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ABSTRACT 

 

In flood frequency analysis, the modeling based on Annual Maximum Flood (AMF) series 

remains the most popular approach. An alternative approach based on the “partial duration 

series (PDS) or peaks over threshold (POT)” has been considered in recent years, which 

captures more information about extreme events by fixing appropriate threshold values. The 

PDS approach has lot of advantages, (i) it consist more peak events by selecting the appropriate 

threshold hence to capture more information regarding the flood phenomena. (ii) it analyses 

both, the time of arrival and the magnitude of peaks, (iii) it provides extra flexibility in the 

demonstration of floods and a complete explanation of the flood generating process. However, 

the PDS approach remains underused and unpopular due to the nonexistence of general 

framework regarding different approaches.  

 

The first objective of the present research work is to develop a framework in the above question 

on selection of an appropriate threshold value using different concepts and, to verify the 

independency and stationarity criteria of the extreme events for the modeling of the PDS in the 

Mahanadi river system, India. For the analysis, daily discharge data from 22 stations with 

record length varying between 10 and 41 years have been used with the assumption that the 

whole basin is homogeneous in nature. The results confirmed that the Generalized Pareto (GP) 

best described the PDS in the study area and also, show that the best PDS/GP performance is 

found in almost all the value of λ (2, 2.5 and 3).  

 

In the second phase, the analysis is done to carry out the regional flood frequency analysis in 

the Mahanadi basin and to apply the developed model to the respective homogeneous region. 

Regionalization is the best viable way of improving flood quantile estimation. In the regional 

flood frequency analysis, selection of basin characteristics, morphology, land use and 

hydrology have significant role in finding the homogeneous regions. In this work the Mahanadi 

basin is divided into homogeneous regions by using fifteen effective variables initially. 

However, it has been observed that the whole basin is not hydro meteorologically 

homogeneous. Therefore, Factor analysis has been introduced in finding suitable number of 

variables, and nine variables are found suitable for analysis. Hierarchical (HC) and K-Means 

Clustering (KM) techniques are used for finding out the possible number of clusters. Here, 

again the Generalized Pareto (GP) distribution best described the PDS in the study area. To test 

the homogeneity and to identify the best-fit frequency distribution, regional L-moment 

algorithm is used. A unique regional flood frequency curve is developed which can estimate 

the flood quantiles in ungauged catchments and an index flood is also specified concerning the 

catchment characteristics by using the multiple linear regression approach.  
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In the third and fourth phase, to demonstrate the rainfall, corresponding peak flows obtained 

using PDS and resultant flood inundated area, many models (ANN, ANFIS, HEC-GeoRAS 

and HEC-RAS models) developed in recent past are used and have been tested for their 

applicability in Lower Mahanadi river basin. It has been observed that the floods and 

inundation due to these peak rainfall and discharge typically depend on various parameters 

including time of concentration, basin slope, river morphological characteristics, rainfall, soil 

moisture, groundwater, land use, and river discharge during monsoon. For this reason, a 

different combination of parameters have been used to obtain the best model.  The ANN and 

ANFIS models have been used to estimate runoff occurred due to corresponding discharge and 

rainfall whereas HEC-RAS has been used to estimated flood inundation due to different 

magnitude of peak flows and corresponding water level. Moreover, a refined coupled model 

has been developed to estimate high flow above a threshold value and the resultant inundated 

areas using remote sensing and GIS. Remote sensing images are effective tools to determine 

the spatio-temporal flood extents. The goodness of fit values and correlation statistics has been 

tested using different error criteria. The results obtained using coupling mechanism is found to 

be very useful for estimating both, the high flow above a threshold value and the corresponding 

inundation due to floods.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 BACKGROUND 

 

Floods are one of the most frequently occurring natural disasters in Lower Mahanadi river basin 

in India. They occurs mainly due to the inadequate water holding capacity of the river, low 

retention capacity of the flood plain during monsoon, heavy rainfall, sudden release of water 

from Hirakud dam and varying time of concentration. Such complexity inundates the densely 

populated area in lower Mahanadi river basin every year, causing immense loss to the life and 

property. After commissioning of Hirakud dam during 1958, flood miseries have reduced to 

some extent. However, due to the sudden release of water during monsoon causes flooding. 

Most recent floods in lower Mahanadi basin occurred during the year 2008, 2011 and 2013.  

 

To prevent the losses in the lower Mahanadi basin and to assess the periodic flood inundation, 

flood frequency analysis for different return periods at regional and local scale; and rainfall 

runoff modeling is essential. Accurate prediction of the flood inundation area is essentially 

required for developing and quantifying flood insurance rates. Many researchers have done 

studies using different hydro-climatic variables for Mahanadi river basin (Rao, 1993, 1995; 

Gosain et al., 2006; Raje and Mujumdar, 2009; Asokan and Dutta, 2008; Ghosh et al., 2010). 

In addition, some studies are done for trends analysis of flood series (Birsan et al., 2005; Kumar 

et al., 2009; Zhang et al., 2010). Gosain et al., (2006) predicted that the Mahanadi river basin 

would be the worst affected basin due to the change of climate which may cause the occurrence 

of high-intensity floods in the basin. They stated that the peak flood at the middle reach of the 

basin would exceed from 20,000 m3/s in controlled scenario (1981–2000) to 37,000 m3/s in the 

future Green House Gases (GHG) scenario (2041–2060). Ghosh et al., (2010) studied climate 

models in Mahanadi River and observed a decreasing flow trend at Hirakud dam under a future 

climate scenario.  

 

Although, some studies have been carried out in the Mahanadi river basin using hydro-climatic 

variables, a detailed analysis to assess the flood frequency for different return periods and their 

impact on flood inundation is lacking. In the present work, a detailed study is done using 

different input variables including peak discharges of different sites, regulated release of flow 

from the Hirakud dam, corresponding peak rainfall and land use to study the flood frequency 

of different return periods at local and regional levels using partial duration series (PDS), flood 

forecasting using Artificial Neural Networks (ANN) and Artificial Neuro Fuzzy Inference 

System (ANFIS), and assessing corresponding flood inundation in lower Mahanadi river 
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system using Hydrologic Engineering Center- River Analysis System (HEC-RAS) models and 

Geographical Information System (GIS) platform.  

 

1.2 At-Site Flood Frequency Analysis Using Partial Duration Series 

 

Flood frequency analysis is used to predict flood magnitudes having different return periods at 

various sites in a river. The analysis consists of both annual peak flow discharge data and the 

partial duration series flood discharge data above a threshold value to compute statistical 

information such as mean values, standard deviations, skewness, and recurrence intervals. 

These statistical data are then used to make frequency distributions for various discharges as a 

function of their recurrence interval or exceedance probability (Hosking and Wallis, 1997). 

Developing relationship among flood frequencies and corresponding return periods are 

essential for designing and safeguarding many hydraulic structures such as dams, barrages, 

check-dams, culverts and urban drainage systems (Stedinger et al., 1992; Meng et al., 2007). 

Appropriate flood frequency analysis would certainly provide a mechanism to control, manage 

and predict floods and their impact in gauged as well as ungauged regions of a basin. 

In flood frequency analysis, different opinions exist concerning reasonable merits of sampling 

a random sequence of extreme values either as a partial duration series (PDS) or annual 

maximum series (AMS). Figure 1.1 demonstrates the difference between PDS and AMS for 

estimating flood frequency. 

 

 

Figure 1.1: Illustration of difference in AMS and PDS series 

 

A minimum of 30-40 years of records is needed for flood frequency analysis. The selection of 

a probability distribution is of fundamental importance in flood frequency analysis, as a wrong 
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choice could lead to significant error and bias in design flood estimates. Particularly at higher 

return periods, the flood may result in either under estimation or over-estimation, which may 

have serious implications in practice. There have been numerous studies in the past on the 

comparison of various probability distributions for on-site flood frequency analysis. A 

considerable realization of the late 20th century in statistical estimation was the method of L-

moments. They are analogous to conventional moments but are estimated as linear 

combinations of order statistics. Nowadays, this method is widely used for estimating various 

hydrometeorological variables and for estimating distribution parameters.  

 

1.3  Regional Flood Frequency Analysis Using Partial Duration Series 

 

Basin regionalization typically refers to a grouping of basins or sub-basins into homogeneous 

regions, which contain sites of similar flood producing characteristics and is an important focus 

as most structures are constructed in the flood prone areas where recorded flood data are either 

missing or inadequate. Regional flood frequency methods include the (i) Index Flood method 

(Dalrymple, 1960; Hosking and Wallis, 1988, 1997; Stedinger and Lu, 1995; Fill and 

Stedinger, 1998; De Michele and Rosso, 2001), in which the flood regime comprises of the 

magnitude, timing, duration, frequency, and inter-annual predictability of flood events 

considered similar to allow the spatial transfer of information from gauged sites to ungauged 

sites and (ii) Regional regression procedures, such as weighted and generalized least squares 

regression (Tasker and Stedinger 1989; Tasker et al., 1996; Madsen and Rosberg 1997; Eng et 

al., 2005, 2007; Griffis and Stedinger 2007a), in which the knowledge of the physical properties 

and mechanisms producing flood flows remain limited. In fact, the regression modeling 

approach is to employ a log-log or log-linear relationship between flood statistics and 

catchment characteristics, and in most cases the drainage area is the only descriptive variable 

used. However, the complex relationships between catchment characteristics are avoided due 

to the inadequate understanding of the hydrology of a river basin. Thus, by improving the 

knowledge regarding the catchment characteristics, various statistical analysis and flood 

quantiles estimation at ungauged sites can be developed. It may also be possible to improve the 

quantile estimation by using the remotely sensed data in a limited data situation.  

Many researchers have performed regional frequency analysis of annual maximum flows to 

predict extreme flow for the future, but there are no significant applications of regional 

frequency analysis using partial duration flow series as they describes extreme events in a better 

ways in comparison to the annual maximum series model (Buishand, 1989; Norbiato et al., 

2007).  
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1.4  Flood Forecasting  

 

In the recent years, many models have been developed based on physical and theoretical  

approaches for river flow forecasting (Aqil et al., 2007; Mukerjee et al., 2009).  However, it is 

not easy to predict the flow of a river system using the traditional flood routing methods, if the 

flow control structures are present. Hydrologists have commonly used the upstream discharge 

and water level to predict downstream discharges. In recent years, soft computing techniques 

such as artificial neural networks (ANN) are increasingly used for forecasting floods 

(Karunanithi et al., 1994; Thirumalaiah and Deo, 1998; Dawson and Wilby, 1998; Zealand et 

al., 1999; Chang et al., 2002; Sivakumar et al., 2002; Lekkas et al., 2001). Although ANN 

techniques are proven to be effective, they have been strengthened further using neuro-fuzzy 

inference systems. The neuro-fuzzy method is superior because it is able to acquire the 

information of both ANN and fuzzy logic in a single framework.  

 

1.5  Flood Inundation  

 

Flood inundation modeling is the process of defining the area filled with water during the 

flooding periods. When this flooded area is represented on a map it is referred as the flood 

inundation mapping. Flood inundation modeling comprises both hydrological and hydraulic 

modeling (Anderson, 2000; Robayo et al., 2004; Knebl et al., 2005).  Hydrological modeling 

estimates the peak flows from flood events whereas the hydraulic modeling estimates the water 

surface elevations and the resulted flood inundated areas using digital terrain model. Generally, 

in low-frequency events, the data are not be available sometimes and estimation of flood 

inundated areas for low return period flood events is seldom possible. To prevent the losses, a 

reliable information regarding the risk associated with the flooding is provided to the public, 

emergency managers and city planners. As flood occurrences and their serious consequences 

are common in various parts of the world, it has raised public, political and scientific awareness 

for proper flood control and management (Becker et al., 2003). Using non-structural 

techniques, valuation and management of flood inundated area for different magnitudes of 

floods are very crucial. Various hydrologic models have been developed in the past to simulate 

flood inundation in the basin areas (Iwasa and Inoue, 1982; Samules, 1985; Gee et al., 1990). 

These models consider overland and river flows. Only a few models such as HEC-GeoHMS, 

HEC-GeoRAS, MIKE BASIN, MIKE-11, MIKE-FLOOD are available to simulate flood 

inundation in a river basin for real flood events considering all the spatial heterogeneity of 

physical characteristics of topography.  
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1.6  Significance of the Study 

 

The Mahanadi river basin covering major portions of Chhattisgarh and Orissa has been 

repetitively facing adverse hydro- meteorological conditions such as floods, droughts and 

cyclones in the recent times. The river has often been referred to as the ‘Sorrow of Orissa’. The 

inhabited inner basin Chhattisgarh plain is suffering from frequent droughts whereas the fertile 

deltaic area has been subjected to repeated floods despite the operation of dams and barrages 

to control them. The hydrology has changed considerably due to the increased anthropogenic 

activities, producing disasters. The frequent occurrence of these events indicate a shift in the 

hydrological response of the basin because of which the upstream of Hirakud Dam is unable to 

retain sufficient moisture resulting in drought, and the downstream river is unable to handle 

large streamflows resulting in floods. The reason for such changes in hydrological regime could 

be attributed to the long-term climate change and landuse/ landcover changes in the region. 

The landuse/ landcover change impact assessment on hydrology more specifically streamflows 

can be best handled through simulation of the hydrological conditions that shall prevail under 

the projected weather conditions in an area. Such a treatment is essential because of the fact 

that the hydrological response is an extremely complex process governed by a large number of 

variables such as terrain, land use, soil characteristics and the state of the moisture in the soil. 

 

Keeping this in view, a comprehensive study has been done in Mahanadi river system with the 

following objectives. 

 

1.7  OBJECTIVE OF THE STUDY 

 

1. To evolve a framework on appropriate selection of threshold value using different 

concepts for the on-site flood frequency modeling using Partial Duration Series in the 

Mahanadi river system, Odisha, India considering the daily discharge data from 22 stations 

with the record length varying between 10 and 41 years.  

2. To develop a regional flood frequency analysis using partial duration series for 

Mahanadi river basin, India using basin characteristics, morphological, and hydrological data 

sets. 

3. To examine the prediction accuracy of ANN and ANFIS based approaches for 

predicting peak discharge in the lower catchment of Mahanadi river basin prone to floods and 

flood inundation.  

4.    To construct a HEC-RAS model for generating flood inundation and flood risk map for 

the delta region of Mahanadi basin in relation to partial duration series of flood events with the 

support of remote sensing and GIS techniques. 
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1.8 OUTLINE OF THE THESIS 

 

In view of the above objectives the present work has been divided into different Chapters as 

indicated below:  

 

Chapter 1 describes the brief introduction of the on-site flood frequency analysis of partial  

duration series, regional flood frequency analysis, flood forecasting, flood inundation, 

objectives of the research, significance and outline of the chapters.  

Chapter 2 provides a comprehensive literature review on the use of both on-site and regional 

flood frequency analysis using partial duration series, flood forecasting techniques and flood 

inundation modeling.  

Chapter 3 describes various salient features of Mahanadi river basin and various data used for 

the above analysis. 

Chapter 4 presents a framework for the selection of threshold in partial duration series 

modeling using different concepts and after selection of threshold value, modeling of PDS with 

different criteria of Mahanadi river basin is carried out.  

Chapter 5 examines the regional flood frequency analysis of Mahanadi river basin using 

partial duration series to find out the homogeneous region by applying different techniques. 

Then it moves on to develop regional flood frequency curve for estimating the flood quantiles 

with different return periods for the homogeneous region.  

Chapter 6 gives the application of soft computing techniques for river flow prediction in the 

lower catchment of Mahanadi river basin using partial duration series. 

Chapter 7 includes the flood inundation and 1-d hydrodynamic modeling using remote sensing 

and GIS technique in the delta region of Mahanadi river basin, India. 

Chapter 8 provides the detailed summary, conclusions, and future scope of the work. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

2.1 BACKGROUND 

 

The flood frequency analysis for any river location is mostly done to estimate the flood for the 

desired recurrence interval, assuming that the sample data, which is a true representative of the 

population, follows a theoretical frequency distribution. Over the last century, various 

techniques have been developed to estimate the design flood using flood frequency analysis 

techniques. In this chapter, a critical appraisal of literature survey has been done on various 

aspects of flood frequency analysis using partial duration series, regional flood frequency 

analysis using partial duration series, flood forecasting using Artificial Neural Network and 

Neuro-Fuzzy Inference System and flood inundation modeling to provide a closer look at the 

growth, development, gaps, and application of these models.  

 

2.2 On-Site Flood Frequency Analysis using Partial Duration Series 

2.2.1 Historical Development in Flood Frequency Analysis Techniques 

  

People have preferred to live along the river banks since the beginning of the human 

civilization, and therefore flood studies have been done by stakeholders for centuries to protect 

their livelihoods.  

 

In the year 1868, O’Connell performed one of the earliest studies on regional analyses of stream 

flows with simple empirical formula that attempted to connect discharge to drainage area. The 

approach was very simple, and the proposed formula was 

 

𝑄𝑚𝑎𝑥 = 𝐶𝐴0.5                                                                                                                 (2.1) 

Where 𝑄𝑚𝑎𝑥 = maximum discharge; A = drainage area; and C = coefficient related to the 

region.  

 

The application of probability theory in flood estimation procedures was introduced by Fuller 

(1914) for catchments in the U.S. in this study, the average of the maximum floods ( ) was 

related to the drainage area with an exponent of 0.8 

 

𝑄̅ = 𝐶𝐴0.8                                                                                                                                   (2.2) 

Further, an attempt to relate the discharge of a specified return period to drainage area was 

done. In  
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addition to equation (2.2), Fuller (1914) presented other formula relating annual maximum 

daily flows to drainage area for a given return period, T, as 

 

𝑄𝑇 = 𝐶𝐴0.8[1 + 0.8 log10(𝑇)](1 + 2𝐴−0.3)                                                                        (2.3) 

Where 𝑄𝑇 = peak discharge in cubic feet per second with a return period of T years; C = 

coefficient related to the region; and A = drainage area in square miles.  

 

Fuller (1914) also used plotting positions for analyzing flood distributions and suggested 

plotting at the median, which later on became popular as Hazen plotting position analysis. 

Many similar empirical relationships have been developed to relate discharge to drainage-basin 

characteristics. 

 

Hazen (1914) recommended the use of logarithmic probability paper on which the log-normal 

(LN) distribution would plot as a straight line. It was found that the observed annual maximum 

flow series would plot as a straight line on the logarithmic probability paper than on a normal 

probability paper, thereby indicating that the LN distribution provided a better fit to the data.  

 

Hazen (1921) revised an earlier work and found some datasets plotted as curved lines in log-

normal distribution. Hence it was suggested to use a three-parameter distribution including 

skewness and plot it on a logarithmic probability paper.  

 

Foster (1924) introduced the Pearson type III (P3) distribution for describing the flood data. 

 

Kinnison (1930) raised the interest on flood hydrology based on the New England flood of 

1927 by United States Geological Survey (USGS). The interest generated by that flood and the 

funds provided by the USGS for studies, resulted in the classic work by Jarvis (1926) on flood-

frequency analysis and its companion work by Hoyt (1936) on rainfall-runoff analysis.  

 

Gumbel (1941) brought the basis of analysis to a new level by applying extreme value theory 

and introduced the Extreme Value Type I distribution (EV1) to flood frequency analysis. 

 

Benson (1968) compared the most commonly used methods of flood frequency analysis. Based 

on probability plots, it was recommended that the flood of given frequency is estimated by 

fitting the Log Pearson Type 3 (LP3) distribution to the series of annual maximum floods and 

that all U.S Government agencies adopt this as their base method in order to achieve a uniform 

procedure for estimating design floods.  

 



9 

 

The method of moments can be applied in two ways to estimate parameters of the Log Pearson 

type III distribution. Bobee and Robitaille (1975) proposed that the method of moments be 

applied directly to the observed data (i.e., direct method). This method is named as the Method 

of Bobee (MOB). First three moments about zero are used to estimate parameters in MOB. 

 

Chow et al., (1988), related the magnitude of extreme events with their frequency of occurrence 

through the use of probability distributions. For ungauged catchments, the regional flood 

frequency analysis approach was found to be the only method to estimate the flood discharge 

for the desired recurrence interval.  

 

Vogel and Wilson (1996) studied extensively the data of 1455 sites for the selection of 

probability distribution of annual maximum, mean and minimum streamflows in the US with 

the help of L-moment diagrams. Their study revealed that annual minimum streamflows in the 

US are best approximated by the Pearson type 3 distribution, whereas Pearson type 3, Log-

Normal (3-parameter) and Log Pearson type 3 distributions provide a better fit for annual 

average streamflows. 

 

Zafirakou-Koulouris et al. (1998) have mentioned that like ordinary product moments, L-

moments summarized the characteristics or shapes of theoretical probability distributions and 

observed samples.  

 

2.2.2 Partial Duration Series in Flood Frequency Analysis  

 

Cunnane (1973) described a method for comparing the statistical efficiency of the T-year flood 

Q (T) estimation. They found that the estimated flood using partial duration series contains at 

least 1.65 N items, where N is the number of years of record having smaller sampling variance 

as compared to the annual maxima series for the same range of return periods. 

 

Cunnane (1979) examined the validity of the Poisson distribution, using data from 26 gaging  

stations on 20 catchments in Great Britain. It was observed that when all the data are considered 

jointly, the Poisson assumption has to be rejected although it is acceptable in some cases. It 

was also suggested that if dependence exists in the partial duration series it should be 

considered for in the point process.  

 

Ashkar et al. (1983) mentioned the truncation level above which streamflow is considered as 

flood flow play an important role in the partial duration series approach. They base their 

numerical investigation on some commonly used partial flood series models to show that once 
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the time-dependent Poisson process, used in modeling flood frequency is found applicable to 

a certain truncation level, then it should remain so with any higher truncation level. They also 

pointed out that this same property holds true for the exponential distribution widely used in 

the study of flood magnitude.  

 

Takeuchi (1984) reviewed the Langbein's formula derived in 1949, which relates the 

hydrological recurrence intervals calculated from an annual maximum series and from a partial 

duration series, and presented an alternative derivation procedure with proper validation.  

 

Cunnane (1985) discussed theoretical arguments on the empirical criteria for selection of 

distribution and previously used methods of discrimination between candidate distributions for 

modeling flood series which may give markedly different magnitude-return period (Q-T) 

relationships, especially at high T values. The impact of method of parameter estimation, 

treatment of outliers, and the inclusion of large historical flood values, data transformations 

and inventive composition of the flood population on choice of distribution were also 

considered.  

 

Hosking and Wallis (1987) discussed generalized Pareto distribution which is a two-parameter 

distribution that contains uniform, exponential, and Pareto distributions as special cases and 

has various applications in a number of fields. They found that the parameters of generalized 

Pareto distribution derived from the method of moments or the method of probability weighted 

moments were more reliable than the maximum likelihood estimation method.  

 

Bobee et al., (1993) reviewed the commonly used procedures for flood frequency estimation, 

pointed out some of the reasons for the present state of confusion concerning the advantages 

and disadvantages of the various methods, and proposed the broad lines of a possible 

comparison strategy. They recommend that the results of such comparisons be discussed in an 

international forum of experts, with the purpose of attaining a more coherent and broadly 

accepted strategy for estimating floods. 

 

Wilks, (1993) investigated the performance of three-parameter probability distributions for 

representing annual extreme and partial duration precipitation data at stations in the 

northeastern and southern United States. They found that the beta-κ distribution best describes 

the extreme right tail of annual extreme series, and the beta distribution was the best for the 

partial duration data.  

 

Pearson et al., (1998) presented a map identifying regional tendencies toward EV2 rainfall  
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distributions which can be used to supplement Tomlinson’s method for estimating annual 

maximum storm rainfall frequencies in New Zealand. 

 

Langa et al., (1999) reviewed that flood frequency analysis using annual maximum flood 

(AMF) was the most popular. They also used an alternative approach based on the “peak over 

threshold” (POT) approach. They proposed different tests for selection of threshold values and 

verified their independency and stationarity, and also presented an application. 

 

Onoz et al., (2001) analyzed partial duration series (PDS) with POT as an alternative to annual 

maxima series in flood frequency analysis. They obtained various expressions for the 

estimation of the T-year flood and its sampling variance when binomial (or negative binomial) 

model was combined with the exponential distribution of peak magnitudes. They found that 

the results were almost identical to those obtained using the Poisson model, for which much 

simpler expressions were available. 

 

Claps et al., (2003) proposed a filtered peaks over threshold (FPOT) procedure as an alternative 

to the PDS approach for determining the average annual number of flood events λ and applied 

to 33 time series data of daily runoff from rivers of northwestern Italy. The revised procedure 

demonstrate that there was no need for specific limitations on the magnitude of λ to preserve 

the fundamental hypotheses of the marked point process built in the PDS procedure.  

 

Rosbjerg et al., (2004) summarized the important extensions of the PDS/POT method since the 

mid-1990s. The PDS/Generalised Pareto (GP) model was shown to be competitive with the 

AMS/Generalised Extreme Value (GEV) model and highly efficient for regionalization. They 

developed new procedures for testing the basic assumptions, introduced Generalised maximum 

likelihood and developed filtering methods for selection of independent threshold exceedances. 

They demonstrated the strengths of Bayesian methods in PDS analysis. The method was 

attractive for analysis of extreme hydrological events. 

 

Begueria (2005) found that the partial duration series modeling was a robust tool for modeling 

of hydrologic extremes, but it remained underused due to several technical problems. The most 

important difficulty was the choice of the threshold value which affects the basic assumptions 

including arrival times and exceedance magnitudes. They considered the changes in parameter 

and quantile estimation as a function of the threshold value. They used simulated and real data 

to test the consistency of the model, and proposed a new modeling procedure based on 

increasing threshold censoring to overcome these problems.  
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Meng et al., (2007) presented an ERM-POT (Exponential Regression Model and the Peaks-

Over-Threshold) method to measure the operational risk which had become increasingly 

important topics for Chinese Commercial Banks in recent years. Considering the huge 

operational losses, Extreme value theory (EVT) has been recognized as a useful tool for 

analyzing such data. They found that the ERM-POT method can lead to bias-corrected 

estimators and techniques for optimal threshold selections, and also the experimental results 

showed that the method is reasonable. 

 

Deidda et al., (2009) analyzed the daily rainfall time series highlighted the presence of records 

with anomalous rounding (1 and 5 mm) while the standard resolution should be 0.1 or 0.2 mm. 

Assuming that the generalized Pareto distribution (GPD) can reliably represent the distribution 

of daily rainfall depths, they investigated how such discretizations can affect the inference 

process. The performance of several GPD estimators are compared using the Monte Carlo 

approach. Synthetic samples were drawn by GPDs with shape and scale parameters in the range 

of values estimated for the daily rainfall time series. They found how the relative efficiency of 

estimators could be very different for continuous or rounded-off samples.  

 

Zvi (2009) proposed a procedure for basing intensity–duration–frequency (IDF) curves on 

partial duration series (PDS). The PDS are derived from event maxima series (EMS), and then 

fitted various distribution and finally determined the goodness-of-fit by the Anderson–Darling 

test. The best-fitted distribution is designated for predicting intensities related to the given 

duration and with a number of recurrence intervals. This procedure was repeated for eleven 

rainfall durations, from 5 to 240 min, at four stations of the Israel Meteorological Service.  

 

Deidda (2010) introduced two objectives by using exceedances over a wide range of thresholds 

and proved  by evaluating and comparing the performances of Monte Carlo samples drawn by 

GPDs with different shape and scale parameters and different discretizations. 

 

Shinyie et al., (2012) estimated the Generalized Pareto Distribution (GPD) parameters using 

five methods namely the method of Moments (MOM), the probability weighted moments 

(PWM), the L-moments (LMOM), the Trimmed L-moments (TLMOM) and the Maximum 

Likelihood (ML) and the performance of the T-year return level of each estimation method was 

analyzed based on the RMSE measure obtained from Monte Carlo simulation of extreme 

rainfall events using the Partial Duration Series (PDS) method based on the hourly rainfall data 

of five stations in Peninsular Malaysia. In addition, they suggested the weighted average model, 

a model which assigns the inverse variance of several methods as weights, to estimate the value 

for T-year return period.  
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Pham et al., (2014) investigated the performance of the PDS/GP by setting different numbers  

of average peaks per year, with λ equal to 1, 2, 3, 4, and 5 across the North Island region in 

New Zealand. They found that the GP distribution is best defines with λ equal to 4 and 5 at 

almost all sites.  

 

2.3  Application of Partial Duration Series for Regional Flood Frequency Analysis 

 

Kinnison and Colby (1945) related flood frequency to the basin drainage characteristics to 

estimate the flood of any return period by fitting different distribution at an ungauged site. The 

USGS followed the study of Kinnison and Colby (1945) and started creating flood-frequency 

reports state by state based on the index-flood method.  

 

At present, the index flood method is the most widely used regional flood frequency procedure 

(FSR, 1975; Hosking and Wallis, 1997; FEH, 1999; Castellarin et al., 2001; Brath et al., 2001; 

Sveinsson et al., 2001; Grover et al., 2002; Sveinsson et al., 2003; Lopez, 2004; Gaal et al., 

2008). A homogeneity test is used to find a homogeneous region which leads to reducing the 

quantile estimation error. Dalrymple (1960) proposed such a test on homogeneity when the 

index flood approach of flood frequency analysis was introduced. The test, based on the 

assumption of an EV1 distribution, compares the variability of 10-year flood estimates, Q10, 

from each site in the region with that expected supposing the differences between stations to 

be due to sampling error. 

 

Wallis (1980) introduced the use of probability weighted moments (PWMs) in the index flood  

method. The technique calculates the PWMs at each site in a region from the standardized 

annual flood data and then the weighted regional average dimensionless PWMs are used to 

compute the dimensionless average growth curve. To obtain the T-year flood at a specific site, 

the dimensionless T-year growth curve XT is multiplied by the at-site mean flow information, 

i.e., by the index flood. This technique was subsequently adopted as a viable way to estimate 

design floods and was further studied by, among others, Greis and Wood (1981, 1983); 

Lettenmaier et al. (1987); Stedinger and Lu (1995) and Hosking and Wallis (1997).  

 

Mosley (1981) observed that cluster analysis of data describing the flood hydrology of selected 

New Zealand catchments was an attempt to identify regions in which catchments have a similar 

hydrologic regime. For the South Island, four regions in which the catchments were 

hydrologically more similar to each other than to catchments elsewhere were identified, but no 

similarly discrete regions could be identified in the North Island. It was apparent that where a 

number of factors were equally important in controlling hydrologic regime, a complex mosaic 
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of hydrologically homogeneous areas results, and no broad-scale regions could realistically be 

identified. Cluster analysis did not entirely eliminate subjective decisions, but greatly 

facilitated interpretation of a data set. 

 

Tasker (1982) stated that data splitting was used to compare methods of determining 

“homogeneous” hydrologic regions by taking data from 221 stations in Arizona, USA. The 

methods used the complete linkage algorithm for cluster analysis and computed weighted 

average estimates of hydrologic characteristics at ungauged sites. 

 

National Institute of Hydrology (1985) carried out a regional unit hydrograph study for 

Narmada basin based on Clark’s approach. Here, the Clark model was derived for each of the 

sub-basins of Narmada basin using HEC-1 package. A regional value of R/(tc+R) along with 

the graphical relationship was used to estimate the parameters of the Clark model for the 

ungauged catchments of the Narmada basin. 

 

Lettenmaier et al., (1987) explored the performance of index flood estimators with regions that  

exhibit various degrees of heterogeneity. Different variants of the Generalised extreme value 

GEV distribution with the PWM estimation procedure were used to obtain the index flood 

quantile. The GEV/PWM index flood quantile estimator performed well and gave the smallest 

mean squared errors in comparison with other at-site or regional quantile estimators for mildly 

heterogeneous regions. 

 

Cunnane (1988) reviewed twelve different methods of regional flood frequency analysis 

including well-known methods such as the USWRC (U.S Water Resources Council) method, 

different variants of index flood methods, Station year methods, Bayesian methods and the 

two-component extreme value (TCEV) method and the index flood using a regional algorithm 

based on PWMs was rated as the best one. It was also recommended that either the Wakeby or 

GEV distribution be used when floods were estimated by the index flood method.  

 

In a report for World Meteorological Organization (WMO), Cunnane (1989) presented a 

detailed review of various issues related to flood frequency analysis up to that time including 

statistical properties of observed flood series, the modeling problem, methods of quantile 

estimation and methods of choosing between distributions. This report also summarized a 

worldwide survey of flood frequency methods up to mid1980's. It recommended that flood 

estimates be based on the joint use of at-site and regional data using an Index Flood method of 

quantile estimation with model parameters estimated by probability weighted moments 

(PWMs). The report also revealed that conventional goodness of fit tests was of little value in 
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the context of choosing between statistical distributions and that the EV1 and LN distributions 

were the most commonly used distributions worldwide. However, the report discouraged the 

use of Log Pearson Type 3 (LP3) distribution in general for flood frequency procedures. 

 

Another major development in relation to regional flood frequency analysis can be regarded as 

the Region of Influence (ROI) approach, developed by Burn (1990). The ROI technique 

involves the identification of a region of influence. The regional approach based on L-moments 

and the formation of a group of stations using the ROI approach are now well established 

methods and have been applied in many recent flood studies (Zrinji and Burn, 1994; Zrinji and 

Burn, 1996; FEH, 1999; Castellarin et al., 2001; Cunderlik and Burn, 2002; Shu and Burn, 

2004; Merz and Bloschl, 2004; Cunderlik and Burn, 2006b; Gaal et al., 2008). 

 

Nathan and McMahon (1990) presented a detailed regionalization methodology that addresses 

the problems associated with the selection of an appropriate clustering technique, selection of 

catchment variables, the definition of homogeneous regions, and the prediction of group 

membership for other catchments whose group membership was otherwise unknown. The most 

suitable technique that they identified used multiple regressions to select and weight the most 

appropriate variables and then used cluster analysis to derive preliminary groupings, finally 

applying a multi-dimensional plotting technique to investigate further and refine the 

preliminary groupings. 

 

Singh and Kumar (1991) carried out a study using the peak flood series data of hydro-

meteorologically homogeneous region of Godavari basin Subzone 3f involving application of 

EVI (PWM) and GEV (PWM) methods based on i) on-site data, ii) on-site  and regional data 

combined and iii) regional data alone. Homogeneity of the region was testing using USGS and 

Coefficient of variation based homogeneity test. From the study, it was concluded that GEV 

(PWM) approach using on-site and regional data in a combined form would provide estimates 

of flood peaks for different return periods with computationally less bias, and comparable root 

mean square error. 

 

Lu and Stedinger (1992) formulated a significance test of homogeneity, based on the variability 

of normalized on-site GEV flood quantiles (X10) estimated by L-moments and demonstrated 

that this test was more powerful than the Wiltshire's R-statistic test. 

 

Vogel and Kroll (1992) presented a simple conceptual stream-aquifer model which was 

extended to a watershed scale and evaluated for its ability to approximate the low-flow behavior 

of 23 unregulated catchments in Massachusetts, USA. The conceptual watershed model was 
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then adapted to estimate low-flow statistics using multivariate regional regression procedures. 

Their results indicated that in central western Massachusetts, low-flow statistics were highly 

correlated with the product of the watershed area, average basin slope and base flow recession 

constant. 

 

Fovell and Fovell (1993) used monthly rainfall and temperature data for recognizing climatic 

regions of the United States by using  Hierarchical cluster (HC) in combination with principal 

component analysis (PCA).  

 

Hosking and Wallis (1993, 1997) proposed two more homogeneity tests based on L-moment 

ratios such as using L-CV alone (H1) and using L-CV & L-skewness jointly (H2). Both tests 

measure the sample variability of the L-moment ratios among the samples in the pooling group 

and compare it to the variation that would be expected in a homogeneous pooling group. The 

variation was estimated through repeated simulations of homogeneous regions with samples 

drawn from a four parameter kappa distribution whose parameters were estimated from L-CV, 

L-skewness and L-kurtosis of the region's data. They recommended using the H1 over the H2 

statistic as they found that the heterogeneity based on L-CV had better power to discriminate 

between homogeneous and heterogeneous regions. 

 

Madsen et al., (1994) employed the partial duration series method as an alternative to the 

traditional non-parametric approach in the modeling of extreme rainfalls. In order to obtain an 

estimation procedure at non-monitored sites and to improve at-site estimates, a regional 

Bayesian approach was adopted. The empirical regional distributions of the parameters in the 

Partial Duration Series model were used as prior information. The application of the Bayesian 

approach was derived in the case of both exponential and generalized Pareto distribution 

exceedances. Finally, the aspect of including economic perspectives in the estimation of the 

design events was briefly discussed. 

 

Birikundavyi et al., (1997) analysed flood estimation techniques at both at-site and a regional 

context using partial duration series in the province of Ontario, Canada. They also analysed the 

problem of selection of the threshold. They considered Poisson distribution to define the 

occurrence of floods and the generalized Pareto distribution for flood magnitudes.  

 

Madsen et al., (1997) compared two different models such as partial duration series (PDS) and  

Annual maximum series (AMS), for analyzing extreme hydrologic events. Then the 

performance in terms of return period events estimator is evaluated using different parameter 

estimation methods. They concluded that in the case of PDS model with negative shape 
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parameter and for AMS model with moderately positive shape parameters, the Method of 

Moments (MOM) estimation gives good results whereas, Maximum Likelihood (ML) 

estimation gives good results in the case of the PDS model for large positive shape parameters.  

 

A publication by FEH (1999) studied a range of pooling group sizes and its obvious impact  on 

adoption of the 5T rule, namely that the total number of station years of data to be included 

when estimating the T-year flood should be at least 5T. An advantage of the region of influence 

method was that in the estimation of a regional growth curve, each site can be weighted 

according to its closeness to the site of interest. 

 

Kumar et al., (1999) developed regional flood frequency curves by fitting the L-moment based  

generalized extreme value distribution to annual maximum peak flood data of small-to-medium 

size catchments of the seven hydrometeorological subzones of Zone 3 of India. They developed 

the regional flood frequency curves for each subzone together with on-site mean annual peak 

floods for both gauged and ungauged catchments. 

 

Adamowski (2000) found that the analysis of annual maximum (AM) flood series had revealed 

unimodal and multimodal probability density functions for floods in the Provinces of Ontario 

and Quebec, Canada and divided the region into nine homogeneous regions having similar 

flood generating nature. Then a regional relationship was developed using nonparametric 

analysis on the AM and PDS.  

 

Brath et al., (2001) analyzed three indirect techniques for index flood estimation in order to 

evaluate their applicability and effectiveness. This analysis was based on both statistical and 

conceptual approaches, in 33 hydrometric stations of northern-central Italy. The results showed 

that the statistical model was best when compared to the physically-based models. Finally, the 

results highlighted that direct estimation techniques could be advisable for catchments with 

intrinsic geomorphoclimatic properties.  

 

Castellarin et al., (2001) evaluated the relative performance of four hydrological similarity 

measures for regional frequency analysis in Northern-Central Italy and computed their 

performance based on Monte Carlo experiment. From the results, it was found that the 

similarity measures based on seasonality indexes were effective for estimating extreme flow 

quantiles for the study area.  

 

Lim et al., (2003) examined the flood records of more than 23 gauged river basins in Sarawak, 

Malaysia, using an index-flood estimation procedure based on L-moments. Two homogeneous 
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regions were identified. The Generalized Extreme Value and the Generalized Logistic 

distributions were found to describe the distribution of extreme flood events appropriately 

within the respective regions. A regional growth curve was subsequently developed for each 

of the regions for the estimation of design floods in ungauged basins.  

 

Jingyi and Hall (2004) investigated the homogeneous region in the Gan-Ming river basin of 

China by using different clustering techniques include K-mean (KM), fuzzy C-mean (FCM), 

hierarchical clustering (HC), and Kohonen self-organizing features map. They also applied the 

appropriateness of the Kohonen map for finding the number of clusters and sites selected.  

 

Parida, (2004) attempted to identify homogeneous regions using physical, hydrological and 

meteorological attributes that are responsible for flood generation in flood stricken area of 

eastern India. Euclidean distance was used to classify basins into regions which yield minimum 

partitioning error. The identified regions were subjected to several homogeneity tests which  

revealed that the method throws a promise for use in regional flood frequency analysis to obtain 

reliable results.  

 

Chowdhury, (2005) attempted to evolve a suitable methodology for determining the floods of 

given return periods in ungauged catchments of river Mahanadi in Eastern India based on 

Regional Flood Frequency Analysis procedures. The Index Flood Method and Multiple 

Regression Techniques have been used. The flood data of 16 gauging sites have been utilized 

to evolve the regional relationships. The flood value results obtained by the developed 

relationships of two methods when compared with the flood values derived from best-fitted 

frequency distribution indicated that relationship developed by Multiple Regression Technique 

was quite suitable for Mahanadi basin. 

 

Kumar and Chatterjee (2005) examined the regional flood frequency analysis using data of 13 

stream flow gauging sites of the North Brahmaputra region of India. They found that General 

extreme value (GEV) distribution was a robust distribution for the study area and developed a 

regional relationship between mean annual peak flood and catchment area for quantile 

estimation for ungauged sites.  

 

Trefry et al., (2005) worked on regional frequency analysis using PDS series for the state of   

Michigan, USA. They found that the PDS/GP model performed well with λ ranging from 2.2 

to 4.07 and hence, λR = 2 was selected for regional modeling. 
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Goel and Arya (2006) developed a dynamic flood frequency model for estimation of 

parameters of stochastic rainfall models including regionalisation of rainfall parameters. The 

framework of methodology for dynamic flood frequency models or derived flood frequency 

distribution (DFFD) models consisted of the following three major components: (1) Stochastic 

rainfall model (2) Infiltration model and (3) Effective rainfall–runoff model. 

 

Rao et al., (2006) tested, the effectiveness of Fuzzy cluster analysis (FCA) for regionalization 

by using annual maximum flow data from the watersheds in Indiana, USA. The effectiveness 

of several fuzzy cluster validation measures in determining optimal partition provided by the 

FCA was also addressed. 

 

Norbiato et al., (2007) focused on flash floods in the eastern Italian Alps due to heavy rainfall 

and large spatial variation. They applied regional frequency analysis using the index variable 

method and L-moments to examine short duration maximum precipitation for the Friuli-

Venezia Giulia region, in north-eastern Italy, which included the storm location and found that 

the Kappa distribution may be useful. Then various severity graphs were established to 

visualize the return periods and their variability for different rainfall durations within the storm.  

 

Stambuk et al., (2007) investigated possible application of the Kohonen self-organizing maps 

(SOM) to social sciences data clustering and compared the results of the procedure to the 

Principal component analysis (PCA) and Hierarchical Cluster (HC) methods. 

 

Viglione et al., (2007) compared four homogeneity tests through the determination of the power 

associated with the tests using Monte Carlo simulation experiment. The first two of these tests 

are those of Hosking and Wallis (1997), who proposed H1 and H2, and the other two, 

introduced by the authors, were based on the k sample Anderson-Darling test and Durbin & 

Knott test. They concluded that the H2 as a homogeneity test lacked power. They further 

concluded that the H1 test should be preferred when skewness is low while the Anderson-

Darling test should be used for more skewed regions, preferably those with L-skewness greater 

than 0.23. 

 

Eslamian and Biabanaki (2008) worked on regionalization by applying cluster analysis and 

Andrews plot (AP) in the Kharkeh basin, Iran of low flow.  Cluster analysis was used to classify 

the data in order to capture a diversity of factors, and the K-means algorithm was specified for 

assigning stations to a cluster.  
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Beaulieu et al., (2009) presented an intercomparison of eight statistical tests to detect 

inhomogeneities in climatic data of the province of Quebec, Canada. They found that none of 

these methods was efficient for all types of inhomogeneities, but some of them performed 

substantially better than others: the bivariate test, the Jaruskova's method, and the standard 

normal homogeneity test.  

 

Chavoshi and Soleiman (2009) worked on regional flood frequency analysis by using 

conventional cluster analysis and fuzzy logic theory for 70 catchments in northern Iran which 

was applied both in low flow and rainfall analysis.  

 

Saf (2009) investigated hydrologically homogeneous regions through regional flood frequency 

estimates for 47 gauged sites in the West Mediterranean River Basins in Turkey, using an index 

flood method with L-moments. In the study three subregions were found and based on L-

moments goodness-of-fit statistic, the Pearson type III distribution as identified as the best-fit 

distribution for the Antalya and Lower-West Mediterranean subregions, while the Generalized 

Logistic distribution for the Upper-West Mediterranean subregion. Then Monte Carlo 

simulation was used to evaluate the accuracy of the quantile estimates on the basis of the 

relative root-mean-square error and relative bias. 

 

Borujeni et al., (2010) analyzed the peak floods, observed in North-Karoon basin, Iran using 

five distributions and estimated the parameters using the L-moment method. They found 5 

homogeneous regions out of 7 study sites, and lognormal distribution was identified as the most 

appropriate distribution in the homogeneous study region. The regional peak flood estimates 

for each return period were obtained based on this distribution. 

 

Das et al., (2010) examined how successful a common method of identifying pooling group 

membership was in selecting groups that actually were homogeneous based on annual 

maximum series obtained from 85 Irish gauging stations. Each station had its own unique 

pooling group selected by use of a Euclidean distance measure. The results were also compared 

with the heterogeneity measures H1 and H2 and found that 27 pooling groups were 

heterogeneous. These groups were further examined with the help of box-plots. From the 

results, it was concluded that it was not sure to identify perfectly homogeneous groups. 

 

Kar et al., (2010) investigated the partition of the Mahanadi basin in Eastern India into 

homogeneous regions by applying different clustering techniques by using fewer but influential 

variables. Principal component analysis was used for finding important variables. The results 

obtained from different clustering techniques were useful for selection of a number of sites 
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present in a particular cluster. Homogeneity test was carried out by using the regional L-

moment algorithm and to find a suitable frequency distribution. Finally, an index flood method 

was applied, and the obtained results were compared with the earlier studies of flood frequency 

in this basin.  

 

Saf (2010) analysed how outliers affect the identification of regional probability distributions 

using L-moments method in a region of the Menderes River Basins in Turkey. Through various 

tests two sub-regions viz. the Upper-Menderes and Lower-Menderes sub-regions were 

analyzed. Based on the L-moments goodness of statistic criteria, the generalized extreme value 

distribution was determined as the best-fit distribution for both the regions. Here the 

generalized extreme value distribution was found to be the best-fit distribution for the Upper-

Menderes sub-region and the Pearson Type 3 distribution was found to be the best for the 

Lower-Menderes sub-region based on a robust measure. It was concluded that the 

homogeneous region determined from the robust discordancy measure was more accurate than 

the region identified using the classical robust measure. 

 

Yang et al., (2010) presented a method for regional frequency analysis and spatio-temporal 

pattern characterization of rainfall-extreme regimes in the Pearl River Basin (PRB) in China 

using the L-moments approach along with stationarity test and serial correlation check. From 

the results, it was found that in the Basin which was divided into six regions, the Generalized 

Normal (GNO), Generalized Logistic (GLO), Generalized Extreme Value (GEV), and Pearson 

Type 3 (PE3) distributions fit well for different regions. Then the quantiles were estimated by 

Monte Carlo simulation which gave reliable results for the return periods of less than 100 years. 

Also, they observed the high precipitation at Guilin region of Guangxi Province and Fogang 

region of Guangdong Province which was responsible for flood disasters in the regions.    

 

Malekinezhad et al., (2011) compared two regional flood frequency methods including index-

flood and multiple-regression analyses based on L-moments in the Namak-Lake basin in 

central Iran. To do so they delineated homogeneous regions using cluster analysis, checked the 

homogeneity and fitted the distribution. From the results, it was concluded that for the basin 

divided into three regions,the generalised extreme value distribution was the best-fit 

distribution. After that to evaluate the performance of both the methods, relative root mean 

square error (RRMSE) measure was applied.  

 

Gebregiorgis et al., (2013) discussed on regionalization of the Blue Nile River Basin (BNRB) 

in Africa by using statistical techniques and described the selection of best-fit distribution 

models to estimate the flood frequency in the basin. They found five homogeneous regions and 
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fitted 14 different distribution with different parameter estimation methods.  A unique regional 

flood frequency curve was developed for each region to estimate the flood quantiles of the 

ungauged part of the basin.   

 

Pham et al., (2014) developed a unique regional value of λR of PDS across the North Island  

region of New Zealand based on both on-site and regional PDS series. This value estimated the  

most consistent quantiles for both small and large return periods.  

 

2.4  Flood Forecasting using Artificial Neural Network and Neuro Fuzzy Inference 

System  

 

Flood prediction and its mitigation or management is one of the greatest challenges facing the 

world today. Floods have become more frequent and severe due to effects of global climate 

change and human alterations of the natural environment. All flood forecasting systems serve 

specific purposes and in most cases they are designed to prevent, minimize, or mitigate people’s 

suffering and to limit economic losses. The forecast of flooding would benefit greatly from the 

use of hydrological models, which are designed to simulate flow processes of surface or 

subsurface water. Flood models are mainly used in flood forecasting and early warning 

systems. Both systems require the reliable real-time hydro-meteorological data and lag time. 

The utility of forecasting depends largely on the relationship between the desired lead time at 

that point and the lag time of the hydrological response (Lettenmaier and Wood, 1993; Werner 

et al., 2005).  

 

Karunanithi et al., (1994) demonstrated how a neural network can be used as an adaptive model 

synthesizer as well as a predictor using a constructive algorithm called the cascade-correlation 

algorithm, which was applied to the flow prediction of the Huron River at the Dexter sampling 

station, near Ann Arbor, Michigan, USA. They found the performance of the network based 

on the algorithm were proficient in adjusting their complexity to match changes in the flow 

history. 

 

Minns et al., (1996) analysed a series of numerical experiments, which generate the flow data 

from synthetic storm series directed through a conceptual hydrological model consisting of a 

single nonlinear reservoir. They demonstrated the closeness of fit that can be achieved with 

such data sets using Artificial Neural Networks (ANNs).  

 

Thirumalaiah and Deo (1998) highlighted the use of the neural networks in real-time 

forecasting of water levels at a given site continuously throughout the year based on the same 
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levels at some upstream gauging station and/or using the stage time history recorded at the 

same site. The network was trained by using three algorithms, namely, error back propagation, 

cascade correlation, and conjugate gradient. Then they compared the training results with each 

other and verified with untrained data. 

 

Campolo et al., (1999) developed a neural network model to analyze and forecast the behavior 

of the river Tagliamento, in Italy, during heavy rain periods. The model used the distributed 

rainfall information to predict the water level of the river. From the result, it was observed that 

the model with a 1- hour time horizon would predict accurately whereas with an increase of 

the time horizon the prediction accuracy is decreased.  Finally it was concluded that the 

performance of the model would remain satisfactory up to 5 hours.  

 

Zealand et al., (1999) investigated the value of Artificial Neural Networks (ANNs) for short-

term forecasting of streamflow in the Winnipeg River system in Northwest Ontario, Canada. 

They found that a very close fit was obtained during the training phase, and the ANNs 

developed consistently outperformed a conventional model during the testing phase for all of 

the four forecast lead-times.  

 

Coulibaly et al., (2000) introduced an early stopped training approach (STA) to train multilayer 

feedforward neural networks (FNN) by considering the hydrological time series from the 

Chute-du-Diable hydro system in northern Quebec (Canada) for real time flood forecasting. 

The performance of the model was compared with a statistical model and an operational 

conceptual model to test the real-time forecast accuracy and it was found that the proposed 

method was effective for improving prediction accuracy.  

 

Spokkerreff (2000) mentioned about the application of statistical model till 1995 for river 

Rhine in Germany. The hydrological years 1994 and 1995 were characterized by two 

extraordinary extreme floods in the basins of the River Meuse and the River Rhine. Water 

levels were measured with return periods of more than 100 years, considerable damage 

occurred and as a precaution over 2,00,000 people had to be evacuated. Both events showed 

the importance of reliable forecasts with a sufficient forecast period. Until then forecasts for 

the Rhine River were carried out with a statistical model, allowing a reliable two-day forecast 

for the Lobith gauging station on the German/Dutch border. To extend this forecast period, a 

new flood forecasting model was developed. The first operational use of the new model during 

some minor floods at the beginning of 1999 showed reliable results for the three-day forecast 

and considerable improvement for the four-day forecast. 
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Valenca et al., (2000) presented a Fuzzy Neural Network model for inflow forecast for the 

Sobradinho Hydroelectric power plant, part of the Chesf (Companhia HidrelCtrica do Siio 

Francisco-Brazil) system. The model was implemented to forecast monthly average inflow on 

a one-step-ahead basis. The Fuzzy Neural Network model was found to provide a better 

representation of the monthly average water inflow forecasting, than the models based on Box-

Jenkins method. 

 

Chang et al., (2001) stated that a counter propagation fuzzy-neural network (CFNN) is the 

fusion of a neural network and fuzzy arithmetic. They used the streamflow and precipitation 

data of the upstream of the Da-cha River, in central Taiwan, to evaluate the CFNN rainfall-

runoff model and compared their results with the ARMAX. They found that the CFNN rainfall-

runoff model was superior and reliable. 

 

Dawson et al., (2001) considered the application of artificial neural networks (ANNs) to 

rainfall-runoff modeling and flood forecasting.  They proposed a template in order to assist the 

construction of future ANN rainfall-runoff models. Finally, it was suggested that research 

might focus on the extraction of hydrological ‘rules’ from ANN weights, and on the 

development of standard performance measures that penalize unnecessary model complexity. 

 

Hundecha et al., (2001) developed fuzzy rule-based routines to simulate the different processes 

involved in the generation of runoff from precipitation and validation of the model was done 

on a rainfall-runoff analysis for the Neckar River catchment, in southwest Germany. 

 

Xiong et al., (2001) introduced, the first-order Takagi–Sugeno fuzzy system and explained as 

the fourth combination method [besides other three combination methods tested earlier, i.e. the 

simple average method (SAM), the weighted average method (WAM), and the neural network 

method (NNM)] to combine together the simulation results of five different conceptual rainfall-

runoff models in a flood forecasting study on eleven catchments. Due to the simplicity and 

efficiency, of the first-order Takagi–Sugeno method it was recommended for use as the 

combination system for flood forecasting. 

 

Dolling et al., (2002) presented monthly streamflow prediction using artificial neural networks  

(ANN) on mountain watersheds. From the results, it was found that the spring and summer 

monthly streamflows could be adequately represented, improving the results of calculations 

obtained using other methods which had significant benefits for the optimal use of water 

resources for irrigation and hydroelectric energy generation. 
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Shamseldin et al., (2002) applied a Multi-Layer Feed-Forward Neural Network (MLFFNN) in 

the context of river flow forecast combination, where a number of rainfall-runoff models were 

used simultaneously to produce an overall combined river flow forecast. They used five neuron 

transfer functions, namely, the logistic function, the bipolar function, the hyperbolic tangent 

function, the arctan function and the scaled arctan function and found that the logistic function 

would yield the best model forecast combination performance. 

 

Sudheer et al., (2002) presented a new approach to designing the network structure in an 

artificial neural network (ANN) based rainfall-runoff model. Their method utilized the 

statistical properties such as cross-correlation, auto-correlation and partial-auto-correlation of 

the data series in identifying a unique input vector that would best represent the process for the 

basin, and a standard algorithm for training. The methodology has been validated using the 

data for a river basin in India. The results of the study were highly promising and indicated that 

they could significantly reduce the effort and computational time required in developing an 

ANN model. 

 

Campolo et al., (2003) presented a real- time flood forecasting model for the Arno basin in the 

Tuscany region of Italy under low flow conditions to predict the water-level evolution based 

on the artificial neural network. They found that the prediction of water level would remain 

accurate within a forecast time ahead of 6 h, and it would increase for each time ahead of 

prediction, as the flow rate increases, signifying that the model was mostly appropriate for 

flood forecasting purposes.  

 

Jain et al., (2004) developed a new approach using real-coded genetic algorithms (GAs) do not 

use any coding of the problem variables, instead they work directly with the variables and a 

new class of models to train ANN rainfall-runoff models using the daily rainfall and streamflow 

data from the Kentucky River watershed. They found that the results obtained from the models 

using real-coded GA were able to predict daily flow more accurately. Also, they found that the 

grey box models performed better than the purely black box type ANN rainfall-runoff models.  

 

Nayak et al., (2004) presented the application of an adaptive neuro-fuzzy inference system 

(ANFIS) to hydrologic time series modeling to model the river flow of Baitarani River in Orissa 

state, India. The results showed that the ANFIS forecasted flow series would preserve the 

statistical properties of the original flow series. The results were highly promising, and 

comparative analysis suggested that the proposed modeling approach outperforms ANNs and 

other traditional time series models in terms of computational speed, forecast errors, efficiency, 

peak flow estimation, etc.  
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Solomatine  and Xue (2004) stated that advances in data-driven modeling have improved the 

accuracy of forecasts made using physically based models. They have drawn attention to the 

innovative use of such techniques for flood forecasting in rivers. 

  

Chau et al., (2005) employed two hybrid models based on recent artificial intelligence  

technology, namely, the genetic algorithm based artificial neural network (ANN-GA) and the 

adaptive-network-based fuzzy inference system (ANFIS), for flood forecasting in a channel 

reach of the Yangtze River in China. They observed that the performance of both hybrid  

algorithms was more accurate than the linear regression model. 

 

Nayak et al., (2005a) analysed the potential of fuzzy computing based rainfall–runoff model in 

real time flood forecasting by developing a model for forecasting the river flow of Narmada 

River in India. They demonstrated that fuzzy models can take advantage of their capability to 

simulate the unknown relationships between a set of relevant hydrological data.  

 

Nayak et al., (2005b) explored the potential of the neuro-fuzzy computing paradigm to model 

the rainfall-runoff process for forecasting the river flow of Kolar basin in India. They found 

that the forecasts by the neuro-fuzzy model at higher lead times (up to 6 hours) were found to 

be better than those from the neural network model or the fuzzy model. 

 

Sudheer (2005) discussed a perturbation analysis for determining the order of influence of the 

elements in the input vector on the output vector through a case study of a river flow model 

developed for the Narmada River, India. They found that each variable in the input vector 

influenced the shape of the hydrograph in different ways. However, the magnitude of the 

influence could not be clearly enumerated by this approach. 

 

Chang et al., (2006) used the adaptive network-based fuzzy inference system (ANFIS) to build 

a prediction model for reservoir management through a case study of the Shihmen reservoir, 

Taiwan by considering typhoon (i.e., cyclone) and heavy rainfall events with 8640 hourly data 

sets collected in the past 31 years. They developed two ANFIS models: one with human 

decision as input, another without human decision input and concluded that the model with 

human decision as input variable would provide high accuracy and reliability for reservoir 

water level forecasting. 

 

Lohani et al., (2006) investigated the potential of Takagi–Sugeno (TS) fuzzy inference system 

for modeling stage–discharge relationships of various gauging stations in Narmada river 

system, India. The results showed that the TS fuzzy modeling approach was superior to the 
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conventional and artificial neural network (ANN) based approaches. Also, the approach was 

able to model the hysteresis effect (i.e.,loop rating curve) more accurately than the ANN 

approach. 

 

Aqil et al., (2007) examined the advantages of artificial neural networks and neuro-fuzzy 

system in the continuous modeling of the daily and hourly behavior of runoff. From the results, 

it was found that the neuro-fuzzy model performed better than both the Levenberg–Marquardt-

FFNN and the Bayesian regularization-FFNN.  

 

Chang et al., (2007) presented a systematic investigation of three common types of artificial  

neural networks (ANNs) for multi-step-ahead (MSA) flood forecasting such as multi-input 

multi-output (MIMO), multi-input single-output (MISO) and serial-propagated structure for 

two watersheds in Taiwan. From the results, it was observed that the MIMO was less accurate, 

whereas both MISO and serial-propagated neural networks were capable of performing 

accurate short-term forecasting. For long-term forecasts, only the serial-propagated neural 

network could provide satisfactory results in both watersheds. 

  

Mukerjee et al., (2009) carried out flood forecasting at Jamtara gauging site of the Ajay River 

Basin in Jharkhand, India using an artificial neural network ANN model, an adaptive neuro-

fuzzy interference system ANFIS model and an adaptive neuro-GA integrated system ANGIS 

model. They found that ANGIS model with the same input dataset predicted flood events with 

maximum accuracy and between ANFIS and ANN models, ANFIS predicted better in most of 

the cases.  

 

Kar et al., (2010) attempted to develop a workable forecasting system for the downstream 

catchment of Mahanadi River in Eastern India by taking the concurrent flood peaks for 12 years 

based on both statistical method and ANN based approach. A comparison between both 

methods were tested, and it was found that the ANN methods were better beyond the calibration 

range over statistical method, and the efficiency of either method would reduce as the 

prediction reach was extended. 

 

Kar et al., (2012) developed a flood forecasting model for Ayeyarwady River Basin of 

Myanmar applying ANN multilayered feed-forward network along with the Takagi-Sugeno 

(TS) fuzzy inference model, to forecast the stage for 1 to 4 days in advance. They found that 

T-S (Takagi-Sugeno) fuzzy model (Takagi and Sugeno 1985) would perform better than the 

MLFF (i.e., multilayered feed-forward) network.  
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2.5  Flood Inundation Mapping and 1-D Hydrodynamic Modeling 

 

The airborne and satellite synthetic aperture radar (SAR) is considered for measuring flood 

extent due to its cloud-penetrating day and night capacity. Ormsby and Blanchard (1985) as 

well as  Pultz and Crevier (1997) supported some of the earliest experimental work on SAR 

response to flooded vegetation using X-band, C-band and L-band imagery and concluded that 

response would depend on wavelength, plant volume and the geometry of the inundated 

vegetation. 

 

In India, the area affected from floods has increased from 2.29 to 4.94 million hectares from 

the year 1953 to 2000. During this period, the loss of human lives increased from 37 to 2345 

and the monetary damages increased from about 11 to 295 million US dollar as per studies by 

Central Water Commission (CWC, 1997). 

 

Bates et al., (1997) mentioned the further development of two-dimensional finite element 

models of river flood flow. They applied the two-dimensional finite element model to the 

Missouri river in Nebraska, USA with the integration of hydraulic modeling and remote 

sensing. 

 

Shafiee, et al., (2000) investigated the capability of temporal and multimode Radarsat data for 

monitoring of flood. They have overlaid the Radarsat images with Landsat-5 TM to produce 

the flood mapping and concluded that SAR images have potential and capability to monitor 

and map the flood event. 

 

Han et al., (1998) and Chang et al., (2000) have also reported 1-D, 2-D coupled modeling of 

river floodplain flow. The models have used a full dynamic equation for the channel flow and 

for the two-dimensional floodplain flow; a diffusion wave approximation was utilized. 

 

Hydrologic engineering Center- River Analysis system (HEC-RAS) and GIS technologies are 

integrated to obtain scientifically derived information that has been quantified as effective in 

simulating, identifying and analyzing flood events in a geo-spatial environment by Shamsi 

(2002). This helps in visualizing flood simulations, and can view the spatial impact of various 

scenarios along with the critical locations to assess the vulnerability of the area towards a flood 

event efficiently. 

 

Anderson (2000), Robayo et al., (2004) and Knebl et al. (2005) concluded that flood inundation 

modeling involves hydrologic modeling to estimate peak flows from storm events, hydraulic  
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modeling to estimate water surface elevations, and terrain analysis to estimate the inundation  

area. 

 

Mostly, studies have applied hydraulic and hydrological models for simulating flood runoff 

and runoff in low-lying flood-prone areas, in order to provide flood risk assessment information 

on the probability of flood occurrence, magnitude of the event, location and depth of the 

inundation for flood management as observed by Booij (2005). 

 

Goel et al., (2005) presented a technique for preparation of flood hazard maps which include 

the development of DEM (digital elevation model) and simulation of flood flows for different 

return periods. 

 

Mathematical models for flood simulation solve a set of governing equations and provide 

specific information on flood characteristics as observed by Haile (2005). 

 

Wright et al., (2008) presented a methodology for using remotely sensed data to both generate  

and evaluate a hydraulic model of floodplain inundation for a rural case study in the United 

Kingdom viz, Upton-upon-Severn. 

 

Zheng et al., (2008) developed a distributed model for simulating flood inundation integrating 

with rainfall-runoff processes using Shuttle Radar Topography Mission (SRTM)-DEM data 

and some remote sensing datasets in the environment of GIS for Maruyama River basin, Japan. 

Simulated results in the Maruyama River basin demonstrated an acceptable agreement with the 

flooded area observed. 

 

Patro et al., (2009) used a coupled 1-D and 2-D hydrodynamic model, viz, MIKE FLOOD to 

simulate the flood inundation extent and flooding depth in the delta region of Mahanadi River 

basin in India. They used SRTM-DEM to prepare a bathymetry of the study area and provided 

as an input to the 2D model, MIKE 21. Using lateral links in MIKE 11 and MIKE 21 models 

flood inundated area was obtained. Results were compared with actual inundated area obtained 

from IRS-1D WiFS image. 

 

In Aaron Cook (2009), the effect of topography, geometric configuration and modeling 

approach on two different study areas have been addressed. It was found that inundation area 

would decrease as the resolution and vertical accuracy of topographic data increases. FESWMS 

(Finite Element Surface Water Modeling System) was used by them which generated less 

inundation area as compared to HEC-RAS. Variation in inundation extent with respect to 
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resolution is less in FESWMS then HEC-RAS. All its findings conclude that 2D modeling 

approach is more realistic than 1D approach. 

 

Bhatt et al., (2010) discussed the operational use of remote sensing technology for near real-

time flood mapping, monitoring of Kosi river floods in Nepal, India and the satellite-based 

observations made for the Kosi river breach. 

 

Samarasinghe et al., (2010) derived flood extent from the flood extent obtained for the 50-year 

rainfall using HEC-HMS and HEC-RAS in Kalu-Ganga River, Sri Lanka. 

 

Bashir et al., (2010) generated flood hazard map for Nullah Lai in Rawalpindi, Pakistan using 

HEC-RAS and HEC-GeoRAS hydrological models with GIS. They found a relationship 

between inundation depth and specific discharge value. 

 

Shaohong et al., (2010) developed a real-time flood monitoring system that would permit 

integrated handling of hydrological data coming from a wireless monitoring network. They 

obtained water surface elevation using hydrological data and spatial position information using 

spatial analysis technology in GIS software. Then, flood area information was analyzed by 

deduction of water surface elevation in the digital elevation model. 

 

According to Orok (2011), that flood risk maps should be able to identify the areas that are 

most vulnerable to flooding and estimate the number of people that will be affected by floods 

in a particular area. 

 

Adnan et al. (2012) carried out bathymetry mapping based on remotely sensed imagery coupled 

with ancillary datasets for River Kelantan, Malaysia using the hydraulic model HEC-RAS. 

Predicted flood inundation extent using HEC-RAS was compared to flood extent predicted 

from a RADARSAT image. The accuracy assessment was applied to identify spatial variation 

in the error among three areas (i.e. upstream, midstream and downstream). 

 

Preparation of flood maps would provide valuable information for managers and experts to 

reduce flood damages as observed by Hassanpour et al. (2012). 

 

A large scale flood inundation forecasting was also carried out by using Lisflood-fp model, by 

Neal et al., (2012). This study was carried out on Lower Zambezi River to demonstrate current 

flood inundation forecasting capabilities in large data-scarce regions. Here they used newly 

developed sub-grid channel scheme to describe river network. The model evaluation showed 
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that simulated flood edge cells were within a distance of one to two model resolutions when 

compared to an observed flood edge, and inundation area was accurate by about 86% on an 

average. 

 

Hydro-meteorological catastrophes cannot be totally evaded, but the impacts and after effects 

can be managed by developing effective risk reduction strategies through the application of 

latest geospatial tools and decision support systems as observed by Sadiq et al., (2014). 

 

As described above in this Chapter all the relevant literature on floods related to flood 

frequency analysis by partial duration series, regional flood frequency analysis by partial 

duration series, flood forecasting using ANN and neuro fuzzy inference system as well as flood 

inundation mapping/ 1-D hydrodynamic modeling has been reviewed. 
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CHAPTER 3 

THE STUDY AREA AND DATA COLLECTION 

 

This chapter gives a description of the study area, the Mahanadi River basin, and the data 

collected from different sources for the study and analysis of the present work. The River 

Mahanadi is the 8th largest basin of the country originates from the Amarkantak Hills of the 

Bastar Plateau near Pharasiya village in Raipur district of Chhattisgarh and the data used are 

daily rainfall, daily discharge data, water level, topographic information, soil characteristics 

and land use changes.  

  

3.1  THE STUDY AREA 

3.1.1 Overview of Basin 

 

The Mahanadi River is one of the major inter-state east flowing rivers in peninsular India after 

the Godavari with respect to the water potential and flood producing capacity.  It originates at 

an elevation of 442 m above mean sea level and lies within geographical coordinates of 

80°30'E–86°50'E longitude and 19°20'N–23°35'N latitude (Figure 3.1) and covering major 

parts of Chhattisgarh, Odisha and comparatively smaller portions of Jharkhand, Maharashtra 

and Madhya Pradesh (Figure 3.2). The basin is largely divided into four parts such as Central 

table land, Eastern ghats, Northern plateau and Coastal plain. A large reservoir named Hirakud 

is situated at the center of the catchment with the drainage are of 83000 km2 out of which about 

65580 km2 of area is lying in Odisha. The total length of the river from its origin to confluence 

in the Bay of Bengal is about 851 km, of which 357 km is in Chhattisgarh, and 494 km is in 

Orissa.  
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Figure 3.1:  Study area and discharge sites location in of Mahanadi River 

 

 

   

Figure 3.2:  State-wise share of basin area of Mahanadi River Basin 
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Upper Mahanadi sub-basin is drained mainly by the Seonath, the Arpa, the Kurung and the 

Sakri rivers. Middle Mahanadi sub basin is comprised of the Mahanadi, the Jonk, the IB, the 

Bhedan and the Mand rivers and the Lower Mahanadi sub-basin covers southern and coastal 

part of the basin and it is drained by the Ong, the Tel, the Hati and the Daya rivers. It traverses 

a distance of 320km up to Naraj Barrage and after Naraj the river splits into several 

distributaries such as Kathjodi, Birupa, Kuakhai, Chitrotpala, Luna, Karandia, Paika and 

Sukapaika. Kathjodi is a large distributary and branches into Kathjodi, Surua, Biluakahi, Devi, 

Kandal, Taunla which again join together and fall into the Bay of Bengal after entering Puri 

district. The Delta formed by numerous distributaries of the Mahanadi and the Brahmani, is 

one of the largest deltas in India. During the course of Delta formation, some islands have been 

formed between various channels and those islands are subjected to continual flooding during 

the monsoon due to spill over beyond the channels. 

 

3.1.2 Topography 

 

The Mahanadi basin has varying topography with the highest elevation found in northern hills 

and the lowest elevation in coastal reaches as shown in Figure 3.3. The maximum elevation 

observed is 1254 m in the steep hilly terrain of Mahanadi basin. The Upper Mahanadi sub-

basin with its predominantly hilly terrain in its northern upper part has elevation ranging from 

750-1000 m. The central flank of the upper Mahanadi which is drained by Seonath River is a 

plain area having elevation range of 200 to 300 m surrounded by higher hills on its west having 

a height between 300 and 400 m. The middle Mahanadi sub-basin has high hilly terrain in its 

north-eastern stretch. This part has the highest elevation which falls between 750-1000 m. The 

Coastal plain stretching over the districts of Cuttack and Puri covers the large delta by 

Mahanadi and elevation decreases towards this deltaic stretch reaching up to 10-50 m (Source: 

www.india-wris.nrsc.gov.in). 
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Figure 3.3:  Elevation Map of Mahanadi river basin  

3.1.3 Climate  

 

Generally the basin experiences four distinct seasons, namely the cold winter, the hot summer, 

the south-west monsoon and the post monsoon. In the cold winter, the winds are generally light 

and blow either from the north or the north-east and the atmosphere is bright, thus making 

winters pleasant. The hot summer commences in March and lasts till the middle of June when 

the south-west monsoon sets in. Thunderstorms are quite frequent in hot season bringing some 

rainfall in comparatively higher hilly regions. The highest relative humidity in the basin varies 

between 68% and 87% and occurs during July/August. The lowest relative humidity occurs 

during April/May and varies between 9% and 45%. The average highest relative humidity in 

the basin is 82% and the average lowest relative humidity is 31.6% (Water year Book, CWC, 

1997). 

 

3.1.4 Geology  

 

Mahanadi basin predominantly consists of Archaean rocks represented by folded Khondalites, 

Granite gneisses, and Charnockite. They are inter-banded, and the first two appear to grade into 

one another. In general downstream part of the river lying in Odisha is dominated by silicate 

rocks of metamorphic origin.  
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3.1.5 Rainfall  

 

The catchment of Mahanadi River receives rainfall from south-west monsoon.  The average 

annual rainfall in the basin is 1,463 mm.  During the remainder of the year, rainfall is extremely  

low, rarely exceeding 30 mm per month. The spatial variation in rainfall is moderate in the 

basin. Average annual rainfall in the most upstream part of the basin is about 1000 mm, 

increasing toward the central basin part (1300 mm) and further in the most downstream coastal 

belt of the basin (1700 mm). 

 

3.1.6 Temperature  

 

The coldest and hottest months in the basin are during December ranging from 10°
 

C to 13.7°
 

C and during May ranges from 38°C over the hills to 43°
 

C in the plains respectively. 

Temperature variation of the basin is from 7°C to 45.5°C. Summer temperatures are averaging 

around 29oC and winter temperatures average around 21oC. In winter, the mean daily minimum 

temperature varies from 7°C to 12°C. In summer, the mean daily maximum temperature varies 

from 42°C to 45.5°C.  

 

3.1.7 Soil 

 

Soil has four important properties namely texture, erosion, slope and its productivity 

respectively. Further texture is classified into four groups such as fine, medium, coarse and 

rocky. About 41.95 % of the area comes under fine textured soil followed by 51.27 % area 

under medium textured soil. The Mahanadi Delta is a basin having huge amount of silt deposit 

that drains a large land mass of the Indian subcontinent into the Bay of Bengal. Primary soils 

available in the basin are Black soil, Red soil, Yellow soil, Brownish Red to Yellowish Red 

soil and Dark Gray Coastal alluvial soil as shown in Figure 3.4.  
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Figure 3.4:  Soil Map of Mahanadi river basin  

 

3.1.8 Land use and Land cover 

   

Mahanadi valley is best known for its fertile soil and flourishing agriculture, which primarily 

depends on a network of canals that arise from the river. Rice, oilseeds and sugarcane are the 

principal crops cultivated in the Mahanadi valley.  The basin has a culturable area of about 

79,900 km2 which is about 57% of the basin area and 4% of the total culturable area of the 

country. Except in the coastal plains of Odisha, the basin has an extensive area under forests.  

The sparse vegetation of the highlands contrasts with the moderately luxuriant vegetation of 

the river valleys. The coastal plains of Odisha, with a high incidence of rainfall, are 

predominantly rice growing areas. The land utilization pattern of Mahanadi river basin 

comprises of 37.275% forest area, 10.432% cultivated area, 9.137% area with other 

uncultivated lands excluding fallow land, 4.967% fallow land and 38.187% net sown area as 

shown in Figure 3.5. Cultivated area is the total area used for sowing two or more crops in one 

calendar year. The Net Sown Area is the area sown for each crop but is counted only once. Out 

of the total annual irrigation water demand of 11km3 in the basin, the Kharif season utilizes 

7km3 and Rabi season uses 4km3.Major land use and associated water use changes that have 

taken place in this basin in the 20th century are related to intensive irrigation of agricultural 

areas. 
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                            Figure 3.5:  Land use land cover Map of Mahanadi river basin 

 

3.1.9  Floods Problem in Mahanadi Basin 

 

The catchment area of Mahanadi is divided into two distinct reaches (i) Upper Mahanadi and 

(ii) Mahanadi Delta. The upstream catchment of Mahanadi is mountainous and has a steep 

slope. The catchment lies directly on the south west monsoon track and as such receives heavy 

rainfall during the summer monsoon. Besides, the catchment area close to the sea is prone to 

heavy rain brought about by the cyclones generated in the Bay during September-November. 

Thus, the catchment has the potential of producing a very high flood. The delta area is plain 

and has a flat slope. Due to flat topography of the delta area the excess flood water is not 

discharged into the sea quickly and as a consequence, Mahanadi Delta area gets flooded when 

peak flood discharge exceeds a certain limit. Upper Mahanadi area upstream of Naraj does not 

have any significant flood problem due to topography except few places in Ib, Bheden and Tel 

river catchments. The Mahanadi delta covers about 76% of this central area which is having 

flood prone. The existing embankment system in the Mahanadi delta mitigates floods up to 

28,400 m3/s which is also a 5 year return period flood at Naraj though the escapes provided in 

the embankments start functioning at different stages of floods starting from 17,000 m3/s to 
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25,500 m3/s (Khatua and Mahakul, 1999). Improvement of structural measures has been 

advocated to mitigate floods up to 35,000 m3/s (which is a 10 year return period flood at Naraj). 

Beyond 35,000 m3/s structural mitigation measures are found to be economically prohibitive 

and hence, non-structural mitigation measures are proposed (Khatua and Patra, 2004). In the 

last decade, high floods exceeding 35,000 m3/s at Naraj occurred in the years 2001, 2003, 2006, 

2008, 2011 and 2013. These floods have caused significant damages to crops, life, and 

property. The floods of 2008 and 2011 caused a financial loss of more than US $ 400 million 

(Flood Workshop, 2011). An analysis of historical records of flood events from 1969 to 2011 

show that 69% of the major floods are due to the contribution of flow from the middle reaches, 

23% due to joint contribution of Hirakud dam and middle reaches while 8% are caused due to 

contribution from Hirakud releases only (Mishra and Behera, 2009; Parhi et al., 2012). In spite 

of the presence of Hirakud dam, the Mahanadi delta has been subjected to recent devastating 

floods. The following are the major reasons reported for the recent high floods in the basin: (i) 

the Govt. of Odisha states that floods have been occurring due to heavy rainfall in the middle 

reaches of the basin and accordingly they have proposed a second reservoir (in between 

Hirakud and Naraj) for controlling the floods (Khatua and Patra, 2004), (ii) some are also of 

the opinion that releases from the Hirakud dam in late monsoon season might be causing the 

floods in the delta region as it is regulated by a rule curve which was formulated early in 1988 

and that this needs to be modified according to the present rainfall pattern (Flood Workshop, 

2011), (iii) also, there are number of irrigation dams in the catchment of Hirakud dam and these 

belong to the state of Chhattisgarh. During periods of high rainfall in the Hirakud catchment, 

very high flows are released from these irrigation dams in Chhattisgarh without informing the 

Hirakud reservoir authorities in Odisha, thus making it difficult for them to control the floods.  

 

3.2  DATA COLLECTION  

 

As the study comprises of flood frequency analysis, development of flood formulae on regional 

frequency analysis and flood forecasting and inundation mapping, the collection of data varies 

in a wide range but all are confined to Mahanadi basin only. The basic data required for the 

study area are daily rainfall, daily discharge data, river cross sections, water level, Soil types, 

Land-use/ Land-cover, and topographical map. The frequency, length and other details of 

various data used in the study area are presented in Table 3.1, which were collected and 

procured from different sources. They were analyzed and transformed for proper use as input 

to the models.  
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Table 3.1: List of data and the sources of their collection 

S. 

No. 

Station Data type Source Frequency Period 

1 23 G & D sites 

of Mahanadi 

Basin 

Discharge 

    & 

Water level 

Central Water 

Commission, 

Bhubaneswar, and 

India- WRIS (Water 

Resources 

Information System of 

India) 

Daily 1971-2011 

(Varying 

between 10 to 

41 years among 

different G & D 

sites) 

2 13 Rain gauge 

sites of 

Mahanadi 

basin lying in 

Odisha 

Rainfall Water Resources 

Department, Govt. of 

Odisha 

Daily 2000-2009 

3 34 Districtwise 

Raingauge 

sites of 

Mahanadi 

basin 

Rainfall India Water Portal Monthly 1901-2010 

4 Mahanadi 

Basin 

SRTM-

DEM 90m 

CGIAR-CSI 

(http://srtm.csi.cgiar.o

rg) 

------- ------- 

5 Mahanadi 

Basin 

Soil Map NBSS & LUP ------ ------- 

6 Mahanadi 

Basin 

Land-

use/Land-

cover 

USGS ------- ------- 

7 Mahanadi 

Basin 

MODIS 

Surface 

Reflectance 

Data 

NASA  Daily 2001, 2003 and 

2008 

Derived Data 

Sl. 

No. 

Area Data type Source 
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1 Mahanadi 

Basin 

Catchments include area (CA), perimeter (P), mean 

elevation (E) , average slope (SL), drainage density 

(DD), longest stream length (LSL), compactness 

ratio (CR), form factor (FF), shape factor (SF), 

percentage of basin forested (PBF), percentage of 

basin agricultural (PBA), percentage of basin 

barren (PBB), percentage of sandy clay loam 

(PSCL) and percentage of sandy loam (PSL) 

90 m SRTM 

data 

2 Mahanadi 

Basin 

Annual mean precipitation (AMP)  Water 

Resources 

Department, 

Govt. of Odisha 

 

The locations of the rainfall and discharge site over the basin and basin lying in Odisha are 

shown in Figures 3.6, 3.7, 3.8 and 3.9 respective. For derived data various thematic map such 

as slope map, flow direction map, flow accumulation map and river network map are required 

and shown in Figure 3.10. All discharge and rainfall stations name with geographical 

coordinate is presented in Appendix-1.  

 

Figure 3.6: Location of Rainfall Stations in Mahanadi River Basin 
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Figure 3.7: Location of Rainfall Stations in Odisha of Mahanadi River Basin 

 

Figure 3.8: Location of Discharge Sites in Odisha of Mahanadi River Basin  
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Figure 3.9: Location of Discharge Sites of Lower Mahanadi River Basin  
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Figure 3.10: Thematic Maps of Mahanadi River Basin  

 

3.3  DATA PROCESSING 

  

A number of processes as listed below were applied to the raw data before they were used for 

analysis using Excel and Statistical software. 

 Screening of data series 

 Scrutiny by multiple time series plots 

 Checking against the data limits 

 Filling of missing values 

 Removal of outliers and inconsistencies 

Further details of the data used are given in the individual chapters i.e., chapters 4, 5, 6 and 7. 
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CHAPTER-4 

A FRAMEWORK FOR THE SELECTION OF THRESHOLD IN 

PARTIAL DURATION SERIES MODELING  

 

4.1 INTRODUCTION 

 

In India, floods are very common phenomena causing severe damage to human life, to 

livestock, to agriculture and to property. Hence, an in-depth understanding of the probabilistic 

behaviour of such floods is necessary for efficient planning, design and operation of hydraulic 

structures. Frequency analysis can be used to obtain such knowledge, and develop a 

relationship between peak values and recurrence interval (Meng et al., 2007). In flood 

frequency analysis, a series is a convenient sequence of data, such as hourly, daily, seasonal or 

annual observations of a hydrological variable.  Flood frequency analysis can be based on the 

annual maximum flood (AMF) approach or the partial duration series (PDS) approach, also 

called peak- over- threshold (POT) approach. An AMF sample is constructed by extracting the 

maximum value of each year from a daily flow series (e.g.,annual flood), i.e. only one event 

per year is retained. On the other side, the PDS approach to hydrologic frequency analysis 

consists in retaining all peak values that “exceed” a certain base level ‘t’ usually called 

“threshold”, thus, there could be more than one extreme events or no events would be selected 

in any year (Norbiato et al., 2007). PDS approach has lot of advantages, (i) it consists more 

peak events by selecting the appropriate threshold hence to capture more information regarding 

the flood phenomena. However, some annual floods may not even be selected as flood events 

in the PDS approach if their values are less than threshold, (ii) it analyses both, the time of 

arrival and the magnitude of peaks, (iii) it provides extra flexibility in the demonstration of 

floods and a complete explanation of the flood generating process. Above these advantages, 

PDS approach remains under-used and unpopular due to the nonexistence of general 

framework regarding different approaches,which includes the threshold selection criteria and 

model hypotheses about the independence, stationarity and distribution of flood peaks. Many 

researchers proposed methodologies based on the average number of peaks per year for 

threshold selection for different specific climatic and geographic regions (Taesombut and 

Yevjevich, 1978; Konecny and Nachtnebel, 1985). Besides, other researchers recommended 

on the basis of a given return period to choose the threshold level.  

 

Dalrymple (1960) recommended a return period of 1.15 years for threshold selection. Waylen 

and Woo (1983) and Irvine and Waylen (1986) suggested a return period around 1.2–2 years 

for Canadian rivers. 
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The American Society of Civil Engineers (1949) used PDS and recommended the value of λ 

(i.e., average no. of flood events per year) which does not consider more than 3 to 4 peak flood 

values in any one year above a threshold discharge. The US Geological Survey recommended 

that λ should be equal to three. 

 

Cunnane (1973) suggested that for estimation of parameters  PDS having λ greater than 1.6 per 

year are more efficient than AMS and magnitude of peaks are modelled by an exponential 

distribution also, λ equal to 2 is sufficient for flood quantile estimation. UK Flood Studies 

Report recommended that λ should be in the range between 3 and 5, (National Environment 

Research Council, 1975). The best results were obtained by McDermott and Pilgrim (1982) for 

λ value equal to 1. Few researchers (Tavares and da Silva, 1983; Jayasuriya and Mein, 1985) 

established that a λ value of 2 or greater is suitable for the compound model following a Poisson 

distribution of occurrences and an exponential distribution of magnitudes. Hosking and Wallis 

(1987), studied that the PDS model could improve its performance when λ is equal to 5 in the 

case of geo-morpho-climatic modeling and λ is equal to 10 in the case of wind velocity 

modeling.  

 

Rosbjerg and Madsen (1992) recommended a standardized method based on a predefined 

frequency factor k, and mean and standard deviation of the original series: kxt   and they 

set a value of k around 3.  

 

Martins and Stedinger (2001) found that the accuracy of flood quantiles resulting from a GEV-

Poisson PDS model is somewhat indifferent to λ ≥ 1. λ values ranging between 3 and 15 for 

homogeneous Italian regions were estimated by Claps (2003). Rosbjerg and Madsen (2004) 

conducted a frequency analysis based on rainfall data using a Bayesian framework in Denmark 

by suggesting a λ value between 2 and 3. 

  

The arrival of the extreme independent events of the PDS model follows the Poissonian 

assumption, and the magnitude of the exceedances above that threshold is best described by 

the generalized Pareto (GP) distribution (Begueria, 2005; Trefry et al., 2005; Yuguo et al., 

2008). 

 

The popularity of the PDS model for quantifying extreme events is low among experts, as it is 

often associated with various difficulties. Furthermore, there is no general recommendation 

existing for choosing an appropriate threshold and thus resulting in difficulties in modeling the 

PDS coupled with the selection of the appropriate distribution which play a significant role in 

satisfying the assumptions of the PDS model, and to confirm reliable quantile estimates.  
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Henceforth, the following observations were made from the previous studies: (a) very little 

work has been done in the past to evolve any flood frequency distribution by considering peak 

discharge floods of longer duration using PDS beyond a threshold, as most of the studies are 

based on extreme rainfall (b) actual observations (peak discharge along with Highest Flood 

Level using Rating Curve at each location in the field are not considered in most of the cases 

while selecting the most appropriate threshold values (t) or average peak per year (λ) values.  

Keeping this in view, the objective of the present research includes formulating the operational 

guidelines for selection of threshold value based on different concepts and then test the 

performance of GP/PDS modeling based on the suitability of the GP distribution parameters 

coupled with the appropriate threshold values. In the present study, extensive field data such 

as cross-sectional data with water level including highest flood level, discharge data for 22 

sampling locations were collected for a period of 1971-2012 from various central and state 

government agencies. Figures 4.1, 4.2 and 4.3, illustrate discharge, cross-sections with water 

level and rating curves at two representative sites Tikarapara and Rajim in the Mahanadi river 

system. The HFLs at Tikarapara and Rajim stations along Mahanadi river are 68.86 m and 

279.72 m respectively. 

 

Figure 4.1: Observed discharge data at two sampling locations 
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Figure 4.2: Observed water level and cross-sections at two sampling locations  
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Figure 4.3: Rating curve at two sampling locations of Mahanadi river system 

 

 

4.2 METHODOLOGY 

4.2.1 Overview of Partial Duration Series 

 

In general, the partial duration series is characterised by the average number of peaks each year 

(λ) or a threshold value (t). Consider a daily time series data, X = {X1, X2, .. Xi ..,Xn} over ‘n’ 

years, then the PDS having ‘p’ values represented as , M = {M1, M2, .. Mj .. , Mp}, which exceed 

a preferred threshold t, Mi>t with t = constant. Here, the total number of peaks (p) are obtained 

from the average number of peaks per year, λ = p/n and assumed to be identically an 

independent variable and it follows Poisson distribution.  

 

Generally, the average number of peaks per year (λ) is getting increased, with a decrease of the 

threshold value (t). Thus, an appropriate threshold value should be selected for the flood 

frequency analysis. If we set a higher threshold value, it could be independent of the Poisson 

distribution. However, this can lead to a significant loss of information of high magnitude peaks 

that cause flooding with increasing uncertainty. In contrast, if more peaks are selected with 

series dependence of both time interval and magnitudes, it violates the assumption of 

independence but provides the reliable distribution parameter estimation (Ashkar et al., 1983; 

Buishand, 1989; Cunnane, 1979, 1985; Langa et al., 1999; Onoz and Bayazit, 2001; Trefry et 

al., 2005). 

 

4.2.2 Framework to Select the Threshold Values using different Concepts 

 

A Partial Duration Series (PDS) is obtained from the daily streamflow data at all stations by 

setting the different threshold value acquired from different concepts. They are used by:  
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(i) Considering an average number of flood peaks per year (λ=1, 1.5, 2, and so on). For λ = 1, 

the resulting series consists ‘n’ highest peaks within the ‘n’ years of data. There are possibilities 

of having two or more number of peak floods from one year and no flows from the other years 

as they are lying below the threshold value. The independence condition is one of the 

hypotheses of the Poisson process. The choice of the threshold should ensure that peak values 

meet this condition. A considerably low threshold leads to the selection of minor peaks that are 

not always independent. Raising the threshold should help avoid this situation. 

(ii) Considering mean exceedance above threshold ((𝑀̅𝑡 − 𝑡) is a linear function of the 

threshold value t, where 𝑀̅𝑡the average value of exceedances and this criteria is equivalent for 

choosing the threshold to maximize the stability of the POT distribution parameter estimates. 

(iii) Considering observed Highest Flood Level (HFL) at each sampling location and the 

corresponding discharge values using Rating Curve. The observed HFL helps to calculate the 

stage (WL) and based on that stage information we get the threshold discharge value by plotting 

the stage-discharge curve. The values of discharge for stage above HFL cause real flood 

situation in the field and causes flood inundation at various locations in Mahanadi River Basin. 

In fact, in most of the previous studies the actual observations (peak discharge along with 

Highest Flood Level) in the field are not considered while selecting the threshold values and 

average peak per year (λ) values.  

 

However, threshold selection is strongly related to the hypothesis of independence, stationarity 

and the combined GP-Poisson assumption. Hence after selection of threshold from different 

concepts the above tests must be analyzed. Although the GP distribution is considered as the 

best distribution for the PDS series, studies on their suitability is required. Hence two measures 

such as the L-moment ratio diagram and the stability of the GP parameters are used. 

 

4.2.2.1 Randomness Test for PDS  

 

Independence criteria are essential to any statistical frequency analysis.  

 

Figure 4.4: Inter-Flood Duration Criteria (Source: Lang et al., 1999) 
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The Water Resources Council (USWRC, 1976) suggested that successive flood events be 

separated by at least as many days as five plus the natural logarithm of square miles of the basin 

area. In addition to the random condition that the intermediate flows between two consecutive 

peaks must drop below 75% of the lowest of these two flood events. According to Lang et al., 

(1999), if X is a random variable, they define XS as the maximum value of X in an episode. An 

episode is defined as a function of a threshold level S: it begins when X(t) exceeds S and ends 

when X(t) falls below the level S. Referring to Figure 4.4, this condition means that the second 

flood peak (XS)2 must be rejected if:  

 

 𝜃 < 5 𝑑𝑎𝑦𝑠 + 𝑙𝑜𝑔(𝐴)    𝑜𝑟   𝑋𝑚𝑖𝑛 > (
3

4
)  𝑚𝑖𝑛[𝑄1, 𝑄2]                                                               (4.1) 

 

where A is the basin area (miles2) and Qi is the maximum daily discharge of flood number i. 

Cunnane (1979) provides the following criteria. The second flood peak (XS)2 must be rejected 

if: 

 

𝜃 < 3𝑇𝑝  𝑜𝑟  𝑋𝑚𝑖𝑛 > (
2

3
) (𝑋𝑆)1                                                                                                    (4.2) 

where Tp is the average time to peak. 

 

The autocorrelation test is another convenient test to check the independence criteria in the 

PDS (Miquel, 1984) which comprises the number of peaks selected irrespective of their 

occurrence (Gordon et al., 2004). 

 

The randomness test (auto-correlation test) is done to find independent flood peaks from all the 

data sets above given threshold values at each station. When these datasets are independent, 

the autocorrelation function for all lags other than zero is observed to be zero. The correlation 

coefficient (rk) is calculated using the equation:  
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where 



N

i

ixx
1

 is the overall mean. 

Once the data are found to be random in nature, it may be used for frequency analysis.  
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4.2.2.2 Stationarity Test for PDS 

 

Stationarity is another requirement to detect the presence of trends by means of Mann–Kendall 

test in the extracted PDS sets. This Mann–Kendall statistic is the most common nonparametric 

trend test that has no restraints on the trend characteristics. It tests a null hypothesis H0 (no 

trend exists in the data) against an alternative hypothesis HA (existence of increasing or 

decreasing trend). The null hypothesis H0 is rejected when the value of the following statistic 

𝑍 = |𝑆| 𝜎0.5⁄  is greater than the Zα/2 value with a confidence level α =0.05. 

 

4.2.3 Outline of GP-Poisson Distribution Model 

4.2.3.1 Poisson Distribution Model 

 

The occurrence of events exceeding the given threshold (t) is best described by the Poisson 

distribution which follows a random process. The probability density function in the case of 

Poisson distribution is given by  
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                   (4.4) 

where m is the occurrences of numbers of peaks within the time interval (0,k), and λ is the 

mean arrival rate (or the average number of peaks per year) which can be calculated from the 

sample. The Poisson assumption implies that the occurrences of the events are independent in 

nature. 

 

The Dispersion measure is commonly used for testing the suitability of the fitted Poisson 

distribution. To obtain the optimum value of λ and to test the adequacy of the fitted Poisson 

distribution, the Fisher dispersion index (DI) test was done using the following equation: 
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                   (4.5) 

where x  stands for the sample mean. 

The Dispersion Index technique is approximately distributed as a Chi-square (χ2) statistics with 

(n-1) degrees of freedom for larger values of n. The probability (p) of the hypothesis H0 is 

accepted when 0.05<p<0.95 and H0 is rejected when p<0.05 and the corresponding DI value is 

equal to 1.  
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4.2.3.2 GP Distribution Model 

 

The PDS comprises all mutually independent peaks which follow the GP distribution. The GP 

distribution is defined by a location (µ), scale( 𝜎), and shape (𝜉).  The Generalized Pareto (GP) 

distribution describes the highest values from continuous hydrological time series and has been 

carefully chosen by many authors for Poisson distribution modeling (Van Montfort and Witter, 

1986; Hosking and Wallis, 1987; Wang, 1996; Madsen and Rosbjerg, 1997; Martins and 

Stedinger, 2001). The cumulative distribution function of the GP distribution is given by: 
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For the shape parameter ξ=0, the GP distribution transforms into a simple exponential 

distribution. Even though the GP distribution is considered as the best distribution for the PDS 

analysis of their suitability is required. Hence, we used two measures such as the L- moment 

ratio diagram and the stability of the GP parameters. 

 

L-moment ratio diagram is drawn for each distribution, which shows the theoretical 

relationship between L-skewness (
2

3

3



  SLC ) and L- kurtosis (

2

4
4




  KLC ). The 

curve representing the L-moment ratios of the GP distribution is given below:  
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To satisfy the assumption we fit another four additional probability distribution such as 

generalized logistic (GL), the generalized extreme value (GEV), the log-normal (LN3), and the 

Pearson Type III (PEIII). When the 3 and 4 sample estimates are plotted on the L-moment 

ratio diagram, the dispersion or  clustering  of the samples points around the theoretical 

relationship of a particular flood frequency distribution helps in deciding the fittingness of  any 

distribution (Hosking and Wallis, 1993).  

 

The L-moments values are calculated using the following equations: 
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The stability of the GP parameter values has a great impact on the quantile estimation and 

reduces the uncertainty of the change in the threshold value (Begueria, 2005; Deidda et 

al.,2009). The parameter location (µ), scale( 𝜎), and shape (𝜉) are obtained using L-moment 

(L-MOM) according to the equations given by Hosking and Wallis (1997): 
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   221                                (4.13) 
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where L-Cs are the L-Moment coefficients of skewness. The values λ1 and λ2 are L-Moment 

mean (1st order) and L-Moment standard deviations (2nd order) respectively.  

 

Since in PDS modeling the threshold value is known, hence no need to calculate the location 

parameter. After that, a quantile (QQ) plot shows the relation between the observed return 

levels against the estimated return levels associated with the ith Gringorten plotting position, 
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Fi

, where n is the number of data, and i is the rank of the data. Then, the performance 

is evaluated using relative root mean square error (RRMSE) and relative bias (RBIAS) by the 

change in the λ value of GP distribution.  

 

The RRMSE and RBIAS are given by: 
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                        (4.16)                                                                                              

 

where, M is the total number of samples, QE is estimated quantile of the mth sample and QO is  

the observed data. The smallest values of RRMSE and RBIAS correspond to the best quantile 

with different λ values for a number of recurrence intervals. 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Threshold Values using different Concepts 

 

Considering the (i) average number of flood peaks per year (λ=1, 1.5, 2, and so on), (ii) mean 

exceedance above the threshold, and (iii) observed Highest Flood Level (HFL) at each 

sampling location and corresponding discharge values using Rating Curve are obtained in each 

case. Results of the above concept dealing with the choice of threshold values are presented in 

Figures 4.5 for two representative sampling locations of Mahanadi river basin. A threshold 

Value of 18309.47 m3/s at Tikarapara station, leading to an average peaks of 2.5 per year and 

2256.82 m3/s at Rajim having average peaks of 2.12 per year, obtained from HFL, are selected. 

Also, the mean exceedance above the threshold is found to be a stable function of the above 

threshold. The above analysis is done for all the 22 stations and found that the threshold level 

having average peaks per year (λ) value from 2 to 3 based on above criteria. The results are 

shown in Appendix I. 
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Figure 4.5: Threshold values obtained using different concepts  

After selection of threshold values different analysis such as the hypothesis of independence, 

stationarity and the combined GP-Poisson assumption were tested. 

 

4.3.2 Randomness Test for PDS 

 

Following the concept discussed earlier, a minimum interval of 7 to 8 days between events for 

all the 22 discharge sites are used to ensure that data used in the further analysis are 

independent. The randomness test is also done for all the sites to find independent flood peaks 

from all the data sets above given threshold values. The auto-correlation function (ACF) of the 

original discharge data and extracted PDS data are tested. The ACF plot indicates that the 

partial duration series of flood data are independent and can be used for further analysis. Figure 

4.6 illustrates the ACF plots for two representative stations Tikarapara and Rajim, for λ=3 and 

HFL obtained from rating curve and remaining are shown in Appendix I.  
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Figure 4.6: Autocorrelation function of the discharge data of Tikarapara and Rajim 

 

4.3.3 Stationarity Test for PDS 

 

From the Mann–Kendall trend test, probabilities are computed from absolute Z Statistics and 

test the null hypothesis H0 (no trend exists in the data) against an alternative hypothesis HA 

(existence of increasing or decreasing trend) with a confidence level α =0.05 and found no 

trend in the PDS at almost all stations. At stations Paramanpur and Simga, the results are 

showing a decreasing trend for λ=1 and at Manendragarh the results are showing decreasing 

trend for almost all threshold values.  

 

4.3.4 Verification of Poisson distribution with change in Threshold 

 

The arrival of independent PDS peaks follows the Poisson distribution. To verify the above 

assumption we have calculated the dispersion index (DI) and test the probability (p) of the 

hypothesis for all 22 stations.  Figure 4.7 shows a box plot of the DI values obtained at the 

different stations with change in the threshold values. The results indicates increase in the DI 

values with an increase in the threshold and satisfies the probability (p) hypothesis that the data 

follows a Poisson process  and is accepted (within the limits of 0.05<p<0.95). 
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Figure 4.7: Poisson Distribution for Peak Occurrences 

 

4.2.3.2 GP Distribution Model 

 

According to the assumption, the GP distribution is considered as the best distribution for the 

PDS series. To verify the above assumption a study towards their suitability is required, hence 

we used two measures such as the L- moment ratio diagram and the stability of the GP 

parameters. L-moment ratio diagram shows the clustering of the sample datasets around the 

theoretical relationships between L-Cs and L-Ck of different probability distributions. The 

suitability of the GP distribution (using combination of equations 4.6-4.11) along with other 

four flood frequency distributions [viz,Generalised Extreme Value (GEV), Generalized Pareto 

(GP), Pearson Type 3, Generalized logistic (GL) and Lognormal] describing different threshold 

values are shown in Figure 4.8. It is observed that in the case of λ equal to 1 (higher threshold 

value) the sample L-Cs and L-Ck values distribute over a widespread region signifying that 

variety of distributions can be fitted for frequency analysis. When the λ values increases, the 

sample L-Cs and L-Ck values tend to group around the theoretical L-Cs and L-Ck curve of the 

GP distribution in almost all stations and found to be well represented in the cases for equal 

and more than λ=2. However, the stability occurs as we increase the λ value beyond 2. 

Interestingly, the flood inundation and damage takes place for the λ value ranging between 2 

and 3. Also, the HFL of almost all stations varying within this range.  
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Figure 4.8: L-moment diagram for the suitability of PDS  
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From Figure 4.8, it has been observed that the GP distribution provides best results in 

comparison to other frequency analysis in all the cases. Now, it was essential to evaluate the 

change in the GP distribution parameters, namely scale( 𝜎), and shape (𝜉) for different 

threshold (t) or average peaks per year (λ) values to obtain the optimum threshold value having 

constancy in model parameters. It has been observed that there is a gradual decrease in the 

value of scale( 𝜎), and shape (𝜉)  parameters at all stations when the threshold values decreases 

and, PDS peak flood data increases. As a result, the parameters of the GP distribution 

performed excellently to identify the optimal number of exceedance based on threshold value. 

Figure 4.9 illustrates that the steadiness of the parameters with the increase in λ values for two 

representative sampling locations Tikarapara and Rajim. From the Figure, it is noted that the 

shape (ξ) and scale( 𝜎) parameters of Tikarapara station begins to stabilise at threshold 

(17741.25 m3/s) obtained from HFL and corresponding discharge using Rating Curve at 

λ=2.85. Similarly at location Rajim, the shape (ξ) and scale( 𝜎) parameters begins to stabilise 

at λ=2 and more stabilization occurs by increasing threshold values beyond λ=2. It has been 

observed that in all the 22 sampling locations, the beginning of stabilization of shape 

parameters takes place for λ values ranging between 2 and 3 presented in Appendix 1. In fact, 

the flood inundation and flood damage also takes place for the higher peaks floods above 

threshold in the basin. Higher values of λ increases the number of peak discharge values in the 

PDS and stabilizes the GP distribution parameter. However, it is not causing flood inundation 

and damage in actual field locations of Mahanadi river basin, India presently and may be used 

to develop future scenario. 
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Figure 4.9: Shape and Scale Parameters for the PDS peak floods 

 

The stability of the GP parameter values has reduced the uncertainty of the quantile estimation 

by the selection of an appropriate threshold value. Moreover, from a theoretical perspective, 

the threshold needs to be chosen so that the GP distribution provides a reasonable model for 

predicting the probability of exceedance for any recurrence interval. A QQ plots for quantile 

estimates obtained using GP distribution were obtained for all the 22 sampling locations at the 

different threshold. Figure 4.10 illustrates the plots for Tikarapara and Rajim sampling 

locations and plots for other stations are presented in Appendix I. Interestingly from the Figure, 

we can see at lower λ values (i.e., higher threshold), the higher quantiles are under- fitted and 

at higher λ values (i.e., lower threshold), the models tends to over-fit the higher quantiles. The 

quantiles obtained from higher return periods are much influenced by the shape (ξ) and 

scale( 𝜎) parameters of GP distribution model but for smaller return periods it gives good 

results with change in the threshold values. 
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Figure 4.10: QQ Plots at Tikarapara and Rajim Stations for a range of thresholds 

 

Then the performance using relative root mean square error (RRMSE) and relative bias 

(RBIAS) with the change in the threshold values of GP distribution is evaluated and shown in 

Figure 4.11. It shows that the performance for different threshold values yields comparable 

results for shorter return periods, and the difference becomes more noticeable for high return 

periods with lower threshold values. 

 

Figure 4.11: Performance evaluation at Tikarapara and Rajim Station for a range of 

thresholds 

4.4 SUMMARY  

 

A framework for selection of the threshold value is provided on the basis of various concepts 

described in the Chapter and found that the threshold level having average peaks per year (λ) 

value ranges in between 2 to 3 based on all concepts (i, ii and iii) is suitable to best describe 

the PDS modeling. Also, from the results, it is concluded that the PDS is random and stationary 

at most stations. The GP distribution was found be best fitted. The results confirm that the 

parameter values stabilize with an increase in the threshold. Therefore, in the application of 

1500

3500

5500

7500

9500

11500

13500

1500 6500 11500

C
o

m
p

u
te

d
 D

is
ch

a
rg

e 
(m

3 /
s)

Observed Discharge (m3/s)

Rajim λ=3

2000

4000

6000

8000

10000

12000

2000 4000 6000 8000 10000 12000

C
o

m
p

u
te

d
 D

is
ch

a
rg

e 
(m

3 /
s)

Observed Discharge (m3/s)

Rajim λ=HFL

0

0.1

0.2

0.3

0.4

1 1.5 2 2.5 3 HFL
(2.85)

P
er

fo
rm

a
n

ce
 

Threshold

Tikarapara

RRMSE RMAE

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 HFL
(2.12)

P
er

fo
rm

a
n

ce

Threshold

Rajim

RRMSE RMAE



66 

 

PDS for the Mahanadi river basin, the threshold value at different stations where the λ values 

ranging in between 2 to 3 which also include those derived based on the HFL at most stations 

are preferable. From the performance evaluation almost in all cases less variation in quantile 

was found with in this range of threshold. Though, the selection of appropriate threshold value 

for modeling of the GP/PDS was studied at 22 stations across the study area by assuming the 

whole basin to be statistically homogenous. This assumption signifies a limitation of this study 

and as proof the assumption we need to develop a regional GP/PDS model based on the selected 

threshold level however there is only a limited research which is addressed in the next chapter. 
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CHAPTER-5 

REGIONAL FLOOD FREQUENCY ANALYSIS OF PARTIAL 

DURATION SERIES–CASE STUDY OF MAHANADI BASIN 

 

5.1 INTRODUCTION 

 

On-Site flood frequency analysis is not always possible in the data scare sites to estimate flood 

of required frequency for hydrologic design. To contend with this situation, hydrologists use 

regional flood frequency analysis methods that are based on pooling flood information from 

several watersheds which are similar to the target site watershed in flood producing 

mechanisms and also, identified the hydrologically homogeneous regions or pooling group. 

The procedure to identify the homogeneous regions is traditionally referred to as 

regionalization. Different approaches for identifying the homogeneous region having similar 

hydrological characteristics called as pooling groups has discussed by Jakob et al. (1999).  

 

Jakob et al., (1999) and Burn, (1990) used region-of-influence pooling methods by using 

different variables like catchment area, precipitation and soil parameters of the area for 

grouping of similar gauging sites to make the area becomes homogeneous. Besides, numerous 

studies have been prepared to findout homogeneous regions based on climatic characteristics 

(Pearson, 1991), the geographic area [FSR, 1975], and inferring details from gauged to 

ungauged (Nathan and McMahon, 1990). Investigation of regional flood frequency analysis 

based on monthly rainfall pattern and geographical proximity was conducted by Gebeyehu 

(1989) for the Blue Nile River Basin (BNRB). The study had some limitation about the 

approach that it does not delineate homogeneous regions accurately because the responses of 

statistical approach in similar rainfall regions are different consequently of changes in basin 

topography. It was also reported by Cunnane (1989) as well as Rao and Hamed (2000) that 

stations inside the same geographical homogeneous region cause certain bias in the 

regionalization. 

 

Trefry et al. (2005) analysed regional flood frequency using PDS series for Michigan State, 

USA and found that the PDS/GP model gives good results of quantile estimation with λ ranging 

from 2.2 to 4.07. However, 𝜆R = 2 was selected for regional modeling.  

 

In the previous Chapter a framework is provided to select the threshold value based on different 

concepts and the performance of GP/PDS modeling based on suitability of GP distribution 

parameters coupled with appropriate threshold value were tested at 22 locations of the study 

area. Previously, we examined three concepts (i) average number of flood peaks per year (λ=1, 
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1.5, 2, and so on), (ii) mean exceedance above threshold, and (iii) observed Highest Flood 

Level (HFL) at each sampling location and corresponding discharge values using Rating Curve, 

to identify the optimal threshold value which determine the number of upper extremes suitable 

for PDS analysis and found that the threshold level having average peaks per year (λ) value 

ranges in between 2 to 3 based on all concepts (i, ii and iii) is suitable to best describe the PDS 

modeling. However, threshold selection is strongly related to the hypothesis of independence, 

stationarity, and the combined GP-Poisson assumption. They were tested by, ACF, Poisson 

assumption with dispersion index, graphical guidance including L-moments ratio diagram, 

Parameter estimation versus threshold plots, and return period plots.  

Here, it is assumed that the whole basin is to be statistically homogenous. Considering above, 

a regional GP/PDS model based on the selected threshold level has been developed in the 

Mahanadi river basin. The observed daily discharge data of 22 gauging stations extent over the 

entire Mahanadi basin was collected from Central Water Commission, Bhubaneswar, and 

India- WRIS (Water Resources Information System of India). The threshold level having 

average peaks per year ranges from 2 to 3 at 22 stations were found to be best defined by the 

GP distribution. In addition, the following fifteen datasets were used for each site: (i) The 

hydro-meteorological data includes, annual mean precipitation (AMP) of the corresponding 

site (ii) Physiographical characteristics of the catchments includes area (CA), perimeter (P), 

mean elevation (E), average slope (SL), drainage density (DD), longest stream length (LSL), 

compactness ratio (CR), form factor (FF), shape factor (SF), percentage of basin forested 

(PBF), percentage of basin agricultural (PBA), percentage of basin barren (PBB), percentage 

of sandy clay loam (PSCL) and percentage of sandy loam (PSL).   

 

5.2 RESEARCH METHODOLOGY AND TECHNIQUE 

5.2.1 Regionalization based Flood frequency analysis of the Basin 

 

Generally, in frequency analysis it is crucial that the parent distribution is effective for the 

whole region and for different return periods (Cunnane, 1988). In the present work an attempt 

has been made to test the validity of the PDS/GP model in a region using selected threshold 

value (t) or average peaks per year (λ) used at individual sites in previous Chapter. 

 

The methodology consists of (i) Collection of important input data variables for the study area 

such as hydrological data, metrological data, topographical and digitized map of the sub-basin 

to increase understanding of the basin characteristics, or interactions among basin 

characteristics,  (ii) identifying and delineating hydrologically homogeneous region by 

checking the homogeneity of the entire basin, (iii) identifying the best-fit statistical 

distributions to the data of each region (iv) esablishing a robust regional frequency curves for 
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the delineated homogeneous region (v) deriving a relationship between mean POT  flood and 

basin characteristics that can be used for the ungauged catchments within the region and (vi) 

develop method of estimating quantiles for the ungauged catchments from regional frequency 

curve for the design of hydraulic structures within the region. However, from the previous 

chapter it has been confirmed that the PDS data were independent and stationary and can be 

used for further analysis.  

 

5.2.2 Collection of Important Variables  

 

A selection of variables based on their availability, physical and statistical significance plays 

an important role. The variables that have been used for regionalization of catchments of study 

area include: (i) The hydro-meteorological data such as annual mean precipitation (AMP) of 

the corresponding site (ii) Physiographical characteristics of the catchments include area (CA), 

perimeter (P), mean elevation (E) , average slope (SL), drainage density (DD), longest stream 

length (LSL), compactness ratio (CR), form factor (FF), shape factor (SF), percentage of basin 

forested (PBF), percentage of basin agricultural (PBA), percentage of basin barren (PBB), 

percentage of sandy clay loam (PSCL) and percentage of sandy loam (PSL). 

 

5.2.3 Discussion on Variables Selection 

5.2.3.1 Standardization of Variables 

 

The collected variables have different units of measure hence, the proper conversion is required 

to confirm that the values are lies between zero and one (Lim and Lye, 2003). Hence, 

normalization of the variables is needed to make them dimensionless (Jingyi and Hall, 2004): 

MinMax

Mini

toi
XX

XX
X




10,                   (5.1) 

Where Xi = each data point i 

XMin  =  the minimum among all the data points 

XMax = the maximum among all the data points 

 

To define the influencing variables, Factor Analysis has been carried out primarily. The main 

applications of factor analysis techniques are (1) to reduce the number of variables and (2) to 

detect structure in the relationships between variables that is to classify variables. Therefore, 

factor analysis is applied as a data reduction or structure detection method. Principal 

components (PCs) is used as an extraction method in factor analysis to determine the factors 

from the correlation matrix. We can keep only factors with eigenvalues greater than 1 because 

any factors having variance less than 1 has less information. This criterion was proposed by 
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Kaiser (1960), and is one of the most commonly used methods. The variables based on these 

factors are to be noted as influencing variables by considering the significance of both physical 

and statistical properties. 

 

The statistical significance of the variables arises from the factor loadings that interpreted the 

correlations between the respective variables and factors. Factor loadings greater than 0.7 as a 

cutoff are highlighted which can be the construed correlations between the respective variables 

and factors.  

 

The physical significance of different variables are also debated. The variable CA expresses 

the extent of the basin. In large catchment the channel flow phase is more predominant but in 

small catchments, the overland flow is predominant over the channel flow. Perimeter (P) of the 

catchments influences the shape of the basin like nearly semicircular shaped catchments 

contribute high peak whereas elongated catchments contribute low peak. Elevation (E) 

represents the height above a given level, especially that of the sea. Slope (SL) of a catchment 

is an important characteristic because it controls the velocity of the flow which provides an 

indication of the kinetic energy available for water to move toward the basin outlet, and it has 

been found to be related to total runoff and base flows. Basin having steeper slope gives larger 

peak discharges. DD is defined as the ratio of the total stream length to the total drainage area 

and is considered as a significant landscape representative. A large DD makes a condition for 

rapid removal of runoff that is reflected in a noticeable peak discharge. The LSL characterizes 

the shape of the catchment for runoff generation which effects time of concentration. The CR 

is defined as the ratio of the perimeter of the catchment to the perimeter of the circle whose 

area is equal to that of the basin. The SF is the ratio of the square of catchment length to the 

catchment area. The FF is the reciprocal of the shape factor. The CR, SF and FF represents the 

shape of a catchment. Numerically, the values of SF and FF are reciprocal of each other and 

found significantly different. One of them may be more significant than the other. The land use 

characteristics such as (PBF, PBA and PBB) rise the penetration and storage capacities of the 

soils. The catchments with vegetation cover decrease the peak flow, and this effect is noticeable 

in a small basin. The peak discharge is higher for a dense forest. The soil type includes (PSCL 

and PSL) effects the infiltration and permeability. Sandy loam has moderate infiltration rates 

having low runoff potential moderately whereas the clayey loam have low infiltration rates 

having moderately high runoff potential.  

 

Hall and Minns (1999) used five different variables for regionalization in two regions 

recognized by the UK Flood Studies Report [National Environment Research Council (NERC) 

1975] using the Fuzzy c-means (FCM) algorithm.  
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5.2.3.2 Selection of Suitable Number of Variables  

 

Selection of suitable independent variables plays an important role in the regional flood 

frequency analysis hence, an effective, small number and influential variables is considered for 

further analysis based on the importance of physical characteristics and the best correlation 

with the dependent variable. In this concern, multiple regressions analysis plays an important 

role for selecting the particular number of variables.  

 

5.2.4 Identification and Delineation of Hydrologically Homogeneous Region 

5.2.4.1 Cluster Analysis 

 

Cluster analysis (CA) divides sites into groups based on the statistical distance which reflect 

the similarity (or dissimilarity) among a set of attributes. Various methods of cluster analysis 

are available in the literature on statistics, including hierarchical approaches such as single 

linkage, complete linkage, average linkage and Ward’s method, as well as non-hierarchical 

approaches such as the k-means method. Above methods have been extensively applied for 

delineation of homogeneous regions (Burn, 1989, 1997, 2000; Baeriswyl and Rebetez, 1997; 

Hosking and Wallis, 1997; Chiang et al., 2002a; Castellarin et al., 2001; Rao and Srinivas, 

2006). In this study, two methods of classification were applied for identification of 

homogeneous regions, such as Hierarchical Cluster and K- Means Cluster using ARC-GIS 

toolbox. 

 

Hierarchical Cluster (HC) 

 

Hierarchical Cluster considers a graphical representation of a matrix of distances represented 

as a structure like a tree called a dendrogram or tree – where the objects are joined together in 

a hierarchical fashion from the closest, that is the most similar, to the farthest apart, that is the 

most different. The purpose of this algorithm is to join together objects into successively larger 

clusters, using some measure of similarity or distance. The most straightforward way of 

computing distances between objects in a multi-dimensional space is to compute Euclidean 

distances. This is probably the most commonly chosen type of distance. It simply is the 

geometric distance in the multidimensional space. It is computed as: 

   
2

1

2
,tan









 
i

ii yxyxcedis                                                                                                  (5.2) 



72 

 

When considering the Euclidean distance, the scale of the dimension of the variables is an 

issue, because when the dimension of the scale is changed then the distance between objects is 

affected. 

K-Means Clustering Methods (KM) 

 

K-Means is one of the simplest unsupervised algorithms which classify a given feature into k 

clusters by defining k centers for each cluster to minimize the differences among the features. 

It uses NP (nondeterministic polynomial time)-hard algorithm, a greedy heuristic is working to 

group structures. In these methods, the desired number of clusters is specified in advance, and 

the ’best’ solution is chosen. In K-Means, initially, recognization of seed features for each 

group is carried out, and the first seed is selected randomly. Also, the rest of the seeds follow 

the random process by applying a weighting factors helping for selection of seed which is 

present far away from the existing seed features, and this process is known as K Means ++.  

Once the seed features are recognized, all features are given to the closest seed feature and, a 

mean data center is calculated, and each feature is reassigned to the nearest center. The process 

of calculating an average data center for each cluster and then reassigning features to the nearest 

center endures until the group becomes stable (up to a maximum of 100 iterations). 

 

According to Thandaveswara and Sajikumar (2000), clustering process has some objectives 

namely, (i) a cluster has sufficient data for hydrological studies and (ii) the data is statistically 

homogeneous in nature. 

 

In this study, the number of clusters which make the region homogeneous is decided based on 

(i) the Hierarchical Cluster supported by K- Means Cluster, (ii) Based on Robson and Reed 

(1999), which says that a group should have at least seven sites, and (iii) the number of stations 

in a group follows the 5T rule i.e, the five times the return period for attaining a reasonable 

return period.  

 

Further, a statistical homogeneity test is used to verify the performance of different clustering 

techniques to measure the amount of inconsistency inside the regions. Additionally, to prove 

the method, a comparison between the scale and the dispersion values of the L-moment (LCv) 

and conventional moment (Cv) of gauging stations of different regions is performed.  

 

5.2.4.2  Statistical Homogeneity Tests  
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The tests used in this study are (a) discordance measure tests, (b) Cv and LCv-based 

homogeneity test and, (c) the comparison based on statistical analysis for the previously 

selected threshold level. 

 

 

5.2.4.2.1 Discordance Measure 

 

The discordance measure is a measure that identifies sites that are grossly discordant with other  

locations in the same region. It is a useful measure in assessing whether any of the regions 

obtained from the cluster analysis contain potential outliers and should, therefore, be adjusted 

accordingly. The discordance measure D evaluates the distance of each site on the basis of 

statistical properties.  

If        Tiii

i tttU 43 ,,  is the vector containing the t, t3 and t4 values for site (i), then the group 

average for NS (number of sites) within the region is given by 
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The sample covariance matrix is given by 
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The discordance measure (Di  )is defined as: 
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                                                     (5.5) 

A station is said to be a discordant, when the value of Di ≥ 3.  

 

5.2.4.2.2  Cv and LCV- based Homogeneity Test 

 

In this test, an assumption is made based on the statistical similarity. To examine the 

assumption (Lettenmaier and Potter, 1985; Cunnane, 1989), the mean values of coefficient of 

variation (Cv) and the on-site coefficient of variation (CC) are calculated using both 

conventional and L-moments methods of the region and found that higher values of both Cv 

and CC results in lowering the performance. Hence, the value of CC should be retained low, 

generally < 0.30 for the well performance of the index flood method. Here, we calculated Cv, 

LCv, and their respective CC values using L-moments method. The procedure is described 

below. 

i) For each site, in a region calculate mean, standard deviation and coefficient of variation Cv 
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Where Qij =  flows rate for station j in region i 

 Cvi= Coefficient of Variation for site i 

For calculation of LCV use,  
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Where LCvi is the dimensionless coefficient of variation calculated from L- moments 

ii) For each region, using the statistics calculated in step 1, compute the regional mean, Cv 

and LCv; standard deviation of Cv and LCv, and finally the corresponding CC using the 

following relations 
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Where N is the number of sites in a region 

The region is declared to be homogenous if CC<0.30. 

 

5.2.4.2.3  Statistical Comparison 

 

Statistical comparison of different stations that belong to the same region are analyzed by 

plotting the LCv values of peak over threshold flow against LCs and LCk values. 

 

5.2.5 Selection of Regional Distribution 

 

This part of the study deals with selecting and validating of the most suitable frequency 

distribution from on-site data as well as making it valid for a statistically homogenous region. 
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For a selection of suitable regional frequency, Goodness-of-Fit tests including Z-statistic and 

the L-moment ratio diagram (LMRD) are calculated.  

 

The regional weighted average L- moment ratios according to record length used to classify a 

regional frequency distribution apart from on-site data can be calculated as follows: 

 

If there are N sites in a region with sample size n1, n2,.. nN, respectively and the sample L- 

moment ratios at site i are denoted as r
it  with the r-order of L- moment ratios then the regional 

weighted average L- moment ratios are defined: 
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A regional distribution will be examined by Z-statistic and the L-moment ratio diagram. 

The Z-statistic statistics specify the appropriateness of a candidate distribution to a series of 

datasets. It also shows how to fit the L-moment ratios of the candidate distribution match with 

the regionally averaged L-moment ratios. Theoretically, regional distribution is best when Z 

value is the smallest being close to zero. The Z-statistics is represented by 

  

  4444 /BZZZ
DISTDIST                                                                                                              (5.14) 

 

Where DIST = a particular distribution; DIST
Z4

 = L-kurtosis for fitted distribution; Z4 = pooled 

L-kurtosis; B4 = bias correction; and σ4 = estimate of sample variability of L-kurtosis. The 

ZDIST value should be close to zero or has a minimum value. However, a value between -1.64 

and +1.64 are suitable for a fitting distribution at 10% significance level.  

 

LMRD with five candidate distribution models namely, Generalised Pareto (GP), Generalised 

Extreme Value (GEV), Log Normal (LN), Pearson Type III (P3), and Generalised Logistic 

(GL) which are arguably alternatives for fitting PDS series is plotted to find the suitable 

distribution for all regions (Jaiswal et al., 2003). For a given region, a suitable distribution is 

selected by plotting the sample regional LCv, LCs, and LCk, respectively, on the LMRD.  

 

5.2.6 Derivation of Regional Frequency Curve for the Homogeneous Regions 

 

The regional flow frequency curve is developed by using the following relationships: 

(i)  Relationship between index flood and return period T, and 
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(ii) Relationship between index flood and catchment characteristics.  

(i) The regional flood frequency curve is established for each region based on suitable 

distribution to calculate the deviations in the standardized flow of various return periods. 

Actually, uncertainty reduction in predicted quantiles at ungauged sites is of major importance 

in regional flood frequency analysis. The index flood method has a hypothesis that floods from 

different catchments within a region normalized by their mean annual flood from a single 

distribution. Hence, normalization of the flood data is required for further analysis and express 

as: 
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Qi = peak over threshold for year i 

Xi= standardized peak over threshold for year i 

The flow quantile QT, is estimated as  

TT XQQ
~

                                                                                                                                    (5.16) 

 

Where QT = POT flow for T year, return period 

Q  =mean of POT flow and TX
~

= standardized quantile or growth factor for T year return 

period. 
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where λ is the number of average peaks in per year, location (µ), scale( 𝜎), and 

shape (𝜉) parameters . 

 

(ii) The index flood estimation method is one of the best methods for average peak flood 

estimation in the homogenous regions. The method is divided into two categories i.e., direct 

and indirect methods. The direct method estimates the index flood from observed data at the 

interested sites and the indirect method estimates the index flood from other hydrological, 

meteorological, and geomorphological features. Bocchiola et al. (2003) figured out various 

methods of index flood estimation. Brath et al. (2001) presented that the regression analysis is 

used for calculating index flood at ungauged sites in a hydrological homogeneous region, 

which include the multiple regression relationship in between index flood and catchment 

characteristics. Initially, a correlation analysis was done between the catchment features and 
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the index flood for each region of the study area. Then regression analysis was carried out by 

using two or more independent variables, and the regression model was selected on the basis 

of calculated correlated values.    

 

5.3 RESULTS AND DISCUSSION 

5.3.1 Summary of partial duration series (PDS) and its frequency distribution 

 

For this study, we used three extracted PDS series denoted as PDS2, PDS2.5 and PDS3 for  

further analysis because from the previous study we concluded that the selected threshold level  

(t) having λ ranges in between 2 to 3 is the best to describe the PDS modeling at all 22 stations. 

These extracted peaks were confirmed to be random and stationary from the analysis of the 

previous study. Also, the result reveals that GP distribution best describes these peaks at most 

of the stations using L- moment ratio diagram approach combined with the GP distribution 

parameters and quantile estimation.  

 

5.3.2 Collection, Standardization and Selection of Important Variables 

 

The detailed collection of important variables is discussed in Section 5.2.2. The normalization 

of the important variables using equation (5.1) is essential before applying any methods for 

analysis. In the present analysis we used fifteen variables such as: CA, Perimeter, Elevation, 

Avg Slope, DD, CR, PBF, PBA, PBB, PSCL, PSL, AMP, LSL, FF and SF for each catchments. 

 

Principal components (PCs) method is applied to the above fifteen variables, which is as an 

extraction method in factor analysis to calculate the variances concerning PCs and are as 

presented in Table 5.1. Table shows the five PCs having eigenvalues greater than 1, are 

selected. It explains nearly 85% of the variance. The statistical significance of the variables are 

calculated from the factor loadings which interpret the correlations between the respective 

variables and factors. The loadings of individual factors are revealed in Figures 5.1(a) to 5.1(e), 

and their values are noted in Table 5.2. Factor loadings greater than 0.7 and less than -0.7 as a 

cutoff, are highlighted as they represent the most important information for the interpretation 

of factors.  

 

From Table 5.2, it is shown that (a) CA, P, CR and LSL dominate FC1; (b) PBA, E, SL,PBF 

dominate FC2; (c) DD, PBB dominate FC3, while FC5 is dominated by AMP and; (d) no 

loadings are found to dominate FC4. Here FC1, FC2, FC3, FC4 and FC5 are the 1st to 5th 

Factored Principal Components.   
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Table 5.1: Result of Factor Analysis 
_____________________________________________________________________________ 
                  Principal                 Eigen         % Total      Cumulative      Cumulative 

        Components                value        variance       Eigenvalue           % 

______________________________________________________________________________ 

1 4.680130 29.25081 4.68013  29.25081 

2 3.775154 23.59471 8.45528  52.84552 

3 2.245262 14.03289 10.70055 66.87841 

4 1.923509 12.02193 12.62405 78.90034 

5 1.035428 6.47142  13.65948 85.37177 

_______________________________________________________________________________ 

 

  

Figure 5.1(a): Loading of different variables of FC-1 

  

Figure 5.1(b): Loading of different variables of FC-2 
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Figure 5.1(c): Loading of different variables of FC-3 

 

  

Figure 5.1(d): Loading of different variables of FC-4 

  

Figure 5.1(e): Loading of different variables of FC-5 
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        Table 5.2: Loading values of Five FCs 

VARIABLES FC1 FC2 FC3 FC4 FC5 

CA 0.939770 0.021330 -0.126948 -0.239768 0.094117 

P 0.978869 -0.022417 -0.081649 -0.153051 -0.006153 

E -0.031506 -0.792562 -0.092262 0.297196 0.206599 

SL 0.261299 -0.782997 0.267103 0.168688 -0.065277 

DD -0.086055 -0.073613 -0.809949 -0.131386 -0.047617 

CR 0.816277 -0.068188 0.111894 0.139222 -0.276903 

PBF 0.190225 -0.861462 -0.002972 0.376946 -0.132520 

PBA -0.195752 0.826982 0.189754 -0.403089 0.060882 

PBB -0.036083 0.091725 -0.836483 -0.193394 -0.034448 

PSCL -0.066487 -0.488051 0.500124 -0.574351 0.107110 

PSL -0.009018 0.306112 -0.437597 0.580860 -0.325957 

AMP 0.076355 0.091588 0.288962 -0.270954 -0.843572 

LSL 0.971239 0.126151 -0.049540 -0.049586 0.105999 

FF -0.302315 -0.582862 -0.277609 -0.577405 -0.134770 

SF 0.324123 0.626097 0.322847 0.458450 0.098809 

 

Hence, from the loadings of the factor analysis, eleven variables such as CA, P, CR, LSL, E, 

SL, PBF, PBA, DD, PBB and AMP are found to be suitable for further analysis.  

 

When the number of independent variables are large, small number of effective variables based 

on the physical process and good correlation with the dependent variable are selected for further 

analysis. Hence, to reduce the number of variables, multiple regression analysis between the 

independent variables with the dependent variable (average Qpot) is carried out. On regressing 

with fifteen variables, the R2 value for extracted PDS varies in between 0.971 to 0.973. By 

reducing one inferior variable regularly from selected list, the R2 is reduced. With eleven 

variables (viz., CA, P, CR, LSL, E, SL, PBF, PBA, DD, PBB and AMP), the R2 value varies 

from 0.907 to 0.911, with ten variables (viz.,CA,  CR, LSL, E, SL, PBF, PBA, DD, PBB and 

AMP), the R2 value varies in between 0.899 to 0.901 and with nine variables (CA,  CR, LSL, 

SL, PBF, PBA, DD, PBB, and AMP), the R2 value varies in between 0.879 to 0.882. Even with 

nine variables, the information loss is very less. So, for further analysis, nine variables (viz.,CA, 

CR, LSL, SL, PBF, PBA, DD, PBB and AMP) are also used in addition to 11 and 15 variables. 

 

5.3.3 Identification and Delineation of Hydrologically Homogeneous Region 

 

After selection of a suitable number of variables, the analysis is started for the number of 

clusters. The hierarchical clustering based on Ward’s method is applied for nine, eleven and 
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fifteen variables. Hierarchical Clustering (HC) method with all variables is shown in Figures 

5.2 (a)-5.2(c).  
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Figure 5.2 (a): Result of Hierarchical Clustering using nine variables (dendrogram) 
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Figure 5.2 (b): Result of Hierarchical Clustering using eleven variables (dendrogram) 
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Tree Diagram for 22 Cases
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Figure 5.2 (c): Result of Hierarchical Clustering by using fifteen variables 

(dendrogram) 

 

A larger number of clusters would have resulted in disadvantages, hence, a small number of 

the cluster with fewer sites and fewer station years are considered for finding homogeneous 

region. For verification, two clusters are tried with nine, eleven and fifteen variables by using 

K-means clustering method using grouping analysis tool. The delineation of homogenous 

regions is performed by using the geographical information system (GIS) software ArcView. 

All sample stations are located on a digitized map by latitude and longitude. For each station, 

the statistical values (LCs and LCk) are computed. It is assumed that the LCs and LCk values 

of one station vary linearly with the neighboring stations. The distance between stations is 

determined from geographical coordinates and the LCs and LCk values are linearly 

interpolated to locate the boundaries between two stations of different regions. A small script 

is used to demarcate the region boundary exactly at the midpoint of the two borders, obtained 

from linear interpolation of LCs and LCk. It is the computed means across clusters (which is 

useful for visually summarizing the differences in means between clusters) and F-test (which 

can compare the within-cluster variability (small if the classification is good) to the between-

cluster variability (large if the classification is good)) for each variable) as shown in Table 5.3. 

Table 5.3: Analysis of Variance with different Variables 

SL 

NO. 

VARIABLES FIFTEEN 

VARIABLES 

ELEVEN 

VARIABLES 

NINE VARIABLES 

F test p-levels F test p-levels F test p-levels 

1 CA 1.238 0.2789 1.23870 0.278921 1.23870 0.278921 

2 SL 37.955 0.000005 37.95576 0.000005 37.95576 0.000005 

3 DD 0.00194 0.965264 0.00194 0.965264 0.00194 0.965264 

4 CR 2.36925 0.139419 2.36925 0.139419 2.36925 0.139419 
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5 PBF 33.64671 0.000011 33.64671 0.000011 33.64671 0.000011 

6 AMP 0.02992  0.864412 0.02992 0.864412 0.02992 0.864412 

7 PBA 25.11651 0.000067 25.11651 0.000067 25.11651 0.000067 

8 LSL 0.95499  0.340127 0.95499 0.340127 0.95499 0.340127 

9 PBB 0.98403  0.333056 0.98403 0.333056 0.98403 0.333056 

10 E 26.8860  0.000045 26.88607 0.000045   

11 P 1.80064  0.194673 1.80064 0.194673   

12 PSCL 0.20760  0.653562     

13 PSL 0.00360  0.952731     

14 SF 0.82122  0.375614     

15 FF 0.16764  0.686566     

 

The allocation of different sites and means for both clusters of nine variables are shown in 

Figures 5.3(a) - 5.3(b).  Box plot for both clusters have been shown in Figures 5.4(a) - 5.4(b).  

 

Figure 5.3(a): Result of K- means Clustering using nine variables 
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Figure 5.3(b): Mean plots of cluster by using nine variables 

 

 

Fig. 5.4: Box plot of variables: (a) Cluster-1; (b) Cluster-2 

 

It has been observed that the result obtained from HC method does not remain reliable with the 

variation in variables whereas K-means (KM) method results remain consistent for different 

set of variables. Judging from Table 5.3 the magnitude (and significance levels) of the F values, 

variables SL, PBF, PBA and E are the major criteria for assigning sites to clusters. From the 

Figure 5.3(b) and Figures 5.4 (a)- 5.4( b), it is found that the sites in Cluster 2 have (i) small 

CA, (ii) area having smaller slope, (iii) area having less percentage of forested basin, (iv) area 

having high percentage of agriculture, (v) area having highest barren and, (vi) area about the 

same DD, CR, and AMP. Cluster 1 belong to coastal basin. 

 

Table 5.4 demonstrate the sampling sites assigned to each cluster by using 9, 11 and 15 

variables. The clustering has been complete effectively with a minimum of seven sites in a 
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group (Robson and Reed, 1999). Another one is the number of stations in a group follows the 

5T rule i.e., five times the return period for attaining a reasonable return period. Here, Cluster-

1 has a station year of 370, and Cluster-2 has 283. Therefore, based on 5T rule, both the clusters 

give better result of up to 56 and 75 years return period using the current distribution. The 

station Simga is appeared in cluster 1 by using the HC method with nine variables and is 

appeared in cluster 2 by using both the methods with eleven and fifteen variables because HC 

method use the Ward’s minimum variance criterion that minimizes the total within-cluster 

variance. Once confirmed, the KM method with nine variables result is accepted for final 

clusters.  

 

Table 5.4: Sites allocated to each cluster by using 9, 11 and 15 variables 

Clustering 

Method 

No. of Variables Considered 

Nine Eleven Fifteen 

 Cluster-1 Cluster-2 Cluster-1 Cluster-2 Cluster-1 Cluster-2 

HC 1,2,3,5,6,7,8,10

,11,13,19,20,21

,22 

4,9,12,14,15

,16,17,18 

1,2,3,5,6,7,

8,10,11,19,

20,21,22 

4,9,12,13,14

,15,16,17,18 

1,2,3,5,6,7,8,

10,11,19,20,2

1,22 

4,9,12,13,1

4,15,16,17,

18 

KM 1,2,3,5,7,8,10,1

1,19,20,21,22 

4,6,9,12,13,

14,15,16,17,

18 

1,2,3,5,7,8,

10,11,19,2

0 ,21,22 

4,6,9,12,13,

14,15,16,17,

18 

1,2,3,5,7,8,10

,11,19,20,21,

22 

4,6,9,12,13

,14,15,16,1

7,18 

 

5.3.4 Homogeneity Tests  

 

To verify the performance of the above clustering techniques, various statistical homogeneity 

tests are used such as: (a) discordance measure tests using equations (5.3-5.5), (b) Cv and LCv-

based homogeneity test using equations (5.6-5.12) and, (c) statistical comparison. According 

to this test, all stations except Manendragarh of Cluster 1 and Paramanpur of Cluster 2 satisfy 

homogeneity criteria. Results computed in a group of different sites are summarized in Table 

5.5 and 5.6. The value of Di varies from station to station. In most of the sites, the extracted 

PDS3, Di values are generally lower than the PDS values for other λ values. There are two 

stations viz; Manendragarh and Paramanpur with their Di values approaches to three. The 

conventional Cv for Cluster 1 is greater than 0.3 and for Cluster 2 approaches to 0.3 signifying 

a slightly less suitable stations in contrast with other stations. These sites are discordant may 

be due to the existence of inaccuracies in data or some other local conditions. So, these two 

stations are not used for further analysis.  
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Table 5.5: Discordance ratio (Di) computed at stations for the Regions in Mahanadi River 

SL 

NO 

SITE PDS2  (DI) PDS2.5  (DI) PDS3  (DI) CONCLUSION 

1 Andhiyarkore 0.2518 0.3184 0.1891 Homogeneous 

2 Bamnidhi 0.4101 0.2253 0.1058 Homogeneous 

3 Baronda 1.0764 1.2211 1.1639 Homogeneous 

4 Basantpur 0.3321 0.2294 0.3232 Homogeneous 

5 Ghatora 0.3432 0.3335 0.3220 Homogeneous 

6 Jondhra 0.6612 0.3003 0.3232 Homogeneous 

7 Kantamal 0.2230 0.4514 1.4655 Homogeneous 

8 Kesinga 0.4262 0.5281 0.2849 Homogeneous 

9 Kotni 0.5783 0.5482 0.4797 Homogeneous 

10 Kurubhata 2.2286 2.1967 1.9096 Homogeneous 

11 Sundargarh 1.1052 0.8307 0.5703 Homogeneous 

12 Sukuma 0.4323 0.5326 1.2824 Homogeneous 

13 Simga 0.0595 0.1602 0.3271 Homogeneous 

14 Seorinarayan 1.8048 2.7670 1.1908 Homogeneous 

15 Salebhata 0.6253 1.1288 1.7880 Homogeneous 

16 Rampur 0.2972 0.4479 0.4516 Homogeneous 

17 Pathardihi 2.7274 1.3465 0.4574 Homogeneous 

18 Paramanpur 2.7274 2.5385 2.5874 Heterogeneous 

19 Pandigaon 1.3101 1.8498 2.0827 Homogeneous 

20 Manendragarh 2.9113 2.8173 2.6531 Heterogeneous 

21 Rajim 0.5984 0.1307 0.2814 Homogeneous 

22 Tikarapara 1.1152 1.0963 0.9711 Homogeneous 

 

Table 5.6: Cv and LCv–Based Homogeneity Tests for the Clusters in Mahanadi River 

Cluste

r 

PDS2 

CC 

PDS2.

5 

CC 

PDS3 

CC 

Conclusion PDS2 

CC 

PDS2.

5 

CC 

PDS3 

CC 

Critic

al CC 

Value 

Conclusion 

Conventional 

Cv-based 

 LCv based   

1 0.326

4 

0.3357 0.344

1 

Heterogeneo

us 

0.153

8 

0.1479 0.144

6 

0.30 Homogeneo

us 

2 0.286

6 

0.2601 

 

0.241

6 

Homogeneo

us 

0.161

6 

0.1220 0.096

3 

0.30 Homogeneo

us 
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The Cv and  LCv values for all three PDS i.e PDS2, PDS2.5 and PDS3 are plotted for both 

clusters against LCs and LCk values to know the statistical nature of the grouped stations that 

form the homogeneous region is shown in Figure 5.5. It is observed that stations of similar 

region confirm separate layers, like Cluster 2 at the bottom and Cluster 1 at the top. In fact, 

stations of Cluster 1 have the highest Cv and LCv value, whereas those in Cluster 2 have the 

lowest Cv and LCv value. Similarly, the stations of the similar region also form a group and 

specifies that they are homogeneous in nature. 
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Figure 5.5: Computed values of Cv, LCv, LCv versus LCs and LCv versus LCk  for 

PDS within the regions 

 

5.3.5 Selection of Regional Distribution 

 

In this part, modeling of regional frequency analysis is done, which best defines the observed 

data placed within a statistically homogenous region. As confirmed in the previous study of at-

site analysis, the GP frequency distribution is confirmed to describe best for extracted PDS. 

Hence, to examine the suitability of the GP distribution for the region four other challenging 

distributions, namely, Generalised Extreme Value (GEV), Log Normal (LN), Pearson Type III 

(P3), and Generalised Logistic (GL) along with the Generalized Pareto (GP) distribution is 
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tested. L-moment ratio diagram and Z-statistic are performed for the region. L-moment ratio 

diagram (LMRD) (LCs versus LCk) is used to identify the appropriate distribution for each 

region (Pearson, 1993). The first step for the analysis of regionalization process, the regional 

L-moment coefficients are calculated using equation (5.13). Figure 5.6 shows the regional 

average moment ratios 𝜏3, and 𝜏4  analogues to LCs, and LCk, respectively together with a 

theoretical 𝜏3-𝜏4 for the GP distribution. This also checks which PDS series is consistently 

best. From the figure it is shown that in all the cases of PDS, the sample 𝜏3 and 𝜏4 value lies 

approximately on the theoretical 𝜏3-𝜏4 curve of the GP distribution. The Z-statistic show the 

inconsistency between observed and model values. It measure the excellence of fit based on 

the average regional sample of LCs and LCk for the fitted distributions. The regional 

parameters observed from L-moment algorithm for the GP distribution are given in Table 5.7. 
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Figure 5.6: Regional LMRD for PDS2, PDS2.5 and PDS3 

 

Table 5.7: Regional Parameters of Different Clusters 

Regional 

parameters 

distribution 

Cluster 1 GP Cluster 2 GP 

PDS2 PDS2.5 PDS3 PDS2 PDS2.5 PDS3 

Shape (ζ) -0.08046 -0.12214 -0.14749 -0.0981 -0.08571 -0.086 

Scale (σ) 0.9644 0.90243 0.87403 0.90033 0.90646 0.93686 

Location (µ) -0.04878 -0.02799 -0.02525 0.00173 0.00855 -0.02543 

 

The result found from the Z-statistic test is shown in Table 5.8, which shows the Z-values of 

GP distribution are within -1.64 to +1.64. This confirms that the GP is a suitable distribution 

in combining with extracted PDS.  Thus, the GP distribution is confirmed as the best fit for 

regional analysis. 

 

Table 5.8: Selected Distributions for the Regions Using Z-Statistic 

GOOD

NESS 

OF FIT 

DISTRIB

UTION 

CLUSTER 1 CLUSTER 2 

Z-

STATIS

TIC 

GP PDS2 PDS2.5 PDS3 PDS2 PDS2.5 PDS3 

0.531955 0.5176594 0.5488726 0.9522931 0.9578956 0.9464553 

 

5.3.6 Derivation of Regional Frequency Curve for the Homogeneous Regions 

 

Agreeing to the test results described above GP distributions is chosen as the best distribution  
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to define the partial duration series and predict satisfactory flow estimates of both regions. The  

regional flow frequency curve is developed by using: (i) relationship between index flood and 

return period, (ii) relationship between index flood and catchment characteristics. 

 

5.3.6.1 Relationship between index flood and return period T 

 

For different return periods, the flow quantiles are simulated using equation (5.17) and 

compared with the observe flow at-site station, (Figure 5.7). Finally, the regional flood 

frequency analysis curve evaluates the standardized flow variations for different return periods 

(Figure 5.8). The derived equations are used further to compute the quantiles directly of any 

site of interest within the regions (Table 5.9).  
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Figure 5.7: Comparison of estimated quantile of GP model using at-site (Kesinga, 

Region 1 and Simga, Region 2) (point) and regional (line) for PDS2, PDS2.5, and PDS3 

 

 

 

Figure 5.8: Regional flood frequency curves for two homogenous regions 
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Table 5.9: Standardized Quantile Values of the Region 

Return 

Period T 

(Years) 

Cluster 1 Cluster 2 

PDS2 PDS2.5 PDS3 PDS2 PDS2.5 PDS3 

2 
1.36 × Q  1.57 × Q  1.76 × Q  1.33 × Q  1.57 × Q  1.79 × Q  

10 
3.21 × Q  3.53 × Q  3.83 × Q  3.13 × Q  3.36 × Q  3.67 × Q  

20 
4.09 × Q  4.49 × Q  4.88 × Q  4.00 × Q  4.22 ×Q  4.57 × Q  

50 
5.32 × Q  5.90 × Q  6.45 × Q  5.24 × Q  5.42 × Q  5.84 × Q  

100 
6.32 × Q  7.08 × Q  7.79 × Q  6.25 × Q  6.40 × Q  6.88 × Q  

200 
7.37 × Q  8.36 ×Q  9.27 × Q  7.34 × Q  7.44 × Q  7.97 × Q  

500 
8.86 × Q  10.23 × Q  11.47 × Q  8.89 × Q  8.92 × Q  9.52 × Q  

1000 
10.05 × Q  11.79 × Q  13.35 × Q  10.16 × Q  10.11 × Q  10.78 ×Q  

 

Table 5.9 indicates that, the quantile values obtained for all PDS for both at-site and region for 

the return period less than or equal to 100 years gives good results in comparison to the results 

obtained using the return period T> 100. This may result in an underestimation or 

overestimation of 1000 year-quantiles at some stations when it works a regional distribution.  

 

5.3.6.2 Relationship between index flood and catchment characteristics 

 

In this study regression analysis was applied to predict mean partial duration flood for 

ungauged catchments. Nine variables are selected as per factor analysis for clustering, and then 

the regression has been accomplished by taking these variables. Initially, a preliminary 

correlation matrix, which consists of coefficients of correlation, was conducted between pairs 

of catchment characteristics and index flood for both region in the study area. For each region, 

nine independent variables were applied to select the best regression model by considering the 

computed value of the correlation calculation. The resulting regression equations to predict the 

index flood for both clusters in power form are as follows: 

 

FOR CLUSTER 1 

19.089.217.034.041.068.122.078.002.3

2
********  PBBLSLPBAAMPPBFCRDDSLCAQ

PDS  

18.077.221.033.051.063.127.075.098.2

5.2
********  PBBLSLPBAAMPPBFCRDDSLCAQ

PDS  
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17.067.225.032.060.062.133.073.093.2

3
********  PBBLSLPBAAMPPBFCRDDSLCAQ

PDS  

 

FOR CLUSTER 2 

95.069.743.1808.888.522.592.333.295.0

2
******** PBBLSLPBAAMPPBFCRDDSLCAQ

PDS

  

78.063.693.1308.788.305.633.344.124.1

5.2
******** PBBLSLPBAAMPPBFCRDDSLCAQ

PDS

  

82.099.699.1446.732.405.646.365.121.1

3
******** PBBLSLPBAAMPPBFCRDDSLCAQ

PDS

  

 

The performance of these equations are validated for all gauged sites of each region by 

assuming the basin as an ungauged basin (Figure 5.9 and Figure 5.10). 
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Figure 5.9: Comparison of observed and estimated index flood based on regression 

model for Region 1 
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Figure 5.10: Comparison of observed and estimated index flood based on regression 

model for Region 2 

 

Figures 5.9 and 5.10 shows that the predicted and observed index floods of PDS2, PDS2.5 and 

PDS3 have a strong correlation with correlation coefficients varies from 0.93 to 0.97.  

 

5.4 SUMMARY 

 

The Mahanadi river basin is divided into two homogeneous regions. The KM clustering method 

remains robust and consistent for different variables. The GP distribution was found to be 

suitable for both the regions. For both regions, regional frequency curves for PDS2, PDS2.5 

and PDS3 are calculated and found that the values in case of PDS2.5 and PDS3 increase for 

higher return periods. The quantiles of ungauged sites within each region are estimated.  A 

minor difference is observed between estimated quantiles using the on-site and regional 

distribution. It is found more consistent for return periods less than or equal to 100 years (T ≤ 

100 years). Regarding the index flood estimation, i.e., the correlation between the observed and 

predicted flood, and the derived regression equations made encouraging results for both the 

regions. In conclusion, regional flood frequency analysis delivers vigorous evidence for the 

planning, design, and operation of hydraulic structures, flood management, and mitigation 

measures.  
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CHAPTER 6 

APPLICATION OF SOFT COMPUTING TECHNIQUES FOR RIVER 

FLOW PREDICTION IN LOWER MAHANADI RIVER BASIN USING 

PARTIAL DURATION SERIES 

 

6.1 INTRODUCTION 

 

Flood is a regular phenomenon in lower Mahanadi river basin due to inadequate water holding 

capacity of the river channel and low retention capacity of the soil of the floodplain area during 

monsoon. Any discharge above this creates a flood like situation and inundates the densely 

populated area causing immense loss to life and property. The discharge released from Hirakud 

dam during the monsoon in addition to the heavy rainfall at the downstream site contributes 

largely to the flood in the region. It is found essential, to carry out a detailed study and establish 

a workable flood forecasting method for lower Mahanadi basin (Figure 6.1).   

 

 

Figure 6.1: Index Map of Lower Mahanadi River basin showing Raingauge and 

Discharge Sites 

 

Keeping above in view, the present study emphasizes on, (i) The trends analysis of different 

peak discharge of partial duration series having an average number of flood peaks per year (i.e 
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λ=3) at Naraj, Hirakud, Kantamal and Salebhata for the period of 2000–2009 using both the 

Mann–Kendall test and linear regression test. (ii) The trend analysis of extremes monthly 

maximum areal rainfall computed from Thiessen polygon method (Figure 6.2) in the river basin 

for the period of 1901–2010 and also, mean areal rainfall of partial duration series having an 

average number of flood peaks per year (i.e., λ=3) using Thiessen polygon method (Figure 6.3) 

of lower regions. (iii) Generating random values with a best-fit probability distribution for 

prediction of discharge of higher return periods, and (iv) Application of ANN and ANFIS for 

prediction of the peak runoff at Naraj station.  

 

Figure 6.2: Monthly maximum areal rainfall using Thiessen polygon method in upper 

and lower regions 
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Figure 6.3: Mean areal rainfall using Thiessen polygon method in lower regions 

 

The study was carried out in the lower Mahanadi River basin shown in Figure 6.1, which begins 

at Hirakud Dam and ends at the Bay of Bengal. Discharge of threshold value 25250 m3/s of 

partial duration series having an average number of flood peaks per year (i.e., λ=3) and above 

at Naraj stations are considered because an existing embankment system in the Mahanadi delta 

mitigates floods up to 28,400 m3/s. Also, extreme monthly maximum mean areal rainfall in 

upper and lower regions of the river basin for the period of 1901–2010, and mean areal rainfall 

which is extracted from partial duration series having an average number of flood peaks per 

year (i.e., λ=3) using Thiessen polygon method in lower region analysis for the period 2000–

2009 are used. A total of 30 peaks discharge datasets for 10 years at each sites were obtained 

and 300 peak discharge datasets are generated for each site using the best fit probability 

distribution. The datasets are used as the input variable for further analysis. Out of this 300 

peaks, 70% peak values are considered for training and 30% peak values are considered for 

testing of models. Discharge data (Q in m3/s) was converted into runoff data (in mm/d) using 

the relation (Q*86.4/A), where A is the catchment area (in km2) of the station. Figure 6.2 shows 

the Thiessen polygon for entire basin and lower basin. 
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6.2 METHODOLOGY 

6.2.1 Trend analysis 

 

The trend is generally known as a steady increase or decrease of the time series characteristics 

caused due to natural or man-made changes like deforestation, urbanization, large-scale 

landslide, large changes in watershed conditions. In the present study, most commonly used 

Mann-Kendall test and linear regression test are applied for detecting and predicting trends in 

lower Mahanadi river basin.  

 

Trend detection using Mann-Kendall test is discussed by many researchers in the past 

(Goswami et al., 2006; Dufek and Ambrizzi, 2008; Wan Zin et al., 2010; Pal and Al-Tabbaa, 

2011a, b; Douglas and Chelsea, 2000). In fact, the Mann-Kendall S Statistic is computed as: 

 


 


1

1 1

n

i

n

ij

ij TTsignS                   (6.1) 

 
















01

00

01

ij

ij

ij

ij

TifT

TifT

TifT

TTsign  

where Tj and Ti are the annual values in years j and i, j > i, respectively. 

 

If n < 10, the value of |S| is compared directly to the theoretical distribution of S derived by  

Mann-Kendall and the two-tailed test is used. At certain probability level H0 is rejected in favor 

of H1 if the absolute value of S equals or exceeds a specified value Sα/2, where Sα/2 is the smallest 

S which has the probability less than α/2 to appear in case of no trend. A positive (negative) 

value of S indicates an upward (downward) trend. For n ≥ 10, the statistic S is approximately 

normally distributed with the mean and variance as follows: 

  0SE                     (6.2) 

The variance (σ2) for the S-statistic is defined by: 

      

18

521521
2  


iiitnnn i
                  (6.3) 

where ti denotes the number of ties to extent i. The summation term in the numerator is used 

only if the data series contains tied values. The standard test statistic Zs is calculated as follows: 
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                                                                                                                  (6.4) 

The test statistic Zs is used as a measure of the significance of the trend. In fact, this test statistic 

is used to test the null hypothesis, H0. If | Zs| is greater than Zα/2, where α represents the chosen 

significance level (eg: 5% with Z 0.025 = 1.96) then the null hypothesis is invalid implying 

that the trend is significant. 

 

Also, a simple linear regression technique has been used to detect the trend. It shows the 

positive or negative slope values which denote the direction and magnitude of the trend. A 

regression line of the order y=a+bx is fitted to the sample data. If b is found significantly 

different from zero, then we assume trend to be present in the data. The superiority of these 

linear regression based trends is analyzed using the r2 values.  

 

6.2.2 Random Number Generation 

 

A random number generation (RNG) is a computational or physical analysis to generate a 

sequence of numbers that lack any pattern, i.e., appear random. The many applications of 

randomness have led to the development of several different methods for generating random 

data. The high-quality random numbers have been generated using Mersenne Twister 

algorithm, a probability distributions function, in EasyFit software. The generator has a period 

of 219937-1 (more than 106000) and passes numerous tests for statistical randomness, including 

the well-known Diehard tests (a number of statistical tests for measuring the quality of a set of 

random numbers). These qualities, along with its high speed, make the Mersenne Twister 

generator an algorithm of choice for most statistical simulations. 

 

6.2.3 Development of Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy 

Inference System (ANFIS) Models 

 

The basic concepts that comprise the neural network approach and neuro-fuzzy theory such as 

weights, learning algorithm, fuzzy set, membership functions, the domain partitions, and fuzzy 

if–then inference rules are described in different research papers and textbooks (Goldberg 

1989; Dawson and Wilby 1998). A brief description is given below. 
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6.2.3.1 ANN Analysis 

 

The ANN is a very powerful computational algorithm, which is used to simulate complex 

nonlinear relationships, especially in situations where the explicit form of the relation between 

the variables involved is unknown. Neural networks are composed of interconnected parallel 

structure. It generally consists of three layers, where data are provided to the network of ANN, 

the data are processed in hidden layers, and the results of the input layer are produced in the 

output layer. A neural network consists of weights which help to improve the training process 

by adjusting the connecting weights between the elements. Usually, two types of neural 

network are used in studying many hydrological problems, such as multilayer perceptron 

(MLP) and radial basis functions (RBF). We used MLP neural network using STATISTICA 

Software for the forecasting over the RBF because it is mostly used the neural network with a 

high number of applications and capable of modeling complex functions by ignoring irrelevant 

inputs and noise. The details are described below. 

 

Multilayer perceptron (MLP) 

 

MLP is a layered network having the input, hidden and output layers, denoted as the perceptron. 

It also consists of nonlinear processing elements (PE) which are weighted by a scalar weight 

(w) and bias (b) as shown in Figure 6.4. The processing elements produce the final output from 

the inputs, using the nonlinear activation functions. It is a trial-and-error process for providing 

excellent results and basically depends on the data availability and problem type. 

 

 

Figure 6.4: General Structure of MLP 

During the training process, the weights are adjusted to minimize the error between the output 

and the PE. The optimal weights are the product of the inverse of the input autocorrelation 
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matrix (R-1) and the cross-correlation vector (P) between the input and the desired response. 

The analytical solution of this problem is equivalent to a search technique to obtain the 

minimum of the quadratic performance surface, J(wi), using gradient descent by adjusting the 

weights at each epoch (Haykin, 1999): 

     kJkwkw ii  1                       
i

i
w

J
J




                                                        (6.5) 

 

where   is the learning rate coefficient and  kJ i is the gradient vector of the performance 

surface at iteration (k) for the ith input node. Equation (2) is used to calculate the performance 

surface (J): 

 

 2 
p

pp ydJ    and  min PRwJ opt

1                                (6.6) 

 

where wopt is the optimal weight, dp is the target output, and yp is the computed output of the 

pth output neuron. 

 

MLP use the back-propagation algorithm (Fausett, 1994; Patterson, 1996; Haykin, 1999) 

because it is easy to recognize and can be effectively used in many applications. Three back-

propagation training algorithms were used to train the models such as the Levenberg-

Marquardt (LM), the gradient descent algorithm with variable learning and momentum factor 

(GDX), and the conjugate descent algorithm (CGF). Then the performance of all above 

algorithms was compared based on the root mean squared error (RMSE), Nash-Sutcliffe  

efficiency (E), the index of agreement (d) and correlation coefficient (R2). 

 

The Levenberg-Marquardt (LM) algorithm uses a second-order training mode without 

computing Hessian matrix (Demuth and Beale, 1998). When the performance function has the 

form of sum of squares, the Hessian matrix can be estimated as H = JTJ and the gradient can 

be calculated as g = JTe, where J is the Jacobian matrix that contains first derivatives of the 

network errors with respect to the weights and biases, and e is a vector of network errors. The 

LM algorithm uses the above approximation update as   eJIHww T

kk

1

1|



   , where w 

indicates the weight of the neural network, and μ is a non-negative scalar that controls the 

learning process. The LM method is the standard method for minimization of the MSE 

criterion, due to its rapid convergence properties and robustness. 
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The gradient descent with momentum and adaptive learning rate algorithm (GDX) can 

train any network. It calculates derivatives of performance (p) with respect to the weight and 

bias variables (X) (Hagan et al., 1996). Each variable is adjusted by: dX = mc dXprev + lr mc 

(∂p/∂x), according to gradient descent with momentum. Where, dXprev is the previous change 

in the weight or bias, mc is the momentum coefficient, lr is the learning rate, dX is the weight 

correction, and the partial derivative (∂p/∂x) is the performance change with respect to change 

in the weight. If the performance decreases, then the learning rate is increased for each epoch. 

A detailed description of this training method is given in (Hagan et al., 1996). 

 

The conjugate gradient back-propagation algorithm (CGF) can also train any network. 

Back propagation is used to calculate derivatives of performance p with respect to the weight 

and bias variables X. Each variable is adjusted according to the expression X = X + adX, where 

dX is the search direction. Where, a is a constant which minimizes the error functions along 

the search direction. The first search direction is negative of the gradient of performance. In 

following epochs, the search direction is calculated from the new gradient and the previous 

search direction according to the relationship: = dX= −GX + dXoldZ, where GX is the gradient. 

The parameter Z can be computed in several different ways. For the Fletcher-Reeves variation 

of conjugate gradient, Z is computed according to (GXnew)2 /(GXprev)
2 where GXprev is the 

previous gradient, and GXnew is the current gradient. A detailed description of the conjugate 

gradient algorithm is given in (Fletcher, 1987). 

 

Here, different steps for ANN to solve the flood forecasting problems is described. At first 

normalization and scaling is done. Secondly, an ANN network architecture is fixed where the 

number of hidden layers, neurons in each layer and the connectivity between neurons are set. 

Many experimental results say that one hidden layer may be enough for most forecasting 

problems. The number of neurons in each layer depends upon the problem being studied. Less 

number of neurons in hidden layer will make the network with less degree of freedom for 

learning, and more number of neurons will lead towards more time and over fitting. Validation 

set error is often used to determine the optimal number of hidden neurons for a given study. In 

the third step is the finalization of a learning algorithm for training the network. The parameters 

are finalized for the training data set to be applicable for any kind of testing data. ANN 

architecture is considered to be trained when the difference between ANN output and observed 

output is very small. Finally, the validation step is applied to get the performance of the 

network. The optimal number of hidden neurons and training iterations can also be determined 

through validation. The selection of acceptable model is finalized on the basis of RMSE, R2, d 

and E. 
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6.2.3.2  ANFIS Modeling  

 

The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing method which 

combines the feature of both ANN and fuzzy inference system (FIS). ANN has the capability 

of self-learning and self-adapting the data for forecasting but difficult to understand the 

learning process. However, the fuzzy logic models are easy to implements a nonlinear mapping 

which is skilled by a number of fuzzy IF–THEN rules to define the local performance of 

mapping. The fuzzy membership parameters are optimized either by using a back-propagation 

algorithm or by a combination of both back-propagation and least square method, and their 

efficiency depends on the estimated parameters. ANFIS model was first used symmetrically 

by (Takagi and Sugeno, 1985), and they found numerous applications in the field of the 

prediction.  

 

The structure and parameter adjustment 

 

The structure of the ANFIS is similar to that of a neural network. An Adaptive Neuro-Fuzzy 

Inference System consisted of five important functional building parts of the fuzzy logic 

toolbox, those are (i) rule base, (ii) database, (iii) decision-making unit, (iv) fuzzification 

interface and (v) defuzzification interface shown in Figure 6.5.  

 

 

Figure 6.5: Block diagram of fuzzy based inference system 

 

To explain the working principle of ANFIS an example is taken, consider that x and y are the 

two inputs and z is the output. The first-order IF–THEN fuzzy rules can be expressed as 

follows:   

Rule 1: If x is A1 and y is B1 then f1= p1x +q1y +r1 

Rule 2: If x is A2 and y is B2 then f2= p2x +q2y +r2 

If f1 and f2 are constants instead of linear equations, we have zero order TSK fuzzy models. 

The node function in the same layer is of the same function family as described below. 
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Layer 1: Each node in this layer created a membership grade of a linguistic label. For instance, 

the node function of the ith node would be 

 
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Here, 
j

iO can be denoted the output of the ith node in layer j. 

where x was the input to node i and Ai is the linguistic label (small, large) associated with the 

node. The parameters that changed the shapes of the membership function are {ai,bi,ci}.The 

parameters in this layer were known as Premise parameters. 

Layer 2: Each node in this layer finds the firing strength of each rule via multiplication, given 

as 

   yBxAwO iiii  2
,           where i=1,2.                            (6.8) 

Layer 3: Here, the ith node finds the ratio of ith rule’s firing strength to the sum of all rule’s 

firing strengths as 

21

3

ww

w
wO i

ii


 ,     where i=1,2.                                 (6.9) 

The layer also called as normalised firing strengths. 

Layer 4: Every node i in this layer is a squared node with a node function as given below: 

 
iiyiiiii rqpwfwO 4

                                (6.10) 

where iw  is the parameter set as the output of layer 3.The parameters in this layer were 

known as Consequent parameters. 

Layer 5: Here, the summation of all incoming signals is computed by the single circle node, 

and is given as: 
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The output layer backward to input nodes recursively. The back propagation learning rule used 

here is exactly same as in common feed forward neural network. An adaptive neural network 

structure presented in Figure 6.6 is functionally similar to fuzzy inference system. It is observed 

that the values of premise parameters and the overall output ‘f’’ are a linear combination of the 

consequent parameters. The output f can be formulated as 
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The output f is linear in the consequent parameters p1, q1, r1, p2, q2, r2. 

 

  

Figure 6.6: A typical architecture of ANFIS system 

 

Again, the Hybrid learning rule combined a gradient descent and the least squares method to 

find a feasible of antecedent and consequent parameters. The details of the hybrid learning rule 

are described by (Jang et al., 1997). In this study, a hybrid learning algorithm is adopted to 

obtain optimal parameter of ANFIS using MATLAB 2014. The flow chart for complete  

approach and ANFIS algorithm is shown in Figure 6.7. 

 

6.2.3.3  Performance Evaluation of ANN and ANFIS 

 

The performance of both the models has been carried out using root mean squared error 

(RMSE) and The Nash–Sutcliffe efficiency (E). In addition, the index of agreement (d) and 

correlation coefficient (R2) are also used to evaluate the performance of the models. 

 

Root Mean Square Error (RMSE): Root Mean Squared Error or Root Mean Squared 

Deviation was a measure of the differences between values predicted by model or an estimator 

and the actually observed values. These individual differences were called as residuals when 

the calculations were performed on the data sample that was used for estimation and were 

known as estimation errors when computed out of the sample. The RMSE was served to 

aggregate the magnitudes of errors in predictions for various times into single measure of 

predictive power. 
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where Oi is the observed value,  Pi is the model-simulated value, and n is the total number of 

observations of the dataset. 

 

The Nash–Sutcliffe Efficiency (E) (Nash and Sutcliffe, 1970), defined as 
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where Oi, is the observed value, Pi, is the model-simulated value, and O  is the mean observed 

value. 

 

The Nash-Sutcliffe model efficiency is used to assess the predictive power of hydrological 

models. Nash-Sutcliffe efficiencies can range from -8 to 1. An efficiency of 1 (E=1) 

corresponds to a perfect match of modeled discharge to the observed data. An efficiency of 0 

(E=0) indicates that the model predictions are as accurate as the mean of the observed data, 

whereas an efficiency less than zero (-8 <E<0) occurs when the observed mean is a better 

predictor than the model. Essentially, the closer the model efficiency is to 1, the more accurate 

the model is. 
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Figure 6.7: Flow chart showing steps of ANFIS model 
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Index of agreement (d): The index of agreement d was proposed by (Willmot, 1981) to 

overcome the insensitivity of E and r2 to differences in the observed and predicted means and 

variances (Legates and McCabe, 1999). The index of agreement represents the ratio of the 

mean square error and the potential error (Willmot, 1984) and is defined as: 
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The potential error in the denominator represents the largest value that the squared difference 

of each pair can attain. With the mean square error in the numerator d is also very sensitive to 

peak flows and insensitive for low flow conditions as it is E. The range of d is similar to that 

of r2 and lies between 0 (no correlation) and 1 (perfect fit).  

 

Correlation coefficient (R2): The correlation coefficient (R2), as given below: 
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Where 𝑄0 and 𝑄𝑃 are the observed and estimated value, 𝑀0 and 𝑀𝑃 are the mean of the observed 

and estimated value respectively, and n is the total number of observations of the data set. 

 

6.3 RESULTS AND DISCUSSION 

6.3.1 Trend analysis 

 

Mann–Kendall test and linear regression are used to detect the trend of different peak discharge 

of partial duration series having an average number of flood peaks per year (i.e λ=3) at Naraj, 

Hirakud, Kantamal, Salebhata for the period of 2000–2009 (Figure 6.8). Results from Mann-

Kendall test shows the trend classification as increasing, decreasing and no trend. The Linear 

regression test shows trends as positive, negative and inconsistent slope. From both the 

methods, similar results are obtained, and the peak discharge is showing increasing trend at 

Naraj and decreasing trend at Hirakud of the lower Mahanadi basin.   
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(a) 

 

(b) 

Figure 6.8:  Trend analysis by (a) Mann-Kendall test and (b) linear regression for the 

peak discharge at Naraj, Hirakud, Kantamal and Salebhata in lower Mahanadi basin 

 

Time series plots with the trend of peak release from Hirakud dam and peak discharge at Naraj 

for the period 2000-2009 are shown in Figure 6.9.  
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(a) 

 

(b) 

Figure 6.9: Time series plots with linear regression model (a) PDS discharge at Hirakud 

, (b) PDS discharge at Naraj 

 

Figure 6.9 reveals that discharge obtained from partial duration series at Naraj in Mahanadi 

river basin exceeded a discharge of 28,400 m3/s for twenty-one times. Amongst these, five 

flood events are very high and crossed 35,000 m3/s during the years 2001, 2003 and 2008. 

Development of structural measures has been encouraged to control floods up to 35,000 m3/ at 

Naraj. When it exceeds 35,000 m3/s, non-structural mitigation measures are proposed as 

structural measure are not economical. It has been observed that the trend of peak discharge at 

Naraj is increasing whereas at Hirakud it shows the decreasing trend. This may be due to the 

increasing trend of both rainfall and peak flow contribution from the middle reach of the 

Mahanadi basin at Naraj. Hence, a region based (i.e upper and lower regions) analysis of 
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extreme rainfall is done. The results shows that the rainfall of lower region has an increasing 

trend whereas the upper region shows a decreasing trend in both the tests. Which confirm that 

the rainfall at lower region has also an impact on causing flood at the downstream site.  

  

(a)  

  
(b) 

Figure 6.10:  Trend analysis by (a) Mann-Kendall test and (b) linear regression for the 

rainfall extremes based on regions (upper and lower)  

 

Further, the Mann–Kendall test and linear regression are also used to detect the trend of mean 

areal peak rainfall over the study area and are shown in Figure 6.11. It has been observed that 
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the peak rainfall is showing increasing trend in middle towards the Naraj station for all the 

cases.   

 

(a) 

 

(b) 

Figure 6.11:  Trend analysis by (a) Mann-Kendall test and (b) linear regression for 

mean areal rainfall in the lower region of Mahanadi basin 
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6.3.2 Random Number Generation 

 

High-quality random numbers are generated from probability distributions function using 

Mersenne Twister algorithm in EasyFit software. Three hundred datasets were generated from 

30 discharge datasets of partial duration series at different stations and used for further analysis.  

 

6.3.3 Development of ANN and ANFIS Models 

6.3.3.1 Model testing using ANN technique 

 

To run the ANN model, only one input parameter, namely the runoff from Hirakud Reservoir, 

was considered initially and subsequently input model parameters were increased to test the 

validity of ANN model with different input parameters. The combination of input variables 

used in ANN model is given in Table 6.1.  

 

Table 6.1: Different combinations of input parameters in ANN modeling 

Model Input parameters Output 

parameters 

Model 1 Runoff  at Hirakud Runoff at Naraj 

Model 2 Runoff at Kantamal+Salebhata Runoff at Naraj 

Model 3 Runoff at Hirakud+ Kantamal + Salebhata Runoff at Naraj 

Model 4 Rainfall at Lower Region Runoff at Naraj 

Model 5 Runoff at Hirakud+ Kantamal + Salebhata + Rainfall 

at Lower Region 

Runoff at Naraj 

 

Training and testing of all the above models are carried out using a three-layered perceptron 

(Figure 6.12). The number of hidden neurons (HN) was varied till the best performance was 

acquired. Here hyperbolic tangent (tanh) and identity functions for the hidden and output 

neurons respectively have been chosen as activation function for all networks. The hyperbolic 

tangent (tanh) is a symmetric s-shaped (sigmoid) function, whose output lies in the range (-1, 

+1). With the identity function, the activation of the neurons is passed on directly as the output 

of the neurons, and the output lies in the range (-∞, +∞). Pre-processing of the datasets are 

made by normalizing them within the range of –1 to +1 and then putting into the ANN models 

for training and testing. To prevent the networks from overtraining and to enhance the 

generalization capability of networks, the training termination criteria used testing techniques 

to stop the training when the testing error began to increase. The number of maximum training 

epochs is set to 1,000, and the training is terminated when there is no further improvement in 

testing after 100 epochs.  From 300 peak datasets, 210 datasets i.e., 70% are used to train and 



116 

 

90 datasets i.e 30% are used to test the network. Three different back-propagation training 

algorithms, namely, the Levenberg-Marquardt (LM), the gradient descent algorithm with 

variable learning and momentum factor (GDX), and the conjugate descent algorithm (CGF), 

are applied to train the ANN models. The ANN simulation has been performed using Statistica 

software. 
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Figure 6.12: Comparison of observed and ANN-predicted runoff (trained using the LM, 

GDX and CGF algorithms respectively) during testing 

 

Figure 6.12 show the observed and ANN computed flow during testing of all the input 

combinations using all three algorithm and found that model 5 having input combination of 

Runoff at Hirakud+ Kantamal + Salebhata + Rainfall at Lower Region has higher R2 for LM 

algorithm in comparison to  GDX and CGF algorithms. The ANN architecture with five hidden 

neurons was found to be proficient for simplifying input–output data sets.  

 

The performance of all three algorithms are compared using root mean squared error (RMSE), 

Nash-Sutcliffe model efficiency (E), the index of agreement (d), and correlation coefficient 

(R2). Figure 6.13 presents the performance of testing results obtained from all models trained 

by the three algorithms having a different number of hidden neurons (HN). It is appreciated 

that all models give satisfactory results presenting almost comparable values based on the 

performance criteria. However, Model 5 showed the best performance as evident from its 

highest E (0.996) and lowest RMSE (0.1201) values during testing. The Model 5 produced 
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minimum RMSE and higher E, IOA and R2 using LM algorithm showing a relatively better 

results compared to GDX and CGF.  

 

 

Figure 6.13: Performance evaluation of best Model-5 (using the LM, GDX and CGF 

algorithms respectively) during testing 

 

6.4.3.2 Model testing using the ANFIS technique 

 

A five-layered ANFIS model is created during training. Starting with two nodes, the number 

of nodes in the second layer is increased gradually during training of data. The error started 

decreasing with the increase of the nodes up to three. Hence, a number of nodes in the second 

layer is fixed to three and further analysis of ANFIS model has been carried out. The same 

combination of five input models are used in the ANFIS model too to predict runoff at Naraj. 

The data are normalized and scaled between 0 to1. The number of fuzzy membership functions 

for each input are considered as either 2 or 3 according to the type of model. The type of 

membership function used is of Gaussian type for inputs and linear type for output during 

generating fuzzy inference system. The number of fuzzy rules and the optimum number of 

parameters required for the best result are decided based on the number of inputs used, their 

type, as well as on the number of fuzzy membership functions employed in the model. The 

parameters of the membership functions are adjusted using the hybrid learning rule, the 

function ran steadily after 10 iterations. Figure 6.14 presents a comparison between the 

observed and ANFIS computed runoff obtained from all Model testing. 
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Figure 6.14: Comparison of observed and ANFIS-predicted runoff during testing 

 

Figure 6.15 shows the performance indices obtained for all models. From the figure, it can be 

observed that Model 5 performed better than the other four models with E and RMSE values 

of 0.999 and 0.0168, respectively. The ANFIS generate quite good results, as shown by the 
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performance criteria for all models, compared to the ANN. The dominance of the ANFIS 

technique to the ANN method may be due to the fuzzy partitioning of the input space and for 

creating a rule-base to generate the output. 

 

 

Figure 6.15: Performance evaluation of ALL Model during testing 

 

6.4.3.3 Performance Evaluation of ANN and ANFIS 

 

The performance of all three algorithms of ANN and ANFIS model was then compared mainly 

in terms of root mean squared error (RMSE) and The Nash–Sutcliffe efficiency (E) shown in 

Figure 6.16.  
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(b) 

Figure 6.16: Comparison of RMSE and E values of Model 5 (ANN and ANFIS) 

 

6.4 SUMMARY 

 

This study presents a methodology for flood forecasting using partial duration series data 

having different sets of inputs and evaluate the effectiveness of the models at Naraj station. 

The trend analysis showed that the increasing trend of peak discharge at Naraj and the 

decreasing trend of peak releases at Hirakud recommend an increasing trend of both peak flow 

contribution and rainfall from the middle region of Mahanadi basin that may cause the flood 

problem situation at the delta region. The performances of all the three training algorithms of 

ANN: LM, GDX and CGF were found to be comparable. However, LM yielded the best result 

as revealed from the RMSE and Nash–Sutcliffe efficiency values. Five hidden neurons in one 

hidden layer were found to be the most appropriate in the ANN architecture yielding the best 

results. ANFIS performed slightly better than all ANN algorithms as revealed from the RMSE 

and Nash–Sutcliffe efficiency values.  
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CHAPTER 7 

FLOOD INUNDATION USING 1-D HYDRODYNAMIC MODELING  

 

7.1 INTRODUCTION 

 

Flooding refers to the inundation of an area by unexpected rise of water which may occur due 

to dam failure or extreme rainfall or both. Most of the studies have applied hydraulic and 

hydrological models for simulating flood runoff in order to provide flood risk assessment 

information on the probability of flood occurrence, magnitude of the event, location and depth 

of the inundation for flood management. India mostly faces the flood problem during monsoon 

season, and it covers with clouds, therefore, the mapping of flood extent in optical remote 

sensing images is not clear, so, in this case, radar image can be preferable. The active Synthetic 

Aperture Radar (SAR) sensor allows acquisition of images independent of cloud cover, so in 

several studies, a combination of Geographic Information System (GIS), SAR imagery, high 

resolution digital elevation model (DEM) gives the flood inundation map with flood depth.  

 

The flood problem in the delta region is generally serious due to heavy rains, dam releases due 

to heavy inflows and groundwater contributing to the river coming from the larger catchment 

area. In addition, due to the change of land use leads to the erosion of soils, which, in turn, are 

reducing the channel carrying capacity and reservoir capacity.  

 

After commissioning of Hirakud dam during 1958 flood problems in Mahanadi system have 

been reduced significantly. However, it has been observed that it still continues to receive flood 

in the downstream area either as dam releases or as flow contribution from the middle regions 

below Hirakud. In Mahanadi system, mostly the rivers Kathjori, Devi, Kuakhai, Kushabhadra, 

Daya, Bhargabi, Birupa, Chitroptala, Paika drains most of its floodwater into the sea. Due to 

excess of water than carrying capacity of the rivers, major breaches occur on these rivers and 

the deltaic areas are always inundated during monsoon months. The most recent floods in the 

state occurred during September 2008, 2011 and 2013. While, the flood of 2008 in the 

Mahanadi basin was due to lower catchment contribution, the flood of 2011 was due to heavy 

rainfall in the upstream and the flood of 2013 was due to a severe cyclonic storm which was 

accompanied with torrential rains for 3 days. 

 

The aim of this research is to determine the extent and depth of the flood at different return 

period using Hydrologic Engineering Center- River Analysis System (HEC-RAS) model and 

to check flooding risks in the delta of Mahanadi River by considering the main reach from 

Tikarapara station to Naraj station (Figure 7.1). Discharges with different return periods and 



124 

 

floodplain characteristics (situation of bed, river banks, etc.) are used in the HEC-RAS model 

to see how the discharge of different return periods at Naraj inundates the delta region of the 

Mahanadi river. Then, MODIS satellite data with its moderate- resolution optical sensor of 

250-500 m is used to determine the inundated area.  

 

Figure 7.1: Index Map of Lower Mahanadi River basin, Odisha 

The data used in this study are the time series of discharge and water level of different gauging 

stations, measured river cross-sections at different locations, topographical map, SRTM DEM 

and the daily surface reflectance MODIS data of 500-meter spatial resolution. The Channel 

geometry, boundary conditions, and channel resistance are required for conducting flow 

simulation through HEC-RAS.  

 

7.2 METHODOLOGY 

7.2.1 HEC-RAS and HEC-GeoRAS Model 

 

HEC-GeoRAS is especially considered for processing the geospatial data. It is generally used 

to create a HEC-RAS import file containing geometric attribute data from an existing digital 

elevation model (DEM) and complimentary data sets. HEC-GeoRAS requires a Digital Terrain 

Model (DTM) of the river system in the form of a TIN or a GRID. In order to show the surfaces, 

both digital formats of Digital Elevation Model (DEM) and Triangular Irregular Network (TIN) 

were used. The geometric data developed in HEC-GeoRAS includes: stream center line, 

reaches (tributaries), cross-sectional lines, cross-sectional surface lines, cross-sectional bank 

stations, downstream reach lengths, main channel, right over bank, left over bank.  

 

Once these layers are created successfully, the geometric data was exported to HEC-RAS as 

an import file for simulating the flood event. Land-use/land-cover data is required in shapefile 
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to generate Manning’s n values. HEC-RAS model is used for computing one-dimensional 

steady flow which can simulate different water surface profiles. Information attained from 

channel geometry, and discharges values were used to create HEC-RAS channel flows. 

Through HEC-RAS, modeling of water surface profiles were developed from the 

corresponding discharge values. The HEC-RAS model calculates water surface profiles at all 

locations of interest at different return periods. After a successful simulation in HEC-RAS, we 

are considered the water surface profile at Naraj of different return periods and based on that 

we are generated the inundation map of Delta region.  

 

7.2.2 HEC-RAS 1-D Hydrodynamic Modeling 

 

The 1-D hydrodynamic model is based on the concept of flow in open channel theory. Open 

channel flow is defined as the fluid flow with a free surface exposed to the atmosphere, like 

the flow in natural streams, flow in drainage canals, and flow in storm sewers. The knowledge 

of the hydraulics of the open channel is required to the hydraulic engineer for the improvement 

of plans to successfully accomplish floodplain. In open channel flow, the continuity equation 

for steady flow relays flows to velocity and area. The equation states that flow must be 

conserved between adjacent cross-sections, the total energy per unit weight (energy head) has 

components of elevation head, pressure head, and velocity head and the momentum equation 

is expressed in the form of the Manning’s equation. Water surface profiles are computed from 

one cross section to the next by solving the Energy equation with an iterative procedure called 

the standard step method. The Energy equation is written as follows: 

g

V
zyH

2

2
                                               (7.1) 

Where, H= energy head (m); Z= base channel elevation (m); α= velocity weighting coefficient 

   

Based on these parameters, the water surface elevation is the sum of y and z. The change in 

energy head between adjacent cross sections is equal to the head loss: 

LhHH  21                                                 (7.2) 

Where, H1 = energy head at cross section 1 (m); H2 = energy head at cross section 2 (m); hL = 

energy head loss (m) 

 

The head loss between the two cross sections is the sum of friction head loss and flow 

contraction/expansion head loss. Friction losses result from shear stress between the water and 

channel bottom: 

ff SLh                                        (7.3) 
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Where, hf = friction head loss (m); L = distance between adjacent cross sections (m);  

Contraction/expansion head losses can occur as a result of the formation of eddies wherever 

there is a contraction or expansion of the channel: 

g

V

g

V
Cho

22

2

11

2

22 
                                               (7.4) 

Where, ho = contraction or expansion head loss (m); C = contraction or expansion coefficient 

Consider the Figure 7.2 the flow from section 2 to section 1 must be conserved. 

2211 AVAVQ                                                  (7.5) 

Where, Q = flow rate/discharge (m3/s); Vn = average velocity at cross-section n (m/s); An = 

area at cross-section n (m2) 

And conveyance (K) is calculated from the following form of Manning’s equation: 

2/1

fKSQ                                                   (7.6) 

 and 

3

2
1

AR
n

K                                                    (7.7) 

Where, K = conveyance (m8/3); Sf = average friction slope; n = Manning roughness 

coefficient 

R = hydraulic radius (m)  

The Manning’s roughness coefficient (n) is a parameter that measures the effect of the 

roughness of the channel on the flow of water through it. The values, which vary based on 

channel terrain, are published in most hydraulic engineering books. The hydraulic radius (R) 

is calculated by dividing the cross-sectional area by the wetted perimeter. The value of channel 

slope (S) is derived from DEM. 

 

  Figure 7.2: Representation of Energy equation (Source: HEC-RAS User Manual, 2002) 
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7.2.3 Flood Inundation Mapping 

 

The 500-meter spatial resolution of daily Surface Reflectance MODIS data makes a natural 

tool to monitor soil moisture conditions and has been used as input to calculate the Normalised 

Difference Water Index (NDWI) model. The NDWI is generally used to identify water surface 

(Cretaux et al., 2011). Before processing the analysis, a data quality control process was applied 

to screen the cloud and fill value pixels obtained from the associated MODIS quality assurance 

(QA) data product. The main reason of using NDWI is that short-wave infrared (SWIR) 

radiation is highly sensitive to moisture content in the soil and the vegetation canopy. A number 

of studies have been conducted in use of the spectroscopic characterization of SWIR to detect 

water content of an area (Gao, 1996). Cloud cover is always an issue when trying to map flood 

events using optical remote sensing, especially during the rising stage of a flood event. To help 

reduce the effects of cloud interference, the use of 8-day (MOD09A1) or 16-day (MCD43A4) 

MODIS composites (provided by NASA) has proven to be useful in mapping the temporal 

dynamics of water (Ordoyne and Friedl, 2008; Chen et al., 2011; Weiss and Crabtree 2011; 

Chen et al., 2012; Huang et al., 2012a; Huang et al., 2012b; Chen et al., 2013). 

 

 
SWIRRED

SWIRRED

BandBand

BandBand
NDWIWaterIndexDifferenceNormalised




                                          (7.8) 

 

where BandRED is the reflectance of Red [621–670 nm], MODIS Band1 and BandSWIR is 

reflectance of short wave infrared [1628–1652 nm], MODIS Band 6 of the solar spectrum.  

 

After identifying water-related pixel using NDWI, it is essential to classify whether it is a Flood 

pixel or it is a water body. For that a pre-flood image of MODIS data of different return periods 

has been used. All Image Processing work, Geoprocessing and output maps are prepared on 

ARC GIS 10.2 platform. The algorithm for processing of NDWI has been done in Model 

Builder on ARC GIS 10.2. 

 

7.3 RESULTS AND DISCUSSION 

 

The Digital Elevation Model (DEM) for the River Mahanadi derived from SRTM data having 

90 m spatial resolution has been used as an input for terrain processing (Figure 7.3). ArcGIS 

software is used to generate Triangulated Irregular Network (TIN) from DEM as shown in 

Figure 7.4, which is the required input data for simulating HEC-RAS model. The geometric 

data developed in HEC-GeoRAS includes; stream center line, reaches, cross sectional lines, 
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cross sectional surface lines, cross sectional bank stations, downstream reach lengths, main 

channel, right overbank, left overbank (Figure 7.5).  

 

Figure 7.3: Digital Elevation Map of Lower Mahanadi River basin, Odisha 

 

Figure 7.4: Digital Terrain Map of Lower Mahanadi River basin, Odisha 
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Figure 7.5: Geometry Map created in HEC-GeoRAS 

 

The inputs data files, i.e., river network, cross-section and storage area are created in HEC-

GeoRAS and exported in HEC-RAS for hydrodynamic simulation. The 1-D Hydrodynamic 

modeling is done in HEC-RAS to generate water surface profiles at different cross-section for 

different return period like 2, 5,10, 20, 50 and 100 years. Water surface elevation data is used 

as the upstream boundary condition and the normal depth is used as the downstream boundary 

condition. This boundary condition requires the input of the Energy Grade Line (EGL) slope 

at the downstream boundary. The water surface elevation profiles and rating curve at Naraj 

gauge site for different return periods are shown in Figure 7.6 and 7.7. It is relevant to mention 

here that the warning level at Naraj is 25.41m and danger level is 26.41m. From the Figure it 

is shown that for all return periods, the water level crossed the danger level and that excess 

amount of discharge creates the flood problem in the downstream sections.  
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Figure 7.6: Water level at Naraj Station for different Return periods  

(2, 5, 10, 20, 50 and 100 years) 

 

 

Figure 7.7: Rating Curve 

 

The estimated peak discharge values for the return period 2, 5, 10, 20, 50 and 100 are found to 

be 29463.91m3/s, 32867.42 m3/s, 34853.82 m3/s, 36581.27 m3/s, 38584.68m3/s and 39931m3/s.  
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From the observed data, it is identified that (i) the 2 and 10 year return period flood occurred 

during the month of August in the year 2003, (ii) the 5, 50 and 100 years return period flood 

occurred during the month of October in the year 2008, and (iii) 20 year return period flood 

occurred during the month of July in the year 2001. Hence, Surface Reflectance MODIS data 

for the above period are downloaded. The red and short-wave infrared (SWIR) band data are 

extracted for calculation of NDWI by using Model Builder in ARC GIS (Figure 7.8) to identify 

the surface water content. After identifying water-related pixel, reclassification is done to know 

whether it is a flood pixel or a water body (i.e., pond). For that, pre- flood images of the above 

year were used to outline all long term water bodies (Figure 7.9). 

 

 

Figure 7.8: NDWI Model 

 

Using this proposed methodology, changes of spatial extent with time are analysed and flood 

inundation maps are developed (Figure 7.10, 7.11 and 7.12) for different return periods. It has 

been observed that the inundation areas for  20, 50 and 100 year return periods exceed the 

discharge value of 35000 m3/s at Naraj, and largely affects the agricultural lands and 

communities located in the delta region of Mahanadi River basin. There are large numbers of 

built-up areas and urban settlements which are at a risk of inundation. It also shows how the 

high risk area is flooded by the event.   
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Figure 7.9: Observed MODIS Surface Reflectance Data (April 2001, 2003 and 2008) 

 

Figure 7.10: Flood inundation maps using MODIS Data (20 Year Return Period) 
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Figure 7.11: Flood inundation maps using MODIS Data (2 and 10 Year Return Periods) 

 

Figure 7.12: Flood inundation maps using MODIS Data (5, 50, 100 Year Return 

Periods) 
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7.4 SUMMARY 

 

This research study has demonstrated the application of HEC-GeoRAS, HEC-RAS in GIS 

environment to identify and recognize flood inundation areas for flood risk management. HEC-

RAS model has been calibrated to delineate flood inundation areas for different return periods 

for the Mahanadi river basin. Hydraulic modeling using GIS technique has proved quite useful 

in simulating flood water depth and inundation areas for various return periods of Mahanadi 

River basin. MODIS satellite images have been used to develop flood inundation maps. Such 

inundation maps are found to be useful for integrating water resources management and the 

maintenance of ecosystems of wetlands.  
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CHAPTER 8 

CONCLUSIONS & RECOMMENDATIONS FOR FUTURE WORK 

 

8.1 CONCLUSIONS 

 

In the present study efforts have been made to (a) estimate threshold values for partial duration 

series of peak flows in Mahanadi river basin using different approaches and derive a flood 

frequency model for different return periods at each sampling station, (b) develop regional 

flood formulae using partial duration peak flows for the entire Mahanadi basin, (c) develop 

flood forecasting models using soft computing techniques like ANN and ANFIS for the lower 

region of Mahanadi basin and, (d) use HEC-GeoRAS and HEC RAS models to assess the flood 

inundation due to peaks flows of different return periods. The conclusions drawn from this 

study are summarized in following sections: 

 

8.1.1 Selection of Threshold in Partial Duration Series Modeling 

  

The application of the PDS for flood frequency analysis requires the selection of threshold level 

(t) or average peaks per year (λ). In fact, no unique specific value can be selected for the entire 

basin due to different physiographic characteristics at various locations within the basin. In the 

present work, an attempt is made to evolve the operational guidelines for selection of threshold 

values for obtaining partial duration series (PDS) for 22 stations located in the Mahanadi river 

basin, India.  The results indicates that the threshold level having average peaks per year (λ) 

ranges in between 2 to 3 in all the cases. The PDS obtained for each station satisfies all the 

tests, assumptions and hypothesis. 

 

The suitability of the GP distribution is also inspected using the L-moment ratio diagram and 

stability test of GP parameters coupled with quantile estimation. For small λ values (higher 

threshold), a variety of distributions are found be fitted best, for the λ equal to or greater than 

two, only the GP distribution provides good results. The stability of the GP parameters with 

different threshold coupled with the quantile estimation is also checked. 

  

The results confirmed that the Generalized Pareto (GP) best described the PDS in the study 

area and also, show that the best PDS/GP performance is found in almost all the value of λ (2, 

2.5 and 3). Therefore, in the application of PDS in the Mahanadi river basin, the threshold value 

at different stations with the λ values ranging in between 2 to 3 are preferred. From QQ plots 

it has been observed that at lower λ values (higher threshold), the higher quantiles are under- 

fitted and at higher λ values (lower threshold), the models tend to over-fit the higher quantiles. 



136 

 

The quantiles obtained from higher return periods are much influenced by the shape (ξ) and 

scale (σ) parameters of GP distribution model but for smaller return periods it is not.  

 

8.1.2 Regional Flood Frequency Analysis of Partial Duration Series 

 

Regionalization is the best and viable way of improving flood quantile estimation. In the 

regional flood frequency analysis, selection of basin characteristics, morphology, land use and 

hydrology have significant role in finding the homogeneous regions. The Mahanadi river basin 

is divided into two statistically homogeneous regions by using nine input variables obtained by 

factor analysis and clustering techniques. There is no major influence on homogeneity and 

cluster formation by reducing the dimensionality of variables from eleven to nine. The 

homogeneity tests (discordance measure test, Cv and LCv based homogeneity tests and 

statistical comparison), for all stations have satisfied the criteria except two stations in both the 

regions.  

 

The K-Mean (KM) clustering method provides better results in comparison to Hierarchical 

Clustering (HC) method. Here, again the Generalized Pareto distribution (GP) best described 

the PDS in the study area. To test the homogeneity and to identify the best-fit frequency 

distribution, regional L-moment algorithm is used. A unique regional flood frequency curve is 

developed which estimated the flood quantiles of ungauged catchments and an index flood is 

also specified by using the multiple linear regression approach.  

 

8.1.3 Application of Soft Computing Techniques for River Flow Prediction in Lower 

Mahanadi River Basin Using Partial Duration Series 

 

The trend analysis showed increasing trend of peak discharge at Naraj and the decreasing trend 

of peak releases at Hirakud.  To demonstrate the rainfall, and corresponding peak flows 

obtained using PDS, ANN and ANFIS models are used successfully. It has been observed that 

the floods and inundation due to these peak rainfall typically depend on various parameters 

including time of concentration, basin slope, river morphological characteristics, rainfall, soil 

moisture, groundwater, land use, and river discharge during monsoon. For this reason, a 

different combination of parameters have been used to obtain the best model.   

 

The runoff at Naraj station in the Mahanadi River, India, has been predicted with considerable 

accuracy by taking the Hirakud runoff, runoff at Kantamal and Salebhata, and the mean rainfall 

of middle region (Model 5) as inputs to the ANN and ANFIS techniques. ANFIS performed 

better than ANN algorithm as revealed from the RMSE and Nash–Sutcliffe efficiency values.  
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8.1.4 Flood Inundation Using 1-D Hydrodynamic Modeling  

 

The research study has demonstrated the application of HEC-GeoRAS, HEC-RAS in GIS 

environment to recognize flood inundation areas for disaster risk management. The GIS aided 

in data informing, visualization of changed scenarios and risk mapping. HEC-RAS model is 

calibrated to measure flood inundation at different return periods for the Mahanadi river basin.  

 

Due to increase in flooding frequency, population residing near the river banks, agricultural 

land and other valuable infrastructure like roads and bridges are found at high risk of flood 

inundation. Hydraulic modeling using GIS technique proved useful in simulating flood water 

depth and inundation areas for various return periods of Mahanadi River basin. Flood 

inundation maps are developed from Normalized Difference Water Index (NDWI) derived 

from MODIS surface reflectance data and has been compared with SRTM data to understand 

the flood area. The products derived from MODIS 500m imagery shows the ability to study 

flood dynamics considering that MODIS products have a great advantage in the high-frequency 

flood observation. 

 

8.2 RECOMMENDATION FOR FUTURE WORK 

 

Based on this study, following recommendations is made for further work in the area. The 

recommended directions in which further work can be undertaken are listed below: 

i) One of the limitations of the study is the data deficiency, hence more stations with more 

years of data give accurate growth factor for higher return periods. 

ii) The regional flood frequency analysis has been carried out by considering more influential 

variables. 

iii) Flood forecasting may be done by considering hourly based hydro-meteorological data, 

travel time and forecasted data to achieve a better lead time. 

iv) Flood inundation modeling may be carried out by using advanced modeling, high spatial 

resolution Satellite images, by taking data of recent flood year, more cross sectional area data 

below the delta and also by considering the topography of the region. 
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APPENDIX I 

List of Discharge Stations 

G/D Sites Latitude (N) Longitude 

(E) 

Number of 

years of record 

Kantamal 20°39'00 83°43'55" 41 

Kesinga 20°11'51" 83°13'30" 34 

Sundargarh 22°06'55" 84°00'40" 35 

Salebhata 20°59'00" 83°32'22" 39 

Tikarapada 20°38'00" 84°37'08" 41 

Seorinarayan 21°43'00" 82°35'48" 26 

Rajim 20°58'25"  81°52'48" 41 

Baronda 20°54'45" 81°53'10" 34 

Basantpur 21°43'36" 82°47'17" 41 

Jhondhra 21°43'30" 82°20'50" 31 

Ghatora 22°03'24" 82°13'15" 31 

Kotni 21°14'10" 81°14'50" 32 

Kurubhata 21°59'15 83°12'15" 34 

Manendragarh 23°12'10" 82°13' 05 22 

Pathardihi 21°20'28 81°35'38" 23 

Simga 21°37'54" 81°41'16" 40 

Rampur 21°39'06" 82°31'10" 40 

Sukuma 20°48'30" 84°30'00" 13 

Pandigaon 20°05'35" 83°05'00" 9 

Paramanpur 21°15'51" 84°16'35" 10 

Naraj 20°28'00" 85°42'00" 10 

Andhiyarkore 21°50'02" 81°36'21" 34 

Bamnidhi 21°53'55" 82°43'02" 41 

 



II 

 

List of Rainfall Stations 

Rainfall Sites Longitude(E) Latitude (N) Number of years of 

record 

BADAPANDUSAR 85.18 20.16 10 

BAGHUPALLI 83.88 21.19 10 

BANSAJAL 84.25 21.11 10 

BARGAON 83.33 20.41 10 

CHATIKUDA 83.27 19.97 10 

GORLA 83.58 20.61 10 

ICHHAPUR 82.63 20.6 10 

MADHUPUR 84.83 20.31 10 

MAGURBEDA 83.38 20.75 10 

NARAJ 85.76 20.47 10 

PATORA 82.46 20.74 10 

SAGADA 84.07 20.69 10 

SAGJURI 84.06 21.05 10 
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Cross-Section at four sampling locations of Mahanadi river system 
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Rating curve at four sampling locations of Mahanadi river system 

 

List of HFL value 

Station HFL Value in 

m 

Andhiyarkore 255.56 

Bamnidhi 225.98 

Baronda 286.16 

Basantpur 216.89 

Ghatora 247.90 

Jhondhra 226.15 

Kantamal 126.59 

Kesinga 171.52 

Kotni 276.23 

Kurubhata 217.79 

Manendragarh 414.03 

Pandigaon 4.41 

Paramanpur 6.2 

Pathardihi 276.69 

Rampur 225.01 

Salebhata 136.55 

Seorinarayan 221.17 

Simga 252.48 
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Sundargarh 220.64 

Tikarapara 68.86 

Rajim 279.72 
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Autocorrelation function of the discharge data 

Kendell Trend Test 

Station Kendell Trend Test (Z-Statistics) 

1 1.5 2 2.5 3 HFL 

Andhiyarkore 0.395 (NO) 0.296 

(NO) 

0.327 (NO) 0.147 (NO) 0.971 (NO) 0.952 (NO) 

Bamnidhi 0.298 (NO) -0.867 

(NO) 

-1.182 (NO) -1.363 (NO) -1.353 (NO) -1.564 (NO) 

Baronda 1.241  (NO) 0.625 

(NO) 

1.596 (NO) -0.065 (NO) 0.155 (NO) 0.257 (NO) 

Basantpur 0.163  (NO) -0.586 

(NO) 

-1.387 (NO) 0.19 (NO) 0.179 (NO) -1.281 (NO) 

Ghatora -1.061 (NO) 0.49 

(NO) 

0 (NO) -0.034 (NO) -0.436 (NO) 0.444 (NO) 

Jhondhra -0.985 (NO) -0.552 

(NO) 

-1.056 (NO) -1.182 (NO) -0.049 (NO) 0.663 (NO) 

Kantamal 0.911 (NO) -0.17 

(NO) 

0.83 (NO) 1.088 (NO) -0.049 (NO) 0.341 (NO) 
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Kesinga 0.097 (NO) 0.281 

(NO) 

-0.85 (NO) -0.82 (NO) 0.335 (NO) 0.067 (NO) 

Kotni -1.591 

(Decreasing) 

-0.882 

(NO) 

-1.156 (NO) -0.341 (NO) 0.586 (NO) -0.634 (NO) 

Kurubhata -0.264 (NO) 0.325 

(NO) 

0.236 (NO) 0.596 (NO) -0.293 (NO) 0.022 (NO) 

Manendragarh -0.453 (NO) -1.637 

(NO) 

-2.319 

(Decreasing) 

-2.452 

(Decreasing) 

-1.898 

(Decreasing) 

-2.045 

(Decreasing) 

Pandigaon 0.001 (NO) 1.037 

(NO) 

0.783 (NO) 1.41 (NO) 0.5 (NO) 0.479 (NO) 

Paramanpur -1.147 

(Decreasing) 

0.0001 

(NO) 

0.0011 (NO) 0.297 (NO) 0.585 (NO) 0.585 (NO) 

Pathardihi 0.602 (NO) -0.302 

(NO) 

-0.645 (NO) -1.313 (NO) -1.003 (NO) 0.385 (NO) 

Rampur 0.506 (NO) 1.13 

(NO) 

1.623 (NO) 1.421 (NO) 0.504 (NO) 0.453 (NO) 

Salebhata 0.896 (NO) 0.811 

(NO) 

1.074 (NO) 1.067 (NO) 1.148 (NO) 1.038 (NO) 

Seorinarayan -0.792 (NO) 1.297 

(NO) 

1.252 (NO) 1.245 (NO) 1.087 (NO) -0.617 (NO) 

Simga 0.158 (NO) 0.428 

(NO) 

-1.193 (NO) -0.641 (NO) -0.858 (NO) -1.153 (NO) 

Sukuma 0.069 (NO) 1.037 

(NO) 

0.396 (NO) 0.045 (NO) 0.14 (NO) 0.594 (NO) 

Sundargarh 0.151 (NO) 1.362 

(NO) 

0.878 (NO) 1.297 (NO) 0.267 (NO) 1.469 (NO) 

Tikarapara 0.242 (NO) -0.506 

(NO) 

0.341 (NO) 0.011 (NO) -0.663 (NO) -1.281 (NO) 

Rajim -1.363 (NO) -1.244 

(NO) 

-1.376 (NO) -1.062 (NO) -1.032 (NO) -1.129 (NO) 

 

Shape Parameter for the PDS peak floods 

Station Average Peaks per Years (λ) Shape Parameter 

1 1.5 2 2.5 3 

Andhiyarkore -0.182 -0.206 -0.281 -0.337 -0.2639 

Bamnidhi -0.044 -0.010 -0.084 -0.1829 -0.186 

Baronda 0.345 0.089 0.184 -0.058 -0.163 



XVII 

 

Basantpur -0.203 -0.135 -0.082 -0.008 -0.004 

Ghatora -0.286 -0.309 -0.297 -0.320 -0.303 

Jhondhra -0.331 -0.287 -0.092 -0.087 0.040 

Kantamal 0.103 0.212 0.336 0.474 0.529 

Kesinga 0.102 0.107 -0.039 -0.103 -0.091 

Kotni 0.274 0.014 0.021 0.031 0.032 

Kurubhata 1.056 1.669 1.177 0.826 0.670 

Manendragarh -0.609 -0.560 -0.558 -0.564 -0.578 

Pandigaon -0.127 0.165 0.185 0.240 0.215 

Paramanpur -0.556 -0.695 -0.693 -0.707 -0.727 

Pathardihi 0.358 0.371 0.268 0.299 0.33 

Rampur -0.378 -0.319 -0.294 -0.239 -0.145 

Salebhata -0.445 -0.328 -0.259 -0.209 -0.224 

Seorinarayan -0.167 0.066 0.249 0.297 0.422 

Simga -0.239 -0.133 -0.029 0.095 0.132 

Sukuma -0.242 -0.462 -0.454 -0.3386 -0.223 

Sundargarh -0.069 -0.235 -0.274 -0.344 -0.404 

Tikarapara 1.061 0.895 0.786 0.696 0.608 

Rajim 0.805 0.451 0.369 0.286 0.236 

 

Scale Parameter for the PDS peak floods 

Station Average Peaks per Years (λ) Scale Parameter 

1 1.5 2 2.5 3 

Andhiyarkore 140.864 131.924 105.1744 89.295 101.006 

Bamnidhi 1904.397 2010.959 1769.048 1350.347 1341.402 

Baronda 2880.310 2089.675 2332.334 1566.138 1250.224 

Basantpur 3291.406 3597.397 3929.068 4467.577 4658.218 

Ghatora 299.313 210.259 245.531 215.199 215.116 

Jhondhra 1124.830 1124.607 1639.600 1645.075 1807.885 

Kantamal 3141.039 4022.218 5037.946 6227.057 7328.459 



XVIII 

 

Kesinga 5563.978 5960.979 4543.972 4049.017 3967.483 

Kotni 1710.012 1164.120 1187.885 1222.454 1233.264 

Kurubhata 683.209 1725.281 1429.847 1176.190 1038.518 

Manendragarh 108.334 108.214 93.967 83.250 73.721 

Pandigaon 426.309 763.380 817.739 942.778 949.665 

Paramanpur 941.7183 421.830 426.877 381.183 331.604 

Pathardihi 483.834 580.741 520.072 563.213 619.472 

Rampur 751.006 779.991 773.887 854.349 886.768 

Salebhata 796.413 955.777 1058.357 1137.518 1066.136 

Seorinarayan 2277.569 3403.543 4853.373 5378.550 6393.562 

Simga 1244.973 1509.037 1794.034 2222.660 2440.208 

Sukuma 341.050 214.977 206.493 275.0422 349.820 

Sundargarh 1855.854 1238.374 1057.785 848.872 633.996 

Tikarapara 10543.860 11612.342 12137.121 11816.196 11481.224 

Rajim 5298.809 4015.724 3839.487 3403.519 3168.840 

 

Different Parameters of PDS obtained from HFL Concept 

Station Threshold 

Value (t) 

Average Peaks per Year 

(λ) 

HFL 

Shape Scale 

Andhiyarkore 115 5.29 -0.243 94.698 

Bamnidhi 2000 2.63 -0.180 1383.067 

Baronda 1103.4 1.47 0.168 2264.201 

Basantpur 15619 0.5 -0.307 3130.271 

Ghatora 500 1.45 -0.311 255.643 

Jhondhra 3320 4.25 0.058 1873.037 

Kantamal 6900 2.15 0.181 4022.726 

Kesinga 2000 5.57 -0.233 2741.784 

Kotni 2100 1.18 0.137 1420.437 

Kurubhata 1000 2.27 1.045 1336.142 

Manendragarh 163.08 1.86 -0.588 63.145 



XIX 

 

Pandigaon 1000 6.4 0.133 1011.699 

Paramanpur 1502.68 2.8 -0.729 328.550 

Pathardihi 900 1.3 0.427 604.124 

Rampur 2000 0.7 -0.475 658.617 

Salebhata 2620.892 

 

0.82 -0.034 1093.348 

Seorinarayan 12906.61 

 

0.72 -0.283 1867.986 

Simga 2955 2.82 0.082 2231.101 

Sukuma 483.31 

 

2.15 -0.375 256.462 

Sundargarh 2001 0.79 -0.045 1886.524 

Tikarapara 17741.25 2.85 0.562 10925.876 

Rajim 2256.82 2.12 0.345 3729.371 
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QQ Plots at Tikarapara and Rajim Station for a range of thresholds 
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APPENDIX II 

List of Variables of different Stations 

STATI
ON 

CA AVG 
SLOP
E 

DD CR PBF PBB AMP ELEV
ATIO
N 

LSL PBA PERI
METE
R 

PSCL PSL FF SF 

ANDHI
YARKO
RE 

0.075 0.611 0.194 0.508 0.596 0.471 0.847 0.886 0.225 0.469 0.202 0.205 0.310 0.176 0.456 

BAMN
IDHI 

0.298 0.764 0.172 0.516 0.487 0.071 0.914 0.792 0.508 0.594 0.410 0.088 0.422 0.137 0.587 

BARO
NDA 

0.108 0.604 0.157 0.553 0.989 0.002 0.885 0.865 0.289 0.125 0.265 0.099 0.415 0.154 0.519 

BASAN
TPUR 

0.042 0.172 0.160 0.476 0.086 0.149 0.914 0.418 0.211 0.918 0.142 0.036 0.452 0.113 0.712 

GHAT
ORA 

0.099 0.852 0.153 0.484 0.596 0.009 0.536 0.822 0.271 0.499 0.222 0.062 0.441 0.160 0.502 

JONDH
RA 

0.262 0.321 0.171 0.450 0.368 0.232 0.536 0.731 0.427 0.586 0.336 0.041 0.479 0.171 0.470 

KANTA
MAL 

0.286 0.999 0.160 0.559 0.770 0.013 0.866 0.808 0.372 0.369 0.435 0.415 0.110 0.245 0.327 

KESIN
GA 

0.211 0.853 0.152 0.609 0.619 0.022 0.966 0.678 0.326 0.505 0.407 0.445 0.596 0.236 0.341 

KOTNI 0.238 0.245 0.161 0.434 0.303 0.003 0.847 0.564 0.332 0.780 0.308 0.544 0.097 0.256 0.314 

KURU
BHATA 

0.159 0.926 0.161 0.527 0.568 0.011 0.958 0.821 0.383 0.572 0.306 0.222 0.318 0.129 0.623 

SUNDE
RGAR
H 

0.198 0.712 0.150 0.484 0.383 0.040 0.991 0.918 0.365 0.745 0.314 0.178 0.344 0.177 0.454 

SUKU
MA 

0.042 0.589 0.150 0.453 0.252 0 0.91 0.635 0.167 0.864 0.136 0.504 0.095 0.182 0.441 

SIMGA 0.252 0.270 0.187 0.497 0.279 0.933 0.885 0.670 0.357 0.666 0.363 0.079 0.429 0.234 0.343 

SEORI
NARAY
AN 

0.215 0.251 0.159 0.670 0.274 0.071 0.914 0.507 0.459 0.800 0.452 0.064 0.432 0.121 0.663 

SALEB
HAT 

0.157 0.525 0.154 0.486 0.202 0.065 0.911 0.531 0.368 0.904 0.280 0.255 0.191 0.137 0.584 
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RAMP
UR 

0.116 0.426 0.159 0.560 0.398 0.029 0.885 0.596 0.391 0.719 0.277 0.372 0.212 0.090 0.891 

PATHA
RDIHI 

0.083 0.104 0.158 0.447 0.066 0.024 0.885 0.473 0.282 0.989 0.188 0 0.507 0.124 0.645 

PARA
MNPU
R 

0.012 0.284 0.175 0.409 0.334 0 0.984 0.441 0.082 0.805 0.067 0 0.426 0.222 0.361 

PANDI
GAON 

0.192 0.929 0.168 0.518 0.745 0.003 0.966 0.718 0.339 0.390 0.331 0.328 0.213 0.198 0.404 

MANE
NDRA
GARH 

0.033 0.584 0.168 0.468 0.526 0 0.799 0.998 0.142 0.563 0.124 0.507 0.122 0.195 0.411 

RAJIM 0.179 0.478 0.160 0.489 0.614 0.005 0.885 0.749 0.369 0.458 0.301 0 0.488 0.156 0.515 

TIKRA
PADA 

0.999 0.607 0.163 0.686 0.428 0.065 0.899 0.558 0.997 0.657 0.999 0.162 0.254 0.119 0.674 
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