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ABSTRACT 

 

In an open channel or overland flow of shallow depth, flood wave propagation is the concept 

which requires governing equations for its solution. The computation of governing equations 

(both momentum equation and continuity equations) to be solved are generally called the Saint-

Venant equations. These equations are highly nonlinear partial differential equations, the 

solutions of which are very much complex. Numerical approaches are generally employed to 

solve these equations and proper discretization with proper selection of grid size and time step 

provides the results more effectively and accurately. In the present research work the Saint –

Venant equations are solved through the lax diffusive explicit finite difference scheme. In this 

the characteristic equations are simultaneously solved in both boundaries for dynamic wave, 

which leads to give very accurate result. Two types of downstream boundary conditions were 

considered together with the condition of discharge hydrograph at upstream end. The physical 

laws which govern two basic principles in the hydraulics of flow of water are principle of 

conservation of mass and principle of conservation of momentum. These two laws are of 

mathematical form generally expressed in partial differential equation form known as Saint-

Venant equations. Conversion of these equations into ordinary partial differential equation forms 

and the simple discretization of this equation by explicit scheme using CFD tool are presented in 

this paper. During the time of flood, the flow in open channel is generally unsteady. Based on a 

simple explicit scheme using mat-lab software, the routing of flood in different section of study 

area in downstream locality is explored keeping the upstream flow hydrograph is as initial 

boundary condition. Upstream hydrograph at upstream boundary and the critical flow depth from 

critical flow condition at downstream boundary have been taken for the present analysis. 

Different discharge and stage hydrograph at downstream sections of the channel under sub 

critical flow conditions are explored and discussed. The study will be helpful for obtaining the 

nature of stage and flow hydrograph of a channel during flood. Mat-lab computing tool and 

suitable program has been performed successfully. The results of free surface flows of a channel 

using  HEC-RAS software are also compared well. The present approach is found to be more 

effective than other existing numerical models which prove the adequacy of the present 

numerical model. 

Key words: Finite difference method, explicit method, lax-diffusive scheme, HEC-RAS 
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1.1 OVERVIEW  

Flow is the movement of water from one place to another continuously in a current or stream. 

Two types of liquid flow are there in the study of hydraulics. First one is the flow within a 

conduit which has a free surface open to atmosphere, known as channel or river. The second one 

is pipe flow which is closed in all surfaces or flow within a closed conduit. In many ways the 

behaviours of these two types of flow are considered and used in similar way. Viscosity and 

gravity forces have played a major role in open channel and surface tension has a minor effect on 

flow in open channel. Pressure at free surface is assumed as constant in analysis purposes. In 

open channel, there are different types of flow including steady, unsteady, uniform, non-uniform, 

gradually varied, rapidly varied or combined of two or more than these. Steady flow is referred 

to as the flow in which water depth and velocity does not change with respect to time at a point. 

Unsteady flow is the flow in which flow parameters in which stage, velocity, and discharge 

change with time. In channel, flow may be steady but it may be either uniform or non-uniform 

flow depending on the flow depth and velocity change with space in successive cross-section of 

the channel. Uniform flow happens only when the cross-section is constant along the waterway. 

Uniform flow of channel can only occur in a prismatic channel in which cross section, roughness 

and slope in the flow direction are constant. But the flow in natural channel or river of variable 

cross section is considered as non-uniform flow. When the depth and velocity change gradually 

in the flow direction that the vertical acceleration can be neglected in a non-uniform flow is 

known as gradually varied flow; otherwise it is considered as the rapidly varied flow. Mainly in 

open channel flow, non-uniform flow occurs for its variable properties. 

1.2 EQUATIONS OF DIFFERENT TYPES OF FLOW 

Steady Flow 

  

  
   

  

  
   

  

  
           (1.1) 

Unsteady flow 

  

  
   

  

  
   

  

  
           (1.2) 
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Uniform flow 

  

  
   

  

  
   

  

  
           (1.3) 

Non uniform flow 

  

  
   

  

  
   

  

  
           (1.4) 

1.2.1 FROUDE NUMBER 

The term Froude number    is a focal term used for knowing the type of flow in open channel. It 

is defined as the ratio of inertial force to gravitational forces. It is a dimensionless number which 

is represented by 

   
 

√  
           (1. 5) 

V = 
 

 
 

d = 
 

 
 

For fr is less than 1, then it is called as subcritical flow. If it is greater than 1 it is characterized as 

supercritical flow. For Froude number is equal to 1 it referred as critical flow. 

1.2.2 CRITICAL FLOW 

The flow is critical when the specific energy is minimum. The variation of specific energy with 

respect to depth at a constant discharge shows a minimum depth which is named as critical 

depth. So the critical flow is the flow at minimum specific energy. And the critical depth is the 

depth of maximum discharge when the specific energy remains constant. During this critical 

flow, the velocity head is calculated and observed that it is half of the hydraulic depth. The 

general expression for critical flow is 

 Q
2
/g = A

3
/T            (1.6) 

http://en.wikipedia.org/wiki/Dimensionless_number
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So it obvious that sometimes flood happens due to the sudden high stage in channel. Often it 

comes so quickly that an alarm cannot be given before that.  At that very moment most natural 

flows in streams and rivers change slowly with time. Other man made channels and canals have 

gates that permit a greater or lesser flow through their structures. Now a day to understand and 

predict the effects of flood in downstream region is a major challenge in hydrology and 

hydraulics.  

In hydrology, the flood is a term generally means a sudden high stage in a river when the flow 

rate exceeds the maximum capacity of river body .The stage rises  the level at which the river 

overflows its banks and obviously the inundation of the adjoining dry localities take place. The 

occurrence of flood primary affects on human lives, animals and the devastation of civil 

structures including residents along with other buildings, bridges, canals, siphons, transportation 

ways, sewerage systems, water treatment plants, power generation plants. Secondarily it causes 

the most waterborne diseases and leads to shortages of food due to the destruction of crops which 

is to be harvested. 

For prevention and control of flood a routing technique is applied to measure the flood 

magnitude in downstream areas. Two types of routing of flood are there. So routing is a process 

of determining the amplitude of a flood wave in every required downstream section resulting 

from the flood which moves from upstream to successive points along the waterway. It also 

estimates the magnitude of water flow, velocity and depth in required areas. 

1.3 HYDROGRAPH 

In unsteady flows, hydrograph is a term which is defined as a graphical representation of flow as 

a function of time at one concentration point during the flood. In a river network system, channel 

runoff is continuously transformed as it travels downstream reaches. A hydrograph is represented 

by a graph showing discharge at the concentration point versus time in river. The hydrograph is 

also referred as a time series of flow. Within each reaches, hydrograph characteristics change. 

The time series may be of a long period or only few selected rainfall events of few selected hours 

or days. . But during the flood, obviously it is the series of flow with a short interval of time due 

to the excess rain fall occurred frequently. Conventionally it is considered as two components 

http://en.wikipedia.org/wiki/Sewerage
http://en.wikipedia.org/wiki/Water_treatment
http://en.wikipedia.org/wiki/Power_generation
http://en.wikipedia.org/wiki/Waterborne_diseases
http://en.wikipedia.org/wiki/Crops
https://www.google.co.in/search?biw=1366&bih=624&q=define+conventional&sa=X&ei=aSYpU9iBB4SWrAeMy4DQBA&ved=0CCoQ_SowAA
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(Direct runoff and base flow direct runoff and Base flow) of the hydrograph. Direct runoff is the 

effective rainfall that results directly from the series of rainfall after the losses subtracted from 

the gross rainfall. Base flow is the flow that is received from ground water storage unrelated to 

rain fall. Base flow separation involves dividing the hydrograph into a direct runoff component 

and a base flow component. 

 At the beginning, there is only base flow which is the ground water contribution to the river 

which is gradually depleting in an exponential form. After the storm subsides, the initial losses 

like interception and infiltration are met and then the surface flow begins. The hydrograph 

gradually rises and reaches its peak value after a time tp. Hydrograph characteristics like flow 

hydraulics, channel storage, subsurface contribution and lateral inflow. Additional attenuation 

comes in the presence of flood plain in the river due to overbank storage. Channel flow 

hydrograph then reshapes as the flow continuously travels to downstream.   

From rain fall events if a storm water hydrograph has been generated for an upstream site, then 

we are commonly asked to predict what is the characteristic of the flood at some downstream 

observation point or points? Generally there are two things required for the downstream areas 

that how big will the flood peak be and how much time will the flow take to reach the flood 

peak? To answer these questions, we must route the flood from the upstream point of observation 

to the essential points at downstream. 

1.4 ROUTING 

 Mathematically, flood Routing is the prediction of the  magnitude, velocity and shape of a flood 

wave with respect to time at one or more points along a river channel. Due to channel 

irregularities, change of cross sectional geometry and roughness in bed and side, the flood wave 

configuration gets modified in required points. Routing is mainly applied to estimate how the 

proposed measures of magnitude (flow and stage) will affect the characteristics of flood waves in 

rivers in different localities. The other important purpose are the design of flood protection work, 

to forecast whether a flood possess a risk to health and safety,  to provide information about how 

much water  is present  and the physical characteristic of the region so that adequate protection 

and economic solutions are taken immediately.  
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Flood routing may be divided into two parts: 

1. Flood routing through a reservoir. 

2. Flood routing through a channel  

Reservoir flood routing is done for accounting the storage availability in the reservoir where the 

storage and outflow are interdependent. This routing is applied when the inflow rate is higher 

than the outflow rate from the reservoir. Frequently the storage in the reservoir increases that the 

storage can be computed. Reservoir Routing is used to determine the peak-flow attenuation or 

reduction of peak that a hydrograph undergoes as it enters a reservoir. The continuity equation 

(conservation of mass) is solved for routing in the reservoir. 

 Flood routing through a channel is also same as the flood routing technique through a reservoir. 

In very long channels the entire flood wave travels a distance along the downstream resulting in 

at time interval and time of translation as well. The redistribution due to storage effects modifies 

the shape of the hydrograph, while the translation changes its position in time. In this routing, the 

translation and the attenuation are two terms used for describing the flood wave in downstream. 

Attenuation is a reduction of the peak flow due to dispersion of the flood wave over that interval 

of time. Flood translation or time lag is referred as the movement of a flood wave through a 

channel without attenuation caused by the time of travel of the flood wave between the two 

points. Keeping the peak discharge constant, the delay of the hydrograph occurs in observation 

points. This routing technique is used to analyze the effects of a channel on a hygrograph’s peak 

flow and travel time. Inflow hydrograph and the channel characteristic data are needed for 

routing in a channel. 
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Fig.1.1 Channel Routing 

But the accuracy of flood routing is an important subject for research because when the flow 

phenomenon in a channel is non-uniform and unsteady, it is very difficult to obtain a true picture 

of the flow hydrograph. Accurate information of the flood peak attenuation and the duration of 

the high water levels (translation) obtained by channel routing are most important in the 

application of flood forecasting, reservoir design and flood protection works. For channel 

routing, two methods are mainly used.  A variety of routing methods are available in each group. 

They are 

1. Traditional or hydrological method and 

2. Hydraulic routing.  

1.4.1 TRADITIONAL OR HYDROLOGICAL METHOD 

Hydrologic routing methods employ essentially the equation of continuity, on the other hand 

hydraulic methods use continuity equation along with the equation of motion of unsteady flow 

hence better than hydrologic methods. Hydraulic routing is based on the solution of partial 

differential equations of unsteady overland flow. Saint-Venant equations are used for its solution.  

Saint-Venant equations are consists of both continuity and momentum equations. 

http://en.wikipedia.org/wiki/Partial_differential_equations
http://en.wikipedia.org/wiki/Partial_differential_equations
http://en.wikipedia.org/wiki/Open-channel_flow
http://en.wikipedia.org/wiki/Saint-Venant%27s_principle
http://en.wikipedia.org/wiki/Saint-Venant%27s_principle
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I=O +
  

  
           (1.7) 

Hydrologic method 

Hydrological methods for channel routing need the mass balance of inflow, outflow and the 

volume of storage for the solution. These methods of routing require a storage-stage-discharge-

relation to determine the outflow for each time. Hydrological methods involve numerical 

techniques that determine translation or attenuation to an inflow hydrograph. 

There are three types of method in hydrological routing: 

Level pool method (Modified Puls) 

Muskingum method 

Series of reservoir models 

1.4.1.1 MUSKINGUM METHOD 

The Muskingum method is a routing method of flood, used widely. A direct relationship between 

the reservoir storage and the out flow is taken into consideration for it’s development. Two parts 

of storage within a reach are present in Muskingum method; they are prism storage and wedge 

storage. When the water is in steady motion, the storage is known as the prism storage. The one 

is the storage under actual flow surface. 

The fig1 (a) shows the storage during the rising stages of the flood wave. At that another case, in 

wedge storage, it is either positive storage or negative storage. When it is positive, the storage is 

added to prism storage. It is mainly occurs in rising stage. In falling stage of water the wedge 

storage is subtracted from prism storage and refers as negative. 
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Fig.1.2 Muskingum wedge and Prism storage concept [16] 

In the storage reservoir, the existing storage is the function of the outflow. But in case of 

drainage channel it is assumed that the storage is the function of both inflow and outflow. The 

water surface varies along the channel. It is not horizontal always. So the prism storage and 

wedge storage are considered for the knowing the capacity of the reservoir. Prism storage exists 

in prismatic channel having uniform flow through out. The volume of water between the actual 

surface of water and the top surface of prism storage is known as wedge storage. If there is a 

fixed depth at the end of the section, then the wedge storage is changing from positive to 
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negative storage. There is an assumption that, the flow section during the flood is directly 

proportional to the discharge. 

If the volume of the prism storage is KO, where the K is a proportional constant and the volume 

of wedge storage is KX(I-O), then the total storage is the sum of that two component. 

The total storage= K(XI+(I-X)O)                                                                                          (1.8) 

Where X is a weighting factor and it ranges between 0 to 0.5 

This equation is widely used Muskingum storage equation for flood routing.                                                                                           

The weighting factor X depends on wedge storage. The wedge storage is zero in reservoir and it 

is taken 0.5 at case of full wedge. It is observed that the value is 0.2 at the case of natural River. 

K is known as storage time constant is defined as the travelling time of the flood wave along the 

channel. From equation (1.8) the storage value at the time of j and j+1is written below 

    (    (   )  )         (1.9) 

And       (      (   )    )       (1.10) 

Collecting similar terms and simplifying 

                              (1.11) 

The equation (1.11) is known as Muskingum equation of channel. 

   
        

 (   )      
          (1.12) 

   
        

 (   )      
          (1.13) 

   
 (   )      

 (   )      
          (1.14) 

                    (1.15) 

A assumption is there for choosing the time interval    that K >  >2KX If the value    is less 

than 2KX. The negative coefficient values are avoided. The coefficient C1 is generally negative. 
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For simulation by this method initial and boundary condition is required. So the values of out 

flow, K and X of the upstream section is necessary. 

First step for the procedure to routing is to know K and X by choosing a value  . The second 

method is calculate C1,C2, C3. The inflow, outflow, initial conditions are calculated for next 

time step. Then the repeat of the procedure is carried out. 

1.4.2 HYDRAULIC METHOD 

Hydraulic routing is based on the solution of partial differential equations of unsteady open-

channel flow. So As Floods in overland flow is very complicated, flood wave routing and 

solving the governing equations of flood wave propagations are very much complex also. The 

cause of this complex analysis is due to unsteady non uniform flow, occurred when flood 

happens so quickly .The wave equations known as the dynamic wave equations are highly 

nonlinear which solution are difficult in hydrologic case study. The hydraulic models require the 

gathering of a lot of data related to river geometry and consume a lot of computer resources in 

order to solve the Saint-Venant equations numerically. Since it is very complex, by this 

procedure the solution can be obtained only by assuming a uniform flow. Therefore, the results 

obtained by this method are not accurate. 

Now a days to understand, predict and solve the flood wave routing theory including the 

governing equations in required sections is an important issue in hydrology. Some flows 

including flood, tidal flow, flow at headrace and tailrace channel, flow below the bridge, flow 

through are the example of unsteady flow. In unsteady open channel flows and corresponding 

depth of water changes with respect time and space. 

 But for one-dimensional applications, the velocity and depth which are two parameters, changes 

with time and longitudinal distance. Flood wave propagation in overland and open channel flow 

may be described by the complete equations of motion for unsteady non-uniform flow. As the 

flow parameters are changing along the waterway it is assumed that flow is one-dimensional.so 

Saint Venant equation for gradually varied flow used for it. Momentum equations are dynamic 

wave equations. These are derived from principle of continuity and momentum principle which 

includes the bed and friction slope. To solve this analytically; it is found very much complex. 

http://en.wikipedia.org/wiki/Partial_differential_equations
http://en.wikipedia.org/wiki/Open-channel_flow
http://en.wikipedia.org/wiki/Open-channel_flow
http://en.wikipedia.org/wiki/1-D_Saint_Venant_equation
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But for approximate solution, some methods are widely used. For subcritical flow these methods 

are able to analyze numerically using the standard boundary and initial conditions. A number of 

existing software solutions are used to simulate the flood characteristics for one dimensional. 

Internal boundary conditions have two flow equations, related by special conditions and each is 

associated with two equations describing the water flow. Some of the methods are described later 

in this method which can be use different technique. The grids are first generated by knowing the 

value from initial and boundary condition. This condition includes initial elevation value and 

flow values. For steady and unsteady flow of open channel these condition are applicable. For 

unsteady flow, it is assumed that flow is steady for approximate result. So before doing unsteady 

flow analysis, the steady flow analysis is done for carry out values for initial condition for 

unsteady analysis. But a major problem comes in every analysis i.e. reflection at downstream 

end. The interpolations of boundary values are taken for known values of boundary. 

 

The equations (Saint-Venant equations) used for hydraulic routing are also called as governing 

equation. They are 

Continuity equation 

  

  
 +   

  

  
+ 

  

  
            (1.16) 

Momentum equation 

  

  
 +  

  

  
+ (

  

  
      )                                                                                                  (1.17) 

1.4.3 Derivation of Saint Venant equation 

The 1-D Saint Venant equation was derived by Adhemar Jean Claude Barre de Saint-Venant, 

and is commonly used in open-channel flow including surface runoff. They consist of two partial 

differential equations. The first one satisfies the continuity equation and the second one obtained 

from Newton’s second law that is momentum equation. They are the simplification of the two 

dimensional shallow water equations, which are also known as the two dimensional Saint Venant 

equations. Momentum equation is also applied as the energy equation in river hydraulics since 

http://en.wikipedia.org/wiki/1-D_Saint_Venant_equation
http://en.wikipedia.org/wiki/Adh%C3%A9mar_Jean_Claude_Barr%C3%A9_de_Saint-Venant
http://en.wikipedia.org/wiki/Open-channel_flow
http://en.wikipedia.org/wiki/Surface_runoff
http://en.wikipedia.org/wiki/Shallow_water_equations
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the both equations (momentum equation and energy equation) are derived from Newton’s second 

law of motion or Navier–Stokes equations. 

Derivation  

The law of continuity for gradually varied unsteady flow is  

  

  
 
  

  
             (1.18) 

It is considered that this flow is established in an infinitesimal space dx between two channel 

section .The discharge Q changes with distance with a rate  
  

  
 and depth changes with time at a 

rate 
  

  
  . Thus change of discharge through in space in time dt is(

  

  
    )   

Corresponding change in channel storage is space in time dt is(    )
  

  
 dt which Is equal to  

  

  
 

dxdt. Since A=T*y; where A=the flow area; T= top width, y= depth of the flow. 

Since water is incompressible, net change in discharge should be equal to the change in storage. 

  

  
    = -

  

  
              (1.19) 

Dividing by     
  

  
 +
  

  
                   (1.20) 

In a channel, top width t and bottom width b are continuous function of y. The change in flow 

area    and for small change in flow depth    may be approximated as Bdy.  So the Equation 

(1.20) 

May be written as  
  

  
 +
   

  
          (1.21) 

If there is volumetric inflow for outflow rate of  ql per unit length of the reach dx. 

  

  
 +
  

  
  ql  or          (1.22) 

  

  
+
   

  
  ql.           (1.23) 
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We know Q=AV, substituting in first term
  

  
, expanding and noting that  

  

  
  B

  

  
 

Hydraulic depth D=A/B, The equation (1.23) may be written as  

  

  
   

  

  
  

  

  
           (1.24) 

This equation is known as Continuity Equation 

Dynamic Equation: 

This equation  

      
  
 

  
       

  
 

  
           (1.25) 

Loss in unsteady flow is due to friction and acceleration i.e. 

Loss =                (1.26) 

   
  

  
           (1.27) 

                    (1.28) 

In unsteady flow, velocity varies with time, 
  

  
 exists. This

  

  
 is the acceleration and due to 

creation of this acceleration, a force is to be produced causing loss of energy and this loss of 

energy is ha in head form per unit weigh 

From the Newton’s second law of motion the force term (F)/unit time=m * a/unit time 

Where m=mass of the flow and a=acceleration due to gravity are both vector quantity 

Since the acceleration is the time rate of change of velocity, then  

Newton’s second law of motion is written as 

F =
 

 
 
  

  
           (1.29) 
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 Work done by this force = force * distance 

F = 
 

 
 
  

  
             (1.30) 

This work done is the energy lost due to acceleration ha 

ha= 
 

 
 
  

  
             (1.31) 

Substituting hf and ha in equation 1.25  

      
  
 

  
       

  
 

  
 + 
 

 
 
  

  
    +     x  (1.32) 

[     ]  [     ]  [
  
 

  
 
  
 

  
]   

 

 
 
  

  
*  +   * x =0     1.33) 
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*   +  * x = 0       (1.34) 

  

  
 
  

  
 

 

  
(
  

  
)  

 

 
(
  

  
)        (1.35) 

 
  

  
  

  

  
 
    

   
 
  

  
                  (1.36) 

Since  

  

  
               (1.37) 

So,
  

  
 +  

  

  
 + (

  

  
      )           (1.38)  

This is Saint-Venant shallow water wave equation or dynamic equation of GVF. These describe 

the gradually varied flow of an incompressible in viscid fluid. As it formed by applying 

Newton’s second law of motion a no of fundamental assumptions which are summarized as 

• Flow is one-dimensional such that the velocity is constant over a cross section and water 

level is horizontal 

• Vertical accelerations are negligible so that Hydrostatic pressure prevails that is the 

streamline curvature is small. 
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• The channel is prismatic,  i.e., the channel cross section and the channel bottom slope do 

not change with distance. The variations in the cross section or bottom slope may be 

taken into consideration by approximating the channel into several prismatic reaches. 

• Friction or resistance effects and turbulence can be represented by using the steady state 

flow i.e. Manning’s equation. 

• Bottom slope or bed slope of the channel is small resulting in the cosine of the angle 

between the bed levels. 

1.5 FRICTIONAL SLOPE  

Frictional slope or the slope of the energy grade line (EGL) is defined as the line showing the 

total energy at any considered point in a river. This line represents the elevation of the total head 

(total energy) of flow at that section .The total energy is calculated from a reference known as 

the datum line. Mathematically it is the sum of the depth of flow, the piezometric height (or 

pressure head i.e. p/ρg).), and the velocity head (kinematic head i.e. V
2
/2g). The energy grade 

line is the drop in slope for which the flow occurs in a channel. This slope of the line is known as 

the energy gradient. But in open channel pressure is zero so only water elevation and velocity 

head are taken into account. 

If water elevation and velocity are h1 and v1 respectively in one section at upstream and the 

corresponding values for second section at downstream are h2 and v2 then by energy equation  

     
  
 

  
      

  
 

  
                (1.39) 

The total head loss is calculated from 

     [  
  
 

  
   

  
 

  
]               (1.40) 

1.6 APPLICATION OF THE SAINT VENANT EQUATION 

 The 1-D Saint Venant Equation is commonly applied in dam break analysis, storm pulses 

in an open channel, as well as storm runoff in overland flow. 
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 Simplifying the 1-Dimensional equation is used exclusively in models including HEC-

RAS computer model, MIKE, and MIKE SHE because it is significantly easier to solve 

than the full shallow water equations. 

 The propagation of flood waves through reservoirs and along rivers. 

 The discharge released from hydro-power plants. 

 The propagation of storm-induced floods in estuariesi.e.in flood routing problems. 

 Saint Venant equation is commonly used to model open-channel flow and computation of 

surface runoff. 

1.7 BOUNDARY CONDITION AND INITIAL CONDITION 

The data required for unsteady flow analysis are boundary conditions for both external 

boundaries and the initial condition. Initial flow (base flow) and water depth at zero time level 

are applied as the initial condition at the beginning of the simulation. Boundary conditions are 

entered first because it is a given hydrograph, available from data. 

A flow hydrograph can be used as the upstream boundary condition or downstream boundary 

condition. But it is commonly used as upstream boundary condition. For a reach of river, there  

 

are n computational nodes, which bound n-1 finite difference cells. From these cells 2n-2 

equations can be developed. But another two equations are necessary for solution. These 

equations are provided by the boundary conditions given at upstream and downstream reach. 

These equations are required at upstream boundary end and downstream boundary end for 

subcritical flow. For the supercritical flow, boundary conditions are applied in upstream end 

only. 

The equation of flood hydrograph (the discharges verses time) is needed for upstream boundary 

at all reaches which are not connected to any other reaches. But for downstream, there are 

several boundary conditions available for the problems. There are different types of conditions 

can be specified for the both upstream and downstream boundaries. 

http://en.wikipedia.org/wiki/HEC-RAS
http://en.wikipedia.org/wiki/HEC-RAS
http://en.wikipedia.org/wiki/MIKE_SHE
http://en.wikipedia.org/wiki/Open-channel_flow
http://en.wikipedia.org/wiki/Surface_runoff
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1) A flow hydrograph 

2) A stage hydrograph 

3) Stage and Flow hydrograph 

4) A single valued rating curve 

5) Normal depth from Manning’s depth 

6) Critical flow depth 

1.7.1 Flow hydrograph 

    A flow hydrograph can be used as the boundary condition for upstream or downstream 

boundary. But it is commonly used as the upstream boundary. 

1.7.2 Stage hydrograph 

  The hydrograph resulting from water depth with variation of time is used as either in upstream 

boundary or in downstream boundary.  

1.7.3 Stage and Flow hydrograph 

Both stage and Flow hydrograph of upstream section can be used combinedly for upstream 

boundary. Both stage and Flow hydrograph of downstream section can also be used combinedly 

for downstream boundary.   

1.7.4 Rating curve 

 Rating curve is a graphical representation of discharge versus stage for a concentration point on 

a river. The flow is measured across the river channel with a flow meter. Then numerically the 

corresponding stages are calculated. This curve is a single valued relationship. This curve is only 

used as the boundary condition for downstream. 
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Fig.1.3 Rating curve 

1.7.5 Normal depth from Manning’s equation 

The normal depth obtained from Manning’s equation (for uniform flow) as downstream 

boundary condition for an open ended reach where the river is too long. From Manning’s n the 

stage value can be estimated for each computed flow. The friction slope is required for the 

evaluating of normal depth. For friction slope (sf) the Manning’s coefficient or roughness 

coefficient (n) is required 

   
    

 
 
 ⁄
           (1.41) 

1.8 SELECTION AND APPLICATION OF ROUGHNESS COEFFICIENT 

The information is found from the U.S. geological Survey which are available here. For all 

hydraulic computations the roughness characteristic are required in open channel. They have 

computed the entire roughness coefficient by observing channel geometry and site condition for 

different channels .The selection of roughness coefficient are thus useful in estimating the 

roughness characteristics of similar channel. So it is very helpful to engineers to consider and 

apply a roughness where the geometry appearance and roughness characteristics of the channel 

are known. 

Manning n= 0.024-0.027  
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Description of channel:- Bed consists of smile covered cobbles and gravels deposits over smooth 

to rough rock, banks are composed of clay, short grass and exposed tree roots.  

Manning n=0.028-0.032  

Description of channel:-Bed consist of well-rounded boulders sand, gravel and boulders; 

d50=135-175mm,d84=204325mm.Banks are composed of gravel and boulders ,and have tree and 

brush cover.  

Manning n=0.033-0.036  

Description of channel:-Bed consists of coarse gravel and cobbles with scattered boulders with 

some exposed bedrock. If the channel is bordered by railroad also it has n value 0.33 to 0.36. The 

Banks are made of gravel and rock and also have light vegetation .Bed is sand and gravel with 

several fallen trees in the reach. Banks are lined with overhanging trees and underbrush. 

Manning n=0.036-0.041  

Description of channel:-Bed is gravel and boulders well-rounded small boulders. d50=172-

195mm;d84=265-360mm.The left bank is lined with overhanging bushes. The right bank is lined 

with trees and mildly sloped and has some boulders, brush, and weed cover. 

 

Manning n=0.036-0.041 

Description of channel:-Bed is gravel and boulders well-rounded small boulders. d50=172-

195mm;d84=265-360mm.The left bank is lined with overhanging bushes. The right bank is lined 

with trees and mild sloped and has some boulders, brush, and weed cover. 

Manning n=0.041-0.043 

Description of channels:-Bed is composed of sand, gravel and small boulders with scattered large 

angular rocks d50=93mm-142mm,d84=157mm-285mm. Banks are composed of gravel and 

boulders, also having trees and brush along the tops. Banks are irregular and eroded, and have 

sparse cover of grass. 
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Manning n=0.044-0.050 

Description of channel:-Bed is sand and gravel with several outcrops in the reach and mostly 

coarse sand. Banks are steep and lined with overhanging trees and bushes angular boulders as 

much as 2ft in diameter and fairly steep and contain medium growths of underbrush and large 

trees. 

Manning n=0.051-0.060 

Description of channel:- If the bed consists  mostly rock and very irregular size of 5ft in diameter 

of coarse sand and a few outcrops. Banks are lined with boulder, small trees, and bushes and are 

heavily lined with overhanging birch trees. Bed and bank consist of boulders 

d50=210mm,d84=375mm 

6. Critical flow depth  

Critical flow depth at the end section (downstream)of the channel is considered for the 

downstream boundary condition. The critical-flow depth is occurred when the channel or open 

channel flow ends at a steep bank of the channel. Because the critical-flow depth is the depth at 

which the flow occurs due to minimum energy. 

Mathematically for critical flow condition 

Q
2
/g=A

3
/B           (1.42) 

Q (L, t) =√
   (   )

 
          (1.43) 

1.9 AIM OF THE PROJECT 

 

It is concluded from the review of all literatures that, numerical works are very less in research 

area now for its complexity. It is a qualitative work in worldwide. It is a matter of concern that 

the program writing is very much hard. But the present research here is a simple explicit method 

which gives accurate result. The objectives of the present research work are: 
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 Discretization of Saint-venant equation (both continuity and momentum) by finite 

difference method (Lax diffusive) by using CFD (computational fluid dynamics) tool. 

 Approaching this explicit forward difference method to a natural river channel i.e. to 

demonstrate the potential of the methods used in this research, models are applied to 

simulate flood routing problems in a wild river basin Persian Gulf area. 

 Applying MATLAB software for routing the flood and find out the flood hydrograph 

(both flow hydrograph and depth hydrograph)in different downstream study section. 

 Comparison of this result obtained from present approach with HEC-RAS Computer 

model 

1.10 ORGANISATION OF THE THESIS 

                  This research paper is the combination of 6 main chapters. The first chapter contains 

the general introduction, overview of literatures are given in chapter 2, numerical methods and 

analysis are described in chapter 3, chapter 4 comprises problem statement and its solution with 

result, conclusion and future study are presented in chapter 5 and finally references are given in 

chapter6. 

                A brief study about open channel flow with different types of flow is discussed in first 

chapter. It also includes hydrograph definition, types of flood routing technique, application of 

Saint-Venat equation in different field, boundary condition and initial condition and at last the 

selection of roughness coefficient. 

               Many eminent scientists and researcher’s literature which are related to the present 

research are given in chapter 2. This chapter emphasizes the research related to numerical works 

and various flood routing techniques in different field. 

               Various numerical methods with their derivation are presented in chapter 3.  It also 

describes the characteristic curve method which is most important procedure when solving in 

finite difference explicit scheme. Also detail methodology about the HEC-RAS model is given in 

this chapter. 
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              Application of the lax diffusive method in a practical field and it’s process are outlined 

in chapter 4. Generating grids, setting the initial and boundary condition in proper place are also 

included in this chapter. The results coming from this approach is compared with HEC-RAS 

numerical model. The figures and tables are presented here. 

               The discussion about the results and conclusion are finally presented in chapter 5. The 

recommendation for future study is listed out here. 

               References that have been made in different chapters are provided in last chapter i.e. 

chapter6.



 

 
 

 

 

 

 

 

 

CHAPTER  2 

LITERATURE REVIEWS
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2.1 OVERVIEW 

Scientist and researchers are doing and approaching many different ways for solving numerical 

method in water resources engineering. The methods are very much complex in the case of 

unsteady flow. But among them some are easy to understand and predict the flood wave by 

simulation process. Scientists and researchers are approaching a better developed method day by 

day by modifying the previous one. In computational fluid dynamics, hydraulic flood routing 

problem is solved by saint-Venant equation which includes 1D unsteady continuity equation and 

momentum equation. These equations may be described by the complete equation of motion for 

unsteady non uniform flow, known as dynamic wave equation which is proposed by Saint-

Venant in 1871. But now routing the flood is a challenging area for research in water resource 

engineering. The flow characteristics expressed by the momentum equation terms, are 

dimensionless (woolhiser&liggett,1967).In flood routing problems the Saint-Venant equation is 

solved by preissmann four point implicit finite –difference scheme in channel and flood 

plains(Rashid&chaudhry,1995). Method of characteristics is applied for solving the 1-D shallow 

water equation which mostly used in explicit method (H. Eihanty, G.J.M Copeland 2003). The 

principal objective of this report is to present descriptive method to simulate the flood flow in 

downstream where the observation takes place. 

2.2  PREVIOUS WORK ON FLOOD ROUTING 

R. W. Carter and R. G. Godfrey (1960) worked on storage and flood routing. They considered 

a reach, where the stage storage method is associated with the mean gauge height. From 

predetermined inflow and outflow discharge the storage capacity is determined in this method. 

As the basic equation i.e. the law of continuity is used in reservoir routing process, the storage is 

considered and as well as determined as a function of outflow discharge only. Before selecting 

an appropriate technique, some assumptions are discussed to make enable to the user. The 

storage at every reaches of river channels is used extensively as an index of the duration and 

shape of flood waves at all points along a river. For computing and evaluating  

stream flow records this storage index and the techniques of the flood routing are used. For long 

term gauging stations it is also used in hydrologic studies for computing natural flood 
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hydrographs at all successive points on the river where major storage reservoirs have been 

constructed. 

Zbigniew Kundzewicz (1983) determined Hydrodynamic Determination of Parameters of 

Linear Flood Routing Models. They have done different methods of hydrodynamic 

determination of parameters such as approximate hydraulic and hydrological flood routing 

models are analyzed and compared with respect to assumptions and the final equations for 

parameters. It is shown that the values of parameters obtained by different methods of physical 

interpretation are close to each other. Thus the problem of method for hydrodynamic 

determination of parameters is not critical. The physical interpretation of parameters of 

approximate flood routing models is cheaper than other methods of identification. Thus, in cases 

where accuracy requirements are not strictly attention to the simplifications discussed in the 

paper can be considered useful and practical. The hydrodynamic equations of open channel flow 

formulated by de Saint Venant in 1871 have been widely accepted as a faithful representation of 

the process. However this model puts severe demands on quantity and quality of data as well as 

on computational requirements. That is why the applicability of the complete nonlinear equations 

is restricted and numerous approximate flood routing models are being developed. Therefore it is 

very useful to establish the relationships between the parameters of linear flood routing models 

and the hydrodynamic parameters with full physical significance. One of the crucial steps in the 

process of modeling is the determination of model parameters. In the case of hydrodynamic 

models the parameters with full physical significance. One of the crucial steps in the process of 

modeling is the determination of model. In the case of hydrodynamic models the parameters 

have a physical sense and can be either measured or assessed in the field. The parameters of 

approximate conceptual or black box system models are usually identified from inflow and 

outflow data. There is a large number of techniques for identification of model parameters at 

one's disposal. However, due to the ill-posedness of the inverse problem and badly shaped 

topography of the criterion function of the optimization task, identification of the model 

parameters is not simple. 

Muthiah Perumal (1994) worked on Hydrodynamic Derivation of a Variable Parameter 

Muskingum Method. They approached to present a variable parameter directly by deriving. The 

reservoir routing Muskingum method is used in this paper. prismatic cross section of varying 

http://www.researchgate.net/researcher/2003238161_MUTHIAH_PERUMAL/
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shape from the Saint-venant equation for flood routing in channels and uniform flow obeying 

either Manning’s or Chezy’s  law are observed well in this channel. This approach can also used 

for the simultaneous computation of the stage hydrograph where there are corresponding inflows 

are given or the routed hydrograph is present. The first paper briefly describes the solution 

procedure for the discharge hydrograph and the second paper (Perunal, 1994) presents a 

verification of that methodology and used in a better way. 

 R.S.M Mizanur, M.Hanif Chaudhry(1995) carried on flood routing problem in main channel 

and flood plain. For simulation they modeled using Saint venant equation of continuity and 

momentum. They assumed the flow as one dimensional. The finite difference scheme is i.e. 

pressimann implicit method is used for the computation of flood hydrograph at 9 different 

sections along the channel. For boundary condition the upstream hydrograph values are found 

out by electrified butterfly valve in supply pipe. They observed the variation of depth and flow at 

9 sections by using capacitance probes and a computerized data attainment system. The initial 

conditions are taken by conducting experiment .For verification of the result the two tests datas 

are presented in this paper. 

 Piter L.F. Betura & Claude Michel (1997) used the quadratic lag- and- route method for flood 

routing study. Experiment is done in a wide channel. Hydrologic flood routing method is used. 

Although the parameter of lag-and-rout method is not used in physical parameter of the channel 

but extensively it is used now a days. They proposed a new version of that method by assuming 

the storage characteristic of the reservoir is quadratic. 

DambaravjaaOyunbaatar, GomboDavaa, DashzevegBatkhuu (2004) concluded with some 

results on application of flood routing models in the Kherlen River Basin. This research paper is 

based on application of some flood routing models in the Kherlen River. For reconstruction of 

missing hydrograph or for forecasting of the possible outflow rate at downward of a specified 

time interval, flood routing model are normally used.  Linear regression model is implemented to 

use for forecasting by updating with the given equation with another new flow. Muskingum- 

Cunge model is used for more detailed analysis and measurement for estimate the different 

parameters. The origin of Kherlen River is started from southern slope of Khentei mountain at a 

approximate elevation with 1750 m and drains into Dalai nuur of china. The basin area of river in  
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Mongolia territory is 116455 km
2
 with length 10190 km. Generally, surface runoff in this river 

up to 56-76% in the form of rainfall in sunny period and snow melts in spring periods. The upper  

forest area is the main portion of runoff. Runoff of this river is gradually losses through the slope 

with sandy soil by infiltration and also by evaporation. The highest flood discharge of Kherlen 

River reaches 1320 m
3
/sec at Baganuur station in the year 1933,1954,1959,1967 etc. 

P.Sreeja, Kapil Gupta (2008) experimented on a drainage channel by analyzing Saint-Venant 

equation. They worked on the transfer function formulation in the flood study of urban cities. 

They initiate the space constrains for the control of the flood flow so as to utilize the full capacity 

of the river water at affected areas. For optimization the existing structures like gate are kept for 

controlling the flood flow. They also studied different flow and their condition in laboratory  

model by attaching suitable gates in upstream and downstream. The result found by them is so 

accurate and the experiment result is matched with the natural river study result. These results 

using simplified method matches correctly with the experimental observed values.  

Muthiah Permal, Bhabagrahi Sahoo, Tommaso Moramarco, Silvia Barbetta (2009) worked 

on hydrologic routing i.e. Muskingum method which is used for the simulation of flood 

hydrograph at different sections. They used multi linear Muskingum method for analysis. They 

analysed in a compound channel by using time consumed scheme. It is similar with the 

Muskingum method of linear flood routing. The comparison purpose they choose the river Tiber 

and one experiment in laboratory. 

 D. NageshKumar , Falguni Baliarsingh, K. Srinivasa Raju (2010) researched on Muskingum 

method but in a better way i.e. extended  Muskingum method for routing purpose in Hirakud 

reservoir, Mahanadi. They routed the flood from upstream. To control the flood flow in reservoir 

release i.e. spillway is observed. Another uncontrollable inflow is observed which is coming 

from lower tributary. They used a linear programming for derivation of the coefficients which 

are used for inflow at upstream. 

Safa Elbashir (2011) worked on Flood routing in natural channels using Muskingum methods. 

Accurate information of the flood peak attenuation and the duration the high water levels 

obtained by channel routing are of most important in flood forecasting operations and flood 

protection works (Subramanya, 2008.) This study implements two hydrological methods for 

channel routing, the basic Muskingum and the constant coefficient Muskingum-Cunge methods 
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on the River Brosna, Co. Offaly in Ireland. Previous researches have reported the simplicity and 

applicability of these methods on most natural streams within certain limits. These limitations are 

encountered in the River Brosna where the available outflow data included a significant degree 

of error which makes it difficult to use for comparison and modeling purposes. Moreover, other 

factors influenced the implementation and the accuracy of these methods, in particular the 

backwater effects due to a weir located nearly four kilometers upstream the selected reach and 

the gradient of the channel which was very small (0.00047) to dampen the error in the routing 

procedure. This error is found to be greater when using a minimum time increment in the routing 

calculation. The results of this study showed that the hydrological methods failed to simulate the 

outflow hydrograph in the selected reach. Determining the models parameters was not possible 

by using the basic Muskingum method, whereas, the constant coefficient Muskingum-Cunge 

method calibrated some negative values for the attenuation, which contradicted the diffusivity of 

the flood wave and confirmed the significant effect of the weir located downstream the river. The 

conclusion is that an alternative method is needed to account for the factors that these methods 

neglect. 

 Mehdi Delphi (2011) applied Characteristics Method For Flood Routing (Case Study: Karun 

River) .This is the case for flows in rivers or channels and of the ground run off. The transition of 

turbulent Navier-Stoke equations are tackled by using the Leibnitz formula. A series of 

approximation allowing to neglect one or several terms of the Saint-Venant equations is 

presented. In this study we used Characteristics method as a simplified from Kinematic wave 

equation for flood routing in the length 61 KM of Karun River. Moreover the process is carried 

out by MIKE 11 model for estimating the accuracy and agreement of the method together. The 

results showed that the Characteristics method is applied for this reach of river. In engineering, 

predict the flow as well as the depth at the time of flood is a challenging chapter now. The 

objective of analysis of flood routing is to know the flood hydrograph and stage hydrograph at 

successive points along the waterway. They determined the both hydrograph values by solving 

the both continuity and momentum equation of Saint venant. For solving that partial derivative 

equation analytically, some terms are ignored. They removed the inertia terms by converting the 

hydraulic equation into diffusive equation. Although the flow is three dimensional but for 

analysis purposes, it is assumed as one-dimensional as it follows a certain path. This flood 
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routing analysis is important mainly because of the urbanization near the river bank. Particularly 

for the unobstructed river channel the flow comes to the flood plain. So the storage characteristic 

has a major effect on that. This storage characteristic depends on channel cross section along 

with the flood plain. But for unavailability of the accurate data about the channel geometry, by 

some empirical relationship the wetted flow is determined and then cross sectional size is found. 

Then the routing process is carried on. The classic method to solve nonlinear equation of partial 

differences equations with two variables is known as Characteristics Method. 

 Junqiang Xia, Binlian Lin,Yanping Wang (2012) modeled a flood routing study manually in 

the lower yellow river. In this study the flood routing is done by finite volume method but in a 

improvement procedure which is known as spatial reconstructed method. It is a two dimensional 

study which is applied in flood routing problem of the river in the year of 2004 and 2006.For 

simulation of flow the manmade model is applied. Observation is taken between the model result 

and the natural river routing result. Relatively same result comes in both predictions. They also 

used different roughness coefficient values for different channel condition. 

Doiphode Sanjay L,Oak Ravindra A( 2012) worked on Dynamic flood routing and unsteady 

flow modeling: a case study of upper Krishna river. The movement of a flood wave in a river 

channel is a highly complicated process of unsteady and non uniform flow. Flood routing is a 

mathematical method (Model) for indicating the change in magnitude, shape and celerity of a 

flood wave which propagates through a river. The HEC-RAS is capable of performing one-

dimensional water surface profile calculations for unsteady flow for a full network of channels, a 

branching system or a single river reach. Unsteady flood model in HEC-RAS was set up using 

available survey data of Krishna and Koyna River. The Krishna River reach of length about 233 

Km from the downstream of Dhom Dam to Sangli city was considered for the flood routing 

studies. For Koyna River the reach from downstream of Koyna dam to Krishna –Koyna 

confluence at Karad was also incorporated. In the year 2005, maximum flood occurred in the 

Sangli. For upstream boundary of the model the available flood release hydrographs of the worst 

year 2005 from various reservoirs in upper reaches of Sangli was used. Contribution of discharge  

from the tributaries and the local catchments was also incorporated. Calibration of model was 

done using the gauge discharge data available at Karad and Sangli. The results of model run 
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showed that the stage and discharge worked out from the model had a good agreement with 

observed stage and discharge. Hence, it was concluded that the model set up can be reliably used  

to get the flood flow profiles at Sangli. Studies were also conducted to estimate the changes in 

the hydrographs under the estimated worst scenarios. The analysis of available flood data was 

done to identify the flood sensitivity of Sangli, due to Koyna and Dhom dam flood water release. 

It was found that a flood situation at Sangli mainly depends on the water release from Koyna 

dam. Maximum limit for the flood release from Koyna dam could be 1690 cumecs, so that the 

flood level would reach the danger level of 540.77m at Irwin Bridge Sangli. 

Val´Erie Dos Santos Martins, Mickael Rodrigues, Mamadou Diagne (2012) developed a 

multi–model approach to saint–venant equations with a stability study by LMIS. They worked 

with the study of the nonlinear Saint-Venant Partial Differential Equation (PDE). The proposed 

approach by them is based on the multi-model concept. This concept which takes into account is 

some Linear Time Invariant (LTI) models defined around a set of operating points. This method 

allows describing the dynamics of this nonlinear system in an infinite dimensional space over a 

wide operating range. A stability analysis of the nonlinear Saint-Venant PDE is proposed both by 

using Linear Matrix Inequalities (LMIs) and an Internal Model Boundary Control (IMBC) 

structure. The method is applied both in simulations and real experiments through a micro 

channel, thus the theoretical results developed in the paper. The multi-model structure is well 

adapted for nonlinear systems because it allows determining a set of linear models defined 

around some predefined operating points. Each local model (sub-model) is defined as a Linear 

Time Invariant (LTI) model dedicated to a specific operating point. The multi-model is based on 

weighting functions, which ensure the transition between the different local models. These 

functions represent the degree of validity of each local model. This degree is a function of the 

system inputs, outputs and time. The data used are those of the water channel of Valence. 

Comparisons between initial experimental results using a PI-controller (done some years ago) 

and simulations with the presented integral controller using the theoretically tuned gain are 

realized. New experiments are implemented, too, with these theoretical gains found by LMI 

ideas. 
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3.1 OVERVIEW  

In the study of open channel i.e. the unsteady flow which is described by two nonlinear 

hyperbolic partial differential equations depends on the variables i.e. flow velocity (v) and flow 

depth(y). These set of equation is the partial derivatives of time and distance. But for practical 

applications in field, It is required to know the value of the variables instead of the values of their 

derivatives. Excepts for some simplified case a closed form solution of these equations is not 

available. Therefore the governing equations are solved numerically for which different 

numerical methods can be possible for the complex solution. In this chapter various numerical 

models with its solutions are given which can be applied in practical field for simulation of 

flood. 

Various numerical methods are given below. They are 

1) Method of characteristics 

2) Finite element method 

3) Finite difference methods 

4) Finite volume method 

5) Spectral method 

The characteristic method is used in different field. It is used  the finite difference methods and 

finite element method in some ways. The numerical integration of nonlinear hyperbolic partial 

differential equations are solved by these three method. For the analysis of unsteady open 

channel flow present research is based on characteristic equation and finite difference method. 

So the detail study about the both two are given below: 

3.2  METHOD OF CHARACTERISTICS 

This Method is a graphical procedure for the solution for partial differential equations developed 

by Monge (1789) and named these procedures as the method of characteristics. It was used by 

Massau (1889) and Criya (1946) for analyzing surveys (both positive and negatives in open 

channels. It was used to investigate the propagation of flood waves in upstream and downstream 
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in open channel and unsteady flow problems. Frequently all are using finite difference schemed 

as a method to solve shallow water equations for flow in open channels. The concept of 

characteristics curves is mostly applied in research field. It can be helpful in understanding the 

wave propagation at upstream and along the river. It is used for the explicit finite difference 

methods. 

The Saint venant equation for prismatic channels have been no lateral in flow or outflow given 

by 

  

  
 +   

  

  
 + 

  

  
   

  

  
 +  

  

  
 + (

  

  
      )    

By multiplying the continuity equation by an unknown multiplier, and adding it to momentum 

equation, the rearrange and the resulting equation obtain is 
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Since v= v(x, t) and y = y(x, t),  

The total derivatives of v and y are 
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          (3.3) 

 

When comparing the equation (3.1) with equation (3.2) and equation (3.3) it shows that there are 

two total derivative term in equation 3.1 

The first two terms of equation3.1 represents the total derivatives of v and the last two terms 

inside the bracket represents the total derivatives of y 

So 
  

  
  and unknown multiplier λ can be defined as 
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          (3. 6) 

as D = hydraulic depth=A/B and c=celerity 

3.2.1 CELERITY 

One-dimensional unsteady flow in an overland flow can be simulated with the governing 

equations however; certain conditions are there which require additional effect in the equations 

of motion. These conditions include the effects caused by celerity which is the main focused 

parameter in free-surface flows. For understanding the flood wave propagation in the channel in 

different type of flow (critical, subcritical and super critical), it is of great importance to know 

the celerity of a small wave. The term celerity is defined as the velocity of the progressing wave 

with respect to velocity of stationary water at steady state of the medium in which the wave is 

traveling. Mathematically the celerity (c) 

  √             (3.7) 

From Froud no 3 types of flows are determined.  

    
 

√  
 
 

 
           (3.8) 

In subcritical flows, Fr is less than 1 .So it follows that V < c in these flows. For critical flow Fr is 

equal to 1 so the term celerity of a small wave is equal to the flow velocity in the medium when  

the flow is critical .Similarly, it may be written that V >c in the supercritical flows as Fr is greater 

than 1 for supercritical flow. So for the three type of flow different flow situations are possible 

for the wave propagation depending upon the relative magnitudes of the stationary water velocity 

V and celerity c, whether the flow is subcritical, critical, or supercritical. These three cases are  
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 In subcritical flow, the wave travels in  both directions. Wave carries a velocity (V −c)  in 

the direction of upstream and (V +c)  towards downstream direction since V <c . 

 In critical flow, since V =c, the wave remains stationary at upper end of the medium and 

travels in the downstream direction at velocity V + c. 

 In supercritical flow, since V >c, the wave carries at velocities (V −c) and (V +c) at the 

upstream and the downstream ends respectively. In other words, flow carries the wave 

towards downstream but does not carry in the upstream direction. 

So from equation 3.6 we found that 

   
 

 
  And      

 

 
          (3.9) 

So the equation3.1 becomes  
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If   
  

  
    

 

 
                                   

 

 
      (3.13) 

When     is plotted as a curve in x-t plane it is represented towards downstream. This plot 

referred as positive characteristic, C
+
. In the same way when     is plotted in x-t plane it is 

along the upstream. This plot referred as negative characteristic, C
-
. 

Equation (3.10) and (3.12 ) are called the compatibility equations. Now the space variables have 

been eliminated, but they are in partial differential form so it is required to convert them into 

ordinary differential equations. Because the partial differential equations are valid for any values 

of x and t; however, the transformed ordinary equations are valid only along the characteristics 

for unique solution. The final form of the equations to be presented for solution is obtained by 

transforming the partial form of Saint-Venant equation to ordinary derivatives so that derivatives 

taken in the proper directions, called characteristic direction. 
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So the previous formula of the Saint venant equation i.e. equation 3.12 for gradually varied 

unsteady flow is 

  

  
 
 

 

  

  
   (     )         (3.14) 

By multiplying both side into area A the equation becomes 

  

  
 
  

  

  

  
   (     )         (3.15) 
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          (3.16) 

So the equation 3.13 becomes 
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   (     )        (3.17)

 Considering the relation Q=Q(t)or A=A(t), this equation permit calculations of the other 

physical parameters at the upstream section of the channel. The upper and lower algebraic signs 

refer to positive and negative characteristics, respectively. At external points of upstream and 

downstream boundary, the negative and positive characteristics are considered for simulation 

process respectively. 

 

Fig.3.1 The Upstream and Downstream Characteristic In x-t Plane 
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In this above fig the x axis represents the longitudinal direction for space variable and the 

ordinate represents the time level. It is already discussed that positive characteristic curve and 

negative characteristic curve are used in the external boundaries only. For internal grid points the 

finite difference scheme is applied. The negative characteristic will pass through the point p and 

(1+n)   at upstream section shown in fig 3.1(a). Likewise the positive characteristic will pass 

through the point p and (1+n) at downstream section shown in fig 3.1(b). 

For finding out the unknown flow parameter at the upstream end, the solution is given by 

Equation (3.15) 
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  )

 

(  
      )

  
    (     )      (3.18) 

Similarly, at the downstream end denoting by P the inter section point between the positive 

characteristic passing through point m=m+1 and the time level line t=n+1 shown in fig.3(b) and 

considering the downstream boundary condition. Any downstream boundary condition from any 

conditions (Manning’s equation, critical flow depth) can be applied.  

The equation furnish  
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(    
      )

  
    (     )      (3.19) 

  
   Denotes the unknown discharge at the n+1 level and for   

    at the time level n+1 the 

downstream boundary condition should be applied. 

3.3 FINITE DIFFERENCE METHOD 

The method of characteristics is used for both Finite difference method and Finite element 

method. Finite difference method is the first technique for developing for approximating 

ordinary differential equation. It is based on performing Taylor series expansion and substituting 

the expressions into the differential equation. It also shows the problem through a series of 

values at a particular point. It is the simplest method for implement in any ordinary differential 

equation where the unknowns are found by replacing the derivative terms. As there is no unique 

solution in numerical method, if the data (initial data and boundary condition) are not known 



                                                                             NUMERICAL METHODS AND ANALYSIS 
   

36 
 

then it presents a ill posed solution. So that one will be very sure about the poor result or can 

know that the solution will fail. 

3.3.1 GRID GENERATION 

Before generating grid for finite difference scheme it is a important factor to focus that there are 

two methods in finite difference scheme. They are explicit and implicit finite difference scheme. 

3.3.2 EXPLICIT METHOD 

Explicit method is an approach in computational fluid dynamics used in numerical analysis for 

obtaining solutions of time-dependent ordinary as well as partial differential equations. It is 

required in simulations of physical process in flood routing, operating problem. Explicit 

methods calculate the unknowns at a later time interval from the known values at a present time  

series. If the n level flow parameters are known then explicit method computes for n+1 time 

level. 

3.3.3 IMPLICIT METHOD 

Implicit method is an approach to find a solution by solving one equation or a no of equations 

simultaneously involving both the parameters of present time level and the next one. Implicit 

methods require an extra computation which is much harder to implement in the calculation 

process.   

Grid generation for an explicit method applies small time steps to minimize the error in the result 

boundary. By considering numerical stability the regular grids are used in space and time. 

Impractically for such problems, explicit methods take much less computational time to achieve 

given accuracy but larger time steps used in an implicit method. Explicit or implicit method 

should be used depends upon the problem which solution is to found. To take suitable regular 

grid size, it is required to check the stability of the finite differences scheme.  

3.4 STABILITY 

http://en.wikipedia.org/wiki/Numerical_stability
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The stability of the explicit scheme is determined by the Courant-Fred riches-Lewy (or Courant) 

condition. The Courant number (CFL), which is the ratio of the physical speed of the wave to the 

speed of the numerical signal. It should be less than unity so the grid size will be found from that 

condition. Updated calculations of the water stage is used to evaluate the celerity of the wave, c 

and for the water velocity u, the discharge value is used. Hence CFL condition is applied at each 

time step. This condition is implemented at each time step to evaluate the value of flow at the 

advanced time step. Numerically by this method the time step must be kept small enough so that 

information will be most accurate. Mathematically 

Courant no =   
   
  

  ⁄
         (3.20) 

Where         

 

 

Fig.3.2 Grid in Finite Difference Scheme 

After generating regular grids i.e.     and    the main factor for the approximate solution is to 

follow the principle of finite difference method. That is the derivatives in the partial differential 

equation are linearly solved by approximating the values for every grid points with combinations 

of function values. If u is the dependent variable and x and t independent variables (often space 

http://en.wikipedia.org/wiki/Finite_difference_method
http://en.wikipedia.org/wiki/Finite_difference_method
http://en.wikipedia.org/wiki/Finite_difference_method
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and time) then approximating the first-order derivatives for the space variables there are three 

methods for explicit scheme. They are 

1. Forward difference Method 

    
  

  
 
       

  
         (3.21) 

               
  

  
 
       

  
         (3.22) 

2.Backward difference Method 

               
  

  
 
       

  
         (3.23) 

   
  

  
 
       

  
          (3.24) 

3. Central difference Method 

   
  

  
 
         

   
          (3.25) 

   
  

  
 
         

  
          (3.26) 

Where i and n are referred as the variables for the present space and time level respectively. i+1, 

n+1 refer to the variables for the forward or next space and time level.i-1, n-1 refer to the 

variables for the past space and time level respectively. 

Approximation of second-order derivatives has one method 

Central difference Method 
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Where i.e. refer to the variables for the present space and time level respectively. i+1, n+1 refer 

to the variables for the forward or next space and time level.i-1, n-1 refer to the variables for the 

past space and time level respectively. 

Approximating values for mixed derivatives there is one method 
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(
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          (3.31) 

(
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          (3.32) 

So the approximating values for mixed derivatives 

(
   

    
)
   

=
                                   

     
         (3.33) 

Likewise explicit method, there are 3 methods in implicit method. They are  

 Forward Difference Method,  

 Backward Difference Method and 

 Central Difference Method 

The difference between these scheme is only in time level. In explicit method, the known 

variables are in present time level and the unknown variables are of forward time level. But 

for another method, the known variables are of forward time level and the parameters which 

are to be find out are of current time level.  

3.5 EXPLICIT FINITE-DIFFERENCE SCHEMES 

Here in this research by the method of Explicit Finite-Difference Schemes, the solution of 

governing equations of 1-D flow in open channel are solved. Several explicit finite-difference 
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schemes are there which have been proposed for the solution of Saint-Venant equations. Here 

Lax-diffusive hyperbolic partial differential equation is applied for solving the nonlinear problem 

for flood routing. Two explicit methods are given below.       

3.5.1 CONSERVATION FORM 

Conservation form of a derivative must form a telescoping series. In other words, when the terms 

are added over a grid, only the boundary terms should remain and the interior points should 

cancel out. For non-conservative form, the derivative is split apart to give accurate solution. 

The conservation form of the governing equations (Saint-Venant equations) in the matrix form 

may be written as 

                   (3.34) 

Where    represents the derivative of variables with respect to time or a function of one 

independent variable t 

  represents the derivative of variables with respect to space in one direction or a function of one 

independent variable  

 represents the constant terms including slopes(bed slope and friction slope) 

In which  

U=(
 
  
); F=(

  

    
 

 
   ) ;  S=(

 
   (     )

)      (3.35) 

And
 

 
  = moment of flow area about the free surface 

3.5.2 LAX-DIFFUSIVE SCHEME 

Lax scheme is a explicit method, which follows that it is unconditionally stable. It is first-order 

accurate in time and second-order accurate in space. In fact, all stable explicit differencing 

schemes for solving the governing equation i.e. Saint Venant equation are subject to the Courant-

Friedrichs-Lewy (or CFL) condition for stability criterion. The CFL constraints determines the 
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maximum allowable time-step for lax diffusive explicit method. This scheme is inherently 

unstable. Lax presented this scheme by slightly varying the unstable scheme. This scheme is one 

simple method to program which yields satisfactory results. In this scheme the partial derivatives 

and other variables are approximated so the general formulae for Lax-diffusive scheme are 

By forward difference scheme 
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      )          (3.36) 

Again putting the value of 
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 )          (3.37) 

By central difference formula  
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 )          (3.38) 

The frictional slope 
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)         (3.39) 

So by putting 
  

  
  and  

  

  
 in original formula   

We have the lax diffusive method 
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    represents unknown variable i.e. the area (A) which is found out from the solution of 

continuity equation of the next time level (n+1) and it refers to the discharge (VA) found out 

from momentum equation. So, the values of variables of interest i.e. depth and velocity are also 

determined from the values of A and VA which have been determined at the (n+1) time level. 

Then proceed to the next time step. 
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3.5.2 LAX–WENDROFF METHOD 

Lax-Wendroff explicit scheme is also selected in order to solve the Saint-Venant Equations. 

The Lax–Wendroff is a method of computational fluid dynamics tool, named after Peter 

Lax and Burton Wendroff, for solving the hyperbolic partial differential equations numerically. 

In this method, the solution is based on explicit finite difference which is second-order accurate 

in both space and time. This method is like the lax diffusive method of explicit time 

integration where the unknown variables are determined or evaluated at the forward time by 

knowing theknown values at current time level.. So the general formulae for Lax- Wendroff 

scheme are   
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            (3.41) 

Similarly in lax diffusive method   
   represents the area (A) and discharge (VA) which is 

found out from the solution of continuity equation and momentum equation of the next time 

level (n+1). Then proceed to the next time step. The method is second-order, with stability 

requirement satisfies the Courant-Friedrichs-Lewy (or CFL) condition. The solution is obtained 

at a courant number of one. The result coming from this scheme is same as the lax- diffusive 

explicit method. 

3.6 HEC-RAS MODEL 

Hydrology engineering center refer river analysis system is known as HEC RAS model. It is 

developed by U.S. Army crops of engineer of hydrologic engineering center. This software 

allows to analysis of one dimensional steady flow, unsteady flow calculation and perform 

sediment transport along with the mobile bed computation for unsteady flow. 

HEC-RAS Model is designed in such a way that it solves and performs calculations for both 

natural waterway and manmade canal in multitasking environment. It is mainly applied for 4  

 

 

http://en.wikipedia.org/wiki/Peter_Lax
http://en.wikipedia.org/wiki/Peter_Lax
http://en.wikipedia.org/wiki/Burton_Wendroff
http://en.wikipedia.org/wiki/Hyperbolic_partial_differential_equation
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Finite_difference
http://en.wikipedia.org/wiki/Temporal_discretization
http://en.wikipedia.org/wiki/Temporal_discretization
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river analysis application in steady flow, simulation for unsteady flow, movable sediment 

transport system and water quality. So there are various types of components intended for 

calculating the problems given by the user. Through a full network of system this software is 

designed to simulate the unsteady flow in a channel for subcritical flow, mixed flow regime like 

combination of subcritical flow, supercritical flow, and hydraulic jumps and draw down. 

Obviously a modeler wants to formulate different plans at the time of its study. So every plan 

requires some information for its simulation. For calculation purpose the set of information about 

hydraulic properties like geometric data are entered by the user. Then simulation is done. The 

results are shown in graphical and tabular format. 

The Saint-Venant equations (both continuity equation and momentum equations) for one 

dimensional steady and unsteady flow of river are given by: 

  

  
   

  

  
  

  

  
           (3.42) 

  

  
  

  

  
  

  

  
  (     )        (3.43) 

Where V is the flow velocity; y is the flow depth;        is hydraulic depth; A is flow area ,B 

is top width of the channel ;    is the channel bottom slope,   is the slope of energy grade line; x 

is the distance along the channel  length; t is time and g is the acceleration due to gravity. 

These equations can be solved by the River Analysis System (HEC-RAS) software which use the 

Preissman implicit scheme. The model and methodology of the schemes are described below 

3.7 MODEL DEVELOPMENT AND METHODOLOGY 

The most  successful and accepted procedure for solving the  one dimensional unsteady  flow 

equation is the four point implicit scheme also known as the box scheme . Under the scheme,   

methods of solution are as follows                 
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Or 
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          (3.46) 

Size of grid taken as (i, j) ; where  i=space interval, j= time interval 

General implicit finite difference scheme forms are  

1. Time derivative 
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         (3.47) 

2. Space derivative 
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        (3.48) 

3. Function value 

     (       )      (         )       (3.49) 

  refers to both V and y in the partial derivatives                                            .  

A. Continuity Equation 

  

  
 
  

  
 
  

  
               (3.50) 

The above equation can be written for channel or flood plain: 
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               (3.52) 

Where the subscripts   c and f refer to the channel and flood plain, respectively 

  is the  lateral inflow per unit length of flood plain and         are the exchange of water 

between the channel and flood plain 

   

   
 
   

  
             (3.53) 
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The exchange of mass is equal but not opposite in sign such that 

                       (3.55) 

B. Momentum Equation 

The equation states that the rate of change in momentum is equal to the external forces acting on 

the system. For single channel 
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The above equation can be written for the channel and for the flood plain: 
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The above equation can be written for the channel and floodplain: 
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 (    )

  
    (

  

   
    )           (3.59) 

Where          are the momentum fluxes per unit distance exchange between the channel and 

flood plain, respectively. 

 

 

 

 

 



   

 
 

 

CHAPTER  4 

PROBLEM STATEMENT  

AND SOLUTION 
 

  



                                                                         PROBLEM STATEMENT AND SOLUTION 
   

46 
 

4.1. OVERVIEW  

To demonstrate the potential of the methods used in this research, models are applied to simulate 

the flood routing problem in a wild river basin Persian Gulf area. For flood routing in a river 

section using numerical approaches need boundary condition for its solution.  The upstream 

stage or the upstream discharge hydrograph data are necessary for its solution. So the discharge 

hydrograph is available here for its boundary condition. The solution procedure of the nonlinear 

hyperbolic Saint Venant equation are discussed in this chapter by generating suitable grids and 

setting proper initial and boundary condition. Then the solution is made by writing the program 

using explicit lax diffusive method by mat-lab and the results obtained from that are shown in 

different figures. The values are given in four columns for two different location. A computer 

model i.e. HEC-RAS is also used for comparison of the results. These values coming from HEC-

RAS are also given in that tables.  The comparison of both result coming from present approach 

and the model are shown in a single figure for one location.  

4.2. FLOOD ROUTING IN A RIVER   SECTION – A CASE STUDY 

 A hypothetical flood routing [2] discharge hydrograph of upstream boundary in a wide 

rectangular river has been considered here and is given by :  A rectangular river section is 

assumed with width (B) = 120m, Average longitudinal Bed slope ( So) considered is 0.00061, 

The value of Manning’s roughness co-efficient  n  for the bed surface  is 0.023. Let the Base 

flow(Qb) in the river to be 100 m³/sec.  

The U/S discharge hydrograph ( Qt)  is generally sinusoidal in nature and is a function of time (t) 

, base flow ( Qb)  and peak flow( Qp)   is given by :- 

 ( )  
  

 
   (

  

  
 
 

 
)  

  

 
                 (4.1) 

 ( )  
  

 
   ( 

    

     
)  

  

 
                   (4.2) 

 ( )            .                                                                                                        (4.3) 

Where peak time (tp), base time (tb), and peak flow (Qp) are assumed to be 5 hr, 15hr, and200 

m³/sec respectively. Friction slope    is calculated from Manning’s equation 
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 ⁄
,            (4.4) 

Where n=Manning’s roughness coefficient, R=A/P is the hydraulic radius;  A is the flow area; P 

is the wetted perimeter. 

4.3. SOLUTION  

The accuracy of dynamic wave can be calculated by different approaches, assuming steady water 

profiles which are required for calculation in some conditions. The finite difference explicit 

scheme i.e. Lax-diffusive scheme is used for the interior grids and characteristic equations are 

used for both boundaries. 

4.3.1. GRID GENERATION 

It is divided the x-t plane into numbers of grids that the grid interval along the x-axis is 

   and the grid interval along the t-axis is    . Although it is not necessary but for easier 

calculation it is assumed that, the grid size is uniform along each axis. For the space j level a 

subscript (i,j),(i+1,j), (i+2,j),(i+3,j), (i+4,j), (i+5,j), are used for different grids for space.  For the 

time axis i level a subscript (i,j) ,(i,j+1), (i,j+2),(i,j+3), (i,j+4), (i,j+5), are used for different grids 

for time. To refer to different variables at these grid points, the number of the spatial grid as a 

subscript and that of the time grid as a superscript are used. The known time level is denoted by 

superscript j and the unknown time level is denoted by j + 1. 

The stability of numerical scheme is ensured by the courant condition. For a fixed spatial 

grid   ,the value of  t satisfying the courant condition is determined.  

The grids are generated by the courant’s law  

i.e.   
   
  

  ⁄
            (4.5) 

and the 0 <  < 1 

Where V is the velocity of the flow; 

   is grid size along the length 
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   is grid size of the time 

So after considering much values of    and   , the    and    are taken 1000 metre and 120 

second respectively for accurate result.  

 

Fig.4.1 Grid Map For Explicit Method 

The graph shows the space level and time level in x-axis and y-axis respectively. The flow along 

a longitudinal axis indexed by the abscissa x. The time series axis indexed by the ordinate y. The 

j level represents the values of flow variables of current time level. These values are set for the 

initial condition which is same at every node along the channel as lateral inflow. The values for 

initial condition is given in terms of Q(x,0).  The j+1, j+2, j+3 level show the corresponding to 

the next time level. The values of flow in a time series are given at the boundary condition for 

upstream at left boundary. The methods developed in this research assumed that the lateral 

inflow and outflow are 100 m
3
/sec .The values for upstream boundary is given by a inflow 

hydrograph at a concentration point at  a time series, given in terms of Q(0,t). 

 The computation process for the solutions of the governing equations of motion is limited 

to evaluating them at a finite number of points along the channel. The two approaches are here 



                                                                         PROBLEM STATEMENT AND SOLUTION 
   

49 
 

for computing approximate solutions to these equations. First the values, at location of the points 

along the channel in advance time level at upstream section are fixed. Then the values are fixed 

at those grids, that adjusted as initial condition needed for the solution. 

Then the broad range of the method of characteristics are included at upstream boundary 

as it is explicitly solves the solution. The characteristic equations are solved simultaneously by 

the equations given for the upstream and downstream boundary. Positive characteristic form is 

used at downstream boundary and negative characteristic form of the equations is used for 

upstream flow characteristics in explicit methods, tracing in whole or in part on the x-t plane. In 

the method of characteristics, the locations and times at which flows and elevations are 

computed are irregular and vary as the flow is unsteady. This method is advantageous with great 

accuracy. 

4.3.2. BOUNDARY CONDITION 

The given U/S discharge hydrograph ( Qt) at a concentration point  as a function of time is 

shown by Fig.4.2. It is shown that the peak flow is 300 m
3
/sec and the time of the peak flow is 5 

hour. It continuously flows for 15 hour then emerges out. After 15 hour, the flow is equal to the 

base flow i.e. 100 m
3
/sec. In a two-dimensional coordinate system the abscissa shows the time in 

hour and the flow values in series are indexed by the ordinate y. 

 

                                 Fig.4.2 Known Flood Hydrograph at Upstream 
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4.3.3 DOWNSTREAM BOUNDARY CONDITION 

Here at end section when x=L ,the critical flow  depth is considered as the downstream end 

condition or downstream boundary condition, which occurs when the channel flow ends at a 

steep bank of the channel at 100km from upstream. 

The critical flow condition is given by 

  

 
 
  

 
           (4.6) 

4.4. NUMERICAL SOLUTION 

If we write conservation of mass and momentum equations for each grid point, we have 2n 

equations (n = number of reaches on the channel).  These equations cannot be written for the 

downstream end as the next spatial grid values are unknown. However, we have 2(n+1) 

unknowns, i.e., two unknowns for each grid point. Thus, for the solution of Saint-Venant 

equation, two more equations are needed. These are provided by the boundary conditions. For 

initial conditions, values of stage(y) and flow(Q) at the beginning of the time step are to be 

specified at all the spatial nodes along the channel. The two boundary conditions required by the 

model for this explicit method are the inflow discharge hydrograph at the upstream boundary, 

and the critical flow depth at the downstream boundary. The lax diffusive method is used at 

internal grid points; whereas at external points of the boundary, the characteristic method 

including positive and negative characteristics is considered for downstream and upstream 

boundary condition respectively. The characteristic equations are  

  

  
 
 

 
              (4.7) 

  

  
 - (

 

 
  ) 

  

  
=  (  -  )          (4.8) 

C=celerity =√             (4.9) 
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The positive characteristic equations are simultaneously solved by the downstream 

boundary condition and the negative characteristic equations are simultaneously solved by the 

upstream boundary condition given by the hydrograph to find out the unknown flow parameters 

at both boundaries. Once the values of A and VA have been determined at the (j+1) time level. 

Then the next time step (j+2) variables y and V are determined, the values of variables of interest 

of other time steps are proceeded to determine. So the lax diffusive method for each node is 

applied and the boundary conditions are applied at boundaries for the solution. 

4.5. RESULTS AND DISCUSSION 

Taking    =120 sec and total duration of time = 20 hour, the time axis is divided by 600 

grids. By approaching matlab software the governing equations is solved by lax-diffusive 

method.  The known inflow hydrograph is obtained from this approach is shown by fig4.3. The 

peak flood is 300 m
3
/sec. 

 

   Fig.4.3 Known Flood hydrograph at Upstream 

Two sections are considered for observation and comparison with HEC-RAS. Sections after 

16km and 28kmfrom upstream are considered. After writing the program by Mat-lab software 

the flow hydrograph is obtained at the section 16km from upstream is shown in fig.4.4. 
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Fig.4.4.Flood Hydrograph at 16km from Upstream 

The hydrograph is obtained at the section 28km from upstream is shown in fig.4.5. 

 

    Fig.4.5 Flood Hydrograph at 28km from Upstream 

Combining the three hydrographs of different sections, it can be clearly seen that shifting of 

hydrograph occurs along the downstream of the channel shown by Fig.4.6 
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                                     Fig.4.6 Shifting of Flood Hydrograph 

From lax diffusive explicit scheme, flow hydrographs at different sections can be obtained which 

are shown in the fig.4.7. In this figure delx and delt are kept 1km and 120sec. 101 hydrographs 

are shown in this fig as the total length of the channel is considered as 100km. 

 

Fig.4.7. Flow Hydrographs Obtained From Lax-Diffusive Scheme 
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Like the flow hydrographs, the stage hydrographs is also determined by simultaneous solution of 

negative characteristic equation with the upstream boundary condition at upstream boundary. So 

the stage hydrograph at upstream is obtained from lax diffusive method is shown in fig.4.8. 

 

                Fig.4.8. Depth Hydrograph Obtained From Lax-Diffusive Scheme 

By applying the diffusion process at the intermediate sections the stage hydrograph at 16km from 

upstream is obtained which is shown in fig.4.9.   

 

Fig.4.9 Depth Hydrograph at 16km from Upstream 

By applying the same diffusion process of lax diffusive method at the intermediate sections, the 

stage hydrograph at 28km from upstream is obtained which is shown in fig.4.10.  
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                             Fig.4.10 Depth Hydrograph at 28km From Upstream 

Combining the three stages in one figure, it can be clearly observed that by channel routing, the 

hydrographs of different sections are shifting along the downstream of the channel shown by 

Fig.4.11 

 

                                        Fig.4.11 Shifting of Depth Hydrograph 

4.6. RESULT OBTAINED FROM HEC-RAS 

In HEC-RAS computer model, the same inflow hydrograph is put for routing purpose. This 

model is used for comparison of unsteady flow routing data, computed from explicit method. To 

compute the flow and water elevation in different section of interest, some basic data are needed. 
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To perform this computation in a wide rectangular channel, geometric cross sections data for 

every section are required.  

 

Fig.4.12 Flow (m
3
/s) Hydrograph from HEC-RAS 

 

Fig.4.13 Stage (m) Hydrograph from HEC-RAS 

They are computed from bed slope of the channel, reach length and cross sectional geometry of 
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steady state water elevation. At each station the cross sectional geometry data and the initial 

depth as well as the flow data are put to smoother the calculation. Each cross sectional data set is 

identified by a river reach and river station label. Maximum 500 data points can be used to 

describe each cross section. The unsteady flow data set is also necessary at upstream section. 

This set is a set of the complete values of inflow hydrograph. By putting all these values for 

28km reach length, the hydrographs of different cross section are found out. The initial flow and 

initial depth are put as 100 m
3
/sec and 0.86 m respectively. 600 values of flow at a time series of 

a flow hydrograph are given at upstream as boundary condition. Then friction slope value as 

0.00061 is given at downstream for calculation of normal depth. Two observation sections i.e. 

16km and 28km from upstream are selected for comparison purpose. The flow hydrograph and 

depth hydrograph are obtained for that two sections. The ∆t and ∆x are assumed as 120sec and 

1000 meters respectively. The flow hydrographs at 16km and 28km including inflow hydrograph 

are shown in fig.4.12.    

Like the flow hydrographs the stage hydrographs at 16km and 28km including inflow depth 

hydrograph are shown in fig.4.13.  

Table 1 and table 2 contain the values of computed discharge hydrograph at two sections 16km 

and 28km from upstream of the river. The 1
st
 column values represent the time of 25 hour 

whereas the second column shows the values of inflow values in m
3
/sec at upstream. 

The both values at two observed locations obtained from lax diffusive and HEC-RAS computer 

model are presented in m
3
/sec in 3

rd
 and 4

th
 column respectively. 

TABLE 4.1 Computed Discharge (m
3
/sec) Hydrograph Values at 16 Km Section from U/S end 

 

Time 

(hour) 

Flow at U/S end 

(m
3
/sec) 

Flow at 16 km from U/S end (m
3
/sec) 

Lax diffusive method HEC-RAS 

1 100.00 100.00 101.39 

2 118.80 100.55 101.49 

3 168.00 112.98 104.86 

4 230.40 135.34 122.39 
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5 280.80 181.39 168.00 

6 300.00 239.48 226.15 

7 295.20 288.49 285.36 

8 280.80 299.64 295.43 

9 259.20 286.93 289.03 

10 231.60 264.93 272.65 

11 200.40 241.69 251.73 

12 169.20 216.12 226.30 

13 141.60 187.34 201.13 

14 118.80 165.78 174.96 

15 104.40 142.12 150.60 

16 100.00 124.92 132.07 

17 100.00 112.18 117.65 

18 100.00 105.04 107.93 

19 100.00 100.01 103.06 

20 100.00 100.00 101.06 

21 100.00 100.00 100.34 

22 100.00 100.00 100.11 

23 100.00 100.00 100.03 

24 100.00 100.00 100.01 

25 100.00 100.00 100.00 

 

TABLE 4.2 Computed Discharge (m
3
/sec) Hydrograph Values at D/S End  

 

Time 

(hour) 

Flow at U/S end  

(m
3
/sec) 

Flow at D/S end (m
3
/sec) 

Lax diffusive method HEC-RAS 

1 100.00 100.00 101.33 

2 118.80 100.00 101.45 

3 168.00 102.36 101.57 

4 230.40 111.38 101.47 

5 280.80 127.94 112.20 

6 300.00 156.48 140.40 

7 295.20 208.49 192.43 

8 280.80 260.36 243.67 



                                                                         PROBLEM STATEMENT AND SOLUTION 
   

59 
 

9 259.20 288.16 283.10 

10 231.60 299.00 292.92 

11 200.40 291.74 286.60 

12 169.20 262.59 270.25 

13 141.60 239.03 246.79 

14 118.80 212.96 220.94 

15 104.40 188.05 199.77 

16 100.00 158.84 173.28 

17 100.00 142.78 147.48 

18 100.00 122.78 132.80 

19 100.00 112.64 120.19 

20 100.00 103.30 110.92 

21 100.00 101.71 105.26 

22 100.00 100.40 102.31 

23 100.00 100.00 100.93 

24 100.00 100.00 100.35 

25 100.00 100.00 100.00 

 

Table 4.3 and table 4.4 contain the values of computed stage hydrograph at two sections 16km 

and 28km from upstream of the river. The 1
st
 column values represent the time of 25 hour 

whereas the second column shows the values of inflow depth values in m
3
/sec at upstream. The 

both values at two observed locations obtained from lax diffusive and HEC-RAS computer 

model are presented in metre in 3
rd

 and 4
th

 column respectively. 

TABLE 4.3.Computed Stage (m) Hydrograph Values at 16 Km Section from the U/S  

 

Time 

(hour) 

Depth  at U/S end  

(m) 

Depth  at U/S end (m) 

lax diffusive method HECRAS 

1 0.85 0.85 0.86 

2 0.94 0.85 0.86 

3 1.16 0.86 0.86 

4 1.40 0.92 0.88 

5 1.58 1.09 0.96 

6 1.65 1.29 1.17 

7 1.64 1.49 1.39 

8 1.60 1.58 1.55 
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9 1.52 1.60 1.61 

10 1.43 1.57 1.60 

11 1.31 1.50 1.56 

12 1.18 1.41 1.49 

13 1.06 1.32 1.40 

14 0.95 1.21 1.30 

15 0.88 1.11 1.20 

16 0.85 1.00 1.09 

17 0.85 0.94 1.01 

18 0.85 0.89 0.94 

19 0.85 0.87 0.89 

20 0.85 0.86 0.87 

21 0.85 0.85 0.86 

22 0.85 0.85 0.86 

23 0.85 0.85 0.86 

24 0.85 0.85 0.85 

25 0.85 0.85 0.85 

 

TABLE4. 4 Computed Stages (m) Hydrograph Values at D/S End  

 

Time 

(hour) 

Depth  at U/S end  

(m) 

Depth  at D/S end (m) 

lax diffusive method HECRAS 

1 0.85 0.85 0.86 

2 0.94 0.85 0.86 

3 1.16 0.85 0.86 

4 1.40 0.89 0.87 

5 1.58 1.00 0.92 

6 1.65 1.15 1.05 

7 1.64 1.33 1.27 

8 1.60 1.52 1.45 

9 1.52 1.59 1.55 

10 1.43 1.60 1.58 

11 1.31 1.55 1.56 

12 1.18 1.47 1.51 

13 1.06 1.39 1.43 
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14 0.95 1.31 1.35 

15 0.88 1.23 1.26 

16 0.85 1.14 1.17 

17 0.85 1.05 1.08 

18 0.85 0.98 1.01 

19 0.85 0.93 0.95 

20 0.85 0.87 0.91 

21 0.85 0.86 0.88 

22 0.85 0.86 0.87 

23 0.85 0.86 0.86 

24 0.85 0.85 0.86 

25 0.85 0.85 0.86 

 

4.7. COMPARISON OF THE RESULTS BETWEEN LAX DIFFUSIVE AND HEC-RAS 

MODEL 

In this research the flow and stage values at two observed station, obtained from the numerical 

analysis of lax diffusive method are compared with the HEC-RAS computer model. The Fig.4.14 

and Fig.4.15represents the comparison of flow values at 16km and 28km from upstream of 

channel respectively. 

Like the flow comparison the stage values at two observed station, obtained from the numerical 

analysis of lax diffusive method are compared with the HEC-RAS computer model. The Fig.4.16 

and Fig.4.17 represents the comparison of flow values at 16km and 28km from upstream of 

channel respectively. 
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Fig.4.14 Comparison of flow hydrograph at 16km from upstream 

 

Fig.4.15 Comparison of flow hydrograph at 28km from upstream 

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25

D
is

c
h

a
rg

e 
(m

3
/s

) 

Time (hour) 

Inflow at upstream

Flow from Lax-

diffusive at 16km

Flow from HEC-RAS

at 16km

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25

D
sc

h
a

rg
e 

(m
3
/s

) 

Time  (hour) 

Inflow at upstream

Flow from Lax

diffusive at D/S

Flow from HEC-

RAS at D/S



                                                                         PROBLEM STATEMENT AND SOLUTION 
   

63 
 

Fig.4.16. Comparison of Stage Hydrograph at 16km from Upstream 

 

       Fig.4.17. Comparison of Stage Hydrograph at 28km from Upstream
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CONCLUSIONS AND  

SCOPE OF FUTURE STUDY
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 5.1 CONCLUSIONS 

In this research the solution for unsteady flow in a wide rectangular river through explicit 

numerical scheme and HEC-RAS computer model   are presented.  

In the present research, Flood translation or time lag is occurred as the movement of a flood 

wave occurs from upstream to downstream through a channel. This routing technique is known 

as channel routing used to analyze the effects of a channel on a hygrograph’s peak flow and 

travel time. 

So from routing of the channel, the peak flow and time lag of hydrograph are obtained from 

present approach of lax diffusive explicit method. The hydrograph at observed sections are 

occurred due to delay of the inflow hydrograph to come towards downstream. So the inflow 

hydrograph, when changed at observed sections has peak discharge constant. Because the 

hydrograph without attenuation is caused due to the time of travel of the flood wave between the 

two points. Keeping the peak discharge constant, the delay of the hydrograph occurs in 

observation points at 16km and 28km. 

From the  result  of  explicit method , it is seen that  the magnitude  of wave  attenuation  is less 

than 1m
3
/sec which is equal 0.33%  of inflow at  16  km from upstream and is equal  to 5m

3
/sec 

which is 1.6%  of inflow in HEC-RAS computer  model . 

The magnitude of wave attenuation is less than 1m
3
/sec which is equal to 0.33% of inflow in 

explicit method and 8m
3
/sec which is equal to 2.6% of flow in HEC-RAS computer model  at 

28km from upstream end. 

The peak flow depth determined by lax-explicit method is 1.6 meters at 16km from upstream and 

1.61 meters in HEC-RAS computer model. 

The peak flow depth determined by lax-explicit method is 1.6 meters at 28km from upstream and 

1.58 meters in HEC-RAS computer model. 

The arrival time of peak flow in explicit method at 16 km after upstream is two hour after the 

peak of inflow occurs. The HEC-RAS computer model gives same result at that section. At 
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28km from upstream, the arrival time of peak flow in explicit method is four hour after the peak 

of inflow occurs and the HEC-RAS model also gives the same result. 

From the present research work, it is found that the present explicit numerical method is giving a 

similar result with that obtained from HEC-RAS model. 

As there is a base flow at initial state before flood occurs, there should not be any losses due to 

infiltration to soil. And in explicit method it can be seen that there is no reduction of peak flow. 

So it seems more accurate from the HEC-RAS model. 

The present method is easier and user friendly, which can be successfully applied for flood flow 

routing, modeling, in other river routing studies. It can be also applied in Flood predictions, 

Evaluation of flood control measures, Judgment of effects in urbanization, Flood warning, Storm 

water detention, pond storage, Flood mitigation. 

5.2 SCOPE OF FUTURE STUDY  

This project is an approach towards a better understanding for flood routing problems. This study 

can be accomplished with few additional features in future. Some of the future scopes are as:  

 By using implicit scheme, the routing of flood can be solved numerically for approximate 

solution and different explicit techniques may be applied successfully in practical field. 

 More and more studies can be done for river with flood plain of Natural River.  

 Different software’s can be used to analyze the numerical results and for comparison 

purpose also.  
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