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SUMMARY 

 

The use of organic scintillators is an established method for the measurement of 

neutron spectra above several hundred keV.  Fast neutrons are detected largely by proton 

recoils in the scintillator resulting from neutron elastic scattering with hydrogen.  This 

leads to a smeared rectangular pulse-height distribution for monoenergetic neutrons.  The 

recoil proton distribution ranges in energy from zero to the incident neutron energy.  In 

addition, the pulse-height distribution is further complicated by structure due to energy 

deposition from alpha particle recoils from interactions with carbon as well as carbon 

recoils themselves.  In order to reconstruct the incident neutron spectrum, the pulse-

height spectrum has to be deconvoluted (unfolded) using the computed or measured 

response of the scintillator to monoenergetic neutrons.  In addition gamma rays, which 

are always present when neutrons are present, lead to Compton electron recoils in the 

scintillator.  Fortunately, for certain organic scintillators, the electron recoil events can be 

separated from the heavier particle recoil events in turn to distinguish gamma-ray induced 

events from neutron-induced events.  This is accomplished by using the risetime of the 

pulse from the organic scintillator seen in the photomultiplier tube as a decay of light. 

In this work, an organic scintillator detection system was assembled which 

includes neutron-gamma separation capabilities to store the neutron-induced and gamma-

induced recoil spectra separately.  An unfolding code was implemented to deconvolute 

the spectra into neutron and gamma energy spectra.  In order to verify the performance of 

the system, a measurement of two reference neutron fields will be performed with the 
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system, unmoderated Cf-252 and heavy-water moderated Cf-252.  After the detection 

system has been verified, measurements will be made with an AmBe neutron source.  
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CHAPTER 1 

INTRODUCTION 

 

Current Work and Previous Work 

In this work, an organic scintillator detection system was assembled which includes 

neutron-gamma separation capabilities to store the neutron-induced and gamma-induced 

recoil spectra separately.  An unfolding code was implemented to deconvolute the spectra 

into neutron and gamma energy spectra.  In order to verify the performance of the 

system, a measurement of two reference neutron fields was performed with the system, 

unmoderated Cf-252 and heavy-water moderated Cf-252.  After the detection system was 

verified, measurements were made with an AmBe neutron source.   

 

The use of organic scintillators is an established method for the measurement of neutron 

spectra above several hundred keV.  Fast neutrons are detected largely by proton recoils 

in the scintillator which result largely from neutron elastic scattering with hydrogen.  This 

leads to a smeared rectangular pulse-height distribution for monoenergetic neutrons.  The 

recoil proton distribution ranges in energy from zero to the incident neutron energy.  In 

addition, the pulse-height distribution is further complicated by the presence of peaks at 

higher neutron energies by energy deposition due to alpha particle recoils from 

interactions with carbon and due to carbon recoils.  In order to reconstruct the incident 

neutron spectrum, the neutron-induced pulse-height spectrum has to be deconvoluted 

(unfolded) using the computed or measured response of the scintillator to monoenergetic 

neutrons.   
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In addition gamma rays, which are always present when neutrons are present, lead to 

Compton electron recoils in the scintillator.  Fortunately, for certain organic scintillators, 

the electron recoil events can be separated from the heavier particle recoil events which 

can be used to distinguish gamma-ray induced events from neutron-induced events.  This 

is accomplished by using the risetime of the signal from the organic scintillator. 

 

A novel method was used to generate the response functions necessary for deconvolution 

of the measured data. MCNP-PoliMi is a Monte Carlo simulation tool developed to 

simulate the neutron interaction and photon production. It differs from the widely used 

MCNP code in that each collision is recorded in a single separate output file that can be 

processed to output pulse height distributions. MCNP-PoliMi was applied to generate 

detector responses to monoenergetic neutrons for the detector used to gather the 

experimental data.  

 

The process of experimental measurements was described in detail in order to facilitate 

reproduction of this work for applications in neutron spectroscopy in mixed field 

measurements. The result of using MCNP-PoliMi is analyzed for benefits and 

disadvantages. The deconvoluted specta were compared with the published spectra for 

the americium-beryllium source neutron energies to support the viability of this process 

for neutron and gamma discrimination with organic liquid scintillators.   

Background 

Neutron Properties 

Neutrons differ from other types of radiation in that they do not interact with the atomic 

electrons around the nucleus of every element. Their primary interactions are with the 

nuclei of the detector media. Since neutrons penetrate the electron cloud, methods 
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allowing for the detection of neutrons must rely on the full or partial transfer of energy of 

the incident neutron to the nuclei of the constituent atoms. As a result the neutron can be 

absorbed and disappear completely, or can recoil with a new energy and direction. Both 

these types of interactions deposit energy in the target nuclei and may create charged 

particles in the form of internal conversion or recoil nuclei. Neutrons are detected through 

neutron nucleus reactions that result in energetic charged particles. The detection of these 

secondary charged particles is necessary since neutrons are not charged particles and 

cannot be detected by Coulombic interactions.   

Neutron Interactions 

Neutrons can interact through two main modalities, scattering and absorption 

interactions. Concerning absorption, charged particle production may occur from neutron 

interactions with atomic nuclei. But, the probability that a neutron will interact by one of 

these interactions decreases rapidly with increasing neutron energy.  Neutrons from 

sources such as decay reactions, nuclear reactors, and accelerators have energies ranging 

from several hundred keV to a maximum above 25-MeV
i,ii,iii

. However, the importance of 

scatter events rises with increasing neutron energy.  

 

Scatter events can be used to detect higher energy, or fast, neutrons by elastic scattering 

with nuclei.  Elastic scattering interactions are those for which the kinetic energy of the 

incident neutron and the kinetic energy of scattered particle and neutron are equal. For 

fast neutrons, these elastic scatter events can result in the transfer of part of their energy 

on collision to the recoil nuclei or all of their energy on collision with hydrogen nuclei.  

The energy deposition of these charged recoil or product particles in the detector material 

may be used to detect the incident neutrons. By means of elastic scattering in hydrogen, a 

range of collisions are possible, notably including transfer of the entire incident neutron 

energy in a single collision. Since only a small fraction of overall energy can be 
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transferred in collision with heavy nuclei, fast neutron detectors are largely based on low 

atomic number elements especially hydrogenous materials.  

Organic Scintillators 

Organic scintillators are relied on as a means of detecting fast neutrons because of their 

high hydrogen content. A scintillator’s primary property is the emission of fluorescent 

light produced by incident ionizing particles on a scale that is detectable. This process is 

dependent on the excitation and subsequent deexcitation of valence electrons in the 

scintillating material. As valence electrons interact with the ionizing particle, they 

become excited and can transition to the conduction band of the material, leaving behind 

a hole in their electron orbit. These electrons can transition down from their excited state 

and re-occupy their empty states.  When the electron-hole recombination results in 

photon emission, the electromagnetic wave traverses the medium, propagating in all 

directions. Upon arriving at the boundary of the scintillator material, this isotropic light 

can be detected via photomultiplier tubes, electronic counters, or if the light intensity is 

great enough and between 400 – 700 nm wavelength, visual observation.  

 

Fast neutrons interacting in the organic scintillating material produce recoil protons from 

elastic scattering reactions with the hydrogen nuclei. The recoil protons serve as the 

ionizing radiation, depositing their energy over tens of micrometers, shown in Table 1 in 

Appendix A. Because of low density (<1 g/cc) and low atomic number of constituent 

elements, organic scintillators have much lower gamma ray absorption coefficients than 

inorganic scintillators, such as NaI(Tl). Because of this, organic scintillators should 

provide a good means of distinguishing from gamma-ray events when detecting fast 

neutrons. The photoelectric absorption is small when the energy is greater than 30 keV 

and the Compton scattering becomes the main absorption process up to E=2 MeV. Above 

2 MeV, pair production becomes appreciable
iv
.  
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The wide use of organic scintillator neutron detectors has led to many different 

commercially available detectors for specific applications. The many uses include gamma 

and neutron spectroscopy, dosimetry, fast counting, thermal neutron detection and others. 

The primary application of organic scintillators is in very fast and ultrafast timing, 

especially under mixed radiation fields which would paralyze a slower detector. In most 

organic scintillators the lifetime of a prompt fluorescence lasts only on the order of a few 

nanoseconds, providing detection under intense radiation bombardment. However 

because of their susceptibility to gamma ray interactions, the concern is that organic 

scintillators produce false positives for neutron counts. Even so, because of their lack of 

molecular architecture, liquid organic scintillators are twice as useful in this scenario 

since they are intrinsically radiation hardened.  

 

Plastic and crystal organic scintillators both have higher quantum efficiency than liquids, 

so they have an appreciable component of radiative transfer. However, the solvent – 

solute transfer is usually less efficient in plastic scintillators than liquids. Since the 

solvent is rigid, no molecular diffusion occurs, and energy migration is less efficient. This 

difference can be seen below in Fig. 1 and Fig. 2. The solute is a fluor. 
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Figure 1. Energy transfer diagram in solvent – solute matrix for liquid scintillators. The 

migration of solvent molecules between excitation from the beta particle and energy 

transfer to the fluor is depicted as a dotted line
iv
.  
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Figure 2. Energy transfer diagram in solvent – solute matrix for crystal structure of a 

crystal scintillator. The rigid crystal lattice restricts energy transfer of solvent molecules, 

dampening the energy migration.  

 

Liquid organic scintillators fast response and low Z-value constituents make them 

preferred for beta and fast neutron detection. In high radiation environments their lack of 

a rigid crystal lattice and ultra-fast response time makes them useful to separate neutrons 

and gamma rays. The properties of organic media used as scintillators such that they 

provide a good means of fast neutron detection are as follows: 

1. The media should have high hydrogen content, with a hydrogen/carbon ratio 

generally greater than one. 

2. They should have a high light output, comparable to at least 50 percent of the 

light output from the organic crystal anthracene. 
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3. Their wavelength of max emission should be detectable by modern methods, in 

the range of the visible and ultra-violet wavelength spectral response (100 – 1000 

nanometers). Typical response range between 300-500 nm.  

4. The medium should be transparent to the wavelength of its own emission, or 

include wavelength shifters to minimize the optical absorption.  

5. The organic scintillator should have a linear response between the amount of 

energy deposited by the incident radiation and the output light intensity. 

6. The risetime of the scintillator should be notably different for each type of 

radiation and be short to enable fast signal pulse generation. 

 

Detection 

NE-213 and Other Names 

The Nuclear Enterprises (NE)-213 liquid organic scintillators primary uses are fast 

neutron spectroscopy and gamma detection in the energy range greater than 100 keV. 

Popular because of its excellent pulse shape discrimination, the NE-213 performance 

separates neutron and gamma radiation by the discrimination of the intensity of light 

created in response to different charged particles. This performance declines as neutron 

energy drops, since the energy transferred from a slow neutron to the detector material is 

very low, and thus cannot be detected. As the energy rises, the energy deposited can 

become noticeable, once reaching the keV range.  

 

The popularity of this detector type has led to other companies creating their own 

versions, or in the case of Nuclear Enterprises, companies being bought out by new 

owners. Thus the NE-213 detector has come to be also referred to as the BC-501A or the 

EJ-301, manufactured by Saint-Gobain Crystals and Eljen Technology, respectively.  
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Detection System 

For this work, the NE-213 organic scintillator was paired with a two inch diameter 

BURLE 8575B photomultiplier tube (PMT) to convert the light pulses into electronic 

signal. A voltage pulse collected at the anode of the PMT is linearly related to the 

scintillation light pulse. The weak light flashes from a scintillator pulse are made 

detectable by the conversion of light to electrons and the subsequent electron multiplier 

section in the PMT, shown in Fig. 3. The current signal from the anode was then passed 

through a pulse shape analysis system composed of several Nuclear Instrumentation 

Module (NIM) modules and then routed to a multi-channel analyzer (MCA). The analog 

pulses were digitized by the MCA and displayed on a computer using the ORTEC 

MAESTRO software package.  

Methods to Improve Detection 

Small scintillators are preferred to large ones since light transmission in crystals or 

containers of larger size yield nonuniform light collection efficiency from increased 

reflection conditions. This can lead to a decrease in detection efficiency since the overall 

detection area is reduced. But often this effect is mitigated by the increased resolution 

from better light collection over the detector volume.   

 

Energy resolution is not as important as timing resolution when it comes to pulse shape 

discrimination. For appropriate neutron gamma discrimination to be possible, the 

exponential tail of the light intensity decay must be successfully transmitted. This can be 

accomplished by first of all taking the signal from the anode of the photomultiplier tube. 

The anode signal is the primary signal analyzed since the typical scintillation pulse has 

passed through the electron multiplier section to reach the anode, serving to amplify the 

small tail. The tail of the pulse is important since it is holding the information on particle 

type, as described in the Detection Process section in the next chapter. A large impedance 
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in the coaxial cable used to transmit the signal helps retain the signal strength for small 

currents, especially with long lengths of cable. Furthermore, the amplifier should have 

low noise characteristics and be operated at low gain for the best time resolution.  

 

 

Figure 3. Schematic arrangement of the tube structure for a photomultiplier tube showing 

typical electron trajectories
v
.  

 

The pulse-height distribution is complicated by the presence of peaks at higher neutron 

energies by energy deposition due to alpha particle recoils from interactions with carbon 
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and due to carbon recoils.  In order to reconstruct the incident neutron spectrum, the 

neutron-induced pulse-height spectrum has to be deconvoluted (unfolded) using the 

computed or measured response of the scintillator to monoenergetic neutrons. This 

unfolding technique in combination with the pulse shape discrimination characteristics of 

the NE-213 detector allow for a meaningful solution to be obtained from the 

measurement data.  
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CHAPTER 2 

THEORY 

 

Detection Process 

The elastic scattering reaction of neutrons by light nuclei is the most common method of 

neutron detection in organic scintillators. Light is created when the recoil particles 

deposit their energy through Coulombic interactions with the electrons in the detector 

media. Recoil methods are preferred to be used with pulse shape or rise time 

discrimination to separate neutron events in a neutron-gamma radiation field. Gamma 

rays, which are always present when neutrons are present, are largely detected via 

Compton electron recoilsin organic scintillators. For the organic scintillators under 

consideration here, the electron recoil events can be separated from the heavier particle 

recoil events and used to distinguish gamma-ray induced events from neutron-induced 

events.   

 

The scintillation response is markedly different for electrons, protons, or alpha particles 

each with the same incident energy and thus the neutron pulses can be separated out of 

the measurement data. The detection process is further complicated  by interactions with 

carbon nuclei.  In order to reconstruct the incident neutron spectrum, the neutron-induced 

pulse-height spectrum has to be deconvoluted (unfolded) using the computed or 

measured response of the scintillator to monoenergetic neutrons. 
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Kinematics 

The use of organic scintillators is an established method for the measurement of neutron 

spectra above several hundred keV
vi,vii,viii

.  Fast neutrons are detected largely by proton 

recoils in the scintillator which result largely from neutron elastic scattering with 

hydrogen.  A neutron can lose anywhere from none to its full energy in elastic scattering 

with hydrogen. The recoil proton distribution then ranges in energy from zero to the 

incident neutron energy. When coupled with statistical effects, this leads to a version of 

the rectangular pulse-height distribution for recoil protons from monoenergetic neutrons, 

as shown in Fig. 4.    

 

Figure 4. The analytical recoil proton energy distribution produced by monoenergetic 

incident neutrons in a hydrogenous material.  
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The recoil proton distribution ranges in energy from zero to the incident neutron energy.  

For non-relativistic neutrons incident on the organic scintillator the recoil proton response 

is given by 

                                   Equation 1 

where A is the mass of the proton equal to one, En is the energy of the incident neutron, 

Ep is the recoil proton kinetic energy, and φ is the scattering angle of the neutron in the 

center of mass coordinate system. Conversion from the center of mass system to the 

laboratory frame is accomplished using the following transformation 

                                        Equation 2 

where    is the laboratory frame angle between the path of the recoil proton and the 

incoming neutron. This change between frames of reference allows for simplification of 

the conservation of energy and momentum equations used to equate the before and after 

components of the interaction, displayed in Fig. 5 below. 

 

 

 



 15 

 

Figure 5. Elastic scattering of neutrons incident on protons shown in two frames of 

reference where En or Ep is the energy of the neutron or proton before the interaction and 

En’ or Ep’ is the energy after interaction.  

 

Combining Equations 1 and 2 forms the relation governing neutron and proton 

interactions in terms of the recoil angle of the proton. Since the properties of the proton 

after the scattering are of importance with respect to the incoming neutron the ratio M can 

be used to visualize the maximum fractional energy transfer in neutron elastic scattering 

for any angle. 

                                         Equation 3 

Using the above relation, the minimum and maximum for M are determined when the 

neutron transfers approximately none of its energy ( ) and all of its energy (  ) 

to the recoil proton. The result of a complete transfer of energy is possible when the 

recoil is near to perpendicular from the incident path of the neutron. This maximum 

energy transfer is unique to protons, since as the mass of the target nucleus is increased, 

the maximum value of M is correspondingly reduced. Thus with hydrogen the recoil 
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proton distribution ranges in energy from zero to the incident neutron energy which leads 

to a smeared rectangular pulse-height distribution for monoenergetic neutrons. 

Singlets and Triplets Excitation 

To explain the pulse shape discrimination process, it is necessary to discuss the sequence 

of processes in the scintillation event in an organic scintillator. The scintillators light 

output for neutrons has both a fast and delayed components. This may be explained by 

the excited states of the organic molecules. The shell model of the atom separates the 

stable energy states of the electronic structure into integer multiples. These energy states 

defined by quantum theory yield a cascade of discrete energies to ionized electrons such 

that only specific de-excitation pathways are possible. This can be visualized in Fig. 6. 

The associated energy that is not radiated between the discrete energy states is expended 

as heat in the form of phonons. The following section displays the complex π-electron 

excited singlet and triplet states understood to make a large contribution to the 

scintillation. 
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Figure 6. After ionization the excited electron seeks out the lowest stable energy state by 

de-exciting through energy transfer to the surrounding lattice as phonons or through 

emission of photons. 

 

 



 18 

An organic molecule is electrically organized into vibrational sublevels between π-

electron excited singlet and triplet states. Its utility as a neutron-gamma ray 

discrimination scintillator is linked with the luminescence properties which can occur as 

prompt or delayed emission. The photons produced in fluorescence and delayed 

fluorescence are directly linked with the energy states of the conjugated π-electron 

systems. Excitation into the π-electron singlet excited states is understood to make a large 

contribution to the main fast scintillation pulse. Ion recombination into triplet π-states is 

responsible for the slow scintillation component. This is schematically shown in Fig. 7.  
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Figure 7. π-electronic energy levels of an organic molecule.  

 

Incident ionizing radiation transfers its energy through Columbic and nuclear interactions 

to the main constituent of the organic liquid scintillator, the solvent. Either toluene or 

xylene, two aromatic hydrocarbons, is typically used as the solvent in liquid organic 

scintillators as well as p-terphenyl as the solute and POPOP as the wavelength shifter. A 
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common feature of a fluorescent organic compound used in scintillator systems is the 

presence of unsaturated aromatic molecules with conjugated π-electron systems capable 

of fluorescence. The intensity of the emission decays exponentially according to  

                                           Equation 4 

The excitation energy of the solvent is not immediately converted into light. The 

principal phenomenon associated with the scintillations of organic systems is that the 

emission spectrum is mainly that of the solute and in the case of ternary systems such as 

NE-213, the secondary solute. A relatively small fraction of the excitation energy of the 

solvent being transferred from primary to secondary solute is converted into fluorescence. 

The prompt or fast decay time of such events is between 2 – 30 nsec. It is known that 

there is also a slow component of the emission spectra except that decays with a longer 

decay constant and is spread over the course of several μsec
vi
. It is this slow component 

that makes particle differentiation using risetimes possible. 

 

Particles produce excitation density and ionization rates within the scintillator volume 

according to their mass and energy. As the ionizing radiation particle travels through the 

detector volume, it can deposit energy locally or spread over a large distance. For an 

incident particle with higher excitation density, from heavier mass or less energy the 

particle deposits, the scintillation efficiency is reduced from ionization quenching, the 

mode of decay without emission of a photon. The ionization quenching is much more 

pronounced in the prompt component of the scintillation light. However, the decay times 

of the prompt and slow components are not affected. Thus while the light intensity is 

reduced by ionization quenching, the characteristic exponential decay of the light remains 

linked to the nature of the incident particle. This link to particle type forms the basis of 

the technique of pulse shape discrimination. Due to this effect the scintillation response 
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for electrons, protons, and α particles each of 5 MeV energy, is in the ratio of 10 : 5 : 1 

for the energy emitted in the scintillation, respectively
ix
.  

 

The scintillation decay curves for three unique forms of radiation is shown in Fig. 8. Fast 

neutrons produce different decay characteristics from gamma rays and alpha particles due 

to the intensity of slow components of the light output after an event. Extrapolating on 

the work with the fast component of Kuchnir and Lynch, the slow components are not 

only simple exponential, but a combination of at least four components that decay non-

exponentially over several microseconds
x,ix

. The effect forms the basis for pulse shape 

discrimination proposed by Brooks
vi
 to distinguish between gamma-ray and neutron-

induced events.  

 

 

Figure 8. Time dependence of scintillation intensity for organic scintillator
xi
.  
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Mathematical Deconvolution of Data 

The use of organic scintillators is an established method for the measurement of neutron 

spectra above several hundred keV.  Fast neutrons are detected principally by proton 

recoils in the scintillator resulting from neutron elastic scattering with hydrogen.  This 

leads to a smeared rectangular pulse-height distribution for monoenergetic neutrons.  The 

recoil proton energy distribution ranges in energy from zero to the incident neutron 

energy.  The pulse-height distribution is complicated by the presence of structure at 

higher neutron energies due to alpha particle recoils from carbon interactions as well as 

carbon recoils due to elastic scattering.  In order to reconstruct the incident neutron 

spectrum, a measured pulse-height spectrum has to be deconvoluted (unfolded) using the 

computed or measured responses of the scintillator to monoenergetic neutrons, typically 

in the form of a matrix equation.   

 

Deconvolution is a process primarily involving linear matrix algebra to solve for the 

spectral fluence. The inputs into the unfolding code are the measured pulse-height 

spectrum and the detector responses to monoenergetic neutrons. Response functions are 

obtained computationally or experimentally using monoenergetic neutrons or photons 

separately. For organic scintillators, the MCNP code has been used to calculate neutron 

and photon response functions, as has the GEANT code among others
vii,xii

. A first order 

Fredholm integral equation of the first kind can be evaluated: 

                       Equation 5 

where Ci = count rate for the i
th

 pulse height bin (cps) 

           Ri(E) = response function for the i
th

 pulse height bin energy E (counts per unit 

neutron fluence per pulse height bin) 

           𝛷E(E) = energy-dependent neutron flux (n/cm
2
-sec) 
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Equation 5 is approximately discretized to the linear matrix solution 

                           Equation 6 

where = group flux between Eg and Eg+1 which is the total measure of neutron fluence 

between the upper bound of energy Eg+1 and the lower energy bound Eg 

           Ri,g = multigroup form of the i
th

 detector response 

Equation 5 and Equation 6 do not have unique solutions, even in the situation  where the 

same number of groups and bins are used, and depending on the approach to minimize 

the uncertainty, may be over or underdetermined. This is because the continuous function  

 cannot be defined by a finite number of discrete measurements. The number of 

particle fluence groups is on the same order of magnitude to the number of detector 

channels for the NE-213 detector. The use of a multichannel pulse-height distribution 

usually leads to a system of overdetermined systems of equations (number of pulse-

height channels is larger than the number of energy groups considered). In systems that 

yield a few channel responses, e.g. total counts for a small number of detectors, the 

system is underdetermined and requires an iterative solution. There is also an error in the 

unfolded response due to statistical and systematic uncertainty. This instability makes the 

results less reliable, therefore any approach to gathering neutron energy spectra that relies 

on unfolding measured data will always include inherent error
xiii

. 

 

There are a number of computer codes available for solving this system of equations, in 

particular GRV_MC33 and MXD_MC33
xiv

. GRV_MC33 is a least squared fitting 

iterative algorithm based on the SAND-II code
xiv

. MXD_MC33 is based on maximum 

entropy iteration routine and can be traced back to Bayesian theory
xiv

. However, the a 

priori information which separates Bayesian theory from the frequentist methods, or the 

standard methods used for interpretation of probability, is not necessary. More 

information is acquired using the multichannel NE-213 detector instead of a few channel 
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detector since the unfolding since more information is available. Though this inclusion of 

pre-information simplifies the multichannel approach, a large uncertainty matrix is 

needed to account for the error in multichannel unfolding, e.g. a multichannel response 

matrix for 1000 particle energies and 1000 channels i.e. 10
6
 elements has to be described 

by a 10
6
 x 10

6
 = 10

12
 – element uncertainty matrix

xv
. 
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CHAPTER 3 

EXPERIMENTAL APPROACH 

 

Apparatus: Physical Setup, Detector, Shielding, Electronics 

The NE-213 detection system was tested at the Radiological Science and Engineering 

Laboratory (RSEL) facility in the Boggs Building at Georgia Institute of Technology. 

The neutron sources utilized for measuring detector response were a californium -252 

spontaneous neutron source and an americium-beryllium source. Since the measurements 

used highly radioactive sources, they were performed in a highly shielded room in the 

RSEL.  The dose rate ratio for the AmBe at one foot away inside the room was above 200 

mrem/hr and behind the closed door was recorded to be less than 2μ rem/hr.  A shadow 

shield was used to measure the room-returned neutron response, see Fig. 9. This allowed 

the background response to be removed from the total response to obtain the detector 

response to radiation coming directly from the source. The sphere shown in the figure is 

the heavy water moderating sphere with the Cf-252 source inside it.  
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Figure 9. Paraffin shadow shields with steel bases are used to attenuate all radiation from 

the measurement and arrive at the background due to room-returned and air scattered 

neutrons. 

 

A StarTech.com computer rack was used to organize the NIM modules into a single unit 

for the NE-213 detectors, complete with all the necessary equipment to run two detectors 

simultaneously. The example setup shown on the left in Fig. 10 is placed next to another 

StarTech.com rack for comparison. 
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Figure 10. NIM modules for two NE-213 detectors are installed into a single computer 

rack shown on the left-hand side. 

 

The detector used in this neutron gamma discrimination system has light emission times 

that depend on the radiation type that induced the scintillation light. Thus neutrons and 

gammas produce different decay signatures in the NE-213 detector.  A BURLE 8575B 

photomultiplier tube (PMT) was used to collect the light pulses from the NE-213 detector 

and convert them to a charge pulse. The PMT and detector were coupled together with a 

¾” long light pipe with both sides smeared with optical grease for optimal coupling, 

shown in Fig. 11.  
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Figure 11. BURLE 8575B photomultiplier tube and the light pipe shown are installed 

between the NE-213 detector and the ORTEC 265A Photomultiplier Base Assembly. 

 

Procedure: PSD, Calibration, Data Acquisition, Measurements 

Initial measurements were done with a californium source to determine the system 

settings to perform the measurements. Once the detection system was adjusted to 

distinguish between neutrons and gamma rays, measurements began in the RSEL. The 

NE-213 detector was oriented so that the radiation from the source was incident on the 

flat surface of the detector. The expansion chamber seen as the black protrusion in Fig. 9 

was situated to remove the bubble from the active detection chamber during 

measurements. The detector was mounted 46 inches off the ground and 42 inches 

horizontally from the neutron or gamma source. The principle measurements of interest 

in this thesis were an unmoderated americium-beryllium neutron source, an unmoderated 
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californium-252 neutron source, and a heavy-water moderated californium-252 neutron 

source. Detector calibrations were performed using a sodium-22 gamma ray source and a 

background measurements withi no source present. Finally, shadow shields were used in 

the AmBe measurement to remove room-returned and air-scattered radiations from the 

data acquired without the shadow shield in place. 

 

Calibration of the system was based on measurements with a sodium-22 gamma ray 

source. This source has two gamma-ray lines: 0.511 MeV annihilation gamma rays since 

it is a positron emitter and a 1.275 MeV gamma ray. The spectrum acquired with a Na-22 

must be using the Compton edges of these gamma rays since this is the prevalent 

interaction in a low atomic number material. The half height of each peak was chosen to 

be the channel number corresponding to the Compton edge location. The Na-22 

measurement was taken with the discrimination set to obtain the rejection ratio for the 

gamma ray background. This information was used as a means to see how many gammas 

were recorded as neutrons within the neutron decay time window.  

 

The high voltage and amplifier controls were set to low gain runs. Additional high gain 

runs were needed to acquire low energy data. The signal from the NE-213 was routed 

from the twelfth dynode of the PMT through a pre-amplifier and into a delay line 

amplifier operated at low gain settings. The delay line amplifier provided delay-line 

shaping to the pulse before it entered the pulse shape discriminator circuitry. An ORTEC 

PSA/T-SCA was used for pulse shape discrimination. When this instrument is included in 

the system, a neutron-gamma discrimination can be effected such that the input signal 

into the time-to-amplitude converter (TAC) can be used to gate the neutron and gamma 

spectrum separately. A start and stop signal are picked off the TAC, where the start and 

stop signal time difference is related to the risetime or pulse shape. Thus the TAC gives 

the risetime spectra. Shown in the below Fig. 12, the nuclear instruments setup is 
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depicted in a simplified schematic. NIM modules for the NE-213 detectors include the 

ORTEC 460 Delay Line Amplifier, ORTEC 552 Pulse Shape Analyzer/Timing Single 

Channel Analyzer (PSA/T-SCA), ORTEC 567 Time-to-Amplitude Converter/Single 

Channel Analyzer, and ORTEC 426 Linear Gate. Not shown in the schematic is the 

ORTEC 427A Delay which enabled the timing of the input signal and the gate signal to 

be properly correlated and a ORTEC ADCAM MCB for multichannel binning of the 

pulse-height spectra. Additionally, the PMT signal was input into an ORTEC 113 

Preamplifier. An additional ORTEC 572 amplifier was used to separately amplify the 

energy signal from the PMT to avoid running the signal through the Delay Line 

Amplifier, however this approach was optional.  

 

The PSA/T-SCA utilized trailing-edge constant-fraction timing to begin the gating 

process for the PSD circuit. By creating a start and stop signal of the input pulse at ten 

percent and ninety percent timing fractions of the risetime, the time information related to 

the light emission is acquired. The PSA/T-SCA provides start and stop signals, both 

terminated with 100 Ω resistors, are input to the TAC/SCA to measure the time interval 

between the input pulses. The TAC/SCA output pulse width is equal to the time range 

from the occurrence of the initial start signal to the end of the stop signal. The TAC 

output is a voltage proportional to the risetime of the pulse and is used to set the window 

for neutron events.  

 

By analyzing the TAC output, the lower level discriminator SCA can be adjusted for the 

precise placement necessary to gate the signal so that only neutron related pulses are 

allowed to be tallied on the computer. The rise time spectra was input into a  multi-

channel analyzer using a 2 μsec time range from a selectable range between 50 nsec – 2 

msec on the TAC/SCA. Once the TAC discriminator is set, the Linear Gate is included in 

the pulse discrimination system to reject those pulses with timing characteristics 
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signifying a gamma pulse. The gated output from the Linear Gate and the original signal 

from the delay line amplifier were binned in a multi-channel analyzer. A large impedance 

in the coaxial cable used to transmit the signal helps retain the signal strength, especially 

with long lengths of cable, thus 93 Ω resistance coaxial cable was used. 

 

 

Figure 12. A simple schematic of the data acquisition system involved in the scintillator 

detector measurements.  

 

The neutron spectra measurements which were performed for this work each were taken 

over a time period between several hours and several days to minimize counting error. 

After the counts in the Compton edge or proton recoil  region of the measured spectra 

reach beyond ten thousand, this error becomes negligible. The increased time for the 

measurements mitigated the effect of any induced error from drift, resulting in lower 

pulse height resolution.  
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CHAPTER 4 

RESULTS 

  

Response Function Comparison 

Initially measurements were analyzed using the response functions provided with the 

UMG software. The unfolded output spectrum was limited to the energy ranges of the 

response functions which stopped at 3 MeV thereby missing a large portion of the 

neutron source spectrum. This difficulty was compounded by the application of detector 

specific response functions to a unique detector. Monoenergetic neutron detection 

experiments at Physikalisch-Technische Bundesanstalt (PTB) for a specific NE-213 

detector were used to generate the response functions in the UMG software package. The 

task of experimentally determining response functions for the available detector was 

outside the scope of this thesis. In the author’s opinion,  the application of these response 

functions to any other NE-213 detector would reduce the accuracy of the results. Each 

NE-213 detector must be coupled with its own unique set of response functions for 

guaranteeing accurate unfolding results or verify the response functions applied to a new 

detector with a known neutron source.  

 

Generating response functions was accomplished using the MCNP – PoliMi software. 

The PoliMi code correlates neutron interaction and photon production so that at each 

collision relevant information is recorded for further analysis. An associated post-

processing code accepts the recorded collision data and applies light output functions to 

each individual interaction, processing the raw collision data to an output of a pulse 

height response in matrix form. To accomplish this, several steps were taken: 
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1. MCNP-PoliMi input files are created modeling the NE-213 detector used for 

thesis measurements. Mono-energetic neutrons from 300 different energies were 

modeled between 0.01 MeV and 12 MeV, the flux spectrum energy range expected 

for the Am-Be source
xvii

. 

2. The collision information generated by PoliMi is input to the post-processing 

code for each of the 300 separate energies. The detector type (liquid organic 

scintillator) is input for the corresponding photon light conversions along with 

associated number of particles run (in this case nps set to 1 so output is not 

normalized to the number of particles run). 

3. Data output from the post-processing code is transferred to Microsoft Excel and 

organized into a single response function file for use in UMG.  

 

Examples of each file can be seen in Appendix A. Batch files were utilized to run the 300 

PoliMi input energy files and the subsequent post-processing files. Scripts written in 

Microsoft Visual Basic for Applications (VBA) organized all data outputs and arranged 

all relevant data into formats consistent with the UMG unfolding code. Microsoft Excel 

was used to create single MCNP-PoliMi input and post-processing code control files 

while imbedded Macros iterated on the single files to update them for unique energies 

from the range of MeV analyzed.  

 

A comparison of the MCNP-PoliMi and UMG response functions became possible after 

an older set of UMG responses to higher energies above 3 MeV was found. Therefore a 

comparison of the generated MCNP – PoliMi response functions and those included in 

the UMG unfolding package was possible. In Fig. 13 – 16 ,some of the response curves 

for the UMG and MCNP – PoliMi are shown.  
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Figure 13. A sampling of response curves taken from the UMG software unfolding 

package.  
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Figure 14. A sampling of response curves taken from the UMG software unfolding 

package.  



 36 

 

Figure 15. A sampling of response curves extracted from the MCNP – PoliMi code and 

the associated MPPost post processing package.  
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Figure 16. A sampling of response curves extracted from the MCNP – PoliMi code and 

the associated MPPost post processing package.  

 

The UMG response functions appear to have been smoothed which is a common 

approach. The UMG unfolding code was implemented to deconvolute the measured 

spectra into neutron energy spectra using the higher energy UMG responses. An input 

control file was used to input necessary information into UMG; an example is shown 

below.  
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 5-10-2012_Cf-252&Bkgd_2inbubble_1000.phs        file with data 

 RespFunc.rsp                                                             file with response functions (RF) 

 0.081,10.5258                                                             lo, hi MC E bin edges 

 0.000, 12.0                                                                  lo, hi RF E bin edges 

 1                                                                                  chi-square factor 

 1000000                                                                      Max Num of iter. in L-BFGS-B 

 3,1                                                                                3 = use RF bin structure, 1 = dF/dE 

  

The expectation value <χ
2
> of χ

2
 should equal to the number of degrees of freedom 

involved, which in this case is equal to the number of energy bins in the measurement set. 

This is further specified to be the final chi-squared per degree of freedom, therefore this 

parameter was set equal to one.  

 

The responses from the MCNP – PoliMi code are reasonable but not very accurate 

compared to the response functions of UMG where unfolding neutron energy spectra at 

the proton edge result in energies differing on average by over 70%.  One reason for this 

could be the application of the post processing code algorithm which uses a quadratic fit 

to expand the light function for radiation energy deposition.  

 

Lhydrogen = 0.0350En
2
 + 0.1410En                                          Equation  7 

Lcarbon    = 0.02En                                                            Equation  8 

 

Equations 7 – 8 show the light function fits as a function of neutron energy deposition on 

hydrogen (MeV) where L is the measure light output (MeVee). The neutron interactions 

with carbon are assumed to generate a small light output on the order of two percent of 

the incident energy
xvii

. This agrees with the alpha particle reaction products for high 
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ionization density but not as true when neutron energy rises above 8 MeV, the beginning 

of the regime where alpha particle light output begins to take a larger role in overall 

scintillation light output
xviii

. Additionally, this could be due to the uniqueness of the 

detector response functions. As stated earlier it was outside the scope of this project to 

experimentally obtain the response functions for the specific NE-213 detector used in this 

work.  

Tabulated and Graphical Unfolding Results 

The calibration run with 
22

Na source pulse height spectrum was background corrected 

and analyzed, shown in Fig. 17. Depicted in Fig. 18, the half-height of the corresponding 

energy due to the Compton edge was assigned to the 0.511 and 1.275 MeV of each peak. 

A straight line fit was applied to the extrapolated data to form the calibrated energy 

spectra for the associated gain run of the detector which assigned a pulse height energy to 

each channel number in the measured data and this is shown in Fig. 19. A 
60

Co source 

measurement was used to assess the uncertainty in the location of  its Compton edge. A 

change of less than 0.001 σ was found for the fit when including the calibration data from 

the 
60

Co run.  

 

Figure 17. The Na-22 spectrum is shown along with the background measurement.  
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Figure 18. The Na-22 spectrum peaks are highlighted since the acquired spectrum must 

be analyzed for calibration. Taking the half height of each peak yields the channel 

number corresponding to the peak energy.  

 

 

Figure 19. The Na-22 spectrum calibration is shown. 
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Gamma Rejection Ratio  

By separating the gated neutron measurement counts for the AmBe source and the gated 

neutron measurement counts for the 
22

Na source and comparing the results the gamma 

rejection ratio was found to be 1.6%. Thus the counts bledding into the neutron window 

due to incident gamma radiation average to 1.6% of the total number of counts when 

using the timing characteristics to allow only gated neutron pulses. This ratio drops off 

drastically as the intensity of the tail end of the light pulse is increased and discrimination 

becomes more defined.  At energies greater than 500 keV the false positive counts due to 

gamma radiation become negligible. This was derived be recording the number of counts 

with the neutron gate open and closed for a measurement of the gamma source.  

Uncertainty Modeling  

After the calibration is completed, the measurement data were normalized and 

background corrected. The error associated with each measurement bin was assumed to 

increase as the energy increased so the epistemic error was modeled to trend toward 

exponentially increasing as the measured energy magnitude of the channel increased. 

However, the counting uncertainty was also taken into account. As the number of counts 

decreases the uncertainty associated with the value increase. This can be modeled to trend 

as a power law decreasing uncertainty as counts increase. This approach is more complex 

than taking the square root of the measurement value to predict the standard deviation. 

Thus the uncertainty involved with each successive measurement value was evaluated 

with the following equation. 

                                                                            Equation 9 

Using the above approximation, xi is the counts for energy bin number i and A is a 

constant value for the minimized uncertainty set at 6.41315E-05.  
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Unfolded Spectra  

A measurement of two reference neutron fields was performed with the detection system, 

unmoderated Cf-252 and heavy-water moderated Cf-252. Once the unfolded solutions 

matched the expected output, the AmBe source was measured and unfolded. The 

experimental results for the raw AmBe measurement data can be seen in Fig. 20. To 

discriminate between the neutron and gamma signals, the Time-to-Amplitude converter 

output was analyzed and is depicted in Fig. 21. This shows a small amount of overlap 

between the larger gamma peak and the smaller neutron peak yielding inherent error from 

the overlap. This error was taken into account in the gamma rejection ratio analysis. After 

acquiring the measurement data for the AmBe spectrum at low gain settings a similar 

measurement was run at high gain settings. This change allowed for the low energy peaks 

of the AmBe spectrum to be unfolded. The high and low gain measurement data can be 

seen in Fig. 22 and 23.  

 

Figure 20. Raw measurement data recorded from the organic scintillator irradiated with 

the AmBe source. 
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Figure 21. The Time-to-Amplitude output shows the discrimination capability between 

neutrons and gammas from the organic scintillator irradiated with the AmBe source. 
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Figure 22. Raw measurement data recorded with neutron gating and low gain settings 

from the organic scintillator irradiated with the AmBe source. 

 

 

 

Figure 23. Raw measurement data recorded with neutron gating and high gain settings 

from the organic scintillator irradiated with the AmBe source. 
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The AmBe neutron spectral response was unfolded using the MAXED_MC33 computer 

code and was found to be in good agreement with published AmBe spectra data
xix

. The 

measured data were obtained from high and low gain measurements to include all low 

energy and high energy counts detectable. The low gain measurement results were 

unfolded to obtain neutron energy spectra above 2 MeV. This approach resolved four 

distinct peaks above this energy, however the unfolded results were terminated for 

energies below this energy. Thus high gain measurements were included. The high gain 

measurement results were unfolded to improve the accuracy of the results below 2 MeV. 

This approach resolved two distinct peaks below this energy. 

 

Additionally, to confirm the shape of the unfolded spectra a flat starting spectra was used. 

As for the two reference neutron fields, the pulse heights recorded were generated by 

incident neutrons by only allowing pulses with the timing characteristics of proton recoil 

to be tallied. Figure 24 – 35 shows the unfolded AmBe spectrum together with the 

incident neutron spectrum, a default spectrum, and the measured spectrum. These graphs 

were unfolded using the UMG response functions for error reduction. Figure 24 shows a 

combination of the high and low gain unfolded results. A comparison of the combined 

unfolded results with previously published data on unfolded PuBe and AmBe neutron 

spectrum is shown in Figures 27, 29, and 35. The results from this study are seen to 

accurately reproduce the AmBe spectrum. The PuBe neutron spectrum is included since 

the beryllium neutron energy spectrum will not differ by much when changing the alpha 

source.  
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Figure 24. A combination of the unfolded spectral responses for the high and low gain 

settings on logarithmic scale showing the resolved peaks below 2 and above 8 MeV. 
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Figure 25. The ISO 8529 Standard of the AmBe neutron spectrum. 
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Figure 26. A comparison of the unfolded spectral response and the first iteration neutron 

spectrum of a 5-Curie PuBe source using FORIST.
xx
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Figure 27. A comparison of the unfolded spectral response and the first iteration neutron 

spectrum of an AmBe source using MCNP-PoliMi.
xxi
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Figure 28. A comparison of the measured spectral response and the best approximation 

spectrum on logarithmic scale estimated with the response functions for the low gain 

measurement of the AmBe source. 
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Figure 29. A comparison of the unfolded spectral response and the default spectrum for 

the low gain measurement of the AmBe source. 
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Figure 30. A comparison of the unfolded spectral response and the default spectrum on 

logarithmic scale for the low gain measurement of the AmBe source. 
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Figure 31. A comparison of the measured spectral response and the best approximation 

spectrum estimated with the response functions for the high gain measurement of the 

AmBe source.  
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Figure 32. A comparison of the measured spectral response and the best approximation 

spectrum estimated with the response functions on logarithmic scale for the high gain 

measurement of the AmBe source.  
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Figure 33. A comparison of the unfolded spectral response and the default spectrum for 

the high gain measurement of the AmBe source. 
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Figure 34. A comparison of the unfolded spectral response and the default spectrum on 

logarithmic scale for the high gain measurement of the AmBe source. 
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Figure 35. A comparison of the measured spectral response and the best approximation 

spectrum estimated with the response functions for the low gain measurement of the 

AmBe source.  

 

These graphs were unfolded using the UMG package code MAXED_MC33.  To confirm 

the shape of the unfolded spectra the results were compared with more recent unfolded 

data
xxi

. Fig. 24 shows essentially identical results for the neutron spectra as published 

results. Additionally, Fig. 33-34 extrapolate on an unanalyzed energy region below 2 

MeV and shows two distinct energy peaks at low energies. The data matches with well 

with a separate publication for americium beryllium unfolding results
xvi

.  
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CHAPTER 5 

CONCLUSIONS 

 

In this work, an organic scintillator detection system were assembled which accurately 

performs neutron-gamma separation. The system allows storage of the neutron-induced 

and gamma-induced recoil spectra separately.  An unfolding code was implemented to 

deconvolute neutron induced pulse-height spectra into a neutron flux spectrum. In order 

to verify the performance of the system, measurements of two reference neutron fields 

were performed with the system, unmoderated Cf-252 and heavy-water moderated Cf-

252.  After the operation of the detection system was verified, measurements were made 

of an AmBe neutron source. The goal of this thesis work was to investigate system design 

and create a functioning NE-213 detection system at Georgia Tech. Careful analysis on 

the response functions used to unfold measured data were accomplished with a 

comparison of the existing response functions and a new set of response functions 

derived from the MCNP – PoliMi code. By creating an integrated detection system and 

by formatting this thesis as a NE-213 detection system procedure, a reduction in work 

necessary to successfully unfold measured neutron data has been accomplished. The 

work focused on creating NE-213 detector system that can be used in a mixed radiation 

field environment and the associated tasks and steps required to fully deconvolute the 

data. The results are encouraging and will be used in a variety of neutron spectroscopy 

measurements.  
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CHAPTER 6 

FUTURE WORK 

 

The gathering and unfolding of recorded neutron data can be made more efficient with 

the addition of recently purchased equipment. As part of the continuing work under this 

project, the mesytec MPD-4 four channel pulse shape discriminator module for NIM bin 

will be combined with a MADC-32 Multichannel Peak Sensing ADC controlled by a 

VM-USB VME controller with USB interface mounted in VME crate. The new 

equipment will increase data throughput as well as increasing conversion, reducing dead 

time and improving data collection.   
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APPENDIX A 

DESCRIPTION OF DEFAULT SUBHEADING SCHEME 

 

Table 1. Range of Protons in Organic Scintillator
xxii 

Ion Projected 

Energy Range   

500.00 keV 7.58 um

1.00 MeV 22.08 um

2.00 MeV 67.93 um

3.00 MeV 35.13 um

4.00 MeV 22.39 um

5.00 MeV 28.68 um

6.00 MeV 53.38 um

7.00 MeV 95.95 um

8.00 MeV 55.78 um

9.00 MeV 32.68 um

10.00 MeV 1.13 mm  
 

Example Input File for MCNP – PoliMi  

One liquid scintillator, monoenergetic neutron source               

c cell cards               

  1 1 -0.874 20 -21 -30 31 -40 41    imp:n,p,e=1  $ detector               

  2 0 (#1) -100 101 -102 103               

        -104 105                     imp:n,p,e=1  $ void                

  3 0 100:-101:102:-103:               

        104:-105                     imp:n,p,e=0  $ everything else               

               

c  2.00"=5.08 cm               

c detector left of source 100 cm               

20  px -105.08                $ left side of detector               

21  px -100                  $ right side of detector towards source               
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c detector depth               

30  py   2.54                $ front of detector               

31  py  -2.54                $ rear of detector               

c               

c detector heights               

40  pz   2.54                $ top of detector               

41  pz  -2.54                $ bottom of detector               

c               

c rest of universe                

100  pz   5.00               $ top of box               

101  pz  -5.00               $ bottom of box               

102  py   5.00               $ rear of box               

103  py  -5.00               $ front of box               

104  px   5.00               $ right side of box               

105  px  -110                $ left side of box               

               

mode n p e                   $ neutron electron photon mode                 

c Materials               

m1                      $ organic scintillator (0.874 g/cc)               

     6000.60c  1        $ C               

     1001.60c  1.212    $ H               

SDEF POS=0 0 0                

     RAD=D1               

     ERG=0.04               

SI1 0   1               

SP1 -21 2               

c ! The following two PHYS cards and CUT:P are essential for analog MC               
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PHYS:N J 20.               

PHYS:P 0 1 1               

c The following CUT cards kill neutrons and photons having times                

c exceeding 2000 ns after the originating source event               

CUT:N 200                    

CUT:P 2J 0               

FC8 Pulse Height Distribution by Neutrons in Detector               

F8:N 1               

E8 0 1e-6 1e-3 0.01 1000I 10               

FC6 Energy Deposition by Neutrons in Detector               

F6:N 1               

E6 0 1e-6 1e-3 0.01 1000I 10               

FC4 Spectral Fluence by Neutrons in Detector               

*F4:N 1               

E4 0 1e-6 1e-3 0.01 1199I 12               

FC11 Neutron Current entering the front face of the detector               

F11:N 21               

C11 0 1               

FC21 Photon Current entering the front face of the detector               

F21:P 21               

C21 0 1               

CTME 10               

IPOL 0 0 1 0 2J 1 1               

RPOL 1e-4 1e-4 J 1     $ Recoil energy set to ON by putting forth parameter equal to 1               

FILES 21 DUMN1        
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Example Output File with Collision Information for MCNP-PoliMi  

      2227     1  1  -99  1001          1   3.828774             2.12  -100.06    0.99   -1.67  1.000E+00    0     0    0 1.200E+01 

      5157     1  1  -99  1001          1   4.849263             2.12  -100.23    1.68    1.57  1.000E+00    0     0    0 1.200E+01 

     21948     1  1  -99  6000          1   0.132884             2.17  -103.10    0.03    2.47  1.000E+00    0     0    0 1.200E+01 

     34255     1  1   -1  6000          1   1.268222             2.20  -104.67   -1.74    1.86  1.000E+00    0     0    0 1.200E+01 

     34255     1  1  -99  1001          1   0.912901             2.29  -104.31   -2.47    0.81  1.000E+00    0     0   10 1.096E+00 

     34255     1  1  -99  1001          1   0.174329             2.70  -104.88   -1.49   -1.32  1.000E+00    0     1   10 1.829E-01 

     34255     1  1  -99  1001          1   0.000368             3.08  -104.44   -1.41   -1.52  1.000E+00    0     2   10 8.658E-03 

     34255     1  1  -99  1001          1   0.003953             3.47  -104.03   -1.40   -1.79  1.000E+00    0     3   10 8.270E-03 

     34255     1  1  -99  1001          1   0.003681             4.28  -103.79   -1.03   -2.38  1.000E+00    0     4   10 4.305E-03 

     34255     1  1  -99  1001          1   0.000191             4.47  -103.78   -1.06   -2.43  1.000E+00    0     5   10 6.274E-04 

     34255     1  1  -99  1001          1   0.000425             4.81  -103.72   -1.12   -2.48  1.000E+00    0     6   10 4.435E-04 

     77356     1  1  -99  6000          1   0.179876             2.17  -103.24    0.92    0.51  1.000E+00    0     0    0 1.200E+01 

    144443     1  1   -1  6000          1   2.547141             2.15  -102.67    1.78    0.09  1.000E+00    0     0    0 1.200E+01 

    149337     1  1  -99  1001          1   8.960438             2.16  -103.08   -2.39    2.15  1.000E+00    0     0    0 1.200E+01 

    149337     1  1  -99  1001          1   2.490383             2.24  -104.06   -1.12    1.28  1.000E+00    0     1    0 3.039E+00 

    149337     1  1  -99  1001          1   0.426773             2.42  -103.23   -0.37   -0.21  1.000E+00    0     2    0 5.489E-01 

    149337     1  1  -99  1001          1   0.000405             2.44  -103.12   -0.35   -0.20  1.000E+00    0     3    0 1.221E-01 

    149337     1  1  -99  6000          1   0.003573             2.54  -102.63   -0.27   -0.21  1.000E+00    0     4    0 1.217E-01 

    149337     1  1  -99  1001          1   0.066657             2.57  -102.55   -0.21   -0.26  1.000E+00    0     5    0 1.182E-01 

    149337     1  1  -99  6000          1   0.005401             2.97  -101.59   -0.55   -0.99  1.000E+00    0     6    0 5.148E-02 

    149337     1  1  -99  1001          1   0.029712             3.16  -101.74   -0.97   -1.33  1.000E+00    0     7    0 4.608E-02 

    149337     1  1  -99  6000          1   0.004578             3.16  -101.74   -0.97   -1.34  1.000E+00    0     8    0 1.634E-02 

    149337     1  1  -99  1001          1   0.006446             3.31  -101.74   -1.04   -1.13  1.000E+00    0     9    0 1.174E-02 

    149337     1  1  -99  1001          1   0.004832             6.31  -103.43   -0.31    1.27  1.000E+00    0    10    0 5.317E-03 

    149337     1  1  -99  1001          1   0.000374             9.85  -104.37    0.01    0.87  1.000E+00    0    12    0 4.669E-04 

    152027     1  1  -99  6000          1   3.047587             2.17  -103.75    0.03   -0.48  1.000E+00    0     0    0 1.200E+01 

    152027     1  1   -1  6000          1   0.203730             2.24  -101.65   -1.89   -0.53  1.000E+00    0     1    0 8.952E+00 

    159915     1  1  -99  6000          1   0.024198             2.19  -103.59   -0.78    2.51  1.000E+00    0     0    0 1.200E+01 

    184996     1  1  -99  6000          1   0.370198             2.14  -101.15   -0.68    1.07  1.000E+00    0     0    0 1.200E+01 

    184996     1  1  -99  1001          1   4.554560             2.17  -102.25   -0.54    1.86  1.000E+00    0     1    0 1.163E+01 

    184996     1  1   -1  6000          1   1.110957             2.18  -102.54   -0.54    1.85  1.000E+00    0     2    0 7.075E+00 

    209640     1  1  -99  1001          1   7.800397             2.12  -100.55    2.23   -2.47  1.000E+00    0     0    0 1.200E+01 

    259916     1  1  -99  1001          1   6.034227             2.15  -100.96    1.64    1.79  1.000E+00    0     0    0 1.200E+01 

    263322     1  1  -99  6000          1   0.139837             2.14  -101.27    1.95   -0.39  1.000E+00    0     0    0 1.200E+01 
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    280841     1  1  -99  6000          1   0.022596             2.15  -102.47   -2.23    1.35  1.000E+00    0     0    0 1.200E+01 

    280841     1  1  -99  1001          1  11.231592             2.17  -103.67   -2.44    1.40  1.000E+00    0     1    0 1.198E+01 

    280841     1  1  -99  1001          1   0.644115             2.24  -103.89   -2.12    2.07  1.000E+00    0     2    0 7.455E-01 

    294232     1  1   -1  6000          1   0.098331             2.13  -101.25   -0.37   -2.18  1.000E+00    0     0    0 1.200E+01 

    306614     1  1  -99  1001          1   4.489806             2.22  -104.85   -1.36    1.19  1.000E+00    0     0    0 1.200E+01 

    329258     1  1    0  2004          1   4.360347             2.12  -100.22    1.84   -0.44  1.000E+00    0     0    0 1.200E+01 

    329258     1  1    0  4000          1   1.937653             2.12  -100.22    1.84   -0.44  1.000E+00    0     0    0 1.200E+01 

    336719     1  1  -99  1001          1   5.049375             2.17  -103.18    1.14    1.28  1.000E+00    0     0    0 1.200E+01 

    340571     1  1  -99  1001          1   6.191754             2.17  -102.95    0.63    0.44  1.000E+00    0     0    0 1.200E+01 

    340571     1  1  -99  1001          1   0.885675             2.21  -103.84   -0.28    0.33  1.000E+00    0     1    0 5.808E+00 

    353475     1  1  -99  1001          1  10.222888             2.20  -104.30   -0.98   -2.13  1.000E+00    0     0    0 1.200E+01 

    360243     1  1   -1  6000          1   1.767769             2.12  -101.06   -1.08   -1.08  1.000E+00    0     0    0 1.200E+01 

    371248     1  1  -99  1001          1  10.402931             2.13  -100.92    1.67    0.64  1.000E+00    0     0    0 1.200E+01 

    371248     1  1  -99  1001          1   0.843577             2.14  -100.96    1.70    0.55  1.000E+00    0     1    0 1.596E+00 

    385497     1  1  -99  6000          1   0.200951             2.16  -102.62    1.72    0.71  1.000E+00    0     0    0 1.200E+01 

    396664     1  1  -99  6000          1   0.296783             2.13  -101.61   -1.56   -1.62  1.000E+00    0     0    0 1.200E+01 

    405496     1  1  -99  6000          1   0.057397             2.15  -101.20    1.11    1.06  1.000E+00    0     0    0 1.200E+01 

    450516     1  1   -1  6000          1   1.800381             2.14  -102.32   -1.69   -0.01  1.000E+00    0     0    0 1.200E+01 

    451253     1  1  -99  1001          1   3.267311             2.20  -104.88    1.64    2.37  1.000E+00    0     0    0 1.200E+01 

    472679     1  1  -99  1001          1   4.063381             2.15  -102.30   -1.14    0.67  1.000E+00    0     0    0 1.200E+01 

    472679     1  1    0  2004          1   1.546658             2.15  -102.39   -1.14    0.73  1.000E+00    0     1    0 7.936E+00 

    472679     1  1    0  4000          1   0.687305             2.15  -102.39   -1.14    0.73  1.000E+00    0     1    0 7.936E+00 

    483412     1  1  -99  6000          1   0.641762             2.20  -104.36    0.14    1.50  1.000E+00    0     0    0 1.200E+01 

    502376     1  1  -99  1001          1  11.352879             2.17  -102.87   -1.76    0.64  1.000E+00    0     0    0 1.200E+01 

    503238     1  1  -99  6000          1   0.279497             2.10  -100.32    1.31   -1.10  1.000E+00    0     0    0 1.200E+01 

… 

… 

… 

 117762063     1  1  -99  1001          1   2.651688             2.19  -103.06    0.64   -2.13  1.000E+00    0     0    0 1.200E+01 

 117769759     1  1  -99  1001          1   3.704378             2.17  -102.78   -1.51   -1.85  1.000E+00    0     0    0 1.200E+01 

 117770389     1  1  -99  1001          1   7.681810             2.17  -102.75   -1.65   -1.26  1.000E+00    0     0    0 1.200E+01 

 117778559     1  1   -1  6000          1   1.040047             2.16  -102.60    2.39    1.08  1.000E+00    0     0    0 1.200E+01 

 117778559     1  1  -99  1001          1   0.759160             2.26  -102.84    0.80    1.42  1.000E+00    0     0   10 

1.324E+00 

 117778559     1  1  -99  1001          1   0.155143             2.33  -103.30    0.50    1.79  1.000E+00    0     1   10 5.650E-01 

 117778559     1  1  -99  1001          1   0.409576             2.35  -103.37    0.33    1.88  1.000E+00    0     2   10 4.098E-01 
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 117792558     1  1    1  6000          1   1.049898             2.18  -103.97   -0.72   -0.37  1.000E+00    0     0    0 1.200E+01 

 117799558     1  1  -99  6000          1   0.061526             2.16  -101.96    1.41   -2.20  1.000E+00    0     0    0 1.200E+01 

 117803261     1  1  -99  1001          1   5.434588             2.12  -100.75   -1.76   -0.22  1.000E+00    0     0    0 1.200E+01 

 117815366     1  1  -99  6000          1   1.725895             2.14  -101.44   -0.37   -2.41  1.000E+00    0     0    0 1.200E+01 

 117823181     1  1  -99  1001          1   7.721166             2.18  -103.20    0.56   -1.73  1.000E+00    0     0    0 1.200E+01 

 117823553     1  1  -99  1001          1   0.418699             2.20  -104.02   -2.49    1.89  1.000E+00    0     0    0 1.200E+01 

 117823553     1  1   -1  6000          1   0.084586             2.21  -104.11   -2.49    1.91  1.000E+00    0     1    0 1.158E+01 

  

Example Input File for MCNP – PoliMi Post Processing Code 

a# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

#               

#  Input file for MPPost               

#               

#  version: 2.1.0               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

# GENERAL INFORMATION               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

title           NTAL               

username        GSM               

               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

# I/O FILE INFORMATION               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

polimi_det_in   dumn300  # MCNP-PoliMi detector filename          

output_file             ntal300      # Desired output name               

label_output            yes         # (yes/no) Place labels at the top of the output files               

seperate_det_response   no          # (yes/no) Print individual distributions for each detector               

list_of_pulses          no          # (yes/no) Print a list mode file of all collected pulses               

event_inventory_on      no          # (yes/no) Print out a table summarizing all events in the file               

collision_history       no          # (yes/no) Print summary of how collisions make pulses in the detector               
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overwrite_files         yes         # (yes/no) Allow the code to overwrite old files               

comma_delimited         no         # (yes/no) Output files delimited by a comma               

               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

# MEMORY               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

division_size   1000    # MB, size of segments to divide the file               

cushion         200     # number of lines added to the arrays to prevent overstepping arrays               

               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

# DETECTOR INFORMATION               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

time_dependent   no    # (yes/no) Perform analysis by time instead of by history        

NPS      1    # NPS used in the MCNP run     

detector_type           1               # Type of Detector - list for each cell number               

                                        #   0 = Non Active Volume (i.e. PMT)               

                                        #   1 = Liquid Organic Scintillator               

                                        #   2 = He3 (Cannot be run with other types)               

                                        #   3 = Plastic Organic Scintillator               

                                        #   4 = NaI               

                                        #   5 = CaF2               

                                        #   6 = LaBr3                

threshold       0.001            # MeVee, Threshold for event detection - list for each cell number            

upper_threshold   12               # MeVee, the max acceptable light for event detection - list for each cell number            

detector_cell_numbers   1       # Cell numbers of the detectors             

                                        #   NOTE: To group cells add ( ) around the group.                

                                        #   There must be a space before and after each (               

               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

# DETECTOR INFORMATION - Pulse Height                

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

pulse_height_on     yes      # (yes/no) Print pulse height distributions              

sum_then_light      no       # (yes/no) Convert the sum of all contributing particles energy to light              

cross_talk_sub_on   no   # (yes/no) Eliminate particles with cross talk            

               

# Pulse Generation Time - ns, Light collection time for a pulse               
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organic_liq_pgt     10   # Pulse generation time for an organic liquid scintillator            

organic_pl_pgt      10   # Pulse generation time for an organic plastic scintillator            

nai_pgt             10        # Pulse generation time for a NaI detector              

caf2_pgt            10   # Pulse generation time for a CaF2 detector            

labr3_pgt           10   # Pulse generation time for a LaBr3 detector            

               

# Deadtime - ns, dead time of the detector between pulses               

organic_liq_dt       0   # Dead time for an organic liquid scintillator            

organic_pl_dt        0   # Dead time for an organic plastic detector            

nai_dt               0       # Dead time for a NaI detector             

caf2_dt              0   # Dead time for a CaF2 detector            

labr3_dt             0   # Dead time for a LaBr3 detector            

               

histogram_start      0      # MeVee, Min value for the pulse height distribution             

histogram_stop       12      # MeVee, Max value for the pulse height distribution             

bin_step             0.001     # MeVee, Bin step - top side of the bin              

               

               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

# ORGANIC SCINTILLATOR               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

calibration_regions  1                                  # Number of independently fit neutron light regions               

region_type          1                                  # Specify which form for the coefficients, if multiple regions list selections               

                                                        # Type    Form       How to enter values on the neutron_calibraion line               

                                                        #   1 = Ax^2+Bx+C  -> E1 E2 A B C               

                                                        #   2 = Ax^2/(x+B) -> E1 E2 B A               

                                                        #   3 = A(Bx-C(1-exp(Dx^E)))  -> E1 E2 A B C D E               

                                                        #   Where E1 and E2 are the lower and upper energy bounds respectively in MeVee               

neutron_calibration  0 50     0.03495 0.1424  -0.036    # Neutron Calibration - see above for entry instructions               

#                 0.8 1   0 0 0.03495 0.1424  -0.036 &  #   For multiple regions add an '&' to the end of the line and continue 

next region                

#                 1   50  0 0 0.03495 0.1424  -0.036    #   on the next line               

photon_calibration      1.000  0.000                    # A,B: Parameters for photon light conversion - Ax+B               

carbon_light_constant   0.02                            # Constant value for carbon light conversion               

deuterium_calibration   0 0 0.0131 0.2009 -0.0331       # A,B,C,D,E: Parameters for deuterium light conversion - 

Ax^4+Bx^3+Cx^2+Dx+E               
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# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

# Light Output Resolution               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

light_resolution_on   no    # (yes/no) Turns on/off the a Gaussian Light Broadening              

                            #    Coefficients A,B,C for Gaussian Broadening: A*LO+B*Sqrt(LO)+C              

organic_liq_p_lgt   # Resolution for photons in liquid scintillator            

organic_liq_n_lgt     # Resolution for neutrons in liquid scintillator             

               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

# Time Resolution               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

tme_resolution_on   no     # (yes/no) Turns on/off time broadening             

organic_liq_tme  1  # FWHM for organic liquid           

               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

# TIME-OF-FLIGHT, CORRELATION, and AUTOCORRELATION INFORMATION               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

tof_on     yes     # (yes/no) Turn on/off TOF distributions (cannot have a start detector)          

cross_correlation_on    no      # (yes/no) Turn on/off cross correlation function               

auto_correlation_on     no      # (yes/no) Turn on/off auto correlation function                

start_detector          1       # Cell number of the start detector (leave blank for TOF)               

time_start              -100    # ns, time for the correlation plot to start              

time_stop               100  # ns, time for the correlation plot to stop             

time_increment          1       # ns, time increment between the bins - top side of the bin               

cc_window_incr          1000    # ns, time window for correlation events for time dependent analysis               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

# Pulse Height Correlation               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

pulse_correlation_on   no       # (yes/no) Turn on/off pulse height correlation analysis               

pc_min                 0        # MeVee, Minimum value for pulse height binning               

pc_max                 5        # MeVee, Maximum value for pulse height binning               

pc_incr                0.05     # MeVee, increment for pulse height binning               

stop_pulse_only        yes      # (yes/no) Ignore start detector pulse height               

               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               
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# CAPTURE GATED DETECTORS               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

capture_gate_on     no   # (yes/no) Capture gated detector response on/off            

cap_low             0           # ns, start time for binning the time to capture histogram               

cap_high            2000        # ns, stop time for binning the time to capture histogram               

cap_incr            10          # ns, bin size the time to capture histogram               

               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

# He3 MODULE               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

he3_multiplicity  no      # (yes/no) He3 module on/off             

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

# Select Capture Event Type               

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               

output_sort_file    no   # (yes/no) Print out a file with all sorted events            

  

Example Output File for MCNP – PoliMi Post Processing Code 

Bin Values,              Total,                 Neutrons,              Photons 

0.0010                    0.0                    0.0                    0.0 

0.0020                  337.0                  337.0                    0.0 

0.0030                  301.0                  301.0                    0.0 

0.0040                  257.0                  257.0                    0.0 

0.0050                  235.0                  235.0                    0.0 

0.0060                  180.0                  180.0                    0.0 

0.0070                  149.0                  149.0                    0.0 

0.0080                  144.0                  144.0                    0.0 

0.0090                  121.0                  121.0                    0.0 

0.0100                  129.0                  129.0                    0.0 

0.0110                   90.0                   90.0                    0.0 

0.0120                   78.0                   78.0                    0.0 

0.0130                   83.0                   83.0                    0.0 

0.0140                   66.0                   66.0                    0.0 

0.0150                   61.0                   61.0                    0.0 

0.0160                   50.0                   50.0                    0.0 
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0.0170                   59.0                   59.0                    0.0 

0.0180                   56.0                   56.0                    0.0 

0.0190                   51.0                   51.0                    0.0 

0.0200                   49.0                   49.0                    0.0 

0.0210                   55.0                   55.0                    0.0 

0.0220                   39.0                   39.0                    0.0 

0.0230                   38.0                   38.0                    0.0 

0.0240                   36.0                   36.0                    0.0 

0.0250                   37.0                   37.0                    0.0 

0.0260                   38.0                   38.0                    0.0 

0.0270                   39.0                   39.0                    0.0 

0.0280                   32.0                   32.0                    0.0 

0.0290                   34.0                   34.0                    0.0 

0.0300                   22.0                   22.0                    0.0 

0.0310                   24.0                   24.0                    0.0 

0.0320                   24.0                   24.0                    0.0 

0.0330                   25.0                   25.0                    0.0 

0.0340                   22.0                   22.0                    0.0 

0.0350                   32.0                   32.0                    0.0 

0.0360                   26.0                   26.0                    0.0 

0.0370                   28.0                   28.0                    0.0 

0.0380                   22.0                   22.0                    0.0 

0.0390                   19.0                   19.0                    0.0 

0.0400                   34.0                   34.0                    0.0 

0.0410                   40.0                   40.0                    0.0 

0.0420                   24.0                   24.0                    0.0 

0.0430                   35.0                   35.0                    0.0 

0.0440                   35.0                   35.0                    0.0 

0.0450                   50.0                   50.0                    0.0 

0.0460                   53.0                   53.0                    0.0 

0.0470                   38.0                   38.0                    0.0 

0.0480                   46.0                   46.0                    0.0 

0.0490                   53.0                   53.0                    0.0 

0.0500                   53.0                   53.0                    0.0 

… 

… 



 71 

… 

11.9500                    0.0                    0.0                    0.0 

11.9510                    0.0                    0.0                    0.0 

11.9520                    0.0                    0.0                    0.0 

11.9530                    0.0                    0.0                    0.0 

11.9540                    0.0                    0.0                    0.0 

11.9550                    0.0                    0.0                    0.0 

11.9560                    0.0                    0.0                    0.0 

11.9570                    0.0                    0.0                    0.0 

11.9580                    0.0                    0.0                    0.0 

11.9590                    0.0                    0.0                    0.0 

11.9600                    0.0                    0.0                    0.0 

11.9610                    0.0                    0.0                    0.0 

11.9620                    0.0                    0.0                    0.0 

11.9630                    0.0                    0.0                    0.0 

11.9640                    0.0                    0.0                    0.0 

11.9650                    0.0                    0.0                    0.0 

11.9660                    0.0                    0.0                    0.0 

11.9670                    0.0                    0.0                    0.0 

11.9680                    0.0                    0.0                    0.0 

11.9690                    0.0                    0.0                    0.0 

11.9700                    0.0                    0.0                    0.0 

11.9710                    0.0                    0.0                    0.0 

11.9720                    0.0                    0.0                    0.0 

11.9730                    0.0                    0.0                    0.0 

11.9740                    0.0                    0.0                    0.0 

11.9750                    0.0                    0.0                    0.0 

11.9760                    0.0                    0.0                    0.0 

11.9770                    0.0                    0.0                    0.0 

11.9780                    0.0                    0.0                    0.0 

11.9790                    0.0                    0.0                    0.0 

11.9800                    0.0                    0.0                    0.0 

11.9810                    0.0                    0.0                    0.0 

11.9820                    0.0                    0.0                    0.0 

11.9830                    0.0                    0.0                    0.0 

11.9840                    0.0                    0.0                    0.0 
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11.9850                    0.0                    0.0                    0.0 

11.9860                    0.0                    0.0                    0.0 

11.9870                    0.0                    0.0                    0.0 

11.9880                    0.0                    0.0                    0.0 

11.9890                    0.0                    0.0                    0.0 

11.9900                    0.0                    0.0                    0.0 

11.9910                    0.0                    0.0                    0.0 

11.9920                    0.0                    0.0                    0.0 

11.9930                    0.0                    0.0                    0.0 

11.9940                    0.0                    0.0                    0.0 

11.9950                    0.0                    0.0                    0.0 

11.9960                    0.0                    0.0                    0.0 

11.9970                    0.0                    0.0                    0.0 

11.9980                    0.0                    0.0                    0.0 

11.9990                    0.0                    0.0                    0.0 

12.0000                    0.0                    0.0                    0.0 
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