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SUMMARY

Previous decades of cartilage research have predominantly focused on decou-

pling the solid and fluid interactions of the mechanical response. The resulting bipha-

sic and triphasic models are widely used in the biomechanics community. However, a

simple viscoelastic model is able to account for the stress-relaxation behavior of carti-

lage, without the added complexity of solid and fluid interactions. Using a viscoelastic

model, cartilage is considered a single material with elastic and dissipative proper-

ties. A mechanical characterization is made with fewer material parameters than

are required by the conventional biphasic and triphasic models. This approach has

tremendous utility when comparing cartilage of different species and varying healths.

Additionally, the viscoelastic models can be easily extended in dynamic analysis and

FEA programs.

Cartilage primarily experiences compressive motion during exercise. Therefore,

to mimic biological function, a mechanical test should also compress the cartilage.

One such test is a viscoelastic stress-relaxation experiment. The Prony and frac-

tional calculus viscoelastic models have shown promise in modeling stress-relaxation

of equine articular cartilage. The elastic-viscoelastic correspondence principle is used

to extend linear viscoelasticity to the frequency domain. This provides a comparison

of articular cartilage based on stored and dissipated moduli. The storage and loss

moduli metrics are hypothesized to serve as benchmarks for evaluating osteoarthritic

cartilage, and provide guidelines for newly engineered bio-materials.

The main goal of the current study is to test the applicability of modeling articular

cartilage with viscoelastic models. A secondary goal is to establish a rigorous set of

harvesting techniques that allows access to fresh explants with minimal environmental
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exposure. With a complex substance like cartilage, it is crucial to avoid unnecessary

in vitro environmental exposure. Additional areas of study include: determining the

strain-dependency of the mechanical response, exploring the response of cartilage in

different fluid mediums such as saline, synovial fluid, and synthetic substitutes, and

studying the time-dependent properties of cartilage during stress-relaxation experi-

ments. Equine stifle joints, which are mechanically analogous to human knees, are

harvested and used for analysis in this study. It is believed that the proposed vis-

coelastic models can model other articulating joints as well. If viscoelastic theory can

be used to characterize cartilage, then comparisons can be drawn between real and

artificial cartilage, leading to better joint replacement technology.

xiv



CHAPTER I

INTRODUCTION

Cartilage provides compressive load support and facilitates near frictionless motion

within articulating joints. This flexible substance must allow for motion within the

joint while protecting the bone ends from grinding and wear. When this protection

fails, the cartilage surface breaks down. This is known as osteoarthritis, which is a

common degenerative disease that is painful and often debilitating in humans and

other animals. For humans, artificial joint replacement is often the best option to

remedy a degraded joint, at the cost of many thousands of dollars and lost-time

during rehabilitation [1]. Although artificial joint technology is improving, a joint

replacement has an average life of only 15 years [2], and is subject to catastrophic

failure if the mechanical replacement becomes unseated in the joint capsule. It is

desired to study cartilage to better understand the mechanics of an articulating joint,

in hopes that degradation can be prevented or offset.

In healthy joints, cartilage transfers weight while experiencing little to no wear.

If we characterize the structural properties of cartilage, we can create more effec-

tive mechanical connections, such as porous and/or flexible bearings. Cartilage is

viscoelastic in nature, which allows for elastic and dissipative mechanisms to exist.

This may contribute to the effectiveness of cartilage as a low-wear material. Studying

cartilage could yield biomimetic advances, such as flexible bearings in rotordynamic

systems [3, 4], or improved porous bearings in industrial applications [5].

Cartilage is a unique medium and has been the study of decades of research [6, 7].

Most of this work has focused on the interactions of the collagen matrix and the

1



lubricating synovial fluid that permeates the joint capsule [8, 9, 10, 11, 12]. In addi-

tion, many attempts have been made to develop constitutive relations for cartilage.

The prevailing theories account for the biphasic (solid-fluid) and triphasic (solid-fluid-

ionic) properties of cartilage. These models represent significant contributions to the

constitutive equations of cartilage; however, the utility of a simple model that gives

elastic and dissipative properties is apparent. From this model, mechanical compar-

isons between joints can easily be made, as well as between healthy and osteoarthritic

cartilage.

1.1 Objectives

Viscoelasticity is fundamental to the unique nature of cartilage. For that reason, it is

desired to characterize the viscoelastic response of cartilage. The viscoelastic proper-

ties of a medium can be determined from multiple methods, such as stress-relaxation,

creep, and dynamic testing. The stress-relaxation experiment is particularly useful

because it contains a wide spectrum of storage and loss properties. The primary ob-

jective of the current study is to apply classic viscoelastic models, such as the Prony

series and fractional derivative, to experimental data from stress-relaxation experi-

ments. The time-dependent material properties of cartilage can be characterized from

this information.

Freshly harvested cartilage explants from horses are analyzed with a CETR-UMT-

3 tribometer. The tribometer can perform precise stress-relaxation experiments, and

measure the thickness of cartilage explants. This information is used to determine

the storage and loss moduli of cartilage, which correlate to the stiffness and damping

properties of mechanical systems. In the current study, multiple cartilage plugs are

analyzed and a benchmark is established for healthy cartilage. A deviation from

the benchmark may indicate osteoarthritis. Additional goals for the study include:

determining an effective time constant for the relaxation behavior, and analyzing

2



multiple lubricating mediums for differences in mechanical response. Mow, Lai and

others [13, 14] have shown that the mechanical properties of cartilage are strain-

dependent. A final goal of the work is to propose a linear viscoelastic model that is

also strain-dependent.

1.2 Scope

Healthy cartilage is an effective load support and motion facilitating medium. The

current work aims to understand some of cartilage’s mechanical properties. For

medical applications, it is desired to develop a “macro” understanding of cartilage

in healthy versus osteoarthritic situations. Additionally, the elastic and dissipative

mechanisms in cartilage need to be understood. Artificial joint replacements might

not match the storage and loss properties of real cartilage over the entire physiological

spectrum of motion. It is possible that this contributes to the premature wearing of

artificial joints. Mow [7] has shown that the ionic nature of cartilage and synovial

fluid contributes to the mechanical response by drawing fluid into the porous cartilage

matrix. In the current work, cartilage plugs are submerged in saline, synovial fluid,

hyaluronic acid, and other mediums. The viscoelastic response is then compared

between bathing mediums.

The overarching goal of the current study is to develop and apply viscoelastic

models to cartilage samples. The main limitation of the work is a relatively small

number of samples. The Student’s t test is used to statistically analyze the exper-

imental data, but like many biological studies, the number of samples is small and

the variation is large. However, the viscoelastic nature of the individual samples

is marked. The following chapter discusses the literature related to the mechanical

characterization of articular cartilage.
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CHAPTER II

LITERATURE SURVEY

This chapter is an overview of the fundamentals of cartilage mechanics. First, a

general description of cartilage is given, followed by a chronological review of two

leading theories of cartilage mechanics. Viscoelasticity is introduced, but not fully

developed until the next chapter.

2.1 Cartilage

Cartilage provides compressive load support of articulating joints and cushions the

impact of physical contact between bone surfaces. In healthy joints, cartilage is a

nearly frictionless and low wearing substance. Cartilage functions with a variety of

complex interactions between the solid collagen structure and the lubricating synovial

fluid. A brief biological description of cartilage is included in the next section, with

an emphasis on mechanical modeling.

2.2 Cartilage Composition

Articular cartilage appears smooth and white under macro observation (Fig. 2.1).

However, high magnification shows that cartilage is rough on the order of micrometers.

Its peaks and valleys trap and retain synovial fluid, which helps support joint function.

Structurally, articular cartilage is composed of a porous web of chondrocytes. The

chondrocytes produce the cartilage matrix, composed mainly of collagen fibers in four

layers: the superficial, middle, deep, and calcified.

Cartilage is effective in part because it is flexible and durable. This flexibility fa-

cilitates motion and protects joints from impact and wear. In healthy joints, cartilage

can retain function for the user’s life; however, damaged joints can degrade to painful

4



Figure 2.1: View of cartilage from macro-scale

and debilitating conditions. Cartilage does not recover quickly (or at all) when dam-

aged because there is negligible blood flow to the collagen structure. Instead, nutrients

must be transferred to cartilage through diffusion, which is less effective and more

time consuming. The mechanical functionality of cartilage, combined with poor re-

covery when damaged, has motivated many decades of study. However, physiological,

mechanical, and rheological problems remain to be studied.

Cartilage is a four layer web of collagen fibers (Fig. 2.2). Each of the four layers

contains a different orientation of collagen. Viewed in a cross-section (Fig. 2.2),

the superficial layer contains fibers in a tangential orientation. These fibers resist

shearing forces, while the deeper layers are oriented in a vertical direction to resist

compression. The collagen fibers create a porous matrix that allows synovial fluid to

absorb into the body. Synovial fluid is squeezed from the matrix during compression,

resulting in energy dissipation. The vacated collagen body has a charge imbalance

that draws fluid back into the matrix when the compressive force is released. The

solid and fluid interactions have underpinned models that separate the contributions

of the two phases. Viscoelastic theories characterize cartilage by assuming that it is

5



Figure 2.2: Schematic of the collagen structure of cartilage from the superficial to
deep layers [15]

a homogeneous material that has dissipative capabilities.

Cartilage is particularly difficult to model because it is unique to the user. How-

ever, some important conclusions can be drawn and applied to the fields of mechan-

ics, biomimetics, artificial replacements, and medicine. These include the amount

of modulus retained and dissipated in the cartilage matrix, the time and frequency

dependent behavior of cartilage for a range of physiological gaits, the relaxation be-

havior of cartilage in different lubricating mediums, and the response of cartilage to

different strains. The listed items are objectives of the current study.

2.3 Cartilage Models: Foundation

Dating back to the 1940’s, researchers have attempted to characterize the mechanical

and lubricating nature of cartilage [6, 16]. Early researchers recognized that cartilage

is unique in many ways. Not only does cartilage serve as the cushion for joint inter-

actions, it also facilitates motion by excreting and retaining lubricant in the synovial

capsule. Modern models attempt to obtain a mechanical characterization of cartilage

that can explain, or at least acknowledge, the interactions of the solid matrix and

fluid lubricant. However, cartilage continues to be difficult to characterize completely
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and robustly.

In the 1960’s and 70’s researchers studied the nonlinear relationship of stress and

strain in biological tissues. In work from 1967, Fung [17] shows the strong nonlinear

behavior of tissue from rabbit explants. Although the work does not look at cartilage

specifically, the viscoelastic nature of living tissue is described. Fung shows that the

hysteresis loop of living tissue is nearly strain-rate independent, indicating nonlinear

viscoelastic behavior. Fung’s research is instrumental in developing the field of tissue

mechanics, which is within the realm of continuum mechanics but deviates from

standard solid mechanics. Biological tissues typically undergo much higher strains

than classical materials, and are usually constitutively modeled differently. However,

cartilage deviates less from solid mechanics than other biological substances such as

arteries and ligaments. For this reason, many classical mechanics theories are utilized

to characterize cartilage.

In 1971, Kempson et al. [18] pioneered a study of cartilage as a viscoelastic

medium. Kempson et al. saw viscoelastic behavior in cartilage when performing

indention and uniaxial tension tests. The samples were tested in a bath of Ringer’s

solution to maintain physiological conditions as closely as possible. The Poisson’s

ratio of cartilage was experimentally determined to be near 0.5, similar to rubber.

Kempson et al. did not specifically correlate their findings to viscoelastic theory;

however, the similarity of cartilage to rubber and the finding of a creep mechanism

formed the basis of cartilage viscoelasticity. Many further attempts have been made

to define constitutive equations that govern cartilage. The two leading categories of

models are presented in the following sections.

2.4 Cartilage Models: Biphasic/Triphasic Theory

Mow and Mansour (1977) [19] are attributed with the first known stress-relaxation

experiment on cartilage. They used a rigid confining chamber, porous indenter, load
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Figure 2.3: Reproduction of test setup used by Mow and others [13, 21, 19]

cell, and piston to perform relaxation experiments (Fig. 2.3). Lipshitz et al. [20] also

used the test rig to perform stress-relaxation experiments on cartilage from bovine

samples. A biphasic, rheological model consisting of a Kelvin-Voigt solid and an

incompressible fluid was proposed to model the relaxation behavior. The model

qualitatively describes the viscoelastic relaxation of cartilage, but conclusive results

are not obtained. A confining cylinder is used in the experiments. The cylinder is

intended to simplify the model; however, it makes the results difficult to interpret

because the stress in the cartilage matrix is complex at the boundaries, rather than

uniaxial. Additionally, the experimental procedure involves loading the cartilage in

phases, which allows for relaxation between data collection sets. An instantaneous, or

near instantaneous, displacement must be imposed for a stress-relaxation experiment

to truly capture all of the dissipation.

In 1978, Eisenfeld, Mow and Lipshitz [21] mathematically describe the stress-

relaxation behavior of cartilage in confined compression, and qualitatively validate

their biphasic model [19]. In the model, a nonlinear, permeable, Kelvin-Voigt vis-

coelastic solid is assumed to interact with an incompressible fluid. These interactions
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are governed by a consolidation mechanism and a Darcy type nonlinear permeability

relationship. This is a fundamental advance in the biphasic theory.

The first major biphasic model is attributed to Mow et al. [13] in 1980. The model

describes the coupled solid (20% by weight) and fluid (80% by weight) contributions of

cartilage. The solid and fluid phases are assumed incompressible and non-dissipative,

so the relaxation (dissipative) mechanism is attributed to the frictional interactions

between the solid and fluid phases. Similar to previous tests by Mow and Lipshitz

[22], the cartilage specimens are placed in a confining chamber and compressed with

a porous filter. Recall that this type of testing creates complex stress fields. The

stress-relaxation experiments are performed with a ramp displacement, where the

ramp time, t0, is approximately 2 seconds. Some mismatch between the model and

experiment is introduced here because the relaxation model is derived with an in-

stantaneous displacement (Heaviside unit step). Although Mow’s model has some

shortcomings, it is the fundamental articular cartilage model in the biomechanics

community.

In 1981, Lai, Mow and Roth [14] address the permeability of cartilage and its

effect on cartilage stress response. The biphasic model used considers the solid ma-

trix as linear elastic; however, the experimental data shows strain-dependency (non-

linearity). The authors propose that permeability is non-linear and accounts for the

viscoelastic-like behavior seen. Additional studies also attempt to resolve the appear-

ance of viscoelasticity in the solid cartilage matrix. The biphasic model must satisfy

infinitesimal strain theory, which is one limitation of this study. For fast compression

tests, the biphasic model is unable to track the material behavior. This explains the

ramp input that is used consistently in stress-relaxation experiments. Physiologically

however, a ramp input is an unlikely loading scenario during normal exercise.

Armstrong (1984) [23] extends the biphasic theory of Kuei, Lai, and Mow (KLM)

[13] for the case of stress-relaxation in unconfined compression. The experiment is
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designed with rigid plates in place of porous indenters. The relaxation results show

marked differences between confined and unconfined compression experiments. Not

only does the solid portion of the cartilage experience a different stress field, the

direction of fluid movement is different between tests. In unconfined compression,

fluid moves laterally away from the plates, whereas in confined compression the fluid

excretes in the direction of displacement. Therefore, a porous indenter is required

in confined compression experiments. In physiological joints, both mechanisms exist

simultaneously. For modeling purposes, one direction of fluid transfer is typically

chosen to reduce complexity.

In 1986, Mak [24] extends the biphasic model to include viscoelasticity in the

bulk and shear deformations of the cartilage matrix. The interstitial fluid is consid-

ered inviscid and incompressible. Mak determined that viscoelasticity in the solid

phase of cartilage is an important driver in the mechanical response. The revised

model mimics relaxation behavior from confined compression, rate-controlled experi-

ments. However, a “true” relaxation experiment, with an instantaneous displacement

imposed on an unconfined sample, is not compared in this work.

Many additions and modifications to the biphasic theory are made in the 1990’s

and 2000’s. In 1990, Holmes and Mow [25] extend the biphasic theory to include

finite deformations (hyperelastic biphasic theory). Ateshian et al. [12] corroborate

this theory in 1997 with experimental results. In 1999, Suh and DiSilvestro [26]

perform short ramp time stress-relaxation experiments to test the biphasic theories of

Mow et al. [13] and Mak [24]. The unconfined compression results show that Mow’s

biphasic theory is unable to capture short-term (less than 50 seconds) relaxation

behavior, although it is excellent in describing long-term (longer than 50 seconds)

behavior. Mak’s biphasic model is better suited for describing relaxation mechanisms.

DiSilvestro, Zhu and Suh [27] validate this in 2001.
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Lai et al. [28] show that the ionic properties of cartilage effect the mechanical re-

sponse. The significance of the ionic charge in cartilage and its effect on the material

response is noted; however, quantification is understandably difficult. The triphasic

nature of cartilage explains how fluid is drawn back into the cartilage matrix after

being excreted during compression. The biphasic and triphasic models both separate

the solid and fluid components of cartilage and attempt to characterize the interac-

tions between each phase. While this is a physically intuitive way to model cartilage,

it is also very complex. The complexity does not necessarily increase the model’s

fidelity, which is why the current research models cartilage as a single viscoelastic

material.

The experimental procedures used by Mow, Mak and others remain the predom-

inate means for testing cartilage today. It is important to note some differences

in confined and unconfined compression. An instantaneous displacement cannot be

readily imposed on the cartilage plugs in confined compression. The confining cham-

ber creates very high stresses in the cartilage plugs when a fast displacement is im-

posed (assuming that the porous filter allows negligible fluid flow during compres-

sion). Additionally, the confining chamber creates a 3D stress field on the cartilage

plug throughout. This is because the cartilage is restrained by the rigid walls of the

chamber. Consider an isotropic, elastic material- the stress and strain relations are

determined as follows in cylindrical coordinates [29]:

{σ} =


σr

σθ

σz


=

E

(1 + ν)(1− 2ν)


1− ν ν ν

ν 1− ν ν

ν ν 1− ν




εr

εθ

εz


(2.1)

or for strain in terms of stress:
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{ε} =


εr

εθ

εz


=

1

E


1 −ν −ν

−ν 1 −ν

−ν −ν 1




σr

σθ

σz


(2.2)

Referencing Eq. 2.1, Poisson’s ratio is needed in the confined compression case (εr =

εθ = 0) to obtain stress in the z (vertical) direction (σz):

σz =

[
E

(1− ν2)(1− 2ν)

]
εz (2.3)

Poisson’s ratio must be assumed or determined experimentally, which adds an addi-

tional parameter to the models using confined compression experiments. It is likely

that Poisson’s ratio is also time and frequency dependent, and is difficult to deter-

mine. Poisson’s ratio is not needed for the unconfined compression case (σr = σθ = 0)

because stress and strain are related only by E (refer to Eq. 2.2):

σz = Eεz (2.4)

In summary, the stress fields for confined and unconfined compression experiments

are theoretically related by Poisson’s ratio for linear elasticity and viscoelasticity.

However, the determination of Poisson’s ratio is difficult and adds an additional pa-

rameter to cartilage models. For this reason, unconfined compression experiments are

used in the current study. It should also be noted that the relationships above are

spatial in nature, not temporal, so they remain valid for linear viscoelasticity.

2.5 Cartilage Models: Standard Linear Solids

An alternative way of modeling cartilage is to consider the solid and fluid interactions

as part of a total mechanical response. The goal is to model the total response of

cartilage as a single material. Viscoelasticity is well-suited for this type of analysis

because it already includes a mechanism for dissipation. This dissipation can come
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from frictional drag between the solid and fluid phases, compressibility of the solid

matrix, or other mechanisms. A viscoelastic material only considers the total (net)

dissipation. There is a risk that viscoelasticity will not have enough fidelity to accu-

rately model cartilage. However, the use of fewer material parameters allows for an

extremely convenient comparison between samples for any number of metrics, such as

health, age, weight, use, breed, etc. The following review encompasses the highlights

of cartilage modeling with viscoelastic theory.

Coletti et al. [30] drew a correlation between articular cartilage and standard

viscoelastic models in 1972. Uniaxial tension tests were performed on cartilage speci-

mens from rabbits. The observed creep behavior was then compared to a Kelvin-Voigt

solid model in series with another spring. The authors found that articular cartilage

exhibits non-linear viscoelastic behavior dependent on strain.

In 1976, Woo et al. [31] used Fung’s exponential stress/strain relationship to model

articular cartilage. The authors studied the elastic properties of articular cartilage in

uniaxial tension. The goal was to find the material properties of cartilage at various

depths and orientations. Woo found a similar non-linear stress/strain response in

cartilage that Kempson [18] and others had noted. Woo also saw different responses

based on the orientation of the collagen fibers, and the depth of the test.

In separate research in 1977, Parsons and Black [32] study the viscoelastic creep

response of cartilage in shear. The tests were performed with a cylindrical ram while

the samples were immersed in saline at physiological temperatures. The viscoelastic

model uses three Kelvin solid elements in series with an additional spring. Parsons and

Black discuss the difficulty of extracting intrinsic mechanical properties of cartilage

from indention data. Aside from different testing procedures among researchers, the

difficulty of obtaining intrinsic parameters is also due to a lack of a robust theoretical

solution that accounts for the complexity of cartilage. The proposed equation to

realize the properties of cartilage is based on creep compliance (J), which is the
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inverse of the shear modulus. The results show decent agreement with the literature

available at the time. Parsons and Black recognize the importance of finding the

intrinsic properties of cartilage, which can be used to compare between joints and

among species.

In an additional paper, Parsons and Black [33] discuss the ionic concentration of

the lubricating fluid. The concentration plays an important role in the mechanical

response of articular cartilage. This is an early attempt to describe the triphasic

nature of cartilage. The study shows that cartilage must be immersed in a fluid to

prevent dehydration, and in vitro testing should consider the ionic properties of the

lubricating medium.

At the same time as the biphasic model is being developed in 1980, Woo et al. [34]

looks at cartilage samples in tension, performing stress-relaxation experiments. The

results are connected to viscoelastic theory. Fung’s model [17] for soft tissue is uti-

lized in the work. The experiments compare favorably to the compression relaxation

experiments of Mow and others [22].

Extending the model proposed by Fung [17], Simon et al. [35] performs relaxation

experiments on cartilage specimens. The biphasic and the standard viscoelastic solid

models are compared. Simon’s work shows the advantage of viscoelastic theory- it

looks at the macro-scale response of cartilage. This is also the disadvantage of the vis-

coelastic model if it is desired to separate the biphasic contributions. Viscoelasticity

does not separate contributions of the solid matrix and interstitial fluid.

In 2000, Ehlers and Markert [36, 37] propose using a generalized Maxwell model

(Prony series) to characterize cartilage. No empirical data is provided, but finite-

element models (FEM) are created as examples. Wilson et al. (2004-2005) [38, 39]

use a modified viscoelastic solid to model the fibril part of cartilage. The spring in the

Maxwell element is taken to be strain-dependent (non-linear). This is a modification

of the linear model proposed by Wang [40]. The poroviscoelastic fibril reinforced
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model developed by Wilson et al. considers the local morphology of collagen fibers

and their apparent strong influence on stress and strain. The work compares to

DiSilvestro and Suh’s [41] favorably. Garcia et al. [42] use a similar model to Wilson’s

[38, 39] to describe the solid portion of the nonlinear biphasic model. Julkunen et

al. [43] corroborate the work of Wilson et al. [38, 39] with a FEM study, finding good

agreement between experiment and model in stress-relaxation applications.

A recent paper from June et al. [44] discusses the stress-relaxation behavior of

cartilage at varying compressive stresses. June at al. found that the time constant

of relaxation experiments changes with strain. Specifically, relaxation occurs more

slowly under higher compressive strains. These results are consistent with theories

from polymer dynamics. A second paper from June et al. [45] shows that the ionic

concentration of the fluid bath the influences stress-relaxation response. This finding

is concomitant to the idea of a triphasic response in cartilage.

Many models exist to characterize the mechanical behavior of cartilage. The sheer

number of theories proves that a satisfactory model for cartilage does not exist yet.

The biphasic and standard solid theories have distinct advantages and disadvantages.

For a larger-scale analysis based on total mechanical response, viscoelastic theory is

much easier to employ and interpret. When evaluating the predictive capabilities of a

model, viscoelastic theory is readily implemented in full-scale motion studies. This is

a distinct advantage over the biphasic theories. For that reason, viscoelastic models

are used in the current study. The next chapter introduces two viscoelastic models

that are used in this work.
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CHAPTER III

VISCOELASTIC THEORETICAL BACKGROUND

The mechanical properties of cartilage can be linked to viscoelastic theory. A brief

overview of viscoelasticity is useful for the rest of the work. Viscoelasticity describes a

material behavior that is time-dependent, or retains memory of the material history.

This is in contrast to an elastic material, which is time invariant. The current work is

concerned with uniaxial loading only, in which linear elastic materials obey Hooke’s

Law, where stress is linearly proportional to strain:

σ = Eε (3.1)

In Eq. 3.1, σ is the stress, ε represents strain, and E is Young’s modulus. Each of these

quantities is independent of time. However, for a material that retains memory of the

past, the material “history” must be accounted for. In 1962, Gurtin and Sternberg

[46] developed a constitutive law accounting for material history. This law relates

stress, strain and the relaxation modulus using Boltzmann’s superposition principle:

σ (t) = ε (0)E (t) +

∫ t

0

ε̇ (τ)E (t− τ) dτ. (3.2)

where σ (t) is the stress, ε (t) is the strain, and E (t) is the relaxation modulus. Typ-

ically, σ(t) and ε(t) are either set or measured during experimentation, while E (t)

is obtained from a fixed strain input ε = εstep, E(t) = σ(t)/εstep. In comparison to

Eq. 3.1, the parameters of stress, strain, and elastic modulus in Eq. 3.2 are now time-

dependent. It should be noted that Eq. 3.2 describes linear viscoelasticity, i.e. there

is a linear relationship between the strain history and the current stress. Transfer-

ring Eq. 3.2 into the Laplace domain allows for simple treatment of the convolution
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integral:

σ (s) = sE (s) ε (s) (3.3)

Equation 3.3 is similar to Hooke’s Law (Eq. 3.1) in the Laplace domain. This pro-

vides the foundation for the viscoelastic-elastic correspondence principle. The elastic

element, E, in Eq. 3.1 has simply been replaced with a viscoelastic element, sE(s),

in Eq. 3.3. For a physical understanding of the viscoelastic-elastic correspondence

principle, see Appendix A.

To transfer between the Laplace and frequency domains, the s in Eq. 3.3 can

simply be replaced with iω, where i is defined as
√
−1 and ω is the frequency in

rad/s. The analytical forms of the Laplace and Fourier domains show the relationship

between s and iω:

L{g(t)} = G(s) =

∫ ∞
0

g(t)e−st dt. (3.4)

F{g(t)} = G(ω) =

∫ ∞
−∞

g(t)e−iωt dt. (3.5)

Hence, applying s→ iω, Eq. 3.3 becomes:

σ (ω) = (iω)E (ω) ε (ω)
4
= E∗(ω)ε(ω) (3.6)

where:

E∗ = (iω)E (ω) (3.7)

E∗ is the complex modulus, which has two components- a real and an imaginary:

E∗(ω) = E ′(ω) + iE ′′(ω) (3.8)

The real component (E ′) is known as the storage modulus, while the imaginary com-

ponent (E ′′) is known as the loss modulus. Both measures describe the dynamic be-

havior of viscoelastic materials, in this case cartilage. The correspondence principle
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is powerful because one constitutive formulation determines the amount of modulus

retained (stored) or lost (loss). Stress-strain constitutive equations must be formed

that accurately model the experimental data. Two such models will be discussed

later in this chapter. Before analyzing the constitutive models used to characterize a

viscoelastic material, a physical description of viscoelasticity is provided.

As mentioned, a viscoelastic material has a time-dependent nature. Consider a

uniaxial experiment- if a fixed force (or stress) is imposed on the material, a phe-

nomenon known as creep occurs, where the material continues to change dimension

(length, or strain) over time. Alternatively, if a fixed displacement (strain) is placed

on the material, the phenomenon of stress-relaxation occurs. This can be seen in

Fig. 3.1, where the relaxation behavior, E(t) = σ(t)/εstep, occurs as time progresses.

As indicated above, in the frequency domain, a viscoelastic material has two compo-

nents, the storage and loss moduli, as shown in Fig. 3.2.

Figure 3.1: Stress relaxation experiment output
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For discussion purposes, assume that the relaxation curve can be described by the

equation: E (t) = 1 + 2e(−1/2t) (MPa). Two definitions will be used throughout this

work: the glassy and rubbery moduli. These definitions are historically used in vis-

coelasticity, but should not be considered as literal explanations of material behavior.

An example of viscoelastic behavior is seen in glass. At room temperature, glass acts

like a brittle material, and will fracture if brought to failure accordingly. However,

at high temperatures, glass flows like rubber when acted upon. These historic defi-

nitions describe the time-dependent behavior of a viscoelastic material as well. The

glassy modulus occurs at time t = 0, which corresponds to the highest frequencies or

lowest temperatures, as shown in Fig. 3.2. Here, a viscoelastic material acts like a

brittle material (glass). For the said example case, the value of the glassy modulus

is E0 = 3 MPa. The rubbery modulus is at the opposite end of the spectrum from

the glassy modulus. At the large time-scales (low frequencies), or high temperatures,

a viscoelastic material flows like a rubber. For the example case, the rubbery modu-

lus is E∞ = 1 MPa. The rubbery modulus can be zero; however, most viscoelastic

materials have a non-zero rubbery modulus. The glassy and rubbery modulus will

be used extensively throughout the current work, sometimes with the designation in-

stantaneous and equilibrium modulus, respectively. For behavior between the glassy

and rubbery modulus, the material is in a transition region, seen in Fig. 3.2. Notably,

higher energy dissipation (indicated by the loss modulus) occurs in the transition

region.
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(a) Storage moduli of sample viscoelastic material (semi-log scale)

(b) Loss moduli of sample viscoelastic material (semi-log scale)

Figure 3.2: Sample viscoelastic material in the frequency domain, during a stress-

relaxation experiment
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3.1 Prony and Fractional Derivative Stress-Strain Constitu-
tion Laws

3.1.1 Prony Model

A viscoelastic material displays both elastic and dissipative mechanisms simultane-

ously [46, 47, 48]. This behavior is shown in Figs. 3.1-3.2 for a relaxation experiment.

The dissipative mechanisms are rate dependent, much like a dashpot or damper in

physical systems. In fact, many common models for viscoelasticity consider springs

and dashpots in various configurations. The Prony series, Fig. 3.3, is one such model

(See Appx. B for derivation). The Prony series model is composed of a free spring

and an infinite series of Maxwell elements in parallel. Each Maxwell element is an

individual spring and dashpot in series.

Figure 3.3: Prony series for modeling viscoelastic behavior

The Prony series captures the viscoelastic behavior described in the previous

section- at high frequencies the dashpots will “lock,” and become rigid. Here, only

the springs contribute to the mechanical response. At low frequencies, the individual

Maxwell elements have no contribution to the overall load support. The dashpots

that are in series with the springs transmit negligible force, rendering the Maxwell

elements ineffective. Therefore, the only load support comes from the free spring, E0.

The Prony series combines multiple exponentially decaying functions:

σT =

(
E0 +

∞∑
n=1

Ene
λnt

)
ε0, (3.9)

21



Figure 3.4: Fractional calculus model for viscoelasticity

which satisfies viscoelastic relaxation. The infinite sum in Eq. 3.9 allows for different

decades of relaxation. For instance, a material that rapidly expels energy may require

many short-lived decay terms, which the Prony model accommodates easily. Although

the Prony series is a robust viscoelastic model, it may require a large number of

Maxwell elements to fully capture material behavior. The additional terms in the

Prony series expand the eigenvalue problem, and make extrapolation more difficult.

A model that contains few terms, but remains accurate, is desired. The fractional

derivative model is one-such model.

3.1.2 Fractional Derivative Model

The fractional derivative model reduces the number of elements, and terms, needed

to robustly model viscoelasticity. The model replaces the dashpot of the Maxwell

element with a fractional spring-pot, as seen in Fig. 3.4. The spring-pot interpolates

between spring and dashpot behavior, giving the fractional model more flexibility.

Mathematically, this is described as:

σP = η
dαεp
dtα

(3.10)

where α is a rational number between 0 and 1, and η is a material parameter similar

to a damping coefficient. The interpolative nature of the spring-pot element is clear-

if α = 0 then the element becomes a spring. If α = 1 then the element becomes
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a dashpot. For any α between 0 and 1, the element has both spring and dashpot

behavior. The relaxation modulus can be found in the frequency domain (see Appx.

C for derivation):

E(ω) =
E0

iω
+
∞∑
n=1

En (iω)α(
(iω)α + En

ηn

) ( 1

iω

)
(3.11)

In the time-domain, the fractional relaxation modulus is [49, 50]:

E(t) = E0 +
∞∑
n=1

Eα

(
−En
ηn
tαn
)

(3.12)

Where Eα is the Mittag-Leffler function [51]:

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
(3.13)

In Eq. 3.13, Γ in the gamma function: Γ(x) = (x− 1)!

The fractional model is difficult to fit in the time-domain. To be practical in

modeling, a finite number of terms must be used in the summation in Eq. 3.13. If

the parameter (η) is very small, k must be very large, and convergence issues arise.

Typically, the fractional model is fit in the frequency domain, where the Mittag-Leffler

function is not used. However, for the special case where α = 1/2, the Mittag-Leffler

function reduces and the fractional derivative model becomes the complementary

error function model (CERF) [52]. The complementary error function model is a

robust and convenient model for viscoelasticity. It has the advantage of a concise

time-domain solution in the form of the complementary error function multiplied by

an exponential function, as shown in Eq. 3.14:

E(t) = E0 +
∞∑
n=1

Ene
(µn2t)erfc (µn

√
t) (3.14)
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Where En and µn are material properties and:

µn =
En
ηn

(3.15)

The complementary error function decays at a faster rate than the exponential in-

creases, giving a relaxation behavior. The behavior described is shown in Appx. C.

Models with time-domain representations have utility in fitting, which is discussed in

Chapter 4.

The complementary error function can be computed by most engineering soft-

ware packages; however, the function can be reduced with an expansion given by

Abramowitz and Stegun [53]:

erfc(t) = (a1y + a2y
2 + a3y

3 + a4y
4 + a5y

5)e−t
2

(3.16)

y =
1

1 + pt
(3.17)

where p = 0.3275911, a1 = 0.254829592, a2 = −0.284496736, a3 = 1.421413741, a4 =

−1.453152027, a5 = 1.061405429. The maximum error of this expansion is 1.5 · 10−7.

The expanded complementary error function in Eq. 3.16 can be used in Eq. 3.14. The

result is a polynomial expression:

E(t) = E0 +
∞∑
n=1

En(a1y + a2y
2 + a3y

3 + a4y
4 + a5y

5) (3.18)

With Eq. 3.18, fitting the time-domain relaxation modulus is straightforward. A least-

squares algorithm will easily fit the polynomial expression in Eq. 3.18 to relaxation

data from experiments. The CERF model has the advantages of the fractional model,

with a time-domain analogue.
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Models such as the modified Bessel [52] and Kelvin-Voigt also describe viscoelas-

ticity. However, the Prony and fractional models are the most robust and reliable

models for the present study. In fact, the Kelvin-Voigt model, which is used pre-

dominantly to model creep, is unable to describe relaxation without modification. In

particular, the Prony and reduced fractional models are used for their time-domain fit-

ting capabilities. These linear, viscoelastic models reduce the complexity of cartilage

modeling. If viscoelastic theory can accurately model cartilage with sufficient fidelity,

the biphasic or triphasic theories may not be necessary. The current work studies

the applicability of viscoelastic modeling of cartilage. Additionally, the viscoelastic

models can be modified as the study progresses.

3.2 Summary

A longstanding interest in cartilage research has produced a large number of models

and theories. The supplied review gives a brief history of the leading constitutive

models governing articular cartilage. The biphasic model separates the mechanical

contributions of the fluid and solid phases of cartilage. Different equations govern

the interactions of the two mediums. Some biphasic models consider porosity and

permeability as well. The standard solid models do not decouple the solid and fluid

interactions of cartilage, instead focusing on energy retained and dissipated. Vis-

coelasticity is a macro-scale approach that is easier to implement and apply from a

dynamics perspective. The standard models are used in this study to characterize the

relaxation behavior of cartilage. The experimental methods developed for this study

are presented in the next chapter.
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CHAPTER IV

EXPERIMENTAL DESIGN

This chapter highlights the unique aspects of the experimental design. The availability

of equine cartilage samples comes from a partnership between the Auburn University

College of Veterinary Medicine and the College of Engineering. The partnership

allows for rapid access to sample explants, which reduces environmental effects on the

cartilage. The final harvesting is performed in the same laboratory as the mechanical

testing equipment, yielding efficient and controlled experimentation. Cartilage is very

sensitive to environmental factors, so controlled experimentation is important. The

harvesting and testing techniques are as minimally invasive as possible, so that the

cartilage is not altered unnecessarily.

4.1 Theoretical Framework

In general, cartilage is a heterogeneous, non-linear, viscoelastic, compressible, and

anisotropic material. Unlike muscle tissue, cartilage has relatively no growth remod-

eling or contractile behavior. The theoretical framework of the current study depends

primarily on the viscoelastic nature of cartilage. On the micro-scale, cartilage dis-

plays heterogeneity in the collagen fibers and synovial fluid mixture. However, on

the macro-scale, cartilage can be approximated as homogeneous in its mechanical re-

sponse. Cartilage is generally anisotropic, but often considered transversely isotropic.

However, for strains in a limited range, cartilage is typically considered linear and

isotropic. The initial theoretical framework for cartilage is therefore linear viscoelas-

ticity, although strain-dependency can be introduced in the elastic response with

slight modification. The experiments are run in a fluid bath at room temperature, so

isothermal conditions are maintained.
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4.2 Materials and Methods

This section describes the specimen harvesting and mechanical testing routines used.

Articular cartilage samples are harvested from the right stifle joints of horses that

are euthanized for other reasons. Equine samples are used for multiple reasons: the

cartilage surfaces are large and allow for “macro-scale” analysis, the joints have large

load to size ratios (meaning that there are typically higher stresses within the joints),

the availability of samples is suitable, and the expertise of the team members from the

Auburn University College of Veterinary Medicine is in equine surgery and medicine.

In addition, equine and human articular cartilage have similar structural features and

collagen organization [54].

After euthanasia, the horses are taken to the Alabama State Necropsy facility

where intact joints for this and other studies are removed. The joints remain sealed in

their native joint capsule during this time. The samples are brought to the Multiscale

Tribology Lab in the Mechanical Engineering Department of Auburn University. In

the lab, the cartilage is harvested by dissection of the surrounding tissue, and resized

with an industrial bandsaw (Appx. D). Figure 4.1 shows the area of interest in the

stifle joint. The cartilage surface is hydrated with a biological solution to prevent

drying.

The medial condyle of the right rear stifle is used for study. The stifle joint is

mechanically analogous to the human knee, and the condyle contains an area of thick

and relatively flat cartilage. The condyle is advantageous because large, relatively flat,

samples can be obtained. The similarity between equine stifle joints and human knees

is also of interest. It is hoped that the equine results can eventually be extrapolated

to human studies, where artificial knee replacements are the second most common

type of surgical replacement, behind hip joint replacements.

After bulk harvesting and resizing of the condyle, a 10 mm plug is created with

a hollow punch. The punch is driven into the sample with an arbor press, depicted
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(a) Side schematic of stifle joint in horse skeleton

(b) Side view of medial condyle in the stifle joint

Figure 4.1: Location of the stifle joint and the associated cartilage surface that is
sampled
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in Fig. 4.2. With the punch embedded in the cartilage and subchrondial bone, the

surrounding cartilage is removed with a Dremel and wire brush attachment. The

punch has an access hole to allow for hydration of the sample. After the plug is

created, it is immersed in a biological medium. The average time from the beginning

of dissection to immersion is less than 20 minutes. The joint capsule is open for

approximately 10 minutes during the process. As was previously stated, the samples

are continuously hydrated with a biological medium to prevent dehydration.

4.2.1 Relaxation Experiments

The cartilage plugs are placed in a UMT CETR (Appx. D) tribometer. The tri-

bometer imposes a nearly instantaneous (approximately 30 ms) displacement on the

cartilage surface, while tracking the force generated in the cartilage matrix. By design,

this is a stress-relaxation experiment. The tribometer holds a 12 mm rigid aluminum

cylinder attached to a load cell, as shown in Fig. 4.3. Initially, the cylinder contacts

the cartilage surface with a preload of 0.5 N. The preload ensures that the cylinder

makes complete contact with the cartilage surface. In effect, the cylinder is flattening

out any curvature in the cartilage. At time t = t0, a downward displacement is im-

posed on the cartilage and the resulting force is measured. After approximately 180

seconds of measurement, the rigid cylinder is withdrawn from the surface. The carti-

lage is allowed two minutes to recover between tests, and the procedure is repeated.

The typical test includes four runs at a lower strain, followed by four runs at a higher

strain.

Typically, displacements of 0.25 mm and 0.35 mm are imposed on the cartilage

matrix. The cartilage thickness is measured after the relaxation experiment, so a

priori strains can not be determined. However, the displacements are designed to

strain the cartilage matrix 5-15%. The relaxation behavior usually reaches an equi-

librium by the test’s conclusion. In all cases, the bulk of the relaxation behavior
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(a) Side schematic of stifle joint before plug is created

(b) Punch embedded in the cartilage as the surrounding structure is re-
moved

(c) The remaining cartilage plug

Figure 4.2: Schematic of the 10 mm plug creation process
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Figure 4.3: CETR UMT3 Tribometer fitted with a 12 mm rigid indenter

has occurred by 180 seconds, and the steady-state (rubbery modulus) information

can be extrapolated with the proposed viscoelastic models. Additional information

regarding the testing procedure, including deviations for particular experiments, is

included in Appendix E.

4.2.2 Determination of Cartilage Thickness

The diameter and thickness of the cartilage plugs is needed to find the relaxation

modulus. Recall that the modulus is E(t) = σ(t)/εstep. The diameter and thickness

determine stress and strain, respectively. The harvesting techniques set the diameter

of the cartilage plug; however, the thickness of the plug is unknown. Needle probe

testing is developed to find thickness. After the relaxation experiments are run, a

hypodermic needle is installed on the tribometer, as shown in Fig. 4.4. The needle is

lowered vertically into the cartilage body until it hits the subchondral bone. A sharp

rise in the force response indicates that bone has been reached. Figure. 4.5 shows an

example of the force response from needle tests. The starting and stopping points

are denoted in Fig. 4.5 with A and B, respectively. Initially, force rises as the needle

deforms the cartilage. In this region, the cartilage resists puncture. The dashed
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Figure 4.4: CETR UMT3 Tribometer fitted with a 20 gauge hypodermic needle

Figure 4.5: Determination of the cartilage thickness with needle probe testing
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line is a hypothetical path that the force would follow if puncture was immediate.

At the point where the force releases (circled in Fig. 4.5), the needle pierces the

cartilage surface and begins traveling through the collagen matrix. The clear spike

in force seen on the right side of Fig. 4.5 is the location where the needle encounters

the subchondral bone. The absolute difference between the beginning and ending

points gives the thickness of the cartilage plug. This method is inherently subjective,

but repeatable patterns are seen between samples. The thickness measurements are

obtained for each sample with the aid of a Matlab algorithm. A mean thickness for

each sample is found by averaging the individual tests. Each plug is considered to have

a uniform thickness, which is a simplification of the actual geometry. However, since

the strain levels are relatively low (5%-15%), the effect of this variation is considered

negligible. The result is an average thickness and average strain throughout the

cartilage matrix. After testing, the samples are frozen for later analysis if required.
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CHAPTER V

TIME DOMAIN ANALYSIS

This chapter discusses the time-domain modeling of the experimental data obtained

from 11 horses. Six samples were hydrated with a saline solution (0.9%), and two

samples were immersed in pooled synovial fluid from multiple horse specimens. The

three remaining samples were immersed with Hylartin, Polyglycan, and Adequan

respectively. These synthetic substances are used in surgical applications and mimic

the biological function of synovial fluid. The analysis is grouped based on fluid bath

composition; however, some comparisons will be made between samples in different

mediums. Also, an effective time constant of relaxation is created using the Prony

series.

5.1 Motivation for Modeling in the Time-Domain

The nature of viscoelasticity is time-dependent. Stress-relaxation tests are performed

in the time-domain, and depend on material history. Therefore, a viscoelastic model

that is applied in the time-domain is desired. However, the frequency dependent

behavior of cartilage is also important. In the frequency domain, the storage and

dissipation mechanisms of cartilage can be found as a function of gait. These metrics

help analyze whether cartilage has a natural structure that helps facilitate motion.

The correspondence of the time and frequency domains necessitates a model that

transfers without loss of generality. A model that is fit to relaxation data, and

analyzed in the frequency domain is needed. The two models proposed, the Prony

and complementary error function, have the desired quality.
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5.2 Data Reduction

A typical series of data is shown in Fig. 5.1 for a given sample. Interestingly, the

cartilage stiffens during subsequent tests at the same strain. In the lower four tests

(8.04% Strain), the time-dependent relaxation nature of the cartilage stays relatively

constant, while the rubbery modulus stiffens. The same phenomenon appears at

higher strains (11.27%) as well, where the relaxation behavior stays relatively the

same as the cartilage stiffens. It was initially thought that the cartilage needed more

time to recover between tests; however, further testing showed that this is not the

case. It is foreseeable that fluid is leaving the cartilage during compression and not

returning quickly enough, or at all, during the recovery phase. Additional testing

would then cause more stress in the solid collagen structure, likely resulting in higher

stiffness. The tests could also vary because damage from the harvesting techniques

or testing procedures is causing fluid exodus, and/or the tests are replacing synovial

fluid in the plugs with the bathing medium. For simplicity in analysis, all of the tests

at a given strain were averaged to produce one dataset per strain level, as shown in

Fig. 5.2.

5.3 Prony Series

The Prony series model is fit in the time-domain, and analytically transferred into

the frequency domain with a Fourier transform. This is advantageous because the

experimental data is particularly noisy from the tribometer. Transferring the raw

experimental signal from the time-domain to the frequency domain is difficult even

with filtering and smoothing algorithms, as will be discussed later. Therefore, having

a model that can be fit in the time-domain and transferred to the frequency domain

is necessary. The tribometer samples at 1000 Hz, which yields approximately 180,000

data points for a typical experiment. A least squares fitting routine is implemented in

Matlab to parse the combined relaxation data. The norm metric is used in least-square
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Figure 5.1: Sample data from relaxation experiment Saline (d)

Figure 5.2: Sample reduced data from relaxation experiment Saline (d)
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Table 5.1: Reduced norm of sample data (Saline (d))

# of Prony Terms Reduced Norm (105)

1 159.1600
2 39.7383
3 16.0992
4 10.2755

fits to determine the goodness of fit (GOF) between the model and experimental data.

GOF =
norm

#pts −#parameters

(5.1)

For data sets with a large number of points, the goodness of fit and norm are closely

related. Therefore, the norm will be used to determine the quality of the fit.

The eigenvalue problem is minimized by fitting the relaxation data with as few

terms as possible. However, more terms typically describe viscoelastic behavior bet-

ter. An example of this is seen in Table 5.1 (Saline (d), 05/30/12 (1)), where the

reduced norm decreases as the number of terms increases. The consequence of in-

creasing the number of terms is that the model develops “wiggles” in the frequency

domain. These wiggles are not material based, but rather a figment of the modeling.

In this regard, the fewer Prony terms that can be used, the better. The model also

begins to fail to converge when the number of Prony terms gets too high (n ≥ 5). The

convergence issues are due to the least squares algorithm becoming ill-conditioned.

When this occurs, the Prony terms are more difficult to uniquely define. Four Prony

terms is the maximum that can be fit reliably to the experimental data.

The Prony series is fit to the experimental data presented in Fig. 5.2. The fit is

shown in Fig. 5.3. A four-term Prony series is used to capture the relaxation behavior,

which is pronounced in the initial seconds of the experiment. In general, the four-

term Prony series does an excellent job fitting the relaxation behavior. In Fig. 5.4,

which shows a zoom-in of the information from Fig. 5.3 in the initial decay period (1s),

37



Figure 5.3: Example of a four-term Prony fit to experimental data (Saline (d))

some deviation between the fit and the actual data is seen. The deviation between the

model and experimental data corresponds to the highest frequency information. For

horses (and humans), frequency ranges greater than 5 Hz are not accessed during even

the most strenuous exercises. Therefore, it is less important to accurately capture

this region of the relaxation. The physiological region of the relaxation occurs from

t = 0.25s and on. The Prony series is able to robustly model these decades of

relaxation behavior (shown in Fig. 5.5 using a semi-log scale), which makes its utility

apparent for analysis between samples.

5.3.1 Application of the Prony Model to Determine the Effective Time
Constant

The empirical data indicates that the decay properties of cartilage are strain-dependent.

Cartilage exhibits greater stiffness with higher strain, and appears to decay more

slowly. An effective time constant is created to quantify this observation. In ex-

ponential decay, the time constant represents the time it takes for the response to

reach
(
1
e

)
of the initial value. This is typical of a first-order system that mimics the
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Figure 5.4: Four-term Prony series fit in the initial time period (Saline (d))

Figure 5.5: Four-term Prony series fit, displayed on a semi-log scale (Saline (d))
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relaxation behavior. For a series of exponential decays (a Prony series), the effective

time constant can be found by locating the time when 63.2% of the relaxation has

occurred. This means means 0.368 = 36.8% of E(t) remains. The time constant is

found numerically with Matlab. The flowchart shown in Fig. 5.6 outlines the process

taken to locate the time constant. When the relaxation threshold is reached, the

program records the time and exits the loop.

Figure 5.6: Flowchart depicting the steps taken to locate the time constant

The time constant information is presented in Table 5.2 for the six cases in saline.

With one exception (Saline (d)), the time constant is greater for the higher strain

tests. Cartilage takes longer to dissipate energy at higher strains, proportional to the

initial value of the response. This finding is significant because higher strains probably

occur during periods of high activity. In effect, cartilage has a higher modulus during

periods of higher strain, which likely allows for a more fluid joint motion. This finding
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Table 5.2: Time constant information for cases immersed in saline

Name Test Date Lower Higher Viscosity
Strain (s) Strain (s) (mPa s)

Saline (a) 5/22/2012 1.57 1.98 0.890 [55]
Saline (b) 5/24/2012 6.38 8.36 0.890
Saline (c) 5/29/2012 5.00 10.06 0.890
Saline (d) 5/30/2012 (1) 10.28 15.36 0.890
Saline (e) 5/30/2012 (2) 17.06 13.23 0.890
Saline (f) 6/26/2012 15.71 19.37 0.890

Table 5.3: Time constant information for cases immersed in alternative fluids

Name Test Date Lower Higher Viscosity
Strain (s) Strain (s) (mPa s)

Synovial (a) 06/13/2012 2.99 5.37 33.6 [56]
Synovial (b) 06/19/2012 7.89 11.54 33.6

Hylartin 06/20/2012 (1) 28.07 14.08 Unspecified
Polyglycan 06/20/2012 (2) 5.07 4.64 Unspecified
Adequan 06/21/2012 12.06 11.90 Unspecified

agrees with the work of June [44]. The results are mixed when different lubricants

are used. Table 5.3 shows this difference. The two studies where synovial fluid is

used have the same trend as saline. However, for the case of Hylartin, Polyglycan,

and Adequan, the results are reversed. It is likely that the lubricant significantly

influences the time constant. Not enough data exists to definitively determine the

effects of the fluid bath. However, the saline and synovial fluid cases appear to express

the same trend of higher compressive strain to higher time constant. The correlation

of strain and time constant is physiologically reasonable, and could be a factor in

cartilage’s adaptivity and durability.

The viscosity of the synovial fluid used in this study is presented in Table 5.3. The

data for Hylartin, Polyglycan, and Adequan is not listed on the respective manufac-

turer’s material safety data sheet (MSDS). All three fluids appear to be more viscous

than water or saline, but additional study should accurately quantify the viscosities

of each fluid.
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The time constant varies largely between cartilage samples. The time constant

information can be normalized by taking the integral of the reduced relaxation curve,

from the initial time t = t0 to the time constant t = tTC . When compared to the

total area under the curve, the integral from t0 to tTC gives a quantitative idea of

the amount of relaxation that occurs before the time constant is reached. To deter-

mine this quantity, the “equilibrium area” is removed from the total area under the

relaxation curve, as shown in Fig. 5.7a. In effect, the rubbery modulus is subtracted

from the relaxation curve so that the response decays to zero. The remaining curve

is called the “reduced relaxation curve.” The “time constant area” is found by inte-

grating the reduced relaxation curve from t = t0 to t = tTC (Fig. 5.7b). Dividing the

time constant area by the total area of the reduced relaxation curve gives an “area

ratio.” The area ratio is more stable than the time constant itself, but initial tests do

not show a significant trend for cartilage. Additional study is required to determine

the applicability of the area ratio.

5.4 Fractional Derivative Model

The fractional model is a robust viscoelastic constitutive formulation. In the full

fractional case, the parameter α, which interpolates between spring and dashpot be-

havior, gives the fractional model more flexibility than the Prony model. Typically,

the flexibility of the fractional model means that fewer elements are needed to fully

characterize a viscoelastic material. The fractional model has obvious utility in mod-

eling applications. However, due to the Mittag-Leffler function, the fractional model

is challenging to implement in the time-domain without modification. It is desired

to perform the majority of the cartilage analysis in the frequency domain, where

the fractional model can be fit without major problems. However, transforming the

experimental data from the time to frequency domain is difficult without excessive
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(a) Example of a relaxation curve with the equilibrium area marked

(b) Example of a reduced relaxation curve with the time constant area in gray

Figure 5.7: Graphical depiction of the process used to determine the area ratio time
constant information
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manipulation of the empirical data. The original material behavior is often compro-

mised during the transformation. This is discussed in the following section, with a

remedy proposed later in the chapter.

5.4.1 Fractional Model Shortcomings in the Time-Domain

The time-domain representation of the fractional model contains the Mittag-Leffler

function. The function requires a relatively large number of terms to converge for

cartilage applications. In some instances, the Mittag-Leffler function does not con-

verge at all. Therefore, the full fractional model does not have a stable time-domain

representation, and is better suited for analysis in the frequency domain. However,

the time-domain to frequency domain transition requires manipulation that may com-

promise the experimental data. For example, the fast Fourier transform (FFT) is a

typical routine for transforming from the time-domain to the frequency domain. The

experimental data is noisy, and applying an FFT leads to unreadable information

at the highest frequencies (Fig. 5.8). Although the majority of the severe noise oc-

curs at frequencies that are out of the physiological realm for horses and humans

(greater than 4-5 Hz), more than half of the narrow band of physiologically appropri-

ate frequencies contains noise. Techniques such as zero padding, numerical reduction

of aliasing, filtering, and smoothing are used to reduce noise; however, the higher

frequency information is distorted enough to render the FFT data unacceptable for

analysis.

Another method for finding the frequency representation of the experimental data

is used by Miller [48, 57]. The storage and loss moduli can be found with the following

equations:

E ′(ω) = E0 +

∫ ∞
0

Ė (t) cos(ωt) dt (5.2)

E ′′(ω) = −
∫ ∞
0

Ė (t) sin(ωt) dt (5.3)
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Figure 5.8: Example of the FFT routine applied to experimental data (Saline (c))

Here, the relaxation term E is related to the experimental data. The problem of signal

noise is exacerbated by the derivative of the relaxation term, Ė. Even a high accuracy

numerical derivative, which has a tendency to smooth the data (see Hildebrand [58]),

does not reduce the noise sufficiently. The data is so disjointed that it is not useful for

analysis, as shown in Fig. 5.9. The storage and loss information is obviously devoid

of significant meaning using derivative techniques.

Green [59] developed a method to remove the derivative term in Eqs. 5.2 and 5.3

with integration by parts. The result gives a form of the storage and loss moduli that

does not involve the derivative of the relaxation modulus:

Er = E − E∞ (5.4)

E ′(ω) = E∞ +

∫ ∞
0

ωEr (t) sin(ωt) dt (5.5)

E ′′(ω) =

∫ ∞
0

ωEr (t) cos(ωt) dt (5.6)

This form of the Fourier transform reduces the effects of signal noise. However, as
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Figure 5.9: Example of the derivative routine applied to experimental data (Saline
(c))

Figure 5.10: Example of the integral routine applied to experimental data (Saline (c))
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shown in Fig. 5.10, the noise reduction is not sufficient for the experimental data.

Apart from the noise, the transformations also introduce waviness in the signal. The

waviness is due to the cyclic nature of the functions used to transform the experimen-

tal data. The wavy behavior is an unfortunate pitfall of these techniques, and is not

a material characteristic. It is computationally intensive to get the required fidelity

in the frequency domain with the integral techniques.

The techniques presented allow the experimental data to be transferred to the fre-

quency domain. However, the transformations do not satisfactorily allow for analysis

in the frequency domain. One remedy is to smooth the time-domain information.

Smoothing the relaxation data removes the majority of noise from the signal. The

smoothed signal can be transformed to the frequency domain, where the storage and

loss data is obtained. The problem with smoothing is that the data is biased by the

smoothing function. Even relatively impartial functions, like a moving average, alter

the data. Relaxation data is particularly susceptible to bias because there is rapid

mobility in the early decades, but not at longer time intervals. The experimental data

is often manipulated excessively to become a monotonically decreasing function. The

largest deviation between the smoothed curve and the experimental data occurs in

the first ten seconds, as shown in Fig. 5.11. This period is very significant physiologi-

cally, as most movement occurs at frequencies in this range (0.25 - 4 Hz, or 0.25 - 4s).

Therefore, a moving average algorithm is not the best choice of functions to smooth

the data. Other smoothing functions can be used well, such as a Vogel function, and

variations of it:

f(t) = a1e
a2

(t−a3) (5.7)

f(t) =
b1

(t+ b2)b3
(5.8)

f(t) =
c1

(t+ 1)c2
+ c3 (5.9)
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Figure 5.11: Example of deviations introduced by smoothing with a moving average
filter

The fundamental problem remains with any smoothing function- the data will be

manipulated before the viscoelastic models are applied. Each equation is able to fit

and smooth the experimental data, but the result are manipulated enough to justify

discarding these routines.

5.4.2 Complementary Error Function- Resolution of Fractional Model
Problems

The problem of filtering and smoothing data in the time-domain is avoided by re-

stricting the fractional model to α = 1/2. As discussed, this case degenerates to the

complementary error function model. The relaxation data from the tribometer can

be fit with the CERF model, and analytically transferred to the frequency domain.

The CERF model offers the advantages of the fractional model, while satisfying the

requirement of time-domain fitting. The utility of the CERF model is apparent in the

frequency domain, where a one-element function is used to model cartilage viscoelas-

ticity. This yields a completely smooth function, which is indicative of the actual

48



Figure 5.12: Relaxation data fit with the complementary error function (Saline (d))

material behavior. A one-element model is convenient for future dynamic analysis

and modeling as well.

The CERF model is fit in the same way as the Prony model. A least squares ap-

proach is utilized to fit the CERF model to relaxation data. An example fit for Saline

(d) is shown in Fig. 5.12. Once again, the early decades of time information show the

largest deviations between the model and experimental data (Figs. 5.13 and 5.14).

However, these initial time frames do not represent physiological capabilities of horse

or human, and the modeling error is within approximately 3% at its maximum for the

Saline (d) case. The CERF model displays robust capabilities in modeling cartilage

stress-relaxation. The CERF model is advantageous compared to the Prony model

because fewer terms are used to characterize the viscoelastic behavior. Using fewer

modeling parameters results in a smooth curve in the frequency domain, which more

realistically describes the material behavior of cartilage. Additional discussion of this

is included in Chapter 6, where the higher-term Prony series models are shown to

develop “wiggles.”
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Figure 5.13: Complementary error function fit in the zoomed-in initial time period
(Saline (d))

Figure 5.14: Complementary error function fit, displayed on a semi-log scale (Saline
(d))

50



The Prony series and complementary error function models are both adept at

capturing the viscoelastic behavior seen in the cartilage samples. Both models are

monotonically decreasing in the time-domain, and thermodynamically permissible in

general [47]. The CERF model is more flexible for describing viscoelastic behavior

of cartilage with fewer terms, which is important for future analysis. However, both

models are well-suited for use on articular cartilage in the equine stifle. Relatively

few mechanical differences exist between the joints in the equine carpus and human

cartilage [54]. It is proposed that the techniques described can be used to analyze

human cartilage as well. In the next chapter, the two models will be compared in the

frequency domain.
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CHAPTER VI

FREQUENCY DOMAIN ANALYSIS

The frequency domain offers a different analytic tool for analyzing viscoelastic mate-

rials. Ultimately, the goal of characterizing articular cartilage is to understand how

cartilage responds in dynamic situations, such as during normal walking or strenuous

exercise. The elastic-viscoelastic correspondence principle transfers time-dependent

information to the Laplace and frequency domains without loss of generality. In the

frequency domain, a stress-relaxation experiment shows the storage and dissipation

moduli as a function of frequency, ω. For articular cartilage, the storage and loss mod-

uli are functions of the animal’s gait. Studying cartilage as a function of gait offers

insight into the adaptive nature of biological mediums. As discussed in Chapter 3,

viscoelastic materials have three main characteristic regions: the glassy, transition,

and rubbery. The physiological range of cartilage might fall within the transition

region, where higher frequencies approach the glassy region and lower frequencies

approach the rubbery region. Cartilage can then adjust to stimulus by storing and

dissipating different amounts of energy, depending on the frequency of protuberance.

The following sections discuss the frequency domain analysis of cartilage.

6.1 Data Reduction

In the previous chapter, the Prony and complementary error function models are fit in

the time-domain and analytically transferred to the frequency domain via the elastic-

viscoelastic correspondence principle. The models are compared over a range of gaits

that are physiologically obtainable in horses. The goal is to study the storage and loss

moduli of cartilage in multiple samples and draw broad conclusions about articular
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cartilage viscoelasticity. If possible, a benchmark for healthy (not osteoarthritic) car-

tilage will be established. The two viscoelastic models are compared in the following

sections.

6.2 Prony Model

One advantage of the Prony series is that the model can be easily analytically trans-

ferred between the time and frequency domains. Recall the form of the Prony series

given in Chapter 3:

σT =

(
E0 +

∞∑
n=1

Ene
λnt

)
ε0 (3.9)

In the frequency domain, the Prony series is (see Appx. B.1 for derivation):

E(ω) =
E0

iω
+
∞∑
n=1

En

(
λn − iω
λ2n + ω2

)
(6.1)

For the Prony series, the storage and loss moduli are:

E ′ = E0 +
∞∑
n=1

ω2

(
En

λ2n + ω2

)
(6.2)

E ′′ =
∞∑
n=1

(
Enλnω

λ2n + ω2

)
(6.3)

6.2.1 Prony Model Behavior for Different Number of Elements

The Prony series is a robust model because of the theoretically infinite number of

terms that can be used. Each Maxwell element defines a decay characteristic that

is fit to the experimental data. The problem with using additional Prony terms is

threefold: (1) the time-domain curve fitting fails to converge as the number of terms

increases, (2) additional Prony terms develop waviness in the frequency domain, and

(3) the eigenvalue problem increases in dynamic modeling. A comparison of a 1,

2, 3, and 4-term Prony series is presented in Fig. 6.1a for the storage modulus,

and Fig. 6.1b for the loss modulus. The development of waviness, or “wiggles,” is
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a construct of the model, not a material property. Additionally, the wiggles only

appear with significance in the loss modulus.

(a) Comparison of the storage information

(b) Comparison of the loss information

Figure 6.1: Storage and loss comparison of different Prony models (Saline (c))
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A trade-off exists between better fitting in the time-domain, and wiggles in the

frequency domain. The one and two-term Prony models do not satisfactorily model

the rapid decay characteristics of cartilage during stress-relaxation, and are unable

to fully capture the material behavior in the frequency domain. These models are

disregarded for that reason. However, the increase in fidelity of the four-term model

over the three-term model is relatively minor when considering the norm values of

the fits (recall Table. 5.1). A judgment call must be made as to which model provides

the best combination of fitting in the time and frequency domains. In contrast to the

Prony model, the CERF model uses fewer terms to characterize viscoelasticity. It is

therefore less susceptible to the problem of wiggles in the frequency domain.

6.3 Fractional Model

A similar approach to that shown for the Prony series is taken to find the storage and

loss components of the CERF model (Appx. C):

E ′ = E0 +
∞∑
n=1

En

(√
2ω
2

)
µn + ω

µ2
n + µn

√
2ω + ω

(6.4)

E ′′ =
∞∑
n=1

En

(√
2ω
2

)
µn

µ2
n + µn

√
2ω + ω

(6.5)

The functional forms of the storage and loss equations are nearly the same, except

that the storage modulus contains the free term E0 and additional dependency on ω.

The one-term fractional model is perfectly smooth over the entire frequency domain,

which is an advantage it has over the higher-term Prony models. The storage and

loss moduli are shown for the fractional fit in Fig. 6.2. As expected, the storage and

loss moduli show the rubbery, transition, and glassy regions of viscoelastic behavior.

The additional mathematical complexity of the fractional model is tolerated because
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Figure 6.2: The storage and loss moduli of a one-term fractional mode (Saline (c))

fewer fractional elements are typically required to characterize viscoelasticity, as com-

pared to the Prony model. Although the fractional model can use more elements to

model viscoelasticity, the need for additional fractional elements is not necessary for

cartilage.

Recall that the complementary error function also has a time-domain representa-

tion. Therefore, both the Prony series and CERF models can be fit in the time-domain

and analytically transferred to the frequency domain. This eliminates any biasing that

is done with smoothing procedures, and allows for an equivalent comparison of the

two models.

6.4 Comparison

The Prony and CERF models are compared for some of the cartilage samples to

demonstrate their capabilities. For a sample explant immersed in saline (Saline (c)),

the two models are compared in Figs. 6.3a and 6.3b. The results for both models show

relatively few differences. The CERF model has a slightly higher storage modulus
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at low frequencies, but both models converge to nearly identical values for high fre-

quencies (approaching the glassy modulus). In the loss modulus, both models exhibit

similar behavior. However, the four-term Prony model fluctuates due to the larger

number of terms. The fractional model is smooth for the entire frequency domain.

There are small differences between the models, but the majority of the viscoelas-

tic behavior is captured by either model. Both models will be used to compare the

cartilage samples in further detail.
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(a) Comparison of the storage information

(b) Comparison of the loss information

Figure 6.3: Comparison of the storage and loss moduli of the complementary error
function model and the four-term Prony series (Saline (c))
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CHAPTER VII

STATISTICAL SIGNIFICANCE OF EXPERIMENTAL

RESULTS

Viscoelasticity in cartilage has been established in the previous chapters, and two

mechanical models have been introduced and tested. The eleven cartilage samples

from the equine stifle joint remain to be compared. The information provided is

intended to be a platform for additional study of viscoelastic behavior in cartilage.

7.1 Fractional and Prony Model Analysis

With biological tissues, large variations are expected between samples. It is not sur-

prising since each cartilage explant is unique. Genetics, weight, age, diet, gender,

and use can influence the mechanical properties of cartilage. Therefore, the model

parameters obtained from experiments are expected to have large variations. One

trend that appears ubiquitously is that the viscoelastic transition period of cartilage

coincides with the physiological range of exercise. At lower frequencies, cartilage

dissipates more energy than at higher frequencies, where additional elasticity is avail-

able in the joints. As shown in Fig. 6.3, the transition range of cartilage occurs in

the middle of the common frequencies of motion (0.25 - 4 Hz). It is possible that the

adaptive nature of cartilage is biologically designed for this purpose. A viscoelastic

characterization of cartilage brings us closer to a more complete understanding of

cartilage mechanics.
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7.2 Moduli and Time Constant Analysis

One challenge in determining the glassy and rubbery moduli of cartilage is the thick-

ness of the samples is not known a priori. The testing procedure imposes a pre-

determined displacement on the cartilage sample. The strain is determined by the

thickness of the sample. Therefore, results obtained from the relaxation experiments

are inherently over a range of strains. Attempts were made to limit the strains to

5-15%; however, there are a few cases where 15% is exceeded. Figure 7.1a shows the

glassy modulus for the saline cases. Taken together, the six cases seen in Fig. 7.1a do

not display a correlation of strain and instantaneous modulus. Of course, the individ-

ual samples typically have a larger glassy moduli at higher strains; however, a general

trend for cartilage is not substantiated. The average glassy modulus is obtained by

combining all of the samples, and statistical bounds are determined with a Student’s

t test. This information is presented in Table 7.1.

On a smaller scale, the rubbery modulus mimics the behavior of the glassy mod-

ulus, as shown in Fig. 7.1b. The two cases that show higher moduli in the rubbery

data also correspond to higher moduli in the glassy data. Neither sample had known

physiological differences from the others in the group. A very weak positive correla-

tion (R2 = 0.112) exists between the strain and rubbery moduli information. It is

expected that the glassy and rubbery moduli will increase (on average) with higher

strains. Physiological limits may dictate if the increase is pronounced or not. The

combined rubbery modulus information is included in Table 7.1.
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(a) Glassy modulus (b) Rubbery modulus

(c) Time constant (d) Area ratio

Figure 7.1: Results of stress relaxation experiments in saline

61



Table 7.1: Compiled glassy and rubbery modulus data for saline cases

Fluid Bath Saline
Number of Samples 12
Degrees of Freedom 11

Strain Range 7.35-13.08%
Glassy Modulus Rubbery Modulus

Avg. Modulus (MPa) 1.294 0.439
Std. 1.088 0.321
SE 0.314 0.093

Two-Tailed, 95% Student’s t test 2.201
Confidence Interval +/- 0.692 0.204
Lower Mean (MPa) 0.603 0.235
Upper Mean (MPa) 1.986 0.643

Table 7.2: Compiled time data for saline cases

Fluid Bath Saline
Number of Samples 12
Degrees of Freedom 11

Strain Range 7.35-13.08%
Time Constant (s) Area Ratio

Avg. 10.36 44.36%
Std. 5.91 8.86%
SE 1.71 2.56%

Two-Tailed, 95% Student’s t test 2.201
Confidence Interval +/- 3.755 5.63%

Lower Mean 6.61 38.73%
Upper Mean 14.12 49.99%

Both metrics relating to the time constant show no strain dependency for the

combined cases. The time constant, found numerically from the four-term Prony

series, has no distinguishable trend when considering the samples in saline, as shown

in Fig. 7.1c. Likewise, the area ratio of the relaxation curve is not dependent on strain

in general, which is shown in Fig. 7.1d. For a given sample, the time constant and

area ratio typically increase with higher strain. The lines linking individual samples

together show this phenomenon. One exception exists for both cases. In Table 7.2,

each metric is averaged, and the 95% confidence intervals are given. The absence of

a strong trend indicates that cartilage is unique between samples. A generalization
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of all samples is difficult for this reason. The strain-dependent increase in modulus

and time constant seen in most of the individual samples does not appear in the

compiled data. In a particular sample, function, weight, age, and other physiological

variables likely influence the cartilage response more than strain. The combined

results represent a range of likely cartilage behavior, and each sample is said to have

certain strain-dependent properties. More exhaustive testing and additional data

should be used to corroborate this finding.

The same metrics used for the saline cases are used for the synovial fluid and

synthetic fluid studies. Figure 7.2a shows the instantaneous modulus for the alterna-

tive fluids. Compared to the saline information, the alternative fluids have a stronger

correlation between strain and instantaneous modulus (R2 = 0.557). Individually,

all of the instantaneous moduli increase as the strain increases, with one exception

(Synovial (a), 06/13/2012). The rubbery modulus has a similar trend, as shown in

Fig. 7.2b. The slopes of the four cases that show strain-dependency are very similar.

In general, the rubbery modulus has a positive correlation with strain (R2 = 0.629).

Table 7.3 shows the statistical analysis of the glassy and rubbery modulus.

The time constant information is shown in Figs. 7.2c and 7.2d. Lumped together

as “alternative fluids,” the time constant is unchanged for the alternative fluids and

saline. Clearly, not enough information exists to ascertain the effects that synthetic

and synovial fluids have on cartilage mechanics. For the individual cases, the area

ratio of the decay remains relatively unchanged based on strain. This trend is also

shown in the saline cases. The combined information for the alternative fluid area

ratio is presented in Table 7.4. The modulus and time constant do not appear to

correlate in general, e.g. a higher glassy or rubbery modulus does not indicate a

higher (or lower) time constant or time constant area ratio.
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(a) Glassy modulus (b) Rubbery modulus

(c) Time constant (d) Area ratio

Figure 7.2: Results of stress relaxation experiments in the alternative fluids
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Table 7.3: Compiled glassy and rubbery modulus data for alternative cases

Fluid Bath Alternative
Number of Samples 10
Degrees of Freedom 9

Strain Range 8.77-17.89%
Glassy Modulus Rubbery Modulus

Avg. Modulus (MPa) 0.932 0.290
Std. 0.459 0.174
SE 0.145 0.055

Two-Tailed, 95% Student’s t test 2.262
Confidence Interval +/- 0.329 0.125
Lower Mean (MPa) 0.604 0.165
Upper Mean (MPa) 1.261 0.414

Table 7.4: Compiled time data for alternative cases

Fluid Bath Alternative
Number of Samples 10
Degrees of Freedom 9

Strain Range 8.77-17.89%
Time Constant (s) Area Ratio

Avg. 10.36 30.68%
Std. 7.31 10.64%
SE 2.31 3.37%

Two-Tailed, 95% Student’s t test 2.262
Confidence Interval +/- 5.236 7.61%

Lower Mean 5.137 23.07%
Upper Mean 15.590 38.29%

The direction of the current study is to prove that viscoelastic models can be

used to analyze cartilage. A significant number of additional tests are required to

quantitatively describe the behavior of equine cartilage in the stifle joint in general.

The results that are presented are preliminary to a full characterization of cartilage.

However, the trends that are seen, such as a different glassy and rubbery modulus

based on the type of fluid bath, are promising. More tests are needed to follow up on

the results shown.
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7.3 Fractional Time Constant

The fractional modeling data also contains a characteristic time parameter, µ. The

fractional time constant is perhaps less intuitive than the time constant used in expo-

nential decay. Nevertheless, the fractional time constant is an important characteristic

of the mechanical behavior of cartilage. For the saline and alternative cases, µ has an

average value of 0.12 and 0.07 s1/2, respectively. The standard deviation is 0.12 and

0.075 respectively. Clearly, without a much larger number of samples, a statistical

conclusion cannot be drawn about the fractional time constant. Additional work is

needed to determine if the fractional time constant provides a useful metric for the

analysis of cartilage.

7.4 General Characteristics

The preliminary results obtained for the eleven samples should justify additional

study into cartilage viscoelasticity. Although more cartilage samples are required to

give statistical significance, the experimental data obtained at this point indicates a

few interesting trends. The first is that the bulk mechanical response of articular car-

tilage to a fixed displacement is viscoelastic in nature. Furthermore, the viscoelastic

behavior can be characterized with a Prony series or a complementary error func-

tion model. This conclusion may seem trivial, but it is important to note that the

mechanical response of cartilage is well captured with viscoelastic theory. A second

observation is that cartilage exhibits a correlation between modulus and strain in in-

dividual samples. However, when multiple samples are combined, in saline the trend

towards a higher modulus disappears, while in the alternative fluids it does not. In

the individual saline cases, with one exception, the time constant and area ratio in-

crease with strain, but the combined information does not. The alternative fluids are

less predictable in general for the time information. This is not surprising as four

different fluid types were used in the alternative cases.

66



What can be concluded from the data synthesis is that cartilage is uniquely

adapted to the user. General ranges can be reported for metrics like the time constant

and the glassy and rubbery modulus. These metrics have utility in the analysis of

samples; however, it is imperative to remember that biological tissues will inherently

have variations. The advantage of viscoelasticity is that as few as three terms are

needed to characterize the bulk mechanical response of cartilage. No experimental

“fudge-factors” are required for fitting the data. The disadvantage of viscoelasticity

is that it reduces cartilage to a homogeneous material, which may be a physiological

oversimplification. In general, mechanical modeling is used to simplify a complex

system of interactions. With a material as complex as cartilage, models that can

capture the majority of the mechanical response with relatively few parameters are

very useful. Viscoelasticity has proven capable in this realm.
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CHAPTER VIII

CLOSURE

This chapter concludes the work and gives direction for future study into the me-

chanics of cartilage.

8.1 Conclusions

The current work is focused on linking cartilage mechanics to viscoelastic theory.

Many previous researchers have noted that cartilage displays viscoelastic behavior,

but a full characterization has not occurred. The majority of viscoelastic tests being

performed are creep tests, which are typically easier to execute. However, stress-

relaxation experiments are more analogous to movements experienced during exercise,

and are a valuable tool for characterizing a viscoelastic substance. The focus of this

study has been to characterize the viscoelastic behavior of cartilage utilizing stress-

relaxation experiments.

Equine articular cartilage is chosen for study because of its similarity to human

cartilage [54], among other reasons. Within the equine skeleton, the stifle joint is

harvested for its regions of thick, flat cartilage and for the mechanical similarity to the

human knee. Stress-relaxation experiments, which mimic biological function during

exercise such as walking or running, are executed utilizing a tribometer. Although an

instantaneous displacement can not be obtained during actual experimentation, the

CETR-UMT-3 tribometer is capable of producing a sufficiently fast displacement for

the study. The resulting relaxation in the cartilage is captured and fit with the Prony

and CERF viscoelastic models. Both models can be analytically transferred to the

frequency domain, and studied as the storage and loss moduli. Therefore, the cartilage

samples are tested in the time-domain with a relaxation experiment, and analyzed in
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the frequency domain as a function of gait. This is an important advantage of linear

viscoelasticity, and the Boltzmann convolution integral that describes it.

The viscoelastic transition range of cartilage from a rubbery to glassy modulus

was found to be directly in the physiological range of gaits that humans and horses

experience. Cartilage is likely either inherently designed to operate in this manner,

or it adapts to meet the needs of the user. In either case, this shows another unique

aspect of cartilage that helps to protect joints and facilitate motion. The tailored

nature of cartilage makes it difficult to draw comparisons between samples; however,

a general range for the instantaneous modulus is between 0.747 and 1.512 MPa for

all of the samples combined. For the equilibrium modulus, the range is between

0.252 and 0.491 MPa. The time constant and area ratios are: 10.363 s +/- 2.844 s,

38.14% +/- 5.21%, respectively. The strain varied in the tests from 7.35% to 17.89%.

Certainly, additional tests are needed to make more robust characterizations; however,

cartilage’s viscoelastic nature is established.

Experimentally repeatable relaxation patterns in cartilage show strong viscoelastic

characteristics. Although the relaxation appears to be strain-dependent, the variation

due to strain could be small enough to characterize within the limits of linear vis-

coelastic theory. The advantage of linear viscoelasticity is the model simplicity. For

the fractional model, three parameters are capable of characterizing the viscoelastic-

ity in cartilage. A trade-off exists between the number of material parameters used,

and complete specificity of the model. Viscoelasticity can provide critical information

about the mechanical capabilities of cartilage. This can be used for major compar-

isons between species, or between healthy and diseased cartilage. Perhaps an entire

picture of the mechanics of cartilage cannot be described with viscoelasticity; how-

ever, it is an important piece of the puzzle. Additional refinement of the models used

in the current study could extend the flexibility of viscoelastic theory for cartilage.
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8.2 Future Work

The current study is an initial foray into the mechanical nature of articular cartilage.

A lot of additional aspects of cartilage remain to be studied. Based on the information

from the current study, some potential modeling changes are proposed for future work

and consideration.

First, additional tests should be performed to reduce the statistical variance seen

in the current study. A wider range of strains should be studied as well. The ability of

cartilage to recover from in vitro testing procedures needs further analysis too. These

studies should be performed to develop a benchmark for healthy articular cartilage.

Tests of other articulating joints should be performed for comparison purposes. Pre-

vious work on the surface morphology of cartilage indicates that the type of loading

and motion affects the structure of the medium [60, 61]. It is likely that different

joints have different mechanical responses as well.

In the viscoelastic model, the strain-dependent behavior should be considered. It

is hypothesized that the strain dependency of articular cartilage could be non-linear

in general, but the actual viscoelastic contribution could be linear with time (linear

viscoelasticity). Equations 8.1 and 8.2 describe the standard linear viscoelastic models

with nonlinear strain dependency. It is likely that this hypothesis is valid for a limited

range of strains.

E(t, ε) = E0(ε) +
∞∑
n=1

En(ε)eλnt (8.1)

E(t, ε) = E0(ε) +
∞∑
n=1

En(ε)e(µn
2t)erfc (µn

√
t) (8.2)

The primary driver of viscoelastic dissipation in cartilage is the flow of interstitial

fluid from the collagen matrix. High strains cause a more rapid exodus of fluid from

the cartilage, which changes the relaxation history. Whether a full range of strains in

cartilage can be reliably approximated with linear viscoelasticity remains to be seen.
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Future work should certainly extend viscoelastic theory to accommodate the strain

information. Similarly, cartilage relaxation should be studied over a wide range of

strains (upwards of 20%).

The advantages of linear viscoelasticity make it an attractive theory for extrap-

olation in modeling applications. However, if the full nature of cartilage cannot be

characterized with linear viscoelastic theory, nonlinear theories can be used. Fung

also proposed a quasilinear theory for soft tissues that could be explored for modeling

cartilage. These models are more challenging to implement and analyze, but they

have the potential to capture the entire physiological range of strain seen in cartilage.

Additional research is needed to quantify the mechanical response of cartilage

when immersed in different fluids. Research should also determine the time it takes

for the bathing fluid to fully saturate the sample. Preliminary results were largely

inconclusive in determining the effect of the bathing medium. The cartilage samples

showed the same monotonically decreasing behavior, but the amount of energy trans-

ferred and stored is likely different based on the immersing fluid. The more viscous

fluids are hypothesized to excrete through the cartilage matrix at a slower rate than

saline. The slower movement of fluid should correspond to a larger time constant

in the response. However, cartilage is a complex medium with many variables. Ad-

ditional experimental work is required to attribute the noted changes in mechanical

behavior to a specific fluid property.

Articular cartilage is an effective medium for the facilitation of motion in mam-

malian joints. The motivation for studying cartilage is to understand the mechanisms

that make it unique. It is desired to constitutively model cartilage with as simple of a

model as possible, so that distinctions can be made between healthy and arthritic car-

tilage, between joints undergoing different motions and loading, and between different

species. In evaluating the predictive capabilities of cartilage models, the constitutive
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models that are easiest to implement in FEA programs and other predictive pack-

ages have the greatest utility. It is a trade-off in determining the model that best

captures the behavior of cartilage, and is easiest to implement. The standard linear

solid models used in this work are the foundation for more extensive research.
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APPENDIX A

VISCOELASTIC-ELASTIC CORRESPONDENCE

PRINCIPLE

Figure A.1: Spring and mass model for linear elastic solid

A physical foundation of the viscoelastic-elastic correspondence principle is es-

tablished by considering spring and mass models [48, 47, 57]. A spring is used to

represent a linearly elastic solid. For the spring-mass system, shown in Fig. A.1, we

write the governing dynamic equation:

mẍ = −kx (A.1)

or simply:

mẍ+ kx = 0 (A.2)

assuming a solution for x:

x = Xest (A.3)

where X is a magnitude and s is a complex eigenvalue, in general. Applying the

assumed solution to Eq. A.2, the following result is obtained:

(ms2 + k)Xest = 0 (A.4)

or:

ms2 + k = 0 (A.5)
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Figure A.2: Viscoelastic material and mass model

Figure A.3: Pseudo-spring and mass model for viscoelastic solid

Eq. A.5 will be retained for comparison with a viscoelastic material. Consider a

mass attached to a viscoelastic material, as shown in Fig. A.2. Now, allow for a

replacement of the viscoelastic material with a pseudo-spring, as shown in Fig. A.3.

The pseudo-spring represents the relaxation stiffness (see Szumski [47] and Miller

[48]), i.e. ks(t) = F (t)/xstep, where xstep is a step input. The dynamics now appear

very similar to those of the elastic material, except that the elastic spring, k, has been

replaced with a pseudo-spring, ks. Applying a similar force balance:

mẍ = −ksx (A.6)

or simply:

mẍ+ ksx = 0 (A.7)

using the same assumed solution for x (Eq. A.3), and applying to Eq. A.7:

(ms2 + ks)Xe
st = 0 (A.8)

or:

ms2 + ks = 0 (A.9)
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The viscoelastic-elastic correspondence principle essentially states that the pseudo-

spring, ks, that is used to describe the viscoelastic material can be replaced with

sk(s). This simply gives:

ms2 + sk(s) = 0 (A.10)

The k(s) term is a function of s and has both elastic and dissipative properties.

Comparing with Eq. A.5, it is straightforward to see the difference between an elastic

and a linear viscoelastic material. As discussed, viscoelastic materials take a form

similar to that of Hooke’s law in the Laplace domain. The utility of this finding is that

the eigenvalue problem is reduced in the dynamic analysis of viscoelastic materials.

The relative simplicity of linear viscoelastic theory makes it an attractive model for

many materials.

75



APPENDIX B

PRONY SERIES DERIVED

The derivation for a Prony series is relatively straightforward; however, some pre-

liminary definitions and explanations should be made before continuing. First, it is

convenient to define a spring and dashpot in series as a Maxwell element (Fig. B.1).

Now, consider a Maxwell element in parallel with a free spring, as shown in Fig. B.2.

The configuration shown in Fig. B.2 is known as the standard linear solid, or a one-

term Prony series.

Figure B.1: Maxwell element

Using the notation “one-term Prony series” to define the standard linear solid ap-

pears somewhat ambiguous, as the equation actually contains three material parameters-

E0, E1, and η1. However, inspection of Eq. 3.9 explains why the label is used. A one-

term Prony series refers to n = 1, which yields the three material terms expected-

E0, E1, and η1. Therefore, a n-term Prony series actually refers to the number of

Figure B.2: One Maxwell element Prony series
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Maxwell elements in the series, not the total number of material parameters. The

number of material parameters in a n-term Prony series is 2n+ 1.

Returning to the standard linear solid, the stress-strain relationship can be deter-

mined by noting that the total stress in the model is superimposed while the stain is

common:

σT = σs0 + σM (B.1)

εT = εs0 = εM . (B.2)

Here, T denotes the total system, s0 the free spring, and M the Maxwell element. The

total stress in the Prony series is the sum of the free spring and the Maxwell elements,

while the total strain is common for all elements. Within the Maxwell element, the

stress and strain are as follows:

σM = σs1 = σD (B.3)

εM = εs1 + εD (B.4)

where D denotes the dashpot and s1 denotes the spring in the Maxwell element.

Individually, the stress in a particular spring or dashpot element is:

σs1 = Eεs1 (B.5)

σD = η1ε̇D (B.6)

Taking the derivative of Eq. B.4 with note of Eq. B.2 yields:

ε̇T = ε̇s1 + ε̇D (B.7)
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which can be expressed in terms of strain and stress utilizing Eqs. B.5 and B.6:

ε̇T =
1

E1

σ̇s1 +
1

η1
σD (B.8)

or simplified with Eq. B.3:

ε̇T =
1

E1

σ̇M +
1

η1
σM (B.9)

Applying Eq. B.1 yields:

ε̇T =
1

E1

(σ̇T − σ̇S0) +
1

η1
(σT − σS0) (B.10)

ε̇T =
1

E1

(σ̇T − E0ε̇S0) +
1

η1
(σT − E0εS0) (B.11)

ε̇T =
1

E1

(σ̇T − E0ε̇T ) +
1

η1
(σT − E0εT ) (B.12)

Finally arriving at the constitutive equation for a one-term Prony series:

(
1 +

E0

E1

)
ε̇T +

E0

η1
εT =

1

E1

σ̇T +
1

η1
σT (B.13)

For a relaxation experiment ( ˙εT = 0, εT = ε0), the Prony series can be solved easily:

E0

η1
ε0 =

1

E1

σ̇T +
1

η1
σT . (B.14)

This is a first-order differential equation, with the particular solution giving the free

spring solution:

σT = E0ε0 (B.15)

and the homogeneous solution giving the Maxwell solution:
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σT = C1e
−E1
η1
t

(B.16)

solving for the initial condition σ(0) = σ0 = (E0 + E1)ε0 and combining with the

free spring solution gives the solution for the one Maxwell element (one-term) Prony

series:

σT = (E0 + E1e
−λ1t)ε0 (B.17)

where

λ1 =
E1

η1
(B.18)

and the characteristic time constant is simply:

τ1 =
1

λ1
(B.19)

When t = τ1 = 1
λ1

, the Maxwell element retains only 36.8% of its initial load support.

This is typical of a first-order system like the one described by Eq. B.14. The idea of

a characteristic time constant is used throughout the thesis, and is extrapolated to

the 3 and 4-term Prony series models.

Returning to Eq. B.17, by the principle of linear superposition, the Prony series

can be expanded to include more Maxwell elements in parallel. Generalizing Eq. B.17

gives:

σT =

(
E0 +

∞∑
n=1

Ene
λnt

)
ε0 (3.9)

where the parenthesis encapsulate the relaxation modulus.

E(t)
4
= E0 +

∞∑
n=1

Ene
λnt (B.20)
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For a Prony series, the glassy and rubbery moduli are easily determined:

Eglassy(t→ 0) = E0 +
∞∑
n=1

En (B.21)

Erubbery(t→∞) = E0 (B.22)

B.1 Prony Series in Frequency Domain

The definition of a Fourier transform is used to determine the Prony series in the

frequency domain:

F {E(t)} = E (ω) =

∫ ∞
∞
E(t)e−iωt dt (B.23)

Consider E(t) to be a one-term Prony series that is zero for all time t < 0:

E (ω) =

∫ ∞
0

(E0 + E1e
−λ1t)e−iωt dt (B.24)

solving Eq. B.24:

E (ω) =
−E0

iω
e−iωt

∣∣∣∣t=∞
t=0

+
−E1

λ1 + iω
e−(λ1+iωt)

∣∣∣∣t=∞
t=0

(B.25)

and evaluating:

E (ω) =
E0

iω
+

E1

λ1 + iω
(B.26)

A multiplication operation on the second term removes the imaginary component

from the denominator:

E (ω) =
E0

iω
+

E1

λ1 + iω

(
λ1 − iω
λ1 − iω

)
(B.27)

yielding:

E (ω) =
E0

iω
+ E1

(
λ1 − iω
λ21 + ω2

)
(B.28)
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A full Prony series in the frequency domain can then be generalized as:

E(ω) =
E0

iω
+
∞∑
n=1

En

(
λn − iω
λ2n + ω2

)
(6.1)

By the elastic-viscoelastic correspondence principle, the storage and loss moduli are:

E ′(ω) = E0 +
∞∑
n=1

ω2

(
En

λ2n + ω2

)
(6.2)

E ′′(ω) =
∞∑
n=1

(
Enλnω

λ2n + ω2

)
(6.3)

From the storage and loss moduli, the limits at low and high frequencies are obtained:

E ′
∣∣
ω→∞ = E0 +

∞∑
n=1

En (B.29)

E ′
∣∣
ω→0

= E0 (B.30)

The loss data approaches zero at both frequency extremes:

E ′′
∣∣
ω→∞ = 0 (B.31)

E ′′
∣∣
ω→0

= 0 (B.32)

Therefore, the glassy and rubbery moduli only contain data from the storage (real)

moduli.

Eglassy = E ′
∣∣
ω→∞ = E0 +

∞∑
n=1

En (B.33)

Erubbery = E ′
∣∣
ω→0

= E0 (B.34)

This is seen graphically in Fig. 3.2 as well, where the loss moduli approaches zero

at the low and high frequency endpoints. However, in the transition region, the loss

moduli is clearly non-zero.
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APPENDIX C

FRACTIONAL DERIVATIVE MODEL

For a one-element fractional derivative model, the constitutive equation relating stress

to strain is similar to that of the one-term Prony model (Eq. B.13), except that the

dashpot of the Prony model is replaced with the spring-pot element:

dεT
dt
←− dαεT

dtα
(C.1)

dσT
dt
←− dασT

dtα
(C.2)

leading to the constitutive equation for the fractional derivative model:

(
1 +

E0

E1

)
dαεT
dtα

+
E0

η1
εT =

1

E1

dασT
dtα

+
1

η1
σT (C.3)

In Eq. C.3, if α = 1, the constitutive model becomes the standard linear solid (one-

term Prony) model. If α = 0, the spring-pot simply becomes a spring and the entire

model is reduced to an equivalent linear spring. For any fractional valued α between

0 and 1, the spring-pot element has both spring and dashpot behavior.

Equation C.3 is conveniently analyzed in the Laplace domain, which allows for

treatment of the fractional power.

[(
1 +

E0

E1

)
sα +

E0

η1

]
ε(s) =

(
1

E1

sα +
1

η1

)
σ(s) (C.4)

Rearranging Eq. C.4 and applying the elastic-viscoelastic correspondence principle

(Eq. 3.3), the relaxation modulus can be found:
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E(s) =

[(
1 + E0

E1

)
sα + E0

η1

]
(

1
E1
sα + 1

η1

) 1

s
(C.5)

The relationship between the Laplace and frequency domains allows for the fractional

model to be obtained:

E(ω) =

[(
1 + E0

E1

)
(iω)α + E0

η1

]
[

1
E1

(iω)α + 1
η1

] (
1

iω

)
(C.6)

With some algebra, Eq. C.6 can be reduced:

E(ω) =

[(
1 + E0

E1

)
(iω)α + E0

η1

]
[

1
E1

(iω)α + 1
η1

] (
E1

E1

)(
1

iω

)
(C.7)

E(ω) =

[
(E1 + E0) (iω)α + E0

E1

η1

]
[
(iω)α + E1

η1

] (
1

iω

)
(C.8)

E(ω) =

[
(iω)α + E1

η1

]
[
(iω)α + E1

η1

] (E0

iω

)
+

E1 (iω)α[
(iω)α + E1

η1

] ( 1

iω

)
(C.9)

E(ω) =
E0

iω
+

E1 (iω)α[
(iω)α + E1

η1

] ( 1

iω

)
(C.10)

If required, the fractional model can be generalized as follows:

E(ω) =
E0

iω
+
∞∑
n=1

En (iω)α[
(iω)α + En

ηn

] ( 1

iω

)
(3.11)

The complex modulus can be easily found from Eq. 3.11:

E∗(ω) = E0 +
∞∑
n=1

En (iω)α[
(iω)α + En

ηn

] (C.11)
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C.1 Simplifications for α = 1/2 (special case)

For the special case of α = 1/2, the mathematics of the fractional model simplify

dramatically. In the time domain, a concise solution appears in the form of a comple-

mentary error function multiplied by a decaying exponential. An analytic form of the

model can be found for the frequency domain solution as well. Consider a one-term

fractional model with α = 1/2:

E∗(ω) = E0 +
E1 (iω)1/2[

(iω)1/2 + E1

η1

] (C.12)

The square root of iω can be found from the generalized form of de Moivre’s theorem:

(iω)1/2 =

√
2ω

2
(1 + i) (C.13)

Two substitutions help clarify the mathematics:

β =

√
2ω

2
(C.14)

µ1 =
E1

η1
(C.15)

Substituting these relations into Eq. C.12 yields:

E∗(ω) = E0 +
E1β(1 + i)

µ1 + β(1 + i)
(C.16)

Simplifying the fraction:

E∗(ω) = E0 +
E1β(1 + i)

µ1 + β(1 + i)

[
µ1 − β(1 + i)

µ1 − β(1 + i)

]
(C.17)

E∗(ω) = E0 +
E1βµ1(1 + i)− E1β

2(1 + i)2

µ2
1 − β2(1 + i)2

(C.18)

Which can be simplified with (1 + i)2 = 2i
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E∗(ω) = E0 +
E1βµ1(1 + i)− E1β

2(2i)

µ2
1 − β2(2i)

(C.19)

E∗(ω) = E0 + E1β

[
µ1 − (2β − µ1)i

µ2
1 − 2β2i

]
(C.20)

With one additional multiplication, the imaginary part of the denominator can be

eliminated:

E∗(ω) = E0 + E1β

[
µ1 − (2β − µ1)i

µ2
1 − 2β2i

] [
µ2
1 + 2β2i

µ2
1 + 2β2i

]
(C.21)

E∗(ω) = E0 + E1β

[
µ1(µ

2
1 + 2β2i)− i(2β − µ1)(µ

2
1 + 2β2i)

µ4
1 + 4β4

]
(C.22)

The numerator can be rearranged to separate the real and imaginary components:

E∗(ω) = E0 + E1β

[
µ3
1 − 2β2µ1 + 4β3 + i(µ3

1 − 2βµ2
1 + 2β2µ1)

µ4
1 + 4β4

]
(C.23)

Further simplification leads to:

E∗(ω) = E0 + E1β

[
(µ1 + 2β)(µ2

1 − 2µ1β + 2β2) + iµ1(µ
2
1 − 2µ1β + 2β2)

(µ2
1 − 2µ1β + 2β2)(µ2

1 + 2µ1β + 2β2)

]
(C.24)

E∗(ω) = E0 + E1β

[
µ1 + 2β

µ2
1 + 2µ1β + 2β2

+
iµ1

µ2
1 + 2µ1β + 2β2

]
(C.25)

Substitution of Eq. C.14:

E∗(ω) = E0 + E1


(√

2ω
2

)
µ1 + ω

µ2
1 + µ1

√
2ω + ω

+
i
(√

2ω
2

)
µ1

µ2
1 + µ1

√
2ω + ω

 (C.26)

Eq. C.26 can be generalized for any number of fractional terms, although the utility

of the fractional model is that few terms typically need to be used to characterize

viscoelastic behavior.
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E∗(ω) = E0 +
∞∑
n=1

En


(√

2ω
2

)
µn + ω

µ2
n + µn

√
2ω + ω

+
i
(√

2ω
2

)
µn

µ2
n + µn

√
2ω + ω

 (C.27)

E ′(ω) = E0 +
∞∑
n=1

En


(√

2ω
2

)
µn + ω

µ2
n + µn

√
2ω + ω

 (C.28)

E ′′(ω) =
∞∑
n=1

En


(√

2ω
2

)
µn

µ2
n + µn

√
2ω + ω

 (C.29)

For the fractional derivative model where α = 1/2, there exists a concise time-

domain solution [47]:

E(t) = E0 +
∞∑
n=1

Ene
(µn2t)erfc (µn

√
t) (3.14)

which is a decaying complementary error function multiplied by an increasing expo-

nential. To prove that the result of the multiplication of these two functions is a

monotonically decreasing function, a comparison is presented in Fig. C.1.

Figure C.1: Comparison of exponential and complementary error function curves

It is clear that the decaying error function dominates the behavior of the fractional

viscoelastic model. In this example, the value used for µ is 0.625, which is a reasonable
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value for cartilage. However, it should be noted that the monotonically decreasing

nature shown in Fig. C.1 does not depend on the value of µ.
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APPENDIX D

EQUIPMENT SPECIFICATION

The major pieces of equipment used in the data acquisition process are the bandsaw

and tribometer. Company information is provided below:

Grizzly Industrial Inc. G0513P 17 Bandsaw. Grizzly Industrials. Bellingham Wash-

ington. 1821 Valencia St. Bellingham, WA 982291.

Figure D.1: Grizzly Bandsaw

1Figure taken from manufacturer’s website
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Bruker Technology. CETR-UMT-3 Tribometer. Bruker Nano Surfaces Division.

Campbell, CA USA2

Figure D.2: CETR UMT-3 Tribometer

Additionally, some small equipment is used for the cartilage plug creating process:

an arbor press, Dremel rotary tool, and leather punching kit. The experimental data

is reduced with Matlab, the least squares fitting program REGRESS, and Microsoft

Excel. The thesis is written in Latex using MikTex.

Various stages of the dissection process are shown in Fig. D.3:

2Figure taken from manufacturer’s website
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(a) Stifle joint after bulk dissection,
with the joint capsule intact

(b) Resizing of stifle joint with band-
saw

(c) Resized cartilage surface from sti-
fle

(d) Plug created in the cartilage sur-
face

(e) Stress-relaxation analysis of cartilage plug
with tribometer

Figure D.3: Steps taken in the dissection process
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APPENDIX E

TEST RECORDS FOR EXPERIMENTS

For each of the 11 cases analyzed in the current study, the material modeling param-

eters are presented for the three and four-term Prony series, as well as the fractional

model. The model parameters are located in two columns- one for the lower strain

tests, and one for the higher strain tests. Additionally, the biographical and time

constant information is presented as well. Recall from Chapter. 5 that the “Normal-

ized Time Constant Area” is the area under the reduced relaxation curve from t = 0

to t = tTC , normalized by the glassy modulus for convenience. The normalization is

merely useful for presentation. The “Area Ratio,” defined as:

Area Ratio =
Normalized T ime Constant Area

Normalized Total Area
. (E.1)

The Area Ratio will be the same regardless of normalization. Of course, the “Nor-

malized Total Area” is the area under the reduced relaxation curve from t = 0 to

t = t∞.

In the specific model parameter presentations, the “norm” gives an idea of the

quality of the fit. The norm is defined as:

Norm =

√√√√ n∑
i=1

(xi,exp − xi,model)2 (E.2)

As the norm is dependent on the magnitude of the experimental data, it should not

be used to compare between samples. However, within a particular sample, the norm

can be used to compare the different viscoelastic models. After the tabulated data,

the time-domain fit of the 4-term Prony series and complementary error function

(CERF) is presented for both strain levels. Then, the four-term Prony series and
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complementary error function models are shown in frequency domain. Interestingly,

the viscoelastic transition range for cartilage coincides directly with the range of gaits

experienced during common physical exercise, as shown in Figs. E.1 - E.22.
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Table E.1: Saline (a): Cartilage information and model parameters

Strain Level #1 Strain Level #2
Date: 5/22/2012 Case #: 1070752 Fluid Bath: Saline

Age (yrs) 7
Estimated Weight (kg) 498.96

Use Show
Breed American Quarter Horse

Gender M
Plug Thickness (mm) 2.374

Number of Thickness Samples 5
Standard Dev. (mm) 0.396
Displacement (mm) 0.249 0.174

Strain 10.49% 7.35%
Time Constant (s) 1.57 1.98

Normalized Time Constant Area 2.16 2.97
Normalized Total Area 4.82 5.99

Area Ratio 44.78% 49.63%

4-Term Prony Model Parameters

Glassy Modulus (MPa) 0.514 0.520
E0 (MPa) 0.060 0.056
E1 (MPa) 0.072 0.067
E2 (MPa) 0.064 0.062
E3 (MPa) 0.077 0.074
E4 (MPa) 0.241 0.261

λ1 (1/s) 0.447 0.358
λ2 (1/s) 21.023 17.044
λ3 (1/s) 2.524 1.874
λ4 (1/s) 0.067 0.054
Norm 3.13E+05 4.46E+05

3-Term Prony Model Parameters

Glassy Modulus (MPa) 0.497 0.506
E0 (MPa) 0.093 0.083
E1 (MPa) 0.077 0.076
E2 (MPa) 0.083 0.082
E3 (MPa) 0.243 0.265

λ1 (1/s) 8.054 7.299
λ2 (1/s) 0.692 0.649
λ3 (1/s) 0.077 0.069
Norm 3.35E+05 4.61E+05
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Table: E.1 continued:

Fractional Model Parameters

E0 (Mpa) 0.271 0.261
E1 (Mpa) 0.208 0.231
µ2 (1/s) 0.372 0.316

α 1/2 1/2
Norm 4.36E+05 5.39E+05

Test Notes

Test Time 4:00 pm
Approximate Demise to Collection Time 24 hours

Time from Harvest to Test <25 min

This data set was the initial test performed, with the larger strain tests
performed first

Figure E.1: Time-domain fits of experimental data on semi-log scale for Saline (a)
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(a) Lower strain (7.35%)

(b) Higher strain (10.49%)

Figure E.2: Compiled frequency domain information for Saline (a)
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Table E.2: Saline (b): Cartilage information and model parameters

Strain Level #1 Strain Level #2
Date: 5/24/2012 Case #: 1102477 Fluid Bath: Saline

Age (yrs) 11
Estimated Weight (kg) 453.74

Use Unknown
Breed American Quarter Horse

Gender F
Plug Thickness (mm) 2.805

Number of Thickness Samples 5
Standard Dev. (mm) 0.196
Displacement (mm) 0.249 0.349

Strain 8.89% 12.44%
Time Constant (s) 6.38 8.36

Normalized Time Constant Area 5.71 7.75
Normalized Total Area 21.07 25.79

Area Ratio 27.11% 30.04%

4-Term Prony Model Parameters

Glassy Modulus (MPa) 1.492 3.290
E0 (MPa) 0.248 0.543
E1 (MPa) 0.277 0.527
E2 (MPa) 0.259 0.563
E3 (MPa) 0.278 0.664
E4 (MPa) 0.430 0.994

λ1 (1/s) 0.099 0.096
λ2 (1/s) 7.026 5.282
λ3 (1/s) 0.609 0.564
λ4 (1/s) 0.014 0.013
Norm 9.34E+05 1.14E+06

3-Term Prony Model Parameters

Glassy Modulus (MPa) 1.389 3.114
E0 (MPa) 0.336 0.720
E1 (MPa) 0.306 0.664
E2 (MPa) 0.304 0.704
E3 (MPa) 0.443 1.026

λ1 (1/s) 1.842 1.507
λ2 (1/s) 0.156 0.144
λ3 (1/s) 0.018 0.015
Norm 1.45E+06 2.42E+06
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Table: E.2 continued:

Fractional Model Parameters

E0 (Mpa) 1.034 2.290
E1 (Mpa) 0.316 0.743
µ2 (1/s) 0.094 0.077

α 1/2 1/2
Norm 2.26E+06 5.65E+06

Test Notes

Test Time 5:00 pm
Approximate Demise to Collection Time 2 hours

Time from Harvest to Test <25 min

Test #5 was performed at the lower strain level

Figure E.3: Time-domain fits of experimental data on semi-log scale for case Saline
(b)
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(a) Lower strain (8.89%)

(b) Higher strain (11.55%)

Figure E.4: Compiled frequency domain information for case Saline (b)
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Table E.3: Saline (c): Cartilage information and model parameters

Strain Level #1 Strain Level #2
Date: 5/29/2012 Case #: 1102292 Fluid Bath: Saline

Age (yrs) 17
Estimated Weight (kg) 544.32

Use Teaching
Breed American Quarter Horse

Gender M
Plug Thickness (mm) 2.676

Number of Thickness Samples 3
Standard Dev. (mm) 0.092
Displacement (mm) 0.250 0.350

Strain 9.34% 13.08%
Time Constant (s) 5.00 10.06

Normalized Time Constant Area 5.76 10.21
Normalized Total Area 10.70 21.86

Area Ratio 53.89% 46.69%

4-Term Prony Model Parameters

Glassy Modulus (MPa) 0.609 0.951
E0 (MPa) 0.098 0.174
E1 (MPa) 0.083 0.129
E2 (MPa) 0.078 0.136
E3 (MPa) 0.110 0.190
E4 (MPa) 0.240 0.321

λ1 (1/s) 0.169 0.091
λ2 (1/s) 9.106 5.592
λ3 (1/s) 0.978 0.523
λ4 (1/s) 0.034 0.016
Norm 1.28E+06 6.57E+05

3-Term Prony Model Parameters

Glassy Modulus (MPa) 0.582 0.903
E0 (MPa) 0.108 0.168
E1 (MPa) 0.115 0.197
E2 (MPa) 0.118 0.212
E3 (MPa) 0.241 0.327

λ1 (1/s) 2.674 1.470
λ2 (1/s) 0.225 0.133
λ3 (1/s) 0.036 0.019
Norm 1.30E+06 8.61E+05
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Table: E.3 continued:

Fractional Model Parameters

E0 (Mpa) 0.422 0.705
E1 (Mpa) 0.194 0.221
µ2 (1/s) 0.213 0.074

α 1/2 1/2
Norm 1.68E+06 8.06E+05

Test Notes

Test Time 5:00 pm
Approximate Demise to Collection Time 2 hours

Time from Harvest to Test <25 min

Tests #1-2 were excluded from the analysis due to erroneous behavior

Figure E.5: Time-domain fits of experimental data on semi-log scale for case Saline
(c)
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(a) Lower strain (9.34%)

(b) Higher strain (13.08%)

Figure E.6: Compiled frequency domain information for case Saline (c)
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Table E.4: Saline (d): Cartilage information and model parameters

Strain Level #1 Strain Level #2
Date: 5/30/2012 Case #: 1091811 Fluid Bath: Saline

Age (yrs) 14
Estimated Weight (kg) 535.25

Use Teaching
Breed American Quarter Horse

Gender M
Plug Thickness (mm) 3.107

Number of Thickness Samples 3
Standard Dev. (mm) 0.079
Displacement (mm) 0.250 0.350

Strain 8.04% 11.27%
Time Constant (s) 10.28 15.36

Normalized Time Constant Area 11.12 14.92
Normalized Total Area 24.94 34.02

Area Ratio 44.57% 43.86%

4-Term Prony Model Parameters

Glassy Modulus (MPa) 1.949 3.533
E0 (MPa) 0.373 0.691
E1 (MPa) 0.255 0.405
E2 (MPa) 0.296 0.554
E3 (MPa) 0.316 0.772
E4 (MPa) 0.708 1.111

λ1 (1/s) 0.074 0.070
λ2 (1/s) 4.568 3.904
λ3 (1/s) 0.398 0.356
λ4 (1/s) 0.013 0.011
Norm 1.23E+06 1.18E+06

3-Term Prony Model Parameters

Glassy Modulus (MPa) 1.849 0.979
E0 (MPa) 0.335 0.586
E1 (MPa) 0.431 0.804
E2 (MPa) 0.361 0.835
E3 (MPa) 0.722 1.146

λ1 (1/s) 1.102 0.878
λ2 (1/s) 0.110 0.100
λ3 (1/s) 0.016 0.013
Norm 1.78E+06 2.49E+06
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Table: E.4 continued:

Fractional Model Parameters

E0 (Mpa) 1.409 2.779
E1 (Mpa) 0.549 0.741
µ2 (1/s) 0.093 0.053

α 1/2 1/2
Norm 1.37E+06 1.94E+06

Test Notes

Test Time 12:00 pm
Approximate Demise to Collection Time 4 hours

Time from Harvest to Test <20 min

Figure E.7: Time-domain fits of experimental data on semi-log scale for case Saline
(d)
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(a) Lower strain (8.04%)

(b) Higher strain (11.27%)

Figure E.8: Compiled frequency domain information for case Saline (d)
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Table E.5: Saline (e): Cartilage information and model parameters

Strain Level #1 Strain Level #2
Date: 5/30/2012 Case #: 1093329 Fluid Bath: Saline

Age (yrs) 11
Estimated Weight (kg) 534.32

Use Teaching
Breed Thoroughbred

Gender M
Plug Thickness (mm) 2.785

Number of Thickness Samples 3
Standard Dev. (mm) 0.117
Displacement (mm) 0.250 0.349

Strain 8.96% 12.54%
Time Constant (s) 17.06 13.23

Normalized Time Constant Area 17.71 13.81
Normalized Total Area 42.45 31.02

Area Ratio 44.71% 44.51%

4-Term Prony Model Parameters

Glassy Modulus (MPa) 0.698 1.025
E0 (MPa) 0.113 0.171
E1 (MPa) 0.098 0.140
E2 (MPa) 0.095 0.147
E3 (MPa) 0.146 0.206
E4 (MPa) 0.247 0.361

λ1 (1/s) 0.061 0.071
λ2 (1/s) 4.061 3.950
λ3 (1/s) 0.381 0.419
λ4 (1/s) 0.009 0.012
Norm 1.05E+06 7.57E+05

3-Term Prony Model Parameters

Glassy Modulus (MPa) 0.665 0.979
E0 (MPa) 0.123 0.188
E1 (MPa) 0.126 0.195
E2 (MPa) 0.156 0.226
E3 (MPa) 0.260 0.370

λ1 (1/s) 1.151 1.169
λ2 (1/s) 0.098 0.107
λ3 (1/s) 0.012 0.014
Norm 1.15E+06 9.93E+05
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Table: E.5 continued:

Fractional Model Parameters

E0 (Mpa) 0.465 0.716
E1 (Mpa) 0.185 0.260
µ2 (1/s) 0.037 0.051

α 1/2 1/2
Norm 1.39E+06 1.21E+06

Test Notes

Test Time 12:00 pm
Approximate Demise to Collection Time 4 hours

Time from Harvest to Test <20 min

Figure E.9: Time-domain fits of experimental data on semi-log scale for case Saline
(e)
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(a) Lower strain (8.96%)

(b) Higher strain (12.54%)

Figure E.10: Compiled frequency domain information for case Saline (e)

107



Table E.6: Synovial (a): Cartilage information and model parameters

Strain Level #1 Strain Level #2
Date: 6/13/2012 Case #: 1102568 Fluid Bath: Synovial

Age (yrs) 6
Estimated Weight (kg) 453.6

Use Teaching
Breed American Warmblood

Gender F
Plug Thickness (mm) 2.275

Number of Thickness Samples 4
Standard Dev. (mm) 0.173
Displacement (mm) 0.250 0.350

Strain 11.00% 15.40%
Time Constant (s) 2.99 5.37

Normalized Time Constant Area 2.82 5.21
Normalized Total Area 9.38 15.79

Area Ratio 30.04% 32.97%

4-Term Prony Model Parameters

Glassy Modulus (MPa) 0.476 0.473
E0 (MPa) 0.149 0.153
E1 (MPa) 0.071 0.076
E2 (MPa) 0.098 0.090
E3 (MPa) 0.073 0.075
E4 (MPa) 0.085 0.078

λ1 (1/s) 0.185 0.101
λ2 (1/s) 11.730 7.396
λ3 (1/s) 1.155 0.633
λ4 (1/s) 0.032 0.019
Norm 8.94E+05 5.51E+05

3-Term Prony Model Parameters

Glassy Modulus (MPa) 0.501 0.442
E0 (MPa) 0.145 0.105
E1 (MPa) 0.107 0.093
E2 (MPa) 0.098 0.090
E3 (MPa) 0.150 0.155

λ1 (1/s) 14.357 2.095
λ2 (1/s) 0.389 0.159
λ3 (1/s) 0.037 0.022
Norm 1.00E+06 6.49E+05
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Table: E.6 continued:

Fractional Model Parameters

E0 (Mpa) 0.327 0.324
E1 (Mpa) 0.119 0.117
µ2 (1/s) 0.261 0.127

α 1/2 1/2
Norm 1.34E+06 7.33E+05

Test Notes

Test Time 5:39 pm
Approximate Demise to Collection Time 1 hour

Time from Harvest to Test 10 min

Plug was rinsed with saline during harvest, but given approx. 5 minutes in
pooled synovial fluid before testing was performed

Test #1 was excluded from the analysis due to erroneous behavior

Figure E.11: Time-domain fits of experimental data on semi-log scale for case Synovial
(a)
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(a) Lower strain (11.00%)

(b) Higher strain (15.40%)

Figure E.12: Compiled frequency domain information for case Synovial (a)
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Table E.7: Synovial (b): Cartilage information and model parameters

Strain Level #1 Strain Level #2
Date: 6/19/2012 Case #: 1075979 Fluid Bath: Synovial

Age (yrs) 12
Estimated Weight (kg) 498.96

Use Unknown
Breed Thoroughbred

Gender M
Plug Thickness (mm) 1.955

Number of Thickness Samples 3
Standard Dev. (mm) 0.494
Displacement (mm) 0.250 0.350

Strain 12.76% 17.89%
Time Constant (s) 7.89 11.54

Normalized Time Constant Area 9.01 11.78
Normalized Total Area 26.61 34.46

Area Ratio 33.85% 34.18%

4-Term Prony Model Parameters

Glassy Modulus (MPa) 0.873 1.605
E0 (MPa) 0.131 0.270
E1 (MPa) 0.127 0.212
E2 (MPa) 0.137 0.271
E3 (MPa) 0.137 0.304
E4 (MPa) 0.342 0.548

λ1 (1/s) 0.085 0.075
λ2 (1/s) 5.196 3.693
λ3 (1/s) 0.466 0.409
λ4 (1/s) 0.011 0.009
Norm 8.51E+05 7.01E+05

3-Term Prony Model Parameters

Glassy Modulus (MPa) 0.826 1.532
E0 (MPa) 0.163 0.318
E1 (MPa) 0.168 0.327
E2 (MPa) 0.147 0.320
E3 (MPa) 0.349 0.567

λ1 (1/s) 1.343 0.990
λ2 (1/s) 0.131 0.109
λ3 (1/s) 0.014 0.012
Norm 1.03E+06 1.25E+06
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Table: E.7 continued:

Fractional Model Parameters

E0 (Mpa) 0.537 1.106
E1 (Mpa) 0.292 0.444
µ2 (1/s) 0.096 0.072

α 1/2 1/2
Norm 1.39E+06 2.49E+05

Test Notes

Test Time 4:00 pm
Approximate Demise to Collection Time <8 hour

Time from Harvest to Test <30 min

Plug was rinsed with synovial fluid during harvest
Six tests were performed overall because additional time was given

in the recovery phase (5 minutes)

Figure E.13: Time-domain fits of experimental data on semi-log scale for case Synovial
(b)
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(a) Lower strain (12.76%)

(b) Higher strain (17.89%)

Figure E.14: Compiled frequency domain information for case Synovial (b)
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Table E.8: Hylartin: Cartilage information and model parameters

Strain Level #1 Strain Level #2
Date: 6/20/2012 Case #: 1050005 Fluid Bath: Hylartin

Age (yrs) 22
Estimated Weight (kg) 498.96

Use Unknown
Breed TN Walking

Gender M
Plug Thickness (mm) 2.851

Number of Thickness Samples 5
Standard Dev. (mm) 0.584
Displacement (mm) 0.250 0.350

Strain 8.77% 12.27%
Time Constant (s) 28.07 14.08

Normalized Time Constant Area 24.45 12.36
Normalized Total Area 49.53 34.22

Area Ratio 49.37% 36.12%

4-Term Prony Model Parameters

Glassy Modulus (MPa) 0.463 0.861
E0 (MPa) 0.085 0.145
E1 (MPa) 0.058 0.151
E2 (MPa) 0.048 0.113
E3 (MPa) 0.148 0.207
E4 (MPa) 0.125 0.245

λ1 (1/s) 0.071 0.077
λ2 (1/s) 6.040 9.171
λ3 (1/s) 0.466 0.604
λ4 (1/s) 0.010 0.011
Norm 1.18E+06 8.32E+05

3-Term Prony Model Parameters

Glassy Modulus (MPa) 0.438 0.783
E0 (MPa) 0.066 0.157
E1 (MPa) 0.090 0.153
E2 (MPa) 0.151 0.217
E3 (MPa) 0.130 0.253

λ1 (1/s) 1.326 1.570
λ2 (1/s) 0.092 0.104
λ3 (1/s) 0.011 0.013
Norm 1.21E+06 1.06E+06
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Table: E.8 continued:

Fractional Model Parameters

E0 (Mpa) 0.396 0.608
E1 (Mpa) 0.032 0.136
µ2 (1/s) 0.015 0.029

α 1/2 1/2
Norm 1.26E+06 1.41E+06

Test Notes

Test Time 3:30 pm
Approximate Demise to Collection Time 2 hours

Time from Harvest to Test <30 min

Horse had moderate degenerative joint disease in the stifle
Test #1 released after the preload, and then imposed a displacement of 0.35 mm,

and was included in the larger strain information
Test #6 had additional recovery time of approx. 2 minutes

Test #8 was started immediately following Test #7

Figure E.15: Time-domain fits of experimental data on semi-log scale for case Hylartin
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(a) Lower strain (8.77%)

(b) Higher strain (12.27%)

Figure E.16: Compiled frequency domain information for case Hylartin
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Table E.9: Polyglycan: Cartilage information and model parameters

Strain Level #1 Strain Level #2
Date: 6/20/2012 Case #: 1102054 Fluid: Polyglycan

Age (yrs) 16
Estimated Weight (kg) 481.81

Use Unknown
Breed American Quarter Horse

Gender F
Plug Thickness (mm) 2.708

Number of Thickness Samples 5
Standard Dev. (mm) 0.06
Displacement (mm) 0.250 0.350

Strain 9.24% 12.92%
Time Constant (s) 5.07 4.64

Normalized Time Constant Area 3.41 3.49
Normalized Total Area 27.11 24.81

Area Ratio 12.57% 14.09%

4-Term Prony Model Parameters

Glassy Modulus (MPa) 0.600 1.037
E0 (MPa) 0.083 0.143
E1 (MPa) 0.182 0.302
E2 (MPa) 0.095 0.150
E3 (MPa) 0.132 0.203
E4 (MPa) 0.108 0.239

λ1 (1/s) 0.085 0.085
λ2 (1/s) 12.206 12.942
λ3 (1/s) 0.774 0.755
λ4 (1/s) 0.011 0.011
Norm 1.03E+06 8.30E+05

3-Term Prony Model Parameters

Glassy Modulus (MPa) 0.528 0.917
E0 (MPa) 0.173 0.279
E1 (MPa) 0.100 0.169
E2 (MPa) 0.140 0.219
E3 (MPa) 0.115 0.250

λ1 (1/s) 3.253 3.455
λ2 (1/s) 0.146 0.145
λ3 (1/s) 0.013 0.014
Norm 1.20E+06 1.32E+06
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Table: E.9 continued:

Fractional Model Parameters

E0 (Mpa) 0.373 0.608
E1 (Mpa) 0.046 0.145
µ2 (1/s) 0.031 0.038

α 1/2 1/2
Norm 1.90E+06 2.46E+06

Test Notes

Test Time 5:25 pm
Approximate Demise to Collection Time 3 hours

Time from Harvest to Test 15 min

Sample was immersed in Polyglycan for approximately
10 minutes prior to testing

Test #1 released after the preload, but appeared to function fine

Figure E.17: Time-domain fits of experimental data on semi-log scale for case Polyg-
lycan
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(a) Lower strain (9.24%)

(b) Higher strain (12.92%)

Figure E.18: Compiled frequency domain information for case Polyglycan
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Table E.10: Adequan: Cartilage information and model parameters

Strain Level #1 Strain Level #2
Date: 6/21/2012 Case #: 1100301 Fluid Bath: Adequan

Age (yrs) Unknown
Estimated Weight (kg) Unknown

Use Unknown
Breed Unknown

Gender Unknown
Plug Thickness (mm) 2.021

Number of Thickness Samples 4
Standard Dev. (mm) 0.291
Displacement (mm) 0.250 0.350

Strain 12.36% 17.32%
Time Constant (s) 12.06 11.90

Normalized Time Constant Area 11.55 11.97
Normalized Total Area 38.46 35.70

Area Ratio 30.02% 33.53%

4-Term Prony Model Parameters

Glassy Modulus (MPa) 1.238 1.696
E0 (MPa) 0.173 0.244
E1 (MPa) 0.221 0.282
E2 (MPa) 0.180 0.239
E3 (MPa) 0.261 0.346
E4 (MPa) 0.403 0.585

λ1 (1/s) 0.073 0.075
λ2 (1/s) 6.206 6.269
λ3 (1/s) 0.497 0.497
λ4 (1/s) 0.009 0.010
Norm 8.16E+05 7.23E+05

3-Term Prony Model Parameters

Glassy Modulus (MPa) 1.153 1.583
E0 (MPa) 0.250 0.323
E1 (MPa) 0.208 0.291
E2 (MPa) 0.272 0.363
E3 (MPa) 0.423 0.606

λ1 (1/s) 1.600 1.531
λ2 (1/s) 0.118 0.117
λ3 (1/s) 0.011 0.012
Norm 1.27E+06 1.45E+06
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Table: E.10 continued:

Fractional Model Parameters

E0 (Mpa) 0.758 1.044
E1 (Mpa) 0.302 0.443
µ2 (1/s) 0.034 0.038

α 1/2 1/2
Norm 2.82E+06 3.22E+06

Test Notes

Test Time 9:15 am
Approximate Demise to Collection Time 19 hours

Time from Harvest to Test <20 min
Sample was an unexpected case, and the horse biographical

information was not obtained
Sample was refrigerated overnight

Sample was immersed in Adequan for approx. 10 minutes
Test #1 was performed at the higher strain level
Test #5 was performed at the lower strain level

Figure E.19: Time-domain fits of experimental data on semi-log scale for case Ade-
quan
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(a) Lower strain (12.36%)

(b) Higher strain (17.32%)

Figure E.20: Compiled frequency domain information for case Adequan
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Table E.11: Saline (f): Cartilage information and model parameters

Strain Level #1 Strain Level #2
Date: 6/26/2012 Case #: 1102570 Fluid Bath: Saline

Age (yrs) 12
Estimated Weight (kg) 453.6

Use Field
Breed American Quarter Horse

Gender M
Plug Thickness (mm) 3.296

Number of Thickness Samples 5
Standard Dev. (mm) 0.102
Displacement (mm) 0.250 0.350

Strain 7.58% 10.60%
Time Constant (s) 15.71 19.37

Normalized Time Constant Area 17.04 21.51
Normalized Total Area 32.86 38.17

Area Ratio 51.85% 56.36%

4-Term Prony Model Parameters

Glassy Modulus (MPa) 0.437 0.512
E0 (MPa) 0.064 0.072
E1 (MPa) 0.062 0.067
E2 (MPa) 0.051 0.059
E3 (MPa) 0.097 0.119
E4 (MPa) 0.163 0.196

λ1 (1/s) 0.072 0.066
λ2 (1/s) 5.590 4.913
λ3 (1/s) 0.470 0.423
λ4 (1/s) 0.012 0.011
Norm 1.17E+06 8.28E+05

3-Term Prony Model Parameters

Glassy Modulus (MPa) 0.473 0.488
E0 (MPa) 0.106 0.079
E1 (MPa) 0.083 0.080
E2 (MPa) 0.114 0.129
E3 (MPa) 0.170 0.201

λ1 (1/s) 14.315 1.363
λ2 (1/s) 0.191 0.105
λ3 (1/s) 0.017 0.013
Norm 1.30E+06 8.84E+05
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Table: E.11 continued:

Fractional Model Parameters

E0 (Mpa) 0.293 0.348
E1 (Mpa) 0.108 0.125
µ2 (1/s) 0.030 0.023

α 1/2 1/2
Norm 1.25E+06 9.87E+05

Test Notes

Test Time 9:15 am
Approximate Demise to

Collection Time
19 hours

Time from Harvest to Test <20 min

Needle testing was performed before relaxation testing
Test #2 was performed at the higher strain lever
Test #5 was performed at the lower strain level

Figure E.21: Time-domain fits of experimental data on semi-log scale for case Saline
(f)
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(a) Lower strain (7.58%)

(b) Higher strain (10.60%)

Figure E.22: Compiled frequency domain information for case Saline (f)
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