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Abstract 

Multiferroic materials enable the exploration of electrical control of magnetic 

properties and vice versa. Their increasing interest is especially due to their potential 

applications in the industry of information storage. Thanks to recent progress in 

nanotechnology, they have also been found to have many other applications such as 

transducers and sensors, and they already occupy a unique place in the biomedical field. 

The objective of this project is to study multiferroic nanofibers made of cobalt ferrite 

CoFe2O4 (CFO) and barium titanate BaTiO3 (BTO) with a specific focus in the 

characterization of the ferroelectric phase. We researched the state of knowledge 

concerning the size effects on phase transition for nanoparticles and polycrystals BTO.  

The ferroelectric phase transition of BTO occurs when it changes from a tetragonal 

(anisotropic) crystal structure to a cubic (isotropic) structure. This change suggests that 

optical second harmonic generation (SHG) is a good measurement technique for 

monitoring the phase transition of the BTO half of the nanofibers. We designed and 

prepared a temperature dependent SHG experiment on magnetically aligned fibers in 

transmission with the possibility to investigate the polarization dependence of the signal. 

We also prepared interdigital electrodes on glass for the future study of the fibers in an 

external electric field. 
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Chapter 1:  Motivations for the study of multiferroic materials. 

This work is part of a project involving multiferroic nanofibers made of cobalt ferrite 

CoFe2O4 (CFO) and barium titanate BaTiO3 (BTO) in collaboration between Dr. Crawford’s 

group and Dr. Wu’s group. Its ultimate goal is to study the coupling between the two 

phases. The context and motivations to study this CFO/BTO multiferroic material will be 

discussed   in this chapter. The investigation will then concentrate on the ferroelectric 

phase characterization of barium titanate, which is the main objective of this specific 

work. Details of this investigation will be discussed in the second and third chapter. 

The increasing interest concerning multiferroic and magnetoelectric materials is 

especially due to their potentially long-term applications in the industry of information 

storage[1]. In addition, being a part of the “smart materials,” they find a multitude of 

applications such as transducers or magnetic field sensors[2] as well as occupy a unique 

place in the field of biomedical[3]. While multiferroic and magnetoelectric materials can 

be single phase, most of them are multiphase. The meaning of “multiferroic” has evolved 

since such materials have been studied, and its current definition is a material that 

possesses two or more ferroic properties (cf. fig. 1.1).



 
 

2 
 

 
Figure 1.1 Relationship between multiferroic and magnetoelectric materials[1]. 

For the information storage application, magnetoelectric coupling is the key: It allows for 

the writing of data electrically (avoiding the necessity to generate a high field to write 

magnetically) and for the reading of data magnetically (avoiding the problems to 

electrically read ferroelectric random access memory FeRAMs, which is usually a 

destructive process). The magnetoelectric coupling may arise from any magnetic and 

electric order. This coupling could happen directly between the two orders or indirectly, 

for example via strain. For a multiphase multiferroic system, the strain due to the 

interface of the two materials often plays an important role. Indirect coupling via strain 

could result in interesting properties such as piezomagnetism, magnetostriction, 

piezoelectric, electrostriction (see glossary for detailed definitions). First, we consider the 

magnetoelectric coupling without any mechanical stress or strain involved. The free 

energy determines the behavior of the material and its response to a magnetic or electric 

field.
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Using the Einstein summation convention, the free energy of a system in response to an 

electric field E and a magnetic field H could be expressed as: 

− 𝐹(𝐸, 𝐻) =
1

2
𝜀0 𝜀𝑖𝑗𝐸𝑖𝐸𝑗 +

1

2
 𝜇0𝜇𝑖𝑗𝐻𝑖𝐻𝑗 +  𝛼𝑖𝑗𝐸𝑖𝐻𝑗 +  

1

2
 𝛽𝑖𝑗𝑘𝐸𝑖𝐻𝑗𝐻𝑘 +  

1

2
𝛾𝑖𝑗𝑘𝐻𝑖𝐸𝑗𝐸𝑘  

where, 

 𝜀𝑖𝑗   (relative permittivity tensor) is temperature dependent, 

 𝜇𝑖𝑗  (relative permeability tensor) is temperature dependent, 

 𝛼𝑖𝑗 is a linear magnetoelectric coupling coefficient and is temperature dependent, 

 𝛽𝑖𝑗𝑘 and  𝛾𝑖𝑗𝑘 are quadratic magnetoelectric coupling coefficients and are 

temperature dependent. 

Note that we have ignored higher coupling orders in this expression. However, it is 

important to keep in mind that couplings involving higher rank tensor than 𝛼𝑖𝑗  might 

become dominant in many cases. As an example, 𝛽𝑖𝑗𝑘𝐻𝑗𝐻𝑘 dominates 𝛼𝑖𝑗𝐻𝑗  in the 

piezoelectric paramagnet NiSO4 ,6H2O [4]. In general, the coupling coefficients are rather 

difficult to determine and highly dependent on the structure of the materials. Now, if we 

want to include the couplings via mechanical stress or strain, cross terms need to be 

added in the free energy equation above. The coupling will become even more difficult 

to characterize. 
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In order to catch a glimpse of all the possible combinations among multiferroics, the 

following table gives a list of properties between which couplings may occur (see glossary 

for the corresponding definitions of the properties): 

Table 1.1 Electric and magnetic properties 

Electric properties Magnetic properties 

Ferroelectric 

Ferrielectric 

Antiferroelectric 

Piezoelectric 

Electrostriction 

Flexoelectric 

Ferromagnetic 

Ferrimagnetic 

Antiferromagnetic 

Piezomagnetic 

Magnetostriction 

Ferrotoroidic 

 

Among these properties, ferroelectric and ferrimagnetic are expected to be the dominant 

ones in our cobalt ferrite / barium titanate (CFO/BTO) nanofibers sample. The CFO part is 

ferrimagnetic and the BTO part is ferroelectric. The fiber as a whole is multiphase where 

strain is expected to be the main coupling mechanism. However, before we can achieve 

and analyze coupling between the two phases, we need to fully understand the two 

phases separately. In this project, we will investigate the ferroelectric BTO phase. The 

plan of the experiment builds on the state of knowledge in the field, more specifically on 

the size effects affecting phase transitions, ferroelectricity and optical properties of 

barium titanate nanoparticles (NPs) and polycrystals (PCs): this will be discussed in the 
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second chapter. We will discuss how the crystal symmetry changes from isotropic to 

anisotropic during the cubic-tetragonal phase transition. This structural change means 

that the optical second harmonic generation (SHG) is a good measurement tool for 

monitoring the corresponding phase transition. As a result, an optical SHG experiment 

have been prepared and its setup will be described in the third chapter.
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Chapter 2:  Preliminary studies: barium titanate BaTiO3 

1. Perovskites: 

Barium titanate is part of the perovskite family. Perovskites structures (XIIA2+VIB4+X2−
3) 

have been studied theoretically as well as experimentally, and they occupy a quite 

important class in material science. Each individual compound of this family has its own 

interest. The structure of highest symmetry is cubic (fig. 2.1, retrieved from Wikipedia 

common). 

  

Figure 2.1 Structure of a perovskite with a chemical formula ABX3 
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There are, however, many types of distortion that could occur in the bulk structure of this 

family, such as: 

 distortion of the whole structure (for example, elongation in a particular 

direction), 

 A displacement, 

 B displacement, 

 octahedron rotation, 

 octahedron distortion. 

During the past 15 years, progress in nanotechnology and computation resulted in new 

avenues of research for this material and, more recently, have revealed some interesting 

mechanisms such as “oxygen breathing motion” resulting in magnetic properties for this 

material[5]. For the purpose of this work, we will focus on barium titanate BaTiO3 as a 

bulk material in the range tetragonal - cubic and will concentrate on ferroelectric and non-

linear optical properties. 

 

2. Bulk material: different crystals, ferroelectricity, T dependance 

The bulk material exists in five phases, with the following transition temperatures: 

 

Figure 2.2 Phase transitions for barium titanate[6] 
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The cubic phase is paraelectric and the tetragonal is ferroelectric. The corresponding 

transition is a first order phase transition (in agreement with latent heat measurements 

and simulations[7]) but is close to a second order phase transition. Studies revealed a 

mixed behavior displacive and order disorder (see glossary for detailed definitions)[7] 

[8][9]. Simulation of the phase transitions using an effective Hamiltonian, including low 

energy distortions only, have demonstrated a good agreement with experiments on bulk 

materials [7]. The ferroelectricity appears with the tetragonality, below 120˚C. During the 

phase transition between cubic and tetragonal, the atom displacements allow the 

production of a dipole moment (fig. 2.3). 

Cubic BaTiO3 

 

Dipole moment 

along the [100] 

direction 

 

  

Figure 2.3 Cubic-tetragonal phase transition © DoITPoMS, University of Cambridge 

 

It is important to note that the next orthorhombic and rhombohedral phases are 

ferroelectric as well. These phases differ from the cubic phase by a displacement of the 

titanium atom in the oxygen octahedron, along different directions (cf. fig. 2.4). 
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  Figure 2.4 Ti movement in the O octahedra © DoITPoMS, University of Cambridge 

 

3. Size effect 

The structural and physical properties of BatiO3 are dramatically size-dependent, even for 

fine ceramics with grain size as large as 1 µm. Different studies have already been 

conducted to determine how the size and shape of BaTiO3 could affect the phase 

transition temperatures, the ratio of the lattice parameters c/a at a fixed temperature, 

the ferroelectric properties, and even optical SHG. Even though the results also depend 

on the various techniques used to prepare the material itself, they have a common trend. 

They had been carefully analyzed and documented by Jian Yu and Junhao Chu for the ENN 

(Encyclopedia of Nanoscience and Nanotechnology)[8]. 
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a. Influence on the phase transition tetragonal - cubic temperature 

 

The tetragonal-cubic phase transition temperature decreases significantly for small 

particles. At room temperature, the tetragonality is affected for particle sizes ranging 

from 120 nm to 300 nm. Results from Xray diffraction (XRD), transmission electron 

microscopy (TEM) and specific surface area measurements on barium titanate powders 

lead to a “critical size” of the cubic-tetragonal transition of about 120 nm (fig. 2.5). 

 
Figure 2.5 Change in tetrogonality c/a with particle size at room temperature[10] 

 

The critical size of the tetragonal cubic transition at room temperature for NPs  was found 

to be between 50 nm and 90 nm depending on different synthesis methods and different 

measurement techniques[11][10][12][13]. Differential scanning calorimetry (DSC) 

measurements had also been performed on polycrystals:  the cubic-tetragonal phase 

transition shifts to a slightly lower temperature, and the orthorhombic shifts to a slightly 
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higher temperature. But below 100nm, DSC measurements do not reveal the phase 

transition temperatures anymore (fig. 2.6). 

 

Figure 2.6 DSC measurements for BaTiO3 
polycrystals with different grain sizes[11] 

 

To conclude this short analysis concerning size effects on phase transitions, we can say 

that the discrepancies about the temperature of the cubic-tetragonal phase transition 

depend on the synthesis techniques of  NPs, the measurement methods (XRD, TEM, 

scanning electron microscopy SEM, DSC), but also the strain or boundaries associated 

with the type of material. For example, the strain induced my MgO on thin film  increases 

the tetragonality[14], but XRD measurements trend to prove that the core of nanocrystals 

remains tetragonal while the surface relaxes to a cubic phase[15]: strain, surface effects 

become predominant below 100nm. 
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b. Influence on the dielectric constant temperature dependence 

Due to the size dependence of the cubic-tetragonal phase transition, the ferroelectric 

phase transition temperature Tc decreases with decreasing grain size similarly to the 

cubic-tetragonal phase transition[10]. Below 1 μm, however, the permittivity decreases 

with decreasing size. The P-E hysteresis cycle is still present for NPs ranging between 

1.2μm and 0.3 μm, but the coercive field may vary (in the range of 0.22MV/m                           

to 0.11MV/m); the remanent and spontaneous polarizations both decrease with                  

the size [16]. Again, those results could vary with synthesis techniques and/or presence 

of defects, but they emphasize the predominance of surface effects as well as the possible 

presence of different phases. Also, below I μm, there is a loss of long range cooperative 

interaction and twins effect, which usually participate in the domain formations for the 

bulk material [11][17]. To conclude, XRD measurements even combined with TEM, SEM, 

DSC, cannot give alone a deep understanding of the structure changes in barium titanate 

at low scale, which conducted the scientific community to perform optics experiments. 

 

4. Optical Second Harmonic Generation (SHG) 

A good understanding of optical SHG should require a quantum mechanics description 

especially for a nanomaterial; however, a classical approach gives a quite reliable 

description for the bulk material. 
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a. Optical SHG for the bulk crystal: classical description[18] 

Optical SHG requires some nonlinear dielectric properties: the polarization P of a crystal 

due to an external field E should have a component proportional to the square of the 

field. 

The polarization in a crystal comes from the displacement of electrons in an electric field: 

𝑝(𝑡) =  −𝑛𝑒𝑥(𝑡) 

In this equation, 𝑛 is the electronic density, 𝑒 the charge of electron, and 𝑥(𝑡) is the 

electrons displacement from their equilibrium position. 

 For a symmetric potential 𝑉(𝑥) , (cf. one direction of the cubic case): 

𝑉(𝑥) = 𝑉(−𝑥) =  
1

2
 𝑚 𝜔0

2𝑥2 + 𝑜(𝑥3)   

where 𝑚 is the electron mass and 𝜔0 is the resonance frequency of the electronic 

oscillator. 

The corresponding restoring force is: 

𝐹 =  − 𝑚 𝜔0
2 𝑥 + 𝑜(𝑥2) 

For a field 𝐸(𝜔)(t), with 𝜔 small compare to  𝜔0, 

 𝐹 =  −𝑒𝐸(𝑡)         
 

⇒      𝑥(𝑡) =  − 
𝑒

𝑚 𝜔0
2  𝐸(𝑡) 

In this case, the polarization is directly proportional to the field: the signal generated by 

light interaction with a p-wave does not depend on the light polarization. 
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 For an asymmetric potential 𝑉(𝑥) , (cf. one direction of the tetragonal case), the 

potential can be approximated as: 

𝑉(𝑥) =  
1

2
 𝑚 𝜔0

2𝑥2 +
1

3
𝑚 𝐷 𝑥3 +  𝑜(𝑥3) 

 

The corresponding restoring force is: 

𝐹 =  − 𝑚 𝜔0
2 𝑥 + 𝑚 𝐷 𝑥2 + 𝑜(𝑥2) 

In this case, for a driven field  𝐸(𝜔)(𝑡) =  𝐸(𝜔) cos 𝜔𝑡 , with 𝜔 small compare to  𝜔0, 

taking into account the possible losses (absorption), x(t) is solution of the following 

equation: 

𝑑2𝑥

𝑑𝑡2
+ 𝜎

𝑑𝑥

𝑑𝑡
+ 𝜔0

2 𝑥 + 𝐷 𝑥2 =  − 
𝑒𝐸(𝜔)

2𝑚
 (𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡) 

The solution is       𝑥(𝑡) =  
1

2
(𝑞1𝑒𝑖𝜔𝑡 +  𝑞2𝑒2𝑖𝜔𝑡 +  𝑞1

∗𝑒−𝑖𝜔𝑡 +  𝑞2
∗𝑒−2𝑖𝜔𝑡) 

with       𝑞1 =  − 
𝑒𝐸(𝜔)

2𝑚
 

1

(𝜔0
2 − 𝜔2)+𝑖𝜔𝜎

        and          𝑞2 =  
−𝐷𝑒2[𝐸(𝜔)]2

2𝑚2[(𝜔0
2 − 𝜔2)+𝑖𝜔𝜎]2[𝜔0

2−4𝜔2+2𝑖𝜔𝜎]
 

The resulting polarizations are: 

𝑝(𝜔) (𝑡) =  − 
𝑛𝑒

2
 (𝑞1𝑒𝑖𝜔𝑡+ 𝑞1

∗𝑒−𝑖𝜔𝑡 )     and   𝑝(2𝜔) (𝑡) =  − 
𝑛𝑒

2
 (𝑞2𝑒2𝑖𝜔𝑡 + 𝑞2

∗𝑒−2𝑖𝜔𝑡 )  

It is normal to define the nonlinear optical coefficients  d  as: 

 𝑝(2𝜔) (𝑡) =  − 
1

2
 (𝑑(2𝜔)𝑞2 [𝐸(𝜔)]

2
𝑒2𝑖𝜔𝑡 + 𝑐. 𝑐. )  
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Using the full expression for q2 , we get: 

𝑑(2𝜔) =  
−𝐷𝑛𝑒3

2𝑚2[(𝜔0
2  −  𝜔2) + 𝑖𝜔𝜎]2[𝜔0

2 − 4𝜔2 + 2𝑖𝜔𝜎]
 

This coefficient can also be rewritten in term of the susceptibility as: 

𝑑(2𝜔) =  
𝑚𝐷[𝜒(𝜔)]2𝜒(2𝜔)𝜖0

3

2𝑛2𝑒3
 

A simple expression for the resulting amplitude polarization can be obtained: 

 𝑃(2𝜔) =  𝑑(2𝜔)𝐸(𝜔)𝐸(𝜔) 

These last expressions have given good predictions of the polarization for different 

ferroelectric materials.[19] 

In three dimensions, 

𝑃𝑖
(2𝜔)

=  𝑑𝑖𝑗𝑘
(2𝜔)

 𝐸𝑗
(𝜔)

𝐸𝑘
(𝜔)

 

A good estimate of the nonlinear optical coefficients 𝑑𝑖𝑗𝑘
(2𝜔)

 can be found from this 

calculation for barium titanate. 

 

b. Known nonlinear optical coefficients for BaTiO3 

Since the development of this classical concept, different measurement techniques for 

the  𝑑𝑖𝑗𝑘
(2𝜔)

 have emerged[20]. From those measurements, the coefficients are usually 
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given in pm/V for a specific incident wavelength and are well known for the bulk BaTiO3 

(cf. table 2.1) [14]. 

Table 2.1 Optical SHG coefficients for bulk barium titanate 

 
Optical SHG coefficient (pm/V) at 1.064μm 

𝑑15 ≡ 𝑑113 17.0 

𝑑33 ≡ 𝑑333 6.8 

𝑑31 ≡ 𝑑311 15.7 

 

 

c. Size effects: 

As the size decreases, the orbital hybridizations and the tetragonal distortions decrease, 

leading to smaller optical SHG coefficients. The SHG signal becomes weaker but can still 

be measured and may eventually be used to determine the phase transition temperature 

or the critical size. Some experiments had already been conducted:  

 The SHG signal from small grains of about 35nm is 103 weaker than the ones 

generated by grains of about 10 µm[11].  

 The SHG signal from barium titanate thin film grown by metal organic chemical 

vapor deposition (MOCVD) on magnesium oxide gives lower values for the optical 

coefficients, even though the deposition technique and the strain involved are 

assumed to increase the tetragonality in BaTiO3 (table 2.2). 



17 
 

Table 2.2 Optical SHG coefficients for BaTiO3 on MgO[14] 

 d (pm/V) at 1.064 µm 

c oriented film 2.13 

a oriented film 1.5 

 

 SHG measurements with incoming signal polarization dependence reveal the 

presence of tetragonality in BaTiO3 NPs with size ranging between 22nm and 

55nm. Also, the direction of the a and c axis can be deduced from the 

measurements[21]. 

 



 
 

18 
 

Chapter 3:  Experimental section 

1. Experimental design and expectations 

Following the previous study, an optical SHG experiment to characterize the multiferroic 

nanofibers CFO/BTO had been prepared, with capabilities of: 

 temperature dependence, 

 excitation light polarization dependence, 

 possibilities to investigate the response of the multifferoic nanofibers to an 

external electric field. 

The main objective of the experiment is to observe the temperature dependence of the 

signal to monitor the Curie temperature.  The ferromagnetic phase of the fibers has been 

used to magnetically align the fibers. Variations of SHG signal intensity with respect to the 

temperature are expected to detect the Curie temperature, while changes of SHG signal 

intensity versus incoming light polarization can confirm the presence of the tetragonal 

phase and give the angle between the a and c axis of the ferroelectric phase. The magnetic 

alignment gives the possibility to select one single fiber or a group of fibers close to each 

other, aligned in the same direction.
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Further work with the addition of an external electric field are planned: different 

interdigital electrodes on glass had been prepared for that purpose. The magnetic 

alignment of the fibers allows for the selection of an external electric field’s particular 

direction with respect to the axis of the fibers. With this new ingredient, a change in 

intensity of the SHG signal versus the polarization of light with the addition of the external 

electric field may emphasize any privileged direction for the polarization dependent SHG 

signal with respect to the fiber axis. 

 

2. Sample preparation 

The nanofibers were aligned on a transparent substrate in a magnetic field of about 

2.36kG via the ferrimagnetic CFO phase (at room temperature). Two substrates were 

used: mica, for X-ray diffraction measurement, and glass, for the transmission 

experiment. The fibers seem to agglomerate differently depending on: 

- the agitation of the solution before deposition, 

- the time spent between the agitation and the deposition, 

- the wetting between the solution and the substrate, 

- the eventual contamination of the solution. 
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Different samples have been prepared for this project (cf. fig. 3.1, 3.2, 3.3, 3.4 and 3.5). 

   

Cluster on sample  Cluster on sample  Overall sample 

Figure 3.1 Sample I prepared by the Dr. Crawford’s Team on glass 

 

   

Clusters on sample  Fibers on sample  Fibers on sample 

Figure 3.2 Sample II prepared by Dr. Crawford’s Team on glass 

 

It can been seen from the figures 3.1 and 3.2 that the alignment is well realized when the 

fibers are far enough, but they could form clusters made of fibers with different directions 

due to the magnetization of the ferrimagnetic phase. 

  



21 
 

Some fibers have successfully been aligned in a direction parallel to interdigital 

electrodes, allowing an experiment with an external electric field perpendicular to the 

axis of the fibers (fig. 3.3). Additional samples have been prepared on glass (fig. 3.4) and 

mica (fig. 3.5). 

   

Image in bright field  Image in dark filed  Fibers on sample 

Figure 3.3 Fibers in interdigital electrodes 

 

Sample on glass (aligned under 2.36kG with agitation) 

   

Clusters on sample  Lower cluster Upper cluster 

Figure 3.4 Sample on glass (aligned under 2.36kG after vortex agitation) 
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Sample on mica  

  

Cluster on sample  Overall sample 

Figure 3.5 Sample on mica 

 

From this alignment, three transmission experiment possibilities have been considered: 

- SHG on a single nanofiber, 

- SHG on a cluster, 

- SHG on a group of nanofibers aligned in the same direction. 

In principle, the best alignment will allow us to excite a group of fibers similarly oriented 

with the same incoming beam in order to increase the intensity of the generated SHG 

signal. This might be necessary because the SHG signal, which is already weak for the bulk 

barium titanate, is expected to be even weaker in our case, due to size effects (cf. analysis 

in the second chapter): the fibers are 7μm long in average and their diameter is close to 

1μm. In addition, the CFO phase may increase the skin depth of these fibers. On the other 

hand, a cluster should also have a better response than a single fiber in term of intensity, 

but the light polarization dependence of the SHG signal should be different for the cluster, 

where the fibers are not “perfectly” aligned. 
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3. Sample holder and sample mount 

The transmission sample holder has been prepared to fit the cryostation mount holder 

for vacuum and low temperature applications. It is made of oxygen free copper with two 

brass screws for the sample holder. It ensures a good thermal contact for round 

microscope glass cover slides of about 18 mm and prevents gas entrapment (fig. 3.6). The 

sample mount fits the sample holder: It is made of aluminum and can hold two different 

rubber silicon heaters for temperature dependent experiments. The two heaters A and B 

(fig 3.7) can be used together with the heater A in the center of the mount (fig. 3.10) or 

separately (fig. 3.8 and fig. 3.9) for different temperature ranges. 

 

 

Figure 3.6 Sample holder 
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Figure 3.7 Heaters A and B 

 

 

 
Figure 3.8 Heater A configuration (back 
side) 

 
 

Figure 3.9 Heater B 
configuration (front side) 

Heater B 

Heater A 
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       Figure 3.10 A + B configuration 

 

Different calibrations have been done for the range of temperature of interest. The data 

for those calibrations are reported in the tables 3.1 and 3.2. 

Table 3.1 Calibration: mount used with one heater alone 
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Table 3.2 Calibration: mount used with the two heaters together (A and B) 

  

Voltage applied to the heater A = 12V DC 
Voltage applied to the heater B = 120V AC 
Note: in this configuration, the voltage applied to 
the heater B exceed the maximum value suggested 
by the data sheet of the heater 

 

 

 

4. Experiment alignment for SHG in transmission 

As seen previously, the SHG signal is expected to be weak, especially due to size effects; 

as a consequence, the experiment requires a high intensity laser. We are using a Mira 

mode locked / pulsed with a frequency of 76 MHz at 840nm. The power is controlled by 

an upstream neutral density filter and a Glan-Taylor polarizer; the polarization angle of 

the incoming p-polarized light is controlled by a half-wave plate (cf. fig 3.11, where λ/2 

stands for half wave plate, PBS is a polarizer beam splitter, ND is a neutral density filter).  
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The focusing lens and the objective are mounted on a Z-stage and the sample is on a XYZ- 

stage. To clearly identify and pre-select the area of interest on the sample, a white source 

of light can be placed between the collimation and the Glan-Taylor polarizer, associated 

with a screen in front of the spectrometer. With a movable CCD camera located in the 

spectrometer, the sample area of interest may be refined, and it is possible to select a 

particular fiber or cluster. Again, the magnetic alignment of the fibers is convenient to 

choose a particular direction of the fiber with respect to the entry slit of the spectrometer. 

For now, only a short pass filter at 450 nm is used to block the excitation beam. It is epoxy 

Focusing 

lens 

ND 

filter 

PB

Collimation 

Glan Taylor 

Polarizer 

 Polarizer      

λ/2 

λ/2 

Objectif 

Filter 

Mira pulsed 

Spectro 

Sample 

Figure 3.11 Experiment design 
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laminated and, in term of power, its best performance is about 1-10 J/cm2. An additional 

filter or a dichroic mirror may be used in the future. 

 

5. Interdigital electrodes on glass 

The electrodes have been prepared via photolithography (by projection) in the 

perspective of investigating the behavior of the fibers in an electric field. The exposure 

and development have been done following the procedure in Dr. Webb’s lab. The 

projection of the interdigital electrodes pattern has been made using different line widths 

(the size has been adjusted via the “number of points” under power point), and the lines 

have been projected at the center of the image. We have measured the resulting lines 

just after the developing with an optical microscope (fig. 3.12, 3.13 and 3.14): the 

minimum width was found to be near the center of the pattern (probably due to 

distortions occurring near the edge of the whole projected image). A calibration has be 

done prior to the preparation of the pattern (fig. 3.15). 
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  Figure 3.12 Measurements made for a line width of 20 points 

 

  

  Figure 3.13 Measurements made for a line width of 50 points 
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   Figure 3.14 Measurements made for a line width of 100 points 

 

Line size (pt.) 
Minimum  length 

(µm) 

100 321 

50 128 

20 18 

Slope: 3.8 μm / point 

 

 

Figure 3.15 Calibration for the projection photolithography  

 

In order to prepare fourteen samples during the same thermal evaporation, a sample 

holder has been prepared (fig 3.16), and the chromium and gold deposition has been 

made via thermal evaporation. We have prepared three types of electrodes (fig 3.17). 
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Figure 3.16 Sample holder 

 

   

Fine electrodes Large electrodes Two sets of electrodes 

Figure 3.17 Interdigital electrodes 

In principle, the different sets of electrodes should allow for different external electric 

field strengths.  

 

6. Future plans: conduct of the experiment 

We have discussed that the SHG signal is expected to monitor the Curie temperature of 

the ferroelectric phase. Also, the polarization dependence of the input laser should 

confirm the presence of the tetragonal phase as well as the angle between the a and c 
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axis in the structure. We expect an eventual shift of the Curie temperature to a lower 

value compared to that of the bulk. This shift might reveal the importance of strain due 

to the CFO phase and other surface effects on the tetragonality. The alignment of the 

fibers is convenient as it allows for the excitation of a large group of nanofibers in order 

to increase the SHG signal, which might be weak for a single fiber due to possible 

absorption process and size effects. However, if the SHG signal from a single fiber is 

intense enough, we might consider investigating the influence of the fiber length on the 

previously discussed results (Curie temperature, presence of the tetragonal structure, 

polarization dependence). Finally, if the signal is too weak, it is still possible to prepare an 

experiment in reflection that might lower some absorption process. 

We have also planned further experiments in an external electric field. It should confirm 

the presence of the tetragonal structure and emphasize any preferred direction for the 

generation of the SHG signal with respect to the main axis of the fibers. The different sets 

of electrodes allow for different maximum field strengths, depending on the distance 

between the interdigital electrodes. However, it is important to note that previous 

experiences conducted on barium titanate have required an electric field of about                 

2 MV/m in order to generate the hysteresis cycle for grain size ranging from 0.3 μm             

to 1.2 μm[16]. If no influence can be seen from the external electric field produced by our 

existing sets of electrodes, we plan to make electrodes with smaller separation distances 

via electron beam lithography in order to reach a higher field. 
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Glossary 

Antiferroelectric: material that possesses ordered dipole moment that can cancel each 

other in the unit cell.  

Antiferromagnetic: material that possesses ordered magnetic moment that can cancel 

each other in the unit cell (in the localized sense). 

Diamagnetic: exhibits a magnetization in response to an applied magnetic field, in the 

opposite direction than the applied field. 

Displacive phase transition: transition with a single potential energy minimum whose 

position shifts at the transition temperature. 

Electrostriction: change in strain as a quadratic function of an applied electric field. 

Ferrimagnetic: material that possesses ordered magnetic moments that do not cancel 

each other completely, which results in a magnetization that can be switched in response 

to an applied magnetic field. 

Ferroelastic: displays a spontaneous and stable deformation (phase change) that can 

been switched hysteretically by an applied stress. 

Ferromagnetic: possesses a spontaneous magnetization that is stable and can be 

switched hysteretically by an applied magnetic field.



 
 

34 
 

Ferrotoroidic: possesses a spontaneous and stable order parameter which is the curl of a 

polarization or magnetization. 

First order phase transition: following the Ehrenfest classification, a first order transition 

has its first derivative of the free energy with respect to the order parameter 

discontinuous at the transition. (The order parameter associated with ferroelectricity is 

the polarization). 

Flexoelectric: exhibits a spontaneous electrical polarization in response to a strain 

gradient. 

Magnetostriction: change in strain as a quadratic function of an applied magnetic field. 

Order disorder phase transition: transition with several minima among which a “choice” 

is made. 

Paramagnetic: exhibits a magnetization in response to an applied magnetic field, in the 

same direction than the applied field (but does not have a spontaneous magnetization). 

Piezoelectric: exhibits the generation of electrical charge in response to an applied 

mechanical stress, and vice-versa. The response is linear. 

Piezomagnetic: exhibits a change of magnetization in response to an applied mechanical 

stress, and vice-versa. The response is linear. 

Pyroelectric: has a spontaneous electric polarization that varies with the temperature. 

Second order phase transition: following the Ehrenfest classification, a first order 

transition has its first derivative of the free energy with respect to the order parameter 
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continuous and its second derivative of the free energy with respect to the order 

parameter discontinuous at the transition. 
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