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ABSTRACT 

Variations in resilient modulus (Mr) values of unbound materials as determined in 

accordance with AASHTO T307 are studied. Three different granular materials and an elastic 

polyurethane (control) sample were tested using commercially available laboratory test 

equipment. A field test bed was also constructed to measure vehicle (Class 3) induced loading 

conditions at the bottom of an unbound granular layer underlying new hot-mix asphalt pavement 

to determine stress-pulse duration as a function of vehicle speed. Various interpretation issues 

were identified within the framework of the testing methods and equipment including: (1) 

insufficient laboratory sensor sampling rate (per standard); (2) the laboratory specified 0.1 

second load-pulse duration and haversine shape are not matching the field stress-pulse duration 

and shape; (3) the need for careful tuning of the load system gain settings; (4) the number of 

LVDTs used in the vertical strain calculation; (5) limiting quality control and quality assurance 

to deformation ratio values in the preconditioning sequence; (6) limiting the load step 

calculations to the last 5 of 100 load cycles; and (7) the k3 coefficient used in the MEPDG 

suggested generalized universal model function generally not being statistically significant. 

Detailed geostatistical analysis procedures are presented in this study to provide a guide for 

pavement engineers to study spatial variability of pavement foundation properties with 

consideration of choosing the best fit semivariogram model and characterization of anisotropy. 

Measurements from two densely gridded pavement reconstruction sites are presented in studying 

the geostatistical modelling parameters that characterize spatial variability of stiffness and 

compaction properties. Preliminary study on anisotropy in spatial variability of pavement 

foundation properties is performed, but different major and minor anisotropic directions were 

identified in the two small square study sections. Comparisons of three theoretical 



xv 

semivariogram models (i.e., spherical, exponential, and Matérn with k=1) in studying different 

pavement foundation properties shows that there is no single best fit model. The isotropic 

semivariogram model works as well as the anisotropic semivariogram model in estimating the 

data at unsampled locations across the studied small square area. The range that indicates the 

spatial correlation length is less than 5 m in all studied properties of both test sections, without 

considering anisotropy behavior. When anisotropy behavior is considered, longer spatial 

correlation length, up to about 11 m, can be expected in the major direction. 

The second objective of this study is to investigate variability of pavement foundation 

properties (e.g., ELWD-Z3, γd, and w) that are determined from four major in-situ tests (i.e., FWD, 

LWD, NG, and DCP) over 18 test sections of 6 project sites. Change in variation of in-situ 

measured properties has been studied in relationship to the number of compaction passes. 

Univariate statistics of pavement foundation properties is documented for providing references to 

pavement engineers and researchers to know the range of variability that in-situ measured 

properties can have. In addition to univariate statistics, spatial analysis was performed on 

selected sites that contain relatively large data sets for spatial analysis. The difference in spatial 

variation can be expected in longitudinal and transverse direction. The correlation length of 

about 2 m to 3 m in the minor or less uniform direction was quantified for spatial variability of 

dense gridded data on the base layer. The spatial variability of in-situ measured properties along 

the longitudinal direction could be expected to be 15 m to 23 m in the CTB layer. This study on 

spatial variability shows that the correlation length can be different in different pavement 

foundation layers and materials. 
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CHAPTER 1. INTRODUCTION 

Stiffness is an important input parameter in pavement design and laboratory determined 

resilient modulus values can be used as an input for the stiffness present in the whole pavement 

foundation layer. Uniform support is desired for pavement structures to have longer service life, 

but the variability of in-situ measurements on pavement foundations reveals nonuniform support 

to the pavement surface. This chapter discusses the importance of studying variability of 

pavement foundation properties, presents the research goal and objectives of this study, and 

details the organization of the dissertation. 

1.1. Problem Statement 

Pavement foundation structures are constructed to provide uniform support for upper 

pavement layers and traffic load. However, material properties of existing pavement foundation 

structures are generally non-homogeneous. Non-uniform subbase/subgrade stiffness will induce 

fatigue cracking and other types of pavement distresses and shorten the pavement service life 

(Titi et al. 2014; White et al. 2004). Dilip abd Babu (2014) concluded that critical strains will be 

underestimated without considering spatial variability of resilient moduli. Roesler et al. (2016) 

showed peak concrete slab tensile stresses increases up to 39% in nonuniform compared to 

uniform support conditions. However, pavement design assumes that uniform layers are 

achieved and uses a single modulus of subgrade reaction to represent the whole layer.  

Resilient modulus (Mr) is a pavement foundation input value used in the mechanistic-

empirical pavement design method and is often measured using laboratory equipment in 

accordance with AASHTO T307 (2007). Pavement foundation stress conditions are simulated in 

the laboratory test by applying transient cyclic load pulses for a series of deviator and confining 

stress conditions. AASHTO T307 (2007) specifies cyclic loading with each cycle having a 
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haversine-shaped load pulse with a 0.1 s pulse duration (load time) and 0.9 s rest period (dwell 

time). Mr values are well studied by many researchers, but the testing standard and testing 

system should be assessed for obtaining accurate resilient modulus. According to Witczak 

(2004), “inaccurate determination of the resilient modulus of the unbound materials in the 

pavement structure will contribute to erroneous predictions of overall pavement response and 

pavement performance.” 

To achieve a reliable pavement design, variability of engineering properties should be 

properly quantified. Phoon and Kulhawy (1999) suggested estimating the variability of soil 

parameters to develop and apply reliability-based design. Otake and Honjo (2013) also suggested 

evaluating the effects of spatial variability of material properties on pavement structures.  

Variability was identified in constructed pavement foundations. Allen and Graves (1994) 

obtained falling weight deflectometer (FWD) and Road Rater deflection measurements data at 

25 foot intervals along a 500 ft long test section and observed a 75% coefficient of variation in 

subgrade moduli within the section. Yoder (1975) reported a range of standard deviation of layer 

thickness from 0.6 to 0.72 with 9749 tests on cement treated base, 0.72 to 0.84 with 7046 on 

aggregate base, and 0.96 to 1.44 with 10758 tests on aggregate subbase. Yoder (1975) reported 

that a typical range for the standard deviation of percent compaction on embankment/subgrade 

went from 2.0 to 7.0 percent and on subbase/base went from 2.0 to 3.5 percent. Siddharthan et al. 

(1992) studied layer moduli that were determined from back calculation of FWD tests perfomed 

on asphalt concrete pavement and reported the layer moduli vary in a range of 5 to 65 percent for 

the coefficient of variation.  

However, the nonuniformity of pavement foundation (subbase/subgrade) layers has not been 

well studied. The univariate statistical analysis of pavement foundation properties shows a range 
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of the property can vary within the studied area, but it does not describe the spatial uniformity. 

Several previous studies (Facas et al. 2010; Lea and Harvey 2015a; Lea and Harvey 2015b; 

Vennapusa 2004; Vennapusa et al. 2010; White et al. 2004) performed spatial variability analysis 

on pavement related properties (i.e., stiffness, layer thickness, intelligent compaction 

measurement values), and anisotropy in the studied properties was observed that roller-integrated 

compaction measurements (Facas et al. 2010; Vennapusa et al. 2010) varied with longer 

correlation length in the longitudinal direction than in the transverse direction.  

Geostatistical methods have been well studied in other fields (i.e., mining, geology, soil 

science) and details in understanding general spatial variation had appeared in many books 

(Clark and Harper 2002; Cressie 1993; Deutsch and Journel 1998; Goovaerts 1997; Isaaks and 

Srivastava 1989; Journel and Huijbregts 1978; Olea 2006). Lea and Harvey (2015b) introduced 

model types with analysis on pavement layer thickness. However, the details in using 

geostatistical analysis methods on charactering pavement foundation properties with closer 

spacing (about 0.6 m) was not studied. 

Although variation of in-situ properties in pavement construction has been noticed, there is 

no documentation of pavement foundation properties variability for people to have ideas on how 

variable the pavement foundation properties could be. Selective sampling by the inspector, often 

as ordered by the engineer has played an important part in the failure to recognize the magnitude 

of the actual variations occurring in embankment and base construction. 

Pavement foundation properties are studied by investigating the results ELWD-Z3, γd, w, 

DCPIsubbase, and DCPIsubgrade that are obtained from the light weight deflectometer (LWD) test, 

nuclear gauge (NG) test, and dynamic cone penetrometer (DCP) test. Following the pavement 

construction process that the material was spread on the ground and then roller compacted to the 
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target density, the data on pavement foundation properties may not be statistically independent. 

Data values that at locations that are closer together tend to be more similar than data values 

collected at locations that are farther apart. However, how much the pavement foundation 

properties can vary, univariate and spatially, has not been reported sufficiently. Therefore, in this 

research, the assessment of testing method in obtaining the design stiffness input, 

characterization and quantification of variability of in-situ measured pavement foundation 

properties will be discussed. 

1.2. Research Goal and Objectives 

The main goals of this research are to provide assessment procedures for verifying the 

reliability of laboratory determined Mr values that will be used in pavement design and to study 

variability of in-situ pavement foundation properties after pavement construction. To address 

these goals, the objectives of the research are to: 

 Assess the laboratory testing standard and system for improving the reliability of 

obtaining Mr values with simulated in-situ conditions, 

 Provide the detailed procedures for performing spatial variability analysis on pavement 

foundation properties using a geostatistical method, 

 Document univariate and spatial variability of pavement foundation properties as a 

reference for pavement engineers. 

1.3. Organization of the Dissertation 

This dissertation consists of five chapters: a general introduction, three research articles, and 

conclusions and recommendations for further research.  

Following this general introduction, Chapter 2 explains equipment related considerations on 

differences between the lab and field conditions that can lead to variations in resilient modulus 
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(Mr) values of unbound materials as determined in accordance with AASHTO T307. Chapter 3 

demonstrates detailed geostatistical analysis procedures to provide a guide for pavement 

engineers to study spatial variability of pavement foundation properties with consideration of 

choosing the best fitted semivariogram model and characterization of anisotropy. Two densely 

gridded test sections are studied to characterize the behavior of spatial correlation of pavement 

foundation properties in both longitudinal and transverse directions within a small study area. 

Chapter 4 documents the variability of pavement foundation properties by analyzing data 

collected from 6 project sites and provides a reference for pavement engineers and researchers to 

know how variable the in-situ measured pavement foundation properties can be. Chapter 5 

summarizes the conclusions and outcomes derived from this study, and offers several 

suggestions and directions for future research. 
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CHAPTER 2. CONSIDERATIONS FOR LABORATORY RESILIENT MODULUS 

TESTING OF UNBOUND MATERIALS 

A paper submitted to Geotechnical Testing Journal 

Jia Li, David J. White, and W. Robert Stephenson 

2.1. Abstract 

This paper explains equipment related considerations on differences between the lab and 

field conditions that can lead to variations in resilient modulus (Mr) values of unbound materials 

as determined in accordance with AASHTO T307. Three different granular materials and an 

elastic polyurethane (control) sample were tested using commercially available laboratory test 

equipment. A field test bed was also constructed to measure vehicle (Class 3) induced loading 

conditions at the bottom of an unbound granular layer underlying new hot-mix asphalt pavement 

to determine stress-pulse duration as a function of vehicle speed. Various interpretation issues 

were identified within the framework of the testing methods and equipment including: (1) 

insufficient laboratory sensor sampling rate (per standard); (2) the laboratory specified 0.1 

second load-pulse duration and haversine shape are not matching the field stress-pulse duration 

and shape; (3) the need for careful tuning of the load system gain settings; (4) the number of 

LVDTs used in the vertical strain calculation; (5) limiting quality control and quality assurance 

to deformation ratio values in the preconditioning sequence; (6) limiting the load step 

calculations to the last 5 of 100 load cycles; and (7) the k3 coefficient used in the MEPDG 

suggested generalized universal model function generally not being statistically significant. The 

goal of this paper is to provide equipment users and specification developers with user 

knowledge concerning laboratory resilient modulus determination. 
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2.2. Introduction 

Resilient modulus (Mr) is a pavement foundation input value used in the state-of-the-art 

AASHTOWare™ pavement design software based on the mechanistic empirical design 

principles (2015) and is often measured using laboratory equipment in accordance with 

AASHTO T307 (2007). Pavement foundation stress conditions are simulated in the laboratory 

test by applying transient cyclic load pulses for a series of deviator and confining stress 

conditions. By using a selected portion of the laboratory data, results are then used to develop a 

nonlinear stress-dependent model of resilient modulus. 

AASHTO T307 (2007) specifies cyclic loading with each cycle having a haversine-shaped 

load pulse with a 0.1 s pulse duration (load time) and 0.9 s rest period (dwell time). The specified 

minimum sampling rate is 200 Hz. Following an initial 500 to 1000 cycles conditioning phase, 

15 different load sequences are specified with 100 load cycles each. There are two different load 

sequence schedules followed depending on whether the material is an unbound granular material 

(high stress sequence) or a subgrade soil (low stress sequence). The average Mr of the last five in 

the 100 cycles is calculated to represent Mr of the specimen under the specified stress state. 

Further, AASHTO T307 (2007) requires two externally mounted spring-loaded linear variable 

differential transducers (LVDTs) to measure vertical axial deformation for determining resilient 

strain. 

This paper discusses practical considerations that affect interpretation of results from a 

commercially available laboratory Mr test system. Laboratory Mr tests were conducted on three 

unbound granular materials and one polyurethane control specimen (representing an elastic 

material). For comparison to the laboratory load pulse duration and shape, a pavement test bed 

was instrumented and then trafficked with a Class 3 vehicle with two axles (Hallenbeck et al. 
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2014). According to Witczak (2004), “inaccurate determination of the resilient modulus of the 

unbound materials in the pavement structure will contribute to erroneous predictions of overall 

pavement response and pavement performance.” 

Laboratory related equipment factors were studied and characterized including, stress-pulse 

shape and duration, sensor sampling rates, control system proportional and integral gain factors, 

an equipment/software error issue that resulted in an examination of differences between 

deformation measurements of one versus two LVDTs, and criteria used for quality control and 

quality assurance in Mr tests. Considering several test parameters, statistical analyses were 

performed to characterize how the test method and materials influence the calculated Mr values 

and development of the non-linear universal stress-dependent resilient modulus model. 

2.3. Background 

Although AASHTO T307 (2007) is widely used to obtain Mr values for unbound materials, 

research on many factors affecting pavement foundation stress conditions and alterative concepts 

for Mr testing have been studied for years. Barksdale (1971) and Brown (1973) reported that the 

equivalent stress pulse shapes changed from sinusoidal to triangular with increased depth 

beneath pavement surfaces and that the stress pulse duration increases with depth and decreases 

with increasing vehicle speed. Seed et al. (1967) reported that 20 % greater Mr values were 

obtained by decreasing load application duration that correspond to a vehicle’s travel speed. 

Allen and Thompson (1974) reported that the Mr of well-graded granular materials under moving 

wheel loads between about 24 and 113 km/h is independent of stress pulse duration and used 

0.15 s stress pulse duration for further Mr tests.  

In contrast to AASHTO T307, the NCHRP 1-28A method (2004) requires that each load 

cycle have a haversine-shaped load pulse with 0.2 s pulse duration and 0.8 s rest period for 
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subgrade soils and 0.1 s pulse duration and 0.9 s rest period for base and subbase materials and a 

special provision allows for a 0.15 s load pulse and 0.4 s rest period for non-plastic granular 

materials. Irwin (2009) suggested that load pulse durations of 0.2 s for base course and 0.25 s for 

subgrade materials would more accurately represent in situ conditions. 

AASHTO T307 (2007) uses the average deformation measurements of two LVDTs mounted 

outside the pressure chamber, while the NCHRP 1-28A method (2004) requires internally 

mounted LVDTs. Although average values of two outside mounted LVDTs measured 

deformations are used in calculating Mr values to reduce the effects of imperfect top specimen 

surfaces, Groeger et al. (2003) suggested that, with careful inspection (e.g., prevent LVDTs from 

slipping), more accurate deformation values can be obtained with LVDTs mounted inside the 

pressure chamber. Camargo et al. (2012) compared Mr results determined from internal and 

external LVDTs deformation measurements and reported that internal Mr values are generally 

higher than external Mr values. However, the ratio of internal to external Mr values increases 

with increasing internal Mr values and this ratio is related to material types. Based on Camargo et 

al. (2012) results, ratios of internal to external Mr values ranges from 1.0 to 2.2 and have a 

median value of 1.5 for tested base and recycled aggregate materials. Bozyurt et al. (2012) also 

found that ratios of internal to external were greater than 1.0 (ratio equal to about 3.6 for two 

recycled aggregate materials). 

The NCHRP 1-28A method (2004) and AASHTO T307 (2007) require quality 

assurance/quality control (QA/QC) checks on deformation measurements of two LVDTs. Both 

standard methods specify an acceptable value for the vertical deformation ratio (Rv) that is the 

ratio of Ymax to Ymin where the largest deformation measurement of the two LVDTs is Ymax and 

smallest is Ymin. NCHRP 1-28A defines an acceptable maximum defamation ratio of 1.1 and the 
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test should be stopped if an unacceptable ratio is obtained during the preconditioning (PC) 

sequence. Per AASHTO T 307 (2007) the desired Rv value is 1.1 and the load sequence contains 

Rv values larger than 1.3 should be withdrawn. Kim et al. (2007) suggests to have three QA/QC 

criteria including angle of rotation, signal to noise ratio (SNR) and coefficient of variation (cv) 

for checking measured Mr values. Angle of rotation is a criteria for checking uniformity of three 

deformation measurements but this check cannot be done with only two deformation 

measurements. 

AASHTO T307 (2007) specified a loading schedule with 500 to 1000 load cycles for 

conditioning the specimen and 100 load cycles for each load sequence. Setting the number of 

cycles to 100 assumes that a representative Mr values can be obtained at 100 load cycles. Seed et 

al. (1967) reported that increases in Mr values with increasing number of load cycles could be 

50 % to 100 % for specimens with different moisture contents and dry densities. Moore et al. 

(1970) also reported that Mr increased with the number of load cycles. Morgan (1966) tested two 

sandy materials and reported that constant Mr values were often obtained only after about 10,000 

load cycles. Both Moore et al. (1970) and Morgan (1966) examined results from about one 

million load cycles and moisture loss may have been a contributing factor to the Mr increase. In 

other studies such as Hicks and Monismith (1971) test results show that Mr values obtained after 

50 to 100 load cycles are reasonable estimates for some granular materials. Allen and Thompson 

(1974) also reported that the “representative” values Mr can be obtained after 25 to 100 cycles. 

Boyce et al. (1976) found that steady resilient strain values can be reached after 200 to 1000 load 

cycles if no substantial permanent strain occurs. Based on testing a subgrade material, Elliott and 

Thornton (1988) reported that Mr values only differed by about 6 % when 50 instead of 200 load 

cycles was applied instead. 
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AASHTO T307 (2007) and NCHRP 1-28A (2004) require a minimum sampling rate of 

200 Hz. Groeger et al. (2003), however, suggested that 200 readings/second is not sufficient to 

fully characterize the true shape of a load pulse cycle and that 500 Hz should be implemented.  

Given the range of recommendations in the literature concerning load pulse time, 

deformation measurement, and loading cycles, this study set out to examine these issues for the 

specific equipment purchased for this study. AASHTO T307 was selected as the reference 

testing method as this was being used by several state agencies for unbound materials and was 

specified for the equipment purchased for the experiments. 

2.4. Materials and Methods 

2.4.1. Laboratory Test Specimens 

AASHTO T307 (2007) Mr tests were conducted on three granular materials: crushed 

limestone, recycled asphalt pavement (RAP), and recycled portland cement concrete with RAP 

particles (RPCC/RAP), and one polyurethane control specimen. Fines contents and moisture 

contents were determined for each material according to ASTM D422 (2007) and ASTM D2216 

(2010) respectively. A total of thirty-six 101.6 mm diameter by 203.2 mm high specimens were 

compacted in five equal lifts using a vibration hammer in a split mold. For granular materials, 

AASHTO T307 (2007) requires vibratory compaction to prepare test specimens with 5 lifts and 

height and mass of each lift were carefully controlled to ensure the test specimens resulted in 

uniform density. Samples were compacted to target densities for each lift and then the total 

sample density measured. Three specimens of each material with the same fines content were 

compacted to different dry unit weights (i.e., 85 %, 90 %, 95 % relative density). Table 2.1 

summarizes properties for all test specimens. 
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Table 2.1. Properties of the test specimens. 

Material 
Fines 

Content, % 

Dry Unit Weight, kN/m
3
 Moisture content, % 

Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Crushed 

limestone 

2.2 19.28 0.18 2.3 0.09 

5.8 19.76 0.20 2.4 0.00 

7.9 17.76 0.06 2.5 0.05 

12.6 20.58 0.19 2.5 0.00 

RAP 1.6 15.94 0.12 2.9 0.12 

2.0 15.13 0.10 2.8 0.05 

5.6 17.19 0.14 2.9 0.00 

12.5 17.86 0.16 2.9 0.05 

RPCC/RAP 0.8 15.49 0.16 5.9 0.08 

3.5 16.22 0.19 6.5 0.85 

6.0 16.98 0.19 6.2 0.24 

12.4 17.77 0.16 6.1 0.09 

Polyurethane — 11.53 — — — 

Note: Only one polyurethane specimen was tested 

Fourteen tests were performed on the polyurethane specimen to study the effects of 

proportional gain (P) and integral gain (I) values and to study the effects of stress and strain 

sampling rates on the resulting calculated Mr values. P and I values are generally only adjusted in 

the PC sequence when Mr test equipment with proportional-integral (PI) control parameters are 

used. This adjustment minimizes the difference between the actual applied and target stresses. 

However, adjustments on P and I values are controlled by operators without specification. 

Only two external LVDTs were used to measure vertical deformations of each specimen. The 

uniformity ratio (Rv) of Ymax to Ymin was calculated for all load sequences in addition to the PC 

sequence. The desired Rv value is 1.1 (AASHTO 2007) and if the load sequence contains Rv 

values larger than 1.3 they should be withdrawn. In addition to Rv quality criteria during testing, 

coefficient of variation (cv) and signal to noise ratio (SNR) were calculated for checking 

measured Mr values. According to Kim and Labuz (2007), cv is calculated as the ratio of the 

standard deviation (sd) to the average of the last five Mr values and load sequences. The SNR 

value is determined by comparing the peak load or displacement to the standard deviation (sd) of 
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the noise. Kim and Labuz (2007) recommend that cv values exceeding 10 % and SNR values less 

than 3 for each LVDT and 10 for load at each of the last five cycles used to calculate average Mr 

at each stress level should be withdrawn. SNR is calculated as a ratio of peak load or 

displacement to three times the baseline sd using Eq 2.1 while sd of baseline is calculated using 

Eq 2.2. 

 SNR=
Peak

3×sd(baseline)
 (2.1) 

 s𝑑(baseline) = √∑
(Y(n)−μ)2N

1

N−1
 (2.2) 

where  

µ = mean value of baseline readings, 

Y(n) = stress or displacement reading at point n of baseline, and 

N = total data points of baseline. 

For this study on the effects of P and I values and sampling rates, a polyurethane specimen 

was used to mitigate the differences among the specimens. Also, three Mr tests were conducted 

on RPCC/RAP material to study differences in Mr values using different load-pulse durations. 

Loading period was controlled as 0.1 s, 0.5 s, and 1.0 s for each test separately while the rest 

period was controlled as 0.9 s for all tests. The specimens were compacted to the values as listed 

in Table 2.2. 

Table 2.2. Properties of the RPCC/RAP specimens for loading duration test. 

Test Fines Content, % 
Dry Unit Weight, 

kN/m
3
 

Moisture content, 

% 
Loading Time, s 

1 0.4 16.38 5.8 0.1 

2 0.4 16.41 5.8 0.5 

3 0.4 16.40 5.8 1.0 
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2.4.2. Instrumented Pavement Foundation 

In situ drive tests were performed on a newly constructed asphalt pavement to study the 

relationship between driving speed and stress-pulse duration and to determine the in situ stress-

pulse shape. A one-half ton truck (Class 3 vehicle) was used for the drive test with tire pressures 

of 290 kPa. The test pavement has a nominal 152.4 mm pavement surface, a 152.4 mm aggregate 

base, and a 304.8 mm silty clay subgrade. A triangular aperture geogrid was placed between the 

subgrade and the base layer. Details for the test section are presented in White et al. (2013). 

Three piezoelectric earth pressure cells were installed at the unbound aggregate base/subgrade 

interface. Figure 2.1 shows the field installation of the earth pressure cells (EPC) embedded in a 

thin layer of silica sand. Stress-time recording were made at controlled speeds in 16.1 km/h 

increments from 32.2 km/h to 96.6 km/h. The sampling rate was set at 2500 Hz and a low pass 

filter (100 Hz finite impulse response) was used to produce the final stress-time plots.  

 

Figure 2.1. Field installation of (a) individual EPC embedded in thin layer of silica sand, 

and (b) transverse trench with array of three EPCs. 
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2.5. Results and Analysis 

Statistical analyses of variations in Mr were conducted to determine effects of material type, 

stress level, and load cycle selection. Moreover, nonlinear regression analyses were performed 

on 36 granular material specimens to study the significance of the three regression coefficients of 

the universal model.  

2.5.1. Characterization of Stress Pulse 

The laboratory stress-time pulse shape and duration and influences from sensor sampling rate 

and P and I gain settings were studied and compared. Results were also compared to the 

measured in situ trafficking test results. Note that the cross-section area of the specimen is 

considered constant according to AASHTO T307 for purposes of calculating stress and results 

are presented in terms of stress and not load. 

Stress pulse shape and duration 

The laboratory and field stress-pulse shape and duration is compared with the in situ stress 

pulse in Figure 2.2. Results show that the stresses measured from the drive test are small in 

comparison to the laboratory test sequences. The peaks of the in situ front tire and one laboratory 

test stress pulse were matched for comparison in terms of the stress-pulse time history. From the 

piezoelectric earth pressure cells, the initial front tire stress-pulse is followed by a smaller 

amplitude stress-pulse for the rear tire (corresponding to heavier front axle). The shapes of the 

lab and field results are similar. Here the in situ dwell time between front and rear tires is 

comparatively short (e.g., about 0.14 sec when the test truck traveled at 96.6 km/h), as would be 

expected for all vehicles traveling at highway speeds. In general, longer stress pulse durations 

and different pulse shapes were observed with the in situ drive tests compared to the laboratory 
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test. Note that the commercially available laboratory test system sampling intervals result in 

closely spaced groups of two to four points per the equipment manufacturer’s setup. 

The theoretical haversine cyclic load pulse shape as specified in AASHTO T307 (2007) was 

compared with the laboratory and in situ stress pulses. Results show that the laboratory stress 

pulses do not merge with the haversine shape in the regions of the stress-pulse initialization and 

dissipation (Figure 2.2). The haversine curve shape is described using equation ((1 - cosθ) / 2) 

with target peak stress and loading duration. The haversine model was fitted to the data obtained 

from the in situ test for the 96.6 km/h test using 0.1 s pulse duration and the same peak stress 

obtained in the lab test. This exercise demonstrated that a haversine cyclic stress-pulse shape 

does not match the initialization and dissipation regions.  

 

Figure 2.2. Comparison of laboratory and in situ measured stress pulse shape and 

duration. 
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Through investigation of several alternative shapes, it was determined that a modified 

Gaussian pulse shape fits both the laboratory and field data. Eq 2.3 shows the parameters for this 

model. 

 σ=σo+ae
[-0.5(

|t-to|

b
)

c

]
 (2.3) 

where  

σ = laboratory deviator stress or in situ vertical total stress, 

σ0 = minimum stress at initialization,  

t = time, 

t0 = time at peak stress, and 

a, b, and c = regression coefficients. 

An example of the modified Gaussian model fit to the in situ test data for both front and rear 

tire stress pulses is provided in Figure 2.3. Although the modified Gaussian model fits the in situ 

data better than the haversine model, comparison of the actual and modeled results shows that 

the model may slightly over-predict the maximum stress. The actual peak stresses can be 

matched by changing values of the modified Gaussian model coefficients and/or by adjusting the 

low pass filtering parameters to process the raw EPC measurements. The peak stress occurs at 

time t0 and parameter a indicates the peak stress from the modified Gaussian model fit, parameter 

b and c may be adjusted to change the width of the peak curve that affect stress pulse duration. 

The examples of the modified Gaussian fit to the measured in situ stress shows that the minimum 

stress in initialization (σ0 in Eq 2.3) is zero for the front tire but 0.043 for the rear tire. The 

reason is that the short period between the front and rear peak stress (e.g., about 0.16 s for drive 

tests at 80.5 km/h) will not allow the full stress to be dissipated before the rear tire stress is 
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initiated and dissipation of the stress is not a sudden decrease but is slowly decreased to zero 

(e.g., a rate of decrease of about 0.45 kPa/s for the rear tire stress for drive tests at 80.5 km/h).  

 

Figure 2.3. Modified Gaussian model fit for in situ 80.5 km/h driving test. 

Consequently, the modified Gaussian model was used to determine the in situ stress pulse 

durations for all of the in situ drive tests and the relationship between stress pulse duration and 

driving speed was also studied. The modified Gaussian model was fitted to front and rear tire 

stress pulses separately by non-linear regression analysis. The stress pulse duration is calculated 

as the time difference when stress σ-σ0 is equal to 0.05 kPa at stress initialization and dissipation 

using Eq 3. The duration of rear tire stress pulse at a given speed was slightly longer than the 

stress pulse duration of front tire. The average stress pulse duration of front and rear tires 

decreased from 0.50 s to 0.15 s as drive speed increased from 32.2 km/h to 96.6 km/h. Eq 2.4 

describes the relationship between stress pulse durations and vehicle driving speeds: 

 ∆t=to+
a

v
 (2.4) 
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Where: ∆t = the stress-pulse duration (s), t0 = time correction for model fit (s), v = vehicle 

velocity (km/h), and a = a regression coefficient.  

Analysis of stress pulse duration vs. drive speed shows that to achieve the AASHTO T307 

specified 0.1 s stress-pulse duration at the in situ sensor location (152.4 mm beneath the bottom 

of pavement), the vehicle speed would need to be about 128 km/h (Figure 2.4). However, 

considering that the in situ test response is a composite response of the pavement foundation 

layers, including the underlying subgrade layer, the non-linear nature of the stress-pulse vs. 

vehicle speed suggests that the rebound rate of the subgrade may influence the in situ test results. 

 

Figure 2.4. Stress pulse duration at varied drive speeds. 
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laboratory specimens were prepared using the RPCC/RAP material. The stress-pulse duration 

was set at 0.1 s, 0.5 s or 1.0 s. Figure 2.5 shows the resilient modulus plotted as a function of the 

bulk stress. The raw data and the Mechanistic-Empirical Pavement Design Guide (MEPDG) 
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specimen loaded with the 0.5 s stress-pulse duration produced higher Mr values than the 

specimen tested at 0.1 s for most of the applied bulk stresses. Lower Mr values were obtained 

with the 1.0 s stress-pulse duration compared to the 0.5 s duration at most bulk stresses. A 

definite relationship between stress pulse duration and Mr values needs to be studied further in 

respect to the fact that the in situ response is a composite response, not just one layer or material. 

Previously, Marr et al. (2003) suggested that a simpler and less expensive Mr test could be 

conducted with loading period of 0.5 s. 

 

Figure 2.5. Mr values from laboratory tests with varied pulse duration. 
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of the load-time history at the 200 Hz sample rate. The sampling rate and pattern results in an 

obvious miss in terms of peak value determination with characteristic aliasing effect from under 

sampling. This observation confirmed that the sampling pattern and rate at 200 Hz is not 

sufficient to quantify the peak load.  

 

Figure 2.6. Example of Mr test on the polyurethane specimen with 200 Hz sampling 

rate. 

With increasing sampling rate, variation in the maximum load was reduced along with a 

reduction in variation of the minimum applied load during the dwell period. Improvement by 

reduced variability was observed at all stress levels. Figure 2.7 shows a frequency plot of peak 

loads and the differences in recorded peak loads with the selected sampling rates. Although a 

higher sampling rate means more data could be recorded to identify the actual peak load, the test 

with 1250 Hz target sampling rate had lower consistency in peak loads than the test with 

1000 Hz target sampling rate. The reason could be that the actual recorded data is less than 1250 
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points per load cycle as the result of capability of the data acquisition system used to collect a 

large amount of data points in a short period of time. However, based on the results presented 

herein, a minimum sampling rate of 500 Hz would provide a significant improvement relative to 

the existing minimum rate of 200 Hz. 

 

Figure 2.7. Frequency plot for maximum applied loads within a load sequence with 

different sampling rates. 
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polyurethane specimen are about 6 % of the maximum Mr value at each stress level for varied 

initial P and I settings. Each point in Figure 2.8 shows the average Mr values of the last five load 

cycles in each load sequence. Compared to the I value, the P value was considered the more 

dominate parameter for the range of values selected. Careful adjustment of P and I signal values 

are necessary for each Mr test. 

 

Figure 2.8. Mr values of a polyurethane specimen with varied P and I signal values. 

Although P and I values are varied in a small range for seven Mr tests on the polyurethane 

specimen, differences in the determined Mr values are obvious. Three selected load sequences 
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previous load errors and signal P is adjusted by multiplying the P value by the load error. The P 

and I values were estimated only in the PC sequence for the target deviator stress of 103.4 kPa 

and confining pressure of 103.4 kPa, so the P and I values are not always giving the closest 

actual load to the target load that varied in different load sequences.  

 

Figure 2.9. Mr values of a polyurethane specimen at selected load sequences with varied 

P and I signal values. 
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Figure 2.9 shows that the average peak load at the same P and I values is close, 

undershooting, and overshooting the target load for different load sequences. Increases in P and I 

values generally give higher actual peak load and displacement, except the actual peak load and 

displacement decreased about 0.5 % when the I value increased from 0.001 to 0.002 at P equal to 

0.4. To get the best possible control, P and I values should be adjusted during the first few load 

cycles in each load sequence that has deviator stress changed from 20.7 kPa to 275.8 kPa. 

2.5.2. Influence of Deformation Measurements 

Vertical deformations were measured using two outside mounted LVDTs according to 

AASHTO T307 (2007). Figure 2.10 shows an example dataset comparing results using one 

LVDT versus the average of two LVDTs measurements. Surprisingly, the commercially 

available equipment was programmed to read only from LVDT1. This suggests that new users 

should carefully study how the sensors are integrated into the data collection and analysis 

software provided by the manufacturer. Based on the results presented in Figure 2.10, the 

differences between Mr values determined using LVDT1 and LVDT2 deformation measurements 

are up to about 60 % of the Mr values calculated with average deformation measurements of 

LVDT1 and LVDT2. If one LVDT is used, the determined Mr values will overestimate or 

underestimate the actual resilient properties of the test specimen. Because the top surface of the 

specimen may rotate during loading, one or even two LVDTs may not be sufficient to 

characterize the rotation and check uniformity of the test specimen. (see, Ping et al. (2003), 

Bozyurt et al. (2012), Camargo et al. (2012)). 
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Figure 2.10. Mr test results with varied LVDT measurements for a RAP specimen. 
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sequences. But for aggregate specimens, the SNR values increase with the number of load 

sequences. This can be explained as the standard deviation (sd) is not increasing significantly 

with increasing bulk stress.  

 

Figure 2.11. Average SNR for load measurements of last five cycles at all load sequences 

 

Figure 2.12. Rv for all deformation measurements at each load sequence of one Mr test 

on crushed limestone. 
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Figure 2.13. Rv for all deformation measurements at each load sequence of one Mr test 

on RPCC/RAP. 

As described previously, AASHTO T307 (2007) requires quality verification assessment of 

the deformation ratio (Rv). It is desired that Rv ≤ 1.1 and it is considered unacceptable if 

Rv > 1.30 during the PC phase of the test. However, the comparative checks might be conducted 

for all load sequences not only the PC sequence as an additional measure of quality testing. Two 

examples of Rv values for Mr tests on crushed limestone and RPCC/RAP are shown by box-plots 

in Figure 2.12 and Figure 2.13, respectively. All box plots in this paper are plotted to show the 

10 % and 90 % quartile with boundary of the upper and lower whiskers, the 25 % and 75 % 

quartile with the upper and lower boundary of the box, the median with the horizontal line inside 

the box, and the values that are out of the range (10 % to 90 % quartile) with single points. 

Results show that all load sequences, except the PC sequence, have Rv values less than the 

desired limit of 1.1. In general, the results for both test samples show that the Rv values are 

highest during the PC sequence and that virtually all the Rv values meet the desired limit of 1.1 

for the subsequent 15 loading cycles. 
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In addition to the comparison of paired Rv values, the resilient strain (εr) for each load cycle 

that is calculated from the deformation measurement of each LVDT was compared. Figure 2.14 

shows an example of the resilient strain ratio (Rεr) calculated as the ratio of resilient strain 

determined from LVDT1 to LVDT2 on the same RPCC/RAP specimen that was used for 

calculating Rv values in Figure 2.13. Rεr varied from 0.7 up to 1.9 for all load cycles, and values 

of Rεr varied differently from Rv values for all load sequences. Figure 2.13 shows that the PC 

sequence is the only load sequence that has Rv values exceeding 1.1, but Figure 2.14 shows that 

the first load sequence where the lowest stresses were applied has the highest Rεr.  

Large differences between LVDT1 and LVDT2 measured resilient strains result in larger 

errors in Mr calculation. Both deviator stress and confining pressure applied in the first load 

sequence are lower than stresses applied in the PC sequence, but they all have deviator stress to 

confining pressure ratio of one. During the transition between the PC sequence and the first load 

sequence, stresses at a lower stress level are applied. Per the raw data obtained in several Mr 

tests, the displacements that were measured by both LVDTs decrease with increasing number of 

load cycles in the first load sequence. This analysis suggests that cyclic densification and/or 

particle rearrangement leading to non-uniform vertical strain might contribute to differences in 

all paired resilient strains in the first load sequence. 
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Figure 2.14. Rεr for all load cycles at each load sequence of one Mr test on RPCC/RAP. 

In addition to the observation of variation of Mr values in a load sequence, the variation of Mr 

values within the last five load cycles was also studied based on the suggestion of Kim et al. 

(2007) for quality verification of the test results that cv for the last five Mr values should be 

below the limit of 10 %. In this present study, all 36 Mr tests on granular soils have cv less than 

10 % at all load sequences. The distribution of cv values for each test was presented in box-plots 

and summarized in Figure 2.15. Properties of each test specimen are noted above each box-plot. 
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crushed limestone, except the first RAP test. However, this cv value only shows variation among 
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of each load sequence that shows if the average Mr of the last five load cycles is representative 

for that load sequence. 
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Figure 2.15. cv of last five Mr values for all Mr tests on crushed limestone. 

Further study on variation of Mr values was accomplished by comparing the average Mr of 

the last 5 load cycles to the average maximum Mr and the average minimum Mr separately. The 

average maximum Mr is calculated using the maximum and 4 adjacent Mr values. 
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Mr variation 

Morgan (1966) and Moore et al. (1970) reported that Mr values generally increased with 

number of load cycles, so the average Mr of the last 5 load cycles should be nearly the same as 

the maximum Mr value. However, observation of variation in Mr values within each load 

sequence indicates that the average Mr of the last 5 load cycles is not always the maximum value 

nor representative of the load sequence. 

Figure 2.16 shows an example where the Mr values decrease near the end of the 100 load 

cycles and the minimum Mr value was obtained at the last load cycle. Another example (Figure 

2.17) shows that the Mr value decreased first and then increased. Consequently, the variation of 

Mr values within each 100 load cycle sequence was identified by comparing the average Mr of 

the last 5 load cycles to the average 5-pt. maximum and the average 5-pt. minimum Mr values. 

By observation, the first 10 load cycles were excluded because these cycles often result in 

significant changes. 

  

Figure 2.16. Mr variation in a load sequence of Mr test on limestone specimen. 
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Figure 2.17. Mr variation in a load sequence of Mr test on RPCC/RAP specimen. 
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sequences have an average minimum Mr at the end of the load sequence. The ratios larger than 

one indicate large variation among the five points, because the average minimum Mr was 

calculated using the minimum Mr from five consecutive points. Results show that the RAP 

specimens have larger ratios than crushed limestone and RPCC/RAP specimens, and the ratio is 

up to 1.04. 

 

Figure 2.18. Ratios of the average maximum Mr to average Mr of last 5 load cycles for 

36 granular specimens. 
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RPCC/RAP. Tukey HSD (honest significant difference) tests were also performed to study 

statistical differences in average Mr values among levels of a factor.  

  

Figure 2.19. Least square means plot for Mr tests on 3 base/subbase materials. 

Table 2.3. Tests for fixed and random effects of analysis of variance. 
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uses a value from the studentized range distribution. Values of the studentized range are based on 

Type I error rate (α), number of groups or factor levels (k), and degrees of freedom (df) for error. 

In JMP, a statistical program, the critical HSD value is calculated as Q√MSerror (
1

ni
+

1

nj
) where 

MSerror is mean square error, ni and nj are numbers of observations for factor levels i and j and Q 

is derived from the distribution of the studentized range. If the absolute value of the pairwise 

difference between two factor level means is less than the HSD value, these two factor levels are 

not significantly different and marked by the same letter. Otherwise, the factor level means are 

significantly different and marked by different letters.  

Table 2.4 shows results of two Tukey HSD tests that were performed on material type and Mr 

calculation separately, each set of alphabetically listed letters indicates the statistical significance 

of the difference between mean Mr values of any two levels of each factor. The Tukey HSD test 

on material type shows that the differences in mean Mr between recycled materials (RAP, 

RPCC/RAP) and virgin materials (crushed limestone) are statistically significant while the 

difference in mean Mr between the two recycled materials is not. Moreover, the differences in 

the mean Mr values calculated using each of the three Mr calculation methods are significantly 

different from the other two. 

Table 2.4. Tukey HSD test on material type and Mr calculation method. 

Factors Levels Letter 
Least Square 

Mean 

Material 

Limestone A 
 

 323.2401 

RAP 
 

B  232.9138 

RPCC/RAP  B  200.6457 

Mr 

Calculation 

Avg Mr of max and adjacent 4 load cycles A   261.9112 

Avg Mr of last 5 load cycles  B  253.2517 

Avg Mr of min and adjacent 4 load cycles   C 241.6368 

Note: Levels that are not connected by same letter are significantly different and α=0.05. 
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Coefficients of Mr prediction model 

Values of universal prediction model coefficients are determined from non-linear regression 

analysis as the direct inputs for the AASHTOWare design software (AASHTO 2015). This 

model predicts Mr values based on the bulk stress (σB) and octahedral stress (τoct) with three 

coefficients, k1, k2, k3, as given by Eq 2.5, in which Pa is atmosphere pressure.  

 Mr=k1Pa (
σB

Pa
)

k2

(1+
τoct

Pa
)

k3

 (2.5) 

Mr values are positive, so values of k1 are positive. Values of k2 are also positive, because k2 

is the exponent coefficient of bulk stress and Mr is positively related to bulk stress. Strain 

hardening of the material is caused by increasing bulk stress, so a higher Mr value is obtained. In 

addition, negative values of k3 should be obtained to account for strain softening effects of 

increasing octahedral shear stresses. Negative values for k3 are generally obtained for fine-

grained soils, but not always for coarse-grained or granular materials. Strain softening of 

granular materials generally occurs at high stress levels where volumetric strains are increasing. 

Mr testing is normally limited to strains <5 %. Therefore, it is not surprising that 33 of the 36 Mr 

tests resulted in positive values of k3. In addition, all 36 Mr tests have positive values for k1 and 

k2 coefficients. 

The significance of k1, k2, and k3 coefficients was determined for all 36 Mr tests at a 

significance level of 0.001. Results show that k1 and k2 are significant for all 36 tests, but only 13 

of the 36 tests produce a statistically significant k3 value. Figure 2.20 shows the p-values for all 

36 k3 coefficients. As indicated, the RAP specimens produced least significant k3 coefficients 

compared to crushed limestone and RPCC/RAP. The insignificant k3 coefficients indicate that 

octahedral shear stress is not a significant factor in controlling resilient modulus for the materials 
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tested. Examining the data with respect to statistical significance in lieu of just a curve fitting 

exercise thus reveals useful information about the material properties. 

  

Figure 2.20. P-values for coefficient k3 of 36 Mr tests on granular materials. 
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rates, and P and I signal values. A comparison of randomly selected raw data of a AASHTO 

T307 test with the required theoretical haversine-shaped stress pulse and in situ stress pulses 

revealed inadequate simulation of in situ stress pulse shapes and fast stress pulse durations in 

laboratory tests. The haversine-shaped stress pulse does not simulate the actual slow stress 

initialization and dissipation that in situ stress pulse experienced. A modified Gaussian model 

with 5 parameters can better simulate in situ stress pulses. Stress pulse duration of 0.1 s is too 

fast compared to in situ stress pulse duration of 0.14 s at 304.8 mm beneath the pavement surface 

and base layer when the test vehicle was driving at 96.6 km/h. In addition, a 0.1 s stress pulse 

duration might be obtained at the same position when the test vehicle is driving at 128 km/h. 

Although Mr values varied with different stress pulse durations, three laboratory tests are not 

sufficient to conclude effects of stress pulse duration on Mr values. Therefore, the effects of the 

inadequate simulation on Mr values needs to be studied further to determine if a revision is 

needed for the laboratory tests. Further, the specified 200 Hz sampling rate for laboratory tests is 

insufficient to fully characterize the true shape of stress pulses, especially the applied peak 

stresses. After tests with different sampling rates, rates of 500 Hz or greater can capture applied 

peak stresses better than the 200 Hz rate and result in less variation in Mr values. However, the 

different Mr test appliance may perform better or worse with the same sampling rate. Different 

sampling rates during the loading and rest period might be used with capable software to save 

computer storage and time for processing data. Initial adjustments of P and I signal values and 

automatic adaptation with time within the PC sequence is good when applying the target load in 

the PC sequence but not for achieving target loads for subsequent sequences where different 

stress levels are required. Therefore, careful adjustments of P and I signal values in each load 

sequence might be suggested when Mr test equipment with a PID controller is used.  
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The differences between deformation measurements of two LVDTs were studied. In some 

cases, large differences were observed perhaps because top surfaces of the test specimens were 

not perfectly flat and the unit weights of the specimens were not uniform. In some cases, large 

differences in two LVDTs measurements were not observed in the PC sequence but in other load 

sequences. The larger the difference in two LVDTs measurements, the lower the accuracy in Mr 

values. Therefore, quality control and quality assurance (QC/QA) are needed to determine the 

reliability of the Mr tests results. SNR values of loads, the AASHTO T307 required displacement 

ratio Rv in the PC sequence, a proposed resilient strain ratio Rεr of LVDT1 to LVDT2, and cv of 

the last five Mr values in each load sequence were studied for QC/QA. Most of the SNR values 

met the requirement except for the first load sequence. The first load sequence has most SNR 

values less than 10, the minimum criteria. A possible reason for this is particle rearrangement in 

the specimen. Values of Rv in the PC sequence are not representative of Rv values for all load 

sequences, so Rv values should be checked for all load sequences. The highest Rεr values were 

obtained in the first load sequence not the PC sequence this suggests a possible particle 

rearrangement might have occurred in that load sequence. Therefore, Rεr should be studied to 

check the uniformity of the specimen response. However, two LVDTs may not be sufficient for 

checking the uniformity of the specimen response and more LVDTs are suggested. In addition, 

cv was calculated for the last five load cycles of selected Mr tests and all the values met the 

requirement. However, this only shows that variations within the last five load cycles were 

acceptable and that the average of the last five Mr values is used to represent the Mr at the given 

stress for the tested material.  

However, Mr values varied in different ways than the average of the last five Mr values, they 

could be higher than the maximum or lower than the minimum Mr values. This suggests steady 
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Mr values were not obtained at the end of the 100 load cycles. According to the statistical 

analysis on all 36 Mr tests on three granular materials, variations among the average of the last 

five Mr values, the average of the maximum and adjacent four Mr values, and the average of the 

minimum and adjacent four Mr values are statistically different. In addition, crushed limestone 

specimens had higher average Mr than RAP and RPCC/RAP specimens, and material type is a 

statistically significant factor affecting Mr values. Although increasing use of recycled materials 

can help environmental sustainability and reduce costs, careful investigation of the properties of 

the recycled materials should be conducted. Moreover, regression coefficient k3 is not necessary 

for granular materials because the effects of shear stress that k3 interprets in the universal model 

can be negative or positive.  

Assessments of testing errors are necessary to ensure accurate Mr values. Practitioners who 

perform AASHTO T307 Mr tests with similar equipment can use these findings to evaluate their 

equipment and identify possible sources of error. 
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CHAPTER 3. STUDYING SPATIAL VARIATION OF PAVEMENT FOUNDATION 

PROPERTIES WITH GEOSTATISTICAL ANALYSIS METHOD 

A paper submitted to Journal of Geotechnical and Geoenvironmental Engineering 

Jia Li, David J White, Philip M Dixon, and Pavana Vennapusa 

3.1. Abstract 

Geostatistical analysis procedures are presented in this study to provide a guide for 

geotechnical and pavement engineers to quantify spatial variability of pavement foundation 

properties with consideration of choosing the best fitted semivariogram model and 

characterization of anisotropy. Characterization of spatial variability of stiffness and compaction 

properties are presented from two Interstate projects sites in Michigan (I-94 and I-96). . 

Geospatial analysis of anisotropy for the geotechnical measurements shows different major and 

minor anisotropic directions for densely tested spatial areas. Comparisons of three theoretical 

semivariogram models (i.e., spherical, exponential, and Matérn with k=1) using elastic modulus, 

moisture/density, and penetration resistance show that there is no single best fitted model for all 

measurement types. The isotropic semivariogram model works as well as the anisotropic 

semivariogram model in estimating the data at unsampled locations across the studied areas. The 

range values (indicating the spatial correlation length) are almost all less than 5 m for all 

measurements without considering the anisotropic behavior. When anisotropy is considered, 

longer spatial correlation lengths up to 11 m were determined in the longitudinal direction of the 

road alignment. The importance of this research is that with high quality field measurements, 

different anisotropic behaviors were observed and therefore careful assessment of geospatial 

modeling is required to adequately characterize spatial variability of pavement foundation layer 

properties. 
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3.2. Introduction 

Non-uniform subbase/subgrade stiffness can accelerate fatigue cracking and other types of 

pavement distresses and shorten the pavement service life (Titi et al. 2014; White et al. 2004). 

Dilip abd Babu (2014) concluded that critical strains will be underestimated without considering 

the spatial variability of resilient moduli. Roesler et al. (2016) showed peak concrete slab tensile 

stresses increase up to 39% in nonuniform compared uniform support conditions. However, there 

have been very limited studies that documented the fundamental aspects of nonuniformity 

modeling of the foundation layer properties. In part, the lack of study in this area is due to the 

state of practice that relies on sparse data collected. The univariate statistical analysis of 

pavement foundation properties shows a range of engineering parameters values can vary within 

the studied area, but it does not describe the spatial variability. Several previous studies (Facas et 

al. 2010; Lea and Harvey 2015a; Lea and Harvey 2015b; Vennapusa 2004; Vennapusa et al. 

2010; White et al. 2004) performed spatial variability analysis on pavement foundation layer 

properties (i.e., stiffness, layer thickness, intelligent compaction measurement values). 

Anisotropy in engineering parameters has been observed and characterized using roller-

integrated compaction measurements (Facas et al. 2010; Vennapusa et al. 2010) where longer 

correlation lengths were observed in the longitudinal direction compared to the transverse 

direction.  

Geostatistical methods have been well studied in other fields (i.e., mining, geology, soil 

science) and details of understanding general spatial variation have been introduced in many 

books (Clark and Harper 2002; Cressie 1993; Deutsch and Journel 1998; Goovaerts 1997; Isaaks 

and Srivastava 1989; Journel and Huijbregts 1978; Olea 2006). Lead and Harvey (2015b) 

introduced model types with analysis of pavement layer thickness. However, the details in using 
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geostatistical analysis methods for charactering pavement foundation properties with closer 

spacing (about 0.6 m) was not studied. 

Herein pavement foundation properties were studied by investigating the in-situ stiffness, 

penetration resistance, and compaction properties. Stiffness properties include elastic modulus 

(ELWD-Z3) determined from the light weight deflectometer (LWD) test. Penetration resistance was 

determined from the dynamic cone penetration index (DCPI) (ASTM D6951-03) of subbase 

layer and subgrade layers (DCPIsubbase, and DCPIsubgrade). Compaction properties include dry unit 

weight (γd) and moisture content (w), as determined from the nuclear gauge (NG) test method 

(ASTM D6938-10). In-situ testing was performed shortly after pavement foundation 

construction process was completed. Observation of the construction processes were noted in 

terms of how the materials were placed, spread, and compacted.  

 The in-situ measurements were taken at several test locations with consideration for the 

depth of measurement that the values represent. For example, the LWD test is a spot test where 

the ELWD-Z3 values represent stiffness for the composite subgrade and subbase layers at the test 

location. Other measurments were interpreted to represent the target layer, like DCP and the NG 

tests results.. Interpretation of the in-situ test results is important for further interpretation of the 

geospatial results. 

This paper focuses on quantifying spatial variability using a geostatistical method, comparing 

efficiency of different theoretical semivariogram models in fitting the semivariogram of studied 

properties, describing different methods in identifying anisotropic spatial variance, and 

comparing isotropic and anisotropic semivariogram models in describing the spatial variability. 

The interpretation and modelling of experimental measures of spatial variability are discussed 

and demonstrated using data collected at two projects MI I-94 and MI I-96 in Michigan. This 
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paper introduces researchers and engineers to quantifying spatial variability, examines how the 

correlation of the pavement foundation properties could be in different directions, and guides 

readers to plan future sampling programs for studying the spatial variability of the pavement 

foundation sections. 

3.3. Geostatistical Analysis 

The semivariogram γ(h) is a tool in geostatistical studies to describe and quantify spatial 

variability of studied variables. A semivariogram γ(h) measures the average dissimilarity of 

paired data separated by a vector h (Goovaerts 1997). The semivariogram γ(h) is defined as half 

of the average squared differences between a number, N(h), of data values pairs separated at a 

distance h as calculated in Eq. 3.1 (Isaaks and Srivastava 1989). 

 γ(h)=
1

2N(h)
∑ (Z(si)-Z(sj))

2

(i,j)|hij≈h  (3.1) 

The random function Z(s) where s denotes spatial location is second order stationary, which 

means that the mean value (μ) is a constant and the covariance between any pair of data values 

separated by the vector with vector distance h is the same across the study area. Although 

semivariance, variance, semivariogram, and variogram have been used in different studies 

(Bachmaier and Backes 2011), the semivariogram, γ(h) given in Eq. 3.1, will be used in this 

study.  

A semivariogram plot is composed of sill (C) that includes nugget effect (C0) and partial sill 

(Cs), and range (a) or effective range (a') for a single semivariogram model with nugget effect. 

Figure 3.1 shows a typical spherical semivariogram fitted to the experimental semivariogram 

data. 
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Figure 3.1. Typical semivariogram graph 

Three major semivariogram parameters are the nugget effect (C0), the sill (C=C0+Cs), and the 

range (a). The brief description of each parameter will be summarized from geostatistical books 

(Goovaerts 1997; Isaaks and Srivastava 1989). 

The nugget effect (C0) is the sudden increase in the semivariogram value as the separation 

distance goes from 0 m at the origin to an extremely small distance. This nugget effect can be the 

result of sampling error and short scale variability. The nugget effect can be determined by 

fitting the straight line through the first few semivariogram values to the intercept with the 

vertical axis. The relative nugget effect tends to increase with the lag (h) tolerance and data 

sparsity. Data sparsity or measurement errors may lead to a semivariogram with noisy values and 

can only be presented with a pure nugget effect. In general, the nugget effect is modelled as an 

isotropic component, but it could be modeled as an anisotropic spatial structure if the range value 

is smaller than the shortest sampling distance. 
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The sill (C=C0+Cs) is the value of semivariogram that no longer increases with increasing 

separation distance, that is the semivariogram reaches a plateau with value C0. The sill of the 

semivariogram may not be equal to the sample variance (Barnes 1991; Goovaerts 1997) and so 

forcing the sill to be equal to the sample variance (s
2
) is a questionable practice. 

The range (a) is the separation distance at which the semivariogram reaches the sill plateau. 

In most models, the effective range (a') is determined as the semivariogram reaches 95% of the 

sill plateau. More and better data tends to produce a semivariogram with longer range. 

Some properties of a semivariogram are that the semivariogram values are identical when 

computed on opposite directions, the omnidirectional semivariogram is computed on the data 

pairs in all directions that have an angular tolerance (∆θ) greater than or equal to 90°, the 

directional semivariogram is computed when ∆θ less than 90°, and semivariogram values are 

sensitive to extreme data or outlier values (Goovaerts 1997). The ∆θ extend the vector h angle θ 

to include all distance vector falls in the direction θ±∆θ. 

The appropriate lag or separation distance should be chosen according to the average 

minimum spacing among the sampling locations. The lag tolerance is commonly one half of the 

lag spacing. The default setting in the statistical program R is to study the semivariogram values 

of the data pairs separated at a distance up to 1/3 of the maximum length of the studied area. In 

general, 10 to 15 bins is desired at separation distance up to ½ of the maximum distance over the 

sampling area, but the number of data pairs within each bin is more important. 

The discrepancies in semivariogram values reflect experimental fluctuation that result from 

the small number of data pairs available for each lag. Generally, the minimum of 30 and 

preferred 50 or more data pairs is desired within each bin (Journel and Huijbregts 1978). Erratic 

behaviors could be found in experimental semivariogram for data that is skewed or has 
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extremely high or low values (outliers). If the sampled data is highly skewed (skewness is out the 

range of -1 to 1), the data may be transformed before performing spatial analysis. If the 

experimental semivariogram keeps increasing with increasing separation distance between data 

pairs, there could be a trend in the sampled data that should be removed before spatial analysis 

(Gringarten and Deutsch 2001). The reason for this is that it is unreasonable to expect a constant 

mean value over the study area, as is assumed in spatial analysis, if a significant trend is 

identified. 

3.4. Project Overview 

Two dense gridded test sections with the minimum spacing of about 0.6 m were studied for 

investigating and quantifying the spatial variability of the pavement foundation properties. The 

in situ test data used in this study were collected from one test section from each of the MI I-94 

and the MI I-96 reconstruction projects. 

3.4.1. Test section 

The first dense gridded test section (TS1b) is part of the MI I-94 project which involved 

pavement reconstruction. The new pavement was constructed with a 280 mm (11 in.) thick JCPC 

pavement surface and a 406 mm (16.0 in.) thick OGDC base layer that sat on the subgrade layer 

of silty clay which was classified as ML in the USCS classification system with a geotextile 

layer in between. TS1b involved testing a 7 m × 7 m area in a dense grid pattern with 121 test 

points on the newly constructed trimmed OGDC base layer. The second dense gridded test 

section (TS1) is part of the MI I-96 project which also involved pavement reconstruction. The 

new pavement was constructed with a 292 mm (11.5 in.) thick jointed PCC pavement, 127 mm 

(5 in.) cement treated base (CTB) layer with recycled PCC (RPCC) material and 279 mm (11 in.) of 

existing or new sand subbase with a geotextile separator at the CTB/subbase interface. TS1 involved 
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testing an 8.5 m × 8.5 m area in a dense grid pattern with 73 test points on the final compacted and 

trimmed sand subbase layer. Soil properties of these two test sections determined by laboratory tests, 

are summarized in Table 3.1. 

Table 3.1. Soil properties summary for studied test sections 

Project Site MI I-94 MI I-96 

Pavement 

Foundation 

Layer 

Soil Properties TS1b TS1 

Base/subbase 

rdmax(kN/m
3
) (ASTM D4253-00) 16.23 20.06 

rdmin(kN/m
3
) (ASTM D4254-00) 14.05 14.98 

AASHTO Classification A-1-a A-1-b 

USCS Classification GP SP-SM 

Subgrade 

rdmax (ASTM D698-07) 18.58 20.1 

wopt (ASTM D698-07) 13.8 9.5 

AASHTO Classification (ASTM D3282-09) A-4(0) A-4 

USCS Classification (ASTM D2487-00) ML SC 

 

3.4.2. In-situ tests 

The following in situ tests were conducted on test sections MI I-94 TS 1b and MI I-96 TS1 to 

evaluate the variability in properties of pavement foundation systems: real-time kinematic global 

positioning system (RTK-GPS); Zorn light weight deflectometer (LWD); dynamic cone 

penetrometer (DCP); and Humboldt nuclear gauge (NG). 

Real-Time Kinematic Global Positioning System 

RTK GPS system was used to obtain global spatial coordinates (i.e., northing, easting, and 

elevation) of in situ test locations and tested pavement layers. The local spatial coordinates (x, y, 

and z) were determined for all tested sections from their global coordinates. A Trimble SPS 851 

was established on site to provide base station correction for a Trimble SPS 851 receiver. This 

system has manufactured accuracies of < 10 mm in the horizontal direction and < 20 mm in the 

vertical direction. 
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Zorn Light Weight Deflectometer 

Zorn LWD tests were performed according to manufacturer’s recommendations (Zorn G. 

2003) on base and subbase layers to determine elastic modulus. These LWD testes were set up 

with a 300-mm diameter plate and a 71 cm drop height. Elastic modulus (ELWD-Z3) from LWD 

results were determined using Eq. 3.2 where E is elastic modulus (MPa); D0 is measured 

deflection under the plate (mm); η is Poisson’s ratio (0.4); σ0 is applied stress (MPa); r is radius 

of the plate (mm); and F = shape factor = 8/3 per Vennapusa and White (2009). 

 F
D

r
E 




0

0

2 )1( 
 (3.2) 

Nuclear gauge 

A nuclear moisture-density gauge (NG) device was calibrated and used to measure in situ 

soil dry unit weights (γd) and moisture contents (w) in the base and subbase materials. Tests were 

performed according to ASTM D6938-10 (2010) at each test location. The average values of γd 

and w are reported for spatial analysis. 

Dynamic Cone Penetrometer 

DCP tests were performed following ASTM D6951-03 (2003) to evaluate the in situ strength 

of compacted base, subbase, and subgrade materials, and dynamic penetration index (DCPI) and 

penetration depth were determined at each test point. The weighted average DCPI was calculated 

for each identified subbase and subgrade layer at each test point to evaluate variability of the in-

situ strength at different pavement foundation layers. The first reading of the DCPI from the 

beginning of the test was excluded from the calculation of the weighted average DCPI. The 

reason is that the initial large DCPI value was obtained at the near surface of the subbase. After 

compaction of the subgrade and subbase, the lack of confining pressure of the unbound layer will 
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have less resistance to penetration. Since the pavement surface will be constructed on the top of 

the subbase layer that will provide confining pressure, the exclusion of the first reading will 

result in a more accurate average DCPI value for the subbase layer. By evaluating the test results, 

MI I-94 DCPI was calculated into the weighted average value for base and subgrade layers, and 

MI I-96 DCPI was calculated into the weighted average value for subbase andsubgrade layers. 

3.4.3. Test plan 

The test point locations of MI I-94 TS1b and MI I-96 TS1 are shown in Figure 3.2 and 

Figure 3.3. All three LWD, NG, DCP tests were conducted at all test points in MI I-94 TS1b 

(Figure 3.2). Both LWD and NG tests were conducted at all tests points in MI I-96 TS1 and DCP 

tests were conducted at fewer test points as shown in Figure 3.3. 

 

Figure 3.2. Test points in MI I-94 TS1b 
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Figure 3.3. Test points in MI I-96 TS1 

3.5. Method 

Spatial analysis of pavement foundation properties was performed using the statistical 

analysis program R (Bivand et al. 2013; Pebesma 2001). the R program calculates the 

experimental semivariogram efficiently, fits a theoretical semivariogram model with statistical 

criteria to obtain the best fit to the calculated semivariogram values, and uses ordinary kriging to 

visualize the fitted semivariogram prediction results over the studied area. 

The basic steps are summarized below: 

• Calculate the omnidirectional experimental semivariogram values with adjustment on lag 

distance (h), angle tolerance (∆θ), and the maximum distance. 

• Plot the variogram map as a preliminary study of anisotropy of the experimental 

semivariogram values of the studied variable. 
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• Calculate the semivariogram values in four major directions withazimuth angle (θ) is 

equal to 0°, 45°, 90°, 135° separately to identify existence and type of anisotropy 

(geometric, zonal, or both), and investigate major and minor anisotropy directions that 

are generally perpendicular to each other. 

• Fit a theoretical model to the omnidirectional experimental semivariogram if isotropic or 

directional semivariogram if anisotropy is identified, and record values of a, C0, Cs and 

sum of square errors (SSErr). 

• Perform cross-validation with the fitted semivariogram model and calculate the mean 

square of the prediction error (MSPE). 

• Use ordinary kriging with the fitted model to predict the values at unsampled locations 

among the sampled points and use contour plotting to present the results. 

The calculation of an omnidirectional semivariogram is useful in starting the spatial analysis 

for investigating the distance parameters to produce a clearer structure without having 

insufficient bins or amount of data pairs in each bin. The omnidirectional semivariogram can 

indicate an erratic directional variogram when it exists. Several tolerances (Δθ) should be tried to 

use the smallest tolerance value that still provide good results (Isaaks and Srivastava 1989). 

Although several commercially available geostatistical analysis software are available for 

calculating and plotting experimental semivariograms and fitting theoretical semivariogram 

models, the R program allows fitting theoretical semivariograms with a weighted least square 

method that can provide a better statistically fitted model and allow comparison between 

different theoretical models. 

The maximum cutoff length is controlled to be 1/3 to ½ of the maximum distance of the 

studied area to exclude the effect of fewer data pairs at larger separation distances when studying 
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the spatial variability over the test area. Figure 3.4 shows an example of a calculating 

experimental semivariogram of the variable ELWD-Z3 calculated from LWD tests performed on 

MI I-94 TS1b. The example shows fewer data pairs were obtained with increasing separation 

distances, the variance of the semivariogram values is larger at larger separation distance, and 

semivariogram values start to decrease at about 2/3 of the maximum distance of the studied area 

when number of data pairs is smaller. 

 

Figure 3.4. Illustration of choosing the maximum cutoff length (MI I-94 TS1b) 

Extreme values or outliers should be identified and removed before calculating the 

experimental semivariogram, because the semivariogram values are sensitive to these extreme 

values that can introduce errors in studying the spatial continuity. For example, univariate 

statistical analysis of DCPI values on the subbase layer indicate there might be an outlier value. 

Figure 3.5 clearly shows the location where the extreme value, 22.648 blows/mm, was obtained. 
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The extreme value will significantly affect the calculation of semivariance. A bubble plot, like 

the one in Figure 3.5, is useful in visually identifying the location of extreme values. 

 

Figure 3.5. Bubble plot of DCPI values of subbase layer 

3.5.1. Model types 

Although the experimental semivariogram summarized the mean semivariogram for each lag 

distance (h), it does not give the value of correlation length that should be obtained by fitting the 

theoretical semivariogram models. The most important characteristic for the choice of the 

variogram model is the interpretation of the behavior at the origin. The objective of fitting 

theoretical semivariogram models to the experimental semivariogram is to capture the major 

spatial features of the studied variable (Goovaerts 1997). Webster and Oliver (2007) summarized 

several semivariogram models and there are selected model types is summarized in Table 3.2.   
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Table 3.2. Semivariogram models 

Model 
R 

code
 Equation 

Parameter 

note 

Nugget Nug γ̂(h)= {
0
C0
       

h=0
h≠0

  

Spherical Sph γ̂(h)={
Cs (

3

2

h

𝑟
-
1

2
(
h

𝑟
)
3

) 0≤h≤r

Cs h>r

 

a = r (range 

reaches 100% 

of Cs) 

Gaussian 

(Matérn, 

k=∞) 

Gau γ̂(h)={

0 h=0

Cs (1-e
-(
h

𝑟
)
2

) h>0
 

a′ = √3r 

(effective range 

reaches 95% of 

Cs) 

Exponential 

(Matérn, 

k=0.5) 

Exp γ̂(h)= {
0 h=0

Cs (1-e
-
h

r) h>0
 

a′ = 3r 

(effective range 

reaches 95% of 

Cs) 

Whittles 

(Matérn, 

k=1) 

Bes γ̂(h)={

0 h=0

Cs (1- (
h

r
)K

1

(
h

r
)) h>0

 

a′ = 4r 

(effective range 

reaches 95% of 

Cs) 

Matérn Mat γ̂(h)=

{
 

 
0 h=0

Cs(1-
1

2
k-1

Γ(k)
(
h

r
)

k

Kk (
h

r
)) h>0

 
k (smoothness 

parameter) 

Note: Γ(k) and Kk(h/r) are Gamma function and modified Bessel function of the second kind with order k 

respectively, r is the range parameter obtained in R program. 

Goovaerts (1997) suggested that models with parabolic behavior at the origin (i.e., Gaussian 

model) should be used for highly continuous properties (i.e., Ground water level) and 

Wackernagel (2003) said that the Gaussian model is “pathological”. The Gaussian model is not 

suggested (Wackernagel 2003; Webster and Oliver 2007) for describing the spatial variability of 

general properties that are not highly continuous. Pavement foundation properties are not be 

expected to be highly continuous variable, so a Gaussian model will be not be used in this paper.  

This paper will instead consider application of a spherical (Sph) model, an exponential (Exp) 

model, and Matérn (Mat, k=1) models in describing spatial variability of pavement foundation 

properties. 
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The Matérn model class has a smoothness parameter (k) to describe the behavior of the 

semivariogram at the origin. The exponential model, Whittle’s model, and Gaussian model are 

particular cases of the Matérn model with k equal to 0.5, 1, and infinity, respectively. With k=∞ 

the Gaussian model describes the most continuous origin behavior.  

An experimental semivariogram is meaningless with only a pure nugget effect model fitted 

that indicates the studied properties lack spatial continuity within the studied area (Olea 2006). 

Therefore, the nugget model is generally nested with other models. Nested models are 

combinations of different models where properties of the original models are not changed. There 

are many possible combinations of semivariogram models. A combination of basic models is 

generally required to satisfactorily fit the directional experimental semivariogram, but overfitting 

the semivariogram with complicated a model that consists of three or more basic models usually 

will not result in more accurate estimates than using the simpler models. 

Olea (2006) reported that nested models are often a combination of two simple models and 

one pure nugget effect model as shown in Eq. 3.3. 

 γ̂(h)=∑ C0+Ciγi(h)
k
i=0  (3.3) 

Equation 3.4 shows a nested model consisting of a nugget effect model, an exponential 

model, and a Gaussian model: 

 γ̂(h)={

0 h=0

C0+Cs1 (
3

2

h

a1
-

1

2
(

h

a1
)

3

)+Cs2 (1-e
-3(

h

a2
' )
) h≠0

 (3.4) 

Figure 3.6 shows semivariogram plots of these four models with values assigned to C and a 

and a′ where sill = 1. 
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Figure 3.6. Sample semivariogram plots of spherical, exponential, Gaussian, and nested 

models with values assigned to C and a and a′ where sill = 1 

3.5.2. Model selection 

The theoretical model can be fit to the experimental semivariogram to describe the spatial 

variability of the data with quantified parameters. The theoretical model can be selected based on 

one of two methods; one method chooses the model that best fits the calculated experimental 

semivariogram values, another method chooses the model that gives the best predictions. Four 

statistical criteria are discussed here. Three methods for defining the “best fit” use either the 

squared errors (SSErr), Akaike information criterion (AIC), or Cressie goodness of fit (GoF). 

The mean squares prediction error (MSPE) can be used to choose the model that give the “best” 

predictions. 

Fitting a semivariogram model by eye relies on the averaged semivariance values at each lag 

distance and ignores the number of pairs of data spaced at that lag distance. A weighted least 

squares method as Cressie (1985) suggested will be used for this study. The weighted least 
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squares method gives the most weight to the early lags and less weight to those lags that have 

fewer data pairs. Therefore, the weighted least squares method allows fitting the theoretical 

model to capture the major spatial characteristics of the variable, rather than not to be the closest 

to the experimental values. 

There are several methods for calculating the weight (wi) for the weighted least squares fit, 

the weight calculation method used in this study is presented in Eq. 3.5 with Ni is the number of 

data pairs that are separated by a distance hi. 

 wi=
Ni

h𝑖
2 (3.5) 

In this study, exponential, spherical, and Matérn (k=1) model will be fitted to the 

experimental semivariogram and the nested model of more than one structure might be used to 

better describe the anisotropic experimental semivariogram. The sum of square errors (SSErr) is 

calculated for each fitted theoretical semivariogram to describe how well the model fits the 

experimental semivariogram. In calculation of SSErr (Eq. 3.6), γ̂(hj) is the predicted 

semivariogram value with the fitted theoretical model and γ(hi) is the average experimental 

semivariogram value at a set of lag distance hi. 

 SSErr=∑ wi[γ̂(hi)-γ(hi)]
2n

i=1  (3.6) 

Akaike information criterion (AIC) can also be used to assess the goodness of fit as well as 

the parsimony of the model (Jian et al. 1996; Webster and Oliver 2007). Equation 3.7 is used to 

calculate AIC where n is the number of experimental semivariogram values and p is the number 

of parameters in that theoretical model. Since the three models (i.e., spherical, exponential, 

Matérn with k=1) have the same p is equal to three, using the AIC criteria is not different from 

using SSErr. 

 𝐴𝐼�̂� = 𝑛 ln (
𝑆𝑆𝐸𝑟𝑟

𝑛
) + 2𝑝 (3.7) 
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Clark and Harper (2002) suggested a modified Cressie goodness of fit (GoF) criteria to 

measure how well the model fits the data. Smaller GoF indicates better fit of the theoretical 

semivariogram model to the experimental semivariogram values. GoF is calculated with Eq. 3.8 

that Nh is the number of data pairs used to calculate the average experimental semivariogram 

γ(h) at lag or separation distance h, and γ̂(h) is the fitted theoretical semivariogram at h. 

 GoF=
1

∑ Nhh

∑ Nh (
γ̂(h)-γ(h)

γ(h)
)

2

h  (3.8) 

SSErr, AIC and GoF are used to measure how well the theoretical model fits the 

experimental semivariogram values. However, they may not measure the goodness of using the 

fitted model to describe the spatial variability of the studied variable. Therefore, the mean 

squared prediction error (MSPE) using the fitted model to predict the variable values at 

unsampled locations, calculated from cross-validation, can be used to evaluate the better 

semivariogram model for that variable. 

The objective of fitting the experimental semivariogram is to describe the spatial continuity 

of the studied variable and ultimately to estimate the variable values at the unsampled locations. 

The impacts of different models on interpolating experimental semivariogram results can be 

compared through cross-validation (Isaaks and Srivastava 1989). The cross-validation process 

involves removing the first data value Z(si) at location si (i=1 to N) and using the rest (N-1) of 

the data values sampled over the study area to fit the theoretical semivariogram model and 

predicted �̂�(𝒔𝑖) and calculating the squared error for the first data value. The cross-validation 

process is repeated for all data values sampled at all N locations si, and the average squared error 

in the cross-validation process is calculated as the mean squared prediction error (MSPE) in 

Eq. 3.9. 

 𝑀𝑆𝑃𝐸 =
1

𝑁
[𝑍(𝒔𝑖) − �̂�(𝒔𝑖)]

2
 (3.9) 
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The idea consists of removing one datum at a time from the data set and re-estimating this 

value from the remaining data using the different semivariogram models. Interpolated and actual 

values are compared, and the model that yields the most accurate predictions is retained 

3.5.3. Anisotropy 

Anisotropy is the phenomenon that the spatial variability is a function of the magnitude and 

the direction of the separation distance vector h. Two types of two-dimensional anisotropy are 

defined as geometric anisotropy and zonal anisotropy (Goovaerts 1997) and shown in Figure 3.7. 

Eriksson and Siska(2000) clarified the details in calculations of modelling anisotropy in spatial 

analysis with defining the types of anisotropy to be nugget anisotropy, range anisotropy, and sill 

anisotropy. Isaaks and Srivastava (1989) and Goovaerts (1997) presented the concept of 

geometric and zonal anisotropy in spatial analysis. 

 

Figure 3.7. Types of anisotropy: geometric anisotropy (left); zonal anisotropy (right) 

Geometric anisotropy can be identified when the directional semivariograms have the same 

shape and sill values (C0 and Cs) but different range values and the rose diagram or plot of range 

values versus the azimuth θ of the direction is an ellipse (Goovaerts 1997). Azimuth angle θ is 

counted clockwise from the north. The anisotropy ratio (λ<1) is the ratio of the minor range (aϕ) 

to the major range (aδ) of the directional semivariograms that are generally perpendicular to each 
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other. Zonal anisotropy can be identified when the directional semivariograms have different 

partial sill values.  

Geometric anisotropic semivariogram can be modeled by clockwise rotating the coordinate 

system to make the major direction (δ) that has the longer range to be aligned with an axis and 

rescale the anisotropic range to be the minor range aϕ (Eq. 3.10). 

 𝛾(𝒉) = 𝛾(𝒉∗)   with   𝒉∗ = [
1 0
0 𝜆

] [
𝑐𝑜𝑠𝛿 −𝑠𝑖𝑛𝛿
𝑠𝑖𝑛𝛿 𝑐𝑜𝑠𝛿

] 𝒉 (3.10) 

Zonal anisotropic semivariogram can be modeled by clockwise rotating the coordinate 

system to have the direction that shows the maximum continuity (lowest Cs) aligned with an axis 

and set the range (aδ) in that direction to be a very large value towards infinity (λ) is very small 

towards zero) (Eq. 3.11).  

 𝛾(𝒉) = 𝛾1(h) + 𝛾2(𝒉
∗)   with   𝒉∗ = [

1 0
0 0

] [
𝑐𝑜𝑠𝛿 −𝑠𝑖𝑛𝛿
𝑠𝑖𝑛𝛿 𝑐𝑜𝑠𝛿

] 𝒉 (3.11) 

  

Figure 3.8. Methodology of plotting semivariogram map 

Semivariogram maps (Goovaerts 1997; Isaaks and Srivastava 1989) can be used as a tool that 
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many directions and lags. A semivariogram map can be a useful tool in the preliminary study of 

the major and minor spatial continuity directions. However, the spatial resolution of the 

semivariogram map will be largely reduced when sparse and irregular spaced data are collected 

(Facas et al. 2010). Figure 3.8 shows the process of plotting the semivariogram map and also 

shows semivariogram values are the same in the opposite direction.  

Another tool that can quickly reveal anisotropy is a semivariogram contour map (Isaaks and 

Srivastava 1989) which is similar to the semivariogram map but the average values calculated in 

each area cell will be used for the contour plot. We don’t know the actual population mean of the 

studied variable, so we will use ordinary kriging to estimate the value at unsampled locations. 

Simple kriging requires input of the population mean that means we know the actual mean value, 

but we cannot say the sample mean is the population mean. 

3.5.4. Kriging 

The word kriging means optimal prediction (Cressie 1993). Kriging is used to make 

prediction on values of a continuous variable Z at unsampled locations using the observed value 

at sampled locations of the study area. Kriging makes no distributional assumptions and the 

variates are statistically correlated. Ordinary kriging and the minimum mean squared prediction 

error will be used in this study to present the fitted semivariogram model. The two assumptions 

in ordinary kriging are that the local mean is unknown but constant and the sum of the 

coefficients of the linear predictor is equal to one. The assumptions guarantee that the mean of 

the predicted values is the same as the observed values over the study area (Cressie 1993; 

Goovaerts 1997; Journel and Huijbregts 1978). The brief description of ordinary kriging is only 

to introduce the basics of understanding how the kriged contour map is created. The ordinary 
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kriging estimator ZOK
*
(s) at location s is written as a linear combination of the n(s) random 

variables Z(si) with the kriging weights forced to be equal to 1 (Eq. 3.12). 

 ZOK
* (s)=∑ εi

OK(s)Z(si)
n(s)
i=1    with   ∑ εi

OK(s)n(s)
i=1 = 1 (3.12) 

3.6. Univariate statistical analysis 

The univariate statistics of pavement foundation properties ELWD-Z3, γd, w, DCPIsubbase, and 

DCPIsubgrade of both test sections MI I-94 TS1a (Figure 3.2) and MI I-96 TS1 (Figure 3.3) are 

summarized in Table 3.3. Each variable was studied by plotting a histogram, examining 

skewness, and identifying outliers. The collected data for each property variable do not show 

extremely skewed and no transformation of the data was made for spatial variability analysis. 

One extreme value or outlier of DCPIsubbase was identified at a sample location in MI I-94 TS1b 

(Figure 3.5) and removed for spatial variability analysis. 

Table 3.3. Soil properties summary for studied test sections 

Project 

Test 

Section 

Univariate 

Statistics 

ELWD-Z3 

(MPa) 

γd 

(kN/m
3
) 

w 

(%) 

DCPIsubbase 

(mm/blow) 

DCPIsubgrade 

(mm/blow) 

MI I-94 

TS1b 

Mean (�̅�) 58.5 20.00 2.3 7 43 

Median 58.6 20.00 2.3 7 43 

Variance (s
2
) 50.5 0.38 0.1 1.3 61.3 

Std Dev (s) 7.1 0.61 0.3 1.1 7.8 

COV 12 3 14 17 18 

N 121 121 121 120 121 

Skewness 0.43 -0.13 -0.70 0.48 -0.07 

MI I-96 TS1 

Mean (�̅�) 30.9 20.16 7.8 19 8 

Median 31.3 20.15 7.7 19 7 

Variance (s
2
) 124.1 0.34 1.0 20.7 6.3 

Std Dev (s) 11.1 0.59 1.0 4.5 2.5 

COV 36 3 13 24 32 

N 73 73 73 57 57 

Skewness -0.20 -0.03 0.47 0.37 0.92 
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The overall sample mean (�̅�) of ELWD-Z3 determined LWD test is higher in MI I-94 TS1b than 

in MI I96 TS1, the reason could be that the LWD tests were performed on top of the base layer 

in MI I-94 TS1b and on top of the subbase layer in MI I96 TS1 while ELWD-Z3 presents the 

stiffness of the composite pavement foundation layers not a single layer. However, the 

coefficient of variation (COV) is higher in MI I96 TS1 than in MI I-94 TS1b. This indicates 

there are some possible soft spots that could be identified in MI I96 TS1.  

Histograms of each variable are created as shown in Figure 3.9 to Figure 3.13. Univariate 

statistics show that dry unit weight (γd) and moisture content (w) that determined NG test at a 

desired point within the base/subbase layer are less variable in both test sections than the other 

variables. DCPI of both subbase and subgrade layer determined from DCP tests shows high 

COV and higher COV was obtained in MI I96 TS1. The sample mean value of DCPI is lower in 

the subgrade layer than the base layer of MI I-94 TS1b. This means the subbase layer could be 

stiffer than the subgrade layer, on average. However, the sample mean value of DCPI is higher in 

the subgrade layer than the subbase layer of MI I-96 TS1. This means the subbase layer could be 

insufficiently compacted in some areas. The preliminary analysis of the pavement foundation 

properties with univariate statistics should be further studied with spatial variability analysis. 

 

Figure 3.9. Histogram of ELWD-Z3 on MI I94 TS1b (left) and MI I96 TS1 (right) 
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Figure 3.10. Histogram of γd on MI I94 TS1b (left) and MI I96 TS1 (right) 

 

Figure 3.11. Histogram of w on MI I94 TS1b (left) and MI I96 TS1 (right) 

 

Figure 3.12. Histogram of DCPIsubbase on MI I94 TS1b (left) and MI I96 TS1 (right) 
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Figure 3.13. Histogram of DCPIsubgrade on MI I94 TS1b (left) and MI I96 TS1 (right) 
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Table 3.4. Summary of spatial analysis with omnidirectional semivariogram 

Project Site MI I-94 TS1b MI I-96 TS1 

Properties 

γ̂(h) 
estimation 

parameters 

Model Type Model Type 

Sph Exp 
Mat, 

k=1 
Sph Exp 

Mat, 

k=1 

ELWD-Z3 

(MPa) 

C0 11.45 4.145 12.52 0 0 12.18 

Cs 41.54 54.644 44.04 146.6 212.2 161.43 

r 3.167 1.45 0.9489 3.437 2.772 1.247 

a or aʹ 3.167 4.35 3.7956 3.437 8.316 4.988 

SSErr 15829 15555 16009 159196 170814 164420 

GoF 0.0050 0.0055 0.0054 0.0412 0.0442 0.0417 

MSPE 22.84 22.77 23.08 46.25 44.74 43.72 

γd (kN/m
3
) 

C0 0.1522 0.1283 0.1635 0.05901 0.03935 0.08359 

Cs 0.2088 0.2818 0.2256 0.34 0.34 0.34 

r 3.412 1.885 1.121 6.891 2.966 2.238 

a or aʹ 3.412 5.655 4.484 6.891 8.898 8.952 

SSErr 0.1845 0.1702 0.1723 0.1156 0.189 0.1293 

GoF 0.0024 0.0022 0.0022 0.0104 0.0170 0.0117 

MSPE 0.2106 0.2107 0.2115 0.135 0.1372 0.1362 

w (%) 

C0 0.06975 0.04562 0.07216 0.07296 0.01137 0.1771 

Cs 0.27523 0.98209 0.3576 1.00653 1.48051 1.1507 

r 48.46 128.3 12.34 3.757 2.69 1.484 

a or aʹ 48.46 384.9 49.36 3.757 8.07 5.936 

SSErr 0.02271 0.9678 0.01504 5.168 5.39 5.277 

GoF 0.0031 0.0784 0.0021 0.0399 0.0427 0.0421 

MSPE 0.0807 0.08093 0.0811 0.3937 0.4124 0.4085 

DCPIsubbase 

(mm/blow) 

C0 0.5344 0.3036 0.51 0 0 0 

Cs 0.6974 0.9745 0.7569 26.57 46.05 30.95 

r 2.197 0.817 0.6018 3.8 3.923 1.232 

a or aʹ 2.197 2.451 2.4072 3.8 11.769 4.928 

SSErr 5.364 5.565 5.31 2387 2608 2302 

GoF 0.0027 0.0025 0.0024 0.0728 0.0737 0.0702 

MSPE 0.9048 0.8679 0.8701 11.76 11.97 11.95 

DCPIsubgrade 

(mm/blow) 

C0 0 0 0 2.11 0 0 

Cs 57.61 58.79 58.61 3.995 5.954 5.551 

r 0.848 0.3019 0.211 4.091 1.101 0.5887 

a or aʹ 0.848 0.9057 0.844 4.091 3.303 2.3548 

SSErr 16893 21970 19925 179.5 170.2 169.4 

GoF 0.0022 0.0022 0.0021 0.0390 0.0424 0.0461 

MSPE 60.3 60.41 60.48 3.455 3.514 3.56 

 

The estimated model parameters for each variables summarized in Table 3.4 show that there 

is no single best model type that can better fit the experimental semivariogram than the other two 
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models. The exponential γ̂(h) model estimates the largest range or effective range value, a, in 

most of the cases while the Matérn (k=1) model estimates the largest nugget effect, C0, in all 

cases. The better fitted model is chosen according the statistical criteria to present the results in 

characterizing and quantifying the isotropic or omnidirectional spatial variability. The smaller 

value of each of three statistical criteria SSErr, GoF, and MSPE is desired and indicate a better 

fitted model. Since the range value of the studied variables is close to or larger than the 1/3 of the 

maximum distance that data pairs are apart over the study area, the difference of three models in 

the initial part of the semivariogram cannot be identified for the experimental semivariogram 

without γ(h) values at distance smaller than 0.5 m in MI I94 TS1b and 0.7 m in MI I96 TS1. 

MI I94 TS1b 

The sill of the omnidirectional experimental semivariogram of ELWD-Z3 is higher than the 

sample variance slightly (Figure 3.14) which indicates a possible trend or an anisotropic 

semivariogram.  

 

Figure 3.14. Omnidirectional γ(h) of ELWD-Z3 with fitted γ̂(h) on MI I94 TS1b 
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Figure 3.15 shows the contour plot of the ordinary kriging values with the selected 

exponential model has smaller MSPE in the three studied models. A less variable ELWD-Z3 with 

distance in the transverse direction is presented in Figure 3.15 and further analysis with 

directional variability should be performed to identify correlation length in different directions. 

 

Figure 3.15. Ordinary kriging of ELWD-Z3 with fitted omnidirectional exponential γ̂(h) 

on MI I94 TS1b 

Omnidirectional γ(h) of γd is calculated and fitted with three models that shows increasing 

γ(h) with separation distance and close to the sample variance (Figure 3.16), but the nugget 

values of γ̂(h) is relatively larger compared to its sill value. The measurement error or 

insufficient sampling at smaller spacing might be the cause for the relatively high nugget value. 

The ordinary kriging values of γd with the selected spherical model plotted in Figure 3.17 that 

less compacted area can be observed at the upper left portion of the studied area. 

Exp_omni

Longitudinal Direction (m)

0 1 2 3 4 5 6 7

T
ra

n
s
v
e
rs

e
 D

ir
e
c
ti
o
n
 (

m
)

0

1

2

3

4

5

6

7

50 

55 

60 

65 

70 

75 

E
LWD-Z3

 (MPa)



 71 

 

Figure 3.16. Omnidirectional γ(h) of γd with fitted γ̂(h) on MI I94 TS1b 

 

Figure 3.17. Ordinary kriging of γd with fitted omnidirectional spherical γ̂(h) on 

MI I94 TS1b 

rd

Seperation Distance, h (m)

0 1 2 3 4

S
e

m
iv

a
ri
o

g
ra

m
 o

f 
 d

 (
k
N

/m
3
)2

0.0

0.1

0.2

0.3

0.4

0.5

Experimental (h)

Exponential (h)

Spherical (h)

Matern, k=1 (h)

Sample Variance, s2

Sph_Omni

Longitudinal Direction (m)

0 1 2 3 4 5 6 7

T
ra

n
s
v
e

rs
e

 D
ir
e

c
ti
o

n
 (

m
)

0

1

2

3

4

5

6

7

19.2 

19.4 

19.6 

19.8 

20.0 

20.2 

20.4 

20.6 

20.8 


d (kN/m

3)



 72 

 

Figure 3.18. Omnidirectional γ(h) of w with fitted γ̂(h) on MI I94 TS1b 

 

Figure 3.19. Ordinary kriging of w with fitted omnidirectional exponential γ̂(h) on 

MI I94 TS1b 
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semivariogram with range estimated as about 50 m. The experimental omnidirectional γ(h) 

calculated in this study area is close to a straight line, this could be caused by a leaking water 

tank in the study area during the pavement base construction except a leaking of water tank at the 

study area. The raw data should be examined for reliability. The ordinary kriging plot of w with 

all three models, like the example with the fitted Matérn (k=1) model (Figure 3.19) shows clear 

trend that w is higher in upper left triangle portion than the lower right portion of the studied 

area. However, with knowledge of in-situ measured w values, the raw data could have possible 

mistakes. 

The weighted average DCPI values of subbase and subgrade indication average ability of that 

layer to resist penetration and higher DCPI indicates less stiffness would be expected at that 

location. The omnidirectional γ(h) of DCPIsubbase and DCPIsubgrade are shown in Figure 3.20 and 

Figure 3.22 separately. A longer range value was observed in DCPIsubbase than DCPIsubgrade which 

indicates higher spatial correlation could be observed in weighted average DCPI of the subbase 

layer than the subgrade layer. The experimental semivariogram calculated for DCPIsubbase shows 

a nearly zero nugget effect, only a few γ(h) values within the first 1 m separation distance show a 

possible correlation of DCPIsubgrade with spacing distance. The zero nugget effect and short range 

value modelled in DCPIsubgrade predicted values at unsampled location around the sampled 

location with variation equal to the sill value which shows up as a small circle areas with similar 

values in the ordinary kriging plot of DCPIsubgrade shown in Figure 3.23. The longer range value 

indicated correlation of DCPIsubbase with longer spacing distance up to 2 m is presented with the 

ordinary kriging contour plot (Figure 3.21) that larger area of unsampled locations around the 

sampled locations have similar values. 
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Figure 3.20. Omnidirectional γ(h) of DCPIsubbase with fitted γ̂(h) on MI I94 TS1b 

 

Figure 3.21. Ordinary kriging of DCPIsubbase with fitted omnidirectional spherical γ̂(h) 

on MI I94 TS1b 
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Figure 3.22. Omnidirectional γ(h) of DCPIsubgrade with fitted γ̂(h) on MI I94 TS1b 

 

Figure 3.23. Ordinary kriging of DCPIsubgrade with fitted omnidirectional spherical γ̂(h) 

on MI I94 TS1b 
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MI I96 TS1 

Omnidirectional experimental semivariogram γ(h) of ELWD-Z3 increases with separation 

distance and exceeds the sample variance before the fitted model predicted range is reached 

(Figure 3.24). This γ(h) behavior shows a possible trend or anisotropy behavior in the collected 

ELWD-Z3 values through the study area. There could be an insufficiently compacted roller pass in 

compacting the study area in MI I96 TS1 as shown in Figure 3.25, because the roller width is 

about two meters and there are consistently lower ELWD-Z3 values obtained in the transverse 

direction while the roller travels along the longitudinal direction in compacting materials. 

Anisotropy of the directional semivariogram should be investigated for this data. 

 

Figure 3.24. Omnidirectional γ(h) of ELWD-Z3 with fitted γ̂(h) on MI I96 TS1 
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the upper portion of the plot and consistently lower value at the lower portion. This indicates that 

anisotropy should be investigated for the collected γd values.  

 

Figure 3.25. Ordinary kriging of ELWD-Z3 with fitted omnidirectional Matérn (k=1) γ̂(h) 

on MI I96 TS1 

 

Figure 3.26. Omnidirectional γ(h) of γd with fitted γ̂(h) on MI I96 TS1 
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Figure 3.27. Ordinary kriging of γ(h) with fitted omnidirectional spherical γ̂(h) on 

MI I94 TS1b 

The calculated experimental semivariogram of w measurements shows a possible trend 

because γ(h) tends to be larger than the sample variance after about 3 m in separation distance 

(Figure 3.28). The ordinary kriging contour plot (Figure 3.29) of w also shows two sections with 

consistently higher predicted values at the lower portion of the plot and consistently higher 

values at the upper portion which is with the reverse of the kriging contour plot of γd. 

Investigating anisotropy is advised for the collected w values.  
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Figure 3.28. Omnidirectional γ(h) of w with fitted γ̂(h) on MI I96 TS1 

 

Figure 3.29. Ordinary kriging of w with fitted omnidirectional spherical γ̂(h) on MI I96 
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Figure 3.30. Omnidirectional γ(h) of DCPIsubbase with fitted γ̂(h) on MI I96 TS1 

 

Figure 3.31. Ordinary kriging of DCPIsubbase with fitted omnidirectional spherical γ̂(h) 

on MI I96 TS1 
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Figure 3.32. Omnidirectional γ(h) of DCPIsubgrade with fitted γ̂(h) on MI I96 TS1 

 

Figure 3.33. Ordinary kriging of DCPIsubgrade with fitted omnidirectional spherical γ̂(h) 

on MI I96 TS1 
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contour plots in Figure 3.31 and Figure 3.33. The difference could be the result of the material 

used in construction of the subbase and subgrade layers having similar maximum dry unit weight 

but less confinement in the subbase layer which is exposed to air while it providing confinement 

to the underlying subgrade layer. Another possible reason could be more fines in the subgrade 

material may result in a larger contact area between aggregate particles making it harder to 

penetrate. 

3.7.2. Directional semivariogram anisotropy study 

Directional experimental semivariograms can be studied in order to identify anisotropic 

behavior of variables throughout the study area. A rose diagram, semivariogram map, 

semivariogram contour map, and plotting the directional semivariogram in several directions on 

the plot could help in identifying anisotropic behavior. The ordinary kriging contour plots with 

omnidirectional experimental semivariogram of some pavement foundation properties studied on 

MI I94 TS1b and MI I96 TS1 revealed the need for directional semivariograms. The obvious 

anisotropic γ(h) will be modelled by fitting the theoretical semivariogram model with identified 

anisotropy ratio (λ), major direction (δ) for both geometric and zonal anisotropy, and a nested 

model for zonal anisotropy. 

Directional γ(h) is calculated in four major directions (θ = 0°, 45°, 90°, 135°) and the major 

and minor directions are generally at θ equals to 0° and 90° which aligns with transverse and 

longitudinal directions of pavement sections. One exception is the study on the moisture content 

measurements on MI I-94 TS1b where a possible error was identified in omnidirectional 

semivariogram study. All three theoretical models (i.e., spherical, exponential, and Matérn with 

k=1) are fitted to the γ(h) in major and minor direction individually, and the best fitted model of 

the three are selected based on the smallest SSErr value and summarized in Table 3.5. 
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Table 3.5. Summary of theoretical model fitted to major and minor directional γ(h) 

Prope

rties 

Project Site MI I-94 TS1b MI I-96 TS1 

γ̂(h) 
estimation 

parameters 

Transverse 

Direction, y, 

θ=0° 

Longitudinal 

Direction, x, 

θ=90° 

Transverse 

Direction, y, 

θ=0° 

Longitudinal 

Direction, x, 

θ=90° 

ELWD-

z3 

(MPa) 

Model Exp Sph Sph Mat, k=1 

C0 20.3 3.229 3.931 0 

Cs 38.78 59.79 161.37 203.5 

r 3.674 2.993 2.624 2.071 

a or aʹ 11.022 2.993 2.624 8.284 

SSErr 6481 6112 193699 151449 

GoF 0.0066 0.0087 0.0652 0.2323 

rd 

(kN/m
3
) 

Model Sph Sph Sph Mat, k=1 

C0 0.1523 0.14 0 0 

Cs 0.1965 0.4844 0.674 0.1661 

r 2.328 9.86 7.482 0.558 

a or aʹ 2.328 9.86 7.482 2.232 

SSErr 0.07408 0.4511 0.3866 0.1554 

GoF 0.0014 0.0107 0.0375 0.1090 

w (%) 

Model Sph (θ=45°) 
Mat, k=1 

(θ=135°) 
Sph Exp 

C0 0.075137 0.06748 0 0 

Cs 0.006446 512.38299 1.406 0.8321 

r 1.971 604.6 3.531 1.785 

a or aʹ 1.971 2418.4 3.531 5.355 

SSErr 0.01376 0.01185 3.826 4.215 

GoF 0.0087 0.0024 0.0276 0.1813 

DCPIsu

bbase 

(mm/b

low) 

Model Sph Mat, k=1 Matern, k=1 Spherical 

C0 0.6996 0.1071 0 0.4807 

Cs 0.4956 1.189 30.21 27.5117 

r 1.732 0.5448 1.072 4.603 

a or aʹ 1.732 2.1792 4.288 4.603 

SSErr 7.769 1.201 2705 2015 

GoF 0.0094 0.0021 0.1781 0.1367 

DCPIsu

bgrade 

(mm/b

low) 

Model 

* 

Spherical Spherical 

C0 0 0 

Cs 5.865 4.152 

r 1.068 2.289 

a or aʹ 1.068 2.289 

SSErr 469.8 283.2 

GoF 0.1352 0.1760 

Note: *directional experimental semivariogram of DCPIsubgrade on MI I94 TS1b shows close pure nugget effect, no 

directional semivariogram was modelled. 
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Figure 3.34. Directional γ(h) of ELWD-Z3 on MI I94 TS1b 
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The detailed study process for constructing directional semivariograms of all studied 

pavement foundation properties for both study test sections are not provided, but examples of 

procedures in studying the anisotropy behavior will be shown in this section. Three types of plots, 

a rose diagram, a semivariogram map, and a semivariogram contour map for preliminary 

examination of the directional variation of sill and range parameters are presented for ELWD-Z3 

collected on MI I94 TS1b. 

A rose diagram of range values is created by identifying the range values at each directional 

γ(h) with a selected γ(h) that is not the initial value nor the constant γ(h) in all directions. Range 

values are determined and recorded at each directional γ(h) plot, as Figure 3.34 shows. Then, the 

rose diagram is created with ranges as distance from the center to the end point along each axial 

direction as shown in Figure 3.35. An ellipse that indicates geometric anisotropy is closely fitted 

to the end points of range values along the axial directions (Figure 3.35). Note that possible zonal 

anisotropy could be expected at larger γ(h). 

 

Figure 3.35. Rose diagram of ELWD-Z3 on MI I94 TS1b 
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A semivariogram map is created by setting a lag distance and calculating the average value 

of all γ(h) falling into the area cell with the side distance the same as the lag distance which was 

discussed in the method section. The lag distance should be chosen as a value not smaller than 

the minimum spacing that point pairs are apart. Figure 3.36 is the semivariogram plot using a 

color scheme to represent the value of the average γ(h) in each area cell and Figure 3.37 is the 

semivariogram contour map that plots the same values in a contour line. Both of these two plot a 

show zonal anisotropy that ELWD-Z3 is less variable in transverse direction compared to the 

longitudinal direction. The reason could be the dense gridded sampling test section, MI I94 

TS1b, is sampled from a small area that may not catch the variance in the longitudinal direction. 

According the ordinary kriging contour plot (Figure 3.15) of the same data, ELWD-Z3 on MI I94 

TS1b, the consistently low ELWD-Z3 values were estimated along the transverse direction at an 

approximate range from 2 m to 5 m that may indicate insufficient compaction in that area. 

 

Figure 3.36. Semivariogram map of ELWD-Z3 on MI I94 TS1b 
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Figure 3.37. Semivariogram contour map of ELWD-Z3 on MI I94 TS1b 

The three models fitted to transverse (y) direction and longitudinal (x) direction separately as 

Figure 3.38 shows and the fitted γ̂(h) in the longitudinal direction exceed the sample variance 

while the fitted γ̂(h) in transverse direction is reach a constant value that below the sample 

variance at a small range value. However, the experimental semivariogram γ(h) tends to increase 

at separation distances over 3 m which may indicate a possibly higher variation could be 

observed in the transverse direction. 

 

Figure 3.38. Fitted γ̂(h) for ELWD-Z3 on MI I94 TS1b, transverse direction (left) and 

longitudinal (right) 
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With the fitted γ̂(h) ELWD-Z3 on MI I94 TS1b in both transverse and longitudinal directions, 

the best fitted model could be selected with the smaller SSErr and GoF values. The first isotropic 

part of zonal anisotropy is modelled with the selected model for the transverse direction 𝛾1(h) 

that has the lower sill than the longitudinal direction, and the second part of zonal anisotropy 

𝛾2(h) is modelled with the model selected for the longitudinal direction that sill is the difference 

between the fitted γ̂(h) in transverse and longitudinal direction and range is set to be extremely 

large (e.g., 10
9
) with zonal anisotropy ratio (λ) that λ ×10

9
 will be same as the selected fitted γ̂(h) 

in longitudinal direction.  

 

Figure 3.39. Modelling γ(h) with zonal anisotropy for ELWD-Z3 on MI I94 TS1b 
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on MI I-94 TS1a is shown in Figure 3.40 which is similar to the ordinary kriging plot using the 

omnidirectional model shown in Figure 3.15. 

 

Figure 3.40. Ordinary kriging contour plot of ELWD-Z3 on MI I94 TS1b 
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Figure 3.41. Semivariogram map of ELWD-Z3 on MI I96 TS1 

 

Figure 3.42. Directional γ(h) of ELWD-Z3 on MI I96 TS1b with ∆θ=45° 
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Figure 3.43. Directional γ(h) of ELWD-Z3 on MI I96 TS1b with ∆θ=25° 

The zonal anisotropy behavior of ELWD-Z3 on MI I96 TS1 is modelled using the same process 

as that used on ELWD-Z3 on MI I94 TS1b. The nested semivariogram that modelled zonal 

anisotropy with major direction along the longitudinal direction is shown in Figure 3.44. Besides 

fitting the theoretical model, the pattern of the experimental semivariogram can also tell some 

characteristics of how the data varied at the study area. Both of γ̂(h) and γ(h) in longitudinal 

direction (θ=90°) tends to increase at the end the studied maximum separation distance of 4 m as 

shown in Figure 3.44. This could be an indication of a longer range or correlation length could 

be obtained in longitudinal direction. Moreover, the experimental semivariogram in the 

transverse direction (θ=0°) shows a cyclic behavior which may indicate stripes of lower and 

higher data along the longitudinal direction. The ordinary kriging contour plot with the fitted 

zonal anisotropic model shown in Figure 3.44 predicts the lower ELWD-Z3 values more precisely 

and the continuity of estimated data along the longitudinal direction is increased. 
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Figure 3.44. Modelling γ(h) with zonal anisotropy for ELWD-Z3 on MI I96 TS1 

 

Figure 3.45. Ordinary kriging contour plot of ELWD-Z3 on MI I94 TS1b 
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the spatial variation for the studied variable if a similar MSPE value is obtained. Comparing the 

fitted semivariogram models for omnidirectional semivariograms and directional semivariograms 

with anisotropy behavior, the isotropic semivariogram models show similar accuracy as 

anisotropic semivariogram models in predicting the pavement foundation properties at unknown 

locations cross the studied area. The MSPE of each fitted semivariogram for both isotropic and 

anisotropic experimental semivariogram are summarized in Table 3.6.  

Table 3.6. Summary of fitted isotropic and anisotropic semivariogram model parameters 

Project Site MI I-94 TS1b MI I-96 TS1 

Properties 

γ̂(h) 
estimation 

parameters 

Anisotropic Isotropic Anisotropic Isotropic 

ELWD-Z3 

(MPa) 

Anisotropy Zonal — Geometric — 

Model 1 Exponential Exponential Matern, k=1 
Matern, 

k=1 

Model 2 Spherical       

C0 3.229 4.145 0 12.18 

Cs1 or Cs 36.736 54.644 203.5 161.43 

Cs2 23.054       

as1 or r 0.6913 1.45 2.071 1.247 

as2 1E9       

λ 2.994E-09   0.45   

δ 0°   90°   

MSPE 23.61 22.77 46.28 43.72 

γd (kN/m
3
) 

Anisotropy Zonal — Zonal — 

Model 1 Spherical Spherical Matern, k=1 Spherical 

Model 2 Spherical — Spherical — 

C0 0.1523 0.1522 0 0.05901 

Cs1 or Cs 0.1965 0.2088 0.1661 0.34 

Cs2 0.2756   0.5079   

as1 or r 2.328 3.412 0.558 6.891 

as2 1E9 — 1E9 — 

λ 0.00000001 — 7.692E-09 — 

δ 0° — 90° — 

MSPE 0.215 0.2106 0.136 0.135 

Note: — means not available 
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Table 3.6 Continued. Summary of fitted isotropic and anisotropic semivariogram model 

parameters 

Project Site MI I-94 TS1b MI I-96 TS1 

Properties 

γ̂(h) 
estimation 

parameters 

Anisotropic Isotropic Anisotropic Isotropic 

w (%) 

Anisotropy Zonal — Zonal — 

Model 1 Matern, k=1 Spherical Exponential Spherical 

Model 2 Matern, k=1 — Spherical — 

C0 0.06748 0.06975 0 0.07296 

Cs1 or Cs 0.01381 0.27523 0.8321 1.00653 

Cs2 512.36918   0.5739   

as1 or r 0.2965 48.46 1.785 3.757 

as2 10E9 — 10E9 — 

λ 6.667E-07 — 3.571E-09 — 

δ 45° — 90° — 

MSPE 0.08006 0.0807 0.4085 0.3937 

DCPIsubbase 

(mm/blow) 

Anisotropy Geometric — Geometric — 

Model 1 Matern, k=1 Exponential Spherical Spherical 

Model 2 Matern, k=1 — — — 

C0 0.06748 0.3036 0.4807 2.11 

Cs1 or Cs 1.189 0.9745 27.5117 26.57 

Cs2 — — — — 

as1 or r 0.5448 0.817 4.603 3.8 

as2 — — — — 

λ 0.5 — 0.8 — 

δ 90° — 90° — 

MSPE 0.8343 0.8701 12.81 11.76 

DCPIsubgrade 

(mm/blow) 

Anisotropy 

— 

— Zonal — 

Model 1 Spherical Spherical Spherical 

Model 2 — Spherical — 

C0 0 0 2.11 

Cs1 or Cs 57.61 4.152 3.995 

Cs2 — 1.713 — 

as1 or r 0.848 2.289 4.091 

as2 — 1E9 — 

λ — 1.068E-09 — 

δ — 90° — 

MSPE 60.3 2.335 3.455 

Note: — means not available 
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Table 3.7. Summary of spatial variability estimates 

In-situ 

properties 
Directions 

MI I-94 TS1b MI I-96 TS1 

Sill 

(C+C0) 

Range 

(a or a'), m 

Sill 

(C+C0) 

Range 

(a or a'), m 

ELWD-Z3 

(MPa) 

Omnidirection 58.789 4.35 173.61 4.988 

Transverse 

Direction (y) 
59.08 11.022 165.301 2.624 

Longitudinal 

Direction (x) 
63.019 2.993 203.5 8.284 

γd (kN/m
3
) 

Omnidirection 0.361 3.412 0.39901 6.891 

Transverse 

Direction (y) 
0.3488 2.328 0.674 7.482 

Longitudinal 

Direction (x) 
0.6244 9.86 0.1661 2.232 

w (%) 

Omnidirection 0.34498 48.46* 1.07949 3.757 

Transverse 

Direction (y) 
— 

1.406 3.531 

Longitudinal 

Direction (x) 
0.8321 5.355 

DCPIsubbase 

(mm/blow) 

Omnidirection 1.2781 2.451 26.57 4.091 

Transverse 

Direction (y) 
1.1952 1.732 30.21 4.288 

Longitudinal 

Direction (x) 
1.2961 2.1792 27.9924 4.603 

DCPIsubgrade 

(mm/blow) 

Omnidirection 57.61 0.848 6.105 3.8 

Transverse 

Direction (y) 
— 

5.865 1.068 

Longitudinal 

Direction (x) 
4.152 2.289 

Note: * possible measurement error 

A summary of sill and range values estimated by weighted least squares fitted theoretical 

semivariogram models are summarized in Table 3.7. The fitted semivariogram model estimated 

range values that indicates the separation distance that the data pairs are no longer correlated. 

ELWD-Z3 is spatially correlated within 4.35 m in the test point in MI I-94 TS1b test section and 

about 5 m in MI I-96 TS1 test section without considering the directions. The anisotropic 

behavior of ELWD-Z3 in MI I-94 TS1b is different from MI I-96 TS1 that ELWD-Z3 is more spatially 

correlated in the transverse direction in MI I-94 TS1b and is more spatially correlated in the 
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longitudinal direction in MI I-96 TS1. Since the sample variance is relatively small in MI I-94 

TS1b in the smaller sampling area, the different anisotropic behavior might be expected in the 

larger sampling area. The spatial correlation length or range of dry unit weight in MI I-96 TS1 is 

about twice as in MI I-94 TS1b without considering anisotropy. The similar anisotropic behavior 

of ELWD-Z3 is observed in γd. Anisotropic behavior of the questioned moisture content data in 

MI I-94 TS1b is not reported, but the anisotropic behavior of w in MI I96 TS1 is similar to ELWD-

Z3 and γd. Spatial variability of weighted average DCPI in subbase and subgrade layer is almost 

the same in all directions. The reason could be the weighted average DCPI value averaged the 

difference in vertical direction to present as a point for horizontal direction analysis.  

3.8. Conclusions 

Detailed geostatistical analysis procedures are presented in this study to provide a guide for 

pavement engineers to study spatial variability of pavement foundation properties with 

consideration of choosing the best fitted semivariogram model and characterization of 

anisotropic behavior. Isotropic semivariogram modelling indicates that the studied measurement 

values has the same spatial correlation between data pairs separated at distance h in all 

directions, but anisotropic semivariogram modelling shows that the spatial correlation between 

data pairs separated at distance h is different in different directions. Measurements obtained in a 

relatively dense grid pattern from two sections of pavement reconstructions sites (MI I-94 and 

MI I-96) are presented in studying the geostatistical modelling parameters that characterize 

spatial variability of stiffness and compaction properties. Preliminary study on anisotropy of 

spatial variability of pavement foundation properties is allowed with the dense gridded 

measurements, but different anisotropic behavior was identified in two test sections that may 
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only represent the local sample area. More data in the longitudinal direction should be provided 

for further anisotropy analysis.  

Experimental semivariogram of layer averaged DCPI values are nearly isotropic with 

possible anisotropic behavior in the horizontal direction on both subbase and subgrade layers. 

Zonal anisotropy with the major anisotropic axis along the longitudinal direction indicates 

greater continuity in the longitudinal direction is present in the experimental semivariogram of 

ELWD-Z3, moisture content (w), and dry unit weight (γd) measured in dense gridded test locations 

in project MI I-96. Therefore, the univariate statistical analysis should be analyzed to assist in 

correctly describing spatial variability of pavement foundation properties and identifying 

possible trends. 

Comparison of three theoretical semivariogram models reveals that no obviously best fitted 

model of the three models (i.e., spherical, exponential, Whittle or Matern with k=1) are found to 

describe the experimental semivariogram of dense gridded measurements of pavement 

foundation properties as the spatial variation at distances smaller than the smallest sampling 

distance were not determined. A nested model with an anisotropy ratio helps in estimating the 

data at unsampled locations with consideration of the correlation of data sampled at different 

locations. However, in most cases for this study on a small test area, the isotropic or 

omnidirectional semivariogram model works as well as an anisotropic semivariogram model. 

Correctly calculating an experimental semivariogram is more important than fitting different 

models. The MSPE from cross-validation on ELWD-Z3 in MI I-96 TS1 decreased from 46.28 with 

angle tolerance of 45° to 33.3 with 25°.  

Further study on spatial variability of pavement foundation properties is suggested with 

measurements at test locations in different spacing and across the pavement width. A smaller 
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spacing which is less than 0.6 m is suggested for research on identifying the initial spatial 

correlation characteristics.  
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3.10. Notation 

The following symbols are used in this paper: 

a = Range 

as1 = Range in first part of anisotropic semivariogram model 

as2 = Range in second part of anisotropic semivariogram model 

a' = Effective range where 95% Cs reached 

Â = Variable component of AIC 

AIC = Akaike Information Criterion 

C = Sill 

C0 = Nugget effect 

Cs = Partial sill that obtained in variogram model 

Cs1 = Partial sill in first part of anisotropic semivariogram model 

Cs2 = Partial sill in second part of anisotropic semivariogram model 

COV = Coefficient of variation 

D0 = measured deflection under the plate (mm) 

DCPI = Dynamic cone penetration index (mm/blow) 

E = elastic modulus (MPa) 

ELWD-Z3 = Elastic modulus (Zorn LWD test with 300 mm dia. plate) (MPa) 

F = Shape factor for LWD 

Gs = Specific gravity 

h = Vector indicates distance and direction of two points apart 
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hi = Average distance of all Ni point pairs separated by distance h’s. 

k = Smoothness parameter in the Matérn model 

k = Stiffness estimated from a static plate load test 

n = Number of points on the experimental variogram 

N = Number of tests 

Ni = Number of point pairs that separated at distance h 

p = Number of model parameters 

P = Applied load at surface 

r = Range number obtained in R program 

r = radius of the plate (mm) 

s = Spatial location 

s
2
 = Sample variance 

SSErr = Sum of squares of error or residuals 

wj = Weight in weighted least squares fit 

w = Moisture content 

wopt = Optimum moisture content 

γd = Dry unit weight 

γdmax = Maximum dry unit weight 

γdmin = Minimum dry unit weight 

γ(h) = experimental semivariogram at distance h 

γ̂(h) = fitted theoretical semivariogram at distance h 

δ = major anisotropy direction 

η = Poisson’s ratio (0.4) 

θ = semivariogram direction (azimuth angle) 

λ = anisotropy ratio 

σ = standard deviation 

σ0 = applied stress 

∆θ = angular tolerance 

ϕ = angular tolerance direction 
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CHAPTER 4. CHARACTERIZATION OF VARIABILITY IN PAVEMENT 

FOUNDATION PROPERTIES 

A paper submitted to International Journal of Pavement Engineering 

Jia Li, David J. White, and Pavana Vennapusa 

4.1. Abstract 

This study investigates variability of pavement foundation properties (e.g., ELWD-Z3, γd, and 

w) that were determined from four major in-situ tests (i.e., FWD, LWD, NG, and DCP) over 18 

test sections of 6 project sites. Change in variation of in-situ measured properties is studied in 

relationship to the number of compaction passes. Univariate statistics of pavement foundation 

properties is documented to provide references to pavement engineers and researchers to know 

the range of variability that in-situ measured properties can vary. In addition to univariate 

statistics, spatial analysis is performed on selected sites that contain relatively large data sets. 

The difference in spatial variation can be expected in longitudinal and transverse directions. The 

correlation length of 2 m to 3 m in the minor or less uniform direction is quantified for spatial 

variability of dense gridded data on the base layer. The spatial variability of in-situ measured 

properties along the longitudinal direction can be expected to be 15 m to 23 m in the CTB layer. 

This study on spatial variability indicates that the correlation length can be different in different 

pavement foundation layers and materials. 

4.2. Introduction 

Pavement foundation structures are constructed to provide uniform support for upper 

pavement layers and traffic load. However, material properties of existing pavement foundation 

structures are generally non-homogeneous. Non-uniform pavement foundation structures may 

cause stress concentration and then reduce pavement service life according to White et al. 
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(2004). To achieve a reliable pavement design, variability of engineering properties should be 

properly quantified. Phoon and Kulhawy (1999) suggested estimating the variability of soil 

parameters to develop and apply reliability-based design. Otake and Honjo (2013) suggested to 

evaluating the effects of spatial variability of material properties on pavement structures. 

However, pavement design assumes that uniform layers are achieved and uses a single modulus 

of subgrade reaction to represent the whole layer.  

Pavement foundation properties with less variability indicate better quality of construction. 

Factors that may affect this variability include the sampling pattern, distance between sampling 

locations, area of test section, and quantity of tests over the test sections where the variability is 

measured. It is likely that the decrease in variability of processes can be attributed to one or more 

of the following: contractor quality control, specifications that require a measurement of 

variability, improved industrial technology, and improved test methods (Hughes 1996).  

Variability has been identified in constructed pavement foundations. Allen and Graves 

(1994) obtained falling weight deflectometer (FWD) and Road Rater deflection measurements 

data at 25 foot intervals along a 500 ft long test section and observed a 75% coefficient of 

variation in subgrade moduli within the section. Yoder (1975) reported a range in standard 

deviations of layer thickness from 0.6 to 0.72 with 9749 tests on cement treated base, 0.72 to 

0.84 with 7046 on aggregate base, and 0.96 to 1.44 with 10758 tests on aggregate subbase. 

Yoder reported that a typical range for the standard deviation of percent compaction on 

embankment/subgrade varied from 2.0 to 7.0 percent and on subbase/base varied from 2.0 to 3.5 

percent. Siddharthan et al. (1992) studied layer moduli that were determined from back 

calculation of FWD tests perfomed on asphalt concrete pavement and they reported the layer 

moduli has coefficient of variation in a range of 5 to 65 percent. 
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Dilip and Babu (2014) studied the effect of the variance and correlation length on pavement 

responses to loading. The variation in the correlation length was found to have a marginal effect 

on the mean values of the critical strains and a noticeable effect on the standard deviation which 

decreases with decreases in correlation length. The pavement performance is adversely affected 

by the presence of spatially varying layers. The study also confirmed that the higher the 

variability in the pavement layer moduli, introduced through a higher value of coefficient of 

variation (COV), the higher the variability in the pavement response. The study concludes that 

ignoring spatial variability by modeling the pavement layers as homogeneous with very short 

correlation lengths can result in the underestimation of the critical strains and thus an inaccurate 

assessment of the pavement performance.  

Although variation of in-situ properties in pavement construction has been noticed, there is 

no documentation of variability in pavement foundation properties so that people have an idea of 

how variable the pavement foundation properties could be. Selective sampling by the inspector, 

often as ordered by the engineer, has played an important part in the failure to recognize the 

magnitude of the actual variations occurring in embankment and base construction. 

This study will focus on documenting the variability on 18 test sections over 6 projects on 

either the base/subbase layer or subgrade layer to provide a reference for pavement engineers or 

researchers to know how variable some pavement foundation properties can be within a small 

distance of the test section compared to the single design value that is used to represent the 

properties of a whole pavement foundation layer across the project. The variability of pavement 

foundation properties is also studied in relation to the number of roller compaction passes to see 

how the variability of pavement foundation properties could be reduced with the number of 

passes. Spatial variability of pavement foundation properties is a growing interest for more 
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researchers, but cost and time restraints limited the quality of data that can be used for spatial 

analysis. This study also investigates the spatial variability of pavement foundation properties in 

both longitudinal and transverse directions for identifying the difference in spatial variation as 

related to pavement geometry. 

4.3. Background 

4.3.1. Project information 

The variability of pavement foundation properties is studied by statistical analysis on the in-

situ test data that were collected on base, subbase, or subgrade layers from six project sites cross 

five states (Figure 4.1). 

 

Figure 4.1. Test sites map 

The MI I-96 reconstruction project used 65% of the existing sand subbase layer and about 

35% of newly constructed sand subbase layer. In situ testing data were obtained from two test 
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sections (TS). TS1 involved tests performed on the sand subbase and TS2 involved tests 

performed on the cement treated base (CTB) that was constructed with recycled portland cement 

concrete (RPCC). The pavement structure was reconstructed with a twenty-year design life 

jointed PCC pavement that was composed of a 292 mm (11.5 in.) thick PCC pavement at 4.3 m 

(14 ft) joint spacing, a 127 mm (5 in.) cement treated base (CTB) layer with recycled PCC 

(RPCC) material and a 279 mm (11 in.) existing or new sand subbase with a geotextile separator 

at the CTB/subbase interface.  

The MI I-94 reconstruction project used a 20-year design life jointed PCC pavement that was 

composed of a 280 mm (11 in.) thick jointed PCC pavement, and undercutting the existing 

foundation layers to a depth of about 686 mm (27 in.) for placement of a layer of open-graded 

drainage course (OGDC) that was composed of recycled steel slag over the subgrade with a 

geotextile separation layer at the subgrade/OGDC layer interface. Field testing was conducted on 

TS1 and TS3 that were the newly constructed ODGC base layer. 

The IA US-30 reconstruction project used a pavement that was composed of a nominal 

254 mm (10 in.) thick JPCP pavement surface and a 152 mm (6 in.) thick RPCC underlain by a 

254 mm (10 in.) thick mixture of RPCC/RAP modified subbase layer over the existing subgrade. 

The WI US-10 new construction project used a pavement that was composed of a 254 mm 

(10 in.) thick plain PCC with dowels surface, underlain by a 152 mm (6 in.) thick dense 

aggregate base layer that was on top of a 610 mm (24 in.) thick Grade 1 granular subbase layer 

over the subgrade. 

The NC Hwy-218 and FL I-10 projects studied the correlation of roller-integrated 

compaction monitoring measurements with in-situ testing methods measured pavement 

foundation properties. The NC Hwy-218 project tests were performed on base and subgrade 



 105 

layers after construction of 102 mm (4 in.) of granular base material and 203 mm (8 in.) of 

subgrade materials. The FL I-10 project tests were performed on base and subgrade layers after 

construction of 152 mm (6 in.) of granular base material and 305 mm (12 in.) of stabilized 

subgrade materials or natural subgrade materials. 

In-situ test sampling plans are different in all test sections, the major sampling patterns that 

were used for collecting data in this study are shown in Figure 4.2 to Figure 4.5. Only test 

sections with more than 70 data values collected with small spacing (<1 m) will be considered as 

dense gridded sampling sites. The dense gridded data will be used for spatial variability analysis. 

The other test sections are all said to be sparse sampling sites, but the test sections with more 

than 30 data values collected in one direction may be used for studying the large spacing spatial 

variability behavior. 

 

Figure 4.2. Sparse random linear test sampling on NC Hwy-218 TS3b 
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Figure 4.3. Dense square test sampling on MI I94 TS1b 

 

Figure 4.4. Sparse systematic linear test sampling on MI I96 TS2 

 

Figure 4.5. Sparse linear cross test sampling on WI US-10 TS1 
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The soil index properties of the layer that in-situ tests were performed on are summarized in 

Table 4.1 with approximate sampling rate calculated as the number of in-situ tests that were 

performed per unit length in the longitudinal direction of the pavement. The approximate 

sampling rate is calculated with the maximum number of tests over the maximum longitudinal 

distance of the test section, but it could be lower for certain types of tests that were not 

performed at certain points. 

Two dense sampling sites, MI I-94 TS1b and MI I96 TS1, are used for quantifying the spatial 

variability of pavement foundation properties using geostatistical methods (Chapter 2). Sparse 

data does not allow correct quantification of the correlation length, but some features of 

anisotropic behavior that different spatial variability could be expect in the sparse data collected 

in both transverse and longitudinal directions with more than 40 points were collected in each 

direction. Oliver and Webster (2015) suggest a target of 150 data values and a minimum of 100 

data values should be collected for spatial analysis on a variable that has isotropic variation while 

more than 150 data values should be collected for identifying anisotropic variation. However, 

limited data can be studied to characterize the spatial variability and to explore the number of 

data values that should be collected to properly study the spatial variability of pavement 

foundation properties. 

Moreover, univariate statistics are used to relate the change of studied pavement foundation 

properties with the number of passes of roller compaction using the data from NC Hwy-218 and 

FL I-10 projects. However, these data were collected from the calibration test area are not 

presented for studying the overall variability of pavement foundation properties, only data 

collected in the production area will be used. 

  



 

Table 4.1. Soil index properties and sampling rate summary 

Site 

Test 

Sectio

n (TS) 

Layer 

Soil index properties and classification Sampling rate 

γdmax 

(kN/m
3
)

a
 

γdmin 

(kN/m
3
)

b
 

γdmax 

(kN/m
3
)

c
 

wopt 

(%)
c
 

AASHTO USCS 
Sample 

grid 

Max 

Length 

(m) 

N of 

Tests  

N/ unit 

length 

(N/m) 

MI I-94 

TS1a Base 16.23 4.05 — — A-1-a GP Sparse 274.3 54 0.20 

TS1b Base 16.23 4.05 — — A-1-a GP Dense 6.3 121 19.12 

TS3 Base 16.23 4.05 — — A-1-a GP Sparse 807.9 162 0.20 

MI I-96 

TS1 
Sand 

subbase 
20.06 14.98 19.96 7.9 A-1-b SP-SM Dense 7.9 73 9.22 

TS2 CTB 13.61 12.26 — — A-1-a GP Sparse 90.7 119 1.31 

TS3 
Sand 

subbase 
20.06 14.98 19.96 7.9 A-1-b SP-SM Sparse 320.5 26 0.08 

WI US-

10 

TS1 
Sandy 

Subbase 
18.19 15.07 17.37 11.8 A-3 SP Sparse 65.4 80 1.22 

TS2 Subgrade — — 18.67 12 A-6(8) CL Sparse 6.9 17 2.46 

NC 

Hwy-

218 

TS1 Subgrade — —     A-2-4 SM Sparse 160.5 19 0.12 

TS2 Subgrade — —     A-2-4 SM Sparse 142.9 45 0.31 

TS3a Base — —     A-1-a SP-SM Sparse 78.8 6 0.08 

TS3b Base — —     A-1-a SP-SM Sparse 110.4 20 0.18 

FL I-10 

TS1 Base1 — — 122 10 A-1-b SM Sparse 184.5 27 0.15 

TS2 Base2 — — 121 11 A-1-b SM Sparse 78.3 15 0.19 

TS5 Subgrade  — — 111 11 A-3 A-3 Sparse 266.2 40 0.15 

TS6 
Stablized 

Subgrade 
— — 111 11 SM SM Sparse 262.0 27 0.10 

IA US-

30 

TS1 

RPCC 

modified 

Subbase 

— — 19.3 10.3 A-1-a GP-GM Sparse 106.7 20 0.19 

TS2 

RPCC 

modified 

Subbase 

— — 19.3 10.3 A-1-a GP-GM Sparse 104.3 52 0.50 

Note: 
a
ASTM D4253-00;

 b
ASTM D4253-00; 

c
ASTM D698-07 (AASHTO T180 for FL I-10); 

d
ASTM D3282-09; 

e
ASTM D2487-00. 

 

1
0
8
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4.3.2. In Situ Testing Methods 

The following in situ tests were conducted on 18 test sections of 6 project sites with real-time 

kinematic global positioning system (RTK-GPS) for positioning each test point to evaluate the 

variability in properties of pavement foundation systems (Table 4.2): Zorn light weight 

deflectometer (LWD); Kuab falling weight deflectometer (FWD); dynamic cone penetrometer 

(DCP); and Humboldt nuclear gauge (NG).  

Table 4.2. In-situ tests summary 

Field site TS 
Tests 

performed on 

In-situ tests performed 

FWD 

(EFWD-k3) 

LWD 

(ELWD-Z3) 

NG 

(γd and w) 

DCP 

(DCPI) 

MI I-94 

TS1a Base N Y Y Y 

TS1b Base N Y Y Y 

TS3 Base Y Y Y Y 

MI I-96 

TS1 Sand subbase N Y Y Y 

TS2 CTB Y N Y Y 

TS3 Sand subbase N Y Y Y 

WI US-10 
TS1 Subbase Y N Y Y 

TS2 Subgrade Y N Y Y 

NC Hwy-

218 

TS1 Subgrade N Y Y N 

TS2 Subgrade N Y Y Y 

TS3a Base N Y Y Y 

TS3b Base N N N Y 

FL I-10 

TS1 Base1 N Y Y Y 

TS2 Base2 N Y Y N 

TS5 Subgrade  N Y Y N 

TS6 
Stabilized 

Subgrade 
N Y Y N 

IA US-30 

TS1 

RPCC 

modified 

Subbase 

N N N Y 

TS2 

RPCC 

modified 

Subbase 

N Y N N 

Note: Y = test was performed on all test locations; N = test was not performed. 
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Real-Time Kinematic Global Positioning System 

An RTK GPS system was used to obtain global spatial coordinates (i.e., northing, easting, 

and elevation) of in situ test locations and tested pavement layers. The local spatial coordinates 

(x, y, and z) were determined for all tested sections from their global coordinates. A Trimble 

SPS 851 was established on site to provide base station correction for a Trimble SPS 851 

receiver. This system has manufactured accuracies of < 10 mm in horizontal direction and 

< 20 mm in vertical direction. 

Zorn Light Weight Deflectometer 

Zorn LWD tests were performed according to manufacturer’s recommendations (Zorn G. 

2003) on base and subbase layers to determine elastic modulus. These LWD tests were set up 

with a 300 mm diameter plate and a 71 cm drop height. Elastic modulus (ELWD-Z3) from LWD 

results was determined using Eq. 4.1:  

 F
D

r
E 




0

0

2 )1( 
 (4.1) 

where: E = elastic modulus (MPa); 

D0 = measured deflection under the plate (mm); 

η = Poisson’s ratio (0.4); 

σ0 = applied stress (MPa); 

r = radius of the plate (mm); and 

F = shape factor = 8/3 per Vennapusa and White (2009). 

Kuab Falling Weight Deflectometer 

Kuab FWD tests were conducted by applying one seating drop using a nominal force of 

24.5 kN (5500 lb) followed by test drops. The number of test drops and nominal forces varied for 



111 

each project. In every test, a load cell recorded actual applied forces, and deflections were 

recorded using seismometers mounted on the device according to ASTM D4694-09 (2009). A 

300 mm diameter loading plate and 7 deflection sensors were set up. All deflection 

measurements were normalized to 40 kN to compare deflection values at different test locations. 

Composite modulus values (EFWD-K3) were calculated using Eq. 4.1 with the measured deflection 

at the center of the plate and corresponding applied contact force. However, the plate used in 

Kuab FWD tests is a four-segmented plate that, according to the FWD manufacturer results in a 

uniform stress distribution. Therefore, a shape factor F = 2 was used in Eq. 4.1 instead of 8/3 

according to Vennapusa and White (2009). 

Nuclear gauge 

A nuclear moisture-density gauge (NG) device was calibrated and used to measure in situ 

soil dry unit weights (γd) and moisture content (w) in the base and subbase materials. Tests were 

performed according to ASTM D6938-10 (2010) at each test location. The average values of γd 

and w are reported for spatial analysis. 

Dynamic Cone Penetrometer 

DCP tests were performed following ASTM D6951-03 (2003) to evaluate the in situ strength 

of compacted base, subbase, and subgrade materials, and to determine the dynamic penetration 

index (DCPI) and penetration depth at each test point. Weighted average DCPI is calculated for 

each layer to evaluate variability of the in-situ strength at different pavement foundation layers. 

The calibrated California bearing ratio (CBR), back calculated from DCPI is also studied. 

Several test sampling grids were studied to characterize the spatial variability of pavement 

foundation properties, and the fundamental assumption of this spatial analysis is that sample 

population of the variable values has an approximate normal distribution. Histograms, box with 
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whiskers plots, and normal quantile plots of the sampled values are analyzed to verify the normal 

distribution assumption. If the values are normally distributed, the values will be used for 

semivariogram analysis. However, if the values are not normally distributed and highly skewed 

in their distribution, an appropriate transformation will be made based on format of the original 

distribution.  

4.3.3. Statistical analysis on variability 

Univariate statistics are used in this study to quantify the variability of pavement foundation 

properties as determined using limited in-situ tests. Spatial variability analysis is performed with 

the statistical program R (Bivand et al. 2013; Pebesma 2001) to characterize and quantify the 

spatial variability of pavement foundation properties in longitudinal and transverse directions.  

Univariate statistics 

The box plot is an efficient graphical method for displaying the distribution of the data 

(Figure 4.6) and will be used to present variation of pavement foundation properties determined 

from different test sections. 

 

Figure 4.6. Illustration of box plot of ELWD-Z3 measured in MI I-94 TS3 
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The coefficient of variation (COV) will be used as the primary way of quantifying the 

variability with respect to the mean of the sample. The ratio of standard deviation (σ) to mean (μ) 

in Eq. 4.2 is the COV where σ is calculated as Eq. 4.3 where n is the number of data values, x. 

 COV=
σ

μ
 (4.2) 

 𝜎 = √
∑(𝑥−𝜇)2

𝑛−1
       and       𝜇 =

∑𝑥

𝑛
 (4.3) 

Spatial variability analysis 

Semivariogram γ(h) is a tool in geostatistical studies to describe and quantify spatial 

variability of studied variables. Semivariogram γ(h) measures the average dissimilarity of paired 

data separated by a vector h (Goovaerts 1997). The semivariogram γ(h) is defined as half of the 

average squared differences between number of pairs N(h) data values separated at a distance h 

as calculated in Eq. 4.4 (Isaaks and Srivastava 1989). 

 γ(h)=
1

2N(h)
∑ (Z(si)-Z(sj))

2

(i,j)|hij≈h  (4.4) 

 

Figure 4.7. Typical semivariogram graph 
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A semivariogram plot is composed of a sill (C) that includes a nugget effect (C0) and partial 

sill (Cs), and a range (a) or effective range (a'). Figure 4.7 shows a typical spherical 

semivariogram model fitted to the experimental semivariogram values. 

Three major semivariogram parameters are nugget the effect (C0), the sill (C=C0+Cs), and the 

Range (a). A brief description of each parameter is summarized below using information from 

geostatistical books (Goovaerts 1997; Isaaks and Srivastava 1989). 

The nugget effect (C0) is the sudden increase of the semivariogram value as the separation 

distance goes from 0 m at the origin to an extremely small distance. This nugget effect can be the 

result of sampling error or short scale variability. The nugget effect can be determined by fitting 

a straight line though first few semivariogram values to intercept with the vertical axis. The 

relative nugget effect tends to increase with the lag (h) tolerance and data sparsity. Data sparsity 

or measurement errors may lead to a semivariogram with noisy values and can only be 

represented with a pure nugget effect. In general, the nugget effect is modelled as an isotropic 

component, but it can be modeled as an anisotropic spatial structure when the range value is 

smaller than the shortest sampling distance. 

The sill (C=C0+Cs) is the value of the semivariogram when the average squared difference 

between pairs of values no longer increases with increasing separation distance, that is the 

semivariogram reaches a plateau. The sill of the semivariogram may not be equal to the sample 

variance (Barnes 1991; Goovaerts 1997) and so forcing the sill to be equal to the sample variance 

(s
2
) is a questionable practice. 

The range (a) is the distance at which the semivariogram reaches the sill plateau. In most 

models, the effective range (a') is determined as the distance at which the semivariogram reaches 
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95% of the sill plateau. More and better data tends to produce a longer range for the experimental 

semivariogram. 

The discrepancies in semivariogram values reflect experimental fluctuations that result from 

the small number of data pairs available for each lag. Generally, the minimum of 30 and 

preferred 50 or more data pairs is desired within each bin (Journel and Huijbregts 1978). Erratic 

behaviors can be found in experimental semivariograms for data that are skewed or have 

extremely high or low values (outliers). If the sampled data is highly skewed (skewness is out the 

range of -1 to 1), the data may be transformed before performing spatial analysis. If the 

experimental semivariogram keeps increasing with increasing separation distance between data 

pairs, there could be a trend in the sampled data that should be removed before spatial analysis 

(Gringarten and Deutsch 2001). If a significant trend is identified this violates the assumption for 

spatial analysis that the mean is constant. 

Three theoretical semivariogram models (Table 4.3) are used in this study to describe the 

experimental semivariogram values and the best fitted model is chose using statistical criteria. 

Table 4.3. Semivariogram models 

Model 
R 

code
 Equation Parameter note 

Nugget Nug γ̂(h)= {
0
C0
       

h=0
h≠0

  

Spherical Sph γ̂(h)={
Cs (

3

2

h

𝑟
-
1

2
(
h

𝑟
)
3

) 0≤h≤r

Cs h>r

 
a = r (range reaches 

100% of Cs) 

Exponential 

(Matérn, 

k=0.5) 

Exp γ̂(h)= {
0 h=0

Cs (1-e
-
h

r) h>0
 

a′ = 3r (effective range 

reaches 95% of Cs) 

Whittles 

(Matérn, 

k=1) 

Bes γ̂(h)={

0 h=0

Cs (1- (
h

r
)K

1

(
h

r
)) h>0

 
a′ = 4r (effective range 

reaches 95% of Cs) 

Note: K1(h/r) is modified Bessel function of the second kind with order k=1, r is the range parameter obtained in R 

program. 
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In this study, model is fit to the The calculated experimental semivariogram using a weighted 

least squares method as Cressie (1985) suggested. The weight calculation method is presented in 

Eq. 4.5 where Ni is the number of data pairs that are an average distance, hi, apart. 

 wi=
Ni

h𝑖
2 (4.5) 

The sum of square errors (SSErr) is calculated for each fitted theoretical semivariogram to 

describe how well the model fits the experimental semivariogram. SSErr is calculated using 

Eq. 4.6 where γ̂(hj) is the predicted semivariogram value using the fitted theoretical model and 

γ(hi) is the average experimental semivariogram value at a lag distance hi. 

 SSErr=∑ wi[γ̂(hi)-γ(hi)]
2n

i=1  (4.6) 

4.4. Results and Discussion 

Variability of pavement foundation properties are studied in three sections, the first is to 

investigate how the variability changes with the number of roller compaction passes, second is to 

summarize the univariate statistical analysis of different in-situ tests measurements, and third is 

to introduce the spatial variability analysis. 

4.4.1. Variation of pavement foundation properties to number of compaction passes  

The relationship between in-situ measured pavement foundation properties and the number 

of compaction roller passes is studied on NC Hwy-218 with 21 tests performed after every target 

number of passes. The results are presented in box plots and COVs are calculated to see how 

variation changes with the number of passes for two subgrade and two base sections as Figure 

4.8 to Figure 4.11 show.  
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Figure 4.8. Variation of pavement foundation properties with number of compaction pass 

(NC Hwy-218 TS1 subgrade) 
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Figure 4.9. Variation of pavement foundation properties with number of compaction pass 

(NC Hwy-218 TS2 subgrade) 
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Figure 4.10. Variation of pavement foundation properties with number of compaction pass 

(NC Hwy-218 TS3a base) 
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Figure 4.11. Variation of pavement foundation properties with number of compaction pass 

(NC Hwy-218 TS3b base) 

Figure 4.8 shows the LWD test and NG test results with number of passes. The mean value 

of both ELWD-Z3 and γd increase to a relative constant value after three passes while there is no 
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obvious change in the mean value of moisture content. The COV of both ELWD-Z3 and γd reaches 

the lowest value at the third pass, but increases in COV values for ELWD-Z3 are observed with 

more compaction passes. Figure 4.10 shows relative lower COV value at the first two passes 

than after more passes in ELWD-Z3 and w while the constant decreasing COV value is observed in 

the collected γd values.  

The overall mean value of ELWD-Z2 significantly decreases after more passes compaction after 

8 passes on TB3a and 4 passes on TB3b (Figure 4.10 and Figure 4.11).  

Figure 4.10 shows variation of two stiffness measurements and dry unit weight decreases 

with increasing number of passes. Figure 4.11 shows variation of ELWD-Z2 and ELWD-D2 initially 

decreases with up to 4 passes, but variation increases about 4% with more passes after 8 and 4 

passes for ELWD-Z2 and ELWD-D2 respectively. The mean value of γd increases and COV decreases 

with number of passes. 

The relationship between in-situ measured pavement foundation properties and the number 

of compaction roller passes is studied on FL I-10 with 20 tests on two base sections and 10 tests 

on two subgrade sections after every target number of passes. The results are presented in box 

plots and COVs are calculated to see variation change with number of passes for two subgrade 

and two base sections as Figure 4.12 to Figure 4.16 show.  

Figure 4.12 shows increasing ELWD-Z3 with increasing number of passes and COV decreasing 

from about 15.5% with passes to 10% after 8 passes. Increasing average γd values were observed 

with more passes of compaction while there is a slight decrease in w is observed. The variation 

of both γd and w is relatively small and does not change a lot with increasing number of 

compaction passes. The similar observation has been found in compaction on second base layer 

in FL I-10 TS2 (Figure 4.14). 
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Figure 4.12. Variation of pavement foundation properties with number of compaction pass 

(FL I-10 TS1 Base) 
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Figure 4.13. Variation of pavement foundation properties with number of compaction pass 

(FL I-10 TS2 Base) 



124 

 

Figure 4.14. Variation of pavement foundation properties with number of compaction pass 

(FL I-10 TS5 subgrade) 
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Figure 4.15. Variation of pavement foundation properties with number of compaction pass 

(FL I-10 TS6 Stabilized subgrade) 

Figure 4.14 shows that the mean ELWD-Z3 value increases from 25 MPa to 40 MPa with COV 

decreases from 16% to 8.5% after 8 compaction passes on the subgrade. The increase in mean γd 



126 

value has been observed with increasing number of compaction passes while moisture content 

remains nearly the same. The variations in γd and w are small in comparison with variation of 

ELWD-Z3. Figure 4.15 shows consistent increase in the mean value of ELWD-Z3 and γd with first 

three passes and then levels off while moisture content remains nearly unchanged. Decrease of 

variation in ELWD-Z3 has been observed with increasing number of compaction passes while no 

clear relationship between COV and number of passes observed in γd and w measurements on 

FL I-10 TS6 stabilized subgrade. 

4.4.2. Univariate variability 

Univariate statistics are calculated for data measured on each test section on all 6 projects. 

The LWD test determined ELWD-Z3 and NG test determined γd and w are measured on all test 

sections, so the univariate statistics of each of these three pavement foundation properties are 

summarized in a single table (Table 4.4, Table 4.5, and Table 4.6). The rest of the in-situ test 

results for pavement foundation properties are summarized in Table 4.7. 

According to the variability study on LWD tests measurements (Table 4.4), the average (μ) 

ELWD-Z3 on base/subbase layer is generally varying in a range from 12.6 MPa to 98.7 MPa and at 

maximum of 214.8 MPa on CTB and on subgrade layer is varying from 18.9 MPa to 34.9 MPa 

in general and the maximum 83.6 MPa is the average measurements on stabilized subgrade. The 

coefficient of variation (COV) of ELWD-Z3 varies from 11% to 39% on 11 base/subbase layers and 

from 17% to 89% on 5 subgrade layers. The largest COV of 89% is obtained at the NC Hwy-218 

TS1 which has the lowest mean value of ELWD-Z3, and possible soft area could be expected 

according to the measured ELWD-Z3 cross the study area that shown in Figure 4.16. Higher COV 

will be expected in stiffness measurements as the stiffness is measured as a composite layer 

property that not a value measured for a point whining a layer as NG does.  
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Figure 4.16. Variation of ELWD-Z3 in NC Hwy-218 TS1 

Table 4.4. Univariate statistics summary of ELWD-Z3 (MPa) 

Field 

site 
TS Layer 

Univariate Statistics 

Mean 

(μ) 
Median 

Variance 

(s
2
) 

Std 

Dev (σ) 

CO

V 
N 

Skewnes

s 

MI I-

94 

TS1a Base 73.3 73.7 206.0 14.4 20 54 0.27 

TS1b Base 58.5 58.6 50.5 7.1 12 
12

1 
0.43 

TS3 Base 49.0 49.6 109.8 10.5 21 
16

2 
0.06 

MI I-

96 

TS1 
Sand 

subbase 
30.9 31.3 124.1 11.1 36 73 -0.20 

TS2 CTB 214.8 216.9 7152.4 84.57 39 
11

9 
0.29 

TS3 
Sand 

subbase 
33.2 35.8 108.7 10.4 31 26 -0.57 

WI 

US-

10 

TS1 Sandy 

Subbase 

12.6 12.6 10.3 3.2 25 17 0.00 

TS2 Subgrade 30.7 30.4 28.3 5.3 17 80 0.62 

NC 

Hwy

-218 

TS1 Subgrde 18.9 12.4 285.8 16.9 89 19 1.10 

TS2 Subgrade 29.2 26.1 349.8 18.7 64 45 2.06 

TS3a Base 39.7 40.4 28.7 5.4 13 6 -0.05 

FL I-

10 

TS1 Base1 98.7 93.8 379.6 19.5 20 27 0.98 

TS2 Base2 83.2 84.4 87.8 9.4 11 15 0.39 

TS5 Subgrade  34.9 33.6 194.6 14.0 40 40 1.38 

TS6 
Stablized 

Subgrade 
83.6 82.4 263.4 16.2 19 27 0.20 

IA 

US-

30 

TS2 

RPCC 

modified 

Subbase 

56.6 57.5 120.6 11.0 19 40 -0.81 
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Dry unit weight (γd) was measured with NG tests on 15 test sections for 5 of the project sites. 

The summarized univariate statistics (Table 4.5) shows that the mean γd of 10 base/subbase 

layers varies from 14.6 kN/m
3
 to 20.3 kN/m

3
 with the COV varies from 2% to 6%. The mean γd 

of 5 subgrade layers varies from 15.7 kN/m
3
 to 19.84 kN/m

3
 with the COV varies from 2% to 

6%. A lower COV should be expected according to the density control method used in pavement 

foundation construction. The test area should be evaluated for identifying possible weak area 

when COV of higher than 10% was obtained.  

Table 4.5. Univariate statistics summary of γd (kN/m
3
) 

Field 

site 
TS Layer 

Univariate Statistics 

Mean 

(μ) 
Median 

Variance 

(s
2
) 

Std 

Dev (σ) 

CO

V 
N 

Skewne

ss 

MI I-

94 

TS1a Base 20.08 20.07 0.43 0.66 3 54 -0.37 

TS1b Base 20.00 20.00 0.38 0.61 3 121 -0.13 

TS3 Base 19.21 19.25 0.77 0.88 5 162 -0.02 

MI I-

96 

TS1 
Sand 

subbase 
20.16 20.15 0.34 0.59 3 73 -0.03 

TS2 CTB 14.56 14.59 0.66 0.81 6 119 -0.3 

TS3 
Sand 

subbase 
20.01 19.89 0.26 0.51 3 26 0.30 

WI 

US-10 

TS1 
Sandy 

Subbase 
16.15 16.07 0.12 0.35 2 17 -0.3 

TS2 Subgrade 19.84 19.84 0.15 0.38 2 79 0.1 

NC 

Hwy-

218 

TS1 Subgrde 18.00 18.21 0.83 0.91 5 18 -0.27 

TS2 Subgrade 16.98 16.71 1.08 1.04 6 44 0.47 

TS3a Base 20.25 20.35 0.30 0.55 3 6 -1.12 

FL I-

10 

TS1 Base1 17.78 17.80 0.29 0.54 3 26 -0.56 

TS2 Base2 17.79 17.80 0.09 0.30 2 15 -0.26 

TS5 Subgrade  16.27 16.25 0.20 0.45 3 40 0.30 

TS6 

Stabilize

d 

Subgrade 

15.70 15.7 0.11 0.34 2 23 -0.43 

 



129 

 

Figure 4.17. Variation of in-situ measured w compared to laboratory determined wopt. 

Moisture content (w) was measured with NG tests on 14 test sections over the 5 project sites. 

The summarized univariate statistics (Table 4.6) shows that the mean value of w varies from 

1.3% to 10.1% over 9 test sections on base/subbase and varies from 7.5% to 14.6% over 5 test 

sections on subgrade. The large range of w variation could be the result of the length of time 

after construction that NG tests were performed and the difference in target moisture content 

which is in a range of wopt determined with laboratory tests. The mean value of in-situ measured 

w was compared to laboratory determined wopt on selected test sections that laboratory tests were 

performed in determining the compaction curve (Figure 4.17). There is no definite trend of COV 

with wopt or difference between in-situ measured w and wopt.  

2D Graph 8

MI I-
96 TS1

MI I-
96 TS3

WI U
S-10 TS1

WI U
S-10 TS2

FL I-1
0 TS1

FL I-1
0 TS2

FL I-1
0 TS5

FL I-1
0 TS6

w
 (

%
)

0

5

10

15

20

25

C
O

V
 (

%
)

-5

0

5

10

15

20

25

Lab w
opt

 (%)

In-situ mean w (%)

In-situ COV of w (%)



130 

Table 4.6. Univariate statistics summary of w (%) 

Field 

site 
TS Layer 

Univariate Statistics 

Mean 

(μ) 

Media

n 

Variance 

(s
2
) 

Std Dev 

(σ) 
COV N 

Skewnes

s 

MI I-94 

TS1

a 
Base 1.8 1.8 0.1 0.4 22 54 0.42 

TS1

b 
Base 2.3 2.3 0.1 0.3 14 121 -0.70 

TS3 Base 1.3 1.3 0.1 0.3 25 162 0.44 

MI I-96 

TS1 
Sand 

subbase 
7.8 7.7 1.0 1.0 13 73 0.47 

TS2 CTB 7.3 7.2 1.0 1.0 13.9 119.0 1.4 

TS3 
Sand 

subbase 
6.3 6.3 0.5 0.7 11 26 0.44 

WI 

US10 

TS1 
Sandy 

Subbase 
3.7 3.7 0.2 0.5 13.2 17.0 -0.9 

TS2 Subgrade 7.5 7.4 0.9 1.0 12.9 79.0 1.0 

NC 

Hwy21

8 

TS1 Subgrde 10.2 8.1 16.0 4.0 39 18 0.85 

TS2 Subgrade 12.1 11.6 13.0 3.6 30 44 0.50 

FL I-10 

TS1 Base1 9.9 10.1 0.7 0.8 8 26 -0.99 

TS2 Base2 10.1 10.5 0.9 0.9 9 15 -0.42 

TS5 Subgrade  11.0 10.8 2.5 1.6 15 40 0.19 

TS6 
Stablized 

Subgrade 
14.6 13.7 3.5 1.9 13 23 0.76 

 

The in-situ tests in addition to LWD and NG tests were performed on selected test sections 

and the univariate statistics of variation of DCPI and CBR determined from DCP tests and EFWD-

K3 determined from FWD tests are summarized in Table 4.7. The average DCPI of base or 

subbase layer varies from 7 mm/blow to 19 mm/blow with COV varied from 8% to 53% over 8 

tests sections of three projects. The high COV value might be expected due to the calculation of 

DCPI that is the weighted average value across the data analyst identified layer thickness. 

California bearing ratio (CBR) was calculated from the DCP tests and is not a direct 

measurements. The mean value of CBR of tests performed on base/subbase layer over 4 test 

sections of three project sites varies from 11% to 67% with COV varies from 19% to 35%. 
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Table 4.7. Univariate statistics summary of other pavement foundation properties 

Field 

site 
TS Layer 

Propert

ies 

Univariate Statistics 

Mean 

(μ) 

Medi

an 

Variance 

(s
2
) 

Std Dev 

(σ) 

CO

V 
N 

Skewn

ess 

MI I-

94 

TS1

a 
Base DCPI 6 6 3.0 1.7 27 54 1.87 

TS1

b 
Base DCPI 7 7 1.3 1.1 17 

12

0 
0.48 

TS3 Base 

EFWD-k3 44.7 44.4 195.0 14.0 31 50 0.83 

DCPI 8 8 3.8 2.0 23 
16

2 
0.69 

MI I-

96 

TS1 
Sand 

subbase 
DCPI 19 19 20.7 4.5 24 57 0.37 

TS3 
Sand 

subbase 
DCPI 16 16 25.0 5.0 30 26 0.45 

WI 

US10 

TS1 
Sandy 

Subbase 
CBR 

5.6 5.7 1.4 1.2 21.5 17 -1.1 

TS2 Subgrade CBR 15.4 14.5 24.8 5.0 32.2 79 1.2 

NC 

Hwy2

18 

TS2 Subgrade DCPI 13 11 57.6 7.6 59 25 1.36 

TS3

a 
Base DCPI 12 12 0.9 0.9 8 6 2.37 

TS3

b 
Base DCPI 14 11 57.8 7.6 53 20 0.97 

FL I-

10 
TS1 Base1 

DCPI 7 7 1.9 1.4 19 27 0.90 

CBR 32.9 33.8 39.1 6.2 19.0 27 -0.29 

IA 

US30 
TS1 

RPCC 

Subbase 
CBR 11.0 9.6 14.9 3.9 35 20 1.08 

RPCC/R

AP 

Subbase 

CBR 67.0 70.6 330.8 18.2 27 20 -0.37 

Subgrade CBR 12.9 12.1 15.6 3.9 31 20 1.25 

Note: DCPI unit is mm/blow; EFWD-K3 unit is MPa; CBR unit is %. 

4.4.3. Directional spatial variability 

Spatial variability of pavement foundation properties is studied in longitudinal and transverse 

directions with respect to pavement structure geometry as many researchers have indicated a 

possible anisotropic spatial variability in pavement structure. Two sections of the total 18 test 

sections over the 6 project sites are densely gridded samples appropriate for spatial variability 

analysis study on pavement foundation properties. The detailed procedures of spatial are 

discussed chapter 3 and will not be provided in this section. Only the directional experimental 

semivariogram with fitted theoretical semivariogram models are presented for characterizing the 
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directional spatial variability of pavement foundation properties and these are compared with 

directional spatial variability of those properties measured in long sparse sampled test sections. 

Although the in-situ measurements are much more than the required number in pavement 

construction quality control and quality assurance programs, the amount of data in several test 

sections is inadequate for spatial variability analysis. 

The first dense gridded test section MI I-94 TS1b is inside of the long sparse sampled test 

section MI I-94 TS1a as shown in Figure 4.18.  

 

Figure 4.18. Test plan for TS1a and TS1b test sections of MI I94 

Semivariograms for directional spatial variability are presented for ELWD-Z3, γd, and 

DCPIsubbase in Figure 4.19, Figure 4.20, and Figure 4.21, respectively. The semivariogram in the 

transverse direction for ELWD-Z3 tend to reach the sample variance in larger range distance >4 m 

while the semivariogram in longitudinal direction shows a shorter range <4 m. In the 

longitudinal direction the sill is larger than the sample variance. The transverse γ(h) of γd shows 

a range of about 2 m while the longitudinal γ(h) shows a possible trend. The γ(h) of DCPIsubbase 

in both transverse and longitudinal directions show clear sill values with similar range length 

which may imply isotropic γ(h) of DCPIsubbase. Semivariograms based on the long sparse data 

from MI I94 TS1a (Figure 4.22, Figure 4.23, and Figure 4.24), show erratic behavior as 
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separated distance increases beyond 45 m. There is clear relationship between γ(h) and 

separation distance can be identified, so the theoretical model was controlled with sample 

variation as partial sill (Cs) to fit to the experimental γ(h). With the controlled sill, the range 

value are expected to be in a range of 25 m to 40 m that may not be true with no data pairs was 

obtained within a separation distance of 15 m. According to the spatial analysis on the same test 

site, the minimum spacing should be about 0.5 m to catch the initial part of the semivariogram 

from the origin to describe the directional semivariogram with more confidence. If only large 

spacing data are collected with a limited number of tests, the data may not be useful for spatial 

variability analysis. 

  

Figure 4.19. Experimental γ(h) of ELWD-Z3 on MI I-94 TS1b in transverse direction (left) 

and longitudinal direction (right) 

  

Figure 4.20. Experimental γ(h) of γd on MI I-94 TS1b in transverse direction (left) and 

longitudinal direction (right) 
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Figure 4.21. Experimental γ(h) of DCPIsubbase on MI I-94 TS1b in transverse direction (left) 

and longitudinal direction (right) 

 

Figure 4.22. Experimental γ(h) of ELWD-Z3 on MI I-94 TS1a in longitudinal direction 

  

Figure 4.23. Experimental γ(h) of γd on MI I-94 TS1a in longitudinal direction 
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Figure 4.24. Experimental γ(h) of DCPIsubbase on MI I-94 TS1a in longitudinal direction 

Directional spatial variability analysis was performed on the dense gridded data collected on 

MI I-96 TS1. According to the spatial analysis on ELWD-Z3, γd, and w (Figure 4.25, Figure 4.26, 

and Figure 4.27) shows higher variation within smaller correlation lengths in the transverse 

direction compared to the longitudinal direction. This indicates more uniform pavement 

foundation properties (ELWD-Z3, γd, and w) would be expected in the longitudinal direction than 

the transverse direction. However, the spatial analysis on DCPIsubbse and DCPIsubgrade does not 

show the same trends as described for ELWD-Z3, γd, and w. Figure 4.28 shows that higher spatial 

variation of DCPIsubbase will be expected in both transverse and longitudinal directions at a 

correlation distance longer than 4 m. Figure 4.29 shows DCPIsubgrade is possibly more uniform in 

the longitudinal direction than the transverse direction with small correlation length <2 m..  
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Figure 4.25. Experimental γ(h) of ELWD-Z3 on MI I-96 TS1 in transverse direction (left) and 

longitudinal direction (right) 

  

Figure 4.26. Experimental γ(h) of γd on MI I-96 TS1 in transverse direction (left) and 

longitudinal direction (right) 

  

Figure 4.27. Experimental γ(h) of w on MI I-96 TS1 in transverse direction (left) and 

longitudinal direction (right) 
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Figure 4.28. Experimental γ(h) of DCPIsubbase on MI I-96 TS1 in transverse direction (left) 

and longitudinal direction (right) 

 

Figure 4.29. Experimental γ(h) of DCPIsubgrade on MI I-96 TS1 in transverse direction (left) 

and longitudinal direction (right) 

With 121 of each FWD and NG test performed on cement treated base on MI I-96 TS2, the 

spatial analysis is performed to characterize and quantify the spatial variability only in the 

longitudinal direction as only 4 tests were performed along the transverse direction. Although the 

data spacing is larger than 2 m which may not be able to use for sampling MI I94 TS1 above to 

study spatial variability, the higher correlation of ELWD-Z3, γd, and w (Figure 4.30, Figure 4.31, 

and Figure 4.32) allows spatial variability on this CTB layer. A clear relationship between γ(h) 

and separation distance helps with fitting the theoretical semivariogram model to quantify the 

spatial variability of ELWD-Z3, γd, and w that are summarized in Table 4.8.  
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Figure 4.30. Experimental γ(h) of ELWD-Z3 on MI I-96 TS2 in longitudinal direction 

  

Figure 4.31. Experimental γ(h) of γd on MI I-96 TS2 in longitudinal direction 

 

Figure 4.32. Experimental γ(h) of w on MI I-96 TS2 in longitudinal direction 
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Table 4.8. Directional spatial variability characteristics summary on four test sections 

Properties 
Sampling 

type 
Small Dense Long Sparse Small Dense Long Sparse 

Properties Direction 

MI I-94 TS1b MI I-94 TS1a MI I-96 TS1 MI I-96 TB2 

Sill 

(C+

C0) 

Range 

(a or 

a'), m 

Sill 

(C+C

0) 

Range 

(a or 

a'), m 

Sill 

(C+

C0) 

Range 

(a or 

a'), m 

Sill 

(C+C

0) 

Range 

(a or 

a'), m 

ELWD-Z3 (MPa) 

Transvers

e 

59.0

8 
11.022     

165.

301 
2.624     

Longitudi

nal 

63.0

19 
2.993 

206.3

599 
38.288 

203.

5 
8.284  

EFWD-K3 (MPa) 

Transvers

e 
 

 

Longitudi

nal 
 

6046.

3 
22.452 

γd (kN/m
3
) 

Transvers

e 

0.34

88 
2.328  

0.67

4 
7.482  

Longitudi

nal 

0.62

44 
9.86 

0.354

1 
33.172 

0.16

61 
2.232 

0.633

619 
15.444 

w (%) 

Transvers

e 
 

1.40

6 
3.531  

Longitudi

nal 
 

0.157

294 
27.048 

0.83

21 
5.355 

0.960

1 
23.16 

DCPIsubbase 

(mm/blow) 

Transvers

e 

1.19

52 
1.732  

30.2

1 
4.288 

 

Longitudi

nal 

1.29

61 
2.1792 288.2 45.4 

27.9

924 
4.603 

DCPIsubgrade 

(mm/blow) 

Transvers

e  

5.86

5 
1.068 

Longitudi

nal  
2.097 31.712 

4.15

2 
2.289 

 

The summarized spatial variability characteristics (Table 4.8) show that the correlation length 

of around 2 m to 11 m could be expected in small dense gridded area while the long sparse 

sampling with about 16 m spacing in longitudinal direction does not tell the true estimation of 

spatial variability. However, with more data collected with about 5 m spacing in longitudinal 

direction on CTB layer can clearly tell the correlation length of about 22 m for EFWD-K3 and w 

and about 15 m for γd. for spatial analysis and is expected to have an erratic experimental 

semivariogram.  
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4.5. Conclusions 

This study investigates variability of pavement foundation properties that were determined 

from four major in-situ tests (FWD, LWD, NG, and DCP) over 18 test sections of 6 project sites. 

Studying the variability of ELWD-Z3, γd, and w revealed that 4 passes of compaction could result in 

a production as good as are compacted with more passes and reduced coefficient of variation 

could be expected at larger number of passes.  

Univariate statistics of in-situ measured data show that the highest variation could be 

expected in stiffness measurements (e.g.,, ELWD-Z3, EFWD-K3, and CBR), the reason could be that 

the stiffness is measured for the whole pavement foundation while the other can be measured at 

certain depth of pavement structure. The COV of ELWD-Z3 varies from 11% to 39% on studied 

base/subbase layer and 19% to 89% on subgrade layer that COV of 89% in subgrade stiffness 

could be questioned for testing weak area. In addition, the lowest COV will be expected as 2% to 

6% in dry unit weight of base/subbase or subgrade layer while the moisture content shows high 

variation. A test section might have a weak spot with γd varying with COV more than 10%.  

Spatial variability analysis on a dense gridded test section suggests that different anisotropic 

major directions can be expected in different test areas. The dense gridded MI I-94 TS1b shows 

the transverse direction is more uniform than the longitudinal direction, but the dense gridded MI 

I-96 TS1 shows the longitudinal direction is more uniform than the transverse direction. The two 

dense gridded sites suggest that the correlation length is about 2 m to 3 m in the minor direction 

(less uniform) and the correlation length in the major direction is about 3 to 4 times that of the 

minor direction. In addition, the longitudinal direction spatial variability of EFWD-K3, γd, and w on 

the CTB layer suggests a 15 m to 23 m correlation length. The spatial variability of pavement 

foundation properties could be different for different pavement structures and are recommended 
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with more number of tests (>150 points) with smaller spacing (<0.7 m spacing in 100 m
2
 area 

and <2 m in large study area). 
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4.7. Notation 

The following symbols are used in this paper: 

a = Range 

a' = Effective range where 95% Cs reached 

C = Sill 

C0 = Nugget effect 

Cs = Partial sill that obtained in variogram model 

COV = Coefficient of variation 

D0 = measured deflection under the plate (mm) 

DCPI = Dynamic cone penetration index 

E = elastic modulus (MPa) 

ELWD-Z3 = Elastic modulus (Zorn LWD test with 300 mm dia. plate) 

EFWD-K3 = Elastic modulus (Kuab FWD test with 300 mm dia. plate) 

F = Shape factor for LWD 

Gs = Specific gravity 

h = Vector indicates distance and direction of two points apart 

k = Smoothness parameter in the Matérn model 

k = Stiffness estimated from a static plate load test 

n = Number of points on the experimental variogram 

N = Number of tests 

P = Applied load at surface 
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r = Range number obtained in R program 

r = radius of the plate (mm) 

s
2
 = Sample variance 

SSErr = Sum of squares of error or residuals 

wj = Weight in weighted least squares fit 

w = Moisture content 

wopt = Optimum moisture content 

γd = Dry unit weight 

γdmax = Maximum dry unit weight 

γdmin = Minimum dry unit weight 

γ(h) = experimental semivariogram at distance h 
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 

This research is composed of three major topics, assessing laboratory determination of Mr values 

as design input for pavement design, introducing the detailed geostatistical method for 

characterizing and quantifying spatial variability of pavement foundation properties, and 

documenting the univariate and spatial variability of in-situ measured pavement foundation 

properties. The results should be of use to people who want to have knowledge on assessing the 

variability of pavement foundations for improving the construction of pavement foundation 

support to extend the pavement service life. 

Errors related to stress measurements were characterized by identifying the difference 

between in situ and laboratory stress pulse shape and duration, studying the effects of sampling 

rates, and P and I signal values. A comparison of randomly selected raw data of a AASHTO 

T307 test with the required theoretical haversine-shaped stress pulse and in situ stress pulses 

revealed inadequate modeling of in situ stress pulse shapes and fast stress pulse durations in 

laboratory tests. The haversine-shaped stress pulse does not model the actual slow stress 

initialization and dissipation that an in situ stress pulse experienced. A modified Gaussian model 

with 5 parameters can better model in situ stress pulses. Stress pulse duration of 0.1 s is too fast 

compared to the observed in situ stress pulse duration of 0.14 s at 304.8 mm beneath the 

pavement surface and base layer when the test vehicle was driving at 96.6 km/h. In addition, a 

0.1 s stress pulse duration might be obtained at the same position when the test vehicle is driving 

at 128 km/h. Although Mr values varied with different stress pulse durations, three laboratory 

tests are not sufficient to conclude effects of stress pulse duration on Mr values. Therefore, the 

effects of the inadequate modeling of Mr values needs to be studied further to determine if a 

revision is needed for the laboratory tests. Further, the specified 200 Hz sampling rate for 
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laboratory tests is insufficient to fully characterize the true shape of stress pulses, especially the 

applied peak stresses. After tests with different sampling rates, rates of 500 Hz or greater can 

capture applied peak stresses better than the 200 Hz rate and result in less variation in Mr values. 

However, the different Mr test appliance may perform better or worse with the same sampling 

rate. Different sampling rates during the loading and rest period might be used with capable 

software to save computer storage and time for processing data. Initial adjustments of P and I 

signal values and automatic adaptation with time within the PC sequence is good when applying 

the target load in the PC sequence but not for achieving target loads for subsequent sequences 

where different stress levels are required. Therefore, careful adjustments of P and I signal values 

in each load sequence might be suggested when Mr test equipment with a PID controller is used.  

The differences between deformation measurements of two LVDTs were studied. In some 

cases, large differences were observed perhaps because top surfaces of the test specimens were 

not perfectly flat and the unit weights of the specimens were not uniform. In some cases, large 

differences in two LVDTs measurements were not observed in the PC sequence but in other load 

sequences. The larger the difference in two LVDTs measurements, the lower the accuracy in Mr 

values. Therefore, quality control and quality assurance (QC/QA) are needed to determine the 

reliability of the Mr tests results. SNR values of loads, the AASHTO T307 required displacement 

ratio Rv in the PC sequence, a proposed resilient strain ratio Rεr of LVDT1 to LVDT2, and cv of 

the last five Mr values in each load sequence were studied for QC/QA. Most of the SNR values 

met the requirement except for the first load sequence. The first load sequence has most SNR 

values less than 10, the minimum criteria. A possible reason for this is particle rearrangement in 

the specimen. Values of Rv in the PC sequence are not representative of Rv values for all load 

sequences, so Rv values should be checked for all load sequences. The highest Rεr values were 
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obtained in the first load sequence not the PC sequence this suggests a possible particle 

rearrangement might have occurred in that load sequence. Therefore, Rεr should be studied to 

check the uniformity of the specimen response. However, two LVDTs may not be sufficient for 

checking the uniformity of the specimen response and more LVDTs are suggested. In addition, 

cv was calculated for the last five load cycles of selected Mr tests and all the values met the 

requirement. However, this only shows that variations within the last five load cycles were 

acceptable and that the average of the last five Mr values is used to represent the Mr at the given 

stress for the tested material.  

However, Mr values varied in different ways than the average of the last five Mr values, they 

could be higher than the maximum or lower than the minimum Mr values. This suggests steady 

Mr values were not obtained at the end of the 100 load cycles. According to the statistical 

analysis on all 36 Mr tests on three granular materials, variations among the average of the last 

five Mr values, the average of the maximum and adjacent four Mr values, and the average of the 

minimum and adjacent four Mr values are statistically different. In addition, crushed limestone 

specimens had higher average Mr than RAP and RPCC/RAP specimens, and material type is a 

statistically significant factor affecting Mr values. Although increasing use of recycled materials 

can help environmental sustainability and reduce costs, careful investigation of the properties of 

the recycled materials should be conducted. Moreover, regression coefficient k3 is not necessary 

for granular materials because the effects of shear stress that k3 interprets in the universal model 

can be negative or positive.  

Spatial variability analysis on dense gridded test section suggests that different anisotropic 

major directions could be expected in different test areas. The dense gridded MI I-94 TS1b 

shows the transverse direction is more uniform than the longitudinal direction, but the dense 
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gridded MI I-96 TS1 shows the longitudinal direction is more uniform than the transverse 

direction. The two dense gridded sites suggest that the correlation length is about 2 m to 3 m in 

the minor direction (less uniform) and the correlation length in the major direction is about 3 to 4 

times as the minor direction. In addition, the longitudinal direction spatial variability of EFWD-K3, 

γd, and w on CTB layer suggests a 15 m to 23 m correlation length.  

Preliminary study on anisotropy of spatial variability of pavement foundation properties is 

allowed with the dense gridded measurements, but different anisotropic behavior was identified 

in two test sections that may only represent the local sample area. More data in the longitudinal 

direction should be provided for further anisotropy analysis.  

Experimental semivariogram of layer averaged DCPI values are nearly isotropic with 

possible anisotropic behavior in horizontal directions (parallel to pavement surface) with study 

on both subbase and subgrade layers. Zonal anisotropy with major anisotropic axis along the 

longitudinal direction which means greater continuity in the longitudinal direction are presented 

in experimental semivariograms of ELWD-Z3, moisture content (w), and dry unit weight (γd) 

measured in dense gridded test locations in project MI I-96. Therefore, the univariate statistical 

analysis should be analyzed to assist in correctly describing spatial variability of pavement 

foundation properties and identifying possible trends. 

Comparison of three theoretical semivariogram models reveals that no obviously best fitted 

model of the three models (i.e., spherical, exponential, Whittle or Matern with k=1) are found to 

describe the experimental semivariogram of dense gridded measurements of pavement 

foundation properties as the spatial variation at distances smaller than the smallest sampling 

distance were not determined. A nested model with an anisotropy ratio helps in estimating the 

values at unsampled locations with consideration of the correlation of data sampled at different 
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locations. However, in most cases for this study on a small test area, the isotropic or 

omnidirectional semivariogram model can work as well as an anisotropic semivariogram model. 

Correctly calculated the experimental semivariogram is more important than fitting different 

models. For example, the MSPE from cross-validation on ELWD-Z3 in MI I-96 TS1 decreased 

from 46.28 with an angle tolerance of 45° to 33.3 with 25° angle tolerance.  

Studying the variability of ELWD-Z3, rd, and w revealed that 4 passes of compaction could 

result in a production as good as are compacted with more passes and a reduced coefficient of 

variation could be expected at larger number of passes.  

Univariate statistics of in-situ measured data shows that the highest variation could be 

expected in stiffness measurements (e.g.,, ELWD-Z3, EFWD-K3, and CBR), the reason could be that 

the stiffness is measured for the whole pavement foundation while the other can be measured at 

certain depth of pavement structure. The COV of ELWD-Z3 varies from 11% to 39% on studied 

base/subbase layer and 19% to 89% on subgrade layer that COV of 89% in subgrade stiffness 

could be questioned for testing weak area. In addition, the lowest COV will be expected as 2% to 

6% in dry unit weight of base/subbase or subgrade layer while the moisture content shows high 

variation. A test section might have a weak spot varying with γd varied with COV more than 

10%.  

5.1. Recommendations 

There are several ideas for future research related to studying variability of pavement 

foundation properties.  

 The laboratory determined Mr values are always higher than the in-situ measured 

stiffness, the correlation between laboratory tests and in-situ measurement could be 
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constructed by testing the composite specimens with variation of combination of soil 

index properties to simulate the variation of in-situ dry unit weight and moisture content. 

 Further study on spatial variability of pavement foundation properties is suggested with 

measurements at test locations with different spacing and across the pavement width. A 

smaller spacing which is less than 0.5 m is suggested for research studying for identifying 

the initial spatial correlation characteristics.  

 The spatial variability of pavement foundation properties could be different for different 

pavement structures and are recommended with a greater number of tests (>150 points) 

with smaller spacing (<0.7 m spacing in 100 m
2
 area and <2 m in large study area). 
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APPENDIX A. R PROGRAM CODE FOR SPATIAL SEMIVARIOGRAM ANALYSIS 

# Data format: Excel.csv   id-x-y-variables (no blank cells allowed) 

#             x=longitudinal direction and y= transverse direction 

#             Units of coordinates is "m", modulus is "MPa", and DCPI is 

"mm/blow" 

# analyze each variable separately (be aware of state and test bed that 

data was collected in data analysis report) 

# data is the general name for the studied data file 

data<- read.csv(file.choose(), as.is=T) 

 

# Print variable name to make sure that the name of the analyzed variable 

is right in coding. 

head(data) 

data[1,] 

 

# Plot test locations 

plot(data$x, data$y,xlab='longitudinal direction (m)',ylab='transverse 

direction (m)') 

# Specify axis options within plot()  

# plot(x, y, main="title", sub="subtitle", 

#     xlab="x-axis label", ylab="y-axis label", 

#     xlim=c(xmin, xmax), ylim=c(ymin, ymax)) 

 

 

# Univariate statistics analysis 

 

summary(data) 

library(pastecs) 

options(scipen=100) 

options(digits=4) 

stat.desc(data, basic=F) 

hist(data$ELWD) 

hist(data$rd) 

hist(data$w) 

hist(data$DCPI_subbase_w.o.1st) 

hist(data$DCPI_subgrade) 

 

 

# Spatial variance analysis 

library(sp) 

library(gstat) 

data.sp<- data 

coordinates(data.sp)<- c('x','y') 

plot(coordinates(data.sp)) 

 

 

bubble(data.sp,'ELWD', maxsize = 2.5, 

scales=list(draw=T),xlab="Longitudinal direction (m)",ylab="Transverse 

direction (m)") 

bubble(data.sp,'rd', maxsize = 2.5,scales=list(draw=T),xlab="Longitudinal 

direction (m)",ylab="Transverse direction (m)") 

bubble(data.sp,'w', maxsize = 2.5,scales=list(draw=T),xlab="Longitudinal 

direction (m)",ylab="Transverse direction (m)") 
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bubble(data.sp,'DCPI_subbase_w.o.1st', maxsize = 

2.5,scales=list(draw=T),xlab="Longitudinal direction (m)",ylab="Transverse 

direction (m)") 

bubble(data.sp,'DCPI_subgrade', maxsize = 

2.5,scales=list(draw=T),xlab="Longitudinal direction (m)",ylab="Transverse 

direction (m)") 

 

 

# define the grid number and size for kriging, can define or adjust later 

after obtain the semivariogram model 

xrange = bbox(data.sp)[1,] 

yrange = bbox(data.sp)[2,] 

data.grid <- expand.grid( 

  x=seq(xrange[1], xrange[2], length=100), 

  y=seq(yrange[1], yrange[2], length=100) ) 

plot(data.grid,main='Specified data grid',xlab='longitudinal direction 

(m)',ylab='transverse direction (m)') 

coordinates(data.grid) <- c('x','y')   # quick way to convert to sp object 

gridded(data.grid) <- T                # and flag as a grid 

plot(data.grid, xlab='longitudinal direction(m)',ylab='transverse 

direction(m)') #view the defined grid 

 

 

# variogram estimation 

# vgm(), show.vgms( par.strip.text=list(cex=0.7) ) 

# variogram, define alpha is to define the direction of the variogram, 

# tol.hor is the tolerance in xy-plane, the default value is =90 

degree/number of the alpha defined in the same variogram. 

 

#------------------------------------ 

#------------------------------------ 

# omni-directional variogram 

data.vc <- variogram(ELWD~1, data.sp, cloud=T) 

plot(data.vc, main='ELWD', xlab='Seperation Distance (m)', 

ylab='Semivariance (MPa^2)') 

# data.vc is the experimental semivariogram cloud, the default maximum 

cutoff distance is 1/3 of the maximum distance tha two test location 

seperated 

data.v <- variogram(ELWD~1, data.sp, cutoff=4) 

# calculate experimental semi-variogram, assuming constant mean 

plot(data.v,main='ELWD') 

# the output object from variogram() has three variables of interest: 

#   dist: average distance for that bin 

#   gamma: empirical semivariance for that bin 

#   np: number of points in that bin 

 

#------------------------------------ 

# fit theoretical model to experimental variogram calculated in omni-

direction 

omni.vm <- variogram(ELWD~1, data.sp, cutoff=4) 

plot(omni.vm,main='ELWD') 

data.omni.vm1 <- fit.variogram(omni.vm, vgm(6, 'Sph', 4, 0)) #fit 

spherical model 
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data.omni.vm2 <- fit.variogram(omni.vm, vgm(6, 'Exp', 2, 0)) #fit 

exponential model 

data.omni.vm3 <- fit.variogram(omni.vm, vgm(6, 'Mat', 1, 0, k=1)) #fit 

matern model with k=1 

plot(omni.vm, data.omni.vm1, main="ELWD omni-direction Sph") 

data.omni.vm1 

attr(data.omni.vm1, 'SSErr') #SSErr is sum of square errors in weighted 

least square fitting the semivariogram 

plot(omni.vm, data.omni.vm2, main="ELWD omni-direction Exp") 

data.omni.vm2 

attr(data.omni.vm2, 'SSErr') 

plot(omni.vm, data.omni.vm3, main="ELWD omni-direction Mat k=1") 

data.omni.vm3 

attr(data.omni.vm3, 'SSErr') 

 

with(omni.vm, plot(dist, gamma, xlim=c(0,4), ylim=c(0,200)))  # plot 

experimental semivariogram with all three fitted models 

lines(variogramLine(data.omni.vm1, maxdist=4), lwd=2) 

lines(variogramLine(data.omni.vm2, maxdist=4), col=2, lwd=2) 

lines(variogramLine(data.omni.vm3, maxdist=4), col=4, lwd=2) 

legend('bottomright', bty='n', lty=1, col=c(1,2,4), lwd=2, 

       legend=c('Spherical','Exponential','Matern, k=1') ) 

#----- 

# if the plot need to be plotted in the other programs, the line value can 

be extracted as following 

omni.vm.fit1= variogramLine(data.omni.vm1, 4, 40) 

omni.vm.fit2= variogramLine(data.omni.vm2, 4, 40) 

omni.vm.fit3= variogramLine(data.omni.vm3, 4, 40) 

library(xlsx) 

library(dplyr) 

omni.vmfit <- omni.vm.fit1 %>% 

  left_join(omni.vm.fit2, by = "dist", suffix = c("Sph", "Exp")) %>% 

  left_join(omni.vm.fit3, by = "dist") %>% glimpse 

write.xlsx(omni.vmfit, "omni.vm.fit.xlsx", sheetName="Sheet1", col.names = 

TRUE, row.names = TRUE, append = FALSE, showNA = TRUE) 

#----- 

# choose the suitable model as data.ovm (omni-direction vm) 

data.ovm= data.omni.vm1 

data.ovm 

 

 

#------------------------------------ 

#------------------------------------ 

# analysis with anisotropy 

# start to look at the directional variogram 

# variogram map:  

plot(variogram(ELWD~1, data.sp, map=T, cutoff=4, width=1), main='ELWD', 

xlab='dx (Longitudinal)', ylab='dy (Transverse)') 

# width is the bin size, dx=dy=width 

 

# directional variograms 

data.v4 <- variogram(ELWD~1, data.sp, 

alpha=c(0,45,90,135),cutoff=4,tol.hor=25, width=0.5) #four major 

directions 
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plot(data.v4,type='b', main='ELWD') 

write.xlsx(data.v4, "directional_expr_vm_new.xlsx", sheetName="Sheet1", 

col.names = TRUE, row.names = TRUE, append = FALSE, showNA = TRUE) 

# save calculated directional semivariogram into Excel 

 

# direction at alpha=0 along y or transverse direction 

data.vT <- variogram(ELWD~1, data.sp, cutoff=4,alpha=c(0),tol.hor=25, 

width=0.5) 

# alpha=direction in plane (x,y), in positive degrees clockwise from 

positive y (North) 

plot(data.vT) 

data.vmT1 <- fit.variogram(data.vT, vgm(100, 'Sph', 6, 0), 

fit.sills=c(FALSE,TRUE)) 

# if fixed nugget value is desired, add fit.sills=c(FALSE, TRUE) to 

fit.variogram 

data.vmT2 <- fit.variogram(data.vT, vgm(100, 'Exp', 1.3, 0)) 

data.vmT3 <- fit.variogram(data.vT, vgm(100, 'Mat', 1, 0, k=1)) 

data.vmT1 

attr(data.vmT1, 'SSErr') 

data.vmT2 

attr(data.vmT2, 'SSErr') 

data.vmT3 

attr(data.vmT3, 'SSErr') 

with(data.vT, plot(dist, gamma, xlim=c(0,4), ylim=c(0,200),main='ELWD 

along Y direction')) 

lines(variogramLine(data.vmT1, maxdist=4), col=1, lwd=2) 

lines(variogramLine(data.vmT2, maxdist=4), col=2, lwd=2) 

lines(variogramLine(data.vmT3, maxdist=4), col=4, lwd=2) 

legend('bottomright', bty='n', lty=1, col=c(1,2,4), lwd=2, 

       legend=c('Spherical','Exponential','Whittle') ) 

 

# direction at alpha=90 along x or longitudinal direction 

data.vL <- variogram(ELWD~1, data.sp, cutoff=4,alpha=c(90),tol.hor=25, 

width=0.5) 

plot(data.vL) 

#     if fixed nugget value is desired, add fit.sills=c(FALSE, TRUE) to 

fit.variogram 

data.vmL1 <- fit.variogram(data.vL, vgm(50, 'Sph', 4,0),fit.sills=c(FALSE, 

TRUE)) 

data.vmL2 <- fit.variogram(data.vL, vgm(50, 'Exp', 

1.5,0),fit.sills=c(FALSE, TRUE)) 

data.vmL3 <- fit.variogram(data.vL, vgm(50, 'Mat', 2,0, 

k=1),fit.sills=c(FALSE, TRUE)) 

data.vmL1 

attr(data.vmL1, 'SSErr') 

data.vmL2 

attr(data.vmL2, 'SSErr') 

data.vmL3 

attr(data.vmL3, 'SSErr') 

plot(data.vL, data.vmL3) 

with(data.vL, plot(dist, gamma, xlim=c(0,4), ylim=c(0,20),main='ELWD along 

X direction')) 

lines(variogramLine(data.vmL1, maxdist=4), col=1, lwd=2) 

lines(variogramLine(data.vmL2, maxdist=4), col=2, lwd=2) 



157 

lines(variogramLine(data.vmL3, maxdist=4), col=4, lwd=2) 

legend('bottomright', bty='n', lty=1, col=c(1,2,4), lwd=2, 

       legend=c('Spherical','Exponential','Whittle') ) 

 

# Identify major direction (lowest sill in zonal anisotropy or largest 

range in geometric anisotropy), 

#     this case is 90 degree (X direction) 

# model geometric anisotropy first 

v <- variogram(ELWD~1, data.sp, alpha=c(0,45,90,135),cutoff=4, tol.hor=45) 

# use the coefficients from the autofitted vargioram values for the major 

direction 

vm1<- vgm(4.152, 'Sph',2.289,0, anis=c(90,0.8)) 

# the anisotropy factor =(range at minor direction reach sill, 

smaller)/(range at major direction, larger)<1 

vm1 

plot(v, vm1, main = "geometric") 

# if only geometric anisotropy exist, then just model geometric anisotropy 

vm.final = vm1 

 

# Then, model zonal anisotropy (difference between major and minor 

directions) 

zonal= vgm(1.713,'Sph',1e9, anis=c(90,1/9.36e8)) 

# partial sill=sill in the original minor direction-(nugget and partial 

sill from geometric anis model) 

# 1e9 is the range, effectively infinity in 90 direction that means model 

zonal effect in 0 direction only 

#     anisotropy ratio 9.36e8= 1e9/1.068 (3.105 is the range from 0 

direction) 

vm2<- vgm(4.152, 'Sph',2.289,0, add.to=zonal) 

plot(v, vm2, main = "zonal") 

vm2 

vm.final=vm2 

plot(v, vm.final) 

 

# extract points' coordinates on the fitted anisotropic variogram 

vfit1= variogramLine(vm.final, 4, 40,dir=c(0,1,0)) #in y-direction (0 

degrees) 

vfit2= variogramLine(vm.final, 4, 40,dir=c(sqrt(2)/2,sqrt(2)/2,0)) #in y-

direction (45 degrees) 

vfit3= variogramLine(vm.final, 4, 40,dir=c(1,0,0)) #in x-direction (90 

degrees) 

vfit4= variogramLine(vm.final, 4, 40,dir=c(-sqrt(2)/2,sqrt(2)/2,0)) #in y-

direction (135 degrees) 

library(dplyr) 

vfit <- vfit1 %>% 

  left_join(vfit2, by = "dist", suffix = c("0", "45")) %>% 

  left_join(vfit3, by = "dist") %>% 

  left_join(vfit4, by = "dist", suffix = c("90", "135")) %>% glimpse 

write.xlsx(vfit, "fit.xlsx", sheetName="Sheet1", col.names = TRUE, 

row.names = TRUE, append = FALSE, showNA = TRUE) 

getwd() 

 

 

#------------------------------------ 
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#------------------------------------ 

# kriging 

 

# need four things:  

#     model for trend (could be just a mean) 

#     data (sp PointsDataFrame object),  

#     locations to predict at (sp Points or Pixels (for grid) object) 

#     the semivariogram model (est. from empirical SV or specified) 

 

# Keep originally setted data.grid or reset the suitable grid size and 

estimation area 

ts1b.grid <- expand.grid(x=seq(0,8.5,0.1), y=seq(0,8.5,0.1)) 

coordinates(ts1b.grid) <- c('x','y') 

gridded(ts1b.grid) <- T 

 

#--Omni-directional, without consideration in anisotropy 

data.ovm=data.omni.vm3 #the one you chose from the three fitted models 

data.ovm #double check if the correct one is chosen 

data.k.omni <- krige(ELWD ~ 1, data.sp, ts1b.grid, data.ovm) 

image(data.k.omni) #visualize the krigged plot 

plot(data.k.omni, main="semivariogram_omni_Mat", xlab="distance", 

ylab="semivaiance",axes=TRUE) #visualize the krigged plot in another way 

 

 

#--Consider anisotropy, now, use vm.final 

vm.final 

data.k.final <- krige(ELWD ~ 1, data.sp, ts1b.grid, vm.final) 

image(data.k.final) 

plot(data.k.final, main="ELWD semivariogram_Anisotropy", axes=T, 

xlim=c(0,8.5),ylim=c(0,8.5)) 

 

#------------------------------------ 

#------------------------------------ 

# cross validation 

 

#--Omni-directional,  

data.cv.omni <- krige.cv(ELWD ~ 1, data.sp, data.ovm) 

names(data.cv.omni) 

bubble(data.cv.omni, 'residual') 

mean(data.cv.omni$residual) # average prediction error 

mean(data.cv.omni$residual^2) # mean squared prediction error 

plot(data.cv.omni$var1.pred,data.cv.omni$residual) 

plot(data.cv.omni$var1.pred,data.cv.omni$observed) 

 

#--Consider anisotropy,  

data.cv.final <- krige.cv(ELWD ~ 1, data.sp, vm.final) 

names(data.cv.final) 

bubble(data.cv.final, 'residual') 

mean(data.cv.final$residual) # average prediction error 

mean(data.cv.final$residual^2) # mean squared prediction error 

plot(data.cv.final$var1.pred,data.cv.final$residual) 

 

#------------------------------------ 

#--Save kriged map values into excel file 
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library(xlsx) 

write.xlsx(data.k.omni, "yourfilenamepath_new_omni.xlsx", 

sheetName="Sheet1", col.names = TRUE, row.names = TRUE, append = FALSE, 

showNA = TRUE) 

write.xlsx(data.k.final, "yourfilenamepath_new_anis.xlsx", 

sheetName="Sheet1", col.names = TRUE, row.names = TRUE, append = FALSE, 

showNA = TRUE) 

# the file will be automatically saved into the working directory 

# find the working directory to find the file 

getwd() 

# or we can set the working directory to the target folder that we want to 

saved our files in. 

setwd("..") 
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APPENDIX B. STATISTICAL ANALYSIS PLOTS FOR CHAPTER 2 

B.1. MI I-94 TS1a 

 

Figure B.1. Test plan for MI I-94 TS1a 

 

Figure B.2. Histogram of ELWD-Z3 for MI I-94 TS1a 

 

Figure B.3. Histogram of γd for MI I-94 TS1a 
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Figure B.4. Histogram of w for MI I-94 TS1a 

 

Figure B.5. Histogram of DCPIsubbase for MI I-94 TS1a 

 

Figure B.6. Histogram of DCPIsubgrade for MI I-94 TS1a 
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Figure B.7. Omnidirectional semivariogram of ELWD-Z3 for MI I-94 TS1a 

 

Figure B.8. Omnidirectional semivariogram of ELWD-Z3 in three lanes for MI I-94 TS1a 

 

Figure B.9. Omnidirectional semivariogram of γd for MI I-94 TS1a 
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Figure B.10. Omnidirectional semivariogram of w for MI I-94 TS1a 

 

Figure B.11. Omnidirectional semivariogram of DCPIsubbase for MI I-94 TS1a 

 

Figure B.12. Omnidirectional semivariogram of DCPIsubgrade for MI I-94 TS1a 
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B.2. MI I-94 TS1b 

 

Figure B.13. Semivariogram cloud for ELWD-Z3 in full test section length in MI I-94 TS1b 

 

Figure B.14. Average semivariogram in each bin with number of data pairs for ELWD-Z3 in 

full test section length in MI I-94 TS1b 
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Figure B.15. Histogram of ELWD-Z3 for MI I-94 TS1b 

 

Figure B.16. Histogram of γd for MI I-94 TS1b 

 

Figure B.17. Histogram of w for MI I-94 TS1b 
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Figure B.18. Histogram of DCPIsubbase (removed one outlier) for MI I-94 TS1b 

 

Figure B.19. Histogram of DCPIsubgrade for MI I-94 TS1b 
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Figure B.20. Omnidirectional semivariogram of ELWD-Z3 for MI I-94 TS1b 

 

Figure B.21. Kriging contour map with spherical model of ELWD-Z3 for MI I-94 TS1b 

ELWD_omni

Seperation Distance, h (m)

0 1 2 3 4

S
e
m

iv
a
ri
o
g
ra

m
 o

f 
E

L
W

D
-z

3
, 
(

h
) 

(M
P

a
)2

0

10

20

30

40

50

60

Experimental (h)

Exponential (h)

Spherical (h)

Matern, k=1 (h)

Sample Variance, s2

Sph_omni

Longitudinal Direction (m)

0 1 2 3 4 5 6 7

T
ra

n
s
v
e
rs

e
 D

ir
e
c
ti
o
n
 (

m
)

0

1

2

3

4

5

6

7

50 

55 

60 

65 

70 

75 

E
LWD-Z3

 (MPa)



168 

 

Figure B.22. Kriging contour map with exponential model of ELWD-Z3 for MI I-94 TS1b 

 

Figure B.23. Kriging contour map with Matérn (k=1) model of ELWD-Z3 for MI I-94 TS1b 
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Figure B.24. Semivariogram map of ELWD-Z3 for MI I-94 TS1b 

 

Figure B.25. Semivariogram contour plot of ELWD-Z3 for MI I-94 TS1b 
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Figure B.26. Multiple directional semivariogram of ELWD-Z3 for MI I-94 TS1b 
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Figure B.27. Rose diagram of directional range values of ELWD-Z3 for MI I-94 TS1b 

 

Figure B.28. Directional semivariogram of ELWD-Z3 for MI I-94 TS1b 
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Figure B.29. Transverse direction semivariogram with model fitted of ELWD-Z3 for MI I-94 

TS1b 

 

Figure B.30. Longitudinal direction semivariogram with model fitted of ELWD-Z3 for MI I-

94 TS1b 
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Figure B.31. Transverse direction semivariogram with model fitted and fixed C0 =0 of 

ELWD-Z3 for MI I-94 TS1b 

 

Figure B.32. First step of fitting semivariogram with zonal anisotropy of ELWD-Z3 for MI I-

94 TS1b 
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Figure B.33. Second step of fitting semivariogram with zonal anisotropy of ELWD-Z3 for MI 

I-94 TS1b 

 

Figure B.34. Kriging contour plot with model considered zonal anisotropy of ELWD-Z3 for 

MI I-94 TS1b 
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Figure B.35. Omnidirectional semivariogram with fitted model of γd for MI I-94 TS1b 

 

Figure B.36. Kriging contour plot with spherical model of γd for MI I-94 TS1b 
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Figure B.37. Kriging contour plot with exponential model of γd for MI I-94 TS1b 

 

Figure B.38. Kriging contour plot with Matérn (k=1) model of γd for MI I-94 TS1b 
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Figure B.39. Semivariogram map of γd for MI I-94 TS1b 

 

Figure B.40. Directional semivariogram of γd for MI I-94 TS1b 
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Figure B.41. Transverse direction semivariogram of γd for MI I-94 TS1b 

 

Figure B.42. Longitudinal direction semivariogram of γd for MI I-94 TS1b 
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Figure B.43. Directional semivariogram with fitted zonal anisotropic model of γd for 

MI I-94 TS1b 

 

Figure B.44. Kriging contour plot with zonal anisotropic model of γd for MI I-94 TS1b 
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Figure B.45. Omnidirectional semivariogram with fitted model of w for MI I-94 TS1b 

 

Figure B.46. Kriging contour plot with Matérn (k=1) model of w for MI I-94 TS1b 
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Figure B.47. Semivariogram map of w for MI I-94 TS1b 

 

Figure B.48. Directional semivariogram with model fitted at θ=45° of w for MI I-94 TS1b 
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Figure B.49. Directional semivariogram with model fitted at θ=135° of w for MI I-94 TS1b 

 

Figure B.50. Directional semivariogram with fitted zonal anisotropic model of w for 

MI I-94 TS1b 
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Figure B.51. Kriging contour plot with zonal anisotropic model of w for MI I-94 TS1b 

 

Figure B.52. Omnidirectional semivariogram with fitted model of DCPIsubbase for 

MI I-94 TS1b 
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Figure B.53. Kriging contour plot with spherical model of DCPIsubbase for MI I-94 TS1b 

 

Figure B.54. Kriging contour plot with exponential model of DCPIsubbase for MI I-94 TS1b 
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Figure B.55. Kriging contour plot with Matérn (k=1) model of DCPIsubbase for MI I-94 TS1b 

 

Figure B.56. Semivariogram map of DCPIsubbase for MI I-94 TS1b 
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Figure B.57. Directional semivariogram of DCPIsubbase for MI I-94 TS1b 

 

Figure B.58. Transverse direction semivariogram with fitted model of DCPIsubbase for 

MI I-94 TS1b 

directional variogram

Seperation Distance, h (m)

0 1 2 3 4

S
e
m

iv
a
ri
o
g
ra

m
 o

f 
D

C
P

I (S
u

b
b

a
s
e

) 
(m

m
/b

lo
w

)2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

= 0°

= 45°

= 90°

= 135°

s2

 DCPI
(Subbase)

Seperation Distance, h (m)

0 1 2 3 4

S
e

m
iv

a
ri
o

g
ra

m
 o

f 
D

C
P

I (S
u
b

b
a

s
e
) 
(m

m
/b

lo
w

)2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Experimental (h)

Exponential (h)

Spherical (h)

Matern, k=1 (h)

Sample Variance, s2



187 

 

Figure B.59. Longitudinal direction semivariogram with fitted model of DCPIsubbase for 

MI I-94 TS1b 

 

Figure B.60. Directional semivariogram with fitted model of DCPIsubbase for MI I-94 TS1b 
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Figure B.61. Kriging contour plot with geometric anisotropic model of DCPIsubbase for 

MI I-94 TS1b 

 

Figure B.62. Omnidirectional semivariogram with fitted model of DCPIsubgrade for 

MI I-94 TS1b 
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Figure B.63. Kriging contour plot with spherical model of DCPIsubgrade for MI I-94 TS1b 

 

Figure B.64. Kriging contour plot with exponential model of DCPIsubgrade for MI I-94 TS1b 
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Figure B.65. Kriging contour plot with Matérn (k=1) model of DCPIsubgrade for 

MI I-94 TS1b 

 

Figure B.66. Semivariogram map of DCPIsubgrade with width =1 for MI I-94 TS1b 
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Figure B.67. Semivariogram map of DCPIsubgrade with width =0.5 for MI I-94 TS1b 

 

Figure B.68. Directional semivariogram of DCPIsubgrade for MI I-94 TS1b 
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B.3. MI I-94 TS3 

 

Figure B.69. Test plan for MI I-94 TS3 

 

Figure B.70. Omnidirectional semivariogram of ELWD-Z3 for MI I-94 TS3 
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Figure B.71. Omnidirectional semivariogram of γd for MI I-94 TS3 

 

Figure B.72. Omnidirectional semivariogram of EFWD-K3 for MI I-94 TS3 
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Figure B.73. Univariate statistics summary of ELWD-Z3 and EFWD-K3 for MI I-94 TS3 (JMP) 

 

Figure B.74. Univariate statistics summary of γd and w for MI I-94 TS3 (JMP) 
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Figure B.75. Univariate statistics summary of DCPIbase and DCPIsubgrade for MI I-94 TS3 

(JMP) 

B.4. MI I-96 TS1 

 

Figure B.76. Histogram of ELWD-Z3 for MI I-96 TS1 
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Figure B.77. Histogram of γd for MI I-96 TS1 

 

Figure B.78. Histogram of w for MI I-96 TS1 
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Figure B.79. Histogram of DCPIsubbase for MI I-96 TS1 

 

Figure B.80. Histogram of DCPIsubgrade for MI I-96 TS1 
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Figure B.81. Omnidirectional semivariogram of ELWD-Z3 for MI I-96 TS1 

 

Figure B.82. Kriging contour map with spherical model of ELWD-Z3 for MI I-96 TS1 
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Figure B.83. Kriging contour map with exponential model of ELWD-Z3 for MI I-96 TS1 

 

Figure B.84. Kriging contour map with Matérn (k=1) model of ELWD-Z3 for MI I-96 TS1 
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Figure B.85. Semivariogram map of ELWD-Z3 for MI I-96 TS1 

 

Figure B.86. Semivariogram contour plot of ELWD-Z3 for MI I-96 TS1 

ELWD

140

180

160

160

180160 160 160
160140 140 140
140120 120 120
120100 100 100
100

80 80 80

80

60
60

40
40

80

80 80 80

60
60

40
40

180

160
160 160 160

140
140 140 140

120
120 120 120

100
100 100 100

160

180 180

180

160

40

160

100
80 80

100

180180

160

60
60

60

60

40
40

40

160

160

160

180

180

160

180

140

dx (Longitudinal)

-4 -3 -2 -1 0 1 2 3 4

d
y
 (

T
ra

n
s
v
e

rs
e

)

-4

-3

-2

-1

0

1

2

3

4



201 

 

Figure B.87. Multiple directional semivariogram of ELWD-Z3 for MI I-96 TS1 
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Figure B.88. Rose diagram of directional range values of ELWD-Z3 for MI I-96 TS1 

 

Figure B.89. Directional semivariogram of ELWD-Z3 for MI I-96 TS1 
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Figure B.90. Transverse direction semivariogram with model fitted of ELWD-Z3 for MI I-96 

TS1 

 

Figure B.91. Longitudinal direction semivariogram with model fitted of ELWD-Z3 for MI I-

96 TS1 
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Figure B.92. Fitting semivariogram with zonal anisotropy of ELWD-Z3 for MI I-96 TS1 

 

Figure B.93. Kriging contour plot with model considered zonal anisotropy of ELWD-Z3 for 

MI I-96 TS1 
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Figure B.94. Omnidirectional semivariogram with fitted model of γd for MI I-96 TS1 

 

Figure B.95. Kriging contour plot with spherical model of γd for MI I-96 TS1 
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Figure B.96. Kriging contour plot with exponential model of γd for MI I-96 TS1 

 

Figure B.97. Kriging contour plot with Matérn (k=1) model of γd for MI I-96 TS1 
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Figure B.98. Semivariogram map of γd for MI I-96 TS1 

 

Figure B.99. Directional semivariogram of γd for MI I-96 TS1 
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Figure B.100. Transverse direction semivariogram of γd for MI I-96 TS1 

 

Figure B.101. Longitudinal direction semivariogram of γd for MI I-96 TS1 
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Figure B.102. Directional semivariogram with fitted zonal anisotropic model of γd for 

MI I-96 TS1 

 

Figure B.103. Kriging contour plot with zonal anisotropic model of γd for MI I-96 TS1 
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Figure B.104. Omnidirectional semivariogram with fitted model of w for MI I-96 TS1 

 

Figure B.105. Kriging contour plot with spherical model of w for MI I-96 TS1 
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Figure B.106. Kriging contour plot with exponential model of w for MI I-96 TS1 

 

Figure B.107. Kriging contour plot with Matérn (k=1) model of w for MI I-96 TS1 
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Figure B.108. Semivariogram map of w for MI I-96 TS1 

 

Figure B.109. Transverse direction semivariogram of w for MI I-96 TS1 
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Figure B.110. Longitudinal direction semivariogram of w for MI I-96 TS1 

 

Figure B.111. Directional semivariogram with fitted zonal anisotropic model of w for 

MI I-96 TS1 
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Figure B.112. Kriging contour plot with zonal anisotropic model of w for MI I-96 TS1 

 

Figure B.113. Omnidirectional semivariogram with fitted model of DCPIsubbase for 

MI I-96 TS1 
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Figure B.114. Kriging contour plot with spherical model of DCPIsubbase for MI I-96 TS1 

 

Figure B.115. Kriging contour plot with exponential model of DCPIsubbase for MI I-96 TS1 
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Figure B.116. Kriging contour plot with Matérn (k=1) model of DCPIsubbase for MI I-96 TS1 

 

Figure B.117. Semivariogram map of DCPIsubbase for MI I-96 TS1 
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Figure B.118. Directional semivariogram of DCPIsubbase for MI I-96 TS1 

 

Figure B.119. Transverse direction semivariogram with fitted model of DCPIsubbase for 

MI I-96 TS1 
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Figure B.120. Longitudinal direction semivariogram with fitted model of DCPIsubbase for 

MI I-96 TS1 

 

Figure B.121. Directional semivariogram with fitted geometric anisotropic model of 

DCPIsubbase for MI I-96 TS1 
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Figure B.122. Kriging contour plot with geometric anisotropic model of DCPIsubbase for 

MI I-96 TS1 

 

Figure B.123. Omnidirectional semivariogram with fitted model of DCPIsubgrade for 

MI I-96 TS1 
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Figure B.124. Kriging contour plot with spherical model of DCPIsubgrade for MI I-96 TS1 

 

Figure B.125. Kriging contour plot with exponential model of DCPIsubgrade for MI I-96 TS1 
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Figure B.126. Kriging contour plot with Matérn (k=1) model of DCPIsubgrade for 

MI I-96 TS1 

 

Figure B.127. Semivariogram map of DCPIsubgrade with width =1 for MI I-96 TS1 
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Figure B.128. Transverse direction semivariogram of DCPIsubgrade for MI I-96 TS1 

 

Figure B.129. Longitudinal direction semivariogram of DCPIsubgrade for MI I-96 TS1 
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Figure B.130. Directional semivariogram with fitted zonal anisotropic model of DCPIsubgrade 

for MI I-96 TS1 

 

Figure B.131. Kriging contour plot with zonal anisotropic model of DCPIsubgrade for 

MI I-96 TS1 
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B.5. MI I-96 TS2 

 

Figure B.132. Test plan for MI I-96 TS2 

 

Figure B.133. Longitudinal direction experimental semivariogram of EFWD-K3 for 

MI I-96 TS2 
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Figure B.134. Univariate statistics summary of EFWD-K3, γd, and w for MI I-96 TS2 

(JMP) 
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Figure B.135. Longitudinal direction experimental semivariogram of γd for MI I-96 TS2 

 

Figure B.136. Longitudinal direction experimental semivariogram of w for MI I-96 TS2 
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B.6. MI I-96 TS3 

 

Figure B.137. Univariate statistics summary of EFWD-K3, γd, and w for MI I-96 TS3 

(JMP) 
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Figure B.138. Univariate statistics summary of DCPIsubbase and DCPIsubgrade for 

MI I-96 TS3 (JMP) 
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APPENDIX C. STATISTICAL ANALYSIS PLOTS FOR CHAPTER 3 

C.1. FL I-10 

 

Figure C.1. Test plan for FL I-10 TS1 

 

Figure C.2. Bubble plot of ELWD-Z3 for FL I-10 TS1 

 

Figure C.3. Bubble plot of γd for FL I-10 TS1 

 

Figure C.4. Bubble plot of w for FL I-10 TS1 



230 

 

Figure C.5. Univariate statistics summary for in-situ properties for FL I-10 TS1 (JMP) 
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Figure C.6. Univariate statistics summary for in-situ properties for FL I-10 TS2 (JMP) 
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Figure C.7. Univariate statistics summary for in-situ properties for FL I-10 TS3 (JMP) 
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Figure C.8. Univariate statistics summary of in-situ properties for FL I-10 TS4 (JMP) 
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C.2. IA US-30 

 

Figure C.9. Univariate statistics summary of CBR in three layers for IA US-30 TS1 (JMP) 
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Figure C.10. Univariate statistics summary of ELWD-Z3 in longitudinal and transverse for IA 

US-30 TS2 (JMP) 
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C.3. NC Hwy-218 

 

Figure C.11. Univariate statistics summary of in-situ properties for NC Hwy-218 TS1 (JMP) 
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Figure C.12. Univariate statistics summary of in-situ properties for NC Hwy-218 TS2 (JMP) 
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Figure C.13. Univariate statistics summary of in-situ properties for NC Hwy-218 TS3a 

(JMP) 
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Figure C.14. Univariate statistics summary of in-situ properties for NC Hwy-218 TS3b 

(JMP) 

C.4. WI US-10 

 

Figure C.15. Test plan for WI US-10 TS2 
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Figure C.16. Univariate statistics summary of in-situ properties for WI US-10 TS1 (JMP) 
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Figure C.17. Univariate statistics summary of in-situ properties for WI US-10 TS2 (JMP) 
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