Frame

The point matrix is a condensation of the steady-state equations of motion and con-

tinuity conditions for a single lumped inertia. Newton-Euler mechanics are used to

formulate the equations of motion. The loads on a point element are due to internal

shear and bending reactions as well as external stiffness and damping. These loads

are shown on the free-body diagram in Fig. E.1, where the external stiffness and

damping forces are designated F S
j and FC

j , respectively. These forces are represented

in matrix form, where the stiffness forces are F S
ξ

F S
η

 = −

 kξξ kξη

kηξ kηη


 uξ

uη

 (E.3)

and the damping forces are FC
ξ

FC
η

 = −

 dξξ dξη

dηξ dηη


 u̇ξ

u̇η

 . (E.4)

Equating the dynamic and applied forces on point element j provides two equations

of motion (see Appendix A for details):

mjüξ = V R
ξ − V L

ξ − FC
ξ − F S

ξ (E.5)

mjüη = V R
η − V L

η − FC
η − F S

η . (E.6)

Expressing the angular momentum about the rotor’s center of mass decouples the

linear and angular degrees of freedom (see Appendix A for a formulation of the

angular momentum). Equating dynamic and applied moments provides the equations

of motion governing the point element’s angular motion:

Itγ̈ξ + Ipnγ̇η = MR
ξ −ML

ξ (E.7)

Itγ̈η − Ipnγ̇ξ = MR
η −ML

η . (E.8)
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Expressing kinematic continuity across the point element gives the following relations:

uRξ = uLξ (E.9)

uRη = uLη (E.10)

γRξ = γLξ (E.11)

γRη = γLη . (E.12)

Steady-state conditions are assumed such that the complex-valued response of each

state vector quantity occurs at a frequency equal to the whirl frequency p. Assuming

steady-state conditions provides the following equations, written such that the state

vector quantities on the right are a function of those on the left:

uRξ = uLξ

γRη = γLη

MR
η = −It p2γLη − iIp p n γLξ +ML

η

V R
ξ = (−mp2 + i dξξ p+ kξξ)u

L
ξ

+(i dξηp+ kξη)u
L
η + V L

ξ

uRη = uLη

γRξ = γLξ

MR
ξ = −It p2γLξ + iIp p n γ

L
η +ML

ξ

V R
η = (−mp2 + i dηη p+ kηη)u

L
η

+(i dηξ p+ kηξ)u
L
ξ + V L

η . (E.13)
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Placing these equations into matrix form provides the point matrix [Pj] for the jth

point element in an inertial frame:

[Pj]
IF
8×8 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 −Itp2 1 0 0 −iIpnp 0 0

mp2 − idξξp− kξξ 0 0 1 idξηp+ kξη 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 iIpnp 0 0 0 −Itp2 1 0

idηξp+ kηξ 0 0 0 mp2 − idηηp− kηη 0 0 1



.

(E.14)

E.1.2 Rotating Reference Frame

A similar procedure gives the point matrix in a rotating reference frame (as derived by

Casey [37]), though external stiffness and damping forces are excluded (these can be

included using the Complex Extended Transfer Matrix). The corresponding rotating

frame acceleration and angular momentum is provided in Appendix A; upon assuming

a steady-state solution to the elemental equations of motion, the transfer matrices in

a rotating reference frame can be found. In the rotating frame, the response occurs

at the relative whirl frequency pr. The rotating-frame point matrix is

[Pj]
RF
8×8 =

 [D]4×4 −[G]4×4

[G]4×4 [D]4×4

 , (E.15)

where

[D]4×4 =



1 0 0 0

0 1 0 0

0 (Ip − It)n2 − It p2
r 1 0

m (p2
r + n2) 0 0 1


(E.16)
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and

[G]4×4 =



0 0 0 0

0 0 0 0

0 −i(2It − Ip)npr 0 0

2imn pr 0 0 0


. (E.17)
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APPENDIX F

DETAILS OF THE COMPLEX TRANSFER MATRIX

The ability to distinguish forward and backward whirl is the primary advantage of

the Complex Transfer Matrix (CTM) over the Real Transfer Matrix (RTM). The

CTM method is first developed by Varney and Green [36]. The distinction between

the methods is seen through analysis of the simple overhung rotordynamic system

shown in Fig. F.1. The discrete system consists of a single lumped mass at the rotor

(point matrix [P ]) and one massless beam with flexural rigidity EI and length L

(field matrix [F ]). The transfer matrix method then gives

{S}FE = [U ]{S}SU , (F.1)

where the overall transfer matrix [U ] is

[U ] = [P ][F ]. (F.2)

The superscripts FE and SU designate the free end and support, respectively. A

symbolic analysis elucidates why the CTM method separates forward and backward

Figure F.1: Overhung rotor system
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whirl, while a numeric analysis demonstrates the separation. The analysis is per-

formed for both a rotating and inertial reference frame.

F.1 Inertial Frame

Chapter 4 gives the inertial point and field matrices for the RTM and CTM methods.

The characteristic equation is found as a function of the shaft speed n, the absolute

whirl frequency p, and the physical parameters of the system. Using the RTM, the

characteristic equation for the generally non-synchronous, undamped system is

Q(p) = a8 p
8 + a6 p

6 + a4 p
4 + a2 p

2 + 1 = 0. (F.3)

For the undamped cantilevered system discussed above, the coefficients of Eq. F.3 are

evaluated symbolically and summarized in Table F.1 (inclusion of damping generates

odd powers of p in the characteristic equation). The constants A, B, and C are

a function of only the system’s physical parameters (but do not include the shaft

speed). It is clear from Table F.1 that the shaft speed n appears in the characteristic

equation only in even powers; the same eigenvalues p are therefore obtained regardless

of whether n is positive or negative. Therefore, the RTM is incapable of naturally

distinguishing forward and backward whirl directions. For a general system composed

of many point masses and beam segments, the same ambiguity persists.

In comparison, the CTM generates the following generally non-synchronous char-

acteristic equation:

Q(p) = b4 p
4 + b3 p

3 + b2 p
2 + b1 p+ 1 = 0. (F.4)

The coefficients of Eq. F.4 are given in Table F.1. In this case, it is clear that

different eigenvalues are obtained when n is either positive or negative (i.e., forward

or backward, respectively). This unique trait of the CTM precipitates separation of

forward and backward whirl, as forward and backward whirl depend on the sign of n.
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Table F.1: Characteristic equation coefficients

RTM CTM

a8

(I2
t − I2

p )L8m2

144E4I4
b4

ItmL
4

12E2I2

a6 A−
I2
pm

2L8

144E4I4
n2 b3

−IpmL4

12E2I2
n

a4 B +
I2
pmL

5

6E3I3
n2 b2

−mL3 − 3ItL

3EI

a2 C −
I2
pL

2

E2I2
n2 b1

IpL

EI
n

The synchronous whirl characteristic equations provide further insight into the

CTM’s unique separation capability. The forward and backward synchronous whirl

characteristic equations obtained using the CTM are, respectively:

mL4(It − Ip)
12E2I2

p4 +
L(3Ip − 3It −mL2)

3EI
p2 + 1 = 0 (F.5)

and

mL4(It + Ip)

12E2I2
p4 − L(3Ip + 3It +mL2)

3EI
p2 + 1 = 0. (F.6)

However, the characteristic equations found using the RTM are identical for for-

ward and backward synchronous whirl. Distinction of forward and backward whirl is

therefore impossible without further analysis. Moreover, these identical characteristic

equations are merely a product of the characteristic equations found using the CTM

for forward and backward synchronous whirl (i.e., the product of Eqs. F.5 and F.6).

For each point matrix included in the overall transfer matrix, the order of the char-

acteristic equation is incremented by either four (CTM) or eight (RTM). Therefore,

for N point elements, the order of the characteristic equation is either 4N (CTM) or
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8N (RTM). For systems with many point elements, the use of the RTM generates a

characteristic equation of prohibitively high order. Hence, one advantage of the CTM

is clear: the order of the characteristic equation is reduced by a factor of 2. The de-

crease in the order of the characteristic equation results in a significant decrease in

computation time and increased accuracy of the roots.

F.2 Rotating Frame

Though the rotating frame RTM separates forward and backward whirl, it suffers

from an additional shortcoming. Extraneous roots are found when the backward syn-

chronous whirl line intersects the superfluous lines of the Campbell diagram generated

by mirroring (this mirroring inhibits graphical separation of forward and backward

whirl). When using the RTM in a rotating frame, care must be taken to distinguish

true synchronous whirl speeds from extraneous speeds. For the backward synchronous

whirl, the characteristic equation found using the rotating frame RTM can be factored

in the following form:

Qtot = Q1Q2, (F.7)

where Qtot is the total characteristic equation and Q1 and Q2 are polynomial factors

of Qtot. For the simple cantilevered system, these polynomials are

Q1 =
mL4(Ip + It)

3(8EI)2
p4
r −

L(3Ip + 3It +mL2)

12EI
p2
r + 1 (F.8)

and

Q2 =
9mL4(3It − Ip)

(8EI)2
p4
r −

3L(−3Ip + 9It +mL2)

4EI
p2
r + 1. (F.9)

The roots of Eq. F.8 provide the backward synchronous whirl frequencies, while

the roots of Eq. F.9 correspond to the equation’s extraneous roots. This issue is

circumvented by using the CTM, as the method provides only the correct roots (as

well as inherently distinguishing forward and backward whirl).

168



Table F.2: Parameters of the example system

m 91.9 kg
It 1.436 kg ·m2

Ip 0.718 kg ·m2

E 206.9 GPa
L 0.2 m
d 0.05 m

F.3 Numeric Analysis

The RTM and CTM are used to analyze the simple system shown in Fig. F.1. The

analysis is performed in both inertial and rotating reference frames. The diameter

of the circular cross-section overhung shaft is d, with elastic modulus E and cross-

sectional area moment of inertia I. The mass of the shaft of length L is assumed to

be massless compared to the rotor. The parameters of the system are summarized in

Table F.2. These parameters are chosen so that a majority of the whirl speeds are

relatively close in magnitude, so as to best demonstrate the differences between the

RTM and CTM methods.

F.3.1 Inertial Reference Frame

Inertial frame Campbell diagrams are generated using the RTM (Fig. F.2) and the

CTM (Fig. F.3). It is clear from Fig. F.2 that the RTM is incapable of separating for-

ward and backward whirl; each whirl speed, both synchronous and non-synchronous,

is mirrored across the horizontal shaft speed axis. The ability of the CTM to dis-

tinguish these frequencies is seen in Fig. F.3, as each synchronous whirl speed is

unique.

F.3.2 Rotating Reference Frame

The synchronous whirl speeds and Campbell diagram are also given for a rotating

reference frame. Figures F.4 and F.5 provide the Campbell diagrams generated us-

ing the RTM and CTM in a rotating frame, respectively. Comparison of Figs. F.4

169



Figure F.2: Campbell diagram: RTM, inertial frame

Figure F.3: Campbell diagram: CTM, inertial frame
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Figure F.4: Campbell diagram: RTM, rotating frame

and F.5 exposes superfluous synchronous whirl frequencies, as discussed prior. The

extraneous frequencies are identified in Fig. F.4 as the frequencies corresponding to

intersections of the p = −2n line with the locus of frequencies displaying a positive

slope. The frequencies are clearly extraneous, as they are not corroborated by ei-

ther the inertial frame transfer matrix analysis or the rotating frame CTM analysis

(Fig. F.5). As expected, the rotating reference frame adaptation of the CTM distin-

guishes forward and backward whirl while simultaneously eliminating the superfluous

whirl frequencies.
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Figure F.5: Campbell diagram: CTM, rotating frame
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