
EXPERIMENTAL AND NUMERICAL 

INVESTIGATION OF A HIGHLY MEANDERING 

CHANNEL 

 

 

A Thesis Submitted in Partial Fulfilment of the Requirement for the 
Degree of 

 

 

Master of Technology 

In 

Civil Engineering 

 

 

 

 

SUMIT KUMAR JENA 

(213CE4101) 

                         DEPARTMENT OF CIVIL ENGINEERING 

NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA 

May 2015 



EXPERIMENTAL AND NUMERICAL 

INVESTIGATION OF A HIGHLY MEANDERING 

CHANNEL 

 

A Thesis 

Submitted by 

 

Sumit Kumar Jena 

(213CE4101) 

 

In partial fulfillment of the requirements 

for the award of the degree of 

 

Master of Technology 

In 

Civil Engineering 

(Water Resources Engineering) 

Under The Guidance of 

Dr. K. K. Khatua 

 

 

Department of Civil Engineering 

National Institute of Technology, Rourkela 

Orissa -769008, India 



i 
 

 

 
DEPARTMENT OF CIVIL ENGINEERING 

NATIONAL INSTITUTE OFTECHNOLOGY, ROURKELA 

 

DECLARATION 

 I hereby state that this submission is my own work and that, to the best of my knowledge and 

belief, it contains no material previously published or written by any other person nor 

substance which to a substantial extent has been accepted for the award of any other degree 

or diploma of the university or other institute of higher learning, except where due 

acknowledgement has been made in the text.  

 

 

 

 

 

 

 

 

 

 

 

 

 

SUMIT KUMAR JENA

  



ii 
 

 
DEPARTMENT OF CIVIL ENGINEERING 

NATIONAL INSTITUTE OFTECHNOLOGY, ROURKELA 

 

CERTIFICATE 

This is to certify that the thesis entitled “Experimental and Numerical Investigation of a 

Highly Meandering Channel” is a bonafide record of authentic work carried out by Sumit 

Kumar Jena under my supervision and guidance for the partial fulfilment of the requirement 

for the award of the degree of Master of Technology in hydraulic and Water Resources 

Engineering in the department of Civil Engineering at the National Institute of Technology, 

Rourkela.  

The results embodied in this thesis have not been submitted to any other University or 

Institute for the award of any degree or diploma.  

 

 

 

 

 

 

 

 

Date:                                       Prof. K.K. Khatua 

Place: Rourkela                                     Associate Professor 

                  Department of Civil Engineering  

                   National Institute of Technology, Rourkela 



iii 
 

ACKNOWLEDGEMENT 

A complete research work can never be the work of anybody alone. The contribution of 

various individuals, in their distinctive ways, has made this conceivable. One page can never 

ample to express the feeling of appreciation to those whose direction and support was basic 

for the fruition of this venture. I want to express my unique thankfulness to my guide Dr. 

Kishanjit Kumar Khatua. Sir, thank you for teaching me that every mistake is just a learning 

experience, you are always being cordial to me. I have learnt so much from you and ever 

since I have been working with you I found myself evolving more and more with respect to 

my research work. Your invaluable counsel, warm fillip and continuous support have made 

this research easier. 

I would also like to show my heartfelt esteem and reverence to the professors of our 

department, Dr.K.C Patra, Dr.Ramakar Jha and Professor A.Kumar and Dr.S.K Sahu, head of 

the department Civil engineering for the kind co-operation and requisite advice they have 

provided whenever required. . I wish to express my earnest appreciation to Dr. S K Sarangi, 

Director, NIT Rourkela for issuing me the opportunities to complete my research work. 

I want to extend my gratitude to Arpan Pradhan PhD. Scholar of Civil engineering for the 

kind co-operation and vital guidance he has given me always. You helped me a great deal 

regarding me as your younger brother. I additionally need to say thanks to Abinash Mohanta 

PhD. Scholar of Civil engineering for his eagerness to help and guide me always. 

My research work won‟t have been completed if I had not got a chance to share such a 

friendly atmosphere with my two close friends Mamata rani Mohapatra and Rashmi rekha 

Das. I want to extend my thanks to Sovan Sankalp, Balram bhai and those who are directly 

and indirectly associated with my work. I would like to thank my Parents for their support 

and assurance which made me self-confident to complete this big task. At last but not the 

least thank God who shows me the right path always. 

 

 

                                                                                                              SUMIT KUMAR JENA 



 
 
 

 
 

iv 
 

 

ABSTRACT 

Research on various aspects of velocity distribution, boundary shear stress etc. has been carried 

out on curved and meandering channels. But no systematic effort has been made to investigate 

the experimental and numerical simulation on a highly sinuous meandering channel along its 

meandering path. In this research work, detailed investigation of velocity distribution and 

boundary shear distribution along the depth and width of a highly sinuous channel (Sr 4.11) has 

been carried out. 

The analysis is performed at thirteen different sections along a meander path, i.e. from 

one bend apex to another. The study includes longitudinal velocity distribution, depth-averaged 

velocity and boundary shear stress analysis at each section. The results iterate that the higher 

longitudinal velocity always remains towards the inner bank and as the channel changes its 

curvature, so does the movement of higher velocity which moves from one bank towards the 

other. 

 The experimental results are then validated through numerical modelling by using 

Ansys-Fluent which takes large eddy simulation model to solve the turbulence equations. The 

numerical results are found to be well complimenting with the experimental results. The 

experimental results are also analysed with another researcher‟s work having the same 

geometrical parameters, having a different aspect ratio.  

 

Keywords: bend apex, meander path, cross-over, longitudinal velocity distributions, boundary 

shear stress, numerical modeling, turbulence, Ansys-Fluent 
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1.1 CHANNEL 

A channel is a wide strait or waterway between two land masses that lie close to each other. It 

can also be the deepest part of a waterway or a narrow body of water that connects two larger 

bodies of water. 

Channel analysis is necessary in order to assess 

 Potential flooding caused by changes in water surface profile 

 Disturbance of river system upstream or downstream of the highway right of way 

 Changes in lateral flow distribution 

 Changes in velocity or direction of flow 

 Need for conveyance and disposal of excess runoff 

 Need for channel lining to prevent erosion 

1.2 TYPES OF CHANNEL  

Channels are of two types 

 Natural channel 

Natural channels are not regular, non - prismatic and their material of construction 

can vary widely. The surface roughness will often change with distance time and 

even with elevation, consequently it becomes more difficult to accurately analyze 

and obtain satisfactory results for natural channel than does for man-made ones. 

The structure may be further complicated if the boundary is not fixed i.e. erosion 

and deposition of sediment 

 Artificial channel 

These are channels made by man. They include irrigation canals, navigation 

canals, spillways sewers, culverts and drainage ditches. They are usually 

constructed in a regular cross section shape throughout and are thus prismatic 

channels. In the field they are commonly constructed of concrete, steel or earth 
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and have the surface roughness reasonably well defined. Analysis of flow in such 

well-defined channels will give reasonably accurate results. 

Also channels can be divided into three types considering their geometry 

 STRAIGHT CHANNEL 

If in a channel no variation occurs in its passage along its flow path then it is 

called straight channel.  The channel is usually controlled by a linear zone of 

weakness in the underlying rock, like a fault or joint system. 

 

Photo1.1: Straight Channel 

 MEANDERING CHANNEL 

If a channel deviates from its axial path and a curvature of reverse order 

developed with short straight reaches, it is known as meandering channel. Because 

of the velocity structure of a stream and especially in streams flowing over low 

gradients which easily eroded banks, straight channels will eventually erode in to 

meandering channel. 
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Photo 1.2: Meandering Channel 

 BRAIDED CHANNEL 

These are the channels consist of network of small channels. In streams having 

highly variable discharge and easily eroded banks, sediment gets deposited to 

form bars and islands that are exposed during periods of low discharge. In such a 

stream the water flows in a braided pattern around the islands and bars, dividing 

and reuniting as it flows downstream. Such a channel is termed a braided channel. 

 

Photo 1.3: Braided Channel 
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1.3 MEANDERING RIVER 

Rivers flowing over gently sloping ground begin to curve back and forth across the 

landscape. These are called meandering rivers. A meander in general is a bend in a sinuous 

water course or river. A meander forms when moving water in a stream erodes the outer 

banks and widens its valley, and the inner part of the river has less energy and deposits silt. 

We can consider a river as Straight River, if its length is straight for around 10 to 12 times its 

channel width, which is not generally possible in natural conditions .Sinuosity is defined as 

the ratio of the curvilinear length and the distance between the end points of the curve. For 

rivers Sinuosity is the ratio of channel lengths to that of its down valley length. A river is 

regarded as meandering if it is having a sinuosity greater than equal to 1.5. 

Stream characterizes its own way. Meandering of a river is an exceptionally muddled 

procedure including flow interaction during bends, erosion and sediment transport. 

Meandering rivers erode sediment from the outer curve of each meander bend and deposit it 

on an inner curve further downstream. This causes individual meanders to grow larger and 

larger over time. 

Meandering river channels are asymmetrical. The deepest part of the channel is on the 

outside of each bend. The water  flows faster in these deeper sections and erodes material 

from the river bank. The water flows more slowly in the shallow areas near the inside of each 

bend. The slower water can't carry as much sediment and deposits its load on a series of point 

bars. Oxbow lakes form when a meander grows so big and loopy that two bends of the river 

join together. Once the meander bends join, the flow of water reduces and sediment begins to 

build up. Over time oxbow lakes will fill with sediment and can even disappear. The point 

where the two bends intersect is called a meander cut-off. The low-lying area on either side 

of a river is called a floodplain. The floodplain is covered with water when the river 

http://www.onegeology.org/extra/kids/sedimentary.html
http://www.onegeology.org/extra/kids/water.html
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overflows it banks during spring floods or periods of heavy rain. Sediment is deposited on the 

floodplain each time the river floods. Mud deposited on the floodplain can make the soil 

really good for agriculture. 

   Inglis (1947) showed that river bend erode at the time of flood because of the excess         

turbulent energy and as a result it broadens and ridges. There is an inclination for sediment to 

store at one bend and move towards the other due to the fluctuating discharges and silt 

formation.  Levliasky (1955) proposed the centrifugal force to be the reason for winding of a 

river, due to the helicoidal cross-current formation. Chang (1984) prescribed, that "as a 

general rule, the channel slope can't exceed the valley slope under the condition of 

equilibrium. If the discharge and loads are such that the channel slope so created exceeds the 

valley slope, the dynamic changes as aggradations will happen, achieving steepening of the 

valley slope. As the channel slope can't exceed the valley slope under the state of equilibrium, 

it should either be equal or less than as valley slope. The meandering channel example talks a 

level of channel adjustment so that a river with a flatter slope can exist in a steeper valley 

slope. 

River persistently modifies itself concerning its capacity to balance the water 

discharge and sediment load supplied from the watershed. These changes, likely changes in 

the channel geometry, side slope, meandering pattern, roughness etc. are made such that the 

stream experiences least energy expenditure in transportation of its load. 
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Figure 1.1: Different points of meandering river ( Leopold and Langbein, 1966 ) 

1.4 MEANDER PATH 

Meander path is a flow route grasped by a conduit like meandering channel or a river. The 

meander path under this experimentation is starting with one bend apex to the next bend 

apex. Bend apex of a channel is the segment having greatest curvature. Water in a channel 

while moving from one bend apex to the next other it goes through the cross-over. Cross-over 

is a segment at the point of inflection where the meander path changes its course .The 

concave bank or the external bank transforms into the convex bank or the internal bank after 

the cross-over and the convex bank or the internal bank transforms into the concave bank or 

the external bank. In the Fig.1.4 above W means the width of the channel, λ signifies the 

wavelength, L indicates the length of channel for one wavelength and rc identifies with the 

range of the channel 

1.5 VELOCITY DISTRIBUTION 

The knowledge of velocity distribution helps to know the velocity magnitude at each point 

across the flow cross-section. It is also essential in many hydraulic engineering studies 

involving bank protection, sediment transport, conveyance, water intakes and 

geomorphologic investigation The measured velocity in an open channel flow will always 
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across the channel section because of friction along the boundary. This velocity distribution is 

usually asymmetric due to existence of free surface. It might be expected to find the 

maximum velocity at the free surface where the shear force is zero but this is not the case. 

The maximum velocity is usually found just below the surface. The explanation of this is the 

presence of secondary currents which are circulating from the boundaries towards the section 

centre and resistance at the air/water interface. These have been found in both laboratory 

measurements and 3-d numerical simulation of turbulence. . In straight channel velocity 

distribution varies with different width-depth ratio, whereas in meandering channel velocity 

distribution varies with aspect ratio, sinuosity, meandering making the flow more complex to 

analyse. In laminar flow max stream wise velocity occurs at water level; for turbulent flows, 

it occurs at about 5-25% of water depth below the water surface. In longitudinal velocity 

variations along the width, it is considered that the maximum velocity occurs somewhere in 

the middle of the channel as shown in the figures. But it has been observed that in a bend, the 

maximum velocity occurs at the inner curve of the bend.  

 

Figure1.2: Contours of constant velocity in various open channel sections (Chow, 1959) 
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In this experiment the meandering channel under study changes its course, and both the 

clockwise and anticlockwise curves of the channel are analysed. Hence the movement of 

velocities can be studied from one bank of the channel to that of the other. The detailed 

investigation of velocity distribution along the depth and width of a channel is also useful. 

1.6 BOUNDARY SHEAR 

Water streaming in an open channel is restricted by resistance from the beds as well as the 

side slopes of the channel. This force of resistance is called the boundary shear force. 

Boundary shear stress is the tangential component of the hydrodynamic forces acting along 

the channel bed. Flow qualities of an open channel flow are specifically depending on the 

boundary shear force distribution along the wetted perimeter of the channel.  

Calculation of bed resistance, channel relocation, side wall correction, sediment transport, 

dispersion, cavitation, conveyance estimation and so on can be considered and dissected by 

the boundary shear stress distribution.  

The shear force, for steady uniform flow is identified with the bed slope, hydraulic radius and 

unit weight of the liquid. However in a viable perspective, these forces are non-uniform even 

for straight prismatic channels. The non-consistency of shear stress is predominantly due to 

the secondary currents composed by the anisotropy of vertical and transverse turbulent 

intensities, given by Gessner (1973). Tominaga  et al. (1989) and Knight and Demetriou 

(1983) explained that boundary shear stress generally increases at the time when the 

secondary currents flow towards the wall and diminishes when it flows far from the wall. The 

presence of secondary flow cells in main channel affects the distribution of shear stress along 

the channel‟s wetted perimeter which is illustrated in Fig. 1.3. . Other factors affecting the 

shear stress distribution are the shape of channel cross-section, depth of flow, later-

longitudinal distribution of wall roughness and sediment concentration. For the case of 
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meandering channels, the factors increase even more due to the nature of flow of water in 

such channels.  Different components influencing the shear stress distribution are the shape of 

channel cross-area, depth of flow, lateral-longitudinal distribution of wall roughness and silt 

concentration. For the instance of meandering channels, the components build more 

significantly because of the nature of flow of water in such channels. Sinuosity on account of 

meandering channel is regarded to be a critical parameter in the shear stress distribution along 

the channel bed and walls. 

 

Figure1.3: Schematic influence of secondary flow cells on boundary shear distribution in a 

trapezoidal section (Knight et al., 1944) 

1.7 NUMERICAL MODELLING 

Computational fluid dynamics, usually abbreviated as CFD, is a branch of fluid 

mechanics that uses numerical methods and algorithms to solve and analyze problems that 

involve fluid flows thus worked as a computer based numerical analysis tool. The growing 

interest on the use of CFD based simulation by researchers have been identified in various 

fields of engineering as numerical hydraulic models can significantly reduce costs associated 

with the experimental models. The basic principle in the application of CFD is to analyze 

fluid flow in-detail by solving a system of non-linear governing equations over the region of 

interest, after applying specified boundary conditions. A stride has been taken to do 
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numerical investigation on a highly sinuous meandering channel. The work will help to 

simulate the distinctive flow variables in such type of complex flow geometry. The utilization 

of computational fluid flow was essential for the fulfillment of this undertaking project since 

it was the main tool of simulation. In general, CFD is a means to precisely foresee 

phenomena in applications such as fluid flow, heat transfer, mass transfer, and chemical 

reactions. There are assortments of CFD projects accessible that have abilities for modeling 

multiphase flow. Some basic projects incorporate ANSYS and COMSOL, which are both 

multipackage. CFD is a prevalent tool for solving of transport problems due to its capacity to 

give results for issues where no correlations or experimental data exist furthermore to create 

results not conceivable in laboratory situations. CFD is additionally valuable for design since 

it can be specifically meant to a physical setup and is cost effective (Bakker et al., 2001). In 

the present work, an effort has been made to research the velocity profiles for 13 distinctive 

sections of a simple meandering channel by utilizing a computational liquid motion (CFD) 

modeling tool, named as FLUENT. The CFD model created for an open-channel was 

validated   by looking at the velocity profile acquired by the numerical simulation with the 

actual measurement did by experimentation in the same channel utilizing Preston tube. The 

CFD model has been used to investigate the impacts of flow meandering of the channel, and 

to study the varieties in velocity profiles along the meander path from one bend apex to the 

other. The reproduced the simulated flow field in each case is compared with corresponding 

laboratory measurements of velocity distribution. . Distinctive models are utilized to unravel 

Navier-Stokes mathematical equations which are the governing equations for any fluid flow. 

Finite volume method is applied to discretize the governing equations. The precision of 

computational results essentially relay upon the mesh quality and the model used to simulate 

the flow. 
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1.8 OBJECTIVES OF THE RESEARCH 

The current work is proposed for examining various flow characteristics of a meandering 

path of a 120°cross-over angle meandering channel. Although considerable research has been 

carried out on flow characteristics of open channel curves with different angles, but not much 

research has been carried out along a path of meandering channel which is preceded and 

followed by the meandering channel of same sinuosity.  The path being a part of a longer 

meandering channel helps to get more precise informations about its  own characteristics 

which can be applied to real field conditions. 

The objectives of the present work are summarized as: 

 To Study the longitudinal velocity profiles and contours of a highly meandering 

channel along the meander path conducted experimentally. The vertical profiles are to 

be studied systematically across 4cm intervals along the width of the channel at every 

section of the same meander path. The study helps to understand the detailed 

characteristic of velocity distribution throughout the channel section and also along 

the meander path. 

 The depth-averaged velocity distribution is to be analysed at different sections of the 

meandering channel i.e. from one bend apex to the next bend apex. 

 Analysis of the boundary shear stress along the bed and side slopes of every section 

along the meander path. The study helps to observe the variation of shear stress at a 

section and how it changes with the progression of meander path. 

 The velocity distribution obtained experimentally is to be compared with the work of 

Pradhan (2014) having the same geometrical parameters. 

 Application of Numerical software to analyse the flow parameters of the above 

channel. 
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1.9 THESIS STRUCTURE 

The thesis consists of five chapters. General introduction is provided in Chapter 1, Chapter 2 

contains literature survey, methodology is described in Chapter 3 which contains 

experimental setup along with numerical modelling and numerical simulation, experimental 

results are demonstrated and analysis of results as well as numerical modelling are explained 

in Chapter 4, Chapter 5 contains the conclusions drawn from the analysis and at last the 

references are presented. 

Chapter 1 represents briefly about channel, types of channel, meandering river and meander 

path. General concept of velocity distribution, boundary shear stress distribution along with 

numerical modelling is also described. 

Chapter 2 provides detailed literature survey on the researches done by other researchers on 

velocity distribution, boundary shear distribution and numerical modelling.The previous 

research works are arranged according to the year of publication with the latest work at the 

later. 

Chapter 3 gives details about the construction of the channel, the apparatus and equipments 

used. The methodology adopted for obtaining velocity distribution, boundary shear stress, 

channel geometry, meshing, governing equations, turbulence models and boundary condition 

for Numerical modelling are also discussed. 

Chapter 4 illustrates the experimental results and its analysis. The results discussed are the 

horizontal velocity distribution, the vertical velocity distribution, and the boundary shear 

stress distribution at thirteen different sections along the meander path of the highly sinuous 

channel. Along with these things numerical modelling is also presented there. 
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Finally Chapter 5 outlines the conclusions accomplished through the research and the 

suggestions for further scope are provided. References made in the subsequent chapters are 

also given.



 

 

 

 

CHAPTER 2 

LITERATURE 

REVIEW 
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2.1 OVERVIEW 

In this chapter former research in hydraulic engineering related to the behavior of rivers and 

channels has been composed to obtain an outline of the various features and characteristics of 

meandering rivers. For better knowledge about river systems, analysis of its velocity 

distribution along its width, depth and also along the meander path with maximum accuracy 

is crucial. The flow characteristics of a river is imperative for flood control, channel design, 

channel stabilization and restoration projects and it influences the transport of pollutants and 

sediments. Flow in meandering channels is of increasing importance as this type of channel is 

common in the case of natural rivers, and research work regarding flood control, discharge 

estimation and stream restoration need to be conducted for this type of channel. It has 

exposed from investigators that the flow structure of meandering channels is unpredictably 

more complex than straight channels due to its velocity distribution. There are boundaries 

studies available in literature concerning the flow in meandering channels. Meandering 

effectively lengthens the channel path, within the existing valley or flood plain. The degree of 

meandering may be measured by the term sinuosity, which is defined as the ratio of channel 

length to valley length. Chow (1959) described the degree of meandering as follows: 

Table 2.1:-Degree of meandering 

 

 

 

 

 

The analysis of flow along a meander path is not only confined to its velocity distribution but 

also the shear force variations along the bed and inner and outer walls is also studied to get an 

outline of the shear force sharing between them. This would help in the design of bank 

Sinuosity ratio Degree of meandering 

1.0 - 1.2 Minor 

1.2 - 1.5 Appreciable 

1.5 and greater Severe 
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protection and channel designs. This chapter is therefore divided into sections related to the 

previous research carried out on velocity distributions and boundary shear force distribution 

of meandering channels. 

2.2 PREVIOUS RESEARCH ON  LONGITUDINAL VELOCITY DISTRIBUTION 

The longitudinal velocity signifies the speed at which the water is moving in the stream wise 

direction. If a number of velocity measurements are taken throughout the depth across the 

channel, it is possible to produce a distribution of the isovels which represents contour lines.. 

Each of these lines stands for the same velocity magnitude over the channel. The isovels 

achieve values as low as zero in the region of the channel perimeter and increment to a 

maximum value underneath the water surface in the area encompassing the centre of the 

channel. These isovels are influenced by the secondary currents that results in a bulge in their 

distribution in their dispersion. 

Thomson (1876) studied that flow motion in a channel bend is spiral. It was observed that 

centrifugal force was the main cause for such a phenomenon, which is generated because of 

the curved flow path, and resulting spiral motions, i.e. secondary flows, have a substantial 

effect on engineering matters such as flow resistance, sediment transport, erosion and 

deposition. 

Coles (1956) suggested a semi-empirical equation of velocity distribution, which can be 

applied to both outer and wall region of plate and open channel. He generalized the 

logarithmic formula of the wall with tried wake function, w(y/8) which is the basic 

formulation towards outer layer region. 

The U.S. Army Corps of Engineers (Hydraulic 1956) conducted a series of experiments on 

meandering channels at the Waterways Experiments Station in Vicksburg. This paper 

investigates the stage-discharge relationship and the effect of geometric parameters like 
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radius of curvature of the bends, sinuosity of the channel, depth of flow, channel roughness 

etc. on the conveyance capacity of meandering channels. 

Chow (1959) demonstrates the tables determining roughness coefficients for characteristic 

channels with consistent roughness characteristics along a full river reach. However in any 

one reach these attributes may fluctuate significantly. 

The original Soil Conservation Service (SCS) (1963) method is useful in selecting 

roughness coefficient values for meandering channels. It consists of an empirically-based 

model which integrates the extra flow resistance resulting from the influence of a channel 

sinuosity by adjusting the roughness coefficients which has been used in the standard 

resistance formulae. 

Sellin (1964) discourses about the existence of vertical vortices at the junction adopting a 

flow visualization technique. He also explained that through these vortices momentum is 

exchanged between the main channel and the flood plain.  

Toebes and Sooky (1967) carried an experiment from which the roughness, slope and 

channel depth on the discharge capacity of a meandering channel was investigated.  A 

sinuosity of 1.09 was set for all the models which meant that the key parameters of these 

models were not similar with the key parameters in natural river channels. They observed the 

insight into general flow behavior and the dependency of meandering channels on 

longitudinal slope as well as channel aspect ratio. 

Donald W. Knight, et. al. (1983) carried out experiments on flood plain and main channel 

flow interactions. The discharge characteristics, boundary shear stress and boundary shear 

force distributions in a compound section comprising of one rectangular main channel and 

two symmetrically disposed flood plains which are obtained from experimental results. 
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Equations are formed taking the shear force on the flood plains as a percentage of the total 

shear force in terms of two dimensionless parameters. The resulting shear force from 

experiments is used to derive auxiliary equations for the lateral and vertical transfer of 

momentum within the cross section. The apparent shear force which is acting on the vertical 

interface between one flood plain and the main channel is indicated to increase rapidly for 

low relative depths and high flood plain widths. Equations are modeled also to give the 

proportion of the total flow which occurs in the various sub areas. The division of flow based 

on linear proportion of the areas is shown to be inadequate on account of the interaction 

between the flood plain and main channel flows.  

Chang (1984) conducted experiment on the meander curvature and other geometric features 

of the channel using the energy approach. It directly accounts for variations in bend radius 

along the length of a channel. The modified Chang (1984) method is generally on the 

assumption that the channel is wide as compared to its depth. This paper shows that it is 

difficult to apply this method to natural channels because of their variability in configuration. 

In some of the illustrations the modified Chang method will give results which are physically 

correct; however in most of the circumstances the simple LSCS method will be more 

appropriate than this method. 

Booij (1985) presented his experimental work and measure of the various shear stress 

components in a mildly curved flume. He considered a 2-component LOA in his analysis 

which set up a unique configuration of the laser beams to obtain lateral and vertical 

components. His paper calculated the eddy viscosity coefficients in three directions: 1'yx -'-I 

(a.---uv -8yx -J+ b-Tl) -8yax.Jp 0/ & 0/ and so on. It is shown that the assumption of isotropic 

eddy viscosities was not justified in the curved channel. 
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James and Wark (1992) studied the step function defined above with a linear function to 

avoid the discontinuity at the certain boundaries of the defined sinuosity ranges with 

consequent ambiguity. To overcome from this difficulty the existing equation was further 

liberalized known as the Linearized SCS (LSCS) Method [1992] and this method was easy to 

apply and yields a significant result.  

Willets and Hardwick (1993) led an experiment to study flow in a small laboratory flume 

where meandering channels of different sinusitis and geometry were used. It was observed 

that the conveyance of channel vary with sinuosity. As such, the flow resistance increments 

generously with an increment in channel sinuosity. The flow interaction in charge of the 

stream resistance was additionally discovered to be reliant on channel cross section 

geometries cross section geometries. 

Shiono, et. al. (1999) contemplated the impact of bed slope and sinuosity on discharge 

estimation of a meandering channel. Conveyance capacity of a meandering channel was 

inferred utilizing dimensional analysis and therefore helped in discovering the stage-

discharge relationship for meandering channels. The study demonstrated that the discharge 

increases with an increment in bed slope and decreases with increase in sinuosity for the 

same channel. 

Sarma et al. (2000) attempted to formulate the velocity distribution law in open channel 

flows by taking generalized binary version of velocity distribution, which consolidates the 

logarithmic law of the inner region and parabolic law of the outer region. The law grew by 

taking velocity-dip into account. 

Patra, Kar and Bhattacharya (2004) demonstrated that the flow and velocity distribution in 

meandering channels are firmly administered by flow collaboration. By taking sufficient 
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consideration of the collaboration influence, they proposed equations that are found to be in 

great concurrence with natural rivers furthermore the experimental meandering channel data 

acquired from a progression of symmetrical and unsymmetrical test channels with smooth 

and rough sections. 

Wilkerson et al. (2005) utilizing information from three past studies, developed two models 

for foreseeing depth-average velocity distribution in straight trapezoidal channels that are not 

wide, where the banks apply form drag on the fluid and in this manner control the depth 

average velocity distribution. The data they utilized for building up the model are free from 

the impact of secondary current. The 1st model required measured velocity data for 

calibrating the model coefficients, whereas the 2nd model utilized prescribed coefficients. 

The 1st model is prescribed when depth-averaged velocity data are available. At the point 

when the 2nd model is utilized, the predicted depth average velocities are required to be 

inside 20% of actual velocities. 

Afzal et al. (2007) investigated power law velocity profile in completely developed turbulent 

pipe and channel flows in terms of the envelope of the friction factor. This model gives good 

close estimation for low Reynolds number in planned process of actual system compared to 

log law. 

Khatua (2008) studied the distribution of energy in a meandering channel. It is come about 

because of the variety of the resistance variables like Manning's n, Chezy's C, and Darcy-

Weisbach's f with flow depths. Stage-discharge relationship from in-bank to the over-bank 

flow, channel resistance coefficients were found for meandering channel. 
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Pinaki (2010) analysed a series of laboratory tests for smooth and rigid meandering channels 

and created mathematical equation utilizing dimension analysis to calculate roughness 

coefficients of smooth meandering channels of less width ratio and sinuosity. 

Seo and Park (2010) conducted laboratory and numerical studies to discover the impacts of 

secondary flow structures and distribution of pollutants in curved channels. Primary flow is 

discovered to be skewed towards the inward bank at the bend while flow gets to be 

symmetric at the cross-over. 

Khatua and Patra (2012) performed a series of laboratory tests for smooth and rigid 

meandering channels and created mathematical models utilizing dimensional analysis to 

assess roughness coefficients. The vital variables considered in influencing the stage-

discharge relationship were velocity, hydraulic radius, and viscosity, acceleration due to 

gravity, bed slope, sinuosity, and aspect ratio. 

Moharana (2012) contemplated the impact of geometry and sinuosity on the roughness of a 

meandering channel. ANFIS was used to foresee the roughness of a meandering channel 

utilizing a large data set. 

Dash (2013) dissected the vital parameters influencing the flow behaviour and flow 

resistance in term of Manning' n in a meandering channel. Elements influencing roughness 

coefficient are non-dimensional zed to foresee and discover their reliance with different 

parameters. A scientific model was formulated to anticipate the roughness coefficient which 

was connected to foresee the stage-release relationship. 

Mohanty (2013) anticipated lateral depth averaged velocity distribution in a trapezoidal 

meandering channel. A nonlinear manifestation of equation including overbank flow depth, 

main channel flow depth, incoming discharge of the main channel and floodplains were 
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formulated. A quasi1D model Conveyance Estimation System (CES) was connected to the 

same experimental compound meandering channel to validate with the experimental depth 

averaged velocity. 

Pradhan (2014) analysed the flow along the meander path of a highly sinuous rigid channel. 

He has done the study thoroughly to find the changes in the water surface profile throughout 

the meander path and also longitudinal velocity distributions along the width and depth of the 

channel i.e. the horizontal and vertical velocity profiles were investigated. 

2.3 PREVIOUS RESEARCH ON BOUNDARY SHEAR 

In straight channels, the longitudinal velocity in the channel is generally faster.  This results a 

shear layer at the interface of straight channel.  Due to the presence of this shear layer, the 

flow in the straight channel decreases because of the effect of faster flows. This result shows 

that the flow decreases the whole discharge of the cross section.  

Leighly (1932) contemplated the boundary shear stress distribution in open-channel flow by 

utilizing conformal mapping. He pointed out that, without secondary currents, the boundary 

shear stress acting on the bed must be adjusted by the downstream component of the weight 

of water contained inside the bounding orthogonal. 

Cruff (1965) contemplated the utilization of the Preston tube technique and additionally the 

Karman - Prandtl logarithmic velocity law to estimate the boundary shear stress resulting 

because of uniform flow in a rectangular channel. A Preston tube is navigated around the 

boundary of a rectangular channel and an estimation of the boundary shear stress distribution 

obtained. From contemplations of the longitudinal force equilibrium Equation, an apparent 

shear force, which is basically an "out of balance" force, could be figured to act on any 

vertical plane in the flow. In spite of the fact that he didn't quantify boundary shear stress in a 

channel with overbank flow, his work perceived a technique to empower agents to ascertain 
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the apparent shear stress and henceforth momentum transfer between a channel and its flood 

plain. Additionally Wright and Carstens utilized the Preston tube procedure to quantify 

boundary shear stresses in a Closed conduit aerodynamic model 6 meters long.  

Ghosh and Jena (1972) demonstrates the distribution of boundary shear stress for rough and 

smooth walls in a compound channel. The test is directed in an 8*5 meter long flume with a 

main channel width of 0.203 meters flanked by two flood plains, each of width 76 mm. 

additionally they got the boundary shear appropriation along the wetted perimeter of the total 

channel for different depths of stream utilizing the Preston tube technique consolidated with 

the Patel calibration. It is watched that the greatest shear weight on the channel bed happens 

roughly halfway between the inside line and corner, and the most extreme shear in the flood 

plain dependably happens at the channel/flood plain intersection. Likewise they arranged no 

immediate reference to the cooperation between the main channel and its flood plain; 

however results acquired can be utilized to compute the degree of any connection which was 

occurring amid their tests. From the test consequences of the shear circulation it is 

conceivable to compute Tc' the normal shear push in the- channel amid association. It is 

watched that by roughening the aggregate fringe of the channel and flood plain the boundary 

shear in the channel could be redistributed with the most extreme shear in the channel bed 

now happening at the channel Centre line. 

Knight and Macdonald (1979) contemplated that the resistance of the channel bed differed 

by artificial strip roughness components, and estimations made of the divider and bed shear 

stresses. The distribution of velocity and boundary shear stress in a rectangular flume was 

analysed tentatively, and the impact of fluctuating the bed roughness and aspect ratio were 

accessed. Dimensionless plots of both shear stress and shear force parameters were presented 

for different bed roughness and aspect ratio, and those represented the intricate way in which 
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such parameters are varied. The definition of a wide channel was also examined, and a graph 

giving the blundering aspect ratio for distinctive roughness conditions was exhibited. The 

boundary shear stress disseminations and isovel examples were used to look at one of the 

standard side-wall correction procedures. 

Rajaratnam and Ahmadi (1979) directed an experimental work in a channel 18.29 meters 

in length, 1.22 meters wide and 0.9 meters deep. A main channel 0.2032 meters wide, flanked 

by two flood fields, every 0.508 meters wide is utilized to show the Interaction mechanism in 

a symmetrical compound channel. Velocity navigates and boundary shear stress was 

recorded. Analysis of velocity profiles uncovered that the lateral velocity profiles at different 

depths in the main channel showed similarity. 

Bathurst et al. (1979) displayed the field measurements for the bed shear stress in a curved 

river and it is reported that the distribution of bed shear stress is influenced by both the 

position of the center of the main velocity and the structure of secondary flow. 

Knight (1981) gave an empirically determined equation that presented the percentage of the 

shear force carried by the walls as a component of the breadth/depth proportion and the 

proportion between the Nikuradse identical roughness sizes for the bed and the walls. The 

outcomes were contrasted and other accessible information for the smooth channel case and a 

few differences noted. The systematic reduction in the shear force conveyed by the walls with 

expanding breadth/depth proportion and bed roughness was shown. Further equations were 

exhibited giving the mean wall and bed shear stress variety with aspect ratio and roughness 

parameters.  
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Knight and Patel (1985) reported a part of laboratory examination results concerning the 

distribution of boundary shear stress in smooth close conduits of a rectangular cross section 

for an aspect ratio around 1 and 10. The distributions were shown to be influenced by the 

number and state of the secondary flow cells, which, therefore, depended essentially upon the 

aspect ratio. For a square cross section with 8 symmetrically arranged secondary flow cells,  a 

twofold top in the distribution of the boundary shear stress along every wall was shown to 

dislodge the maximum shear stress far from the centre position towards every corner. For 

square cross portions, For a square cross segment with 8 symmetrically arranged optional 

stream cells, a twofold top in the appropriation of the limit shear push along every divider 

was demonstrated to uproot the most extreme shear stretch far from the inside position 

towards every corner. For rectangular cross sections, the quantity of secondary flow cells 

increased from 8 by augmentations of 4 as the aspect ratio increased, bringing on alternate 

perturbations in the boundary shear stress distribution at positions where there were adjacent 

contra-rotating flow cells. Equations were presented for the most extreme, centreline and 

mean boundary shear stress on the duct walls in terms of aspect ratio. 

Knight and Sterling (2000) studied the appropriation of boundary shear stress in circular 

conduits flowing mostly full with and without a smooth level bed for an information 

extending from 0.375<F<1.96 and 6.5*104<R<3.42*105, utilizing Preston-tube technique. 

The distribution of boundary shear stress is demonstrated to rely on upon geometry and 

Froude no. The outcomes have been examined as far as variety of local shear stress with edge 

separation and the rate of aggregate shear force following up on wall or bed of the course. 

The %SFW results have been indicated to concur well with Knight's (1981) exact equation 

for prismatic channels. The interdependency of secondary flow and boundary shear stress has 

been made and its implications for sediment transport have been analysed. 
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Ervine, Alan, Koopaei, and Sellin (2000) displayed a practical strategy to anticipate depth 

averaged velocity and shear stress for straight and meandering over bank flows. They 

additionally displayed an analytical solution to the depth coordinated turbulent form of  

Navier-Stokes equation that incorporates lateral shear and secondary flows in addition to bed 

friction. They connected this analytical solution for various channels, at model, and field 

scales, and compared with other accessible systems, for example, that of Shiono and Knight 

and the lateral distribution method (LDM). 

Patra and Kar (2000) have taken into account the flow collaboration of meandering channel 

with floodplains. A series of lab test results are led about the limit shear stress, shear force, 

and discharge qualities of compound meandering channel areas made out of a rectangular 

main channel and possibly a few floodplains discarded to its sides. Five dimensionless 

parameters are used to shape equations representing the aggregate shear force rate passed on 

by floodplains. An arrangement of smooth and rough sections is examined over with an 

aspect ratio extending from 2 to 5. Apparent shear forces on the assumed vertical, horizontal 

and diagonal Interfacial plains are found to be non-zero at low depths of flow and change 

sign with an increment in the depth over the floodplain. Here a variable-inclined interface is 

proposed for which evident shear force is determined as zero. This paper shows comparisons 

related with the degree of discharge passed on by the main channel and floodplain. The 

equations agree well with experimental river discharge data. Using the variable-inclined 

interface, the lapse between the computed and measured discharges for the meandering 

compound section is found to be minimum when compared with distinctive interfaces. 

Patra and Kar (2004) described the test results concerning the flow and velocity distribution 

in meandering compound river sections. Utilizing power law they showed mathematical 

equations concerning the three-dimensional mixture of longitudinal, transverse, and vertical 
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velocity in the main channel and floodplain of a meandering compound segment in terms of 

channel parameters. The consequences of plans contrasted well and their individual 

experimental channel datas got from a progression of symmetrical and unsymmetrical test 

channels with smooth and rough surfaces. They moreover affirmed the points of interest 

against the natural river and other meandering compound channel data. 

Khatua (2008) propelled the work of Patra and Kar (2000) towards meandering compound 

channels. Utilizing five parameters (sinuosity Sr, amplitude, relative depth, width ratio and 

aspect ratio) general mathematical equations representing the aggregate shear force 

percentage conveyed by floodplain was shown. The proposed equations are simple, quite 

reliable and gave awesome results with the observed data for straight compound channel of 

Knight and Demetriou (1983) and furthermore for the meandering compound channel. 

Khatua (2010) showed the distribution of boundary shear force for staggeringly meandering 

channels having noticeably different sinuosity and geometry. He also indicated the 

interrelationship between the boundary shear, sinuosity and geometrical parameters taking 

into account the experimental results. The given models are also accepted utilizing the well 

published data of other investigators. 

Patnaik (2013) Calculated boundary shear stress at the bend apex of a meandering channel 

for both in bank and overbank flow conditions. Test reports were accumulated under different 

discharge and relative depths having same geometry, slope and sinuosity of the channel. 

Effect of aspect ratio and sinuosity on wall (internal and outer) and bed shear forces were 

surveyed and equation was delivered to focus the rate of wall and bed shear forces in smooth 

trapezoidal channel only for in bank flows. The given equations were compared with the past 

studies and the model was reached out to wide channels. 
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2.4 PREVIOUS RESEARCH ON NUMERICAL MODELLING 

 

The features characterized in open channel flow result from the complex interaction 

between the fluid and a number of mechanism including shear stress along the channel bed 

and walls, friction, gravity and turbulence. As numerical hydraulic models can significantly 

reduce costs associated with the experimental models, therefore in recent decades the use of 

numerical modelling has been rapidly expanded. With widely spread in computer application, 

interest has risen in applying more techniques providing more accurate results. In other fluid 

flow fields such as aeronautics and thermodynamics the implementation of more complex 

models has represented the advances in computer technology and 3D models are now 

commonly used. However in open channel flow this conversion has not occurred as rapidly 

than other sector of engineering and most hydraulics models are either 1D or 2D with very 

few application of 3D models. In this work the application of Computational Fluid Dynamics 

(CFD) package to open channel flow has been considered. The software includes various 

models to solve general fluid flow problems. Across the globe various numerical models such 

as standard k-ε model, non-linear k-ε model, k-ω model, algebraic Reynolds stress model 

(ASM), Reynolds stress model (RSM) and large eddy simulation (LES) have been 

implemented to simulate the complex secondary structure in open channel flow. The standard 

k- ε model is an isotropic turbulence closure but fails to reproduce the secondary flows. 

Although nonlinear k- ε model can simulate secondary currents successfully in a compound 

channel, it cannot accurately capture some of the turbulence structures. Reynolds stress 

model (RSM) is very effective in computing the time-averaged quantities and requires much 

less computing cost. RSM computes Reynolds stresses by directly solving Reynolds stress 

transport equation but its application to open channel is still limited due to the complexity of 

the model. Large eddy simulation (LES) solves spatially-averaged Navier-Stokes equation. 

Large eddies are directly resolved, but eddies smaller than mesh are modelled. Though LES 
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is computationally expensive to be used for industrial application but can efficiently model 

nearly all eddy sizes. The work of previous researchers regarding the advancements in 

numerical modelling of open channel flow has been listed below. 

 

Giuseppe and Pezzinga(1994) used the k-ε model to analyze the problem of prediction of 

uniform turbulent flow in compound channel. This model is useful to predict the secondary  

currents, caused anisotropy of normal turbulent stresses which are important features of the 

flow in compound channel as we can determine transverse momentum transfer. He made a 

comparison which shows that the model predicts with accuracy the distribution of primary of 

the velocity component, the secondary circulation and the discharge distribution. 

Cokljat and Younis,Basara and Cokljat(1995) gave the RSM for numerical simulation of 

free surface flows in a rectangular main channel and a compound channel. They found   good 

agreement between predicted and measured data. 

Thomas and Williams (1995) gave description of a LES of steady uniform flow in a 

symmetric compound channel of trapezoidal cross section with flood plains at Reynolds‟s 

number of 430000.This simulation helps to predict the bed stress distribution, velocity 

distribution and secondary circulation across the flood plain by interacting with main channel 

and flood plain. 

Salvetti et.al(1997) has done LES simulation at a relatively large Reynolds number which in 

turn gives the result of bed shear, secondary motion and vortices well comparable to 

experimental results. 

Ahmed Kassem, Jasim Imran and Jamil A. Khan (2003) examined from the three 

dimensional modeling of negatively buoyant flow in a diverging channel with a slanting 
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bottom. They modified the k- turbulence model for the lightness impact and Boussinesq close 

estimation for the Reynolds- averaged equations in diverging channels. 

Lu et al. (2004) connected a three-dimensional numerical model to reenact secondary flows 

the distribution of bed shear stress, the longitudinal and transversal changes of water depth 

and the distribution of velocity components at a 180° bend utilizing the standard k- 

turbulence model. 

Sugiyama H,Hitomi D.saito T.(2006) developed turbulence model which includes transport 

equation of turbulent energy and dissipation along with an algebraic stress model based on 

the Reynold‟s stress transport equation. They have demonstrated that the fluctuating vertical 

Velocity approaches zero close to the free surface. Furthermore, the compound meandering 

open channel was elucidated to some degree based on computed results. As an aftereffect of 

the investigation, the present algebraic Reynolds stress model is shown to be able to 

reasonably predict the turbulent flow in a compound meandering open channel. 

Bodnar and Prihoda (2006) exhibited a numerical recreation of the turbulent free surface 

flow by utilizing the k- turbulence model and analyzed the way of non-linearity of water 

surface slant at a sharp bend. 

Booij (2003) and VanBalen et al. (2008) displayed the flow design at a mildly bended 180º 

twist and evaluated the secondary flow structure utilizing Large Eddy Simulation (LES) 

model. 

Cater and Williams (2008) reported an unequivocal Large Eddy Simulation of turbulent 

flow In a long compound open channel with one floodplain. The Reynolds number is pretty 

about 42,000 and the free surface was managed as totally deformable. The results are in 

simultaneousness with test estimations and support the use of high spatial determination and 
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a vast box length interestingly with a past reenactment of the same geometry. A discretionary 

flow is perceived at the internal corner that endures and grows the bed weight on the 

floodplain. 

Jing, Guo and Zhang (2009) reenacted a three-dimensional (3D) Reynolds stress model 

(RSM) for compound meandering channel flows. The velocity fields, wall shear stresses, and 

Reynolds stress are ascertained for a range of input conditions. Great assertion between the 

simulated results and measurements shows that RSM can effectively anticipate the 

confounded flow phenomenon. 

B. K. Gandhi, H.K. Verma and Boby Abraham (2010) determined the velocity profiles In 

both the directions under distinctive real flow conditions, as ideal flow conditions seldom 

exists in the field. 'Fluent', a commercial computational fluid dynamics (CFD) code, has been 

utilized to numerically model different situations. They examined the impacts of bed slope, 

upstream bend. 

Balen et.al. (2010) performed LES for a bended open-channel flow over topography. It was 

observed that, despite the coarse technique for representing the ridge shapes, the Qualitative 

assertion of the test results and the LES results is fairly great. Also, it is observed that in the 

bend the structure of the Reynolds stress tensor demonstrates an inclination toward isotropy 

which upgrades the execution of isotropic eddy viscosity closure models of turbulence. 

Esteve et.al. (2010) reenacted the turbulent flow structures in a compound 

meanderingChannel by Large Eddy Simulations (LES) utilizing the experimental 

arrangement of Muto and Shiono (1998). The Large Eddy Simulation is performed with the 

in-house code LESOCC2. The anticipated flow wise velocities and secondary current vectors 

and in addition turbulent intensity are in great concurrence with the LDA measurements. 
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Ansari et.al. (2011) decided the distribution of the bend and side wall shear stresses in 

trapezoidal channels and examined the effect of the variety of the slant angles of the side 

walls, aspect ratio and composite roughness on the shear stress distribution. The outcomes 

demonstrate a noteworthy contribution on secondary currents and overall shear stress at the 

boundaries 

Rasool Ghobadian and Kamran Mohammodi (2011) recreated the subcritical flow Pattern 

in 180° uniform and convergent open-channel curves utilizing SSIIM 3-D model with 

Maximum bed shear stress. They noticed toward the end of the convergent bend, bed shear 

stress show higher values than those in the same locale in the channel with a uniform twist. 

Khazaee & M. Mohammadiun (2012) explored three-dimensional and two phase CFD 

model for flow distribution in an open channel. He completed the Finite volume method 

(FVM) with a dynamic Sub grid scale for seven instances of distinctive aspect ratios, 

different inclination angles or slopes and converging diverging  condition. 

Omid Seyedashraf, Ali Akbar Akhtari& Milad Khatib Shahidi (2012) reached in a 

conclusion that the standard k-ε model has the ability of catching particular flow features in 

open channel curves more precisely. Looking at the location of the minimum velocity 

occurrences in a customary sharp open channel bend, the minimum velocity occurs close to 

the inward bank and inside the separation zone along the meandering. 

Larocque, Imran, Chaudhry (2013) displayed 3D numerical recreation of a dam-break 

Flow utilizing LES and k- ε turbulence model with following of free surface by volume-of-

fluid model. Results are compared with published experimental data on dam break flow 

through incomplete break and additionally with results acquired by others utilizing a shallow 

water model. The outcomes demonstrate that both the LES and the k –ε displaying palatably 
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imitate the fleeting variety of the measured bottom pressure. Nonetheless, the LES model 

catches better the free surface and velocity variety with time. 

Ramamurthy et al. (2013) reenacted three-dimensional flow design in a sharp bend by 

utilizing two numerical codes alongside different turbulent models, and by comparing the 

numerical results with results approved the models, and guaranteed that RSM  turbulence 

model has a better agreement with experimental results. 

Mohanta (2014) gave the Flow Modelling of a Non Prismatic compound channel By Using 

CFD. He used the large eddy simulation model to accurately predict the flow features, 

specifically the distribution of secondary circulations both for in-bank channels as well as 

over-bank channels at varying depth and width ratios in symmetrically converging flood plain 

compound sections 



 

 

 

 

CHAPTER 3 

METHODOLOGY



  METHODOLOGY 

 

33 | P a g e  
 

3.1 OVERVIEW 

Experimentation on natural rivers is very intricate; therefore the flow characteristics of a river 

can be analysed generally by studying them on a model designed similar to that of natural 

rivers. Rivers are usually meandering by nature, having different sinuosity throughout their 

path. Flow patterns are to be studied on experimental models for different sinuosites and can 

then be used to model them on natural channels. 

For study of the flow patterns and characteristics of meandering rivers, a highly meandering 

channel is constructed and the different velocities and shear changes are measured for the 

total meander path. The study helps to analyze the movement of rivers in natural meanders. 

3.2 DESIGN AND CONSTRUCTION OF CHANNEL 

The required experimental channel was manufactured in a large tilting flume having a width 

of 4m and length of 15m. The flume has a course of action of pressure driven jacks for 

creating different bed slopes on tilting. This aggregate plan is made available at the Fluid 

Mechanics and Hydraulics Laboratory of NIT, Rourkela. A meandering channel has been 

constructed inside of the tilting flume through Perspex sheets to complete the 

experimentations. The Perspex sheets are about 6mm to 10mm thick. 

The meandering channel made, has straight flood plains, beneath which the main channel is 

established having a bank full depth of 0.065m with a base width of 0.33m and 1:1 side slope. 

Fig. 3.1 illustrates the schematic diagram of the channel setup. The main channel is a 

meandering channel, similar to a sine curve of one and half wave length. The aggregate 

wavelength being λ=2.162m preceded and followed by a bell mouth section for proper flow 

field development at the experimental setup which is from the second bend apex to the 

following bend apex of the central curve. 

Water into the channel is flowed from an underground sump to an overhead tank with the 

help of radial pumps. Overhead tank is useful in keeping up a steady head of water, where the 
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excess water is allowed to drift back into the sump. Water comes into the flume from the 

overhead tank through customizable pipes which can be utilized to keep up a desired amount 

of discharge. This water falling into the flume is first detained in a stilling tank. Then it is 

directed through an adjustable vertical gate into a series of baffle wall suitable ahead of the 

rectangular notch. These are provided for decreasing the turbulence of the approaching water. 

Water from the notch falls over a wire mesh placed just underneath the notch, to further 

steady the flow. Water then flows into the main channel through smooth bell mouth transition 

section to achieve steady flow in the channel. The stream accomplishes a Quasi-Uniform 

flow. Water flows in the channel due to gravity, achieved by giving a small slope to the 

tilting flume. The flow of water is going through the main channel subsequently directed into 

a volumetric tank through a regulating tailgate. The volumetric tank is joined with the 

underground sump. The volumetric tank is utilized for measuring the actual discharge of 

flow; otherwise the water is permitted to move into the underground sump .Hence forth a 

complete distribution of water is achieved. All the measurements are observed from the 

second bend apex to the next following bend apex of the experimental channel from the 

upstream site. Observations are recorded under steady and uniform flow conditions.  A 

moving bridge arrangement is provided along the width of the channel of around 1.2m width 

by 4m length across the channel. The measuring instruments, for example, point gauges and 

pitot tubes are arranged on the bridge such that every section of the meandering path is 

accessible for measurements. 
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Fig 3.1: Schematic Diagram of Experimental Meandering Channel with Setup 

3.3 APPARATUS AND EQUIPMENTS USED:- 

Five pitot tubes are fitted with the moving bridge  and are unequally spaced with an external 

diameter of 4.7mm along with a point gauge having a least count 0.1mm. The moving bridge 

is traversed along the meander path to reach at required sections so that respective readings 

can be taken. The pilot tubes show the pressure difference at every predefined grid across 

every section of the meander path. Velocities at those points are then computed from the 

pressure differences. All the five pitot tubes are associated with five unique manometers 

which are connected on a vertical board having a spirt level. The spirit level helps to keep up 

the verticality of the manometers. A rectangular notch arrangement is provided at the 

upstream section for maintaining and calculating the discharge of water into the meandering 

channel. The following photographs display the measuring devices used for experimentation.  
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Photo 3.1: Meandering Channel   Photo 3.2: Meander path 

  

              
Photo 3.3: Pitot tube arrangement   Photo 3.4: Manometers 

Photo 3.1 – 3.4: Photographs of Channel and some of the equipments 

3.4 EXPERIMENTAL PROCEDURE 

3.4.1 EXPERIMENTAL CHANNEL 

The meandering main channel constructed has a sinuosity of 4.11 with a wavelength of 

2.162m. The main channel is a trapezoidal section of 1:1 side slopes and having a bottom 

width of 0.33m and top width of 0.46m with the bank full depth of 0.065m. The detailed 

geometric parameters of the meandering channel are illustrated in the following tabulation. 
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Table 3.1: Details of Geometrical Parameters of the Channel 

 

  
Photo 3.5: Point Gauge   Photo.3.6: Volumetric Tank 

 

  
           Photo.3.7: Stilling Chamber   Photo.3.8: Tail gate 

Sl No Parameter Description 

1 Channel type Meandering 

2 Dimension of flume 4.0 m × 0.5 m × 15 m Long 

3 Geometry of main channel Trapezoidal with side slopes 1:1 

4 Bed Surface type Smooth Bed 

5 Cross Section of Channel 0.33 m at Bottom and 0.46 m at Top 

6 Bank Full Depth 0.065 m 

7 Bed Slope of the Main Channel 0.00040146 

8 Sinuosity of the Main Channel 4.11 

9 Amplitude of the Meandering Channel 1.555 m 

10 Wave length of the Meandering Channel 2.162 m 
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         Photo3.9: Moving Bridge   Photo3.10: Flow Straightener 

 

Photo 3.5-3.10: Meandering Channel inside the Flume with different parts 

3.4.2 POSITION OF MEASUREMENT 

All observations are recorded along a meandering path from the second bend apex to the 

corresponding bend apex via the cross-over of the meandering channel. A section at 

crossover perpendicular to both the inner and outer curves of the meandering channel is 

drawn and extended up to the bend apex line, as shown in Fig. 3.2. An angle of 120⁰ is 

formed for both the curves. Which is the cross-over angle or the arc angle. The curves are 

divided into 6 equal sections of 20⁰ each to the centerline of the meandering channel. 

Channel sections along the width i.e. perpendicular lines drawn to both the curves from these 

points. Sections A and M are the bend apex while section G is the cross-over section. The 

sections A through M are considered for measurement of the velocity profiles. 

 

Figure 3.2: Plan Geometry of the Meandering Path. 
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A constant discharge is maintained during the experiment while taking the readings for the 

entire meandering path. Series of Pitot-tubes with moving bridge arrangement are provided to 

measure the velocity at different points of the flow passage of the channel. The measurements 

are taken at different reaches along the meander path for every section. Datas  are observed 

from left edge to the right edge of the main channel in the direction of flow. The lateral 

spacing of the grid points has been taken as 4cm on either side of the centreline. The Pitot 

tube is navigated upwards from the bed of the channel. The bed of the channel signified here 

is the position of radius of the Pitot tube which is 0.2385cm from the bed. This is achieved by 

placing the Pitot tube at the surface of the channel. Readings are taken at the bed and then 

moved up by 0.2H,0.4H, 0.6H, and 0.8Hfrom the bed. Where H is the average depth of water 

at the every corresponding section along the meander path. Fig.3.3 shows the grid diagram 

used for the experiments. 

 

Figure 3.3: Grid Arrangement of Points for Velocity Measurement across a Channel Section. 

 

3.4.3 MEASUREMENT OF BED SLOPE 

Water level piezometric tube is utilized for estimation of bed slope. Water level about the bed 

of the channel at the upstream and downstream of the flume is taken which are around 15m 

apart. The water level calculated is from the bed of the flume without considering the 

thickness of the Perspex sheet. Difference in the two corresponding points was calculated. 

After that the required Slope is measured by dividing this level difference with the difference 



  METHODOLOGY 

 

40 | P a g e  
 

between the observed points. Five such readings are taken and average value was found out 

for exactness. The slope calculated is 0.00165 which is the slope of the flume i.e. the valley 

slope. For calculating the slope of the main channel,  the sinuosity of the main channel is 

divided by the slope of the flume which gives the channel slope. The sinuosity of the 

meandering channel being 4.11, the channel slope of the main channel is found to be 

0.00040146. 

3.4.4 NOTCH CALIBRATION 

Rectangular notch is provided at the upstream section of the flume for computation of the 

theoretical discharge into the channel. Before computing the discharge, the rectangular notch 

needs to be calibrated concerning actual discharge from the volumetric tank at the 

downstream section. The volumetric tank has a cross-sectional area of 208666  and a 

piezometer attached to it for estimation of the rate of increase in water level. Actual discharge 

is ascertained by recording the time taken for increase in unit increase in height of water level 

in the piezometer. 

The volume of water collected at the volumetric tank is given by, 

Vw = Ahw         Eq. 3.1 

Actual discharge of water collected at the volumetric tank is given by, 

Qa = Vw/t         Eq. 3.2 

For theoretical discharge, the height of water over the rectangular notch is measured by a 

point gauge arrangement. Theoretical discharge is given by, 

23
2

3

2
nnth HgLQ          Eq. 3.3 

The coefficient of discharge for each run is calculated as per equation given below, 

th

a
d

Q

Q
C           Eq. 3.4 
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Where, Qais the actual discharge, Qthis theoretical discharge, A is the area of volumetric tank, 

Vwvolume of water, t time in sec, Cd is the coefficient of discharge calculated from notch 

calibration, hwis the height of water in the volumetric tank, Lnis the length of the notch (3.4 m 

in this case), Hn is the height of water above the notch and g is the acceleration due to gravity. 

From the notch calibration, coefficient of discharge „Cd‟ of rectangular notch was found to be 

0.66. The discharge is maintained at 6.3 x 10
-3 

m
3
/s throughout the experiment. 

3.4.5 MEASUREMENT OF LONGITUDINAL VELOCITY 

Pitot tubes are utilized for measuring velocity. Here five Pitot tubes are arranged for 

measurement of the pressure difference at every predefined grid on the channel cross-section 

throughout the meander path. The pitot tubes are having an external diameter of 4.7mm. The 

pitot tubes are attached to individual manometers placed on a vertical board. The vertical 

board is having a spirit level used for adjustment of the verticality of the manometers. The 

pitot tubes and the manometers are connected by long transparent PVC tubes of small 

diameters. Extra care is taken to ensure the absence of air bubbles in those pipes. 

Pitot tubes are positioned against the direction of flow perpendicular to it. Then the pressure 

difference at every pre-defined grid of the channel section along the meander path is 

calculated. The velocity is measured by the formula v= , at that point where g signifies 

the acceleration due to gravity and h signifies the pressure difference. Here the tube 

coefficient is taken as unit and the error due to turbulence is considered negligible while 

measuring velocity. 

3.4.6 MEASUREMENT OF BOUNDARY SHEAR STRESS 

Measurement of boundary shear stress in open channel flow is crucial as it helps in 

determining the Shear bed load transport, momentum transfer and channel migration etc. The 

shear forces at the bed are important for the calculation of bed load transfer whereas shear 
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forces at the walls provide a general overview of channel relocation pattern. Although there 

are several methods f or evaluating bed and wall shear, Preston-tube method even if being an 

indirect estimate, is largely used for experimental observations. 

Preston (1954) gave a simple technique to measure the local shear stress on smooth 

boundaries using a Pitot tube which is in contact with the bed surface. His method was based 

on the assumption on an inner law relating the boundary shear stress to the velocity 

distribution near the wall. Preston provided a non-dimensional correlation between the 

Preston tube differential pressure ∆P, and the boundary shear stress τ, of the form: 

( ) = F (          Eq. 3.5 

Where d signifies the outer diameter of the Preston tube, ρ is the density of the flow, υ is the 

kinematic viscosity of the fluid, and F is an empirical function. Patel (1965) further extended 

this research and his calibration is given in terms of two non-dimensional parameters x
*
 and 

y
*
which are used to convert pressure readings to boundary shear stress, where 

x
*
 = log10( ) and y

*
 = log10 ( )      Eq. 3.6 

In the form 

For y
*
< 1.5   y

*
 = 0.5x

*
 + 0.037     Eq. 3.7 

For 1.5 <y
*
< 3.5  y

*
 = 0.8287 - 0.1381x

*
 + 0.1437x

*2
 – 0.006 x

*3
 Eq. 3.8 

and 

For 3.5 <y
*
< 5.3  x

*
 = y

*
 + 2 log10(1.95y

*
 + 4.10)   Eq. 3.9 

In the present case, all shear stress measurements are taken at thirteen sections throughout the 

meander path between the two bend apexes. The pressure readings were taken using pitot 

tubes along the predefined grids across all the sections of the channel at the bed and side 

slopes. The manometers attached to the Pitot tubes gave the head difference between the 
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dynamic and static pressures. The differential pressure is then calculated from the readings on 

the vertical manometer by, 

 ∆P = ρg∆h          Eq. 3.10 

Where ∆h is the difference between the two readings from the dynamic and static, g is the 

acceleration due to gravity and ρ is the density of water. Here the tube coefficient is taken as 

unit and the error due to turbulence is considered negligible while measuring velocity. 

Accordingly out of the Eq. 3.6-3.9, the appropriate one was chosen for computing the wall 

shear stress based on the range of x
*
 values. After that the shear stress value was integrated 

over the entire perimeter to calculate the total shear force per unit length normal to flow 

cross-section carried by the meandering section. The total shear thus computed was then 

compared with the resolved component of weight force of the liquid along the stream-wise 

direction to check the accuracy of the measurements. 

 

3.5 NUMERICAL MODELLING 

3.5.1 DESCRIPTION OF NUMERICAL MODEL PARAMETERS 

In this study, Fluent, a Computational Fluid Dynamics simulation tool is utilized for model 

verification which is a three-dimensional form of Navier-Stokes equations. Computational 

Fluid Dynamics (CFD) is a branch of fluid mechanics that uses various numerical models and 

algorithm to analyses and solves issues that include fluid flows. Computer systems are 

utilized to perform the calculations needed to simulate the interaction of fluids and gases with 

surfaces characterized by boundary conditions. With fast supercomputers, better 

arrangements can be accomplished. On-going examination yields programming that enhances 

the precision and rate of complex simulation situations, for example, transonic or turbulent 

flows. It has begun around 1960 and with the procedure of change in computer processor 

speed, CFD simulation is currently demonstrating astonishing exactness. The CFD based 
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simulation depends combined numerical exactness, demonstrating accuracy and 

computational expense. For the most part CFD utilizes a Finite volume method (FVM). 

Fluent can utilize both organized and unstructured grids. In free-surface displaying e.g. VOF 

(Ferziger and Peric 2002) and height of Liquid (HOL) or LES, the governing equations are 

discretized in both space and time which generally obliges transient simulation. Here Large 

Eddy Simulation model is utilized for turbulence modeling. The LES equations are 

discretized in both space and time. In this study the calculations used to solve the coupling 

between the pressure and velocity field is PISO, the Pressure implicit splitting of operators 

used in Fluent (Issa 1986). A no iterative solution strategy PISO is utilized to ascertain the 

transient issue as it serves to solve the issues faster. When the residuals of the discretized 

transport equation reach a value of 0.001 or when the solution do not change with further 

iterations, the numerical solution is converged.  To advance the merging of the arrangement 

the changing variables are controlled during the calculation. For the simulation with a 

unsteady solver, the distinction in the mass flow rates at the velocity inlet and pressure outlet 

is observed to be under 0.01% during final solution. Furthermost, various additional time 

steps are added to check the steadiness of the flow in the last arrangement. 

3.5.2 TURBULENCE MODELLING 

"Turbulence is an irregular movement which is shown in liquids and gases when they flow 

past solid surfaces or even when neighboring streams of the same fluid flow past over one 

another." GI Taylor and von Karman, 1937 "Turbulent smooth movement is an 

unpredictable state of flow in which the various quantities Show  an arbitrary variation with 

time and space coordinates, so that statically distinct average values  can be perceived." 

Hinze, 1959 .The stream in a meandering channel is turbulent in nature. Channel Shape or 

geometry and gravity force is mostly in charge of the turbulent stream. Turbulent flow is a 

flow regime described by turbulent and stochastic property changes. This incorporates low 
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momentum dissemination, high energy convection, and rapid variation of force and velocity 

in space and time. Turbulence occurs when the inertia forces in the fluid become significant 

compared to viscous forces, and is characterized by a high Reynolds Number. 

Generally turbulence is a random three dimensional time-dependent eddying motion with 

many large scales eddies. The three dimensional nature of turbulent flows are decomposed 

into two different parts i.e. mean part and fluctuation part, which is well known as Reynolds 

decomposition. The spatial character   of turbulence reveal the eddies with wide range scales. 

In turbulence, separated fluid particles are brought close together by eddying motion which 

causes the effective exchange of heat, mass and momentum. The turbulence in compound 

channel is quite complex and the flow structure involved in it creates uncertainty in 

prediction of flow variables  Particularly in meandering channels, turbulent structures are 

generalized by large shear layers generated by difference of velocity between inner bend and 

outer bend . This large shear layer region creates vortices both longitudinal as well as vertical 

direction. The anisotropy and inhomogeneity of turbulent structure causes secondary current, 

which creates the velocity dip and affects the flow variables. Hence in this study an effort is 

made to recognize the effect of the turbulence in a meandering channel. Incorporating 

turbulence, CFD considers the instantaneous velocity that consisting of an average velocity 

component and a fluctuating velocity component given as 

Instantaneous velocity = mean velocity + fluctuating is given by 

u=          Eq. 3.11 

The Navier-Stokes momentum equation is taken as: 

        Eq. 3.12 

By substituting  for u in equation (3.12) and averaging the term we get: 

         Eq. 3.13 
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For non-linear function the equation (3.11) becomes 

         Eq. 3.14 

Now the Navier-Stokes equations become: 

          Eq. 3.15 

       Eq. 3.16 

The term is known as the “Reynolds stress”. Due to closure problem of both the 

equations 3.15 and 3.16 we have to come up with ways of replacing the extra terms with 

other terms that were known or devising ways of calculating these terms. A first attempt at 

closing the equations is: 

         Eq. 3.17 

In equation (3.17) both terms represent a diffusion of energy. The term  represents 

diffusion of energy through viscosity and the other term   represents the diffusion 

through turbulence. By defining as turbulent viscosity, equation (3.16) becomes: 

       Eq. 3.18 

To enable the effects of turbulence to be predicted, a large amount of CFD research has 

concentrated on methods which make use of turbulence models. Turbulence models have 

been specifically developed to account for the effects of turbulence without recourse to a 

prohibitively fine mesh and direct numerical simulation. Most turbulence models are 

statistical turbulence model, as mentioned below. 

3.5.3 TURBULENCE MODELS 

 Algebraic (zero-equation) model. 

 K-ε, RNG k-ε model. 

 Shear stress transport model. 
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 K-ω model 

 Reynolds stress transport model (second moment closure). 

 K-ω Reynolds stress. 

 Detached eddy simulation (DES) turbulence model. 

 SST scale adaptive simulation (SAS) turbulence model. 

 Smagorinsky large eddy simulation model (LES). 

 Scalable wall functions 

 Automatic near-wall treatment including integration to the wall. 

 User-defined turbulent wall functions and heat transfer 

3.5.4 GOVERNING EQUATIONS 

The governing equation used here is based on conservation of mass, momentum and energy. 

The C.F.D package namely Fluent was employed to solve the governing equations, which 

uses Finite Volume Method (FVM) to solve the equations.FVM involves discretization and 

integration of the governing equations over the control volume. The numerical method FVM 

was based on the integral conservation which is applied for solving. The partial difference i.e. 

Navier-Stokes equation then calculate the values of the variables, averaged across the 

volume. The integration of the equations over each control volume results in a balance 

equation. The conservation law is enforced on small control volumes which are defined by 

computational mesh. The set of balance equations then discretized with respect to a set of 

discretization schemes and is solved by using the initial and boundary conditions. The 

governing Reynolds Averaged Navier-Stokes and continuity equations are stated as: 

        Eq. 3.19 

    Eq.3.20 
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Where t=time, =i-th component of the Reynolds-averaged velocity, =i-th axis, =water 

density, p= Reynolds averaged pressure, g=acceleration due to gravity, =viscosity (here it is 

equal to zero), =mass exchange between two phase (water and air).Here for unsteady 

solver the time-averaged values of velocities and other solution variables are taken instead of 

instantaneous values. The term  is called as Reynolds Stress. To link the mean rate 

of deformation with Reynolds stresses, Boussinesq hypothesis is used: 

       Eq. 3.21 

Where =the turbulent viscosity 

3.5.5 NUMERICAL METHODOLOGY 

The process of the numerical simulation of fluid flow using the above equation 

generally involves four different steps 

 Problem Identification 

(1)Defining Modeling goals 

(2)Identifying the domain to model 

 Pre-Processing 

(1) Creating a solid model to represent the domain (Geometry Setup) 

(2) Design and create the mesh (grid) 

 Solver 

(1) Set up the physics 

a. Defining the condition of flow (e.g. turbulent, laminar etc.) 

b. Specification of appropriate boundary condition and temporal condition. 

(2) Using different numerical schemes to discretize the governing equations. 

(3) Controlling the convergence by iterating the equation till accuracy is achieved 

(4) Compute Solution by Solver Setting. 

a. Initialization 

b. Solution Control 

c. Monitoring Solution 

 Post processing 

(1) Visualizing and examining the results 

(2) X-Y Plots 

(3) Contour Draw 
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3.5.6 PREPROCESSING 

In this initial step all the necessary information which defines the problem is assigned by the 

user. This consists of geometry, the properties of the computational grid, various models to 

be used, and the number of Eulerian phases, the time step and the numerical schemes. 

3.5.7 CREATION OF GEOMETRY 

The first step in CFD analysis is the explanation and creation of computational geometry 

of the fluid flow region. A consistent frame of reference for coordinate axis was adopted for 

creation of geometry. Here in coordinate system, Z axis corresponded the stream wise 

direction of fluid flow. X axis aligned with the lateral direction which indicates the width of 

channel bed and Y axis represented the vertical component or aligned with depth of water in 

the channel. The origin was placed at the upstream boundary and coincided with the base of 

the center line of the channel. The water flowed along the positive direction of the Z-axis.The 

simulation was done on a simple meandering channel from one bend apex to the other. The 

geometry of the channel is shown in Figure 3.4 and the cross-section of channel geometry is 

shown in Figure 3.5 

Figure 3.4: Channel Geometry in Ansys Design moduler 
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Figure 3.5 Channel cross section in Ansys Design moduler 

As can be seen from the Figure 3.4 that the channel geometries were 0. 5 m height, 4 m width 

and 15m length. In the geometry of the channel the main channel was trapezoidal in cross 

section having bottom width 0.33m, top width 0.46m and bank full depth of 0.065m.  

During the model construction, an additional consideration is to identify any entity of the 

geometry which needs to be identified for future reference as to identify a particular domain 

for conduct some analysis and for applying boundary condition upon a particular domain. 

Figure 3.4 shows the geometry of the meandering channel and Figure 3.5 shows the cross 

section of the channel. For identify the domain five different surfaces are generated. 

 Inlet 

 Outlet 

 Wall 

 Free surface symmetry 

 Channel bottom 

3.5.8 MESH GENERATION 

 Second and very most important step in numerical analysis is setting up the grid associated 

with the construction of geometry. The Navier-Stokes Equations are non-linear partial 

differential equations, which consider the whole fluid domain as a continuum. In order to 
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simplify the problem the equations are simplified as simple flows have been directly solved at 

very low Reynolds numbers. The simplification can be made using what is called 

discretization. Construction of mesh involves discretizing or subdividing the geometry into 

the cells or elements at which the variables will be computed numerically. By using the 

Cartesian co-ordinate system, the fluid flow governing equations i.e. momentum equation, 

continuity equation are solved based on the discretization of domain. The CFD analysis needs 

a spatial discretization scheme and time marching scheme. Meshing divides the continuum 

into finite number of nodes. Generally the domains are discretized by three different ways i.e. 

Finite element, Finite Volume and Finite Difference Method. Finite element method is based 

on dividing the domain into elements. In finite element method the numerical solutions are 

obtained by integrating the shape function and weighted factor in an appropriate domain. This 

method is suitable for both structured and unstructured mesh. But the Finite Volume method 

divides the domain into finite number of volumes. Finite volume method solves the 

discretization equation in the centre of the cell and calculates some specified variables. The 

values of quantities, such as pressure, density and velocity that are present in the equations to 

be solved are stored at the centre of each volume. The flux into a region is calculated as the 

sum of the fluxes at the boundaries of that region. As the values of quantities are stored at 

nodes but not at boundaries this method requires some interpolation at nodes. Generally finite 

Volume method is suitable for unstructured domain. Whereas finite Difference method is 

based on approximation of Taylor's series. This method is more suitable for regular domain. 

For transient problems an appropriate time step needs to be specified. To capture the 

required features of fluid flow with in a domain, the time step should be sufficiently small but 

not too much small which may cause waste of computational power and time. Spatial and 

time discretization is linked, as evident in the Courant number. 
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Figure 3.6: Meshing Of The Channel top view 

 

Figure 3.7: Meshing View By Zooming 

3.5.9 COURANT NUMBER  

A criterion often used to determine time step size is known as Courant number. The Courant 

number stops the time step from being large enough for information to travel entirely through 

one cell during one iteration. For explicit time stepping schemes Courant number should not 

be greater than 1. For implicit time stepping schemes this number may be higher than 1. The 

Courant number is defined as: 

          Eq.3.22  

Where is the Courant number,  is the average velocity,  is the maximum time step size 

and  is the largest grid cell size along the direction of flow. 
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A mesh consists of too few nodes cause quick solution of simulation but not a very 

accurate one. However a very dense mesh of nodes causes excess computational time and 

memory. For CFD analysis more nodes are required in some areas of interest, such as near 

wall and wake regions, in order to capture the large variation of fluid properties. Thus, 

structure of grid lines causes further wastage of computer storage due to further refinement of 

mesh. In this study, the flow domain is discretized using structured grid and body-fitted 

coordinates. It must be noted that the running time is low and it is obtained by grid-

independent results. The grid structure must be fine enough, especially near the wall 

boundaries (in order to consider the viscous flow), and at free surface. In this numerical 

simulation, various computational trials are conducted with different number of grid cells. It 

is concluded that the results are almost independent from the grid size and running time is 

optimal. 

3.5.10 SOLVER SETTING 

The numerical scheme that CFD codes adopt is the finite volume method. The differential 

transport equations are integrated over each computational cell, and the Gauss and Leibnitz 

theorems are applied in this method. This consists of various models used for analysis, the 

initial and boundary conditions, the number of Eulerian phases, the properties of the 

materials, the physical and chemical phenomena involved. At last, the set of algebraic 

equations is solved by iteration process and the cell-center values of the flow variables are 

calculated. 

3.5.11 TWO PHASE MODELING EQUATIONS 

A large number of flows encountered in nature and technology are known as a mixture of 

phases. Physical phases of matter are solid, liquid and gas. But the concept of phase in a 

multiphase flow system is applied in a wider way. In multiphase flow, a phase can be defined 

as a particular class of material that has a certain inertial response and interaction with the 
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flow and the potential field in which it is immersed. Currently there are two approaches for 

the numerical calculation of multiphase flows: the Euler-Lagrange approach and the Euler-

Euler approach. 

3.5.12 VOLUME OF FLUID (VOF) MODEL 

The VOF formulation in ANSYS FLUENT is generally used to compute a time dependent 

Solution. An Eulerian variation in which the secondary phase is not dispersed within the 

primary phase but rather there is an interface between the phases and so the interface must be 

tracked while also solving a momentum equation for each phase. The volume of fluid (VOF) 

method is a computational tool for the analysis of free surface flows (Hirt and Nichols 1981). 

The interface(s) between the phases is accomplished by the solution of a continuity equation 

for the volume fraction of one (or more) of the phases. For the   phase, this equation has 

the following form (Rahimzadeh et al. 2012):    

        Eq.3.23 

Where  is the volume fraction of the  phase. In each control volume, the volume 

fractions of all phases sum up to unity. The following three conditions are possible for each 

cell: 

If = 0, the cell is empty. 

If = 1, the cell is full. 

If 0 < < 1, the cell contains the interface between the  phase and one or more other 

phases. In each cell the average properties are computed according to the volume fraction of 

each phase. VOF method was developed to trace the moving free surface of the 

incompressible viscous flow. 
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3.5.13 SOLVING FOR TURBULENCE 

 For past three decades various numerical turbulence models such as K-ε model, K-ω 

model, Reynolds stress transport model, Algebric Reynolds stress model Large eddy 

simulation model etc. have been developed to simulate the complex secondary structure 

in meandering channel. 

 K-ε model is the most common model used in CFD to simulate mean flow 

characteristics for turbulent flow conditions. It is a two equation model which gives a 

general description of turbulence by means of two transport equation. The first 

transported variable (K) determines the energy in the turbulence and is called turbulence 

kinetic energy. The second one (ε) is the turbulence dissipation which determines the 

rate of dissipation of turbulence kinetic energy. This model is given to find an 

alternative to algebraically prescribing turbulent length scales in moderate to high 

complexity flows. It focuses on the mechanism that affects the turbulent kinetic 

energy.It is more expensive in terms of memory.Its accuracy has been reduced for flows 

containing large adverse pressure gradients.It also performs poorly in variety of 

important cases such as unconfined flow, curved boundary layer, rotating flows, and 

flows in non-circular ducts. 

 K-ω model is a common two equation turbulence model in computational fluid 

dynamics which is used a closer equation of the Reynolds-averaged Navier-Stokes 

equation.Where K signifies turbulence kinetic energy and ω signifies specific rate of 

dissipation. 

 Large eddy simulation model (LES) model solves spatially averaged Navier stokes 

equation. Large eddies are directly resolved but the eddies smaller than mesh are 

modeled. It solves large spatial as well as smaller scale equations.It operates on the 

Navier-Stokes equations to reduce the range of the solution reduce the computational 
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cost. In the present study LES model is used to simulate fluid flow in the meandering 

channel. 

3.5.13.1 USED LARGE EDDY SIMULATION TURBULENCE MODEL 

Large eddy simulation model is an intermediate approach to DNS and RANS 

turbulence model. LES relies on a spatial filter, rather than a time averaging process. 

Turbulent flows have generally wide range of length and time scales. To distinguish eddies 

that are going to be calculated from those that are going to be modelled, a filtering function 

(eg. Gaussian, Box cutoff, Fourier) is used. The large scale motions are generally more 

energetic than the small ones. Large eddies depend highly on boundary conditions which 

determine the basic feature of flow. Large scale eddy causes the transfer of momentum and 

heat. The concept of Large Eddy Simulation (LES) is adopted for accuracy in turbulence 

nature. The LES model directly resolves the large eddies present in turbulent flows and 

models the smaller scale eddies. This model captures larger scale motion, as well as it covers 

the effects of small scales of eddies by using sub-grid scale (SGS) model. In this technique 

direct calculation is used to resolve the eddies that are larger than the size of the finite volume 

cell, while a simple model is used to model the more universal nature of the small scale 

eddies that are smaller than the mesh size. By seeing advantages of the LES method, it is 

adopted for the simulation.  

Generally LES uses a spatial average instead of time-averaging sceam. Here the 

velocity component is split into a resolved component  and an unresolved component u′. 

The governing equations employed for LES are obtained by filtering the time-dependent 

Navier-Stokes equations in either Fourier (wave-number) space or configuration (physical) 

space. The instantaneous velocity variable u can be written as: 

          Eq.3.24 
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Where  is the unresolved part and  is the large scale part defined through volume 

averaging as: 

      Eq.3.25  

Where  is the Gaussian filter. 

The non-filtered Navier-Stokes equation is: 

       Eq.3.26  

After performing the volume averaging and neglecting density functions, the filtered Navier-

Stokes Equations become 

       Eq.3.27 

The Non-linear transport term in equation (15) can be explained as: 

 

        Eq.3.28 

In time averaging the term II &III vanish but not in volume averaging. 

Introducing the residual stress or sub grid scale (SGS) stresses defined as  and expressed as 

         Eq.3.29 

Now equation (15) can be written as: 

      Eq.3.30 

Equation (3.27) is the basis of the LES turbulence model. 

3.5.14 SETUP PHYSICS 

For a given computational domain, boundary conditions are imposed which can sometimes 

over specify or under-specify the problem. Usually, after imposing boundary conditions in 
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non-physical domain may lead to failure of the solution to converge. It is therefore important, 

to understand the meaning of well-posed boundary conditions. The boundary conditions 

implemented for this study are shown in Fig 3.8 Subsequently these conditions are discussed 

in the following 

 

Figure 3.8: Boundary Conditions 

3.5.14.1 INLET AND OUTLET BOUNDARY CONDITIONS 

All of the channels reported were performed with translational periodic boundaries in the 

stream wise direction of the flow which allow the values on the inlet and outlet boundaries to 

coincide. Further the pressure gradient was specified across the domain to drive the flow. To 

initialize the flow, a mean velocity is specified over the whole inlet plane upon which 

velocity fluctuations are imposed. The inlet mean velocities are derived from the 

experimental average values. The mean velocity was specified over the whole inlet plane and 

is computed by , where Q is the flow discharge of the channel and A is the cross 

sectional area of the inlet. In order to simplify slope changes and specify the pressure gradient 

the channel geometries were all created flat. The effects of gravity and channel slope 

implemented via a resolved gravity vector. Here the angle  represents the angle between the 
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bed of the channel and the horizontal, the gravity vector is resolved in x, y and z components 

as          Eq.3.31 

Where  = angle between bed surface to horizontal axis and tan =slope of the channel. Here, 

the z component causes the direction responsible for flow of water along the channel and the 

x component is responsible for creating the hydrostatic pressure upon the channel bed. From 

the simulation, “y” component of the gravity vector ( ) is found to be responsible for 

the convergence problem of the solver. 
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4.1 OVERVIEW 

This Chapter 3 contains the different experimental procedures that have been carried out for 

conducting series of experiments throughout the meandering path of the meandering channel. 

In this chapter the results of the tests conducted in form of velocity distributions along the 

width and depth , boundary shear stress along the wetted perimeter of the channel section 

,Numerical results in the form of velocity contour, and boundary shear contour and at last 

comparison with other researcher‟s work having same geometrical parameters are presented. 

4.2 LONGITUDINAL VELOCITY DISTRIBUTION 

The discharge of 6.3 x 10
-3 

m
3
/s is to be maintained throughout the experiment   and the 

velocity datas are obtained along the meandering path of the channel at every cross-section. 

A set of 5 pitot tubes are arranged unequally and are allowed to move across the channel 

section from the left bank towards the right bank. The velocity datas are recorded at 4cm 

intervals on either side of the centre of the meandering channel cross section for the bed and 

depths of 0.2H 0.4H, 0.6H and 0.8H. Where H being the averaged depth of flow of water at 

the corresponding section. The velocity datas obtained are then analyzed along the width and 

depth of the channel cross section for better understanding of the characteristics of flow 

through the meander path of the sinuous channel. The following figures from 4.1.1 to 4.1.13 

represent the longitudinal velocity profiles along the meander path. 

 

Figure: 4.1.1 
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Figure: 4.1 2 

 

Figure: 4.1.3 

 

Figure: 4.1.4 

 

Figure: 4.1.5 
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Figure: 4.1.6 

 

Figure: 4.1.7 

 

Figure: 4.1.8 

 

Figure: 4.1.9 
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Figure: 4.1.10 

 

Figure: 4.1.11 

 

Figure: 4.1.12 

 

Figure:  4.1.13 

Figure 4.1.1 to 4.1.13: Vertical Velocity Profile plots for all 13 Sections along the Meander 

Path 
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4.3 LONGITUDINAL VELOCITY CONTOURS AT DIFFERENT SECTIONS 

ALONG THE MEANDER PATH 

The longitudinal velocity distribution in the lateral direction is analyzed along the meander 

path of the channel. The vertical sections are taken at 4cm intervals from the centreline of the 

meandering channel. The following figures from 4.2.1 to 4.2.13 represent the contour plots at 

all the sections along the meander path.  

 

Figure: 4.2.1 

 

 

Figure: 4.2.2 

 

Figure: 4.2.3 
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Figure: 4.2.4 

 

Figure: 4.2.5 

 

Figure: 4.2.6 

 

Figure: 4.2.7 



  RESULT AND DISCUSSION 

 

66 | P a g e  
 

 

Figure: 4.2.8 

 

Figure: 4.2.9 

 

Figure: 4.2.10 

 

Figure: 4.2.11 
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Figure: 4.2.12 

 

Figure: 4.2.13 

Figure 4.2.1 to 4.2.13: longitudinal Velocity contours for all 13 Sections along the Meander 

Path 

 

The following inferences can be made from the velocity profile plots and contours 

1. The velocity contour diagram of section A, shown in Fig. 4.2.1 indicates that higher 

longitudinal velocity lies towards the right bank i.e. the inner wall of the channel section. 

The vertical velocity profiles at the same section (Fig. 4.2.1), depicts the similar pattern. 

The vertical velocity profile sections closer to the inner wall are observed to be bulgier 

than the outer wall.  

2. Longitudinal velocity profile plots given clearly indicate that from sections A and G 

profiles tend to remain higher towards the inner wall. Contour plots also show the similar 

pattern and is also observed that velocity goes on increasing as one moves in the lateral 

direction. The velocity then starts decreasing until the cross-over. 
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3. At the cross-over it is observed that the velocity profiles are somewhat uniform with its 

maximum velocity occurring close to the centre of the channel section. This observation 

is usually seen to be similar in straight channels. Hence the channel follows nearly a 

steady and uniform flow at the cross-over reach, where the meandering channel changes 

its sign of curvature and is assumed to behave nearly as a straight channel. 

4. Fig. 4.10.8 through 4.1.13 shows that the maximum velocity transfers from the central 

region of the cross-over section to the left bank i.e. the inner wall of the corresponding 

anti-clockwise curvature. The maximum velocity initially occures close to the bed and 

then shifts closer towards the free surface. 

5. In the sections following the cross-over, i.e. from sections G to M, the profiles indicate 

that the local maximum value of velocity at each section starts moving from the central 

region towards the inner wall of the channel i.e. towards the left hand side. 

6. The sections C and K as seen in Fig. 4.1.3 and 4.1.11, have highest maximum velocity 

throughout the channel, close to 130 cm/s. Such observation is due to the curvature of the 

meander path, moving towards the cross-over. 

 

4.4 VELOCITY DISTRIBUTION ALONG THE CHANNEL WIDTH THROUGH THE 

MEANDER PATH 

The longitudinal velocity distribution is analyzed along the width of the channel. The 

measurements are taken at the bed of the channel and the side slopes at by 0.4H, 0.6H, and 

0.8H from the bed. H here is the average depth of water at the every corresponding section 

along the meander path. Depth-averaged velocity is considered to be the average velocity at 

any vertical section of a channel cross-section. The occurrence of this velocity is generally 

trusted to be found at 0.4H from the bed of the channel. The depth-averaged velocity is hence 

considered at 0.4H above the bed from the above experimental investigation. The following 
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figures from 4.2.1 to 4.2.13 represent the horizontal velocity profile along the channel at a 

height of 0.4 H along the meander path. 

 

Figure: 4.3.1 

 

Figure: 4.3.2 

 
Figure: 4.3.3 
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Figure: 4.3.4 

 
Figure: 4.3.5 

 
Figure: 4.3.6 

 
Figure: 4.3.7 

 
Figure: 4.3.8 
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Figure: 4.3.9 

 
Figure: 4.3.10 

 
Figure: 4.3.11 

 
Figure: 4.3.12 
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Figure: 4.3.13 

Figure 4.3.1 to 4.3.13: Lateral Velocity Profile at 0.4H  Depth from bed of the Channel 

Section along the Meander Path 

 

From the above horizontal profile study at different levels, the following deductions can be 

made 

1. The depth-averaged velocity is usually found to be higher around the centre of the 

channel section in case of a simple straight channel, but in the present experimental 

observation higher depth-averaged velocity is found closer towards the inner wall of the 

simple meandering channel. 

2. The horizontal velocity profiles at the bed of the channel at section A i.e. at the bend 

apex remains higher at the inner wall and there is a drastic difference in velocity between 

the inner and outer walls as shown in Fig. 4.3.1. The highest velocity remains close to 85 

cm/sec. 

3. On moving at the bed from the initial bend apex region to the cross-over (Section G) as 

seen in Fig. 4.3.2 to 4.3.6; there is a gradual variation in the horizontal velocity profile 

along the width of the channel, with higher velocity at the inner wall. 

4. As seen in Fig. 4.3.7, at the bed of the cross-over section G, the maximum velocity 

moves towards the centre of the channel section, with gradual variation of velocity 

towards the inner and outer walls. This observation depicts that a meandering channel 

behaves as a straight channel at around the cross-over section In the following sections, 
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from Fig. 4.3.8 to Fig. 4.3.12, on moving from cross-over towards the other bend apex, 

the higher depth-averaged velocity moves towards the left of the channel section, this is 

now the inner wall for the channel section. 

5. Section G shown in fig.4.3.7 indicates the presence of maximum velocity of around 

120cm/s close to the middle at a height of 0.4H from the bed. Hence, it can be concluded 

that higher velocity is achieved somewhere at the cross-over. 

6. The characteristics shown in Fig.4.3.11 i.e. for section K (anti-clock wise curve)indicates 

similarity with that of the section C(clock wise curve). Sections remain after the section 

K i.e. from Fig. 4.3.8 to 4.3.13 show steady variation with highest velocity towards the 

the inner wall of the channel. 

 

 

 

4.5 BOUNDARY SHEAR STRESS DISTRIBUTION AT DIFFERENT SECTIONS 

ALONG THE MEANDER PATH 

Boundary shear stress measurements are carried out at different sections along the meander 

path through the cross-over. Total 13 reaches of boundary shear stress measurements are 

carried out. 

The figures from 4.4.1 to 4.4.13 illustrate the boundary shear stress distributions across the 

channel bed and the side walls at the inner and outer walls for all the 13 reaches. 

The shear stress profiles along the rigid surface of the channel are presented by showing the 

stress curves perpendicular to all the three sides of the channel viz. the bed, the inner wall and 

the outer wall. Hence the figures provide a clear demonstration about the boundary shear 

stress distribution throughout the channel section along the meander path. 
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Figure: 4.4.1 

 

Figure: 4.4.2 

 

 

Figure: 4.4.3 
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Figure: 4.4.4 

 

Figure: 4.4.5 

 

 

Figure: 4.4.6 
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Figure: 4.4.7 

 

Figure: 4.4.8 

 

 

Figure: 4.4.9 
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Figure: 4.4.10 

 

Figure: 4.4.11 

 

 

Figure: 4.4.12 
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Figure: 4.4.13 

Figure 4.4.1 to 4.4.13: Boundary Shear Stress Plots across all 13 Sections along the Meander 

Path 

Following conclusions can be made from the above boundary shear stress plots. 

1. At the bend apex section A, given in figure 4.4.1, it can be observed that the shear stress 

carried by the inner wall is more as compared to the outer wall. 

2. The maximum value of shear stress at the inner bank of the section A is found to be 

around 0.23N/m
2
, where as a minimum of 0.10N/m

2
 at the outer wall. The variation of 

shear stress in this section is found to be normal. 

3. Fig. 4.4.2 to 4.4.6, which shows section B to F indicate that the shear stress remains 

higher towards the inner wall. In these sections, the variation of shear stress between the 

inner and outer walls is observed to be gradual. 

4. At section G (cross-over section), the variation of boundary shear stress is found to be 

more or less uniform throughout the channel section. The shear stress value remains 

close to 0.28N/m
2
. 

5. From the Fig. 4.4.1 through 4.4.13, it can be observed that on moving from the initial 

bend apex section A; the boundary shear stress carried by the inner wall gradually 

decreases and reaches a minimum at the cross-over and then it increases on the other 

bank i.e. the inner wall while moving towards the following bend apex section i.e. M. 
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6. From Fig. 4.4.8 to 4.4.12, it can be seen that there is a gradual variation in boundary 

shear stress between the inner and outer walls, with higher stress remaining towards the 

left bank (inner wall). 

7. Fig. 4.4.13 describes extreme variation in the boundary shear stress values between the 

inner and outer walls of the channel section, with higher shear stress lying towards the 

inner wall. 

8. The boundary shear stress at section C Fig.4.4.3 and section K Fig.4.4.11 are having  

highest value about .44N/  at their inner walls. 

9. The variation of boundary shear at section G as per Fig.4.4.7is found to be uniform 

throughout the width 

4.6 COMPARISON WITH OTHER RESEARCHER’S WORK 

The longitudinal velocity found experimentally is compared with the work of 

Pradhan(2014), having the same geometrical parameters with a similar study of longitudinal 

velocity distribution throughout the meander path. The comparison is done against a single 

variable, which is the aspect ratio (b/h). Figures 4.5.1 to 4.5.13 show the comparison plot 

between these two data sets keeping velocity as abscissa and a non-dimensional parameter 

i.e. inverse aspect ratio (h/b) as the ordinate. The study helps to determine the differences in 

velocity profiles of the two data sets having different Aspect Ratios. 

Figure: 4.5.1 



  RESULT AND DISCUSSION 

 

80 | P a g e  
 

Figure: 4.5.2 

Figure: 4.5.3 

Figure: 4.5.4 

Figure: 4.5.5 
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Figure: 4.5.6 

Figure: 4.5.7 

Figure: 4.5.8 

Figure: 4.5.9 
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Figure: 4.5.10 

Figure: 4.5.11 

Figure: 4.5.12 

Figure: 4.5.13 

Figure 4.5.1 to 4.5.13: Comparison of Velocity Profiles at Different Aspect Ratio 

From the above figures we concluded that 
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 At the bend apex sections A and M the velocity profiles are seen to remain quite close 

to each other i.e. seem to be similar. 

 Moving from bend apex section A towards the cross over G the deviation among them 

increases towards the inner wall with the velocity profile of the higher aspect ratio 

value remain higher. 

 At the cross over G the deviation among the velocity profiles is observed to be quite 

high at the central region of the section. 

 In the following section the pattern is observed to be similar but towards the left of the 

channel section,which is now the inner wall. 

 

4.7 NUMERICAL RESULTS  

Generally, experimental and theoretical analysis are the main tools for finding out the 

solution of open channel flow problems to meet the needs of field requirements. In recent 

times CFD techniques are being used extensively for solving the flow problems. In this study, 

a few simulations were carried out by using the commercial code namely ANSYS to simulate 

the present experimental investigation. Simulation was carried out to predict the velocity 

contour and boundary shear stress distribution along the meanderpath. Here Large Eddy 

Simulation model is used for turbulence modelling. The LES equations are discretized in both 

space and time. In this study the algorithms adopted  to solve the coupling between  pressure 

and velocity field  is PISO which is the pressure implicit splitting operators use in Fluent 

(Issa 1986). A non-iterative solution method PISO is used to calculate the transient problem 

as it helps to converge the problems faster 
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4.7.1  VELOCITY CONTOURS ALONG THE MEANDER PATH 

Figure4.6.1VELOCITY CONTOUR OF SECTION A  

 

 

Figure 4.6.2:  VELOCITY CONTOUR OF SECTION-B 

 

Figure 4.6.3:  VELOCITY CONTOUR OF SECTION-C 
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Figure 4.6.4:  VELOCITY CONTOUR OF SECTION-D 

 

Figure 4.6.5:  VELOCITY CONTOUR OF SECTION-E 

 

 

Fig 4.6.6:  VELOCITY CONTOUR OF SECTION-F 
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Figure 4.6.7:  VELOCITY CONTOUR OF SECTION-G 

 

Figure 4.6.8:  VELOCITY CONTOUR OF SECTION-H 

 

Figure 4.6.9:  VELOCITY CONTOUR OF SECTION-I 
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Figure 4.6.10:  VELOCITY CONTOUR OF SECTION-J 

 

Figure 4.6.11:  VELOCITY CONTOUR OF SECTION-K 

 

Figure 4.6.12:  VELOCITY CONTOUR OF SECTION-L 
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Figure 4.6.13:  VELOCITY CONTOUR OF SECTION-M 

Figure 4.6.1 to 4.6.13 : Velocity Contours along the meander path of all the 13 sections by 

Ansys Fluent 

 

4.7.2  VELOCITY CONTOUR FOR TOTAL CHANNEL 

 

Figure 4.7 Velocity contour for total channel 

OUTLET 

INLET 
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4.7.3 BOUNDARY SHEAR CONTOUR 

 

Figure 4.8 Contours of boundary shear 



 

 

 

 

CHAPTER 5 

CONCLUSIONS 



 

91 | P a g e  
 

5.1 CONCLUSIONS 

Experimental investigations are carried out on a highly sinuous meander path at different 

reaches. The different flow characteristics such as velocity distribution, shear stress 

distribution etc. are investigated Based on the analysis of the experimental investigations, and 

well validated by numerical results.  

 In the sections following the cross-over, i.e. from sections G to M, the profiles 

indicate that the local maximum value of velocity at each section starts moving from 

the central region towards the inner wall of the channel i.e. towards the left hand side. 

 The depth-averaged velocity is usually found to be higher around the centre of the 

channel section in case of a simple straight channel, but in the present experimental 

observation higher depth-averaged velocity is found closer towards the inner wall of 

the simple meandering channel. 

 The horizontal velocity profiles at the bed of the channel at section A (bend apex) 

remains higher near the inner wall and there is a extreme difference of velocities 

between the inner and outer walls as shown in Fig. 4.3.1. The highest velocity remains 

adjacent to 80 cm/sec. 

 On moving at the bed from the initial bend apex region towards the cross-over     

(Section G) as shown  in Fig. 4.3.2 to 4.3.6; there is a gradual variation in the 

horizontal velocity profiles along the width of the channel, with higher velocity occurs 

near the inner wall. 

 As seen in Fig. 4.3.7, at the bed of the cross-over section G, the maximum velocity 

moves towards the centre of the channel section, with gradual variation of velocity 

towards the inner and outer walls. This observation depicts that a meandering channel 

behaves as a straight channel at around the cross-over section In the following 

sections, from Fig. 4.3.8 to Fig. 4.3.12, on moving from cross-over towards the other 



 

92 | P a g e  
 

bend apex, the higher depth-averaged velocity moves towards the left of the channel 

section, this is now the inner wall for the channel section. 

 At the bend apex section A, given in figure 4.4.1, it can be observed that the shear 

stress carried by the inner wall is more as compared to the outer wall. 

 The highest shear stress at the inner bank of the section A is found to be around 

0.23N/m
2
, while a minimum of 0.10N/m

2
 at the outer wall. The variation of shear 

stress in this section is seen to be normal. 

 Fig. 4.4.2 to 4.4.6, which shows section B to F indicate that the shear stress remains 

higher towards the inner wall. In these sections, the variation of shear stress between 

the inner and outer walls is observed to be gradual. 

 At section G (cross-over section), the variation of boundary shear stress is found to be 

more or less uniform throughout the channel section. The shear stress value remains 

close to 0.28N/m
2
. 

 At the bend apex sections A and M the velocity profiles are seen to remain quite close 

to each other i.e. seem to be similar. 

 From the comparison plots we got to know that moving from bend apex section A 

towards the cross over G the deviation among them increases towards the inner wall 

with the velocity profile of the higher aspect ratio value remain higher. 

 The Numerical results we found are well validated with the experimental results. 

 

5.2 SCOPE FOR FUTURE RESEARCH 

The present research gives an extensive scope for future investigators to investigate other 

aspects of a meandering channel. The present research is limited to a single discharge flow 

analysis of the meander path. The research can be continued for different discharges to get an 
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overall depiction about the flow characteristics.The future scope of the present research can 

be summarized as: 

1. This numerical modeling can be done by meandering channel of different sinuosity. 

2. Keeping the sinuosity same the bed may be considered as rough by taking different 

materials of different roughness values as bed material. 
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