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ABSTRACT

    Geometric influence on electrical and magneto transport properties has been 

investigated in three types of systems: (i) Graphene, a single layer of carbon atoms; (ii) 

Two-dimensional electron gas (2DEG) in AlInN/GaN heterostructure; and (iii) 3D carbon 

nanostructures, a special type of three-dimensional materials with spherical voids. Due to 

unique structures and energy dispersion relations, these three systems demonstrate 

distinct physical properties. 

    AlInN is the newest and amongst the widest band gap semiconductors. The 2DEG in 

AlInN/GaN heterostucture displays long transport lifetime along with conventional 

behaviors, including Shubnikov-de Haas (SdH) oscillation and weak localization. From 

SdH oscillation, the effective mass of electron is obtained as 0.2327me. We report the 

first observation of weak localization in this heterostructure. Electron-electron scattering 

is the principal phase breaking mechanism in this system. 

    In contrast, graphene has an unconventional linear energy dispersion relation near the 

Dirac points. We determine the effective mass of electron is 0.087me in CVD graphene, 

much smaller than that in 2DEG. In addition, due to pseudo spin and nonzero Berry 

phase, weak localization in graphene is more complex. Furthermore, the introduction of 

an antidot lattice has great influence on transport in graphene. We demonstrate that the 

carrier density and effective mass can be controlled by such manipulation. By tuning 
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antidot size, a band gap ~ 10 meV is obtained. Geometric control of the band gap is likely 

to promote electronic applications of graphene. 

    As observed in graphene and the 2DEG, the magneto response is typically sensitive to 

the orientation between the applied magnetic field and input current. However, we 

demonstrate that orientation independent response and linear magnetoresistance can be 

achieved in three-dimensional carbon nanostructures with spherical voids. With the 

increasing void size, the linear magnetoresistance is enhanced and a metal to insulator 

transition is observed. The combination of orientation insensitivity and linear 

magnetoresistance is very useful for magnetic field detectors, particularly at high 

magnetic fields.  
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CHAPTER 1 

INTRODUCTION 

 

    With the development of the semiconductor industry, the physical feature size of 

devices keeps decreasing. The width of the gate in transistors has already reached below 

10 nm. In order to continue Moore’s law in semiconductor industry, new materials are 

needed. So far, a variety of alternative materials have been predicted to replace silicon. 

These new materials include graphene [1-3], nitride based compounds [4-6], Weyl 

semimetals [7,8] and topological insulators [9,10]. No matter what the material is, high 

mobility and high carrier density are critical for device performance. In order to improve 

carrier mobility, scattering processes have to be understood and suppressed. Transport 

measurements are effective tools for elucidating scattering mechanisms and they also 

provide information about Fermi energy, effective mass and coherence length.  

When the feature size of a device is decreased to a few nanometers, quantum effects 

become prominent. According to the Uncertainty Principle  

∆𝑥 ∆𝑝 ≥
ℏ

2
                                                       (1.1) 

Here ∆𝑥 and ∆𝑝 is the uncertainty of position and momentum of carriers respectively, 

ℏ = ℎ 2𝜋⁄  is the reduced Planck constant. The position and momentum of a particle 

cannot be simultaneously measured with arbitrarily high precision. When the size is 
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decreased to a few nanometers, the fluctuations in the momentum become very large. 

Hence the wave nature of carrier is prominent. Quantum effects will dominate the 

properties of system. Consequently many traditional techniques to tune the properties of 

materials may fail. For example, chemical doping is widely used to change the carrier 

density and band gap in silicon, but when the size of device is decreased to nanometers, 

chemical doping may not be effective anymore. The lattice constant of silicon crystal is 

5.4 Angstrom. The doping concentration of silicon typically ranges from 10
13 

cm
-3

 to 10
18 

cm
-3

. That means there are approximately 8 × 1021 silicon atoms in 1 cm
3
 crystal. Thus 

10 000 silicon atoms share one dopant atom. This chemical doping works well when the 

size of devices is large. But when the devices are reduced to a few nanometers, which 

have only tens of silicon atoms, how can we dope each device? Some devices may have a 

dopant, whereas some may not if we keep the same doping level. It is hard to realize the 

homogeneous doping in every region down to nanometers. If we increase the doping 

concentration, the chemical elements may introduce extra scatterings. Hence new 

methods to tune the electronic properties become necessary, especially in graphene. As 

we all know, graphene, a single layer of carbon atoms, has many novel properties, such 

as exceptional strength, thermal conductivity and electrical conductivity. But graphene is 

a semimetal with zero band gap [11], which limits its potential application in electronics. 

One effective technique to modify the electrical properties of graphene and to open a 

band gap is the introduction of nanoribbon [12,13] and antidots [14,15]. An antidot lattice 

is a regular array of holes, which is the opposite of dots. We remove the atoms and make 

holes on the materials. 
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In this thesis three materials, graphene with an antidot lattice, the two-dimensional 

electron gas in AlInN/GaN heterostructures and three-dimensional carbon nanostructures 

with voids, have been investigated. The electronic and magneto transport measurements, 

the scattering mechanism, effective mass of carriers, and carrier density and mobility 

were studied. Furthermore, we investigate the geometric influences of artificial structures 

such as antidots in graphene and spherical voids in three-dimensional carbon 

nanostructures. 

1.1 TRANSPORT THEORY 

Figure 1.1 shows the schematic diagram of transport and Hall measurement of carriers 

in a magnetic field. An input current I is applied to the sample in x direction, with the 

magnetic field B perpendicular to the sample in z direction �⃑� = (0, 0, 𝐵). When the 

sample is placed in a magnetic field, the Lorentz force 𝐹 𝐿 = 𝑞𝑣 × �⃑�  acts on the carrier 

with the charge q, so that the carrier moves to the side wall instead of straight motion. We 

can measure the longitudinal voltage Vx and Hall voltage VH. According to the classical 

theory, the drift velocity 𝑣  of carrier follows 

𝑚∗ 𝑑�⃑� 

𝑑𝑡
= −𝑒(�⃑� + 𝑣 × �⃑� ) −

𝑚∗�⃑� 

𝜏
                                 (1.2) 

Here �⃑� = (𝐸𝑥, 𝐸𝑦,0) is the electric field. 𝜏 is the relaxation time, 𝑚∗ is the effective 

mass of the carrier and e is the charge of electron. In the steady state 
𝑑𝑣𝑥

𝑑𝑡
= 0,

𝑑𝑣𝑦

𝑑𝑡
= 0, we 

can solve 𝑣𝑥 and 𝑣𝑦 and the current density 𝒋 . 

𝒋 = 𝜎�⃑�  
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𝜎 = (
𝜎𝑥𝑥 𝜎𝑦𝑥

𝜎𝑥𝑦 𝜎𝑦𝑦
)                                                   (1.3) 

 

Figure 1.1 Transport measurement. The electron executes the cyclotron motion in the 

magnetic field due to Lorentz force, resulting in a Hall voltage. 

    The zero-field conductivity is  

𝜎𝑥𝑥 = 𝑛𝑒𝜇 =
𝑛𝑒2𝜏

𝑚∗                                                       (1.4) 

Here n is the carrier density, 𝜇 is the mobility, e is the charge of electron.  

    The Hall voltage measured perpendicular to current is 

𝑉𝐻 =
𝐼𝑥𝐵

𝑛𝑡𝑒
                                                            (1.5) 

Here Ix is the input current; t is the thickness of sample. From the Hall measurement, the 

carrier density can be obtained. Combined with conductivity, the mobility is also 

available.  

In the previous model, we didn’t consider the energy band of system and neglect 

interactions with ions and other electrons. Figure 1.2 shows the energy structure in one 

dimension of a free electron and the electron in a crystal. For a free electron, the energy is 

a parabolic function of the momentum, E(k) =
(ℏk)2

2m
. The electron can occupy any state, 
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with any energy. But when the electrons are confined in a periodic potential in a crystal, 

the energy structure is modified. We can get the eigenenergies by solving the 

Schrödinger equation. Some energy levels are allowed, named valance band or 

conduction band. However, there is no eigenenergy at a certain value; that means the 

occupancy of electron in this level is forbidden. At the boundary of the first Brillouin 

zone, a gap is clearly seen in Fig. 1.2(b). Hence due to the periodic potential of crystal, 

the parabolic band structure is modified, with the forbidden gap and energy band. But for 

the region far away from the Brillouin zone boundary we can still simplify the dispersion 

relation as 𝐸(𝑘) =
(ℏ𝑘)2

2𝑚∗ , Here the mass of carrier has been changed to the effective mass 

m
*
, which contains the information of crystal.  

 

Figure 1.2 Energy v.s. momentum diagram. (a) Free electron. (b) Electron in a crystal.  

 

    When the material is placed in the electric field, the velocity of a carrier is determined 

by the energy band 𝜀(�⃑� ) [16]. The velocity is 

𝑣 (�⃑� ) =
1

ℏ

𝜕𝜀(�⃑� )

𝜕�⃑� 
                                                        (1.6) 
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According to semi classical theory, the current density in a system is  

𝑗 = −
2𝑒

(2𝜋)3
∫𝑣 (�⃑� )𝑓(𝑟 , �⃑� , 𝑡)𝑑�⃑�                                             (1.7) 

Where 𝑓(𝑟 , �⃑� , 𝑡)  is the non-equilibrium distribution function which determines the 

probability of finding an electron at position 𝑟 , crystal momentum �⃑�  and time t. If there is 

no temperature gradient and no external electrical or magnetic field, the distribution 

function can be reduced to equilibrium distribution function, i.e. Fermi function 𝑓0(𝜀) =

1

𝑒(𝜀−𝜇)/𝑘𝐵𝑇 +1
. 

    The distribution function𝑓(𝑟 , �⃑� , 𝑡) meets the following Boltzmann Equation 

𝜕𝑓

𝜕𝑡
+ 𝑣 (�⃑� ) 

𝜕𝑓

𝜕𝑟 
+ �⃑�  

̇ 𝜕𝑓

𝜕�⃑� 
 =  (

𝜕𝑓

𝜕𝑡
)𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛                                 (1.8) 

    The seconder term is due to diffusion process, the third term is arising from external 

forces and fields. 

    Boltzmann equation is usually solved by two approximations: 

(1) Linearization. When external fields and forces are sufficiently weak, the 

distribution function can be considered as the sum of its equilibrium function 

(Fermi function) plus a small term  

𝑓(𝑟 , �⃑� ) = 𝑓0(𝜀(�⃑� )) + 𝑓1(𝑟 , �⃑� )                                     (1.9) 

(2) Relaxation time approximation.  

(
𝜕𝑓

𝜕𝑡
)𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = −

𝑓−𝑓0

𝜏
= −

𝑓1

𝜏
                                            (1.10) 
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Where 𝜏  denotes the relaxation time which characterizes the rate of return to the 

equilibrium distribution when the external fields or thermal gradients are removed and in 

general depends on crystal momentum, i.e. 𝜏 = 𝜏(�⃑� ). 

    The overall relaxation time is determined by several different mechanisms: electron- 

electron scattering,  𝜏𝑒−𝑒 , electron-phonon scattering, 𝜏𝑒−𝑝ℎ𝑜𝑛 , impurity and defect 

scattering, 𝜏𝑒−𝑖𝑚𝑝, and other scatterings, so that  

1

𝜏
=

1

𝜏𝑒−𝑒
+

1

𝜏𝑒−𝑝ℎ𝑜𝑛
+

1

𝜏𝑒−𝑖𝑚𝑝
+ ⋯                                    (1.11) 

    The phonon, a quantum quasi-particle, is the quantum of vibrational motion of the 

atoms around their equilibrium positions [17]. Due to the vibration of the crystal lattice, 

an electron is easily scattered by phonons. Hence electron-phonon scattering plays an 

important role in the transport.  

Electrons can also scatter off each other due to the Coulomb interaction. In solid state 

physics we usually use free electron approximation, where the periodic potential of the 

fixed lattice particles and of all the other electrons is replaced by an almost time-

independent potential in order to describe the independent motion of a single conduction 

electron. There are, however, cases where the Coulomb interaction cannot be neglected 

such as in weak localization effect. 

The current density can be calculated using equation 1.7 if 𝑣 (�⃑� ) 𝑎𝑛𝑑 𝑓(𝑟 , �⃑� , 𝑡) are 

known. The velocity can be easily obtained if we know the energy band structure. On the 

other hand, the geometric structure of the system determines the energy band, which 

results in distinct and rich transport properties in various materials. So from the transport 
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measurement, we can also obtain the information about the band structure. In next 

sections, the two-dimensional electron gas in heterostructure and graphene have been 

discussed in detail. 

1.2 AlInN/GaN HETEROSTRUCTURE 

    Gallium Nitride (GaN) based semiconductors have attracted much attention due to 

their potential application in high power and high frequency electronics. III-V 

semiconductors usually have a very large band gap. For example, GaN has a band gap ~ 

3.4 eV and AlN ~ 6 eV, which is much larger than that of Si (~ 1.1 eV) and the energy of 

visible light as shown in Fig. 1.3. The electronic properties of compound semiconductors, 

such as band gap, mobility and carrier density, are controllable by tuning element 

composition, thickness and the growth condition of each layer. Furthermore, in contrast 

to graphene and other 2D materials, the existing techniques of silicon can easily be 

applied on III-V semiconductors without much change.  

 

Figure 1.3 Band gap and lattice constant for several semiconductors. The color band 

represents the spectrum of visible light. 
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    First, let us discuss the band diagram of heterostructure. A heterostructure is a 

junction which is made by two different semiconductor materials. For example, Fig. 1.4 

shows the band structure of n-doped AlGaAs and intrinsic GaAs [18]. EC is the minimum 

energy of conduction band, EV is the maximum valance band energy, EF is the Fermi 

energy. The band gap is defined as 𝐸𝑔 = 𝐸𝐶 − 𝐸𝑉. Clearly, AlGaAs has a much larger 

band gap than that of GaAs. Before these two materials are brought together to form a 

heterostructure, the Fermi energy of AlGaAs is higher than that of GaAs. When these two 

materials are brought into contact with each other, electrons in AlGaAs have higher 

energy and can move to unoccupied levels in GaAs. When the electron density of 

AlGaAs decreases, EF decreases as well. The transfer of carriers will stop when the Fermi 

energies EF of the two materials are equal. The redistribution of charge forms an 

electrostatic potential at the interface between AlGaAs and GaAs and electrons are 

confined in this well. The two-dimensional electron gas (2DEG) is shown in Fig. 1.4; the 

conduction band of GaAs near the interface is bent down due to electron accumulation 

[19].  

Recently, the AlInN/GaN heterostructure has attracted a great deal of interest. In 

contrast to the AlGaN/GaN system, with AlInN as the barrier one can achieve lattice 

matching to GaN by tuning the composition between AlN and InN. When In is set to ~ 

18%, the AlInN and GaN lattice is matched, as shown in Fig. 1.3. This will greatly 

increase the crystal quality and carrier mobility. Moreover, the band gap of Al0.83In0.17N 

is also very large, ~ 5eV.  

The band diagram of Al0.83In0.17N/AlN/GaN heterostructure, obtained from a one 

dimensional self-consistent Schrodinger-Poisson equations solver [20] is shown in Fig. 
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1.5. In order to get a high quality AlInN layer, a very thin (~1 nm) AlN is deposited first. 

We can clearly see the potential well around 4 nm; the red peak shows very high carrier 

density, indicating the confinement of two-dimensional electron gas. 

  

Figure 1.4 Band diagram of the interface between n-doped AlGaAs and intrinsic GaAs 

[18]. The middle is the diagram before charge transfer. Bottom is the situation in 

equilibrium. 

 

Figure 1.5 Band diagram and the 2DEG distribution along the growth direction for the 

Al0.83In0.17N/AlN/GaN heterostructure [20]. 
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However, for the AlInN/GaN heterostructure, GaN and AlInN are both undoped. 

Where does the two-dimensional electron gas (2DEG) come from? 

Charge polarization is a significant property of the III-V nitride semiconductors [21]. 

Due to the difference in the ionicity of the two atoms, the bonds in all III-V or II-VI 

compound semiconductors are polar. There are two types of polarizations, spontaneous 

and piezoelectric polarization. The piezoelectric polarization is produced due to the 

lattice mismatch. The condition for spontaneous polarization is the c/a ratio must differ 

from the ideal ratio of √8 3⁄  [22].  

GaN and AlN are wurtzite crystal systems. The lattice constant a is the edge length of 

basal plane, and c is unit cell height. All the nitrides have lower c/a ratio than ideal, 

which is necessary for stability. The magnitude of the spontaneous polarization of GaN is 

around 0.034 C/m
2
, but in AlN it is much bigger, ~0.09 C/m

2
, the largest value in all 

nitrides because of the largest deviation from the ideal c/a ratio. Polarization induces 

surface charges, shown in Fig. 1.6. An electric field is induced owing to the surface 

charges, which leads to the tilt of band structure. Clearly, the band structures of AlInN 

and AlN in Fig. 1.5 are both tilted. 

The formation of 2DEG at the interface arises from the existence of donor states on the 

AlInN surface [21]. An electron in a surface state can be excited to the conduction band 

of AlInN with the help of induced electric field by surface charge, where it will flow to 

the GaN side and accumulate at the interface to form the 2DEG. The carrier density can 

be changed by adjusting the thickness of the AlInN barrier. Hence the spontaneously 
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polarized 2DEG can be realized without doping, which greatly reduces the scattering 

from impurities.  

 

Figure 1.6 Polarization and surface charge of GaN and AlN. 

 

1.3 LANDAU LEVEL AND SHUBNIKOV-DE HAAS OSCILLATION 

    Classically, a free electron executes a circular motion in a perpendicular magnetic field 

due to the Lorentz force 𝐹 = −𝑒𝑣 × �⃑� . The cyclotron frequency is 𝜔𝑐 = 𝑒𝐵 𝑚⁄ . In the 

quantum mechanics, we need to solve the Schrödinger equation. 

�̂�𝛹 = 𝐸𝛹                                                           (1.12) 

Here 𝛹 is the electronic wave function. The Hamiltonian is �̂� =
1

2𝑚
(�̂� − 𝑞𝐴 )2. Where �⃑�  

is the momentum operator and 𝐴  is the vector potential which is related to the magnetic 

field by �⃑� = ∇ × 𝐴 . 
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    For simplicity, the Landau gauge is used 𝐴 = (
0
𝐵𝑥
0

). Then the Hamiltonian becomes 

�̂� =
𝑝𝑥

2

2𝑚
+

1

2𝑚
(�̂�𝑦 − 𝑞𝐵�̂�)2                                      (1.13) 

    Solving this Schrödinger equation will give the eigenenergy. In fact, this is same to the 

Harmonic oscillation. So the energies are  

𝐸𝑛 = (𝑛𝐿 + 1/2)ℏ𝜔𝑐.                                              (1.14) 

Here 𝑛𝐿=0, 1, 2, 3…; ℏ is the reduced Planck constant, 𝜔𝑐 = 𝑒𝐵 𝑚∗⁄  is the cyclotron 

frequency. e is the electron charge and 𝑚∗ is the effective mass of carriers. In quantum 

mechanics, the magnetic flux is quantized and the band structure becomes quantized 

Landau level. The Landau energy 𝐸𝑛  is linearly proportional to magnetic field B and 

index nL. The space between each Landau level is equal, as shown in Fig. 1.7(a).  

  

Figure 1.7 (a) Landau levels. EF is the Fermi energy.  (b) Shubinikov de Haas 

oscillation and Quantum Hall effect. 
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For each Landau level, the degeneracy in unit area is 𝑁 =
𝑔𝑠𝐵

∅0
=

𝑔𝑠𝐵𝑒

2𝜋ℏ
. Here gs 

represents a factor of 2 due to spin degeneracy for conventional 2DEG. For graphene, 

𝑔𝑠 = 2 × 2 = 4 because of double spin and double valley degeneracy. The degeneracy is 

proportional to magnetic field. When magnetic field is increased, the degeneracy is also 

increased. That means there are more states in each Landau level and more carriers can 

occupy the same Landau level. 

For a system, the charge carrier density is constant at a certain temperature. Since each 

state can only have 2 carriers due to spin degeneracy, the number of filled states below 

Fermi energy EF is also constant. When the magnetic field B is increased, the degeneracy 

for each Landau level will be also increased. Hence the Fermi level EF will drop to lower 

value with increasing magnetic field B. When EF passes through a Landau level from 

higher energy, the measured resistance oscillates periodically. This is called Shubnikov-

de Haas (SdH) oscillation.  

It is important to know that at high magnetic fields, the carriers in the interior region 

execute cyclotron motion. But at the boundaries, orbital motion is disrupted and the 

carriers get scattered forward along the edge leading to a large conductance. When the 

Fermi energy is between two Landau levels, the edge state related carriers dominate the 

conduction, so the resistance is very small which corresponds to the minima in the 

longitudinal resistance Rxx in Fig. 1.7(b). When the Fermi energy moves to inside of 

Landau level, the scatterings due to interior carriers become strong and result in a high 

resistance.  
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In fact, SdH oscillation is a periodic function of 1/B, instead of magnetic field B. And 

the frequency BF is directly proportional to carrier density 𝑛𝑆𝑑𝐻 = 𝑔𝑠𝑒𝐵𝐹 (2𝜋ℏ)⁄ . So the 

carrier density can be obtained by the SdH oscillation without measuring the Hall 

voltage.  

The amplitude of SdH oscillation can be expressed by 

 ∆𝑅𝑥𝑥 = 4𝑅0
𝜒

sinh(𝜒)
exp (

−𝜋

𝜔𝑐𝜏𝑞
)                                (1.15) 

Here 𝜒 = 2𝜋2𝑘𝐵𝑇 ∆𝐸⁄  and the Landau level energy spacing ∆𝐸 = ℏ𝜔𝑐 = ℏ𝑒𝐵 𝑚∗⁄ . 

𝑘𝐵is the Boltzmann constant, ℏ is the Planck constant, e is the electron charge and 𝜏𝑞is 

the quantum lifetime. The temperature dependent SdH oscillation is useful to analyze the 

Fermi surface, effective mass 𝑚∗and quantum scattering mechanism. 

1.4 GRAPHENE 

Graphene is made of a single layer of carbon atoms, with a hexagonal lattice structure as 

shown in Fig. 1.8(a). Atom A (red) and atom B (blue) are inequivalent, so the graphene 

structure can be viewed as a triangular lattice with a basis of two atoms A and B. 

    The Bravais lattice vectors are [11] 

𝑎 1 =
𝑎

2
(3, √3 ), 𝑎 2 =

𝑎

2
(3, −√3 )                               (1.16) 

Where a ~1.42 Å is the nearest carbon to carbon distance. 

The reciprocal lattice vectors are  

�⃑� 1 =
2𝜋

3𝑎
(1, √3 ), �⃑� 2 =

2𝜋

3𝑎
(1, −√3 )                                 (1.17) 
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so the first Brillouin zone can be drawn and it is hexagonal as shown in Fig. 1.8(b).  

   

Figure 1.8 (a) Honeycomb lattice of graphene, with two types of atoms A and B. 𝑎 1 and 

𝑎 2 are lattice vectors. (b) The reciprocal lattice vectors and the 1st Brillouin zone 
[11]. 

 

    For each carbon atom, there are four valence electrons. Three electrons form the 

chemical bonds in the plane, named σ bonds. These three σ bonds are localized and 

cannot contribute to the electronic conduction. The 2pz orbital is oriented perpendicular to 

the plane, which is free to move, and forms the π band.   

    The energy bands derived using the nearest neighbor tight-binding method are [11,23] 

𝐸(�⃑� ) = ±𝑡√3 + 2 cos(√3𝑘𝑦𝑎) + 4cos (√3

2
𝑘𝑦𝑎)cos (3

2
𝑘𝑥𝑎)                      (1.18) 

Here t is the nearest neighbor hopping energy. The energy band is plotted in Fig. 1.9. 

𝐸 < 0 is the valence band, 𝐸 > 0 is conduction band. The two bands touch each other at 

the six corners (Dirac points). The gap in graphene vanishes and graphene is not a 

semiconductor. Moreover since each carbon atom contributes a single electron, the 
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negative energy band is fully filled while the positive band is empty (electron - hole 

symmetry). The Fermi energy is 𝐸𝐹 = 0 at zero temperature. 

The positions of Dirac points K and 𝐾′ shown in Fig. 1.8(b) in momentum space are 

given by [11] 

𝑲 =
2𝜋

3𝑎
(1,

1

√3
) , 𝑲′ =

2𝜋

3𝑎
(1, −

1

√3
)                              (1.19) 

For the region near K and 𝐾′, the energy dispersion, if we only take the first order, can be 

expanded as [11,23] 

𝐸(�⃑� ) ≈ ±ℏ𝑣𝐹|�⃑� |                                        (1.20) 

The energy surface is plotted in Fig. 1.9 and consists of two circular cones touching each 

other at 𝐸 = 0 . Furthermore, this is very similar to the linear dispersion relation of 

photons where the speed of light c is replaced by the Fermi velocity 𝑣𝐹. For graphene, 

𝑣𝐹 = 3𝑡𝑎 2~106𝑚/𝑠⁄  [11], very large speed compared to the conventional 2DEG, so the 

carriers at the Dirac points in graphene behavior like massless particles. 

 

Figure 1.9 Energy band derived from the nearest-neighbor tight binding model [24]. 

Zoomed in figure is the band structure around Dirac points K. 
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    When the graphene is placed in the magnetic field B, the energy is also quantized to 

Landau levels. Unlike the conventional 2DEG, the Landau levels of graphene in a 

magnetic field are [11,25] 

𝐸𝑛 = ±𝑣𝐹√2𝑒ℏ𝐵𝑛𝐿                                             (1.21) 

Here the Landau index 𝑛𝐿= 0, 1, 2,…, e is the charge of electron, ℏ is the reduced Planck 

constant. ± is the band index and refers to the conduction (electrons) / valence (holes) 

band. The Landau level is proportional to the square root of magnetic field B and index 

𝑛𝐿 , unlike the linear relation of massive quasi-particles 𝐸𝑛 = (𝑛𝐿 +
1

2
) ℏ𝜔𝑐 . The gaps 

between Landau levels in graphene are not equal, as shown in Fig. 1.10. Remarkably, 

there exists a zero-energy Landau level in graphene when 𝑛𝐿=0 and it is independent on 

the magnetic field [25]. 

  

Figure 1.10 Landau level in the magnetic field. Each level is not equally spaced; instead 

it is proportional to square root of B [25]. 
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1.5 WEAK LOCALIZATION  

    At low temperatures phonon scattering is suppressed, which induces a long mean free 

path and coherence length. So the wavelike nature of charge carriers at low temperature 

becomes important. In this regime, due to constructive quantum interference, the carrier 

has an enhanced probability to be scattered back to the origin along a closed loop in 

opposite directions, resulting in a larger resistivity compared to the Drude model. This is 

called weak localization and widely observed in disordered systems [26,27]. 

    The probability for a carrier propagating from point A to B, as shown in Fig. 1.11(a), is 

the sum of all the Feynman’s paths between A and B [18] 

𝑃 = |∑ 𝐴𝑖𝑖 |2 = ∑ |𝐴𝑖|
2

𝑖 + ∑ 𝐴𝑖𝐴𝑗
∗

𝑖≠𝑗                                 (1.22) 

Here 𝐴𝑗 = |𝐴𝑗|𝑒
𝑖𝜑𝑗 = |𝐴𝑗|𝑒

𝑖�⃑� 𝑗𝑙 𝑗 is the propagation amplitude along path j. The first term 

is the classical probability, and second term is interference part. For each path the carrier 

experiences diffusive motion like a random walk. Because the scattering is elastic, the 

phase acquired along any path is well defined, but different along each Feynman path. 

When averaged over a large number of paths, the interference term vanishes. 

    However, there is a special case. For self-crossing trajectories, just like point O as 

shown in Fig. 1.11(b), the electron can be scattered along clockwise or counterclockwise 

back to the origin O. The phases ∆𝜑 acquired in these two directions are exactly same, 

because the propagation 𝑝  →  −𝑝  , 𝑑𝑙  →  −𝑑𝑙 . It can be viewed as a motion of a carrier 

and its time-reversed counterpart. Hence this constructive interference has time reversal 

symmetry.  The probability for a closed path at point O is  



20 

|𝐴+𝑝 + 𝐴−𝑝|
2
= |𝐴+𝑝|

2
+ |𝐴−𝑝|

2
+ 2𝐴+𝑝𝐴−𝑝

∗  

= |𝐴+𝑝|
2
+ |𝐴−𝑝|

2
+ 2|𝐴+𝑝|𝑒

𝑖(𝜑+∆𝜑) |𝐴−𝑝|𝑒
−𝑖(𝜑+∆𝜑)= 4|𝐴𝑝|

2
                (1.23) 

Here|𝐴+𝑝|=|𝐴−𝑝|. The probability of a carrier to be scattered back to the origin is 4 times 

as large as the classical value. This coherent back-scattering leads to an increase in 

resistance compared with the classical Drude model. The condition for weak localization 

to occur is that the phase coherence length should be much longer than the mean free path 

so that the carrier can return to the origin after several times of scattering [27].  

    Weak localization can be suppressed at high temperature. Inelastic scattering such as a 

collision with a phonon or another electron can change the momentum of the carrier 

which destroys the phase coherence. When the temperature is increased, scattering 

becomes strong and the coherence length is reduced. So the effect of weak localization 

becomes weak. 

The application of a magnetic field can also affect the weak localization, because the 

magnetic field breaks the time reversal symmetry and destroys the interference. Hence 

with increasing magnetic field, the probability of back scattering is decreased, which 

leads to an increase in the magnetoconductivity. The change of magnetoconductivity 

[5,28,29] is 

∆𝜎𝑥𝑥 = 𝜎𝑥𝑥(𝐵) − 𝜎𝑥𝑥(0) =
𝑒2

𝜋ℎ
[𝜓 (

1

2
+

ℏ

4𝑒𝐷𝐵𝜏𝑖
) − 𝜓 (

1

2
+

ℏ

4𝑒𝐷𝐵𝜏𝑒
) + ln (

𝜏𝑖

𝜏𝑒
)]    (1.24) 
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Here 𝜓is the digamma function; 𝜏𝑖  and 𝜏𝑒  are the inelastic and elastic scattering times 

respectively; D is the diffusion constant. The elastic scattering time and the inelastic 

phase breaking time can be readily obtained from the magnetoconductivity measurement.    

         

Figure 1.11 (a) Feynman’s paths of a carrier propagating from A to B. The straight line 

between two scatterings represents the diffusive motion of carrier, just like a series of 

random walks. (b) A pair of closed paths at point O that contribute to weak localization.  

 

    For graphene, the weak localization is strongly modified due to valley degeneracy. 

Graphene lattice can be considered as a superposition of two identical sub-lattices with 

two atoms since atoms A and B are inequivalent. The two sublattices are like two degrees 

of freedom. The electron can have amplitude to be on the sublattice A, and an amplitude 

on sublattice B. The two components of the electronic wave function on them can be 

analogous to the two spins ± 1
2
, called pseudo spin [30]. If all the electronic density is 

located on the A sublattice, this can be viewed as an “up” pseudo spin state, whereas 

density solely on the B sublattice corresponds to a “down” pseudo spin. In graphene, 

electronic density is usually shared equally between A and B sublattices, so that the 

pseudo spin part of the wave function is a linear combination of “up” and “down”, and it 

lies in the plane of the graphene sheet [31,32], as shown in Fig. 1.12. Furthermore, 

quasiparticles in graphene are chiral [30], that means the orientation of the pseudo spin is 
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related to the direction of electronic momentum, either parallel or antiparallel to each 

other [31]. 

 

Figure 1.12 Pseudo spin of graphene [31]. 

 

    When a carrier in graphene is scattered back to the origin after a series of scatterings, 

the momentum changes from 𝑝  →  −𝑝 . Due to the chiral symmetry, the pseudo spin 

must also change to the opposite direction so that the pseudo spin remains parallel to the 

momentum. Hence for a clockwise path the pseudo spin rotates by an angle of –π, for a 

counterclockwise path the pseudo spin rotates by π. So the difference in the angle of 

pseudo spin rotation for the two paths is 2π. The net rotation of the pseudo spin by 2π 

induces a phase difference of π between the two paths [32,33]. This is analogous to the 

rotation by 2π of a spin–1/2 particle because a rotation by 2π doesn’t return wave 

function to its origin state [34]. Hence the returning electron is out of phase, resulting in 

destructive interference. The probability to be scattered back to the origin is smaller due 

to the extra phase, and the conductivity is increased. This is called anti-localization.  
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Figure 1.13 Chirality of graphene at Dirac points K and 𝐾′. Intravalley and intervalley 

scatterings play an important role in weak localization effect. 

 

    However, the trigonal warping effect [11,35] can break the time-reversal symmetry 

(the absence of 𝑝 → −𝑝  symmetry) of the electronic dispersion within a single valley. 

Furthermore, elastic intravalley scattering can break the chiral symmetry. These two 

effects can suppress the weak antilocalization effect [36]. 

    A carrier can be scattered from K to 𝐾′, flipping the chirality. This is called intervalley 

scattering. In this process, the momentum has changed direction due to back scattering, 

but the psudospin has the same direction. So the phase acquired by two closed loops 

remains the same, resulting in the constructive interference and restoration of the 

conventional weak localization. 

    Hence due to the chiral nature of carriers in monolayer graphene, weak antilocalization 

is expected. However, trigonal warping and intravalley scattering suppresses 

antilocalization and intervalley scattering restores conventional weak localization. The 

change of magnetoconductivity, ∆𝜎(𝐵) = 𝜎(𝐵) − 𝜎(0), in graphene is [37-39] 
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∆𝜎(𝐵) =
𝑒2

𝜋ℎ
[𝐹 (

𝐵

𝐵𝜙
) − 𝐹 (

𝐵

𝐵𝜙+2𝐵𝑖
) − 2𝐹 (

𝐵

𝐵𝜙+𝐵∗
)                      (1.25) 

𝐹(𝑧) = 𝑙𝑛𝑧 + 𝜓(
1

2
+

1

𝑧
), 𝐵𝜙,𝑖,∗ =

ℏ

4𝐷𝑒
𝜏𝜙,𝑖,∗
−1  

Here 𝜓(𝑧)  is the digamma function,𝜏𝜙 is the inelastic phase breaking time,  𝜏𝑖  is the 

(elastic) intervalley scattering time, 𝜏∗
−1 = 𝜏𝑖

−1 + 𝜏𝑤
−1 + 𝜏𝑧

−1 , where 𝜏𝑤  is related to 

trigonal warping which breaks 𝑝 → −𝑝  symmetry of the electronic dispersion and 𝜏𝑧 is 

the intravalley scattering time. D is the diffusion constant given by 𝐷 = 𝑣𝐹
2𝜏 2⁄ . 𝜏 is the 

transport scattering time obtained from the carrier mobility. Compared to the 

conventional 2EDG in Eq. (1.24), weak localization effect in graphene is more complex. 

 



 

25 

CHAPTER 2 

DEVICE FABRICATION AND TRANSPORT MEASUREMENT

 

    In this chapter, the fabrication of samples, including monolayer graphene with antidots 

and a Hall bar of AlInN/GaN heterostructure, is described in detail. The low temperature 

and high magnetic field techniques are also explained. 

2.1 FABRICATION AND CHARACTERIZATION OF GRAPHENE WITH 

ANTIDOTS 

    Graphene sample is commercial monolayer graphene on Si/SiO2 substrate (Graphene 

Supermarket Inc.), grown by the Chemical Vapor Deposition (CVD) method. The antidot 

lattice on graphene was fabricated by the electron beam lithography followed by reactive 

ion etching with oxygen plasma at the USC Nanocenter. A more detailed description can 

be found in Appendix A.  

    Figure 2.1 shows the Scanning Electron Microscope (SEM) images of the antidot 

lattice. The images are obtained by Zeiss Ultraplus Thermal Field Emission Scanning 

Electron Microscope. The grey region is graphene. However the white region is empty, 

where the graphene has been etched away by oxygen plasma. We can clearly see 4 Hall 

bars at up and down sides. The high magnification image of antidots, with the radius 

around r = 50 nm is displayed in Fig. 2.1(b). 
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Figure 2.1 (a) Graphene antidots with Hall bars. (b) High magnification SEM image of 

antidots. 

 

Raman spectroscopy (JY Horiba with a HeNe laser) of monolayer graphene is shown 

in Fig. 2.2. Clearly there are two prominent peaks. The band at ~2663 cm
-1

 is called the 

2D peak which is due to the second order of zone-boundary phonons; the one at ~1602 

cm
-1

 is G peak or Graphite peak [40]. The intensity ratio between 2D and G peak is an 

important indicator of the numbers of graphene layer. Monolayer graphene usually has a 

stronger 2D peak than a G peak. The intensity of the 2D peak decreases for a bilayer, 

triple layer and so on. The intensity high ratio between the 2D band and G band shows 

our graphene is monolayer. 

 

Figure 2.2 Raman spectroscopy of monolayer graphene. 
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2.2 FABRICATION OF ALINN/GAN DEVICE 

The Al0.83In0.17N/GaN epilayer structures were grown on a sapphire substrate by 

standard metal-organic chemical vapor deposition (MOCVD) process. Our AlInN/GaN 

wafers were obtained from Dr. Asif Khan at the Electrical Engineering Department of 

USC. A SEM image of the cross section view of such heterostructure is provided in Fig. 

2.3(a). It clearly shows a ~200 nm AlN buffer layer followed by ~2.2 μm undoped GaN 

as channel layer, ~1 nm AlN spacer and ~7 nm AlInN barrier layer with In composition 

of 17%.  

In order to measure the transport properties, I fabricated a Hall bar using 

photolithography. The Hall bar mesa was etched by an inductive coupled plasma etching 

machine using Cl2/BCl3. A more detailed description is given in Appendix B. Fig.2.3(b) 

is a schematic diagram of our Hall bar. 

 

Figure 2.3 (a) SEM image of cross section of AlInN/GaN heterostructure. (b) Schematic 

diagram of a Hall bar. 

 

2.3 THREE DIMENSIONAL CARBON NANOSTRUCTURES 
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    Artificial opals are self-organized, close packed materials which are built up by 

nanoscale regular spheres. Figure 2.4 shows the structures of opal obtained by scanning 

electron microscope (Zeiss Ultra Plus FESEM). The opals are arranged in the hexagonal 

close-packed lattice. The diameter of the spheres is around 200 nm.  

  

Figure 2.4 SEM images of artificial opal. 

    Our 3-dimensional carbon nanostructures were produced by infiltrating carbon into the 

porous matrix of artificial opals by chemical vapor deposition (CVD) of propylene gas 

and then removing the silica spheres with hydrofluoric acid [41]. The diameter of the 

spheres can be varied. The diameter of carbon inverse structure shown on the right of Fig. 

2.5 is around 245 nm. We can also observe a mix of two structures, cubic and hexagonal. 

  

Figure 2.5 SEM images of 3-dimensional carbon nanostructure.  
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2.4 TRANSPORT MEASUREMENT TECHNIQUES 

    In our transport measurement, a 4- probe method is employed. The reason for using a 

4-probe method instead of 2-probe is to reduce the contact resistance effect. In the 2-

probe method shown in Fig. 2.6(a), a voltage source is applied to the sample and the 

current I is measured using Ampere meter. The current is determined not only by the 

sample resistance Rs, but also by the contact resistances Rc1 and Rc2, which are all 

unknown. The measured current is smaller due to contact resistances. If we still use 

𝑅 =
𝑉

𝐼
 the resistance obtained is larger than the real sample resistance. However in the 4-

probe method, a current source is applied, so the contact resistances Rc1 and Rc2 cannot 

affect the measured current I. When measuring the voltage on the sample, the contact 

resistances, Rc3 and Rc4, are much smaller than the impedance of the volt meter. Thus the 

resistance obtained by 𝑅 =
𝑉

𝐼
 is the real sample resistance. 

  

Figure 2.6 (a) 2-probe method, (b) 4-probe method. 

    Figure 2.7(a) shows the schematic diagram of probe connections for AlInN/GaN 

heterostructure. There are six pads in total. The largest two pads are connected to the 
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current source. The pair of probes on the same side are used to measure the longitudinal 

voltage Vxx and the two pads on opposite sides are for measuring the Hall voltage VH.  

The magnetic field B is perpendicular to the sample surface, but we can also rotate the 

sample so that the orientation dependence of transport properties is obtained. Figure 2.7(b) 

shows a graphene sample with six gold pads connected to an 8-pin dip socket by 

aluminium wires. The size of the silicon substate is around 5 mm × 5 mm × 1 mm. 

   

Figure 2.7 (a) schematic diagram of probe for the AlInN/GaN heterostructure. (b) 

Graphene sample on an 8-pin dip socket. 

 

    To reduce the noise and obtain a clean signal, we use lock-in amplifiers to measure the 

voltages. A 120 µA input current at 17.37 Hz was applied by the lock-in amplifier 

(Stanford SR850 DSP). The electrical and magneto transport measurements were 

conducted using an 18/20 Tesla General Purpose Superconducting Magnet (SCM2) and a 

31 Tesla, 50 mm Bore Magnet (Cell 9) at the National High Magnetic Field Laboratory at 

Tallahassee, FL. 
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CHAPTER 3 

QUANTUM TRANSPORT IN ALINN/GAN HETEROSTRUCTURES

 

    The AlInN/GaN heterostructure is a wide band gap semiconductor that has great 

potential in high power and high frequency applications. In this chapter, I discuss my 

measurements of the transport properties of the two-dimensional electron gas in 

AlInN/GaN heterostructures at low temperatures. From the Shubnikov-de Haas 

oscillation and the change of the magnetoconductivity due to weak localization, I 

calculated the effective mass of the electrons and scattering times. The dominant 

scattering mechanisms at low temperatures have been determined. 

3.1 TEMPERATURE DEPENDENT ELECTRICAL TRANSPORT  

The typical temperature dependence of sheet resistance, R□ is shown in Fig. 3.1(a). 

Here sheet resistance is calculated by 𝑅□ =
𝑅𝑥𝑥𝑊

𝐿
, where Rxx is the longitudinal resistance 

measured at zero-magnetic field; W=165 𝜇𝑚 is the width of Hall bar; and L=770 𝜇𝑚 is 

the length labeled in the figure. Generally the sheet resistance increases with increasing 

temperature above 20 K, consistent with metallic-like transport. The variation of the Hall 

carrier density as a function of temperature is shown in Fig. 3.1(b). The carrier density n 

is obtained by 𝑅𝐻 =
𝐵

𝑛𝑒
, where RH is the Hall resistance, e is the charge of the electron 

and B is the magnetic field. Although the density increases with increasing temperature, 
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the change is very small. This is because the band gap is Eg~ 4 eV [6,42], much larger 

than 𝑘𝐵𝑇. 

    

      

Figure 3.1 (a) Temperature dependent sheet resistance, inset is the schematic diagram of 

structure. (b) Carrier density and Hall mobility as a function of temperature. 

 

In contrast, the Hall mobility decreases with increasing temperature, and the 

decreasing rate exhibits an interesting variation with temperature. Below 20 K, the 
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mobility is weakly temperature dependent. It decreases slightly with increasing 

temperature, mirroring that of the sheet resistance. As will be discussed later, these 

behaviors may arise from impurity scattering or surface roughness as well as electron-

electron scattering. Between 20 K and 100 K, the temperature dependence is more 

pronounced. As shown in the inset of Fig. 3.1(b), the inverse mobility is directly 

proportional to temperature,  𝜇−1 ∝ 𝑇 , indicating that acoustic phonon scattering is 

dominant [43-45]. Such temperature dependence has been widely observed in 

AlGaN/GaN heterostructures. At higher temperatures, above 100 K, the mobility 

decreases even faster and an exponential dependence 𝜇−1 ∝ 𝑒𝑎𝑇 describes the data very 

well. In the 2DEG literature, such exponentially temperature dependent mobility at high 

temperatures has been attributed to polar optical phonon scattering [44,46].  

 

3.2 SHUBNIKOV-DE HAAS OSCILLATION 

The longitudinal resistance Rxx as a function of applied magnetic field B up to 18 T at 

different temperatures is shown in Fig. 3.2(a). As the magnetic field is increased, 

Shubnikov-de Haas (SdH) oscillations appear. The peaks of the oscillations are 

pronounced at low temperatures and damped with increasing temperature. This effect of 

temperature is more apparent if we subtract the background from Rxx, (Fig. 3.2(b)). SdH 

oscillations are a periodic function of 1/B. Evidence of multiple subbands in AlInN/GaN 

or AlGaN/GaN heterostructures has been reported [28,47]. However, Fourier Transform 

analysis of our data for ΔRxx results in a single peak frequency BF = 403 T as shown in the 
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inset of Fig. 3.2(b). This indicates that only one band is dominant in our sample. Also the 

frequency BF is directly related to the carrier density by  

𝑛𝑆𝑑𝐻 = 2𝑒𝐵𝐹 ℎ⁄                                                          (3.1) 

The factor of two is due to spin degeneracy. Hence the carrier density of this sample is 

𝑛𝑆𝑑𝐻 = 1.948 × 1013𝑐𝑚−2. This agrees very well with the average value obtained from 

our Hall measurement. 

 

Figure 3.2 (a) Magnetoresistance up to 18 T at a set of temperatures. (b) Shubnikov-de 

Haas oscillations after subtracting the background. 

 

The amplitude of the SdH oscillation is given by [48,49]  

∆𝑅𝑥𝑥 = 4𝑅0
𝜒

sinh(𝜒)
exp (

−𝜋

𝜔𝑐𝜏𝑞
)                                           (3.2) 

Here 𝜏𝑞is the quantum lifetime, which will be discussed later. 𝜒 = 2𝜋2𝑘𝐵𝑇 ∆𝐸⁄  and the 

Landau level energy gap is ∆𝐸 = ℏ𝜔𝑐 = ℏ𝑒𝐵 𝑚∗⁄ . 
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    The effective mass 𝑚∗of electrons can be extracted from the temperature dependence 

of the SdH amplitude at a constant magnetic field by examing the following ratio [9] 

∆𝑅𝑥𝑥(𝑇,𝐵)

∆𝑅𝑥𝑥(𝑇0,𝐵)
=

𝑇𝑠𝑖𝑛ℎ(𝜒(𝑇0))

𝑇0 sinh (𝜒(𝑇))
=

 𝑇 sinh (2𝜋2𝑘𝐵𝑇0 ∆𝐸(𝐵))⁄

𝑇0 sinh (2𝜋2𝑘𝐵𝑇 ∆𝐸(𝐵))⁄
                              (3.3) 

Here we chose the lowest temperature, 0.27 K, as T0. Figure 3(a) shows the above ratio of 

amplitude at T0 = 0.27 K and B = 17.7 T. Analyzing our data using Eq. (3.3) we can 

extract ∆𝐸(𝐵). The inset of Fig. 3.3(a) shows the field dependence of Landau level 

energy gap. Thus the corresponding effective mass is 𝑚∗ = (0.2327 ± 0.0019)𝑚𝑒 , 

similar to the values reported in AlInN/GaN heterostructures which are 0.22𝑚𝑒 and 

0.25𝑚𝑒 [47,50] and in AlGaN/GaN systems which are 0.23𝑚𝑒 and 0.24𝑚𝑒 respectively 

[5,51]. 

    The quantum lifetime is obtained from the slope of the Dingle plot, as shown in Fig. 

3.3(b), because 

𝑙𝑛𝔇 = ln [
∆𝑅(𝑇,𝐵)sinh (2𝜋2𝑘𝐵𝑇 ∆𝐸(𝐵))⁄

2𝜋2𝑘𝐵𝑇 ∆𝐸(𝐵)⁄
] = 𝐶0 −

𝜋𝑚∗

𝑒𝜏𝑞𝐵
                                 (3.4) 

where 𝔇 is the expression within the bracket, C0 is a constant. In this sample the quantum 

lifetime is 𝜏𝑞 = 0.0350 ± 0.0017 𝑝𝑠 . Furthermore, 𝜏𝑞 also determines the Dingle 

temperature 𝑇𝐷 = ℎ (4𝜋2𝑘𝐵𝜏𝑞⁄ ), which is a measure of the disorder. At T = 0.27 K, we 

find a relatively high value  𝑇𝐷 = 34.7 K . Also the broadening of the Landau levels 

[48,49], as determined by kBTD ~3 meV, is not much smaller than the Landau level 

spacing ∆𝐸(𝐵) = 9.04 𝑚𝑒𝑉 at 17.7 T. This may explain the relatively small amplitude 

(∆𝑅𝑥𝑥/𝑅𝑥𝑥 ≪ 1) of the SdH oscillations.  
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Figure 3.3 (a) Effective mass plot at 17.7 T, where the data are best fit to Eq. (3.3); Inset 

is field dependence of the Landau level spacing. (b) Dingle plot to obtain the quantum 

lifetime in AlInN/GaN heterostructure. 

 

It is instructive to compare the quantum relaxation rate to transport rate, since 

1 𝜏𝑞⁄ = ∫𝑃(𝜃)𝑑θ  

                                          1 𝜏𝑡⁄ = ∫𝑃(𝜃)(1 − 𝑐𝑜𝑠𝜃)𝑑θ                   (3.5) 

where 𝑃(𝜃) is the probability of scattering through an angle 𝜃. The quantum lifetime 𝜏𝑞 

includes information of all scatterings; however the transport lifetime 𝜏𝑡  (from Hall 

mobility) is weighted by the scattering angle and mainly determined by large angle 

scattering [51-53]. The transport lifetime 𝜏𝑡 = 0.252 𝑝𝑠 is nearly an order of magnitude 

larger than the quantum lifetime. In particular the ratio 𝜏𝑡 𝜏𝑞 = 7.2⁄  indicates that small 

angle scattering associated with long range interactions due to distant ionized impurities 

is the dominant scattering mechanism in our sample.  
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3.3 WEAK LOCALIZATION 

    As is evident from Fig. 3.2(a), at low magnetic fields Rxx decreases with the applied 

field; that is conductivity goes up with increasing field. This negative magnetoresistance 

arises from weak localization. It is convenient to define the magnetoconductivity by 

𝜎𝑥𝑥 = 𝜌𝑥𝑥 (𝜌𝑥𝑥
2⁄ + 𝜌𝑥𝑦

2 ). The quantum correction to the change in magnetoconductivity at 

low magnetic fields is [5,28,29,54]  

∆𝜎𝑥𝑥 = 𝜎𝑥𝑥(𝐵) − 𝜎𝑥𝑥(0) =
𝑒2

𝜋ℎ
[𝜓 (

1

2
+

ℏ

4𝑒𝐷𝐵𝜏𝑖
) − 𝜓 (

1

2
+

ℏ

4𝑒𝐷𝐵𝜏𝑒
) + ln (

𝜏𝑖

𝜏𝑒
)]       (3.6) 

Here 𝜓 is the digamma function; 𝜏𝑖 and 𝜏𝑒  are the inelastic and elastic scattering times 

respectively; D is the diffusion constant given by 𝐷 = 𝑣𝐹
2𝜏 𝑑⁄ = 𝑣𝐹

2𝜏 2⁄ , where d is the 

dimensionality and for our two-dimensional (d = 2) system the Fermi velocity is 

𝑣𝐹 = ℏ𝑘𝐹 𝑚∗ = ℏ√2𝜋𝑛 𝑚∗⁄⁄                                        (3.7) 

Here 𝑣𝐹 = 0.5504 × 106𝑚/𝑠. By choosing parameter values estimated earlier 𝜏 ≡ 𝜏𝑡 =

0.252 𝑝𝑠, we determined 𝐷 = 0.03817𝑚2/𝑠 and the mean free path 𝑙 = 𝑣𝐹𝜏𝑡 = 139 𝑛𝑚 

[10]. 

    The inelastic and elastic scattering times were computed from the best fit analysis of 

experimental data to Eq. (3.6). ∆𝜎𝑥𝑥 for a set of temperatures is shown in Fig. 3.4(a). For 

a constant temperature the conductivity increases with increasing magnetic field, and at 

higher temperature, the conductivity is reduced. We find that Eq. (3.6) describes the 

experimental data very well for temperatures below 20 K, which allows us to obtain the 

values of the relaxation times. Interestingly the elastic scattering time 𝜏𝑒 is constant with 

temperature; this may be due to the short range interactions such as impurity or interface 
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roughness scatterings. Also 𝜏𝑒 = 0.144𝑝𝑠  is the same order as the transport time  𝜏𝑡 . 

However, the inelastic scattering time 𝜏𝑖𝑛 is much larger than the elastic scattering time 

and the transport time at low temperatures. This is necessary because the phase coherence 

length should be long enough so that the carrier can be scattered back to the origin after 

several scatterings. In addition 𝜏𝑖𝑛  decreases with increasing temperature. In fact, the 

inelastic scattering rate is linearly proportional to temperature,𝜏𝑖𝑛
−1 ∝ 𝑇, as shown in 

Fig. 3.4(b). This linearity has been attributed to phase breaking by inelastic electron-

electron scattering [28,55,56]. 

 

Figure 3.4 (a) Magnetoconductivity at low magnetic fields for several temperatures. (b) 

The inelastic scattering rate displays linear temperature dependence. Insets are the zero-

field resistance and conductivity respectively. 

 

    The effect of electron-electron scattering is also observed in the absence of the 

magnetic field. As shown in the inset of Fig. 3.4(b), the sheet resistance at low 

temperatures is non-monotonic. With increasing temperature it first decreases until 20 K 

and then increases. This enhanced conductivity for less than 20 K is also due to weak 

localization. The quantum interference correction at zero magnetic field is [29,57],  
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𝜎𝑥𝑥(𝐵 = 0) = lim𝐵→0
𝑒2

𝜋ℎ
[𝜓 (

1

2
+

ℏ

4𝑒𝐷𝐵𝜏𝑖𝑛
) − 𝜓 (

1

2
+

ℏ

4𝑒𝐷𝐵𝜏𝑒
)] ≅ −

𝑒2

𝜋ℎ
𝑙𝑛

𝜏𝑖𝑛

𝜏𝑒
        (3.8) 

since 𝜓(𝑥) → 𝑙𝑛𝑥 𝑤ℎ𝑒𝑛 𝑥 ≫ 1. 

As stated above, 𝜏𝑖𝑛 ∝ 𝑇−1, thus 𝜎𝑥𝑥(0) ∝ 𝑙𝑛𝑇 [58]. The conductivity at zero-field is 

plotted as a function of lnT in the inset of Fig. 3.4(b). Clearly below 20 K, 𝜎𝑥𝑥(𝐵 = 0) 

displays a linear dependence, characteristic of weak localization. Hence at low 

temperatures, we observed the experimental evidence of weak localization in zero-field 

transport as well as the magnetotransport in our AlInN/GaN system, both hallmarks of 

electron-electron scattering.  

3.4 ANGLE DEPENDENCE 

    To further investigate weak localization behavior, we varied the angle θ between 

magnetic field and the normal to the surface of sample. Figure 3.5 shows the angle-

dependent resistance at T = 2 K. At 0, when magnetic field is perpendicular to the 

sample, the magnetoresistance is pronounced and similar to the behavior described 

earlier. With the increase of tilt angle, the influence of the magnetic field becomes 

smaller and weak localization is maintained over higher magnetic fields. At the highest 

tilt angle (θ = 88), effects of weak localization dominate the entire field regime such that 

the resistance continues to decrease with increasing magnetic field, displaying a negative 

magnetoresistance even up to 18 T. The crossover field where the magnetoresistance is 

lowest displays the anticipated linear dependence on 1/cosθ. Furthermore, the SdH 

oscillations disappear gradually with increasing angle. If we plot the magnetoresistance 

as a function of the perpendicular component of the magnetic field, Bcosθ, the peaks 
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collapse respectively for different angles, as shown in Fig. 3.5(b). Therefore, the behavior 

is controlled only by the perpendicular magnetic field, confirming the two dimensional 

nature of electron transport in this heterostructure [9,10,49]. 

  

Figure 3.5 (a) Angle dependence of the magnetoresistance at 2 K. (b) The 

magnetoresistance as a function of the perpendicular field, all data collapse to a single 

curve. 

   

3.5 COMPARISON WITH OTHER SAMPLES    

    The sample discussed earlier, labeled as sample A, shows small amplitude Shubnikov-

de Haas oscillations. In comparison, sample B, deposited under different conditions with 

slightly lower carrier density nSdH = 1.53 × 1013cm−2,  has a larger amplitude SdH 

oscillation. As shown in Fig. 3.6(a), the maximum of ∆𝑅𝑥𝑥 for sample B is around 10 Ω, 

one order of magnitude bigger than that of sample A. In specimen B the quantum lifetime 

is 𝜏q = 0.074 𝑝𝑠, which is also smaller than the transport lifetime. The ratio 𝜏t 𝜏q⁄ = 6.1, 

although slightly less than the ratio in sample A, still indicates that small angle scattering 

is the dominant scattering mechanism. Moreover, the change of conductivity ∆𝜎 due to 

weak localization in sample B is larger than that in sample A (Fig. 3.6(b)). Hence the 
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interference is much stronger. The analysis of Eq. (3.6) shows that the inelastic scattering 

time of sample B is correspondingly bigger than that of sample A. 

   

Figure 3.6 (a) Shubnikov-de Haas oscillations for two samples. Clearly, Sample B has 

stronger SdH oscillations. (b) weak localization of two samples at 2 K. Inset is the 

inelastic relaxiation time as a function of temperature. 

 

    Table 3.1 lists the carrier density, the quantum (𝜏q) , transport (𝜏𝑡)  lifetimes and 

inelastic scattering time (𝜏𝑖) in related systems. Qualitatively, the inelastic scattering rate 

should be smaller than transport rate, which in turn is less than the quantum relaxation 

rate (
1

𝜏𝑖
<

1

𝜏𝑡
<

1

𝜏𝑞
). Indeed, for both samples A and B, 𝜏q is the shortest, and about an 

order of magnitude smaller than 𝜏𝑡, as expected when small angle scattering is dominant. 

Furthermore, the inelastic time scale is the longest, and much longer than quantum and 

transport lifetimes. This same trend in time scales is also reported in other AlGaN/GaN 

systems, as can be seen in table 3.1.  

    Physically, the SdH effect arises from the tuning of density of states as well as the 

Fermi level by the magnetic field. With increasing magnetic field, Landau levels 
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periodically cross the Fermi level, resulting in oscillations of conductance. Whereas, 

weak localization is associated to non-classical back scattering of the carrier to the origin, 

where small angle scattering by long range interaction is ineffective for this process [27]. 

As a matter of fact, weak localization is an interference phenomenon hence sensitive to 

the phase of the wavefunction. At low temperatures, although small-angle scattering is 

frequent, only interactions that destroy phase coherence such as electron-electron and 

electron-phonon scatterings play important roles in the weak localization process [59]. 

Table 3.1 Comparison of Shubnikov-de Haas oscillation and weak localization 

parameters in GaN based 2DEG. The inelastic scattering time is the value at the lowest 

temperature respectively. 

 

 

System 

Carrier 

density 

(1013cm−2) 

Quantum 

lifetime 

𝜏𝑞(𝑝𝑠) 

Transport 

lifetime 

𝜏𝑡(𝑝𝑠) 

Inelastic 

time 

𝜏𝑖(𝑝𝑠) 

Al0.83In0.17N/GaN (A) 1.94 0.035 0.252 1.66 

Al0.83In0.17N/GaN (B) 1.53 0.074 0.45 4.02 

Al0.25Ga0.75N/GaN(ref.[5]) 1.01 0.050 0.26 4.00 

Al0.22Ga0.78N/GaN(ref.[60]) 1.25 0.078 0.13 4.67 

 

    In conclusion, weak localization is observed for the first time in AlInN/GaN 

heterostructures at low temperatures (T < 20 K). The zero-field conductivity varies as lnT 

and the magnetoconductivity increases with increasing magnetic field for low fields, both 

of which are hallmarks of weak localization. We find electron-electron scattering is the 

dominant phase breaking mechanism in this temperature range. At high magnetic fields, 

the resistance below 20 K exhibits Shubnikov-de Haas oscillations. The large ratio 

between the transport and quantum lifetimes indicates small angle scattering is dominant 

at low temperatures. Our angle dependent measurement shows that the magnetoresistance 
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scales with Bcosθ, confirming the two dimensionality of system. Below 20 K the carrier 

mobility is weakly reduced with increasing temperature. In contrast, above 20 K the 

mobility rapidly decreases with increasing temperature as the source of scattering 

changes from acoustic phonons to optical phonons.  

Electron-electron scattering, small angle scattering due to long-range Coulomb 

interactions, acoustic phonons and optical phonons all progressively contribute to the 

decrease in mobility with rising temperature for the 2DEG in AlInN/GaN heterostructure. 
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CHAPTER 4 

QUANTUM TRANSPORT AND BAND GAP OPENING IN 

MONOLAYER GRAPHENE WITH ANTIDOTS

 

    Due to the unique band structure, graphene has remarkable properties such as ultra 

high mobility, massless Dirac fermions and long mean free path. It is expected to be a 

promising candidate for next generation electronic devices. However graphene has no 

bandgap [3,61]. In order to open a band gap for applications, several strategies have been 

proposed including graphene nanoribbon [12,13], antidot lattice [14], heterostructure and 

chemical doping.  

    An antidot lattice is a regular array of holes. Antidot arrays impose lateral potential 

barriers that create a bandgap in graphene. The size of the gap can be tuned by adjusting 

the antidot lattice parameters. As reported in theoretical studies, the gap can be as large as 

1 eV with the size of antidot as small as 10 nm [14,62-64]. However, there are few 

experimential studies about band gap in antidot graphene [15]. 

Graphene antidot lattices display many interesting transport properties especially in 

magnetic fields where the competing length scales lead to rich physics. Many quantum 

effects such as Shubnikov-de Haas oscillations, weak localization, commensurability 

oscillations and the spin-orbit interaction have been observed [65]. It has becom a great 

ground on which to investigate such fundemantal physics. 
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In this chapter, we studied quantum transport of chemical vapor deposited (CVD) 

monolayer graphene on a SiO2/Si substrate with hexagonal arrays of antidots. We 

observed weak localization and prominent Shubnikov-de Haas (SdH) oscillations. From 

the temperature dependent amplitude of the SdH oscillation and the Dingle plot, the 

effective mass of the electron and the quantum scattering time are obtained. We 

demonstrate that the radius of the antidots greatly affects the properties of graphene. With 

increasing radius, the carrier density is decreased and effective mass is also reduced. 

Furthermore, a band gap ~ 10 meV is opened due to the introduction of antidots lattice. 

 

4.1 SHUBNIKOV DE-HAAS OSCILLATION 

Fig. 4.1(a) shows scanning electron microscope (Zeiss Ultra Plus FESEM) images of 

one sample. The antidot lattice is simiply a triangular array of holes. The radius of the 

antidot and lattice constant can be varied. For simplicity, the distance between nearest 

antidot edge is 200 nm and fixed. The radius of antidot is varied and here we compare r = 

125 nm, r = 50 nm (Fig. 4.1 (a)) and r = 0 nm (CVD graphene).  

    Electrical and magneto transport measurements were conducted in a 31-Tesla 

magnetic field, 50 mm Bore Magnet (cell 9) with 
3
He insert at the NHMFL. The 

magnetoresistance at a set of temperatures for graphene antidots with radius r = 50 nm is 

shown in Fig. 4.1(b). 
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Figure 4.1 (a) SEM image of graphene with antidots. The radius of antidot is around 50 

nm. (b) Magnetoresistance as a function of magnetic field for a set of temperatures for 

monolayer graphene with r =50 nm antidots. (c) Shubinikov de-Haas oscillations as a 

function of 1/B after subtracting the background. Fourier transform analysis is shown in 

the inset. 
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    With increasing magnetic field, Rxx first becomes smaller, showing negative 

magentoresistance due to the suppression of weak localization. This will be discussed 

later. Above 7 T, Shubnikov de-Haas oscillations appear and become prominent at larger 

fields. In order to see the oscillations clearly, the background has been removed and ΔRxx 

is shown as a function of 1/B in Fig. 4.1(c). Here the background is determined by 

averaging the curves connecting the maxima and minima respectively. Clearly these 

oscillations exhibit temperature dependence. The amplitude becomes smaller with 

increasing temperature. 

    The SdH oscillation can be expressed by [2,66] 

∆𝑅𝑥𝑥 = 𝑅0
𝜒

sinh(𝜒)
exp (

−𝜋

𝜔𝑐𝜏𝑞
) cos [2𝜋 (

𝐵𝐹

𝐵
+

1

2
+ 𝛽)]                                (4.1) 

where𝜒 = 2𝜋2𝑘𝐵𝑇 ∆𝐸⁄ , ∆𝐸 = ℏ𝜔𝑐 = ℏ𝑒𝐵 𝑚∗⁄ . 𝑘𝐵 is the Boltzmann constant, ℏ is the 

reduced Planck constant, e is the electron charge, 𝜏𝑞 is the quantum lifetime, 𝛽  is the 

associated Berry phase and 𝐵𝐹is the oscillation frequency in Tesla, which is the magnetic 

field of the n=0 Landau level. The SdH oscillation is periodic in 1/B and Fourier 

transform analysis shows the frequency is BF = 114.6 T as shown in the inset of Fig. 

4.1(c). Since  

𝑛𝑆𝑑𝐻 = 4𝑒𝐵𝐹 ℎ⁄ = 2𝑒𝐵𝐹 (𝜋ℏ⁄ )                                            (4.2) 

Here the factor of four is due to four-fold degeneracy of the spin and valley in graphene, 

in contrast to 2DEG in AlInN/GaN heterostructure where 𝑛𝑆𝑑𝐻 = 𝑒𝐵𝐹 (𝜋ℏ)⁄ . The carrier 

density of r = 50 nm graphene antidots is 𝑛𝑆𝑑𝐻 = 1.108 × 1013𝑐𝑚−2.  
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Figure 4.2 (a) Magnetotransport for monolayer graphene with different radii antidots and 

pure graphene at 370 mK. (b) SdH oscillations after subtracting the background. 

 

    In order to know the effect of the antidot array, monolayer graphene with different 

antidot radii have been fabricated and measured as shown in Fig. 4.2(a). Three effects can 

be seen. First, the introduction of antidots increases the resistance of sample. Graphene 

without antidots has a much smaller resistance than samples with antidots. Second, the 

magnitude of oscillations is enhanced by the antidots. With increasing magnetic field, 

SdH oscillations appear for all the samples, but when the antidot array is introduced and 

the radius increased, the oscillation becomes prominent as in Fig. 4.2(b). The peak value 
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is almost 800 Ω for r = 125 nm at 28 T, whereas it is only 140 Ω at 30 T for CVD 

graphene without antidots (r = 0 nm). Furthermore, the maxima move to lower magnetic 

fields with increasing antidot size. For the same Landau level, for example nL = 4, the 

magnetic field is 27.2 T, 25.9 T, and 24.7 T for r = 0 nm, 50 nm, and 125 nm antidot 

samples rescpectively. Hence the antidot size indeed affects the properties of graphene. 

    The Landau fan diagram [1,67] is shown in Fig. 4.3(a). The intercept with the N axis is 

the associated Berry phase β. From the fitting, 𝛽 ~ 0.39 ± 0.04, 0.67 ± 0.06, 0.53 ±

0.02 for r = 0, 50, and 125 nm graphene antidot samples respectively. The value for r = 

125 nm antidots is very close to 0.5, corresponding to the Berry phase 𝜑𝐵 = 2𝜋𝛽 ≅ 𝜋, 

indicating the presence of Dirac fermions. But the values for CVD graphene and 50 nm 

antidots are a little off from 0.5. Furthermore, the slope of the linear fit for each sample is 

different. CVD graphene has the largest slope. With increasing antidot radius the slope 

which is proportional to BF becomes smaller; therefore the SdH oscillation frequency BF 

becomes smaller. By 𝑛𝑆𝑑𝐻 = 2𝑒𝐵𝐹 (𝜋ℏ)⁄ , the carrier density of CVD graphene is largest 

and it is reduced with the increase in antidot size. The reason for this can be understood 

as follows. Since the nearest edge to edge distance is fixed, the number of antidots 

becomes less when the radius of antidots is increased. In the constant area, the total area 

of antidots is still increased in our sample. So the area with graphene is decreased, the 

total number of carriers is also decreased. In addition, the carrier density is affected by 

the interplay between the graphene and the substrate, especially by charged impurities 

[68]. The reduction of contact area between the graphene and the substrate leads to less 

carriers transferred to the graphene [69]. The suspended graphene usually has a smaller 
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carrier density [70]. Hence the carrier density is decreased with increasing antidot size in 

our graphene samples. 

    The effective mass 𝑚∗can be extracted from the temperature dependence of the SdH 

amplitude at a constant magnetic field by [71] 

 
∆𝑅(𝑇,𝐵)

∆𝑅(𝑇0,𝐵)
=

 𝑇 sinh (2𝜋2𝑘𝐵𝑇0 ∆𝐸(𝐵))⁄

𝑇0 sinh (2𝜋2𝑘𝐵𝑇 ∆𝐸(𝐵))⁄
                                            (4.3) 

Here we chose the lowest temperature 0.37 K as T0. The Landau level spacing values 

∆𝐸(𝐵) = ℏ𝑒𝐵 𝑚∗⁄  for different magnetic fields are obtained from the best fit using 

Equation (4.3) and are shown in Fig. 4.3(b). Hence the effective mass 𝑚∗is obtained from 

the slope of the linear fit. For all three samples, CVD graphene has the smallest slope. 

And with increasing antidot radius the slope increases. The effective masses are 

(0.0875 ± 0.0047)𝑚𝑒 , (0.0775 ± 0.0023)𝑚𝑒 , (0.064 ± 0.0021)𝑚𝑒  respectively for 

CVD graphene, r = 50 nm and r = 125 nm antidot samples, shown in Table 4.1. All the 

effective masses are very small, implying the nature of massless Dirac particles. Clearly, 

the introduction of an antidot lattice has impact on the effective mass of the electrons. It 

is interesting that m
*
 becomes smaller with increasing antidot radius. Generally antidots 

should introduce more scattering than that in the CVD graphene, which suppresses the 

motion of electrons, resulting in a larger effective mass. But our experimental observation 

is opposite. The reason is [11] 

 𝑚∗ =
𝐸𝐹

𝑣𝐹
2 =

ℏ𝑘𝐹

𝑣𝐹
=

ℏ√𝜋

𝑣𝐹
√𝑛                                                    (4.4) 

here 𝑘𝐹
2 𝜋 = 𝑛⁄  and 𝐸𝐹 = ℏ𝑣𝐹𝑘𝐹  [11,23]. The effective mass depends on the square root 

of electron density n, which has been widely observed in graphene [1,66,72]. Since the 
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CVD graphene without antidots has a larger carrier density, the effective mass is 

consequently larger. 

 

 

 

Figure 4.3 (a) Landau fan diagram. (b) Field dependence of Landau level spacing. (c) 

Dingle plot to obtain the quantum lifetimes at T= 0.37 K. 
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The quantum lifetime is obtained from the Dingle plot [71] 

 𝑙𝑛 [∆𝑅(𝑇, 𝐵)sinh (𝜒) 𝜒⁄ ] ∝ −𝜋𝑚∗ (𝑒𝜏𝑞𝐵)⁄                                         (4.5) 

Figure 4.3(c) shows the data at T = 0.37 K. The quantum lifetime from this Dingle 

equation is 𝜏𝑞 = 0.016 𝑝𝑠 for r = 50 nm antidot graphene. This corresponds to a Dingle 

temperature 𝑇𝐷 = ℏ (2𝜋𝑘𝐵𝜏𝑞⁄ ) = 74 𝐾; the broadening of the Landau levels, obtained by 

kBTD ~6.4 meV, is much smaller than Landau level spacing ∆𝐸(𝐵) = 43.6 𝑚𝑒𝑉 at 29 T. 

This explains the prominent amplitude of the oscillations .  Furthermore, the quantum 

lifetime is smaller than the transport lifetime obtained from Hall mobility 𝜏𝑡 = 0.024 ps. 

Quantum lifetime includes contributions from all scattering mechanisms; however the 

transport lifetime is mainly determined by large angle scattering. The ratio τt τq = 1.5⁄ , 

indicating small-angle scattering associated with long range Coulomb interaction is of 

significance [38,55,73].   

Table 4.1 Electronic and transport parameters for graphene antidot samples. 

 

Antidot 

Radius (nm) 

Carrier density 

(1013𝑐𝑚−2) 

Effective 

mass m
*
 

Quantum 

lifetime 

𝜏𝑞(𝑝𝑠) 

r = 0 1.225 0.0875 me 0.022 

r = 50 1.108 0.0775 me 0.016 

r =125 1.067 0.0640 me 0.018 

 

4.2 WEAK LOCALIZATION 

    As discussed in Chapter 1, graphene has the pseudo spin. Due to the chirality of 

carriers in monolayer graphene [32], weak localization is more complex than that in the 

2DEG. Weak localization usually arises from the back-scattering of carriers and the 
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constructive interference of the wave function. Because of the Berry phase of 𝜋, anti-

weak localization is expected if chiral symmetry is conserved. However, anti-localization 

can be suppressed by trigonal warping and intravalley scattering [38]. Furthermore 

conventional weak localization can be restored by elastic intervalley scattering [55] as 

discussed in Chapter 1. 

    Due to the weak localization, the correction to the change of magnetoconductivity is 

[15,37,38,74-76]  

∆𝜎(𝐵) =
𝑒2

𝜋ℎ
[𝐹 (

𝐵

𝐵𝜙
) − 𝐹 (

𝐵

𝐵𝜙+2𝐵𝑖
) − 2𝐹 (

𝐵

𝐵𝜙+𝐵∗
)                          (4.6) 

𝐹(𝑧) = 𝑙𝑛𝑧 + 𝜓(
1

2
+

1

𝑧
), 𝐵𝜙,𝑖,∗ =

ℏ

4𝐷𝑒
𝜏𝜙,𝑖,∗
−1  

Here 𝜓(𝑧)  is the digamma function, 𝜏𝜙 is the phase breaking time,  𝜏𝑖  is the elastic 

intervalley scattering time, 𝜏∗
−1 = 𝜏𝑖

−1 + 𝜏𝑤
−1 + 𝜏𝑧

−1 , where 𝜏𝑤  is related to trigonal 

warping which breaks 𝑝  →  −𝑝  symmetry of the electronic dispersion and 𝜏𝑧  is the 

intravalley scattering time. D is the diffusion constant given by 𝐷 = 𝑣𝐹
2𝜏 2⁄ . 𝜏 is the 

transport scattering time obtained from the carrier mobility. Because of the Berry phase 

in monolayer graphene, the two trajectories are expected to gain a phase difference of π. 

However, chirality is reversed between the two valleys, thus zero phase difference 

between two self-intersecting trajectories is allowed in the presence of significant 

intervalley scattering. The first term leads to a positive magnetoconductivity if the 

decoherence time 𝜏𝜙 is large.  
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Figure 4.4 (a) The change of magnetoconductivity at low magnetic fields for a set of 

temperatures. (b) Inverse phase breaking time with the variation of temperature. (c) 

Scattering lengths as a function of temperature. 

     

    The change of magnetoconductivity ∆𝜎 of our r = 50 nm antidot graphene is shown in 

Fig. 4.4(a) for a set of temperatures. At low temperature the conductivity ∆𝜎 increases 

with rising magnetic field at low fields and then decreases above 0.15 T. At higher 

temperature, the conductivity monotonically increases and the value is smaller. We 

computed the scattering times from the best fits of experimental data to Eq. (4.6).  
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We find that the inelastic scattering rate is linearly proportional to temperature,𝜏𝜙
−1 ∝

𝑇 , as shown in Fig. 4.4(b). The temperature dependence of 𝜏𝜙  contains the inelastic 

scattering information responsible for phase breaking of charge carriers [27]. That means 

after coherence time 𝜏𝜙 the wave functions which result in the constructive interference 

of a carrier are out of phase. This linearity has been reported by other groups and 

attributed to phase breaking by inelastic electron-electron scattering [15,38]. Then I 

calculated the phase coherence length 𝐿𝜙, the elastic intervalley scattering length 𝐿𝑖 and 

the combination of intravalley and trigonal warping scattering lengths by 𝐿𝜙,𝑖,∗ =

√𝐷𝜏𝜙,𝑖,∗ [39,55] for the sample with r = 50 nm antidots. The phase coherence length is 

220 nm at the lowest temperature 370 mK, which is very close to the distance of nearest 

antidots. Interestingly, we find that the intervalley scattering length Li for our sample is 

larger than phase coherence length 𝐿𝜙 . But the intravalley scattering length is much 

smaller than the intervalley scattering length and it is temperature independent. 

4.3 ANGLE DEPENDENCE 

    We varied the angle θ between magnetic field and graphene surface (perpendicular 

direction), similar to the measurement in 2DEG of the AlInN/GaN heterostructure. Figure 

4.5 shows the angle dependent resistance for r = 125 nm antidots at 0.37 K. At 0, when 

magnetic field is perpendicular to the sample, the SdH oscillation is pronounced. When 

the angle is increased, the amplitude of the SdH oscillation becomes smaller. At θ = 90, 

there are no oscillations. We have plotted the magnetoresistance as a function of 

perpendicular magnetic field Bcosθ, and all the peaks collapse respectively for different 
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angles, as shown in Fig. 4.5(b). Hence, the behavior of carriers in graphene shows the 

two-dimensional nature. 

   

Figure 4.5 Angle dependence of magnetoresistance for graphene with antidots at T = 

0.37 K. The radius of antidots is 125 nm. 

 

4.4 BAND GAP 

    We have measured the temperature dependent resistance of our graphene samples. If 

there is a gap the resistance should be given by the following activation equation [77-79] 

𝑅 = 𝑅0exp (𝐸𝑎 2𝑘𝐵𝑇⁄ )                                                  (4.7) 

where Ea is the bandgap and R0 is a constant. The Arrhenius plot is shown in Fig. 4.6. 

The monolayer CVD graphene without antidots has no band gap, and we can see the 

slope is almost zero. With the introduction of an antidot lattice, the slope of the curve is 

nonzero. The band gap is calculated to be (10.44 ± 0.03) meV for r = 50 onm antidots. 

The bandgap for r = 125 nm antidots with the same nearest edge to edge distance is a 

little smaller, (7.918 ± 0.026) meV. Eroms et al reported a band gap around 6 meV with 



 

57 

r = 75 nm antidot [15]. Our results show that geometric modification using antidots is an 

effective method for opening a band gap in graphene. 

 

Figure 4.6 Arrhenius plot for zero-field resistance. 

 

    In conclusion, due to the linear energy dispersion relation near Dirac points, the 

carriers of graphene act as massless Dirac particles. We determine the effective mass m
*
= 

0.087me in CVD graphene, much smaller than that in the 2DEG. Weak localization also 

becomes complex because of pseudo spin and nonzero Berry phase. From the weak 

localization effect, we find that electron-electron interaction is the dominant phase 

breaking mechanism. The introduction of an antidot lattice has a great influence on 

transport in graphene. With increasing antidot radius, Shubnikov de-Haas oscillations 

become more prominent, but the carrier density and effective mass are reduced. 

Furthermore, by tuning the antidot size, a band gap ~ 10 meV is obtained. The electronic 

properties such as carrier density, mobility, band gap can be effectively controlled by the 

antidot lattice. 
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CHAPTER 5  

GEOMETRIC DEPENDENCE OF TRANSPORT IN THREE 

DIMENSIONAL CARBON NANOSTRUCTURES

 

In this chapter, three-dimensional carbon nanostructures with spherical voids have 

been studied. We measured the temperature dependent resistance and magnetoresistance 

for 4 samples with different void radii [45]. 

 

5.1 TEMPERATURE DEPENDENT RESISTANCE 

    The fabrication steps for our three-dimensional nanostructures have been described 

elsewhere [41]. Briefly, a chemical-vapor-deposition (CVD) process containing CH4 and 

H2 plasma is used to infiltrate carbon into an artificial opal substrate. After carbon 

infiltration, the SiO2 spheres are etched away by dilute HF. Specimens with four different 

(monodispersed) voids sizes (radius r = 108 nm, 122 nm, 143 nm and 160 nm) were 

studied. Raman spectroscopy (JY Horiba with a HeNe laser) at room temperature is 

displayed in Fig. 5.1. Two prominent peaks are observed, named the D band and the G 

band. The intensity ratio between these two bands (ID/IG) is an indicator of the structural 

defects in the material [80,81]. All four samples have nearly the same ratio, between 1.12 

and 1.16. Hence, irrespective of the void radius, these specimens are equally disordered 

with amorphous carbon. The dimensions of our samples range from ~ 4 mm × 2 mm × 1 

mm to 2.5 mm × 1.2 mm × 0.5 mm.  
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Figure 5.1 Raman spectroscopy of carbon nanostructures. All four samples show similar 

peaks. Reproduced from [82], with the permission of AIP publishing. 

 

    The temperature-dependent resistivity 𝜌(𝑇) is shown in Fig. 5.2. 𝜌 = 𝑅𝑊𝑡 𝐿⁄ , where R 

is the resistance; L, W and t are the geometric length, width and thickness of the sample 

respectively. Clearly, the resistivity increases with decreasing temperature. At high 

temperatures, 𝜌(𝑇)  shows weak temperature dependence. Similar to the Raman data, 

𝜌(𝑇)   has almost the same value, independent of the void radius. However at low 

temperatures below 20 K, the resistivity increases drastically with decreasing 

temperature. Moreover, size dependent 𝜌(𝑇) is observed. For the sample with small void 

size, 𝜌(𝑇) is around 0.5 Ωcm at T =280 mK; but for the larger voids, the resistivity 

increases to 5 Ωcm at 280 mK. Such a large difference might indicate a metal insulator 

transition (MIT); one important criterion for MIT is the value of the zero-temperature 

conductivity 𝜎(𝑇 = 0).  A finite 𝜎(0)  corresponds to the metallic regime, while 𝜎(0) 

vanishes in the insulating phase [83]. In the metallic regime the conductivity can be 
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describe by 𝜎(𝑇, 𝐵) = 𝜎(0, 𝐵) + 𝑐(𝐵)𝑇1/2 [84] where 𝑐(𝐵) is a temperature independent 

constant. The conductivity as a function of T
1/2 

for all four samples is shown in the inset 

of Fig. 2. The extrapolated zero-temperature intercepts, i.e. 𝜎(0), for both r =108 nm and 

122 nm are finite and positive, indicating metallic behavior. In contrast samples with 

larger voids have negative intercepts [84,85]. Hence with increased void size, charge 

transport changes from metallic to insulating. 

 

Figure 5.2 Temperature dependent resistivity of structures at zero-magnetic field. For 

clarity, the resistivity of only two samples is plotted. The inset is the conductivity vs. T
1/2

 

for four samples. 

 

5.2 LINEAR MAGNETORESISTANCE AND UNIVERSAL BEHAVIOR 

    The magnetoresistance (MR) is defined as follows: 

𝑀𝑅 = [𝑅𝑥𝑥(𝐵, 𝑇) − 𝑅𝑥𝑥(0, 𝑇)] 𝑅𝑥𝑥(0, 𝑇)⁄                               (5.1) 

where Rxx(B,T) and Rxx(0,T) are the resistances at magnetic field B and zero respectively. 

The transverse MR, i.e. for magnetic field (B) perpendicular to the input current (B  I), 

as a function of the applied magnetic field is plotted in Fig. 5.3 for the sample with r 

=143 nm. At each temperature, the MR increases with increasing magnetic field. Above 2 
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K, the MR is quadratic at low magnetic fields, but crosses over to a linear dependence at 

higher fields [80]. Interestingly, the MR remains linear and non-saturated even at 18 T, 

the highest field studied. At a fixed magnetic field the MR increases as temperature is 

decreased. However, in contrast to the behavior at high temperatures, the MR below 2 K 

becomes smaller at decreased temperatures. Moreover the MR in this regime saturates at 

high magnetic fields. 

 

Figure 5.3 Transverse MR versus magnetic field B (B  I) at a set of temperatures for the 

sample with void radius r =143 nm. 

 

    DC Hall measurements show that the charge transport is dominated by positive holes. 

From the Hall voltage, the carrier density p is calculated according to 𝑉𝐻 = 𝐼𝐵 (𝑝𝑒𝑡)⁄ . 

The carrier mobility is obtained by 𝜇 = 1 (𝑝𝑒𝜌⁄ ); here I is the input current, e is the 

charge of the carriers, 𝜌 is the resistivity and t is the geometric thickness of the sample. 

As shown in Fig. 5.4(a), the carrier density p decreases with decreasing temperature. 

However, the mobility displays complicated temperature dependence. As the temperature 

is reduced, the mobility increases until 1.06 K where it reaches a maximum, and then it 

decreases at lower temperatures. This single asymmetrical peak as a function of 
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temperature may result from two competing scattering mechanisms, such as lattice 

vibrations and defect scattering, which has been reported in the classic work on boron 

doped silicon [86] as well as black Phosphorus and the topological insulator YPtSb 

[87,88]. In our system the mobility is linearly proportional to the temperature below 1.06 

K, whereas it is inversely proportional above 1.06 K. Fig. 5.4(b) displays the temperature 

dependence of the mobility; all points (T >2 K) are best described by a straight line, 

following 𝜇(𝑇) ∝ 𝑇−1. Such temperature dependence is due to acoustic-mode phonon 

scattering where the relaxation time is inversely proportional to the temperature [88-91].  

The slope of the linear MR, dMR/dB, as a function of inverse temperature is shown in 

Fig. 5.4(b). Remarkably this slope is also linearly proportional to inverse temperature, the 

same behavior as the mobility above 1.06 K. The linear increase in slope (dMR/dB) with 

the carrier mobility as evidenced in Fig. 5.4(c) validates the conjecture that slope of the 

linear MR is directly dependent on the mobility [92].  

The significance of the carrier mobility in the linear MR is further attested by the 

crossover field Bcross. The crossover field, where the MR changes from quadratic 

behavior to linear behavior, is also highly temperature dependent. Bcross increases with 

temperature, which may indicate that Bcross is also dependent on mobility. Fig. 5.4(c) 

confirms our expectation because the crossover field is indeed proportional to µ. This 

behavior is different from the Parish and Littlewood model in highly disordered system 

where 𝐵𝑐𝑟𝑜𝑠𝑠 ∝ 𝜇−1 [93,94].  
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Figure 5.4 (a) Temperature dependence of carrier density and mobility for the sample 

with void radius r =143 nm. (b) Inverse temperature dependence of the linear slope 

(dMR/dB) and carrier mobility µ. (c) The linear dependence of slope and crossover field 

on mobility, validating that the MR is proportional to the mobility. 
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As concluded earlier, the slope is directly proportional to the mobility [92,95], hence 

the linear MR is given by  

𝑀𝑅 ∝ 𝜇(𝑇)𝐵                                                          (5.2) 

Since 𝜇(𝑇) ∝ 𝑇−1, we anticipate 

  𝑀𝑅 ∝ 𝐵 𝑇⁄                                                              (5.3) 

Consequently the linear MR will only be a function of  𝜉 ≡ 𝐵/𝑇  , i.e. 𝑀𝑅 = 𝑓(𝜉) . 

Independent of the individual values of B and T, the MR is the same as long as ξ has the 

same value. Therefore, a universal behavior follows and can be used to predict the 

magnetoresistance. MR data for r =143 nm is replotted as a function of this parameter ξ 

in Fig. 5.5(a). All data at different temperatures do collapse onto a single curve, 

indicating universal behavior. Interestingly, although this universal behavior is derived in 

the linear regime, universality with 𝜉 appears to be a more general feature. As shown in 

Fig. 5.5(a), even in the quadratic regime MR continues to follow the universal curve.  

    According to Kohler’s rule, if there is a single species of charge carrier and the 

scattering time is the same at all points on the Fermi surface, the field dependence of the 

MR can be rescaled to a universal function [96] 

∆𝑅

𝑅(0,𝑇)
= 𝑓 (

𝐵

𝑅(0,𝑇)
) , or = 𝐹(𝜇𝐵)                                     (5.4) 

Where R(0,T) is the zero-magnetic field resistance. The finding of universality, as 

evidenced in Fig. 5.5(a), indicates that a single scattering time is dominant in our sample 

above 2 K [97-99]. However, Kohler type scaling behavior is not observed at lower 

temperatures below 2 K. Such deviations may indicate the presence of additional 

scattering mechanisms. This can be explained from the behavior of the mobility. As 

discussed earlier, the mobility increases towards a maximum and then falls off with 
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decreasing temperature, consistent with the dominance of phonon scattering at high 

temperatures and emergence of surface scattering at low temperatures. 

 

Figure 5.5 (a) Universal behavior of the MR as a function of B/T for all four samples, 

following Kohler’s rule. (b) Contour plots of MR on the B-T plane as a function of 

magnetic field and temperature. The MR becomes larger with increased void radius. 

 

    Magnetoresistance for structures with voids of different size (r = 108 nm, 122 nm and 

160 nm) show qualitatively similar temperature and field dependences as in the case of r 

=143 nm. As a function of temperature, the MR increases with decreasing temperature 

until a peak value (at about 2 K) is reached. It then falls at lower temperatures. Also the 

MR increases with increasing magnetic field. However the MR also displays a 

dependence on void size. Similar to the zero-field resistivity, the MR increases with void 

radius [100]. For example, at the peak (around 2 K and 18 T), the value of 

magnetoresistance is only 15.7% for the r =108 nm sample; it increases to 54.2% for the 
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largest void size (160 nm). It seems that the insulating phase with a large void radius has 

a stronger magneto response than the metallic samples. The B-T plane contour plots of 

peak behavior for all four sizes are shown in Fig. 5.5(b). 

    Universal behavior as a function of  𝜉 ≡ 𝐵/𝑇  is also observed for the other three 

samples. The entire experimental data fall on the respective Kohler’s curves for each 

sample as shown in Fig. 5.5(a). Such curves show the void size dependence; in the 

smaller sized sample the MR is smaller. Moreover the MR becomes saturated for the 

samples with r =108 and 122 nm in high B/T region. 

 

Figure 5.6 The MR at different angles at T=2 K for two samples. The inset is a schematic 

diagram of the microscopic current flow around the voids. The red arrow indicates that 

the current has components along all three Cartesian directions. Reproduced from [82], 

with the permission of AIP publishing. 

 

5.3 ORIENTATION INDEPENDENCE 

The orientation dependence of the MR on magnetic field was also investigated. 

Current is applied along the longest dimension of the sample. The resistance is measured 

along the current while the orientation of the sample with respect to the applied field 

(fixed direction) is varied by changing angle , as shown in the inset of Fig. 5.6. 
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Generally in materials where spin effects are negligible, 𝑀𝑅 ∝ 𝑠𝑖𝑛𝜃, which is widely 

reported in Graphene [101], nonmagnetic metals [97] and topological insulators [102]. 

Interestingly, the MR in our carbon structures is independent of the angle  In Fig. 5.6, 

the MR at four different angles overlap perfectly for r =143 nm sample at 2 K. The same 

is true for the 108 nm sample. We believe this orientation independence of the MR results 

from the no-line of sight geometry in these structures. Because the samples are packed 

with voids, the charge carriers cannot flow straight between electrodes; instead they must 

zigzag around the voids. That is, no matter what is the direction of magnetic field, the 

current in the sample has to flow in all three Cartesian directions, as illustrated in the 

inset of Fig. 5.6. A similar conclusion was drawn by Shik [103] for transport in 

semiconductors with high inhomogeneity. Hence the overall transport does not change as 

the angle between the current and magnetic field is varied. 

 

In summary, the magneto transport properties in 3D carbon nanostructures with an 

ordered lattice of spherical voids are qualitatively similar to those of materials with 

imperfections. A linear MR is observed. Void radius plays an important role in the zero-

field resistance and in the MR. By increasing the void size, the material is tuned from 

metal to insulator; the MR is also enhanced. Interestingly the MR displays distinct high 

and low temperature behavior. At high temperatures the mobility is inversely 

proportional to the temperature and controls magneto transport; in this regime, the MR 

exhibits a Kohler type universal behavior with B/T. Furthermore, the MR is insensitive to 

the relative orientation between the magnetic field and the direction of the bulk current 

flow.  
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Linear MR even at high magnetic fields coupled with insensitivity to orientation is an 

interesting combination that may be useful in omnidirectional magnetic field detectors. 
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CHAPTER 6 

CONCLUSION

 

    Electrical and magneto transport properties have been investigated in three types of 

systems: Graphene, Two-dimensional electron gas (2DEG) in AlInN/GaN 

heterostructures and 3D carbon nanostructures with spherical voids.  

    AlInN is the newest and amongst the widest band gap semiconductors. We report the 

first observation of weak localization in the 2DEG of a AlInN/GaN heterostucture. This 

is confirmed by the lnT dependence of the zero-field conductivity and angle dependence 

of magnetoresistance. We demonstrate that electron-electron scattering is the principal 

phase breaking mechanism. Furthermore, the Shubnikov-de Haas (SdH) oscillation is 

studied in this system, and is consistent with the conventional 2DEG behavior. The 

effective mass of the electron is found to be 0.2327me. 

Graphene, a single layer of carbon atoms, has an unconventional linear energy 

dispersion relation near the Dirac points. We determine the effective mass to be 0.087me 

in CVD graphene, much smaller than that in the 2DEG. Due to the pseudo spin and 

chirality we find weak localization is more complex than in the 2DEG in AlInN/GaN. 

Furthermore, the antidot lattice has great influence on the properties of graphene; it can 

effectively change the carrier density and effective mass by tuning antidot size. In 

addition, a band gap ~ 10 meV is obtained by such geometric manipulations. 
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The magneto response observed in graphene and the 2DEG is sensitive to the 

orientation between the applied magnetic field and input current, showing the two-

dimensional nature of carriers. However, we find that orientation-independent 

magnetoresistance can be achieved in three-dimensional carbon nanostructures with 

spherical voids. Moreover, non-saturating linear magnetoresistance in such system is 

observed, and the magnitude can be enhanced by increasing void size. Linear 

magnetoresistance coupled with orientation insensitivity is an interesting combination for 

omnidirectional magnetic field detectors. 

The study of these three materials concludes that the structure difference of system 

affects the energy dispersion relation, which gives rise to various physical properties. By 

manipulating the geometric parameters, we can effectively tune the electronic properties 

of the systems. 
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APPENDIX A 

FABRICATION OF GRAPHENE WITH AN ANTIDOT LATTICE 

 

The procedures to pattern antidots on graphene are shown in Fig. A.1. They include: 

1. Spin coating the positive resist (PMMA 950k) on graphene using a spinner at 

4000 rpm for 60 sec. The thickness of resist is around 300 nm. Repeat again so 

that the resist is thick enough. After that, put the sample on the hotplate at 150 C 

for 90 sec. 

2. Electron beam lithography. Load the sample into the chamber of the JOEL JSM 

840A Scanning Microscope. Pump the chamber to 20mT. Control the electron 

beam gun using a write program to pattern the antidots. 

3. Development. After the desired regions are exposed by the electron beam, 

develop the sample using MIBK: IPA=1:3 for 30 sec at 23 C, then flush using 

IPA for 40 sec. Observe the antidots using an optical microscope; if the pattern is 

not clear, do the development a little longer. Then bake the sample again at 150 

C for 60 sec. 

4. Etch graphene using O2 plasma. The antidot lattice has been formed on resist. 

Now we need to transfer these antidots to graphene. Using the oxygen plasma, the 

carbon atoms which are not covered by resist can be removed. Put the sample into 

the chamber of Phantom Reactive Ion Etch (Trion Technology). Set up the 
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pressure as 100 mT, ICP power as 50 W, RIE power 50 W and O2 flow 90 sccm. 

The etching time is 11 sec. Check the pattern after O2 etching using the optical 

microscope.  

So far the antidots have been formed. Next we are going to do the second-step 

lithography and deposit Ti/Au contacts.  

5. Electron beam lithography to pattern contacts on graphene. Spin coat the 

graphene using resist PMMA 950k. Put the sample in the chamber of SEM again; 

pattern the contact using electron gun.  

6. Development, the same as step 3. 

7. Deposit the Ti/Au thin films using electron beam deposition. Load the sample and 

pump to vacuum ~2 × 10−6 Torr . The voltage of electron gun is 4.79 kV. 

Increase the current to 84 mA, deposit 10 nm Titanium (Ti) at the rate around 0.3 

Å/s. Then change to the gold (Au) source; start deposition at a current ~ 88 mA 

and deposition rate 0.7 Å/s. The thickness of Au is 60 nm. 

8. Lift off. Put the sample into acetone, waiting for 45 min until the undesired 

pattern is moved away from the substrate. 
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Figure A.1 Schematic diagrams of fabrication procedures using electron beam 

lithography, reactive ion etch and electron gun deposition. 

 

The antidot pattern is designed using DesignCAD. There are four layers in total as 

shown in Fig. A.2. Layer 1 is a hexagonal array of antidots, with the radius of antidot r 

=125 nm. Layers 2 and 3 are the mesas to isolate the graphene with other regions. Layer 4 

is the contact pattern. Each layer is written separately with the corresponding 

magnification using electron beam lithography. 
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Figure A.2 Antidot pattern design. (a) All 4 layers, labeled using different colors. Black 

region is layer 1, layer 2 is red region, layer 3 is blue region and layer 4 is orange region. 

(b)Zoom-in image of layer 1 with antidot array. It is a hexagonal lattice of antidots.
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APPENDIX B 

FABRICATION OF AN ALINN/GAN HALL BAR

 

The procedures to fabricate the AlInN/GaN Hall bar include: 

1. Clean the wafer. Put the AlInN/GaN wafer in Acetone/IPA hot bath for 3 min, then 

spray the wafer using IPA and blow to dry the sample using N2 gas. Put the wafer 

in the HCl/HNO3 = 3:1 for 2 min. Finally clean the acid using DI water for 5 min 

then dry the wafer.  

2. Coat photo resist. Spin coating S1813 resist at 4000 rpm for 45 sec. Then bake the 

wafer at 85 C for 5 min. 

3. Mesa lithography. Clean the mask using Acetone/IPA and load dry mask in the 

Karl Suss MJB3 Mask Aligner. Expose the sample using HP mode for 8 sec with 

intensity13 mW/cm
2
.  

4. Image reversal. Put the wafer in the oven with NH3 gas at 90 C for 30 min. Then 

expose again without mask for 18 sec using Mask Aligner. 

5. Develop. Put the wafer in the developer for 45 sec; then clean it using DI water for 

5 min. Blow dry using N2. Put it on the hot plate to bake again for 5 min at 85 C. 

6. Etch the wafer. Using the inductive coupled Cl2/BCl3 plasma to etch the wafer. 

Remove the resist by Acetone. Check the mesa using the optical microscope. 
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So far the mesa of Hall bar has been finished. Next parts are to fabricate the Ohmic 

contacts. 

7. Coat the photo resist again as in step 2. Clean the wafer if needed. 

8. Ohmic lithography. Load the Ohmic contacts mask. Expose the wafer using HP 

mode for 8 sec with intensity13 mW/cm
2
.  

9. Image reversal and develop again. 

10. Deposit the Ti/Al/Ti/Au thin films. Using the electron beam deposition to deposit 

the thin film. The first layer is Ti with thickness of 40 nm, then 120 nm Al, then Ti 

with 40 nm again; the last layer is 80 nm Au.  

11. Lift off. Put the wafer in Acetone for 30 min to remove the photo resist and 

undesired thin film. Wash it using DI water for 5 min. 

12. Anneal. Put the sample in the oven and open the N2 gas valve. Set the temperature 

at 850C. Wait for 30 sec to make the Al to diffuse to the 2DEG region.  

The last parts are to fabricate the contact probes. 

13. Coat the photo resist and do lithography with smaller contacts mask.  

14. Deposit Ti/Au. Using the electron beam deposition to deposit the Ti/Au with 

thickness 10/80 nm. After that lift off and clean the sample. 
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Figure B.1 Schematic diagrams of procedures to fabricate a Hall bar in AlInN/GaN 

heterostructure. 
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APPENDIX C 

OPERATION MANUALS

Electron Beam Lithography 

    The lithography machine is a JEOL_JSM_840A Scanning Microscope combined with 

writing software. Below is the operation of electron beam lithography: 

1. Load the sample. Check the sample stage position first, X: 25.0, Y: 35.0, Working 

Distance: 39. Put the sample onto the holder. Insert the sample rod to the end of 

chamber, with the disk firmly seated on the open end. Push the EVAC/VENT 

button to evacuate the chamber. Wait until the light goes off in about 1 minute. 

Press V7 under the table then open the gate valve. Slowly push the sample into 

stage. Unscrew the rod counterclockwise and then pull it to the door. Close gate 

valve and press V7 again. Finally Push EVAC/VENT red light button. The 

loading of sample is done. 

2. Turn on SEM. Press ACCEL VOLTAGE to turn on SEM. Check the light of 

HEAT/PREHEAT and make sure it is on. The FILAMENT current is 150 mA. 

Increase the voltage to 30 kV; then increase the filament current slowly and check 

the pressure at same time until to the maximum current ~260 mA. Wait for one 

hour to warm up the filament. 
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3. Move the work distance to 8 mm. Switch the Detector button to SEI, PMT to ON, 

COLLECTOR to ON and BEAM BLANKING to EXT. Turn on the digital to 

analog converter. 

4. Turn on the ‘SEM_write’ software and Open the .lay file.  

5. Press G and O on the keyboard to move sample to O hole. Adjust FOCUS to get 

the clear image. 

6. Change the PROBE CURRENT to different values and record the real current on 

the current meter. Change GUN ALIGNMENT to modify if the current is too 

small. 

7. Make Spot. First move the sample to the edge. Change FOCUS to get the clear 

image. Increase the MAGNIFICATION to 100 000X. Turn off PCD and EXT 

SCAN, press SPOT button on SCAN MODE. Wait for 1 min or more until the 

BRIGHTNESS change to green from red. Press PIC to check the spot we got. 

Move the sample and repeat SPOT until the spot is clear and circular. 

8. Write the pattern. Set up the current, for example 10 pA; set magnification 

according to the size of pattern, turn off RDC, click write and press “Yes, write.”  

            Because: Dose × Area = Current × time 

                           C/cm
2
 × cm

2
= Ampere × s 

             Here Charge dose is usually ~ 3.8 pC/um
2
. So the writing time can be estimated. 

9. Write layer 2, 3 and 4 if needed. 

10. Shut down the SEM. Change the work distance to 39 mm. Press Home. Switch 

Detector to off, PMT to off, COLLECTOR to off and BEAM BLANKING to off. 
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Turn off the Digit to Analog Converter.  Switch the Magnification to Maximum 

300 000X, and Probe Current to Minimum. Reduce the FILAMENT Current to 

150 mA and Voltage to 0 kV. Switch ACCEL VOLTAGE to Off. 

11.  Unload the sample from the chamber. 

 

Electron Beam Deposition 

    The Ti/Au thin film is deposited by electron beam evaporation machine. Here are the 

operation procedures: 

1. Press ‘Chamber Vent’, wait for 30 Sec then open the chamber. 

2. Check the metal source in four boats by clicking ‘CW’ in EV-CI Indexer panel. 

3. Mount the sample to the sample holder. Check Shutter is working or not by 

‘Shutters, Substr’. 

4. Close the door when everything is ok. Turn on ‘Vacuum’ to pump the chamber.  

Then turn on the chiller of Turbo.  

5. Wait for 2 hours to reach the vacuum around 10
-6

 Torr. Check the pressure by 

clicking ‘EMIS’ and record the value. 

6. Turn on the Electron Beam Supply. 

(a) Click on ‘Main’, check the ‘Emission Current Adjust’ is on Zero. (b) Press 

‘High Voltage ON’, then ‘High Voltages’ should show the value (4.8 kV 

usually). (c) Press ‘FIL ON/OFF’. 

7. Select the target metal such as Ti ‘Pocket’ in ‘EV-CI Indexer’ by click ‘CW’. 

8. Choose the program. 
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(a) Click ‘Program’ and rotate the knob to choose the desired metal target. Ti is 9. 

Au is 5. 

(b) Press ‘Next’ to check Density, Z-Ratio and Tooling Factor. Ti: Density is 4.5 

g/cm3, Z ratio is 0.628, Tooling factor for E gun method is 215%. Au: Density 

19.3 g/cm3, Z ratio is 0.381. 

9. Turn on Mini Sweep ‘Power’ and ‘On’ of Sweep Status to control electron beam. 

10. Increase current slowly and check the target to make sure electron hit the target. 

Ti: 75 mA, 0.5A/sec. Au: 65 mA, 0.4A/sec. 

11.  Deposit the film by turning on ‘Shutter’ and press “Zero”. Record the current and 

deposition rate. 

12. Close ‘shutter’ to bottom when thickness is ok. Reduce the current to 0 and click 

‘OFF’ 

13. Choose another metal target such as Au by ‘CW’ ‘Pocket’ and check ‘Program’. 

Deposit again following the previous procedures. 

14. Decrease the current to 0 and turn off “FIL ON/OFF”. Turn off Mini Sweep by 

‘OFF’ and Power ‘OFF’. 

15. Press “High Voltage OFF” and wait until the voltage drops to 0. Then Switch 

Main to OFF. 

16. Turn off “Vacuum” and click Zero. Wait for 30 min to vent the chamber. 

17. Press ‘Vent’ and open the chamber.  

18. Remove the sample from the sample holder. 

19. Close the chamber and ‘vacuum’ for a while and then Turn off the chiller. 
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Trion Phantom II Reactive Ion Etcher 

    When the antidots are patterned by electron beam lithography, the exposed graphene 

region will be etched away by oxygen plasma using reactive ion etch. Here are the 

procedures for operation of this machine: 

1. Press ‘Pump’ and then ‘Main’ power. Check the pressure of N2 gas. 

2. Press ‘Vent Reactor’ to vent the chamber and open the lid. Load samples on to the 

main chamber chuck. Then press “Close Lid” to close the chamber. 

3. Click ‘Download Recipe’ and then ‘Load/Edit Recipe’. 

4.  Set up the desired Recipe Parameters. For example, Pressure 100 mT, ICP RF 50 

W, RIE RF 50 W, O2 gas flow 90 sccm. Click ‘Exit’ when done. Press ‘Download 

Recipe’. Parameters are shown in Fig. C.1. 

5. Press ‘Manual Process Control’. Press the ‘Vacuum Closed’ button and then 

‘Press Iso Closed’. 

6. Once pumped down to 2 mT, the ‘Gases off’ will appear. Make sure the O2 gas 

valve of the cylinder is open. Press it and it becomes ‘Gases On’.  

7. Press the ‘RF Off’ button to toggle it to ‘RF On’. This will start the process and 

the pink plasma glowing can be observed. 

8. The timer will count upwards and click ‘RF On’ to stop. The etching time for 

monolayer graphene is around 11 sec. 

9. Press ‘Gases On’, then ‘Press Iso Open’ and ‘Vacuum Open’. Press ‘Exit’ at the 

end. 

10. Press ‘Vent Reactor’ to unload the samples. 

11. Turn off the machine by pressing ‘Exit’ and ‘OFF’ button. 
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Figure C.1 Etch parameters setup for Trion Phantom II Reactive Ion Etcher. 

 

Karl Suss MJB3 Mask Aligner 

The Hall bar mesa and Ohmic contacts are patterned by photolithography using Karl Suss 

MJB3 Mask Aligner. The operation procedures include: 

1. Check the compressed air pressure, turn on the vacuum pump. 

2. Power up the lamp controller, Start the arc lamp by pressing the start button. Wait 

15 min for the lamp to warm up. 

3. Power on the Mask Aligner by pressing the red POWER button on the control 

panel. Turn on the microscope. 

4. Load the mask. Mount the photo-mask on the mask holder and make sure the 

chrome side of the mask is facing up, close to the wafer. 



 

90 

5. Press the VACUUM MASK button on the control panel and check that the mask 

is securely attached to the holder. Pick up the mask holder and flip it over. Insert 

it into the mask holder grooves and tighten the knobs on the front. 

6. Load the wafer. Place the sample on the sample holder and verify that all vacuum 

holes are covered. 

7. While viewing through the microscope, gently move the Contact Lever counter-

clockwise on the left-hand side of Mask Aligner. The Separation Lever cannot be 

used unless the Contact lever is pushed into contact position. 

8. Move the Separation lever to the front of the tool. The SEPAEARION indicator 

light on the control panel will illuminate and the CONTACT light will power off.  

9. Focus the microscope. Align the substrate using the X, Y and θ position 

micrometers. When done, move the Separation Lever backwards to move the 

sample into the contact position. The SEPAEARION indicator light will be off 

and the CONTACT light will illuminate. 

10. Select an exposure mode. 

11. Standard Mode (ST) 

SOFT CONTACT: This brings the substrate into contact with the mask using the 

only pressure applied from the contact lever. 

HARD CONTACT: Using Nitrogen to press substrate again the mask. Vacuum 

under the wafer is OFF.  

High Precision Mode (HP) 

Make the smallest gap between the mask and substrate. So vacuum pump the 

space between mask and substrate, but vacuum under the wafer is OFF. 
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12. Set up the desired exposure time. Exposure time=exposure dosage/UV intensity. 

Exposure dosage is in mJ/cm
2
 and the UV intensity is in mW/cm

2
. Press the 

EXPOSURE button on the control panel, the vacuum light will turn off and the 

mirror moves forward to expose the sample. Do not see the UV light. 

13. Move the Contact Lever clockwise to the retracted position when the exposure is 

done. 

14. Remove the sample and take away the mask from the mask aligner. First loosen 

the knobs on the front and slide the mask holder to the left. Place the mask 

holders upside down and then press the VACUUM MASK button. 

15. Turn off the microscope power supply. Turn off the Mask Aligner by pressing the 

red POWER on the front control panel. Turn off the lamp controller and vacuum 

pump. 

 

Figure C.2 Karl Suss MJB3 Mask Aligner. 
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Magnets at the National High Magnetic Field Laboratory 

      

Figure C.3 Left is 18/20 Tesla General Purpose Superconducting Magnet. Right is 31 

Tesla, 50 mm Bore Magnet (Cell 9), the magnetic field in the figure is 28.5T. 

 

The operation procedures of SCM2 and Cell 9 include: 

1. Mount the sample to the sample holder. Connect the Probe Sensor Cable to probe 

temperature controller. 

2. Slide load lock all the way down on probe and attach clamps. Move the probe 

carefully and mount it on gate value and tighten the KF-50 clamp. 

3. Connect Turbo Pump out Line to the Probe Load Lock Pump Out Port and 

tighten the clamp. Open Load Lock Valve and Sliding Seal Valve. When ready, 

open Pump Valve and turn on Turbo Pump. 

4. After the pressure reaches 5×10
-3

 mbar, close the Load Lock Valve. 

5. Open Gate Valve to load the probe. Make sure the Load Lock Valve is closed. 

6. Set the Sorb temperature to 25 K and choose appropriate heater range. 
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7. Hold the probe and loosen probe clamp to lower the probe slightly. Monitor the 

cooling rate on the Lakeshore 336 Temperature Controller. Loading the probe 

too quickly will cause liquid Helium boiling off from the bath. 

8. Watch the temperature controller. When output channel D reaches about 4 K, the 

probe can be lowered again. But the temperature of channel D should start to 

increase when keep loading, because the probe is passing through the Sorb region 

located inside the insert, which is at 25 K. 

9. Keep lowering the probe until the temperature starts to decrease, stop and tighten 

the clamp. Wait 10 min to cool down. 

10. Hold the probe, remove the clamps and insert the probe all the way slightly. 

Watch the 1 K Pot temperature and keep it below 1.75 K. 

11. Close sliding Seal Valve and Turbo Pump Valve, turn off the turbo pump. Now 

the sample loading is completed. 

12. Condense He
3
. Change Sorb temperature from 25 K to 45 K on the temperature 

controller. Set the heater range as High. Make sure the 1k Pot temperature less 

than 1.5 K in order to condense Helium. Wait 1 hour for Sorb regeneration. 

13. Change Sorb Temperature to desired temperature to get the corresponding probe 

temperature. For example, Sorb temperature at 2 K gives around 250 mK probe 

temperature. 

14. Connect the lock-in amplifiers (SR 350) to the sample. Set up the input voltage 

and frequency. Start the measurement. 

15. Open the NML Data Acquisition software to take data and control magnetic 

field. For the superconductive magnet SCM2, choose the sweep rate 0.3 T/min 
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and the magnetic field limit as 18 T. For the 31 Tesla, 50 mm Bore Magnet (Cell 

9) which is a resistive magnet, the sweeping rate can be 2 T/min. 
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