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Abstract

Spin-transfer torque induced magnetic switching, by which the spin-polarized current

transfers its magnetic moment to the ferromagnetic layer and changes its magneti-

zation, holds great promise towards faster and smaller magnetic bits in data-storage

applications due to the lower power consumption and better scalability.

We propose an analytic approach which can be used to calculate the switching

phase diagram of a nanomagnetic system in the presence of both magnetic field and

spin-transfer torque in an exact fashion. This method is applied to the study of

switching conditions for the uniaxial, single domain magnetic layers in different spin-

transfer devices. In a spin valve with spin polarization collinear with the easy axis,

we get a modified Stoner-Wohlfarth astroid which represents many of the features

that have been found in experiment. It also shows a self-crossing boundary and

demonstrates a region with three stable equilibria. We demonstrate that the region

of stable equilibria with energy near the maximum can be reached only through a

narrow bottleneck in the field space, which sets a stringent requirement for magnetic

field alignment in the experiments. Switching diagrams are then calculated for the

setups with magnetic field not perfectly aligned with the easy axis.

In a ferromagnet-heavy-metal bilayer device with strong spin Hall effect, the in

plane current becomes spin-polarized and transfers its magnetic moment to the fer-

romagnetic layer by diffusion. The three-dimensional asymmetric phase diagram is

calculated. In the case that the external field is confined in the vertical plane de-

fined by the direction of the current and the easy axis, the spin-transfer torque shifts

the conventional in-plane (IP) equilibria within the same plane, and also creates two
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out-of-plane (OOP) equilibria, one of which can be stable. The threshold switching

currents for IP switching and OOP switching are discussed.

We also address the magnetic switching processes. Damping switching and pre-

cessional switching are two different switching types that are typically considered in

recent studies. In the damping mode the switching is slow and heavily depends on

the initial deviation, while in the precessional mode the accurate manipulation of the

field or current pulse is required. We propose a switching scenario for a fast and

reliable switching by taking advantage of the out-of-plane stable equilibrium in the

SHE induced magnetic switching. The magnetization is first driven by a pulse of field

and current towards the OOP equilibrium without precession. Since it is in the lower

half of the unit sphere, no backwards pulse is required for a complete switching. This

indicates a potentially feasible method of reliable ultra-fast magnetic control.
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Chapter 1

Introduction

Spintronics, a portmanteau meaning “spin transport electronics”, is a term used to

describe an emerging technology which merges magnetism and electronics by exploit-

ing both the intrinsic spin of the electron and its associated magnetic moment, in

addition to its fundamental electronic charge, in solid-state devices.

1.1 Background

Spintronics emerged in the 1980s from discoveries concerning spin-dependent electron

transport phenomena [32] and became a rapidly expanding area of research after the

discovery of giant magnetoresistance (GMR), the significant change in resistance that

occurs when the relative orientation of the magnetizations in two ferromagnetic layers

changes, by Fert’s group [4] and Grünberg’s group [14] independently in 1988. The

subsequent development of the device known as spin valve [18, 91] soon spurred

interest at companies such as IBM to pursue research of ultra sensitive magnetic

sensors for hard drive read heads. In 1997, IBM launched the first GMR based read-

out head, which soon became the standard technology for computer hard disks and

prompted the hard disk data storage density to increase by roughly 100% per year.

The practical significance of GMR effect was recognized by the Nobel Prize in Physics

awarded to Fert and Grünberg in 2007.

After the discovery of GMR effect, several breakthroughs have further boosted this

field, including the tunnel magnetoresistance (TMR) at room temperature in 1995

and the spin transfer effect in 1996. The TMR occurs in a magnetic tunnel junction
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(MTJ) [57, 58], which consists of two ferromagnets separated by a thin insulator

(typically a few nanometers). The dramatic improvement of magnetoresistance from

the MTJ [64, 98, 97] further increases the storage capacity of modern hard disk drives

and promotes realization of novel spintronics devices, such as the magnetoresistive

random-access memory (MRAM) [2], a new type of non-volatile memory.

The phenomenon of spin-transfer is particularly attractive both from fundamen-

tal and applied points of view. In 1996 two independent theoretical studies by Slon-

czwski [73, 74] and Berger [11, 12] predicted a reciprocal reaction that accompanies

the GMR effect in a metallic multilayer. The current flowing perpendicular to the

plane in such multilayer structure can generate a torque strong enough to reorient

the magnetization in one of the layers. Slonczwski proposed to characterize it as

spin transfer, and predicted that such torque could generate two different types of

magnetic behaviors depending on the device design and the magnitude of the cur-

rent as well as an applied field: a steady precession driven by a constant current,

and magnetization reversal driven by a pulsed current. Following this prediction,

measurements of current-induced resistance changes in magnetic multilayer devices

were identified with spin-torque-driven excitations by Tsoi et al., in point contact

devices [84], and by Sun in manganite trilayer junctions [80]. Shortly afterwards, the

spin torque induced magnetization reversal was observed in lithographically defined

nanopillars [61, 35, 39] and in tunnel junctions [29, 22], which have spurred exten-

sive study in metallic spin valve and MTJ nanopillar structures. Meanwhile, this

subject has also attracted considerable theoretical studies and numerical simulations

[78, 82, 93, 94, 34, 81].

In addition to the intrinsic scientific interest, the promising applications of spin-

transfer torques also provide the impetus for many emerging spintronic technologies,

including spin-transfer torque magnetic random access memories (STT-MRAMs). In

conventional implementations of MRAM, in which the magnetic bits are switched

2



by Oersted fields, the long range of the magnetic fields limits the size of a single

bit and places strict manufacturing constraints on the devices for reliable switchings.

Since the spin-transfer effect can induce more reliable magnetization reversal in even

smaller magnetic memory cells, the possibility that it could replace the Oersted fields

due to this technology advantage has inspired a significant amount of research on this

effect. Besides enhancing the switching efficiency for in-plane magnetized elements

[8, 87, 7, 31, 41, 86, 15], several approaches have been put forward to design elements

with perpendicularly magnetized magnetic layers for its lower switching current and

better stability against thermal activation down to nanomagnet sizes [50, 71, 101, 51,

10, 43, 69, 30].

The phase diagrams observed in those studies contain several distinct types of

precessional modes and static magnetic states [50, 51, 85, 42]. The magnetic dynam-

ics in the present of spin-transfer torque is often understood in terms of the picture of

power received or dissipated in a macrospin system [68, 17]. This approach provides

intuitive understanding on magnetization reversals induced by spin-transfer torque.

However, in the viewpoint of energy dissipation, the valid solution can only be ob-

tained in the case that both the external field and the spin polarization are collinear

with the magnetic easy axis. The complete phase diagram of a nanomagnet with uni-

axial magnetic anisotropy, which exhibits strong distortion near the directions of easy

axis, was first time measured experimentally by Y. Henry et al. in 2009 [26]. In the

study of the distorted phase diagram, Y. Henry et al. modeled the effect by confining

the equilibria in a plane under small current approximation. Although the extension

of the Stoner-Wohlfarth model reflects some of the features of the current-distorted

astroid, it fails to distinguish the different switching mechanisms [77] and therefore

is not able to capture many of the features, especially near the easy axis where the

out-of-plane shifts of equilibria become significant. One of the consequences is that

the spin-transfer assisted metastable state, which has been observed experimentally,
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is actually prohibited in this model [42].

Because of the deficiency in the approximated models, we proposed an exact

approach which is directly derived from the dynamic equation by disregarding the

picture of energy landscape. Therefore it is suitable to calculate the phase diagrams

in any magnetic systems in the presence of nonconservative forces. By applying it

to a nanomagnet with uniaxial magnetic anisotropy subject to a current polarized

along the easy axis, we show that the resulting phase diagrams capture the different

switching scenarios induced by spin-transfer torque and also the feature that the

equilibria are out of plane [96]. The switching phase diagram in the case with the

external field applied slightly misaligned with the free layer easy axis successfully

explains the experimental observations [50, 51, 85, 42].

Besides spin filter effects in devices such as spin valves or MTJs, spin Hall effect

(SHE) is also a candidate that can be used in the field of spin injection, manipulation

and detection [33]. Recent studies in bilayer nanowires consisting of a ferromagnetic

layer and a heavy-metal layer with strong spin-orbit coupling have demonstrated ef-

ficient switching of magnetic layers [54, 45, 47], like those used in STT-MRAM, and

efficient current-driven domain wall motion [56]. Two pictures have been taken into

account to describe the magnetic dynamics, which separates the SHE induced torques

into two terms, damping-like and field-like. However, the magnetic switching is be-

lieved to be induced by the damping-like torque only due to the geometry. The phase

diagram in such systems is of importance in examining the theoretical prediction with

the experiment measurement. Using the same approach, we calculate the complete

phase diagram in three-dimension [95]. Different from the spin valve with the polar-

izer pointing in the same direction with the free layer easy axis, the geometry of SHE

induced spin polarized current generates two additional OOP equilibria, one of which

could be a stable sink. The property of this OOP equilibrium provides a possible

solution for fast and reliable magnetization switching.
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1.2 Outline of the dissertation

This dissertation focuses on the construction of the phase diagrams of nanomagnetic

systems in the presence of spin-tranfer torques with different geometry. It also covers

the dynamics of magnetic switching.

Chapter 2 gives an introduction of micromagnetism and a brief review of the

spin transfer torques in GMR devices. The Landau-Lifshitz-Gilbert (LLG) equation,

which describes the dynamics of magnetic systems, is covered in section 2.4. The spin

transfer toque in a GMR device and the Landau-Lifshitz-Gilbert-Slonczewski (LLGS)

equation is discussed in section 2.5.

Chapter 3 focuses on the general description of the switching phase diagrams for

a single domain nanomagnet. In section 3.1 we briefly review the Stoner-Wohlfarth

model and point out the limitation of the existing approach from the viewpoint of

energy dissipation for calculating the critical surfaces. In section 3.2 we briefly review

the classification of asymptotic behaviors for a linear planar system in general. Based

on it, in section 3.3 we give a general description of the problem and the procedures

to construct the critical surfaces for an arbitrary magnetic system in the presence of

a spin transfer torque.

As our first application, the construction and analysis of the switching phase

diagram for a spin valve nanopillar is described in Chapter 4. The different switching

modes are analyzed in section 3.4. A novel region in the phase diagram is found in

our result which has not yet been observed in experiment. In section 3.5 we construct

the phase diagram in the case of a slightly misaligned axial field to account for the

rotational symmetry breaking and compare with the phase diagrams calculated using

the approximated method and those measured in experiments.

In Chapter 5, we study the switching phase diagram for a SHE bilayer nanowire.

In addition to the shifts of the existing equilibria, the spin-transfer torque in this

geometry also creates two out-of-plane (OOP) equilibria. The complete switching
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phase diagram and the stability of the two OOP equilibria are discussed in section

5.3. In section 5.4 we derive the critical switching current for both in-plane switching

and out-of-plane switching.

In Chapter 6 we focus on the magnetization dynamics. The two common mag-

netization switching strategies are described in section 6.1 and 6.2, respectively. In

section 6.3 we propose a new switching scenario that takes advantage of the OOP

equilibrium, indicating a potentially feasible method for reliable ultra-fast magnetic

reversal.

The conclusions of the dissertation are summarized in Chapter 7.
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Chapter 2

Nanoscale Magnetism and Spintronics

2.1 The origin of ferromagnetism

Ferromagnetism is the ability of some materials to display a macroscopic magnetiza-

tion in the absence of external magnetic fields. The spin of the electrons in atoms is

the main source of ferromagnetism, although the orbital angular momentum of the

electrons may contribute as well. In atoms with a partially filled electron shell, the

first few electrons in a shell tend to maximize the spin to minimize the energy in

accordance with Hund’s first rule, thereby increasing the total dipole moment. When

these atoms form solids, however, electron states on neighboring atoms hybridize

and form bands which suppress the formation of magnetic moments by inhibiting

spin polarization. Therefore most solids are not ferromagnetic. Nevertheless, in a

few transition metals with tightly bound 4f-orbitals, such as iron, cobalt, nickel, and

their alloys, the exchange interaction is so strong that those levels tend to align spon-

taneously as they do in the atomic state, even when there is no applied field. This

spontaneous magnetization effect is called ferromagnetism.

Although the exchange interaction keeps spins aligned, it does not align them

in a particular direction. There are several kinds of magnetic anisotropy, the most

common of which is magnetocrystalline anisotropy. This is a dependence of the

energy on the direction of magnetization relative to the crystallographic lattice. An-

other common source of anisotropy, inverse magnetostriction, is induced by internal

strains. Single-domain magnets also can have a shape anisotropy due to the magne-
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tostatic effects of the particle shape. As the temperature of a magnet increases, the

anisotropy tends to decrease, and there is often a blocking temperature, called the

Curie temperature, at which a transition to superparamagnetism occurs [1].

2.2 Micromagnetics

The length scales of interest in magnetic studies are usually much longer than atomic

lengths, yet small enough to take into account the spatially non-uniform magneti-

zation distribution. In this case atomic scale calculations become impractical and

micromagnetics, a continuum description much like elasticity theory, models such

non-uniformities in an efficient way. Micromagnetics can deal with static equilib-

ria, by minimizing the magnetic energy, and with dynamic behavior, by solving the

time-dependent dynamical equation.

In equilibrium, the magnetization direction aligns itself with an effective field.

Generally, there are four main contributions to this effective field, which vary as a

function of position: the externally applied magnetic field, the magnetocrystalline

anisotropy, the micromagnetic exchange, and the magnetostatic field. Each of the

fields can be described in terms of an associated contribution to the free energy. The

magnetocrystalline anisotropy arises from the spin-orbit interactions and tends to

align the magnetization with particular lattice directions. It is often written as a

local function of the magnetization direction and has a different functional form for

different lattices and materials. The micromagnetic exchange is the interaction that

tends to keep the magnetization aligned in a common direction, adding an energy

cost when the magnetization rotates as a function of position. The magnetostatic

interaction is a highly non-local interaction between the magnetization at different

points mediated by the magnetic field produced by the magnetization. Together, the
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four free energies can be written as [1, 68]

E = −µ0

∫
d3rHext ·M(r)− Ku

M2
s

∫
d3r(M(r) · n)2 + Aex

M2
s

∫
d3r

∑
i

(
∂

∂ri
M
)2

− µ0

8π

∫
d3r

∫
d3r′M(r) · 3(M(r′) · x)x−M(r′)|x|2

|x|5
, (2.1)

where Ku is the anisotropy constant, Aex is the exchange constant, n is the direction

of the uniaxial anisotropy easy axis, and x = r − r′ is the vector between two sites.

The magnetization M can vary internally but at each point its magnitude is equal to

the saturation magnetization Ms.

The total effective field is then the functional derivative of the free energy with

respect to the magnetization

µ0Heff(r) = − δE

δM(r) . (2.2)

The explicitly expression of the effective field derived from Eq. 2.1 is

Heff(r) = Hext + 2Ku

µ0M2
s

(M(r) · n)n + 2Aex

µ0M2
s
∇2M

− 1
4π

∫
d3r′

3(M(r′) · x)x + M(r′)|x|2
|x|5

, (2.3)

The atomic-like exchange, which drives the formation of the magnetization and which

is not explicit in these expressions, places a strong energetic penalty on deviations

of the magnitude of M(r) away from Ms. This interaction is generally taken into

account by treating M(r) as having the fixed length Ms.

2.3 Macrospin approximation

The macrospin approximation is applied to nanomagnet which are single-domain. In

the framework of macrospin, the magnetization is treated as a single spin and we

assume that the modulus of the magnetization is a constant. Since the free layer only

evolves on the unit sphere surface, it removes one degree of freedom and the three

components Cartesian coordinates can be replaced by spherical coordinates.
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The energy anisotropy of a nanomagnet in the macrospin approximation is usu-

ally composed of two terms: magnetocrystalline anisotropy energy and magneostatic

energy

Ean = −KuV

Ms
2 (M · n)2 − µ0VHd ·M, (2.4)

where V is the volume of the nanomagnet, and the demagnetizing fieldHd = −Nd ·M.

The demagnetization tensor Nd depends on the shape of the nanomagnet and in a

symmetric shape it is a diagonal matrix.

For a thin planar elliptical nanopillar with the plane normal chosen to coincide

with the crystalline axis of the ferromagnet, these two terms can be combined together

as an effective anisotropy. The simplest case is called uniaxial anisotropy, which can

be written as:

Ean = −KV
Ms

2 (M · n)2 = −KV cos2 θ, (2.5)

where K is the effective anisotropy constant, and θ the angle between the easy axis

and the particle’s magnetization. The model that describes a single domain magnetic

particle with uniaxial anisotropy is called Stoner-Wohlfarth model [79].

The energy landscape of a Stoner-Wohlfarth particle can be written in the format

as follows

E = −KV
Ms

2 (M · n)2 − µ0VHext ·M. (2.6)

Any magnetocrystalline anisotropy and shape anisotropy can be included in the

energy landscape by modifing the effective anisotropy in Eq. (2.5). For simplicity,

however, we only consider the uniaxial anisotropy in this dissertation.

2.4 Landau-Lifshitz-Gilbert equation

The Landau-Lifshitz-Gilbert (LLG) equation describes the rotation of the magneti-

zation in response to torques. Landau and Lifshitz first introduced the equation of

10



Figure 2.1: Illustration of the Landau-Lifschitz equation. (a) The magnetization
precesses around the effective field without damping. (b) The magnetization precesses
with Gilbert damping term towards the energy minimum state of the system.

motion for the magnetic moment in 1935

1
µ0

dM
dt = −γM×Heff + λM× (M×Heff), (2.7)

where Heff is the total effective field, γ is the electron gyromagnetic ratio. and λ

is a phenomenological damping parameter, often replaced by λ = −αγ/Ms. The

visualisation of damped and undamped LL dynamics are shown in figure 2.1.

Since the damping of the magnetization motion in Landau-Lifshitz (LL) equation

could not account for the large noneddy-current damping in the Permalloy sheets, in

1955, Gilbert replaced the damping term in the LL equation by one that depends on

the time derivative of the magnetic field to take large damping into account [24]:

dM
dt = −γµ0(M×Heff) + α

Ms

(
M× dM

dt

)
, (2.8)

However, when the damping is not very high, the two forms are essentially equiva-

lent. In the following chapters we will be working with the normalized Landau-Lifshitz

form, which can be written as

dm̂
dt = −m̂× heff − αm̂× m̂× heff. (2.9)

Here m̂ = M/Ms is the magnetization unit vector, the dimensionless field heff is

defined as heff = Heff/Hk with the characteristic anisotropy field given by Hk =
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2K/µ0Ms, and the time is rescaled as

t→ t′ = 1
1− α2γHkt.

Note that all the field related terms written in lowercase letters, if not specified, are

dimensionless, i.e., are divided by Hk.

2.5 Spin-transfer torques

Spin-transfer torque has been studies extensively ever since the publication of the

paper by Slonczewski in 1996 [73]. In this paper Slonczewski describes a sandwich

structure comprising two ferromagnetic layers, FM1 and FM2 from left to right, sep-

arated by a metallic nonmagnetic (NM) spacer. When a current flows from right to

left, the conduction electrons, which flow from left to right, become polarised parallel

to the magnetisation of FM1 when they go through it because of spin-dependent scat-

tering taking place. The spin-polarised conduction electrons then drift through the

NM spacer and reach the interface of FM2. The electrons are then partly reflected

and partly transmitted at the interface. The spin of the transmitted electrons pre-

cess incoherently around the magnetisation of FM2. As a result, within a very short

distance, the direction of spin-polarisation of the incoming electrons is re-oriented

along the direction of the local magnetisation. This spin polarisation reorientation

generates an incoming flow of angular momentum transmitted to the local magnetisa-

tion and exerts a torque on it. This torque is named by Slonczewski as spin-transfer

torque and is given by [99]:

τ = aγm̂× (m̂× m̂p)− bγ(m̂× m̂p), (2.10)

where m̂p and m̂ are the magnetization unit vectors of the polarizer and the free

layer. The first term is usually referred as the spin-torque term or Slonczewski term,

the second is the effective field term. Both efficiency factors are proportional to
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Figure 2.2: Illustration of spin-transfer torque in a spin valve device.

the current. Detailed theoretical quantum mechanical derivation of the spin transfer

torque can be found in [99] and in [92].

For a GMR device of two ferromagnetic layers separated by a metal spacer, the

perpendicular torque is negligible and the spin transfer torque is calculated using a

simplified Boltzmann equation grafted with circuit theory [76, 92, 21, 52]

τst = g(θ) ~2e
j

d
m̂× (m̂× m̂p), (2.11)

where g(θ) is the spin-transfer efficiency function, θ is the angle between the two unit

vectors cos θ = m̂ · m̂p.

The efficiency function g(θ) is sometimes approximated by a constant, whereas

the simplest functional form that incorporates the polarization P was found by Slon-

czweski in his original paper [73]

g(θ) = 1
f(P )(3 + cos θ)− 4 , (2.12)
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Figure 2.3: Dependence of spin transfer strength on the spin current polarization.
The polarization coefficient P is set to 0.1, 0.3, 0.5 and 0.7 from bottom to top.

with

f(P ) = (1 + P )3

4P 3/2 . (2.13)

The dependence of spin transfer strength on the spin polarization coefficient is plotted

in Figure 2.3.

Building on his original work, Slonczewski applied an approximate form of mag-

netoelectronic circuit theory and derived a simple form in the symmetric case with

equal ferromagnetic layer thicknesses, [76]

g(θ) = q

A+B cos θ , (2.14)

where q, A and B are determined by material and geometry. For a general spin-valve

geometry, it should be replaced by [40, 92]

g(θ) = q+

A+B cos θ + q−
A−B cos θ . (2.15)

The LLG equation in the presence of spin-transfer torque, some times also referred

as Landau-Lifshitz-Gilbert-Slonczewski (LLGS), is now written as

dm̂
dt = −m̂× heff + αm̂× dm̂

dt + τst. (2.16)

It should be pointed out that, in MTJs the effective field term can be of the order

of 30% or more of the spin-torque term. This difference originates from the fact that
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the spin transport in MTJ is mainly ballistic and there is no spin diffusive components

involved. As a result, the precessional motion is more coherent when they enter the

magnetic layer. This yields a larger amplitude of the effective field term. However,

there is still no universal agreement in the quantitative dependence of the b term on

the bias current [75, 66].
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Chapter 3

Spin Transfer Induced Switching

The Stoner-Wohlfarth (SW) model of ferromagnetism [79] is the simplest model that

is adequate enough to describe the physics of magnetization switching. In this chapter

we first give a brief review on the field induced magnetic reversal on a SW nanomag-

net, then we expend the existing model to include the spin-transfer torque and focus

on spin-transfer induced switching.

3.1 Stoner-Wohlfarth model

In the conventional case the nanomagnet possesses a uniaxial anisotropy, which is

given by Eq. (2.5), and is subjected to an external magnetic field H. Therefore, the

total energy is the sum of the anisotropy energy Ean and the Zeeman energy −M ·H.

Assuming the easy axis is along ẑ, the free energy is given by

E = −KV
Ms

2 (M · ẑ)2 − µ0VH ·M. (3.1)

Examples of free energy with different external field strengths are shown in Figure

3.1. In the absence of an external field, the magnetization favors the two energy

minimum states, ẑ and −ẑ. The external field modifies the free energy and therefore

shifts the energy minima. In a quasi-static process, the magnetization vector M

always follows the motion of one of the minima until it loses its stability. Then M is

subject to a jump towards the other minimum.

The minimum condition at θ0 satisfies(
∂E

∂θ

)
θ=θ0

= 0,
(
∂2E

∂2θ

)
θ=θ0

> 0. (3.2)
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Figure 3.1: Free energy of a SW nanomagnet. The external field is applied at θ = π/4
with its magnitude varying from 0 to Hk. The green and red dashed lines represent
the trajectory of two energy minima as functions of the magnitude of external field.

The switching condition above leads to a critical switching field which can be ex-

pressed in terms of the following parametric form, known as Stoner-Wohlfarth Astroid

(see Figure 3.3) 
H⊥
Hk

= ± sin3 θ,

Hz

Hk

= − cos3 θ.

(3.3)

where the characteristic anisotropy field Hk is given by Hk = 2K/µ0Ms.

A geometrical approach which generalizes the construction of critical switching

fields for any arbitrary anisotropy was proposed by A. Thiaville in 2000 [83]. In his

approach the three-dimensional critical fields, which are called as critical surfaces,

are calculated by using the critical condition of energy extrema on a magnetization

unit sphere. Consequently, this method can only be applied to the magnetic systems

with well defined free energies in which the equilibrium states are always located at

the energy extrema.

When a nonconservative field, such as the spin-transfer toque, is applied, it pushes

the magnetization stable state away from an energy minimum, some times even to-

wards an maximum. Generally speaking, the equilibria are no longer associated with

the energy extrema, and therefore the geometrical method is no longer valid. In the
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Figure 3.2: Stoner-Wohlfarth Astroid. Figure from [79].

following sections we describe a more general approach which is derived directly from

the LLG equation and takes into account both the conservative forces and noncon-

servative forces, and then we apply it to different magnetic systems in the presence

of both external fields and spin-transfer toques.

3.2 Classification of equilibria

Before digging into the details of magnetic systems, we first summarize the types of

equilibrium in a two-dimensional dynamical planar system in general. For a nonlinear

dynamical system such as the magnetic system which is modeled by the LLG equation,

we can determine the asymptotic behaviors of solutions near equilibrium points by

linearizing the equation. A complete study of such systems can be found in Ref. [28].

Consider a planar linear system of the form Ẋ = AX, where X = {x1, x2} is the

coordinate vector and A is the 2× 2 coefficient matrix. When A is time independent,

given its eigenvalues µ1,2 and associated eigenvectors V1 and V2, the general solution
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can be written as

X(t) = c1e
µ1tV1 + c2e

µ2tV2, (3.4)

where coefficients c1 and c2 are determined by the initial condition. Note that the

origin is always an equilibrium point for such system.

Since the eigenvalues satisfy

µ2 − (trA)µ+ detA = 0, (3.5)

they can be written as functions of trA and detA

µ1,2 = 1
2

(
trA±

√
(trA)2 − 4detA

)
. (3.6)

Therefore knowing trA and detA gives the eigenvalues of A and virtually everything

about the geometry of its solutions. From Eq. (3.6) we can see that the sign of

(trA)2 − 4detA separates the eigenvalues into two regions on the trace-determinant

plane with real and complex values:

1. Complex with nonzero imaginary part if (trA)2 − 4detA < 0;

2. Real and distinct if (trA)2 − 4detA > 0;

3. Real and repeated if (trA)2 − 4detA = 0.

According to Eq. (3.4), the types of equilibrium are determined by its eigenvalues.

In terms of phase portraits, if (trA)2−4detA < 0, then the real part of the eigenvalues

is (trA)/2, and we have

1. Spiral sink if trA < 0;

2. Spiral source if trA > 0;

3. Center if trA = 0.

If (trA)2 − 4detA > 0, both eigenvalues are real, and we have

1. Real sink if detA > 0 and trA < 0;

2. Real source if detA > 0 and trA > 0;

3. Saddle point if detA < 0.
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4.1 The Trace-Determinant Plane 63

Thus we have

T +
√

T 2 − 4D > 0

T −
√

T 2 − 4D < 0

so the eigenvalues are real and have different signs. If D > 0 and T < 0 then
both

T ±
√

T 2 − 4D < 0,

so we have a (real) sink. Similarly, T > 0 and D > 0 leads to a (real) source.
When D = 0 and T �= 0, we have one zero eigenvalue, while both

eigenvalues vanish if D = T = 0.
Plotting all of this verbal information in the TD–plane gives us a visual

summary of all of the different types of linear systems. The equations above
partition the TD–plane into various regions in which systems of a particular
type reside. See Figure 4.1. This yields a geometric classification of 2 × 2 linear
systems.

Det

Tr

T2�4D

Figure 4.1 The trace-determinant plane. Any resemblance to any of the
authors’ faces is purely coincidental.

Figure 3.3: Phase portraits of different types of equilibrium in the trace-determinant
plane. The parabola represents (trA)2 − 4detA = 0. Diagram from Ref. [28].

The simple analysis already provides enough information to describe the asymp-

totic behavior of a solution in general. Fig. 3.3 illustrates the phase portraits of

different types of equilibrium in the trace-determinant plane. For any linear planar

system, the solutions near the origin can always be classified as one of the six phase

portraits by using a proper linear transformation matrix.

It’s often impossible to write down explicit solutions of nonlinear differential equa-

tions, such as the LLG equation. However, one exception occurs when we have equi-

librium solutions. If the equilibrium states in a magnetic system can be found, then

by linearizing the LLG equation near the equilibria, the solutions should resemble

those portraits in the linearized systems. The detailed procedures will be discussed

in the next section.
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3.3 Critical surfaces

In this section we derive the general formula for the critical surface using the normal-

ized form of LLG equation. As we discussed in the previous chapter, the spin-transfer

torque (2.11) should be included in the LLG equation to describe the spin-transfer

effect in a GMR device, which leads to the LLGS equation of the form (2.16). Al-

ternatively, we could also stick to the normalized LLG equation (2.9) by adding a

spin-transfer field into the effective field as

heff = h + han + hst, (3.7)

where the spin-transfer field is determined by equation

τst = m̂× hst. (3.8)

An equilibrium of Eq. (2.9) can be found when the condition m̂ × heff = 0 is

satisfied, which indicates that the magnetization at equilibrium should be parallel to

the total effective field. This is equivalent to

heff = λm̂0, (3.9)

where λ is a parameter that describes a set of external fields satisfying the equilibrium

condition for m̂0. We will use the subscript “0” to denote an equilibrium state

hereafter. The stability of an equilibrium can be analyzed by linear expansion of Eq.

(2.9) with m̂ = m̂0 + δm̂. In spherical coordinates with three orthogonal unit vectors

defined as

m̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ, (3.10a)

θ̂ = ∂m̂
∂θ

= cos θ cosφx̂ + cos θ sinφŷ− sin θẑ, (3.10b)

φ̂ = 1
sin θ

∂m̂
∂φ

= − sinφx̂ + cosφŷ, (3.10c)
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the expansion can be expressed in terms of two coupled linear differential equations

in the matrix form  δ̇θ

sin θ0 ˙δφ

 = A (θ0, φ0)

 δθ

sin θ0δφ

 , (3.11)

The equation describes a planar linear system with coefficient matrix A(θ0, φ0) given

by

A =

∂θ(αhθeff + hφeff) 1
sin θ∂φ(αhθeff + hφeff)

∂θ(αhφeff − hθeff) 1
sin θ∂φ(αhφeff − hθeff)

 . (3.12)

Here the abbreviated notations ∂θ and ∂φ stand for ∂/∂θ and ∂/∂φ, resectively, and

the superscripts θ and φ indicate the corresponding component of a vector field (e.g.,

hθeff = heff · θ̂, etc.).

According to the discussion in Sec. 3.2, the different types of stationary solutions

can be classified by the eigenvalues µ± of the matrix A, which are uniquely determined

by its determinant detA and trace trA. Particularly, when an equilibrium is stable,

both eigenvalues µ± are either complex conjugates with negative real parts, or are

negative real numbers, which lead to the stability criterion:

detA > 0 and trA < 0. (3.13)

In order to calculate the stability criterion, we need to write the total effective

field heff explicitly. Generally speaking, it can be written as heff = h−∇ε+hst, where

h is the external field, ε is the anisotropy energy, and hst is the spin effective field

which is usually a nonconservative vector field. When the system is at equilibrium,

the external field can be expressed in spherical coordinates as

h = λm̂0 +
(
∂θε− hθst

)
0
θ̂0 +

( 1
sin θ∂φε− h

φ
st

)
0
φ̂0. (3.14)

The right hand side of Eq. (3.14) maps an equilibrium m̂0 in parameter space {λ, θ0, φ0}

to the corresponding external field h in field space {hx, hy, hz}. According to Poincaré-

Hopf theorem, there are at least two sink or source type equilibrium states existing

on the unit sphere of magnetization for any smoothly varying field.
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By substituting Eq. (3.14) into the matrix A (Eq. (3.12)), one finds that trA is

linear in λ with a negative coefficient, and detA is a quadratic function of λ with a

positive quadratic coefficient. To simplify the expressions, we introduce a vector field

f = −∇ε+ hst and its gradient

∇f =

∂θf θ ∂θf
φ

∂φf
θ ∂φf

φ

 , (3.15)

with each of the components given by

∂θf
θ = −∂θθε+ ∂θhst

θ, (3.16a)

∂θf
φ = −∂θ

( 1
sin θ∂φε

)
+ ∂θhst

φ, (3.16b)

∂φf
θ = cos θ

sin θ

( 1
sin θ∂φε− hst

φ
)
− 1

sin θ
(
∂2
θφε− ∂φhstθ

)
, (3.16c)

∂φf
φ = −cos θ

sin θ
(
∂θε− hstθ

)
− 1

sin2 θ
∂2
φφε+ 1

sin θ∂φhst
φ. (3.16d)

The roots of equations trA = 0 and detA = 0 can then be expressed in terms of

the partial derivatives of f as

λT = 1
2

[
∂θf

θ + ∂φf
φ + 1

α

(
∂θf

φ − ∂φf θ
)]
, (3.17)

and

λ± = ∂θf
θ + ∂φf

φ

2 ±

√√√√(∂θf θ − ∂φfφ
2

)2

+ ∂θfφ∂φf θ. (3.18)

In terms of the critical values λT and λ±, the stability criterion (3.13) becomes
λ > Max(λT, λ+) if λT > λ−,

λT < λ < λ− if λT < λ−.

(3.19)

When λ± are complex, detA is always positive and criterion (3.19) can be further

simplified as λ > λT.

The criterion above only addresses the stable and unstable equilibra. From the

geometry point of view, it is equally important to distinguish the two types of un-

stable equilibria, i.e., source and saddle, which requires the complete classification of

equilibrium types. Such a complete classification is given in Appendix A.
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Substituting λ+, λ− and λT for λ into Eq. (3.14) generates three surfaces in the

three-dimensional field space, which we denote by S+, S− and ST respectively

ST(θ, φ, j) = h(λT(m̂, j), m̂, j), (3.20)

and

S±(θ, φ, j) = h(λ±(m̂, j), m̂, j). (3.21)

By varying the unit vector m̂ all over the 4π solid angle, the expressions above give

three closed surfaces in the three-dimensional field space. It should be noted that,

θ and φ are two angle coordinates of the magnetization unit vector m̂. Since m̂

does not always lie in the same plane with the external field h in the general cases,

when plotting the critical surfaces, one need to decompose the field into Cartesian

coordinates and use the parametric form of each component instead of simply varying

the angles on the magnetization unit sphere surface.

The physical meaning of the three surfaces is that: when the external field crosses

ST, one of the equilibria changes its stability, e.g., from a source to a sink or vice

versa (it cannot become a saddle); when it crosses S±, one sink or source merges

with a saddle point. This process could be a destruction or a creation with the two

equilibra involved (one of which must be a saddle), depending on the direction that

the field crosses the S± surface. Therefore there is always at least one equilibrium

changes its stability when the external field crosses any one of the surfaces. Since

only the distabilizing of a stable equilibrium is physically significant, the entire critical

surface should be only constructed by using the parts of the three surfaces that satisfy

stability criterion (3.19). The procedure will be illustrated in the following chapters

in the cases of spin valve and SHE device.

The approach described in this section can be used to find the switching phase di-

agrams for any magnetic nonlinear systems in the presence of spin-polarized currents,

provided that the macrospin approximation is valid. In addition, since different types
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of boundaries correspond to different distabilizing processes, it is possible to get an

intuitive picture of switching by analyzing the critical surfaces instead of solving the

LLG equation directly.
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Chapter 4

Application in spin valves

4.1 Spin valves with perpendicular anisotropy

We consider a spin valve nanopillar with both the free layer and fixed layer (polarizer)

having perpendicular-to-plane uniaxial anisotropy. The magnetization direction of

the reference layer is pointing towards the +ẑ direction. For a positive current, the

electrons flow upwards. The spin valve and the associated spherical coordinates are

shown in figure 4.1.

Free Layer

Fixed Layer

j > 0

z

x y

Mθ

φ

p

Figure 4.1: Schematics of a spin valve nanopillar with a perpendicular polarizer p̂.
Both the easy axis of the free layer and the polarizer are pointing along the z axis.
For a positive current, the electrons flow from the fixed layer to the free layer.

In our following calculation of the spin valve nanopillar, we adopt the Slonczewski

spin-transfer torque of the form (2.11), then the equivalent effective field can be
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written as

Hst = 1
µ0Ms

I

Ae

~
2

1
d
g(m̂ · p̂)(m̂× p̂)

= − 1
µ0Ms

I

Ae

~
2

1
d
g(cos θ) sin θφ̂. (4.1)

Here I/Ae = j/e is the particle current density of itinerant electrons with A being

the cross-section area of the device and j being the electric current density, d is the

thickness of the free layer. We adopt Eq. (2.12) for the spin-torque efficiency function

g(θ). The spin polarization of the electrons is set to P = 50% in all calculations.

4.2 Critical surfaces of the spin valve nanopillar

Assuming the free layer has perpendicular uniaxial magnetization anisotropy, the

rescaled dimensionless anisotropy energy is written as

ε = Ean

2KV = −1
2 cos2 θ, (4.2)

Since the direction of polarization is collinear with the easy-axis of the reference

layer, the spin-transfer torque field in this geometry is rotationally symmetric with

respect to ẑ. The dimensionless form is written as

Hst

Hk
= hφst(θ) φ̂, (4.3)

with its magnitude given by

hφst(θ) = − j

j0
g(cos θ) sin θ, (4.4)

where the characteristic current density is defined as j0 = 4edK/~. The spin torque

term is proportional to the current density and vanishes at j = 0.

Substituting ε from Eq. (4.2) and hst from Eq. (4.3) into Eq. (3.17) and Eq. (3.18)

we get the expressions of the critical values of λ for the spin valve

λT = 1
2 sin2 θ − cos2 θ + 1

2α

(
cos θ
sin θ hst + ∂hst

∂θ

)
, (4.5)
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and

λ± = 1
2 sin2 θ − cos2 θ ±

√
1
4 sin4 θ − cos θ

sin θ hst
∂hst
∂θ

. (4.6)

Note that the current-dependent term in the expression (4.5) comes with a factor of

1/α. Since Gilbert damping is usually small, this means that λT is very sensitive to

the changes of the current. The current contribution to Eq. (4.6), does not contain

a similar large factor, thus λ± are relatively insensitive to the current changes. Since

the expressions are only functions of θ, we can plot them in a two-dimensional λ-θ

plane. Figure 4.2 shows the critical values of λ as functions of θ with (bottom panel)

and without (top panel) the spin transfer torque.

Next we calculate the critical surfaces using the critical values of λ we just derived.

The independence of angle φ on ε and hφst simplifies Eq. (3.14) as

h = λm̂ + (sin θ cos θ)θ̂ − hφstφ̂, (4.7)

which leads to the rotational symmetry in the resulting critical surfaces. It should be

noted that since the angle variables θ and φ in this expression refer to the direction

of the magnetization instead of the direction of the external magnetic field. In order

to plot the critical field surfaces, we need to decompose the field expression (4.7) into

Cartesian coordinates as

hx = (λ+ cos2 θ) sin θ cosφ− hφst sinφ, (4.8a)

hy = (λ+ cos2 θ) sin θ sinφ+ hφst cosφ, (4.8b)

hz = (λ− sin2 θ) cos θ. (4.8c)

Because of the symmetry, we can instead plot the critical surfaces on a two-

dimensional field plane. By introducing the perpendicular component of the external

field

h⊥ =
√
h2
x + h2

y =
√

(λ+ cos2 θ)2 sin2 θ + (hφst)2, (4.9)

which is only a function of θ, the critical surfaces now reduces to two-dimensional

critical curves, as shown in Fig. 4.3. When the field crosses those curves from inside,
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(a)

(b)

Figure 4.2: Critical values of λ. The current densities are (a) j/j0 = 0, and (b)
j/j0 = 0.1. The blue, red and green curves denote λ+, λ− and λT, respectively. The
stable (white) region and unstable (gray) region are separated by solid lines. The
spin polarization P = 50% and the damping parameter α = 0.1 are adopted in all
figures.
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one of the stable equilibrium either is destabilized by the spin-transfer torque or

merges with a saddle point, as discussed in the previous section.

4.3 Analysis of equilibria and destabilization modes

Conventional astroid

We first analyze the case with j = 0, which should reproduce the conventional SW

astroid. In the λ-θ plane, the λ± curves form a closed region with λT being the midline.

They separate the entire plane into three parts, which can be classified, according

to criterion (3.19), as sink, saddle, and source as shown in Figure 4.2(a) from top

to bottom. Since saddle and source are both unstable, the stable (sink) region and

the unstable (saddle and source) region are separated by λ+ only. This separation

gives the critical curve S+ in the field plane, which reproduces the conventional SW

astroid. In addition, there are also two more curves, S− and ST, inside the astroid as

shown in Figure 4.3(a). Just as expected, neither S− nor ST is critical in this case.

The equilibria and destabilization mode in this case are well understood. There

are four equilibria (two minima, one maximum and one saddle point) when the field is

inside the astroid. In terms of the language in the classification of planar systems, they

are sink, source and saddle point, respectively. When the field crosses the boundary

of the astroid which is solely given by S+, one of the minima merges with the saddle

point. If the magnetization happens to be at the destabilizing minimum, it will be

switched to the other minimum when the field moves outside the astroid.

The destabilization is even more straightforward in the λ-θ representation by

mapping the field to the equilibria. A field vector that is inside the astroid maps four

points into the λ-θ plane, each of which corresponds to one of its equilibria and is

labeled by angle θ and λ. The value of λ characterizes the stability of the equilibrium.

When merging happens, the saddle point collides with one of the sinks at a point on
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(a)

(b)

Figure 4.3: Critical surfaces in the field plane. The current densities are (a) j/j0 = 0,
and (b) j/j0 = 0.1. The same color scheme is used for S+, S− and ST. The critical
curve (solid lines) corresponds to the solid parts of the critical λ curves which compose
the boundary of the stable region in Fig. 4.2.
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λ+. The merging between the saddle point and the source, which should happen on

λ−, is not so obvious in this case because instead of forming a volume, S− degenerates

into a line along the z axis and hence it is not able to define a similar crossing process.

λT always lies between λ±, where detA < 0, and therefore does not affect the stability

of either a sink or a source.

In a more general case, however, all the three critical curves may be active in

destabilizing a sink. This will be discussed in the following case when spin-transfer

torque is available.

Modified astroid

In the presence of spin-transfer torque, the equilibria exhibit two major differences

from the conventional ones.

First, according to Eq. (3.14) the equilibrium m̂ is no longer located in the same

field plane. The consequence is that the classification of equilibria by energy ex-

tremum is not appropriate, and therefore we should adopt the more general descrip-

tions, i.e., sink, saddle and source. Nevertheless, because of the rotational symmetry,

the azimuthal angle φ of an equilibrium is uniquely determined by its polar angle θ

and λ by

tanφ = hst
(λ+ cos2 θ) sin θ . (4.10)

Therefore the λ-θ plane still provides enough information in describing the destabi-

lization of equilibra. Similarly, the switching phase diagram can still be represented

by the critical curve.

Second, the boundary that separates stable and unstable regions in the λ-θ plane

is composed of the line segments of λ± and λT, and so is the critical surface. This

is purely a spin-transfer effect, which leads to more destabilization modes than the

conventional case.
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The stability in each region in the λ-θ plane is determined by criterion (3.19). We

take j/j0 = 0.1 as an example. Figure 4.2(b) shows the stable and unstable regions

as well as the separating boundary (solid lines) in the λ-θ plane. By mapping the

lines into the field plane, we get a modified astroid as shown in Figure 4.3(b). The

modifications mainly come from two aspects: (1) the λ± region does not cover the

ranges of both small and large θ, which leaves a hollow, surrounded by S−, along the

direction of easy axis inside the astroid; (2) two segments of the λT line compose both

ends of the boundary in the λ-θ plane and modify the astroid with a “depression”

at the top and a “bubble” at the bottom. The three-dimensional critical surfaces in

field plane with current being the third dimension is plotted in Figure 4.4, which well

reflects the trend of modifications.

Similar to the conventional case, there are four equilibria for the field inside the

region enclosed by S±. When the field crosses the boundary, either through S+ or

through S−, the saddle point collides with a sink or a source, which reduces the

number of equilibria to two. In the λ-θ plane, λT destabilizes a sink to a source at

the line segments outside the λ± regions but keeps the number of total equilibria

the same. This is usually referred as local destabilization. In terms of the number

of sinks, the modified astroid encloses a region with two or more stable equilibria,

although the total number of equilibria inside could be two or four. Whenever the

external field crosses the solid line from inside, one of the sink loses its stability by

either merging with a saddle (through S±) or locally destabilizing (through ST). The

latter is purely a spin-transfer effect. The destabilization modes are illustrated in

Figure 4.5. A graphic method for plotting the equilibra in the λ-θ plane is given in

details in Appendix B. This method describes an simple but intuitive way to track

the equilibria with varying parameters, such as the external field and the current

density.

Note that there is a small triangular region enclosed by S± and ST at the bot-
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Figure 4.4: 3D critical surfaces in the {h⊥, hz, j} current-field space. (a), j/j0 > 0;
(b), j/j0 < 0. The asymmetry of the two sub-figures is due to the asymmetry of the
efficiency factor g(cos θ).
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(a)

(b)

Figure 4.5: Illustration of different destabilization modes. (a), the external field is
shown by the black dot, the blue, red, and green arrow indicate the different paths
of the field, which cross the S+, S− and ST, respectively. (b), the four equilibria of
the field are marked in purple(stable) and orange(unstable), the arrows indicate the
routes of the equilibria when the field changes, the white dots indicate merging of
two equilibria.
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tleneck which, according to our discussion, should have three sinks and a saddle but

no source. When the field moves out of this region, however, it destabilizes one of

the sinks, depending on which boundary it crosses. An intuitive way to understand

it can be done by adding λ as the third dimension in the field plane. Because each

equilibrium is associated with a value of λ. When the external field changes, it varies

smoothly until merging takes place. We therefore can plot λ as a function of the field

instead of the angles. The function λ(h) is now a folded surface in three-dimensional

λ-h space, indicating that a single point in the field plane corresponds to multiple

λ values, as shown in Figure 4.6. By crossing different boundaries of the triangle,

different sink is destabilized. The two trajectories in Figure 4.6 show how an sink,

initially at the center, becomes unstable through the triangle region: (1) directly get

into the triangular region and merges with a saddle point at S+, and (2) get into the

bubble region at the bottom through the “tunnel” enclosed by S− and go back into

the triangular region via S+, then destabilize either at S− by merging or at ST by

local destabilization.

4.4 Switching diagrams in a slightly misaligned axial field

The switching phase diagram in the same geometry with the field applied strictly

along the direction of easy axis has been calculated in the literature by different

methods [7, 50, 101]. The two stable states in this case are often referred as parallel

(P, low resistance) state and antiparallel (AP, high resistance) state, which are located

at the north and south poles, respectively.

The P to AP and AP to P switchings in the phase diagram correspond to two

lines with different slopes. In term of the critical surfaces, they are determined by ST
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Figure 4.6: 3D illustration of the two destabilization modes through different trajec-
tories in the triangular region near the bottom of the modified astroid. Only right
part is shown in the field plane.

at θ = 0 and θ = 0, respectively(
j

j0

)
P→AP

= − α

g(0)(H +Hk), (4.11a)(
j

j0

)
AP→P

= − α

g(π)(H −Hk). (4.11b)

Such a diagram has been studied extensively in experiment for various multilayer

spin valves with perpendicular anisotropy [50, 51, 85, 42]. The switching boundaries

determined by the switching fields and currents evolve linearly over a large range.

However, a strong deviation, refered as canted states in Ref. [50], occurs near the

zero-current switching fields (see Figure 3 in Ref. [50], Figure 2 in Ref. [51], and

Figure 3 in Ref. [85]). Experimentally it seems that the switching fields at zero

current act as two barriers which require much bigger current to overcome. The

AP/P coexisting region continues for larger field when bigger current is applied (for

example, the top left corner in Figure 3 in Ref. [50]). This experimental discrepancy

with theoretical prediction was investigated by J. Cucchiara, et al. in Ref. [17] in
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terms of the picture of energy dissipation, and by S. Le Gall, et al. in Ref. [42] using

the approximated two-dimensional model. Both analysis deduce that the uniaxial

symmetry breaking causes the experimental results.

There are three possible sources that may lead to the symmetry breaking: a

misalignment of the applied field, anisotropy axis, or the presence of strong second-

order anisotropy. As a comparison with the existing approximated method, we will

be focusing on the first case.

As one can imagine from the shape of the modified astroid in Figure 4.3(b),

reaching the part of the straight switching lines beyond the zero-current barriers in

the j-h phase diagram requires the field to get into the bubble region from the main

body of the modified astroid, and the bottleneck serves as a bridge between the two.

From the discussion in the previous section and the Figure 4.6, the trajectory of the

external field must go through the tunnel without touching the S+ curves to prevent

early switching. In the distorted astroid calculated using the approximated method,

there is no such a tunnel and therefore it prohibits the possibility that the field can

enter into the bubble region without touching the switching boundary, this causes

the infinite vertical switching boundaries in the analytical j-h phase diagrams (see

Figure 13 in Ref. [17]).

The symmetry breaking switching with a misaligned field pointing downwards for

different tilt angles is illustrated in Figure 4.7. When is angle is small enough so that

the field trajectory does not touch the S+ curve, the P state evolves smoothly and

is destabilized when the field crosses the bottom of the bubble, as shown in the left

panels in Figure 4.7. This intersection point composes the linear portion in the j-h

phase diagram. When the angle is big enough so that the field trajectory crosses the

triangular before entering into the bubble region, three intersections with the three

critical curves can be plotted along the trajectory, as shown in Figure 4.7(top right).

At the intersection with S+, the P state merges with the saddle point, which is created
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Figure 4.7: Switching in a slightly misaligned axial field. Top left: field trajectory
through the bottleneck tunnel; Bottom left: evolution of the P state viewed at the top
of the magnetization unit sphere; Top right: field trajectory through the triangular
region; Bottom right: evolution of the P state accompanied with two other states
viewed at the top of the magnetization unit sphere, the creation and annihilation
of states take place at S±. The blue lines are trajectories of sinks, the orange lines
are trajectories of source and saddle. Two simultaneous critical events are marked
with the same label, i.e., the inverse triangles in the right panels indicate that two
equilibria are created when the field crosses the red line.
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along with another stable state at the intersection with S−, and the early switching

occurs. Since the shape of S+ does not vary much with the current, when the tilt

angle is small, this reversal always happens approximately at h = hc(j = 0). In the j-

h phase diagram, it give rises to the two vertical barriers near the zero-current fields.

Besides, if the combination of current and field is able to perform a trajectory similar

to the U-shape one shown in Figure 4.6, which means that the field first enters into

the bubble region through the tunnel and then crosses the triangular region by going

backwards, it may lead to a switching when the field crosses S− or ST. In terms of the

j-h phase diagram, this backwards crossing gives rise to two additional parts close to

the two vertial barriers. The exact j-h phase diagram is plotted in Figure 4.8 for two

different angles, it shows some similarities with the numerical simulated diagrams

in those references but also exhibits some features that are not able to capture by

simulation.

The thickness of the bottleneck, which becomes critical in determining the switch-

ing, can be estimated as

∆h ≈ 4
(
g
∣∣∣
θ=0

j

j0

)3/2

(j/j0 > 0), (4.12a)

∆h ≈ 4
(
g
∣∣∣
θ=π

j

j0

)3/2

(j/j0 < 0). (4.12b)

For j/j0 = 0.1 and P = 50% this approximation gives ∆h = 9.71 · 10−3 in good

agreement with the actual bottleneck width ∆h = 9.68 · 10−3.

Besides the misalignment of the applied field, the misalignment of the anisotropy

easy axis with the polarizer may also lead to the result. In that case the rotational

symmetry of the astroid is broken and one must represent it in a three-dimensional

fashion. Consiquently, the tunnel does not have a spherical shape cross section and

may disconnect when the current is not sufficiently large. In addition, because of

the narrowness of the tunnel, the thermal fluctuation may also lead to the switching

when field crosses the bottleneck. However, our analytical approach is only able to
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Figure 4.8: Switching phase diagrams for a misaligned field with the tilt angles (a)
tan β = 0.01, and (b) tan β = 0.02. The dashed lines show the critical curves with the
field strictly aligned with the easy axis, given by Eq. 4.11. The up and down arrows
indicate P state and AP state, respectively. The gray region indicates the precession
state. Note that the green line close to the blue line (the purple line close to the red
line) indicates the switching happens when the j-h trajectory crosses it from left to
right (from right to left), opposite to the normal switching direction.

deal with the system at T = 0K. In order to take the fluctuation into account, one

needs to include a stochastic force into the model.

41



Chapter 5

Application in bilayer SHE devices

The spin Hall effect (SHE), a relativistic spin-orbit coupling phenomenon that can

be used to generate spin polarized currents in non-magnetic systems, was proposed

by Dyakonov and Perel in 1971 [19]. But the term “spin Hall effect” was introduced

almost 30 years later, by Hirsch in 1999 [27]. In the article he proposed a device in

which the anomalous skew scattering of the moving magnetic moments causes spin

imbalance, in a direction perpendicular to the current flow. The spin polarized current

is injected into another part and detected via inverse spin Hall effect (iSHE). Zhang

[100] derived the spin Hall effect in the presence of spin diffusion from a semiclassical

Boltzmann equation and suggested that the edge spin accumulation could be detected

by an attached ferromagnetic probe. Inspired by studies of the intrinsic anomalous

Hall effect (AHE) in ferromagnets, Murakami et al. [60] and Sinova et al. [72] predicted

that a spin transverse deflection of electrons in non-magnetic systems can originate

directly from the relativistic band structure of the conduction without involving the

Mott scattering. The theoretical debates and the experimental results are summarized

in several review articles [70, 62, 88, 33].

The application of spin-polarized current due to SHE has been limited by its

modest strength. The spin Hall angle1 for Pt reported by Morota et al. in 2011 [59] was

0.021, although this value is about six times larger than the previous measurement,

0.0037 [89]. By measuring the spin-torque ferromagnetic resonance in a Pt/Py bilayer

1The spin Hall angle is defined as θSH = jS/je, where j is the charge current density and jS~/2e
is the spin current density arising from the SHE.
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thin film, Liu et al. estimated the spih Hall angle for Pt to be 0.076 [46]. In 2012,

Liu et al. reported a giant SHE in β-Ta with spin Hall angle to be θSH = 0.12 v 0.15,

that generates spin currents intense enough to induce efficient spin-torque switching

of ferromagnets at room temperature [47].

Besides the bulk SHE, in studying the bilayer structures consisting of ferromag-

netic layers and nonmagnetic heavy-metal layers, another mechanism [48, 49] was

proposed which takes into account the Rashba spin-orbit coupling [16] by modeling

the bilayer as two dimensional electron gas with strong inversion symmetry breaking

in the direction perpendicular to the two-dimensional plane.

In this chapter we will be focusing on the switching phase diagram in the SHE

based spintronic devices.

5.1 Spin torques generated by the SHE

Recently a number of researches have been focused on bilayer structures consisting

of ferromagnetic layers and nonmagnetic heavy-metal layers such as Pt, Ta or W

[3, 55, 67, 46, 54, 90, 45, 47, 63, 37]. It is theoretically predicted and experimentally

observed that, when an in-plane current is being applied, the itinerant electrons inside

the nonmagnetic layers become spin polarized due to the strong spin-orbit coupling

and exert magnetic torques on the ferromagnetic layers. These additional torques

contribute to the magnetization dynamics as described by the Landau-Lifshitz-Gilbert

equation. Up to now two different pictures have been proposed to account for the

effects. One treats the bilayer structure as a two-dimensional system with strong

interfacial Rashba spin-orbital coupling [55, 54]. This model leads to a field-like torque

of the form m̂× (je × ẑ) [48, 49, 53, 23, 25], where m̂ = M/Ms is the magnetization

unit vector, je is the in-plane current density, and the interface normal is pointing

along the ẑ direction. The other [3, 46, 90, 45, 47, 63] is based on the interfacial

diffusion of in-plane spin-polarized current which arises from the nonmagnetic layers
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Figure 5.1: Sketches of two mechanisms for spin orbital torque and field. (a) SHE:
electric current through the HM layer generates a spin current via SHE. The spin
current exerts an effective torque and field on the adjacent FM layer via the spin
transfer effect. (b) Rashba effect: an electric current through the interface between
HM and FM layer experience a Rashba field via the spin-orbital interaction under the
structural inversion asymmetry. Through the exchange coupling and spin relaxation,
the Rashba effect exerts an effective field as well as a torque on the FM. Diagram
from Ref. [20].

due to the bulk spin Hall effect (SHE)[27, 100, 72, 33] and leads to spin transfer

torque (STT) dynamics[73, 68] in the magnetic layers. In the diffusion model the

torque is directed along m̂× [m̂× (je × ẑ)] [25] which has a damping-like form.2

For perpendicularly magnetized magnetic layers, several experiments have ob-

served that the in-plane current could switch the magnetization of the magnetic

layers [54, 45, 47]. The magnetic reversal is believed to be induced by the damping-

like torque only for the following reasons: (1) the experimentally measured switching

phase diagrams are accord with the macrospin model calculations within the error

range, and (2) the field-like torque, if there is any, does not favor either states due

to its symmetry and therefore should not contribute to the switching. Besides the

diffusion model, some later calculations suggest that the Rashba-model also gener-

ates similar damping-like torques and should be responsible to the switching as well

2This torque is also referred as Slonczewski-like spin transfer torque in some literature.
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[38, 65].

Despite the fact that the underlying mechanism is still not fully understood, a

thorough study of the switching behavior based on the existing experimental results

is of importance to analysis and prediction. However, unlike in the cases of spin valves

or magnetic tunnel junctions (MTJs) with the polarizers designed to be parallel to

the easy axis of the free layers, the lack of rotational symmetry in this configuration

incapacitates the application of the small current, two-dimensional approximation.

In the following sections of this chapter, we apply the method of finding the critical

surfaces to the bilayer systems with perpendicular uniaxial anisotropy and an in-plane

current which generates a damping-like torque with its strength proportional to the

current density. The field-like torque in the Rashba model, on the other hand, can

be compensated by an external field in the direction opposite to the spin polarization

and therefore only shifts the overall results accordingly.

5.2 Critical surfaces in a SHE device

We first construct the three-dimensional critical surfaces of a bilayer SHE device. The

dimensionless perpendicular uniaxial anisotropy energy has the same form as in the

spin valve case and is given by Eq. (4.2). We set the in-plane current to be along the

+ŷ direction, and assume the spin torque strength does not depend on the angles,

i.e., g(θ, φ) is a constant, which is usually considered to be the case, then the current

induced spin-transfer-torque field can be written as

hst ∝ m̂× (j× ẑ) = αjm̂× x̂, (5.1)

where αj is a strength parameter proportional to the current density. The rotational

symmetry is no longer preserved due to this additional torque, and therefore the

corresponding critical λ values should depend on both θ and φ. Substituting ε from
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Figure 5.2: The λ+ and the λT are shown by blue and purple surfaces, respectively.
The dark green area below λ+ is composed of λ− and another piece of λT, one on
top of the other. The damping parameter and the spin torque strength are set to be
α = 0.1 and αj = 0.1.

Eq. (4.2) and hst from Eq. (5.1) into Eq. (3.17) and Eq. (3.18), we get

λT = sin2 θ

2 − cos2 θ − αj

α
sin θ cosφ, (5.2)

λ± = sin2 θ

2 − cos2 θ ± sin θ
√

sin2 θ

4 − α2
j cos2 φ. (5.3)

The critical λ values are now functions of both θ and φ, and therefore should be

plotted in three-dimensional space. Similar to the spin valve case, when the applied

current is large enough, the λT surface may exceed the region enclosed by λ− and λ+

surfaces and the switching boundaries are determined according to criterion (3.19).

Figure 5.2 shows the critical λ surfaces that are responsible for switchings. As one

can see, part of the λ+ is replaced by the λT above it and part of the λ− also becomes

critical together with the corresponding λT below it.

To plot the critical field surface, we first decompose the external field (3.14) into
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Figure 5.3: The critical surface in three-dimensional field space. The same color
convention and parameters as in Figure 4.2 are adopted.

Cartesian coordinates as

hx = (λ+ cos2 θ) sin θ cosφ, (5.4a)

hy = (λ+ cos2 θ) sin θ sinφ− αj cos θ, (5.4b)

hz = (λ− sin2 θ) cos θ + αj sin θ sinφ. (5.4c)

The angle φ is no longer eliminable and we need to plot the entire surfaces in a three-

dimensional field space. The corresponding critical surface is plotted in Figure 5.3.
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5.3 Phase diagram in the Y-Z plane

The switching phase diagram in the y-z field plane is of importance to experiments

because it requires the smallest field for magnetization switching to happen in this

configuration. The fact that the spin-transfer torque shifts the existing equilibria

clockwise or anticlockwise within the same plane makes it a two-dimensional prob-

lem, which draws attentions to theoretical calculations. However, earlier studies of

a similar configuration show that when the spin torque strength is large enough, it

generates a region in field space with all in-plane equilibria being destroyed, which

means there must be some even number of out-of-plane equilibria existing according

to Poincaré-Hopf theorem. Here we give a complete study of the phase diagrams.

When the external field is confined in the y-z plane, it is easy to see that the

constraint hx = 0 indicates either φ = ±π/2, or λ = − cos2 θ, or θ = {0, π}, according

to Eq. (5.4a). The last case, in which the equilibrium states are at two poles, is trivial

and can be automatically included into the first case. We now focus on the first two

non-trivial cases.

Case 1: if φ = ±π/2, the set of equilibrium states are also in the field plane,

which is now y-z plane. We refer them as in-plane (IP) equilibria. It is obvious to

see from Eqs. (5.2) and (5.3) that λT is always the midpoint of λ±, same as in the

conventional case. Therefore only λ+ is needed to calculate the critical surface. By

substituting λ = λ+ and sinφ = ±1 into Eqs. (5.4b) and (5.4c), we get a parametric

form of the critical field in the y-z field plane
hy = ± sin3 θ − αj cos θ

hz = − cos3 θ ± αj sin θ
(5.5)

The critical field above describes a modified Stoner-Wohlfarth (SW) astroid which is

squeezed along one of its diagonal lines. We will refer it as IP phase diagram since it

describes the merging of IP equilibria only.
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Case 2: if λ = − cos2 θ, then we have hy = −αj cos θ and hz = − cos θ +

αj sin θ sinφ. It corresponds to two out-of-plane (OOP) equilibria with their angles

satisfying cos θ = −hy/αj and sinφ = (hz − hy/αj)/
√
α2
j − h2

y. Taking into account

the range of trigonometric functions, the critical field that generates the two OOP

equilibria, one on each half of the unit sphere, is given by
hy = −αj cos θ,

hz = − cos θ ± αj sin θ.
(5.6)

If we substitute λ = λ− into Eqs. (5.4b) and (5.4c) with sinφ = ±1, we will get

exactly the same critical field as Eq. (5.6). This is not coincidence but the physical

meaning of λ−: the two OOP equilibria first emerge in pair with sinφ = ±1 and then

move out of y-z plane as long as the field is being increased. Since S+ is responsible

for the IP equilibria, the emergence of OOP therefore should be captured by S− in

y-z plane.

Next we analyze their stabilities. When λ± are real, λ 6 λ− is always satisfied

according to Eq. (5.3). Combining with the situation when λ± are complex, the

stability criteria simply require

λ− λT =
(
αj
α

cosφ− 1
2 sin θ

)
sin θ > 0. (5.7)

The equilibrium located in the −x half of the unit sphere is always unstable because

λ− λT remains negative when cosφ < 0. The other one in the +x half can be stable

if the inequality (5.7) is satisfied. This condition leads to another critical field given

by 
hy = −αj cos θ,

hz = − cos θ ± sin θ
√
α2
j − α2 sin2 θ/4.

(5.8)

We refer Eq. (5.8) as OOP phase diagram since it gives the destabilization boundary

of the OOP equilibrium in the +x half of the unit sphere.

The IP and OOP phase diagrams give the complete switching phase diagrams in

the y-z field plane. For αj < 1/2, the IP phase diagram is topologically equivalent
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to the conventional Stoner-Wohlfarth astroid and the equilibrium merging process

is similar: there are four equilibria when the field is inside the astroid and a stable

equilibrium merges with a saddle point when it crosses the boundary from inside.

For αj > 1/2, the IP phase diagram becomes self-crossed and there will be no IP

equilibria when the field is within the self-crossed area since it is equivalent to cross

the boundary twice along the direction of merging. Nevertheless, the diagram (5.6)

always covers the area which guarantees the existence of at least two equilibrium

states and therefore Poincaré-Hopf theorem is not violated.

In addition to the conventional IP switching, if the field moves to the area outside

the IP phase diagram but still inside the OOP phase diagram, the magnetization could

switch to the stable OOP equilibrium. In addition, since the OOP phase diagram is

a function of damping parameter α, in the high damping, high current regime, the

system is possible to get into a state with two unstable OOP equilibria and no IP

equilibria. In this case the magnetization will precess along a limit cycle. Figure

5.4 shows the phase diagrams for varying spin torque strengths and damping factors.

The diagrams with negative currents can be get by reflection with respect to the z

axis.

5.4 Threshold switching currents

According to the discussion in Sec. 5.3, the magnetization can be switched to either

an IP equilibrium or an OOP equilibrium, depending on the combination of external

field and spin-transfer torque. According to the numerical simulation, if the switching

condition is met and both IP and OOP equilibria are present, the magnetization will

be switched to the OOP equilibrium instead of the IP equilibrium. Consequently,

the threshold switching currents should reflect two scenarios: IP switching and OOP

switching. The threshold currents as functions of field are plotted in Figure 5.5 with

the field applied along three different directions. The IP switching and OOP switching
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(d) (e) (f)

(g) (h) (i)

Figure 5.4: The blue and green solid curves are IP phase diagrams and OOP phase
diagrams, respectively. The purple and brown dashed curves are OOP critical fields
(5.6) and conventional SW astroids, respectively. The varying spin torque strengths
and damping factors are: αj is set to be 0.3, 0.5 and 0.7 from left column to right
column, α is set to be 0.1, 0.4 and 0.7 from top row to bottom row.
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are separated by the line intersections as shown in the figures. Comparing with the

IP switching, the OOP switching favors a smaller external field but relatively large

current. High damping also prohibits the OOP switching.

(a) (b) (c)

Figure 5.5: The threshold switching current (spin torque strength) with field applied
along the following directions: left panel −ẑ, middle panel ŷ − ẑ, and right panel
ŷ. The switching regions are separated into two parts which correspond to OOP
switching (light purple) and IP (white) switching, respectively.

However, since the OOP and IP equilibria coexist in the OOP switching, is it

possible that m̂ switches to the IP equilibrium instead of the other? The answer is

no. From Figure 5.6 we can see that, when OOP switching condition is met, one can

find such a curve that passes the IP saddle point and separates the entire plane into

two parts, each of which has a sink within it. When the initial condition starts from

the upper half of the unit sphere, there is no path that connects it to the IP sink.

Therefore the only possible switching in this case is toward the OOP sink.
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Figure 5.6: The magnetization flow in the θ-φ plane in the case of OOP switching.
The OOP sink, OOP source, IP saddle and IP sink are marked by green, red, orange
and blue dots, respectively. The purple curve separates the plane into two parts.
The background color denotes the strength of the flow. The parameters are set to
hy = 0.15, hz = 0, and αj = 0.45.
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Chapter 6

Magnetization switching process

Magnetization reversal is one of the most important processes in magnetism that is

linked to the magnetic data storage process such as currently used in hard disk drives.

Therefore switching speed and reliability are two crucial factors to the design of such

systems.

In the macrospin model, “damping” and “precessional” magnetization switchings

are two mostly considered switching scenarios so far. In the damping switching mode,

both the external field and the spin polarization point opposite to the initial state

and the magnetization moves towards the new equilibrium gradually along a spiral

trajectory which is considered to be reliable but quite slow [13, 68, 9, 6]. Much faster

reversals, which are often classified as precessional switchings, have been designed

with either the field applied at a certain angle (usually orthogonal) or the spin polar-

ization perpendicular to the free layer easy axis [5, 36, 44]. In both cases the effective

torque pushes the magnetization out-of-plane, creating a strong demagnetizing field

in the direction perpendicular to the easy axis. However those reversal processes

require fields or current pulses perfectly fit the precession frequency which increases

the error rate and is experimentally hard to control.

In this chapter we first review some discoveries for damping and precessional

switchings, then we analyze a novel switching scenario which has been brought into

attention recently. For comparison purpose, the analytical studies are performed
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using the dimensionless LLG equation (2.9) in spherical coordinates
θ̇ = hφeff + αhθeff,

sin θφ̇ = −hθeff + αhφeff.

(6.1)

Thermal stochastic excitations are not considered in the calculations.

6.1 Damping switching

An analytical solution for damping switchings can be found when the external field

and spin polarization are both parallel with the easy axis. In this case the effective

field is written as

heff = (mz + h)ẑ + hst(θ)φ̂, (6.2)

where hst(θ) is given by Eq. (4.4). Since the effective field is now only a function of

θ, the second equation in Eq. (6.1) is trivial and the first one becomes

θ̇ = −
[
jg(θ)
j0

+ α(cos θ + h)
]

sin θ (6.3)

The successful switching from ẑ to −ẑ (or from −ẑ to ẑ) requires the right hand

side of Eq. (6.3) to be always negative (positive), which determines the threshold

current as a function of the external field. Figure 6.1 shows the threshold switching

currents with g(θ) given by the Slonczewski’s function (Eq. (2.12)) and g(θ) equals

a constant. In the first case, the asymmetry of g(θ) causes the two threshold current

line intersects and the magnetization may enter into a limit cycle state in which the

energy gained from the spin-transfer torque during each cycle of precession is balanced

by the energy lost to damping, whereas in the second case, the two threshold current

line are parallel and the magnetization vector is reversed once the switching condition

satisfies.

In addition to the above condition, the switching also requires the initial value of

m̂ to deviate from ẑ. In reality, due to thermal effects, m̂ always slieghtly fluctuates
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Figure 6.1: The critical switching lines in the damping switching mode with (a) g(θ)
given by Eq. (2.12), and (b) g(θ) = 1. In both figures, the blue and purple lines
are the switching boundaries of ẑ and −ẑ states, respectively. In figure (a), the blue
region indicates the limit cycle mode, the light purple region indicates the coexistence
of the ẑ state and the limit cycle mode.

around the equilibrium state ẑ, which will make the switching to happen. From

Figure 6.2, we can see that the initial stage of switching process is very sensitive

to the initial value, smaller initial angle requires much longer time precessing away

from ẑ. Besides, the switching time is also affected by the external field and the

spin-transfer torques, which are illustrated in Figure 6.3.
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Figure 6.2: Time evolution of mz for z0 = 0.9 (blue dot-dashed line), z0 = 0.99
(purple solid line), and z0 = 0.999 (brown dashed line). The parameters are α = 0.1,
j = 0, and h = 1.5.

The switching time can be derived by separation of variables, which leads to the
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Figure 6.3: Time evolution ofmz for different external fields and spin-transfer torques.
Same switching behaver is achieved by changing either the field, or the spin-transfer
torque, or both, provided that h′ are the same in each configuration. In this figure,
they are h′ = 1.2 (blue dot-dashed line), h′ = 1.5 (purple solid line), and h′ = 1.8
(brown dashed line). The initial value is set to be z0 = 0.99. The rest parameters are
the same with figure 6.2.

following integral

t = − 1
α

∫ θt

θ0

1
(h′ + cos θ) sin θdθ, (6.4)

where h′ = h+ jg(θ)/(αj0). For the ẑ to −ẑ switching, h′ < −1 must be guaranteed.

We further assume g(θ) = 1 for simplicity, then the solution is calculated as

αt = − 1
2(h′ + 1) ln

(
1− cos θt
1− cos θ0

)
+ 1

2(h′ − 1) ln
(

1 + cos θt
1 + cos θ0

)
−

1
h′2 − 1 ln

(
h′ + cos θt
h′ + cos θ0

)
. (6.5)

If the duration of the magnetic field pulse is such that a negative value of mz is

reached, then the magnetization will be in the basin of attraction of the equilibrium

state m̂ = −ẑ, and the switching will be achieved. Therefore the minimum switching

time τ can be found with θt = π/2. This will lead to

ατ = 1
2(h′ + 1) ln(1− z0)− 1

2(h′ − 1) ln(1 + z0) + 1
h′2 − 1 ln

(
1 + 1

h′
z0

)
, (6.6)

where the z0 has been substituted for θ0. Note that when h′ ≈ −1, the first and the

last term of the right hand side of Eq. (6.6) dominate, when h′ � −1, only the first
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one dominates. Therefore we can reach an approximated expression by keeping the

first term and the leading order of the expansion of the last term, which is1

ατ = 1
2(h′ + 1) ln

(
h′

1− z0

h′ + z0

)
(6.7)

The exact and approximated switching time as functions of h′ and mz are plotted in

Figure 6.4 and 6.5.
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Figure 6.4: Dependence of switching time on (a) h′ with mz = 0.99, and on (b) mz

with h′ = −1.5. The solid blue line and the dashed purple line are the exact and
approximated solutions, respectively.
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Figure 6.5: The reciprocal of switching time on (a) h′ with mz = 0.99, and on (b) mz

with h′ = −1.5. Only the exact solution is shown in the picture.

1The minimum pulse time reported in Ref. [13] only keeps the first term of Eq. (6.6) which is
valid in the large field regime only.
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From the expression (6.7) it is apparent to see that the initial value of m̂ is

crucial: smaller deviation angle means much longer switching time and therefore

much longer field pulse is required. Although thermal fluctuation will cause the

initial states deviate from absolute zero in reality, the randomicity of the fluctuation

does not guarantee the switching to be always successful if the pulse length is not long

enough. One possible solution is to break the rotational symmetry with precessional

contribution by adding a small bias field perpendicular to the easy axis. When such

a bias field is applied in addition to the switching field, the initial state ẑ is no longer

an equilibrium and, since m̂ is away from the new equilibrium by roughly the same

degree, the same switching time is guaranteed. By sweeping a tilted field from up

to down at different speed, the switching also behaves differently. It turns out that

faster sweeping rate does not always lead to shorter switching time. The numerical

and analytical results are reported in Ref. [9] and [6]. However, compared with the

precessional switching which will be discussed in the next section, damping switching

is overall a reliable yet slow switching process.

Figure 6.6: Dependence of switching time on field sweep time with a bias field. The
dots are numerical values and the curve is the analytical solution. Parameter values
are α = 0.01, h‖ = −3.5, and h⊥ = 0.001. Diagram from [9].
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6.2 Precessional switching

Precessional switching is another strategy to realize magnetization reversal which has

been recently the focus of considerable research. In terms of the LLG equation, the

precessional switching takes advantage of the first term on the right hand side of Eq.

(2.9), and therefore is usually much faster than the conventional damping switching.

In precessional switching, either the external field or the spin-transfer field can serve

as the torque that pushes the magnetization out-of-plane.

Field-induced precessional switching

We first consider the case with the field applied along the y axis but no spin transfer

torque applied. The effect field is then

heff = mzẑ + hŷ. (6.8)

Since the switching is mainly driven by the precessional torque term of the LLG

equation, when α is small, we can simply ignore the damping term and the equation

of motion is energy conservative

dm̂
dt = −m̂× heff, (6.9)

The approximate trajectory becomes an equipotential line that connects ẑ and −ẑ

on the unit sphere which therefore gives an integral of motion of such systems

ε = −1
2 cos2 θ − h sin θ sinφ = −1

2 . (6.10)

Eq. (6.10) can be further reduced to

sin θ = 2h sinφ. (6.11)

By substituting Eq. (6.8) and (6.11) into Eq. (6.9), we arrive at a nonlinear dif-

ferential equation

2θ̈ + 1
4 sin 2θ = 0, (6.12)
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with the initial conditions satisfying θ(0) = 0 and θ̇(0) = h. The equation above has

the same form with the one that describes the simple pendulum. To find the solution,

we turn to a different approach by using the first order differential equation derived

from the θ component of Eq. (6.9)

θ̇ = h cosφ = ±h
(

1− 1
4h2 sin2 θ

)1/2
. (6.13)

The equation above implies the switching field must be larger than a threshold value,

h > hc = 0.5. Note that the threshold field is inside the Stoner-Wohlfarth Astroid,

this is because the initial state in this case is ẑ instead of the energy minimum. The

solution is a periodic function (see Figure 6.7). In the presence of damping, m̂ will

be attracted by one of the energy minima if 0.5 < h < 1, depending on the initial

values, or ended at m̂ = ŷ if h > 1, where ŷ is the only energy minimum in that case.

Because of the periodicity, the switching time τ should be defined as from θ0 = 0

to θτ = π, therefore

τ = T

2 = 2
h

∫ π/2

0

(
1− 1

4h2 sin2 θ
)−1/2

dθ = 2
h
K
( 1

4h2

)
, (6.14)

where K(m) is the complete elliptic integral of the first kind.

It is important to point out that in the case of the precessional switching, the

timing of switching off the field is crucial because of the periodicity of the trajectory,

and the time window should satisfy τ/2 < t < 3τ/2.

Spin-transfer-induced precessional switching

Besides the external field, spin-transfer torque alone can also be used to induce the

magnetic switching. The idea was first introduce A. D. Kent in 2004, in which a

spin-current pulse produces a rapid reversal of the magnetization of a thin film nano-

magnet. In their simulation they consider a current pulse consisted of a positive part

and a negative part with equal time duration. The positive going part produces a
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Figure 6.7: Precessional switching for different h in the cases of non-damping (solid
lines) and of damping α = 0.01 (dashed lines). The field h is set to be (a) 0.5, (b)
0.75, and (c) 1.

62



0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

h

t

(a)

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

h

1
�t

(b)

Figure 6.8: Dependence of switching time on h in the precessional mode.

torque that forces the magnetization of the free layer out of the film plane. This gen-

erates a demagnetization field mainly perpendicular to the film plane about which

the magnetization precesses. The negative going part of the pulse pulls the magneti-

zation back into the film plane stopping the precession in the desired state. In their

simulation of a Co free layer with an in-plane uniaxial anisotropy K = 7×105erg/cm3

that is 3 nm thick, with lateral dimensions of 30 nm by 60 nm and the pulse current

is Ip = 5 mA and P is 0.4. the reversal time T is 50 ps.

The theoretical limit in the magnetization reversal of SW nanomagnet is studied

by X. R. Wang, et al. in one of their publications in 2007. They found the theoretical

limit of critical currents which is far below the lowest critical current known today,

showing a large room for future improvement. However, achieving the limit requires

a precise manipulation to the polarized current, not only the magnitude, but also the

polarization direction which makes it impractical.

6.3 SHE induced OOP switching

According to the discussion in Sec. 5.3, the magnetization can be switched to either

an IP equilibrium or an OOP equilibrium. This provides a possible solution for fast

and reliable magnetic reversals.
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We consider the switch scenario that the magnetization, which is initially in the

up state, is switched to the OOP equilibrium by a field and current pulse first. After

the OOP state is obtained, if it is in the lower half of the unit sphere, it will relax to

the down state by simply turning off the field and current. Note that mz = cos θ =

−hy/αj, therefore from the viewpoint of reliability, the goal is to have larger hy and

smaller αj, which suggests to choose the field along y direction. The dependence of

angle θ on field and current is plotted in Figure 6.9.

The macrospin simulation is plotted in Figure 6.10. When the OOP switching

condition is satisfied, m̂ will be directly switching to the OOP state without oscilla-

tion. Since the precessional term dominates the process, the damping α has negligible

effect to this stage. It can be seen that the OOP switching takes roughly about the

same time as the field induced precessional switching.
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Figure 6.9: Upper panel: The polar angle θ of the intermediate states as a function of
fields for varying currents. Lower panel: The ẑ components of the intermediate states.
The IP equilibria and OOP equilibria are represented by solid lines and dashed lines
in both panels, respectively. The solid lines above θ = π in the upper panel indicate
the equilibria are in the −y half of the unit sphere. The IP phase diagram is plotted
with dot-dashed lines in both panels.
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Figure 6.10: Simulation on the SHE induce switching with field along y axis. (a) low
damping α = 0.001, (b) high damping α = 0.1. The parameters are: purple h = 0,
j/j0 = 0.5, red h = 0.05, j/j0 = 0.46, orange h = 0.1, j/j0 = 0.42, green h = 0.15,
j/j0 = 0.38, cyan h = 0.3, j/j0 = 0.34, and blue h = 0.25, j/j0 = 0.30. The first
three configurations induce OOP switchings, the last three configurations induce IP
switchings.
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Chapter 7

Conclusions and future work

In the present work we have theoretically investigated the stability properties of the

magnetization of a single domain nanomagnetic layer in the presence of an external

magnetic field, magnetic anisotropies and spin transfer torque. By disregarding the

concepts of energy extreme and taking into account the different types of equilibria in

terms of the asymptotic behaviors, we have derived the critical surfaces in an exact

fashion that represent the different switching modes in general. In explaining the

destabilization processes, it turns out that the λ-θ plane, by which each equilibria is

tractable by its polar angles as well as its stability, could be more intuitive than the

field plane.

The application to the spin valve nanopillar with perpendicular anisotropy not

only recovers many features of the modified astroid that have been observed in ex-

periment, but also predicts a novel region in which one more equilibrium is stabilized

by the spin-transfer torque. This special region causes the destabilization depends on

the field trajectory: by travelling through different paths, the destabilization will oc-

curs at different points on the field plane. Finally, the “dented states” in the switching

phase diagram that is observed in many experiments, which is believed to be caused

by the breaking of rotational symmetry, is explained in the case with misaligned

external fields.

The study on the switching phase diagram leads to two interesting topics: the

misalignment of the polarizer with the free layer easy axis, and the destabilization

caused by thermal fluctuations. The former issue could be directly solved using the
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same approach, which should lead to a slight asymmetry in the modified astroid.

The latter issue needs more studies on how to define the switching criterion in the

presence of an stochastic force that represents the random walk of the magnetization.

In the case of SHE induced magnetic reversal, in which the rotational symmetry is

broken, the phase diagram must be presented in an three-dimensional field space. We

constructed the three-dimensional phase diagram using our approach and then focus

on a special plane, where the astroid is distorted the most. We found that besides

the existing in-plane equilibria, the spin-transfer torque also creates two out-of-plane

equilibria, one on each side of the unit sphere. Therefore the phase diagram is com-

posed of two separate diagrams. The different switching currents, which corresponds

to IP switching and OOP switching, are analyzed.

In the last part we briefly reviewed the two distinct strategies of magnetic reversal

and discussed their advantages and weakness. By noticing the special properties of the

stable OOP equilibrium in the SHE induced switching, we proposed a new switching

scenario which take advantages of the OOP equilibrium as the intermediate transit

point. This new switching mechanism turns out to be as fast as the precessional

switching without redundant precession.

An in-depth study on the OOP switching should be carried out, including the

analytical study of the switching time, the optimal switching parameters, simulation

on the switching stability in the presence of thermal fluctuations, and the possible

experimental design, etc. This new switching strategy could be used to design the

reliable ultra-fast switching based magnetic devices such as the MRAM.
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Appendix A

Classification of equilibirum types

Table A.1: Classification of stabilities

Stability Type Equilibrium Type Eigenvalue Equivalent trA-detA Equivalent λ Equivalent

Sink Stable focus Complex Re[µ±] < 0 trA < 0, detA > 0
{
λ > Max(λT, λ+) if λT > λ−
λT < λ < λ− if λT < λ−Stable node Real µ− < µ+ < 0

Source Unstable focus Complex Re[µ±] > 0 trA > 0, detA > 0
{
λ < Min(λT, λ−) if λT 6 λ+
λ+ < λ < λT if λT > λ+Unstable node Real 0 < µ− < µ+

Saddle Saddle point Real µ− < 0 < µ+ detA < 0 λ− < λ < λ+
Center Center Imaginary trA = 0 λ = λT

Table A.2: Classification of focus and node

Equilibrium Type Eigenvalues trA-detA Equivalent λ Equivalent
Node Real eigenvalues (trA)2 − 4detA > 0, detA > 0 λc− < λ < λ− or λ+ < λ < λc+
Focus Complex eigenvalues (trA)2 − 4detA < 0 (detA > 0 satisfied) λ < λc− or λ > λc+
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Appendix B

Graphic method for equilibrium finding

In order to find the equilibria, we need to solve (4.7) for an arbitrary external field.

The field is confined in xz plane without loss of generality, h = (hx, 0, hz). Express

both sides in Cartesian coordinates and after some arrangement, we get

hx sinφ = hst −
1

sin θ
∂ε

∂φ
,

hx cosφ = λ sin θ + cos θ ∂ε
∂φ

,

hz =λ cos θ − sin θ ∂ε
∂φ

.

(B.1)

In Stoner-Wohlfarth model with the anisotropy energy given by (4.2), Eqs. (B.1)

can be calculated as

hx sinφ = hst ,

hx cosφ = (λ+ cos2 θ) sin θ ,

hz =(λ− sin2 θ) cos θ .

(B.2)

The angle φ is also a function of θ and can be eliminated by combining the first

two equations in (B.2). If we further require hx > 0, then we can get

hx =
√

(λ+ cos2 θ)2 sin2 θ + h2
st ,

hz = (λ− sin2 θ) cos θ .
(B.3)

The two equations in (B.3) express hx and hz as functions of λ. In turn, we can

also write λ as functions of hx and hz, respectively. We name the two functions Λ±

and Λz
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Λ±(θ) = ± 1
sin θ

√
h2
x − h2

st(cos θ)− cos2 θ, (B.4a)

Λz(θ) = 1
cos θhz + sin2 θ. (B.4b)

The ± sign in (B.4a) indicates the corresponding equilibria are on the +x and −x

hemispheres, respectively. The equilibria can be obtained numerically by equating

the two equations above

Λ± = Λz. (B.5)

A straightforward way to understand the method is to plot them on the critical λ

graph. On the λ graph, the equilibria are presented by the intersection points of Λ±

and Λz, which means that their stabilities as well as the angles can be read directly

from the graph (see Fig. B.1). The different destabilization scenrios can be seen easily

by tracking all the equilibria when h is moving along a path that crosses different

parts of the critical curve.
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Figure B.1: Graphic method for determine equilibria in the λ-θ plane. (a) the applied
field is inside the modified astroid with j/j0 = 0.1, (b)the intersections of Λ± (solid
black curves) and Λz (dashed black curves) correspond to the equilibria. The four
equilibria are two stable equilibria (parallel and antiparallel labeled by the arrows),
one unstable equilibria (dot) and one saddle point (circle).
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