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NOMENCLATURE 

q = shear stress; 

p’= effective stress; 

m = mass of DEM particle;  

Fresultant = resultant force on particle; 

�̈� = acceleration of particle; 

Mresultant = resultant moment on particle; 

I = mass moment of inertia of particle; 

�̈� = angular acceleration of particle; 

b = stress ratio; 

Sr = degree of saturation; 

 =damping coefficient; 

Ri=Radius of i’th particle; 

Gi = shear modulus of i’th particle; 

νi = Poisson’s ratio of i’th particle; 

kn = normal contact stiffness; 

kt = tangential contact stiffness; 

Re = effective contact radius; 

Geff = effective shear modulus at contact; 

vn = Poisson’s ratio of n’th particle; 

ve = effective Poisson’s ratio at contact; 

δt = tangential overlap; 

μs = sliding friction coefficient; 

Fc = normal contact force; 

vrel,tan = relative tangential velocity between two particles at point of contact; 

ω1 = angular velocity of particle 1; 

ω2 = angular velocity of particle 2; 

Reff = effective radius of two particles in contact, where 
1

𝑅𝑒𝑓𝑓
=

1

𝑅1
+

1

𝑅2
; 

R1, R2 = radii of particle 1 and 2 respectively; 
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Fc = normal force acting between particles in contact;  

μR = rolling friction coefficient; 

𝑇𝐸𝑃𝑆𝐷,𝑡+𝛥𝑡 = torque contribution in next DEM calculation cycle; 

𝑇𝑟,𝑡 = torque contribution in previous DEM calculation cycle; 

kr = radial particle stiffness; 

kt = tangential particle stiffness; 

𝛥𝜃𝑟 = incremental relative rotation between particles; 

Eeff = effective Young’s modulus at contact; 

a = cohesion energy density; 

e = coefficient of restitution; 

Fnormal contact damping = force due to normal contact damping; 

𝛾𝑛 normal contact damping coefficient; 

𝛾𝑡 tangential contact damping coefficient; 

∆𝑡𝑐𝑟𝑖𝑡 Rayleigh wave propagation time; 

Rmin = minimum particle radius; 

d = particle diameter; 

ρ = particle density; 

x0,y0,z0 = parent particle coordinates; 

x1,y1,z1 = neighbor particle coordinates; 

𝑃𝑁⃗⃗⃗⃗⃗⃗  = vector between the parent and neighbor particles; 

𝐼𝐶⃗⃗⃗⃗  = vector between point I and the new particle center, C; 

As = aggregate separation; 

{a b c} = coordinates of point I; 

{u v w} = components of the unit vector 𝐼𝐶⃗⃗⃗⃗ ; 

θ = angle of rotation in radians; 

Fn_min = minimum contact force; 

c = damping coefficient; 

v = particle velocity; 

P0 = confining pressure; 

𝜁 = damping ratio; 
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Fcohesion = the interparticle force due to cohesion; 

Acont = the projected interparticle area; 

C = a cohesion coefficient; 

Deffective is the effective diameter between two interacting particles; 

𝜎𝑑 = deviatoric stress; 

𝜎1 = first principle stress; 

𝜎3 = third principle stress;   

qcone = cone index; 

Fcone = cone penetrometer shaft reaction force; 

Dcone=diameter of the ASABE standard cone (Dcone for 30 degree cone = 12.53 mm); 

ω1 = angular velocity of particle 1; 

ω2 = angular velocity of particle 2; 

N = normal force acting between particles in contact; 

µR = rolling friction coefficient; 

𝑇𝑟,𝑡 = torque contribution in previous DEM calculation cycle; 

kr = radial particle stiffness; 

𝛥𝜃𝑟 = incremental relative rotation between particles; 

Fs = force due to sliding friction; 

MR = moment due to rolling friction; 

V(t) = velocity of particle; 

ω(t) = angular velocity of particle; 

𝑑

𝑑𝑡
𝐸𝑖𝑛 = instantaneous power transferred to the system; 

𝑑

𝑑𝑡
𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐= rate of change of particle kinetic energy; 

𝑑

𝑑𝑡
𝐸𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛= rate of energy dissipation through friction; 

 
𝑑

𝑑𝑡
𝐸𝑣𝑖𝑠𝑐𝑜𝑢𝑠= rate of energy dissipation from viscous effects; 

vs = sliding velocity (tangential velocity); 

Efriction-simple = Efriction with combined sliding and rolling terms; 

μeff  = effective fiction coefficient that combines sliding and rolling friction coefficients. 

ϕp = interparticle friction angle 
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ϕ = internal angle of friction 

e0 = initial void ratio 

SF = solid fraction 

σd_cs = critical state strength 

P0 = confining pressure 

α = dilatancy 

emin = minimum void ratio 

emax = maximum void ratio 

Dr = relative density 

B = tool diameter 

ec = eccentricity from contact to centroid 

Ma = applied moment in single particle analysis 

MR = maximum rolling resistance 
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ABSTRACT 

Simulation of soil excavation is difficult. Tools which manipulate soil are difficult to 

evaluate in a virtual environment prior to prototype or manufacture. Soil behaves as a 

discontinuous material in normal excavation activities. Therefore, numerical methods 

which naturally model discontinuous media, such as the Discrete Element Method 

(DEM), can be used to perform simulations of soil excavation. However, DEM input 

parameters must be calibrated to accurately model the mechanical behavior of soil. The 

goal of this research was to develop intelligent methodologies to calibrate DEM input 

parameters to reproduce the mechanical responses of soil and other granular materials 

subject to traditional laboratory tests, such as triaxial and direct shear tests. A mechanistic 

understanding of the interaction between sliding and rolling friction was developed and 

correlated with the critical state strength of drained granular media. In addition, the 

fundamental soil mechanics concept of relative density was successfully applied to the 

DEM calibration methodology to predict peak granular strength and dilatancy. Sensitivity 

analyses of DEM input parameters were used to enhance the characterization of 

mechanical behavior of DEM specimens. A calibration algorithm was developed to 

quickly and mechanistically relate DEM input parameters to laboratory measured 

mechanical behavior of soils. The algorithm eliminates unnecessary iterations during the 

DEM parameter calibration by enforcing a sophisticated understanding of the 

mechanisms of granular shear strength. The outcomes of this research greatly simplify 

the calibration of DEM parameters of soil for use in industrial excavation problems.
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CHAPTER 1. INTRODUCTION AND BACKGROUND 

This chapter describes the industry problem in which the research is rooted as well as 

the technical hurdles that must be overcome in order to provide meaningful contributions 

to the fields of soil mechanics and machine-soil interaction. The overall goals, objectives, 

and significance of the research to excavation equipment industry will be described. The 

organization of the dissertation will also be forecasted. 

Literature will be reviewed in the numerical methods in geomechanics, theoretical 

background of Discrete Element Method (DEM), DEM simulations of laboratory tests, 

DEM input parameters calibration, and simulation of machine-soil interaction. To 

broaden the understanding of granular materials, literature on agricultural grain flow was 

also reviewed. 

Industry Problem 

The author has worked in the specialty excavation industry for 10 years, which 

includes the design, analysis, and manufacture of trenchers, plows, blades, and horizontal 

directional drilling equipment.  

Modeling soil cutting in directional drilling applications using the Finite Element 

Method (FEM) has been the traditional approach in the excavation industry. There are 

many existing studies of soil cutting simulations using FEM; however, their solution 

accuracy compared to physical testing varies significantly with respect to tool geometry, 

soil type, and tool dynamics (Abo-Elnor et al., 2003; Kushwaha and Shen, 1995; 

Mouazen and Nemenyi, 1999; Rosa and Wulfsohn, 2002; Tekeste et al., 2009). Indeed, 

the author found it difficult to reconcile the continuum assumptions of FEM with the 

discontinuous nature of granular soil in modeling the horizontal directional drilling. 

Ultimately, an alternate tool was selected, the Discrete Element Method (DEM), to 

simulate tool-soil interaction which did not have similar limiting assumptions of FEM 

which was developed based on continuum mechanics. The drawback of using DEM has 

been calibration of granular material DEM input parameters. Thus, this research is 

focused on developing robust calibration methodologies for DEM input parameters based 

on the mechanical outcomes of common laboratory tests, such as the triaxial and direct 

shear tests. 
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Impact on industry 

The impact of robust DEM input calibration to mechanical outcomes of simple 

physical tests is threefold: 

1) Navigation, or trajectory planning, of an underground directional drill string can 

be made possible just by understanding and robustly modeling the soil. 

2) Tools that manipulate granular material can be optimized on many fronts 

(performance, structure, cost). 

3) Time and resources can be conserved by simulating complex excavation tasks 

before breaking ground, which could help engineers select the right tool for the 

job. 

4) With a robust and mechanistic DEM calibration approach, it is possible to attain a 

better understanding of granular mechanics at the micro and phenomenological 

scales. 

Technical Problem 

This research addresses the technical problem that underlies the industrial need for a 

simulation software to reliably predict navigation of an underground directional drill head 

by resolving cutting, pushing, and draft forces. The problem of forecasting the navigation 

of a horizontal drill string into soil is unresolved because constitutive soil models as a 

discontinuous medium are not yet fully robust and practically useful in the engineering 

work flow. 

Others have attempted to simulate soil drilling using FEM (Xianguo and Bo, 2002; 

Jianhua and Wang, 2005) and DEM (Xie et al., 2013; Chung and Ooi, 2006); however, 

the hurdle the previous studies had encountered was a lack of robust model for the 

simulation of soil subjected to large and discontinuous shear strains. While acute 

empirical calibrations and validations of constitutive soil models have been performed, 

they were only valid over the empirically tested range, thereby reducing the robustness of 

predictions. 
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Goal of the Research 

The overall goal of this research is to create robust simulations of tool-soil and tool-

grain interaction that can help make important decisions in fast-paced development 

cycles in specialty excavation and agricultural equipment industries. There is a need for 

data-driven decision making in industry, but unresolved technical challenges limit 

engineers’ ability to generate data. As with all mechanistic modeling technology, 

simulation data can fill in the gaps in empirical knowledge and help make proper 

determination of technological direction. The overarching industrial goal of this research 

in modeling and simulation is to improve the product development cycle from design, 

analysis, and testing, to customer experience. There is immense demand on engineers to 

reduce the number of design iterations and limit the number of physical prototypes. 

Simulation technology helps engineers make the right decisions early in the design stage 

to prevent unnecessary prototype and testing iterations. Stress analysis and durability 

simulations have significantly improved product quality across automotive, aerospace, 

excavation, and agricultural industries. Similarly, soil and granular simulation will bring 

exciting improvements to soil cutting and grain manipulation systems. 

Objectives 

In this study, DEM simulation development, laboratory test simulation, DEM 

calibration, and model validation represent the four research objectives, which are 

addressed through the following tasks: 

1. DEM particle model and simulation development which comprises (a) 

development or selection of interparticle interactions (DEM contact laws); (b) soil 

DEM particle definition; and (c) automated implementation of DEM particle 

assembly generation  and boundary conditions for triaxial test calibration.  Based 

on literature relevant to soils, interparticle interactions were selected. Using 

particle generation algorithms and calibration experiments, boundary conditions 

were developed using the LIGGGHTS (2015) DEM open software platform. 

2. Development of DEM simulations of standard laboratory tests including triaxial 

and direct shear tests. The bulk mechanical stress and strain responses will be 

integrated into the DEM calibration methodologies. 
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3. DEM calibration methodology. The development of a DEM calibration 

methodology, which is a closed loop workflow and systematically able to 

generate calibrated DEM parameters to mechanical outcomes of standard 

laboratory tests.  

4. DEM validation using simple tests. The final objective for this research is to 

provide application test cases to validate the DEM calibration methodology. DEM 

models will be compared to physical experiments to assess the DEM predicted 

mechanical behaviors for simple tests of soil-tool and grain-equipment interaction 

problems. As with any modeling technique, it is important to find the limits of 

real-world accuracy along with ranges of robust predictive ability. 

Significance of the Research 

Mechanistic calibration of DEM models is currently limited because of the technical 

complexity of DEM parameter interactions. Indeed, researchers have proposed new 

interparticle interactions, but the confounding nature of existing DEM parameter 

interactions has not been resolved. For instance, even straightforward Coulombic friction 

between particles is poorly understood in the DEM literature in the presence of 

confounding rolling motion. Similarly, the effects of interparticle cohesion are overstated 

when the effects of initial configurations of DEM assemblies are not controlled for. 

Robust micromechanical modeling methods which do not isolate interaction terms are 

scarce. This research aims to show that robust DEM calibration can only be achieved 

when micromechanical models can be reconciled with phenomenological granular 

behavior. 

Industry is slow to adopt state-of-the-art modeling techniques for a variety of reasons. 

In the author’s experience, the difficulty in obtaining useful data from new models is 

great and requires significant time and resource investment in learning, developing, and 

calibrating models to serve a particular business use. A significant benefit of this research 

is that the calibration portion of the DEM learning curve will be reduced to a simple, 

closed-loop recipe. Engineers will be able to focus on developing a product rather than 

calibrating and validating material models. Another benefit of this research to industry is 

a shorter product development cycle. Engineers are required to make consequential 
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decisions early in a product development cycle – often with limited information.  Pre-

calibrated DEM models can provide engineers with important simulation data enabling 

enhanced data driven decision making early in the design stages of a product. 

What follows is an example of possible industrial use of properly calibrated DEM 

models from the author’s personal experience. During his time at Vermeer Corporation, 

he was tasked with predicting the trajectory of an underground directional drill head 

being pushed through soil. Due to the large deformation and soil shearing behavior 

observed in physical experiments, he chose DEM as an appropriate method to model the 

soil. However, after many attempts, calibration of the DEM model became the 

bottleneck. He started research studies to resolve the DEM calibration problem. Indeed, if 

a robust DEM calibration method for soils were available in 2011, the author’s 

department at Vermeer Corporation would have greatly benefitted. 

Organization of the Document 

Following this introductory section, the remainder of this chapter will review 

previous literature and background information for the study. Following the current 

chapter, this dissertation is organized into 4 additional chapters. Chapter 2 describes 

laboratory tests and virtual DEM simulation methods. Chapter 3 describes the 

micromechanical interaction between sliding and rolling friction. Chapter 4 presents the 

results and analyses for early, foundational work in DEM calibration, which includes 

statistical analysis on large dataset from virtual triaxial tests. Chapter 5 discusses 

validation studies which were used to examine where and when the calibration 

methodology can be used. The final chapter discusses conclusions from development and 

validation phases of the research and offers suggestions for future research. The list of 

works cited follows the conclusions. 

Literature Review 

This research aims to calibrate discrete element simulation parameters against 

physical triaxial, oedometer, and direct shear test behaviors with known boundary 

conditions. Therefore, literature describing discrete element modeling of standardized 

tests will be reviewed. Previous attempts at empirical and theoretical calibration of DEM 
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models will also be described in the context of granular soil behavior. The validation 

phase of this research involves physical experiments. Therefore, literature linking models 

to hopper discharge, blade mixing, and cone penetrometer testing will also be discussed. 

Numerical Methods in Geomechanics 

The finite element method (FEM) and the discrete element method (DEM) are two 

numerical methods that can be applied to geomechanics. This section discusses each 

method then compares the two and discusses whether DEM can model soil behavior. 

Finite element method 

The finite element method (FEM) has been used to solve geomechanical problems. 

FEM requires continuous constitutive laws to define stiffness behavior. Calibration of 

constitutive models has been done on a large scale by Duncan et al. (1980). Stress-strain 

relationships were well defined by hyperbolic functions. Coefficients for the hyperbolic 

functions were fitted to physical triaxial test data using a least squares algorithm. FEM 

inherently limits the utility of the hyperbolic constitutive models calibrated in Duncan et 

al. (1980). Duncan et al. (1980) suggested that when elemental stresses exceed the 

allowable stresses, the elements are considered to be failed. If a significant number of 

elements fail, then the accuracy of the system suffered. Therefore, the hyperbolic models 

from Duncan et al. (1980) were best used at small to moderate strains (i.e., less than 2% 

strain). Additional constitutive modeling schemes have been shown to fit stress strain 

curves of geomaterials. Active adaptation of constitutive laws was shown to fit 

experimental data from triaxial tests very well using genetic algorithms (Rokonuzzaman 

and Sakai, 2010).  

Although FEM is a very powerful tool, it has some limitations. It is very difficult to 

model stress softening behavior in implicit time stepping schemes. In explicit time 

stepping schemes, softening can be modeled, but computation time and mesh sensitivity 

increase significantly. Algorithms to increase the stability of larger time steps, such as 

fractional step algorithms, have been shown to effectively work around these limitations 

(Li et al., 2003). In addition, modeling large strains often required frequent remeshing 

due to loss of elemental aspect ratio and other symptoms of excessive mesh distortion 

(Vavourakis et al., 2013). Li et al. (2003) and Vavourakis et al. (2013) showed that some 
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of the limitations in FEM were practical and can be worked around. A more theoretical 

limitation has to do with the fundamental assumption that the material being modeled by 

FEM is a continuum. That is, the elemental deformation between nodes can be modeled 

by a continuous displacement function that approximates the solution of the partial 

differential equations of continuum mechanics (Logan, 2002). This assumption excludes 

discontinuous media, such as soils at large shear strains. These limitations do not prohibit 

the usage of FEM for geomechanical problems, but these limitations invite the 

framework of numerical methods with more flexible fundamental assumptions. 

Discrete element method 

The discrete element method (DEM) has been used to address some of the FEM 

limitations. DEM was adapted for granular materials by Cundall and Strack (1979) from 

molecular dynamics methods that were proposed by Alder and Wainwright (1957). The 

use of DEM as a viable numerical method for solving soil mechanics problems began 

relatively recently. Some work in the 1990s (Carrillo et al., 1996) sparked great interest 

in adapting DEM to geomechanics problems. O’Sullivan’s (2011) comprehensive review 

of the literature provided a detailed analysis of the use of DEM adapted for geomechanics 

problems since 1998. O’Sullivan (2011) showed that the general DEM literature began to 

explode after 1996. She also reported that in 2009, more than half of all geomechanics-

related DEM papers used 2D DEM. 3D DEM consisting of 10000+ particles was 

nonexistent before 2002. 

The calculation scheme of DEM is shown in Figure 1. After initial and boundary 

conditions are defined, contact forces and resultant forces are calculated on each particle. 

The equation of motion for each particle is integrated over an explicit time step and 

particle coordinates are updated. Contact forces are recalculated and the cycle repeats 

itself until the simulation is over.  
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Figure 1. Flow chart of DEM calculations. Source: Particulate Discrete Element 

Modeling (O’Sullivan, 2011) 

The equations of motion for each particle are shown in equations 1.1 and 1.2, 

 𝐹𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 = 𝑚�̈� 1.1 

 𝑀𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 = 𝐼�̈� 1.2 

where: 

Fresultant = resultant force on particle; 

m = mass of particle; 

�̈� = acceleration of particle; 

Mresultant = resultant moment on particle; 

I = mass moment of inertia of particle; and 

�̈� = angular acceleration of particle. 

DEM has been implemented in two styles: block DEM and particulate DEM. Both 

styles use a similar calculation scheme to what is shown in Figure 1. Block DEM codes 

simulate large linear elastic blocks participating in contact dynamics. The block codes are 
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used to simulate the dynamics of large physically polygonal geometries (Lanaro, 1997). 

Particulate DEM uses small geometries with elastic or elastoplastic deformation laws, 

most of which are Hookean or Hertzian closed form solutions (LIGGGHTS, 2015). Some 

DEM codes use rigid spheres with coefficients of restitution to determine resultant 

velocities from the impact of two rigid spheres (Zhu et al., 2007). The rigid sphere 

approach is best suited to loose granular flow, while soft sphere approaches model dense 

systems better (Delaney et al., 2007). The open source LIGGGHTS software uses the soft 

sphere approach (LIGGGHTS 2015).  

Zhang and Thornton (2005) demonstrated that properly calibrated DEM can produce 

virtually identical results to those produced by commercial FEM codes within the elastic 

range.  

DEM as a model for soil behavior 

The literature shows that individual soil response characteristics can be reasonably 

simulated using DEM (O’Sullivan, 2011). The initial portion of the stress-strain curve of 

a triaxial test, the psuedo-elastic modulus, has been reasonably reproduced by simulation 

(Thorton and Zhang, 2005). Very simple DEM simulations of Cassagrande's shear test 

have been used to calibrate particle interactions to reproduce physical results (Richefeu et 

al., 2005). Critical state behavior has been modeled with DEM as well, with an 

implication that void ratio had a strong non-linear association with confining stress 

(Zhang and Thorton, 2005). Dilatancy was not well simulated using current DEM 

practices (Taibi et al., 2005). Failure as predicted by ellipsoidal DEM was very similar to 

that predicted by the theoretical Lade model (Ng, 2004). Cemented soils have also been 

simulated in the literature (Xu et al., 2011). 

Studies have also ventured to model granular materials using application/field 

behavior instead of traditional lab tests. For instance, Coetzee and Els (2009) calibrated 

DEM input parameters using blade interactions with granular materials. Pile resistance in 

soil was qualitatively studied by Wang et al. (2012), and soil response due to excitation 

by a bulldozer blade has been studied as well (Tsuji et al., 2012). The interesting thing 

about these studies is that the global soil behavior of interest was qualitatively reproduced 

without a standardized method of calibrating DEM inputs.  
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Boundary conditions 

A number of studies utilizes typical periodic boundaries in unsuccessful attempts to 

model axisymmetry when simulating triaxial tests (Zhang and Thornton, 2005; Roux, 

2005; Sitharam et al., 2005). These boundary conditions were non-physical. Better 

models have been developed for quarter axisymmetric simulations (Cui and O'Sullivan, 

2005). Similarly, several papers reported 2D simulations to qualitatively assess parameter 

sensitivities and correlations (Calvetti and Nova, 2005; Kruyt and Rothenburg, 2005; Vu-

Quoc et al., 2001). Lu and Frost (2010) concluded that 3D triaxial simulations were, 

overall, better than 2D simulations when to simulating triaxial behavior. Regarding the 

modelization of the latex membrane that house the soil sample in a triaxial test, stress 

controlled boundaries have been developed (Cui et al., 2007) and have been shown to 

provide significantly different peak and post peak soil behavior than servo-controlled 

walls (Cheung and O'Sullivan, 2008). Cheung and O’Sullivan (2008) also showed that 

the local responses varied with respect to boundary condition type, specifically the 

location of shear banding and central bulging of triaxial test specimens. 

There is a divergence in the literature on the topic of servo controlled versus flexible 

membrane boundary conditions. One frequently cited paper, Utili and Nova (2008), used 

the servo-controlled membrane approach to simulate confining stress. Despite the work 

by Cheung and O’Sullivan (2008) that showed the non-physicality of rigid servo-

controlled membranes, many subsequent papers still used the servo-controlled approach 

(e.g., Gong et al., 2011; Kozicki et al., 2012; Sayeed et al., 2012; Salot et al., 2009). 

Another type of membrane boundary is that which is seen in the simulation of undrained 

triaxial tests. Undrained triaxial tests have been simulated under constant volume 

conditions (Gong et al., 2011). The membrane formulations were servo-controlled, but 

algorithms that monitor the volume of the sample enforced constant volume conditions. 

DEM particle properties and interactions 

Particle friction had a strong effect on behavior exhibited by samples subject to 

triaxial compression (Calvetti and Nova, 2005). Interestingly enough, Kruyt and 

Rothenburg (2005) demonstrated that granular assemblies offer resistance even when 

particle friction and cohesion were nonexistent and suggested that some internal 
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kinematic constraints provide granular assemblies some stiffness. Liu et al. (2005) 

showed the effects of interparticle friction in simulated shear box tests. Zhao et al. (2011) 

showed that the variations observed in Liu et al. (2005) occur in triaxial test simulations 

as well. Figure 2 showed the effects of varying sliding friction coefficient on the 

mechanical response of samples subject to triaxial compression. 

 

 

Figure 2. Triaxial test response, stress-strain response (above) and volume change 

response (below) (Zhao, Shao and Ji, 2011) 

Limits to friction angle of a specimen have been shown in simulations where particles 

were free to rotate. Preventing rotation altogether resulted in over-constrained particles, 

and lead to higher than expected internal friction angle (Calvetti and Nova, 2005). Huang 

et al. (2013) quantified the increase in internal friction angle by incrementally increasing 
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the rolling friction coefficient per particle. Figure 3 shows the effect of rolling friction 

coefficient on internal friction angle. 

 

Figure 3. Effect of rolling friction on internal friction angle. Where b=stress ratio, 

b=0 is traditional triaxial compression, b=1 is triaxial extension (Huang et al., 2013) 

There are a few particle cohesion models available. The model implemented in the 

LIGGGHTS DEM software, JKR cohesion, estimates the contact area between spherical 

particles and applies a bond proportional to a user-prescribed bond energy density 

(LIGGGHTS manual, 2015). Others prescribed cohesion on the basis of theoretical, 

Laplace style water bridging between particles (Soulie et al., 2006). Delenne et al. (2005) 

developed formulations for the breakage of cohesive bonds that account for combined 

loads. Scholtes et al. (2009) showed the macro-scale effects of Laplace style cohesion in 

triaxial test simulations. All of the formulations in the literature make the assumption that 

a DEM particle was not representative of a collection of smaller particles. This makes the 

models less than ideal for soil mechanics applications where a DEM particle is never 

used to model a single soil particle. Figure 4 shows the relationship of cohesion with peak 

strength and critical state strength, as well as the effects on volume change behavior. It is 

interesting to note that the effect of cohesion on the volume change response was small 

compared to the effect on the stress response. 
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Figure 4. Triaxial test simulations while varying interparticle cohesion Sr = degree 

of saturation of sample, as saturation increases, cohesion does as well (Scholtes et 

al., 2009) 

Developing accurate pore pressure models historically involved the coupling of DEM 

code with fluid dynamics code. Excess pore pressure causing dilatancy has been 

simulated by adjusting porosity on a per volume basis (Takahara et al., 2005).  

Some researchers have explored using aspherical particles in DEM simulations of 

soils. O'Sullivan and Bray (2001) found that ellipsoidal and cluster type particles were 

adequate for capturing the shape characteristic values of real sands. O'Sullivan and Bray 

(2001) also showed that aspherical particles offer higher stress ratios than spherical 

particles when subject to plane strain compression tests. In addition, particle angularity 

was correlated with rotation when subject to biaxial compression and that spherical 

particles rotate significantly more than aspherical particles. Rotation differences were 
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insignificant between aspherical particle shapes (Nouguier-Lehon and Frossard,. 2005). 

These studies suggest that that any aspherical particle formulation can be used without 

significant negative consequence. Lu and Frost (2010) showed that aspherical particles 

under triaxial compression can reasonably model volume change at rather high strain 

levels (14%) but not necessarily at low strains. Lu and Frost (2010) also show that up to 

50% higher coordination numbers were achieved when using aspherical particles over 

spherical particles. According to Lee et al. (2011), polyhedral particles were able to 

model the complex behavior of sand even better than traditional spherical, ellipsoidal, 

and clump logic DEM. This is very interesting indeed, but the computation cost of the 

polyhedral particles has been reported to be very high. A very thorough assessment of 

particle shape by Kozicki et al. (2012) showed the various achievable stress-strain and 

volume change responses. Figure 5 shows the effects of particle shape on mechanical 

response to triaxial compression. 

 

Figure 5. Effect of varying particle shapes on the mechanical response of samples 

subject to triaxial compression (Kozicki et al., 2012) 
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The effects of particle size and particle size distribution have also been studied in 

numerical triaxial tests. Though the study used a non-stress controlled flexible 

membrane, Andrade and Avila (2012) showed that triaxial stress-strain response as well 

the evolution of void ratio differed between three ranges of simulated particle size. It is 

important to note that real soils cannot be modeled by pure spheres of a single size 

because crystallization occured at high packing densities (O'Sullivan, 2002; O'Sullivan et 

al., 2004). A crystallized structure resulted in shear planes forming along predictable 

lattice boundaries. Polydisperse particles and angular particles prevented crystallization, 

and thereby prevented lattice boundary shear plane formation.  

Varying normal contact stiffness was found to significantly alter triaxial test response 

behavior (Zhao et al., 2011). Figure 6 shows how deviatoric stresses change as a response 

to varying particle stiffness in a virtual sample that is subjected to triaxial compression. 

 

 

Figure 6. Effect of varying particle stiffness on mechanical response of sample 

subject to triaxial compression (Zhao et al., 2011) 

Ng (2006) outlined the sensitivities of generally understudied parameters such as 

shear modulus of particles, density, damping, and simulation time step. Ng (2006) 

reported that density and time step (so long as explicit stability was satisfied) did not 

have significant effect on triaxial behavior. On the other hand, damping and particle shear 

modulus were shown to modify triaxial behavior considerably. Damping had a very 
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significant effect on 3D triaxial test simulations. Figure 7 shows increasing damping 

generally increases the magnitude of stress response of a sample, while preferentially 

affecting the volume change response at high axial strains. 

 

Figure 7. Varying damping while measuring mechanical response of triaxial test 

simulations. β=damping ratio (Ng, 2006) 

Initial conditions 

The initial solid fraction of a sample has large effects on triaxial response behavior. 

Specifically, the peak deviatoric stress and dilatancy are increased by lowering initial 

void ratio (Guo and Zhao, 2013). Asymptotic deviatoric stress at large strains are 

unaffected within the range of void ratios from 0.539 to 0.645 (Guo and Zhao, 2013). 

Figure 8 shows the dependence of mechanical response on initial solid fraction.  
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Figure 8. Stress-strain response of drained triaxial test samples. DD=very dense, 

DM=medium dense, DL = loose (Guo and Zhao, 2013) 

The result in Figure 8 was meaningful because it suggested that proper calibration of 

DEM inputs to geomechanical behavior required that initial solid fraction be controlled. 

Indeed, the geometry and loading of the particles have an effect on the void space in a 

specimen. Shamsi and Mirghasemi (2012) demonstrated that void space was associated 

with particle angularity and confining pressure but did not define minimum or maximum 

initial void ratios or porosities as functions of either one. Sayeed et al. (2012) allowed 

samples to consolidate under different confining pressures until they reached a target 

porosity. The interesting thing here is that the target porosity was controlled by 

manipulating interparticle friction during consolidation. Where Shamsi and Mirghasemi 

(2012) treated initial void ratio as a dependent variable, Sayeed et al. (2012) show that 

initial void ratio can be manipulated as an independent variable. Figure 9 shows the 

effects of varying confining pressure and constant porosity on the stress-strain response 

of simulated triaxial test samples. 
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Figure 9. Effect of confining pressure on triaxial test response behavior (Sayeed et 

al., 2012) 

Salot et al. (2009) present a comprehensive analysis of possible initial states that a 

virtual triaxial test sample can have. Physical limits of initial void ratio were quantified 

then used to calibrate a DEM model to a physical triaxial test.  Salot et al. (2009) showed 

that calibration was improved significantly by including initial void ratio as an 

independent variable. 

Localization 

DEM simulations have qualitatively reproduced common localization phenomena 

such as shear banding and particle crushing. Although outside the scope of my current 

research, it is important to touch on localization because it demonstrates a modeling 

capability that is fundamentally different from constitutive models in continuum 

mechanics. While shear banding has been modeled using continuum methods, such as 

FEM (Vardoulakis, 1989), it was highly dependent on local mesh structure. Indeed, the 

sensitivity of mesh local mesh refinement was highlighted in Vavourakis et al. (2013) 

who showed that solution accuracy was highly dependent on the method of adaptive 
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remeshing over large strains. On the other hand, because DEM simulations are calibrated 

at the particle interaction level, localization occurs during the natural course of shearing 

and compression. Bardet and Proubet (1991) showed 2D shear banding in biaxial shear 

test simulations. Oda and Kazama (1998) related shear banding to phenomenological 

dilatancy. The mechanisms of deformation in shear banding were presented by Iwashita 

and Oda (2000) using DEM with added rolling resistance. Iwashita and Oda (2000) 

reported void formation and large particle rotations along shear band boundaries. The 

results of Iwashita and Oda show that DEM was particularly capable of robust modeling 

of localization without explicit intention of capturing such phenomena. 

Cheng et al. (2003) and Bolton et al. (2008) showed mechanisms of particle crushing 

at high confining pressures in 2D confined compression. Cheng et al. further described 

phenomenological plasticity (2004) and development of critical state (2005) in the 

context of grain crushing. Cheng et al’s work shows that particle-level understanding of 

stress capacity can be mechanistically used to predict grain crushing. 

Calibration of DEM simulation data with geomechanical laboratory tests 

Utili and Nova (2008) developed particle interaction tables from empirical calibration 

of biaxial tests that negate the need for a user to calibrate DEM inputs at all. However, 

some undesirable elements of that study, such as particle-rotation inhibition, pure 

spherical particle usage, and the 2D nature of the simulations, prevent the calibration 

from being complete. Despite that, Utili and Nova (2008) assembled a weathering cliff 

analysis that shows that even under plane-strain conditions, which the literature has 

shown to decrease accuracy, soil flow can be modeled with qualitative agreement to 

physical experiments. Mechanical outcomes of triaxial tests were calibrated by Zhang et 

al. (2011), Medina-Cetina and Khoa (2009) use a rigorous probabilistic method to 

calibrate DEM inputs using sensitivity information with very small standard error, though 

only results matching the stress-strain responses to experimental data are reported. 

Belheine et al. (2009) show rigorous calibration of a DEM model with data from triaxial 

tests on sand. The calibration took place over three confining pressures and included 

volume change data. Salot et al. (2009) improved upon existing calibration by controlling 

initial state of dense particle assemblies independently of confining pressure. The open 
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loop method that Salot et al. (2009) prescribed used traditional soil mechanics concepts, 

such as relative density, to decompose a simulated mechanical soil response to reduce the 

number of variables that needed to be calibrated. Finally, machine learning methods, 

although gaining in popularity, have been applied to DEM calibration on a limited basis. 

Neural networks have been used to develop relationships between soil angle of repose 

and DEM parameters (Benvenuti, 2016), but require extensive simulation data to 

establish a viable calibration model. 

Cone Penetrometer Simulations 

DEM simulation of cone penetrometer testing is not well described in current 

literature. Instead, other similar simulations of physical testing were drawn from. Plate 

sinkage, wedge sinkage, and cone penetration testing (CPT) will also be reviewed 

because the simulation of penetration and sinkage testing involves similar mechanics.  

Asaf et al. (2007) simulated wedge sinkage and performed energy analysis that 

showed that friction energy is the dominant sources of resistance to deformation. 

Calibration was performed using two different wedge angles because non-unique 

solutions were found when minimizing error with a single wedge. Between 20 and 30 

iterations were required to minimize the objective function presented by Asaf et al. 

(2007). 

Ucgul et al. (2014) used angle of repose tests to calibrate a soil model for cone and 

disk penetration simulation. Interestingly enough, it appeared the hysteretic contact 

models exhibited better correlation than Hertz-Mindlin to physical test results. The 

authors did not show how they calibrated the plastic deformation in the hysteresis contact 

model.   

 

Table 1 is a summary of important geometric parameters described in various papers 

which simulated penetration tests. One important parameter is the ratio of the tool size to 

the average particle size (B/d50). Jiang et al. (2006) suggested that 13 particles should 

always be in contact with a tool face in order to get a steady state cone resistance. A 

future research objective is to define the minimum B/d50 as a scale-invariant measure of 

DEM solution quality. Physical cone penetrometer experiments have defined the 
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container radius at which boundary conditions do not affect the magnitude of steady state 

cone resistance, Bolton (1993) showed that cone resistance was insensitive to container 

radius larger than 40x the tool radius. 

Table 1. Summary of cone penetration simulations in literature 

Study Type 

Particle 

Density 

(kg/m3) 

Particle Size Initial State Normal Stiffness 

Vcone 

(m/s) 

B/d50 
[b] 

Alvaro and 

Ooi 2016 

30 deg 

ASABE 
2600 5mm +/-10% 

Porosity = 0.53  

pre-cons 

Hookean Hysteretic, 

100/500-2500 kN/m 
0.03  - 

Arroyo et al 

2011 
CPT - 

26.5mm  

Cu [a]
 =1.31 

0.75<Dr<0.97 Hookean, 300MN/m 0.10  2.7 

Falagush et al 

2015 
CPT 2650 1-2mm Porosity 0.37-0.42 Hookean, 500 KN/m - 18 

Jiang et al 

2014 
CPT 2600 

7.6mm 

Cu=1.3 

2D Void Ratio = 0.27 Hookean,75MN/m 1 21 

[a] Cu = coefficient of uniformity 

[b] B/d50 = ratio of tool diameter to mean particle diameter.
 

 

All of the studies in Table 1 used the Hookean model for contact stiffness even 

though some studies show that Hookean particle models cannot reproduce certain 

dynamic soil behavior (Wensrich and Stratton, 2011). Alternative penetration simulations 

were presented by Jiang et al. (2014) which showed that inclined penetration angles 

change cone resistance as a function of overburden pressure. As an interesting extension, 

Jiang et al. (2015) shows the effects of altering gravity on cone resistance. Velocity 

dependence of cone resistance was described by Tran et al. (2016) who showed that a 

non-dimensional inertial number was significantly correlated with a transition from 

quasi-static shear and compression to dense granular flow. 

Soil-Blade Interaction 

Chen at al. (2013) showed how varying DEM input parameters affected blade 

resistance in DEM simulation of soil-sweeping. In fact, soil–sweep characteristics were 

used to calibrate the DEM parameters. While the work in Chen et al. (2013) was 
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interesting, the lack of overburden pressure in the calibration limited its extension to real 

excavation applications. Tamas et al. (2013) presented an alternative approach to Chen et 

al. (2013) by calibrating the DEM input parameters using direct shear tests and using the 

soil-sweep simulation as a validation tool. Soil sweep simulations have also been used to 

optimize blade geometry with respect to tillage forces (Ucgul et al., 2015). A notable 

feature of Ucgul et al’s (2015) work was that angle of repose and cone penetrometer tests 

were used to calibrate DEM parameters while the soil sweep was used as a validation 

tool.  

Blade mixing in cylindrical chamber has also been simulated (Chandratilleke et al., 

2012) in the context of powder processing; however, the results were within-simulation 

comparisons of blade geometry. Regardless, blade mixing was interesting because it was 

possible to apply overburden pressure by filling the blade mixing chamber well beyond 

the height of the blade which blade-sweep experiments and simulations do not account 

for. Blade mixing simulations have also been used to analyze massflow rate of granular 

assemblies through periodic slices (Sarkar and Wassgren, 2012), which can be extended 

to grain processing simulations. 

Grain flow in hopper 

Lawton and Marchant (1980) performed direct shear tests on grain products and 

found that the height from which the direct shear box was filled has a significant effect on 

strength of the granular assemblies. The take away from Lawton and Marchant’s result 

was that the bulk density of a single species and moisture content of grain can change 

with respect to specimen preparation method and has an effect on mechanical strength. 

To affirm the validity of using direct shear tests to estimate grain strength, Molenda and 

Horabik (2004) showed that internal friction angle from direct shear tests correlate with 

triaxial test results for dense wheat assemblies over a large range of moisture content. 

Therefore, there is reasonable evidence to suggest that direct shear testing of seeds and 

grains is a valuable tool for DEM calibration. Molenda and Horabik shared direct shear 

test data on many seeds and grains with varying levels of moisture (Table 2). 
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Table 2. Mechanical properties of various seeds and grains over a range of moisture 

content (Source: Molenda and Horabik, 2004) 

 

Coetzee (2009) modeled corn grains in DEM using true-scale practices. The shape 

and aspect ratio of corn grains were approximated in DEM using clumps, or clusters, of 

particles. Experimental direct shear tests showed that dry corn has an internal friction 

angle of approximately 23 degrees. Coetzee also showed that under typical specimen 

preparation methods, there was no significant difference between peak and critical state 

internal friction angles.  Two dimensional direct shear simulations were used to calibrate 

the sliding coefficient of friction. Coetzee went further to define particle stiffness using 

confined compression tests, but found the hysteretic features of compression were not 

possible to reproduce using their DEM methodology. 
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CHAPTER 2. METHODS 

The work described in this section focuses on setting up a triaxial test in the DEM 

environment. Existing methods are reviewed for generating dense particle samples and 

develop a new particle generation algorithm. To control the stress state of a specimen, a 

stress-controlled membrane was developed. Results from a parameter study on the 

stability of the stress-controlled membrane are shown. The results of some small studies 

to examine the effects of viscous damping on sample stability are also presented. Next, a 

walk through is described of initial state development of a virtual triaxial test specimen 

beginning with dissipating energy at initialization to dynamically and statically 

equilibrating a sample. The discussion on initial state is completed by presenting a cap 

adjustment method by which sample becomes isotropically stressed. The calculations 

associated with post processing are shared which describe source code modifications for 

the LIGGGHTS software. Physical testing is also described for validation of DEM 

calibration in the context of grain hopper discharge, blade mixing, and cone penetrometer 

testing. 

DEM Contact Laws 

Discrete element method (DEM) is a numerical technique where particle interactions 

are modeled using equations of motion and contact laws for force and overlap 

relationships. Cundall and Strack (1979) developed DEM to simulate the behavior of 

granular materials. Equations of motion for each particle are shown in equations 2.1 and 

2.2. The resultant force on a particle, Fresultant, is calculated in equation 2.1  

 𝐹𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 = 𝑚�̈� (2.1) 

where  

m = particle mass and 

�̈� = particle acceleration. 

The resultant moment on a particle, Mresultant, is calculated by equation 2.2 

 𝑀𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 = 𝐼�̈� (2.2) 

where 

I = mass moment of particle inertia and 
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�̈� = angular particle acceleration. 

Fresultant and Mresultant account for body forces, force fields, and interparticle 

interactions. DEM codes, such as the open-source LIGGGHTS (2015), use idealized 

elastic spheres to model contacts between particles that interact with each other according 

to Hookean or Hertzian contact laws. In addition, forces that depend on contact such as 

micro-scale cohesion, restitution (damping), sliding friction, and rolling friction, can also 

act on particles. This section details the forces that arise from various forms of particle 

interaction. 

Contact stiffness 

The simplified Hertzian contact formulation (as used in Chen and Hung, 1991) is the 

relationship between contact force and normal approach between two spheres and is 

shown in equation 2.3.  

 𝐹𝑛 = 𝑘𝑛𝛿𝑛 (2.3) 

The stiffness, kn, is a function of normal displacement and elasticity parameters.  

𝑘𝑛 =
2𝐺𝑒𝑓𝑓√2𝑅𝑒

3(1−𝜈𝑒)
𝛿𝑛; 

𝑅𝑒 =
2𝑅1𝑅2

𝑅1+𝑅2
 ; 

𝐺𝑒𝑓𝑓 =
2(2−𝜈1)(1+𝜈1)

𝐸1
+

2(2−𝜈2)(1+𝜈2)

𝐸2
 ; 

𝜈𝑒 =
1

2
(𝜈1 + 𝜈2) ; 

Ri=Radius of i’th particle; 

Gi = shear modulus of i’th particle; and 

νi = Poisson’s ratio of i’th particle.  

Each DEM particle also has tangential contact stiffness (Mindlin, 1949) which creates 

a tangential contact force which is opposite the direction of the tangential overlap, δt. The 

tangential contact forces are calculated by equation 2.4.  

 𝐹𝑡 = 𝑘𝑡𝛿𝑡 2.4 

 𝑘𝑡 = 8𝐺𝑒𝑓𝑓√𝑅𝑒𝑓𝑓𝛿𝑡 2.5 
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DEM simulations often used the simplified Hertzian contact stiffness formulation 

over linear contact stiffness formulation because certain wave propagation behavior in 

dense granular material has been qualitatively correlated (Wensrich and Stratton, 2011).  

Friction 

When contact between DEM particles is established, contact-dependent interparticle 

forces, such as friction forces, can be activated. Force due to sliding friction between two 

particles exhibiting relative tangential motion is calculated by equation 2.6 

 𝐹𝑠 ≤ 𝜇𝑠𝐹𝑐 𝑠𝑖𝑔𝑛(𝑣rel,tan)𝑓𝑜𝑟 𝑣rel,tan  ≠ 0   (2.6) 

where 

μs = sliding friction coefficient, 

Fc = normal contact force, and 

vrel,tan = relative tangential velocity between two particles at point of contact. 

Per the usual convention, the orientation of the direction vector of Fsliding is opposite 

the tangential relative velocity vector. In addition to sliding friction, rolling friction is 

present as a contact-dependent force. Rolling friction is a particle’s resistance to relative 

rolling motion between particles as a function of normal contact forces (Fc) and shear 

stiffness. Two rolling friction models are built into LIGGGHTS: the Constant Directional 

Torque (CDT) model and the Elasto-Plastic Spring Dashpot (EPSD) model. The CDT 

model adds torque to a particle by equations 2.7, 2.8, and 2.9. 

 𝑇𝐶𝐷𝑇 =
µ𝑅𝐹𝑐𝜔𝑠ℎ𝑒𝑎𝑟𝑅𝑒𝑓𝑓

|𝜔𝑠ℎ𝑒𝑎𝑟|
 (2.7) 

 𝜔𝑟 = 𝜔1 − 𝜔2 (2.8) 

 ωshear = 𝑝𝑟𝑜𝑗𝑠ℎ𝑒𝑎𝑟 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑝𝑙𝑎𝑛𝑒(𝜔𝑟) (2.9)  

where 

ω1 = angular velocity of particle 1, 

ω2 = angular velocity of particle 2, 

Reff = effective radius of two particles in contact, where 
1

𝑅𝑒𝑓𝑓
=

1

𝑅1
+

1

𝑅2
, 

R1, R2 = radii of particle 1 and 2 respectively, 

Fc = normal force acting between particles in contact, and  

μR = rolling friction coefficient. 
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The rotational resistance in the CDT model can exceed the moment required to fully 

mobilize a particle and therefore, it can create an oscillatory equilibrium state. On the 

other hand, rotational resistance in the EPSD model was bounded by full mobilization 

torque. The torque contribution from the EPSD model is described in 

equations 2.10-2.14. Note that since equation 2.9 limits resistance torque, the rolling 

resistance behavior was perfectly plastic above full mobilization torque. 

 𝑇𝐸𝑃𝑆𝐷,𝑡+𝛥𝑡 = 𝑇𝑟,𝑡 + 𝛥𝑇𝑟 (2.10) 

 |𝑇𝑟,𝑡+𝛥𝑡| ≤  𝑇𝑟−𝑚𝑎𝑥 (2.11) 

 𝑇𝑟−𝑚𝑎𝑥 = µ𝑟𝑅𝑒𝑓𝑓𝐹𝑐 (2.12) 

 𝛥𝑇𝑟 = −𝑘𝑟𝛥𝜃𝑟 (2.13) 

 𝑘𝑟 = 𝑘𝑡𝑅𝑒𝑓𝑓
2  (2.14) 

where 

𝑇𝐸𝑃𝑆𝐷,𝑡+𝛥𝑡 = torque contribution in next DEM calculation cycle, 

𝑇𝑟,𝑡 = torque contribution in previous DEM calculation cycle, 

kr = radial particle stiffness, 

kt = tangential particle stiffness, and 

𝛥𝜃𝑟 = incremental relative rotation between particles. 

The CDT and EPSD rolling friction models have been compared by Ai et al. (2011) 

who reported that the EPSD model is superior to the CDT model in terms of achieving 

low-kinetic energy steady state conditions for pseudo-static DEM analyses. 

Cohesion 

Cohesion or adhesion models introduce an attractive force between particles that is 

often proportional to particle size, contact overlap, contact area, and contact pressure. 

Cohesion models are frequently constructed using the mathematical underpinning of 

liquid bridge formation between two particles. Many liquid bridging models have been 

described in literature (Mason and Clark, 1965; Hotta et al., 1974; Rabinovich, 2005; 

Washino et al., 2013) and have been implemented in DEM code (Washino et al., 2013; 

Nguyen et al., 2014). The influence of various liquid bridging adhesion models have been 

quantified and compared in dense assemblies (Souli et al., 2006), flow conditions 

(Tsunazawa et al., 2016) and fluidized beds (Gu et al., 2016). 
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The JKR model was ubiquitous in commercial and open source DEM software, 

though it has numerous limitations. The attractive force in the JKR model was calculated 

by equation 2.15. 

 𝐹𝐽𝐾𝑅 =
4𝐸𝑒𝑓𝑓

3𝑅𝑒𝑓𝑓
𝑎3 − √16𝜋𝐸𝑒𝑓𝑓𝑎3 2.15 

where 
1

𝐸𝑒𝑓𝑓
=

1−𝜈1
2

𝐸1
+

1−𝜈2
2

𝐸2
; 

 
1

𝑅𝑒𝑓𝑓
=

1

𝑅1
+

1

𝑅2
; 

νn = poisons ratio of the n’th particle; 

a = cohesion energy density. 

FJKR only acts to bring particles closer together; it can never be a repulsive force. The 

JKR cohesion model is an effective modeling technique for elastic particles with large 

surface energy. In Chapter 4, the JKR model was shown to be phenomenologically poor 

when performing mesoscale modeling of soils. 

The projected-area cohesion model was developed to resolve the shortcomings of the 

JKR model. The Mohr-Coulomb failure intercept, on which traditional soil mechanics 

characterizes cohesion, is a continuum concept. The projected area cohesion model 

attempted to pass the continuum assumption down to the particle level by considering a 

cubic envelope which enclosed each spherical DEM particle. Thus, for simple cubic 

lattice packing in monodisperse assemblies with average coordination number of 6, void 

space outside the project cubes was reduced to zero. The area of the faces of each cube 

was proportional to the attractive force by the cohesion coefficient. The continuum 

assumption was supported in cases where coordination number = 6. However, in the case 

of very tightly packed DEM assemblies with low stiffness, the total attractive forces will 

likely exhibit significant increases as void ratio decreases.  

Contact damping 

Energy can be lost when DEM particles collide with one another. Contact damping is 

a modeling technique which estimated viscous losses during collisions. The ratio of 

kinetic energy before vs. after a collision is called the coefficient of restitution, e. The 

normal and tangential components of contact losses are calculated separately. The normal 

component of contact damping force is calculated by equations 2.16-2.21. 
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 𝐹normal contact damping = −𝛾𝑛𝑣n-ij (2.16) 

 𝛾𝑛 = −2√
5

6
 𝛽√𝑆𝑛𝑚𝑒𝑓𝑓 ≥ 0 (2.17) 

 𝑆𝑛 = 2 𝐸𝑒𝑓𝑓√𝑅𝑒𝑓𝑓𝛿𝑛 (2.18) 

 𝛽 =
ln (𝑒)

√ln2(𝑒)+𝜋2
 (2.19) 

 
1

𝐸𝑒𝑓𝑓
=

1−𝜈1
2

𝐸1
+

1−𝜈2
2

𝐸2
 (2.20) 

 
1

𝑚𝑒𝑓𝑓
=

1

𝑚1
+

1

𝑚2
 (2.21) 

The tangential contact damping forces are calculated by equations 2.22-2.24. 

 𝐹tangential contact damping = −𝛾𝑡𝑣t-ij (2.22) 

 𝛾𝑡 = −2√
5

6
 𝛽√𝑆𝑡𝑚𝑒𝑓𝑓 ≥ 0 (2.23) 

 𝑆𝑡 = 2 𝐺𝑒𝑓𝑓√𝑅𝑒𝑓𝑓𝛿𝑛 (2.24) 

Contact damping forces act in the direction opposite to the relative velocity between 

particles in contact. 

Timestep 

DEM codes, such as LIGGGHTS, use explicit central difference algorithms to update 

the positions and velocities of particles over small timesteps.  The explicit algorithms are 

stable only if error is bounded and system energy is conserved.  The stability of a 

simulation is highly dependent on the magnitude of the timestep.  Theoretical minimum 

timesteps have been developed for a variety of particle contact formulation types.  These 

minimum timesteps are called critical timesteps.  For elastic spheres using the Hertzian 

contact formulation, the critical timestep was established by Sheng et al. (2004), see 

equation 2.25. 

 ∆𝑡𝑐𝑟𝑖𝑡 =
𝜋𝑅𝑚𝑖𝑛

𝛼𝑒
√𝜌/𝐺 (2.25) 

Where Rmin = minimum particle radius 

ρ = particle density 

G = shear modulus 

and αe is given by the roots of equation 2.26 
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 (2 − 𝛼𝑒
2)4 = 16(1 − 𝛼𝑒) [1 −

1−2𝜈

2(1−𝜈)
 𝛼𝑒

2]  (2.26) 

An approximation of αe is given in equation 2.27. 

 𝛼𝑒 = 0.1631𝜈 + 0.876605 (2.27) 

By equation 2.25, particle size, density, and stiffness all affect the magnitude of the 

critical timestep. 

Another limitation on the maximum timestep is the time necessary to detect particle’s 

neighbors during DEM simulation.  It is desired that a particle only directly affect its 

immediate neighbors over a single timestep.  It is also desired that excessive interparticle 

overlap be avoided in any single timestep.  The LIGGGHTS 3.0 manual (2015) indicated 

that each particle had a zone of neighbor detection around it.  This zone was called the 

skin.  By default, the skin was 1 mm thick.  Therefore, it was desired that particle motion 

be limited by the thickness of the skin.  As an example, in a triaxial test simulation, 

particle displacements were greatest at large strains (i.e. during constant volume 

expansion after critical state has been reached).  If the simulated lid were compressing the 

triaxial test sample at 0.010 m/s, it could be assumed that some particles were moving at 

a rate of just under 0.015 m/s (due to constant volume expansion).  This resulted in a 

maximum timestep of 0.067 seconds.  Indeed, this was a very large timestep when 

compared to the Hertz elastc sphere timestep establish by Sheng et al. (2004). 

Thornton and Antony (2000) presented a strategy for increasing the timestep of the 

DEM simulation under quasi-static conditions.  The strategy was to increase particle 

density until the minimum contact timestep and the Rayleigh wave timestep were the 

same.  Thornton and Antony (2000) reported that density scaled up by a factor of 10
12

 

had negligible effects on the results of a quasi-static direct shear test.  Particle density 

was shown to have small effects on triaxial test results using ellipsoidal particles as well 

(Ng, 2006), though density was only scaled up by a factor of 100.  It should be noted that 

neither Ng (2006) nor Thornton and Antony (2000) had active body forces in their 

simulations.  It was necessary that gravity was turned off in order to keep the effects of 

density negligible.  O’Sullivan (2011) indicated that the use of density-scaling should be 

approached with caution and that its validity was questionable.  For this reason, new 

density scaling test were performed to find out how much to increase density by before 
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results become significantly affected.  The details of a density scaling study are found in 

Chapter 5. 

Development of DEM Simulations 

The technical details of DEM simulations used to model geomechanical behavior 

have been documented in the literature. Studies have investigated boundary conditions, 

initial conditions, particle interactions, sample composition, and environmental 

conditions.  

Boundary conditions 

A number of studies utilized typical periodic boundaries in unsuccessful attempts to 

model axisymmetry when simulating triaxial tests (Powrie et al., 2005; Roux, 2005; 

Sitharam et al., 2005). These boundary conditions were non-physical. Better models were 

developed for quarter axisymmetric simulations (Cui and O'Sullivan, 2005). Similarly, 

several papers reported 2D simulations to qualitatively assess parameter sensitivities and 

correlations (Calvetti and Nova, 2005; Kruyt and Rothenburg, 2005; Vu-Quoc et al., 

2001). Lu and Frost (2010) concluded that 3D triaxial simulations were, overall, better 

than 2D simulations when to simulating triaxial behavior. Regarding the modelization of 

the latex membrane that house the soil sample in a triaxial test, stress controlled 

boundaries were developed (Cui et al., 2007) and have been shown to provide 

significantly different peak and post peak soil behavior than servo-controlled walls 

(Cheung and O'Sullivan, 2008). Cheung and O’Sullivan (2008) also showed that the local 

responses vary with respect to boundary condition type, specifically the location of shear 

banding and central bulging of triaxial test specimens. 

There was a divergence in the literature on the topic of servo controlled versus 

flexible membrane boundary conditions. One frequently cited paper, Utili and Nova 

(2008), used the servo-controlled membrane approach to simulate confining stress. 

Despite the work by Cheung and O’Sullivan (2008) that showed the non-physicality of 

rigid servo-controlled membranes, many subsequent papers still used the servo-controlled 

approach (e.g., Gong et al., 2011; Kozicki et al., 2012; Sayeed et al., 2014; Salot et al., 

2009). Another type of membrane boundary is that which is seen in the simulation of 

undrained triaxial tests. Undrained triaxial tests have been simulated under constant 
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volume conditions (Gong et al., 2012). The membrane formulations are servo-controlled, 

but algorithms that monitor the volume of the sample enforced constant volume 

conditions. 

Sample generation 

Sullivan (2011b) reported that two methods for generating samples, dynamic 

pluviation and algorithmically generated samples, were capable of modeling response 

behaviors of granular geomaterials. Pluviation methods had the advantage of requiring 

very little supervision. Samples were pluviated into a container under the acceleration of 

gravity until they reached a dense state. There were two drawbacks of this method. First, 

the final size of the pluviated sample was unknown. Therefore, without a priori 

knowledge of the sample density and size, several attempts to pluviate a sample was 

required. The second drawback was that pluviation required several DEM calculation 

cycles, which added significant computation time to the analysis. O’Sullivan (2011b) 

mentioned that preparing a sample by dynamic methods took at least as long as it took to 

simulate a triaxial test. Because Bernhardt and O’Sullivan (2012) and Ng (2004) 

reasoned that pluviation is the simpler option, pluviation of particles to build samples was 

attempted. The pluviation attempts were successful, but they took too long to produce 

dense, high quality samples. Pluviation was relegated to serve as a backup plan and work 

on algorithmic generation of samples began. 

Algorithmic, or constructional, sample generation has been seen in the literature in 

many forms (Jiang et al., 2003; Scheibel, 1983; Ferellec, 2008). In 3D, however, it was 

limited to just a few methods. Ferrez (2001) showed a particle insertion method where 

dense virtual samples were achieved by randomly attempting to insert non-contacting 

particles, the largest ones first, followed by successively smaller particles, until a sample 

was dense enough for geomechanical simulation. Another method was the triangulation 

approach used by Cui and O’Sullivan (2003) where a volume is converted to a tetrahedral 

mesh. The vertices and edges of each tetrahedral element served as boundary conditions 

for the insertion of spherical particles. These two methods were good, but both insert 

non-contacting particles that had to be scaled up by radial expansion to achieve proper 

initial stress states. The 2D advancing front method developed by Feng et al. (2003) was 
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an algorithm where a seed particle was cloned along random vectors from the seed 

particle’s centroid. Critics of the advancing front method showed that excessive void 

space was usually present at the boundaries of a sample (Bagi, 2005). Bagi (2005) 

proposed a method that populated the boundaries with non-random particles and works 

inward which generally solved the problem in 2D.  

Feng et al. (2003) and Bagi (2005) have only implemented their methods in 2D. 

Preliminary work in sample generation included developing a theoretical 3D extension of 

work presented by Feng et al. (2003), extending the Feng et al. method further to include 

aspherical particles, and implementing it in efficient code. The following sections present 

my preliminary work that contributed to sample generation. 

There are three distinct steps in the constructional algorithm. The first is establishing 

the desired initial parameters such as particle properties, prescribed particle overlap 

(based on mean stress), boundary conditions, desired coordination numbers, and sample 

angularity. The second step, construction, involves inserting particles with the goal of 

satisfying the desired coordination numbers and aspherical requirements. The geometrical 

scheme behind the construction step is defined in the section on constructional theory. 

The third step is a quality control step. Coordination numbers of particles are tracked 

during particle insertion. If a coordination number falls far short of the desired 

coordination number, a flag is thrown and the offending particle and neighbors are 

deleted and re-generated.  

It was observed that samples could be generated at certain coordination numbers, but 

when samples are equilibrated, the applied mean stress will determine the true 

coordination number at the beginning of a triaxial test simulation. Sayeed et al. (2012) 

documented the effect of mean stress on average coordination number and invited the 

reader to notice how initial coordination numbers increase with increasing confining 

pressures. As a result, very high coordination numbers were not a goal during sample 

generation. The important point was to bring a sample to equilibrium under the correct 

confining pressure and with clearly defined coordination numbers.  
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Constructional algorithm 

A constructional algorithm was developed to address the limitations of Bagi (2005) and 

Feng et al (2003). The constructional algorithm operates by taking advantage of closed 

form analytical geometry. Trigonometric relations, vector operations, and rotation 

matrices constitute the bulk of the manipulations. A step-by-step particle generation 

attempt is outlined in this section. The steps for particle generation follow. 

1. Detect neighbor particles around the seed, or parent, particle. A random neighboring 

particle is selected to serve as the neighbor. The separation distance, d, between the 

parent and the neighbor is calculated in equation 2.28. 

 𝑑 =  (𝑥0 − 𝑥1)
2 + (𝑦0 − 𝑦1)

2 + (𝑧0 − 𝑧1)
2 2.28 

where x0,y0,z0 = parent particle coordinates; 

x1,y1,z1 = neighbor particle coordinates; and 

d = distance between particles. 

2. Construct the vector between the parent and neighbor particles. Dividing by the 

magnitude of the vector gives us the unit vector between particles. This unit vector is 

called PN. 

   𝑃𝑁⃗⃗⃗⃗⃗⃗ =
(𝑥0−𝑥1)

𝑑
𝑖̂ +

(𝑦0−𝑦1)

𝑑
�̂� +

(𝑧0−𝑧1)

𝑑
�̂� 2.29 

3. Calculate the distance of new particle from parent in the direction of PN based on 

aspherical parameter (or lack thereof). Call this point I. If the new particle is not part 

of an aspherical aggregate, the magnitude of travel on the PN vector from P is shown 

in equation 2.30. 

 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑜𝑛𝑃𝑁 = 𝑑/2 2.30 

4. Calculate the magnitude of the vector between point I and the new particle center, C. 

Even though it does not exist yet, the orientation of the new particle does not need to 

be known a priori.  

 ‖𝐼𝐶⃗⃗⃗⃗ ‖ = √𝐷𝑒
2 − 𝑑2 2.31  

If the new particle is part of an aspherical aggregate, the aggregate separation, As, of the 

particle will need to be calculated. As in the spherical case, the magnitude of the vector 

between I and C needs to be known (equation 2.32). 
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 ‖IC⃗⃗  ⃗‖ = Assin (α)  2.32  

 

where 

  𝛼 = arcsin (𝐷𝑒 sin (
𝛾

𝑑
)) 2.33 

 

and 

 𝛾 = arccos (
𝑑2−𝐴𝑠

2−𝐷𝑒
2

−2𝐴𝑠𝐷𝑒
) 2.34 

 

The magnitude of travel on the PN vector can be calculated for aspherical 

aggregates using equation 2.35. 

 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑜𝑛𝑃𝑁 = √𝐴𝑠
2 − ‖𝐼𝐶⃗⃗⃗⃗ ‖

2
  2.35 

5. Point I, which lies on the vector between P and N, now has the coordinates shown in 

equation 2.36. 

 𝐼 = 𝑋0 + (𝑃𝑈⃗⃗⃗⃗  ⃗)(𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑜𝑛𝑃𝑁) 2.36 

where X0 is an array which contains the coordinates of point P. 

6. Use point I to generate a vector orthogonal to PN at a random orientation. Since 

orthogonality is established when the dot product of two vector equals zero, it is 

possible to algebraically deduce the orthogonal vector orientation. The unit vector PN 

is known, and a new unit vector, IC, needs to be orthogonal to PN. If two components 

of IC are randomly generated, the third can be deduced from equations 2.37 and 2.38, 

 𝑃𝑁⃗⃗⃗⃗⃗⃗ ∙ 𝐼𝐶⃗⃗⃗⃗ = 0 2.37 

 𝐼𝐶⃗⃗⃗⃗ = (𝑟𝑎𝑛𝑑𝑜𝑚 ∗ 𝑖̂) + (𝑟𝑎𝑛𝑑𝑜𝑚 ∗ 𝑗̂) + 𝑧𝑗̂ 2.38 

where ‘random’ is a unique random number between -1 and 1, and z is unknown. 

Each instance of ‘random’ is a different random number. The third component, z, 

in equation 3.38 can be algebraically solved.  

7. 𝐼𝐶⃗⃗⃗⃗  is not yet a unit vector. Each component of 𝐼𝐶⃗⃗⃗⃗  needs to be divided by the 

magnitude of 𝐼𝐶⃗⃗⃗⃗ , which was calculated in equation 2.31 or 2.32 depending on 

aspherocity.  
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8. This new unit vector is used with the magnitude of 𝐼𝐶⃗⃗⃗⃗  to establish coordinates for 

point C.  

 𝐶 = 𝐼 + 𝐼𝐶⃗⃗⃗⃗ ∗ ‖𝐼𝐶⃗⃗⃗⃗ ‖ 2.39 

When point C is generated, a sphere the size of a new particle is projected.  

 This sphere is checked for interference against neighbor particles. If there is no 

interference, it is necessary to revisit equation 2.39 to generate a new random vector. This 

counter-intuitive step exists because positive interference ensures that an initial 

coordination number of 3 is achieved. The next step clocks the orientation of the random 

vector until interference is no more. To reiterate, the calculation is working backwards 

from a condition of interference to marginal contact of neighboring particles. The particle 

travel steps of the clocking procedure are equal to half of the allowable overlap between 

to particles. This way, a successfully generated particle will always be in favorable 

contact with 3 other particles, the parent, the neighbor, and another near field random 

neighbor. It has been found that the random vectors that project spheres into non-

interfering spaces work to generate particles most of the time (5 out of 6 times), but when 

there is very little void space left around a parent, (i.e., only space enough for one particle 

to squeeze in) the random generation of vectors nearly always discovers interference, 

thereby failing to create an optimally dense packing.  

9. Perform the clocking operation by dotting the random vector 𝐼𝐶⃗⃗⃗⃗  against the rotation 

vector, R, which is shown in equation 2.40. 

𝑅 = [

(𝑎(𝑣2 + 𝑤2) − 𝑢(𝑏𝑣 + 𝑐𝑤 − 𝑢𝑥 − 𝑣𝑦 − 𝑤𝑧))(1 − cos(𝜃) + 𝑥𝑐𝑜𝑠(𝜃) + (−𝑐𝑣 + 𝑏𝑤 − 𝑤𝑦 + 𝑣𝑧) sin(𝜃))

(𝑏(𝑢2 + 𝑤2) − 𝑣(𝑎𝑢 + 𝑐𝑤 − 𝑢𝑥 − 𝑣𝑦 − 𝑤𝑧))(1 − cos(𝜃) + 𝑦𝑐𝑜𝑠(𝜃) + (𝑐𝑢 − 𝑎𝑤 + 𝑤𝑦 − 𝑢𝑧) sin(𝜃))

(𝑐(𝑢2 + 𝑣2) − 𝑤(𝑎𝑢 + 𝑏𝑣 − 𝑢𝑥 − 𝑣𝑦 − 𝑤𝑧))(1 − cos(𝜃) + 𝑧𝑐𝑜𝑠(𝜃) + (−𝑏𝑢 + 𝑎𝑣 − 𝑣𝑥 + 𝑢𝑦) sin(𝜃))

] 2.40 

where {a b c} = coordinates of point I. 

{u v w} = components of the unit vector 𝐼𝐶⃗⃗⃗⃗ . 

θ = angle of rotation in radians. 

Iterating step nine until the interference between the sphere C and its neighbors is 

below the allowable particle overlap creates three contacting neighbors, each with a 

coordination number of two.  
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Successive loops through the entire algorithm will create new particles with at least 

two contacts. The speed and quality of the algorithm is highly dependent on the 

magnitude of allowable particle overlap. Recall from step 9, above, that the rotation 

matrix is applied to the vector 𝐼𝐶⃗⃗⃗⃗  in increments which are equal to half the allowable 

particle overlap. As the allowable particle overlap increases, achievable coordination 

numbers also increase. In addition, the number of rotation operations is reduced, thereby 

increasing the speed of the algorithm. Excessive particle overlap can result in a fast 

algorithm that produces unrealistic coordination numbers (7-8+) while very low particle 

overlap can result in a slow algorithm that produces very low coordination numbers (~4). 

The Hertzian solution to the normal approach of two particles in contact can serve as a 

basis for determining allowable particle overlap. 

Particle overlap 

A sample of particles subject to confining pressure will exhibit some appreciable 

local deformation at their contact interfaces. It is important to capture the magnitude of 

this deformation so that neighbor particles may be initialized with slight overlaps. 

Intentional overlaps give algorithms a lot of freedom to achieve desired coordination 

numbers. In addition, after particle generation is complete and the confined sample is 

brought to equilibrium using DEM calculation cycles, these cycles can be kept to a 

minimum if initial overlap is correctly predicted. Individual particle overlaps are difficult 

to prescribe before a sample is generated because, since each particle ends up with its 

own coordination number and since particles cannot all lie on high stiffness contact 

chains, confining stresses may act significantly on some particles while leaving others 

unaffected (or less affected). While individual magnitudes of overlap on particles are 

difficult to predict, it is possible to calculate an average particle overlap. An average 

particle overlap allows us to generate the proper number of particles in a container 

without the need for shrinking the container or expanding the radii of the particles to 

make up for the inevitable particle overlap that occurs during the application of confining 

stresses. When bringing the sample to equilibrium is the only bit of sample preparation 

that a DEM code is required to do, this reduces simulation time.  
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A uniform average effect of confining pressure on overlap was calculated. Using the 

simplified Hertzian contact formulation (as used in Chen and Hung, 1991), the 

relationship between contact force and normal approach between two spheres is shown in 

equations 2.41.  

 𝐹𝑛 = 𝑘𝑛𝛿𝑛 2.41 

Where the stiffness, kn, is a function of normal displacement and elasticity parameters. 

𝑘𝑛 =
2𝐺𝑒√2𝑅𝑒

3(1−𝜈𝑒)
𝛿𝑛; 

𝑅𝑒 =
2𝑅𝑎𝑅𝑏

𝑅𝑎+𝑅𝑏
 ; 

𝐺𝑒 =
1

2
(𝐺𝑎 + 𝐺𝑏) ; 

𝜈𝑒 =
1

2
(𝜈𝑎 + 𝜈𝑏) ; 

Ri=Radius of i’th particle; 

Gi = shear modulus of i’th particle; and 

νi = Poisson’s ratio of i’th particle.  

Indeed, the simplified non-linear Hertzian model was used because the DEM code of 

choice, LIGGGHTS, also used it. The contact force, Fn, was known in order to effectively 

use equation 2.41. This process involved the following assumptions.  

• Confining stresses created a homogeneous isotropic stress field inside the sample. 

Of course, this was not true, but this assumption did not interfere with the goal of 

populating a container with the correct number particles.  

• The magnitude of force acting between particles was known. 

This was where particle generation became difficult. From experience in simulating 

confining pressures acting on cylindrical samples, strong and weak force chains have 

been seen developing without any hint of predictability. Therefore, the magnitude of the 

contact force per particle varied wildly. Researchers (Cundall, 1987; Masson and 

Martinez, 2001; Cui and Sullivan, 2006; Kuhn, 1999; Zhang et al., 2008; Tordesillas and 

Muthuswamy, 2009) reported that weak and strong force chains develop in random, 

dense packings. Stronger force chains contained particles which exhibited greater inter-

particle overlap than those belonging to weaker force chains. Predicting these force 

chains ahead of simulation time was difficult. Therefore, predicting overlap was mostly 
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futile. This did not derail sample generation, it just compromised the elegance of the 

process. One thing that was known was that the minimum contact force per particle 

occured on the outer cylindrical layer of a triaxial test sample. The minimum contact 

force was known simply from the definition of stress and the magnitude of confining 

stress (equation 2.42). 

 𝐹𝑛_𝑚𝑖𝑛 = 𝑃0𝑑
2 2.42 

where d = particle diameter 

As it stands, the minimum contact force did us little good in predicting an appropriate 

particle overlap for generating a sample. Overlap was even considered because it was 

necessary to get the correct number of monodisperse particles (and aspherical aggregates) 

into a sample so that sample equilibration did not need to be iterated to find a reasonable 

sample that met geometric and density requirements. Increasing the overlap parameter 

was seen to increase the speed of the particle generation algorithm as well because 

coordination number minimums were satisfied more quickly and the void search 

algorithms had to work less to find vacancies for potential new neighbors. Therefore, 

some brute-force tactics were undertaken to prescribe an appropriate overlap. Several 

parameter studies were run to determine the necessary overlap to match ASTM’s 

geometric standards for triaxial test samples. Overlap was specified, samples were 

generated, then samples were equilibrated, and the resulting radii of the equilibrated 

samples were compared to the ideal sample sizes specified in ASTM standards.  

Coding strategies 

There are a few mentions in the literature about how complex and challenging a 3D 

extension of the advancing front method (Feng et al., 2003) was to implement (Benhardt 

et al., 2012; O'Sullivan, 2011a). It is true that the complexity was seemingly 

overwhelming, but an effective coding strategy helped to logically organize large 

amounts of data without interfering with the flow of the algorithm. The algorithm was 

written in object oriented Python. Object orientation was a very powerful programming 

philosophy that immensely helps programmers organize and enrich data. Object 

orientation reduced complexity by allowing a programmer to create attributes for existing 
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data without creating additional data structures to hold the attributes. This reduced the 

complexity of the code considerably. 

The algorithm employed two classes, a particle class and a sample class. The particle 

class instantiated an object which was a physical particle that had no offending 

interferences with other particles and had at least three contacting neighbors. A master 

list of particles that is created in a main subroutine consisted of a list of particle class 

objects.  

The sample class kept track of the physical location of each particle object. The entire 

sample was divided into neighborhoods based on geometrical bounds. Particles in a 

particular neighborhood constituted a neighborhood list. The sample class object 

maintained these lists. Neighborhood information was also stored within particle class 

objects as well. However, the neighborhood stored by the particle objects was a perceived 

neighborhood, which means that if a particle were to lie on or near the boundary between 

two neighborhoods, the particle perceived itself as part of both neighborhoods.  

The neighborhood scheme may seem to be excessive organization, but for 3D 

samples, it was the only way that samples were generated in reasonable time periods. The 

most computationally expensive part of generating particles was checking particles for 

interference. If there was no intelligent method for picking likely neighbors to check 

interference against, then an algorithm must have checked interference against all 

particles in the sample. In 2D, this posed very few problems. However, in 3D, when more 

than 3,000 particles were in the coarsest triaxial test sample and more than 50,000 in the 

finest sample, checking against this many particles for each generation attempt simply 

took too long. Without the neighborhood scheme, a triaxial test sample of 18,000 

particles took over 20 hours to generate on a 2 GHz Opteron processor. On the other 

hand, when a list of likely neighbors was only 20 particles long, interference checking 

was very quick. Increasing the speed of interference checking allowed engineers to 

initiate extra generation attempts that had low chances of producing denser particle 

arrangements; a failed generation attempt was no longer excessively costly. The 

neighborhood scheme reduced the time to produce an 18,000 particle sample from 20 

hours to less than one hour on a 2 GHz Opteron processor.  
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The general flow of the algorithm was as follows: 

1. Seed particle and first neighbor was generated. Information was added to 

neighborhood lists. 

2. First particle in list was identified, probabilistic determination of aspherocity. 

3. Attempted to generate as many non-interfering neighbors which contact 3+ particles 

4. Added a new particle to appropriate neighborhood lists. 

5. Checked if new particles were near a boundary, if yes, flagged them for later 

treatment. 

6. Identified next particle in list and return to step 3. 

Close scrutiny of these steps revealed that the particle list grew with every new 

particle added and was self-limiting because when no more void volume was available to 

support new neighbors, the particle list stopped growing and the algorithm exhausted 

itself. 

The algorithm developed in the section on constructional theory was implemented 

such that complex volumes were populated with particles. By meshing volumes with 

tetrahedral elements that had edge lengths equal to particle diameter, complex geometry 

were represented by a point cloud of nodes. Taking concepts from Shewchuk (1996) and 

Devillers (2002), an algorithm was developed to determine whether or not a generated 

particle was inside a point cloud. Therefore, complex boundaries were approximated with 

precision that varied with particle size.  

Stress controlled membrane development 

Boundary conditions to properly model a stress controlled flexible membrane were 

coded into a LIGGGHTS script. The specific type of boundary selected was a pressure 

boundary rather than a servo-controlled displacement based boundary. The reasons for 

this were numerous, but the most important reason was that internal particle 

displacements in servo-controlled boundaries was seen to be very different than in 

pressure controlled boundaries (Cheung and O’Sullivan, 2008). In particular, particle 

rotations, and thus internal shear forces manifested differently. The pressure boundary 

was implemented in the LIGGGHTS input script itself. LIGGGHTS had a built-in servo-
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controlled membrane, but not a pure pressure membrane, so the membrane had to be 

algorithmically formulated and coded before the project could move forward. 

The pressure membrane consisted of a loop within the input script. The loop was 

outlined as follows: 

1. Detected the longitudinal length of the cylindrical sample. 

2. Divided the sample in to ten disks of equal thickness along the longitudinal length of 

the sample. 

3. For each disk: 

A. Detected the radius at which the outer most particle lie (Router) 

B. Detected all particles that lie outside of a ring of radius Router -

 particle diameter. 

C. Found the average radius at which the particles (from 3b) lie  

D. Calculated a projected area based on the average radius of the particles 

(from 3b) and the thickness of the disk (from 2). 

E. Calculated the total force radial force to be applied to the particles from 3b 

based on prescribed confining pressure and the area calculated from 3d. 

F. Calculated the force per particle to be applied to the particles from 3b 

based on the number of particles detected in 3b. 

The membrane loop was useful within the input script of LIGGGHTS because it 

allowed additional calculations that were useful in post processing, such as on-the-fly 

volume, stress, and strain calculations. 

Frequency of confinement pressure updates 

It was necessary to update confining pressures periodically because particles subject 

to confining pressure had the freedom to move deeper into the sample past the outer 

cylindrical boundary layer. It was desired that the pressure update interval be kept at a 

minimum to save computation time.  

A small study was run to check the effects of membrane update intervals. The results 

determined what reasonable confining pressure update intervals were. Table 3 shows the 

design of the study, as well as the results. This study used 3 mm frictionless particles and 
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stability was assessed at the initial confinement stages of equilibration. The sample was 

subject to a confining pressure of 200 kPa. 

 

Table 3. Confining pressure update interval study 

 
 

The results from Table 3 indicated that the largest stable update interval is 2x10
-3

 s. It 

was possible that this interval could have been larger if the resolution of the study was 

finer, but 2x10
-3

 s was adequate to model confinement without dragging the simulation 

down with excessive computation time. 

Damping studies 

There were three considerations for selecting damping coefficients (and damping 

ratios) in a triaxial test simulation. The triaxial test must have been stable, the effects of 

damping on the mechanical response must have been negligible, and the mechanical 

response must have been smooth over the entire range of axial compression. These three 

criterion formed the limits of the useable range of damping coefficients.  

The lower limit of damping was a result of the condition of stability. The critical 

value of damping coefficient varied with particle size, particle friction, and other particle 

properties which dissipate energy, however, only particle size was really significant. For 

3 mm diameter frictionless particles, the critical minimum value for damping coefficient 

was found to be 0.12 N-s/m. Similarly, for 2 mm diameter frictionless particles, the 

critical minimum value for stability was found to be 0.08 N-s/m.  

The criterion of negligibility was less straightforward. Since the damping coefficient 

had a linear relationship with velocity in its contribution to total damping forces, the 

velocity of sample compression was taken into consideration. The damping ratio, defined 

timestep [s] # of steps Update Interval Stable?

2.00E-08 1.00E+04 2.00E-04 Stable

2.00E-08 2.00E+04 4.00E-04 Stable

2.00E-08 5.00E+04 1.00E-03 Stable

2.00E-08 1.00E+05 2.00E-03 Stable

2.00E-08 2.00E+05 4.00E-03 Unstable

2.00E-08 5.00E+05 1.00E-02 Unstable
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in equation 2.43, considered velocity dependent damping forces in relation to total forces 

due to confinement.  

 𝜁 =  
𝑐𝑣

𝑃0𝑑2 2.43 

Where c = damping coefficient [N-s/m]; 

v = particle velocity [m/s]; 

P0 = confining pressure [Pa]; and 

d = particle diameter. 

Equation 3.44 describes the criterion of negligibility for triaxial test simulations. 

 𝜁 < 0.01 2.44 

   The condition described in equation 19 was a conservative criterion of negligibility. 

It was possible that a larger damping ratio could lead to negligible damping effects, but 

the preliminary parameter study to define acceptable damping had a coarse resolution. If 

a higher damping ratio was needed for some reason, additional parameter studies would 

have to be performed to verify that damping effects were negligible.  

The need for additional damping was dictated by the desired smoothness of 

mechanical response. While the strain-strain response of the triaxial test sample was 

usually smooth, the volume change response was subject to sudden fluctuations if 

damping was inadequate. These large fluctuations usually occurred after strain exceeded 

2% or 3% and correlated to large reorganizations of particles in the sample. The particle 

reorganization was visually observable and was usually associated with significant 

particle rotations.  

A small study was performed to assess the effects of damping coefficient and 

damping ratio on the mechanical response of a sample subject to triaxial compression. 

The purpose of this study was to establish an appropriate damping ratio that would cause 

negligible changes to the stress strain-response of a sample, yet maintain smooth volume 

change curves at large strains. Maintaining smooth volume change response was a 

problem, even if the triaxial compression test was numerically stable. Figure 10 shows 

the volumetric strain response for a stable sample with inappropriate damping. 
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Figure 10: Non-smooth volumetric strain response of a sample subject to triaxial 

compression 

In Figure 10, the volumetric strain curve experiences a jump at around 12% strain. 

This was not a behavior that was seen in physical triaxial tests, therefore, work was 

needed to eliminate such anomalies.  

Three triaxial tests were performed. Each of the triaxial tests began with identical 

initial states. The particles were 3 mm in diameter. 30% of the particles were aspherical 

aggregates with an aspect ratio of 1.5. Interparticle sliding friction was set at 0.3; rolling 

friction was set at 0.5. Cohesion was set at 50 Pa. Damping coefficients and damping 

ratios were varied over the ranges described in Table 4. 

Table 4: Variation of damping over three triaxial test simulations 
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The mechanical responses of the triaxial tests are presented in Figure 11 and Figure 

12. The stress-strain response is shown in Figure 11 and the volumetric strain response is 

shown in Figure 12.  

 

Figure 11: Stress-strain response of three triaxial tests 

 

 

Figure 12: Volumetric strain response of three triaxial tests 
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From Figure 11, the stress response of the high damping condition (damping 

coefficient = 3.6 N-s/m) was significantly higher than the lower damping conditions. This 

was in agreement with the literature (Ng, 2006). The stress responses of the two low 

damping conditions were nearly the same.  

The volume change results in Figure 12 showed interesting results. All three 

volumetric strain curves were in reasonably good agreement with each other. These 

results were different than the results obtained in Ng (2006). The disparity in results was 

likely due to differences in boundary formulations (Ng, 2006) used rigid boundaries that 

moved as deviator strain is applied). It was evident that the condition with damping set at 

0.36 N-m/s produced smooth strain curves. The lower damping condition (0.18 N-s/m) 

produced a curve with a jump at strain=4%. The high damping condition produced a 

curve which is smooth until ~13% strain. A small dip occurred at 13%, which was then 

recovered by small jump at ~18%. 

Varying damping coefficient significantly affected the stress response of the triaxial 

test samples, but not the volumetric response. The most interesting result in this study 

was that varying the damping coefficient from 0.18 N-m/s to 0.36 N-s/m did not 

significantly affect the stress response. This was significant because the 0.36 N-s/m 

condition produced a smooth volume change curve while the 0.18 N-s/m condition did 

not. This meant that increasing the damping coefficient from 0.18 N-s/m to 0.36 N-s/m 

increased the smoothness of the volume strain curve without significantly affecting the 

global mechanical response of the sample. 

From the preliminary studies, damping ratio significantly affected the stress-strain 

response of a specimen, while absolute damping coefficient had a significant effect on 

stability and smoothness of volume change. 

Initial state and equilibration 

The initial state of a triaxial test sample was just as important in virtual environments 

as it was in physical environments. Just as in physical tests, samples were carefully 

prepared and then subjected to confining pressure for significant amounts of time in order 

to achieve equilibrium. Virtual tests underwent similar equilibration periods. 
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The steps involved in setting up a virtual triaxial test follow; significant steps in the 

process (marked with a *) are discussed in more detail.  

1. Defined the radius and height of the cylinder of the triaxial test specimen. 

2. Generated particles inside container volume. 

a. Several simulation variables were set during the generation process. 

i. Particle size 

b. Particle density 

c. Particle angularity parameters 

d. Percent of sample that is aspherical 

e. Aspect ratio of aspherical particles 

f. Particle overlap 

i. This should be set so that enough particles can be generated in the 

container volume. 

ii. Dependent on particle Young's modulus. 

3. Began dissipative equilibration. Using container boundaries as simulation 

boundary conditions, allowed the sample to equilibrate for a short period of time 

(0.32 physical seconds).* 

a. Damping coefficient during this time was very high (250 N-s/m) 

b. Anchored the specimen at the end of the dissipative equilibration step.* 

4. Began dynamic equilibration. Remove circumferential boundary and apply 

confining pressure and vibratory excitation. Run DEM calculations for a short 

time to increase coordination number and reduce sample volume.* 

a. Damping was still very high (250 N-s/m). 

b. Particle coefficient of friction was very low (0.01). 

5. Gradually reduced damping until damping coefficient satisfied criteria of 

negligibility. 

a. Negligibility criteria: Fdamping / Fcontact = 10
-2

. 

b. Ran DEM calculations until total vibratory excitation time equaled 0.2 

seconds of physical time. 
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6. Began static equilibration. Turned off vibratory excitation. Reduced damping to 

optimum value.*  

a. Confining pressure was still active. 

b. Ran DEM calculations for an additional 0.2 physical seconds. 

7. Adjusted cap height to zero out the deviator stress.* 

a. Established acceptable limits, 𝜎𝑑 = 0.05𝑃0. 

b. Cap adjustment did not incur more than 0.1% axial strain. 

c. Sample did not incur a single cycle of strain hysteresis. 

d. This was only performed if necessary (majority of samples have no need 

for this). 

8. Checked sample average coordination number and volume.  

a. If inadequate, discarded sample and start over. 

9. Adjusted particle properties to reflect desired triaxial test values. 

a. Adjusted parameters: 

i. Sliding friction 

ii. Rolling friction 

iii. Viscous damping 

iv. Restitution 

v. Cohesion 

10. Initiated triaxial compression by displacing the upper cap. 

Dissipative equilibration 

All of the energy poured into constructing proper initial specimens would have been 

for naught if sample equilibration was not standardized. There was surprisingly little 

literature that addresses equilibration. When initializing particles with overlap, there was 

high potential energy in the initial system. Care was taken to gradually dissipate the high 

potential energy while maintaining the shape and volume of the specimen. A method to 

dissipate potential energy that was computationally inexpensive was developed. 

Because the sample was most volatile at the beginning of equilibration, the first step 

was to prevent large volume change while dissipating potential energy. The outer layer of 

the sample was detected and was fixed in space while DEM cycles ensue. Significant 
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damping was applied during this phase to prevent particle inertia from excessively 

altering the contact state of the particles. The fixed particles formed a shell around the 

remaining particles so that the global geometry of the sample did not change. The shell 

can be seen in Figure 13. The blue particles were frozen and the red ones were free to 

reorient themselves to minimize potential energy. 

 

Figure 13: Triaxial test sample, blue particles are fixed, red particles are free  

Alternatively, a rigid container was inserted around the sample. Both approaches 

worked equally well under most conditions. However, if particle overlap was very high 

and the force per particle generated at the initialization of the sample exceeded that which 

is required to compress a particle greater than a distance of [1 x particle radius], then 

particles escaped the sample using the rigid container method. The rigid container 

method was more computationally efficient, so it was employed as long as Young's 

modulus was high (greater than 10
8
 Pa) and confining pressure is moderate (1.1 MPa or 

less). 

Regardless of the method, kinetic energy increased rapidly at the beginning of this 

process. As particles found new minima, kinetic energy gradually tapered down until the 

system comes to rest. The next step of equilibration was to remove the constraints from 

the outer layer of particles. At this point, considerable energy was removed from the 

system, but significant damping was still required to maintain the geometry and volume 
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of the sample. As the constraints were removed from the outer particles, they were 

replaced by confining pressures. The confining pressures were applied as a step input (no 

ramping). This produced a transient response to the confining pressure. The high 

damping served to quell any particle oscillations and inertial effects that the step input of 

confining pressure produced.  

Anchor the Specimen 

From earlier discussions, the instability of the sample was established as a continuous 

threat to the successful DEM simulation of a triaxial test. A boundary condition was 

proposed that could potentially anchor the triaxial test sample while still allowing free 

deformation and shear band formation. From the literature, it was seen that boundary 

conditions alter the triaxial test response significantly. For instance, membrane 

formulations (servo-controlled vs. pressure boundaries) have been shown to influence the 

locality of shear band development (Cheung and O'Sullivan, 2008). For this reason, the 

selection of an anchoring boundary condition was insightful such that sample 

deformation behavior was not impeded or distorted. It was proposed that the top and 

bottom caps had very high friction which would prevent the sample from exhibiting 

radial movement. The sample did not need to be anchored, but it was possible to use 

smaller damping coefficients if the anchor was present. Smaller damping was desired 

because larger cap velocities could be used while maintaining a constant damping ratio, 

and thereby decreasing the simulation time. 

Commonly, other 3D triaxial test simulations in DEM used axi-symmetrical or 

similar boundary conditions which help stabilize models. In other cases, some studies 

simulated significant friction on the top and bottom boundaries of the simulation to 

enhance stability. Indeed, these methods enhanced stability, but the symmetric boundary 

conditions had unique setbacks. The axi-symmetric boundary conditions required non-

physical assumptions of soil movement in a triaxial test such as limited radial shear 

banding. In addition, the axi-symmetric boundaries guided material flow. For this reason, 

axisymmetry was not used.  The frictional caps were much more reasonable.  
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Dynamic equilibration 

The triaxial test sample preparation process involved three regimes of equilibration, 

dissipative, dynamic, and static regimes. The dynamic regime had the sole purpose of 

increasing the average coordination number of the sample.  

The dynamic regime of equilibration involved vibrating a seed particle in a confined 

sample while altering viscous damping to achieve acceptable coordination numbers. The 

damping was initially set high at 250 N-s/m (same as in the dissipative regime). 

Subsequent DEM calculations were ran to begin raising the coordination number while 

further dissipating energy. When the sample found a minimum volume at a particular 

damping level, particle damping was lowered. At low damping, confining pressure 

slowly squeezed the sample into a slightly more slender cylinder. The total number of 

particles in the sample determined the limits of the squeezing. Eventually, after several 

DEM cycles, the sample found a new minimum. Keep in mind, at this point, the damping 

was not yet at a desired simulation value. It was lower than its initial value (250 N-s/m), 

but higher than its eventual simulation value (~0.5 N-m/s). When the new minimum 

potential was achieved, the sample compression began. Very soon after the compression 

of the sample began and the transient response of the sample to the step velocity change 

of the compression cap was attenuated, the damping was lowered to the desired 

simulation value. Bringing the sample to equilibrium not only requires the sample was 

brought to a minimum potential energy state, but also to minimize kinetic energy in the 

presence of constant cap velocity. Choosing an arbitrary kinetic energy to end 

equilibration on was not ideal. It was observed that kinetic energy was very low, then 

spiked during sudden shifts in contact arrangement between particles. It was better to 

monitor the volume of the sample during equilibration. As the sample volume 

approached an asymptote, average coordination number did as well. Thus, when volume 

change, dV/dt, approached zero, a maximum coordination number was achieved. The 

maximum coordination numbers varied based on confining pressure, damping 

coefficient, Young's modulus, etc, and they did not exactly coincide with the coordination 

numbers produced by the particle generation algorithm (due to the assumptions that the 

overlap calculation had to make).  
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Initiating sample compression with particle damping at higher than simulation values 

is worth discussing here. The literature indicated that damping had a significant effect on 

triaxial response behavior of a sample (Ng, 2006), particularly on the peak force and 

large strains portions of the stress-strain curve. However, it was seen from Ng's (2006) 

results that at very small strains, the effect of varying damping was negligible. From 

preliminary studies, it was found that the sample was very unstable at the instant of the 

velocity stepped onto the cap. It was necessary that damping be temporarily held at a 

slightly higher value until the transient inertial effects of stepping the cap velocity were 

attenuated. If the desired simulation damping was moderate (damping/contact ratio = 

.001), then the necessity of holding higher damping during equilibriation was 

questionable. However, at near zero damping, the sample was unstable. 

An example of sample equilibration is shown in Figure 14. The sample was subject to 

confining pressures of 200 kPa and a viscous damping coefficient of 0.18 (which 

corresponded to a damping ratio of 0.001).  

 

Figure 14: Quasi-static Equilibration 

From Figure 14, adequately large coordination number and therefore dense samples 

were formed on small time scales (less than 1 seconds). However, 1 second of physical 

time took a very long time to simulate in an explicit DEM calculation.  
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The main drawback to the method described above was that it took a very long time 

to simulate equilibration. After the initially dense packing relaxed, it spent a long time re-

densifying. Additional methods were proposed to bring the sample to an equilibrated 

dense packing (coordination number > 6) more quickly.  

A method was proposed to use kinetic energy imparted into the sample by vibrations 

to accelerate the reorganization of particles into denser states. The proposed method 

involved vibration of a single particle that lies on or near the longitudinal axis of the 

triaxial test sample. The particle was preferably located at sample mid-height, at the 

centroid of the sample. The location of the vibrating particle is shown in Figure 15. 

 

Figure 15: The magenta circle approximates the location of the excited particle  

Vibrating a single particle imparted kinetic energy into the sample that could 

potentially hasten particle rearrangement. Indeed, elastic and geometric particle 

properties determined the efficacy of vibrational input frequencies. Some parameter 

studies were in order to determine which frequencies excited particles such that they 

achieved higher coordination numbers.  

The first parameter study looked at mid-range frequency excitation. Kinetic energy 

was not held constant for these tests. Instead, vibrational amplitude was held constant at 
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10% of particle diameter in each of the three translational degrees of freedom. Each 

degree of freedom was excited in-phase. The particle and simulation properties are shown 

below. 

 Particle diameter = 3mm 

 Young's modulus = 29x10
9
 Pa 

 Viscous damping coefficient = 0.4 N-s/m 

 Cohesion = 50 Pa 

 Rolling friction coefficient = 0.5 

 Sliding friction coefficient = 0.05 

 Coefficient of restitution = 0.01 

 Confining pressure = 200 kPa 

Frequencies between 20 Hz and 70 Hz were examined. The first run of simulations of 

the samples used 5 Hz increments between samples (test 1: 20 Hz, test 2: 25 Hz, test 3: 

30 Hz, etc). A second run of simulations were ran to refine areas that were found to be 

interesting with an increment in frequency of 0.25 Hz. The results are shown in Figure 

16. Note that an update interval step was 100 000 time steps, with each time step being 

2x10
-8

 seconds; therefore each update interval step was 0.002 seconds of real time. That 

means 100 steps was 0.2 seconds of real time.  

 

Figure 16: Coordination number as a function of vibrational frequency 
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It was found that at mid-range frequencies, the optimal excitation frequency was 32.5 

Hz. An additional sample was simulated to compare against the quasi-static method 

presented in Figure 14. This sample was excited at 35 Hz with an amplitude of 0.1D, or 

0.3mm. The average coordination number as a function of time is shown in Figure 17. 

 

 

 

Figure 17: Coordination number evolution in a vibrating sample (freq =35 Hz, 

amplitude = 0.1D). The sample is subject to 200 kPa of confining pressure and 

viscous damping of 0.18 N-s/m. The particles in the sample have a Young's modulus 

of 29 GPa and a coefficient of friction = 0.05 

From Figure 17, coordination number in the vibrating condition rose rapidly when 

compared to the quasi-static case in Figure 14. The time savings of vibrating the sample 

(at 35 Hz) to dense equilibrium was nearly double.  

Low frequencies were checked, though not as thoroughly as the mid-range 

frequencies. Low frequencies were checked with variable amplitudes and directions of 

excitation. A small study was designed. The study design is shown in Table 5. 
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Table 5: Low frequency equilibration, table of excitations 

 
Note: D = particle diameter in DEM simulation in Table 5. 

The particle and simulation properties are as follows. 

• Young's modulus = 29 GPa 

• Friction = 0.05 

• Viscous damping coefficient = 0.18 N-s/m 

• Cohesion = 50 Pa 

• Rolling friction coefficient = 0.5 

• Sliding friction coefficient = 0.05 

• Coefficient of restitution = 0.01 

• Confining pressure = 200 kPa 

 

The excitation was introduced into the sample the same way as before, by exciting a 

single particle near the centroid of the sample. The results of this study were intriguing in 

that coordination number would vary considerably throughout the course of a single 

excitation cycle. Figure 18 shows the results of the first 200 update intervals. 

 

 

Figure 18: Low frequency equilibration, coordination number as a function of time  
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From Figure 18, the increase in coordination number as a function of time was rapid 

until a coordination number of 6.25 was achieved. After that point, all of the samples 

loosened a little bit before they reached a final coordination number. Only the 10 Hz test 

with excitation in X, Y, and Z surpassed a coordination number of 6.5. The speed at 

which high coordination numbers were achieved was, indeed, noteworthy. A dense 

sample was achieved in less than 150 update intervals (0.3 seconds). 

High frequencies were also checked. Another small study was designed to query the 

response of the sample to high frequency vibrations. The study varies frequency and 

amplitude as shown in Table 6. 

Table 6: Frequency and amplitude variation for high frequency excitation study 

 
Note: In Table 6, ‘D’ is synonymous with particle diameter. 

 

The excitation was introduced into the sample the same way as before, by exciting a 

single particle near the centroid of the sample. The particle and simulation properties 

were as follows:  

• Young's modulus = 29 GPa 

• Diameter = 0.003 m = 3 mm 

• Viscous damping coefficient = 0.18 N-s/m 

• Cohesion = 50 Pa 

• Rolling friction coefficient = 0.5 

• Sliding friction coefficient = 0.01 

• Coefficient of restitution = 0.01 

• Confining pressure = 200 kPa 

 

Selected sample coordination numbers from this study are presented in Figure 19. 
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Figure 19: High frequency equilibration, coordination numbers with respect to time 

From Figure 19, the sample was brought to adequate coordination numbers rather 

quickly for the high amplitude 800 Hz test, and the 1000 Hz and 2000 Hz tests as well. 

The remaining tests showed slow increases in average coordination number by 

comparison.  

Now that a broad range of excitation frequencies were tested for increasing 

coordination number during equilibration, a quick comparison across frequency regimes 

was in order. Two tests from the low frequency regime were chosen, as was one test from 

the middle frequency range, and one test from the high frequency range. One quasi-static 

equilibration run was also included. The particle and simulation environment properties 

were identical across all tests except for the excitation parameters. The results of the 

cross-regime study are shown in Figure 20. Only the first 100 update intervals are shown 

(0.2 sec). 
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Figure 20: Cross regime study, coordination number vs. time 

The static test exhibited the slowest progress toward a dense equilibrated sample. The 

dynamically excited samples showed very similar behavior to each other until update 

interval 80, at which point the high frequency excitation sample carried higher 

coordination numbers than the rest of the dynamic tests. The fastest equilibration 

occurred when the sample was subjected to an X,Y,Z excitation at 1000 Hz and an 

amplitude of 0.01 x particle diameter.  

It is worthwhile to compare the contact uniformity of statically and dynamically 

equilibrated samples, which was possible by comparing the standard deviation of the 

average coordination number at the end of equilibration (Oda et al., 1982). This was 

analogous to Kuhn's (2003) parameter, valance, which described the probability of a 

particle to have a particular coordination number. A smaller standard deviation generally 

indicated more uniform contact force networks. Lower standard deviation from average 

coordination number moved us closer to an ideal sample. Table 7 compared means and 

standard deviations of coordination number in samples prepared from static and dynamic 

equilibration methods. 
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Table 7: Comparing average coordination number and standard deviation between 

statically and dynamically equilibrated samples. 

 
 

The dynamically equilibrated sample had a slightly higher standard deviation (5.7% 

higher). At the same time, the coordination number achieved by the dynamically 

equilibrated sample was also significantly higher (10% higher). By the standards of the 

majority of published literature, the dynamically equilibrated sample was of higher 

quality because of the higher coordination number, but the magnitude of detriment to the 

sample quality by raising the standard deviation was unknown. 

Indeed, the variation of sample response with respect to Young's modulus needed 

consideration. A second study measuring the effects of reducing Young's modulus by an 

order of magnitude was performed. The study used the same particle and environmental 

parameters as the previous frequency response study (whose results are shown in Figure 

19). The best test runs from each excitation regime were chosen. These tests were re-ran 

with identical simulation parameters with the exception a reduced Young's modulus. 

Table 8 shows the study design. 

Table 8: Study design and results 
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Figure 21 shows these results in graphical format. 

 

 

Figure 21: Equilibrated sample coordination number amongst particles of varying 

stiffness compared across four excitation regimes 

As in Figure 21, coordination number generally increased when particle Young's 

modulus was reduced. This was an important find because it indicated coordination 

number was not as pertinent in samples with particles of lower stiffness. The upper limit 

of particle stiffness (Young’s modulus = 290 GPa) still needed to be tested to verify that 

adequate coordination numbers were achieved in reasonable spans of equilibration time. 

In conclusion, the high frequency seed excitation resulted in reliably high 

coordination numbers in reasonably short simulation times during the dynamic 

equilibration regime of the virtual triaxial test sample preparation. 
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Static equilibration 

Of the three equilibration regimes, the static regime’s purpose was to reduce the 

volume of the virtual triaxial test sample until it reached a true minimum. Sample volume 

was addressed in the dynamic equilibration section, but that section focused much more 

heavily on coordination numbers. The conversation about coordination numbers focused 

on achieving average sample coordination numbers in the mid-6's or higher. The 

conversation about specimen volume was much less specific and needed to be addressed 

further.  

It was mentioned that specimen volume will asymptotically approach a steady state 

value during equilibration. When the volume reaches steady state, it was deemed to be 

equilibrated. This steady state value was not known ahead of time and was a function of 

Young's modulus, confining pressure, friction, particle size, and sample size. The time it 

takes to get to steady state volume was also unknown. It was seen that damping 

significantly affected the time it took for a sample to reach steady state. When visually 

looking at the evolution of volume during equilibration, it was easy to erroneously 

conclude that a sample had been successfully equilibrated. For example, the volume 

evolution shown in Figure 22 was incomplete, though it seemed to have reached a 

minimum. This sample was dynamically equilibrated at 1000Hz with an amplitude of 

0.01D, where D = particle diameter. 

 

Figure 22: Sample volume evolution subject to confining pressure. End volume = 

3.15x10
-5

 m
3
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The slope of the volume with respect to time at the 110
th

 update interval was very 

small (in the absolute sense) at -1.26x10
-7

 m
3
/step. The coordination number at this point 

was 6.63. From a cursory perspective, it looked like the sample was sufficiently close to 

steady state, but when the volumetric strain during a triaxial compression test was 

observed, its appearance was unexpected and discontinuous. The volumetric strain of this 

sample subject to triaxial compression is shown in Figure 23. 

 

  

Figure 23: (a.) - left: Stress-strain response during triaxial compression, (b.) - right: 

Evolution of volumetric strain during triaxial compression. Small strain data is 

shown. Note that the X-axes of the two figures are not the same 

If only checking the stress-strain response of the sample, Figure 23a, qualitative 

success could be declared, but indeed, the sample was not successful. By all accounts, the 

volumetric strain response of the sample was of poor quality. The rapid changes in 

volume indicate rapid reorganization of particles, more or less a collapse, that was 

verified visually by animating the simulation. Rigorous quality criteria needed to be 

developed to systematically produce specimens that re-created the behavior of 

geomaterials. 

Strategies needed to be developed to get sample volume as close as possible to a true 

physical steady state value. A statically equilibrated sample of 3393, 3 mm diameter, 

particles was seen to achieve a volume of 2.95x10
-5

 m
3
 when subjected to confining 

pressure of 200 kPa. This was lower than the minimum volume observed in Figure 22. 
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To gain further insight into what the cause of the excessive volume was, some 

additional results were considered. Two additional samples were equilibrated, one with 

low frequency vibrations, one with high frequency vibration. The vibratory excitation in 

the samples was turned off after reaching 0.4 seconds of physical time. The confining 

pressure, however, was left active and the sample was left to equilibrate for an additional 

0.2 seconds under these quasi-static conditions. Figure 24 and Figure 25 show the 

evolution of sample volume over time. Both of these samples were subject to a viscous 

damping coefficient of 0.18 N-s/m. 

 

 

Figure 24: A sample equilibrated dynamically at high frequency for 200 steps, then 

statically for 100 steps. End volume=3.11x10
-5

 m
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Figure 25: A sample equilibrated dynamically at low frequency for 200 steps, then 

statically for 100 steps. End volume = 3.06x10
-5

 m
3 

 

The two figures, Figure 24 and Figure 25, show that during the dynamic portion of 

equilibration, the true minimum volume was not achieved. Further volume reduction 

occurred in the static regime after step 200. The figures also showed that high frequency 

equilibration yielded a larger sample than low frequency equilibration, though it would 

be inappropriate to draw conclusions from this observation. It was inferred from this data 

that pure static equilibration resulted in the lowest sample volume. This was seen to be 

true in recent simulations. Unfortunately, pure static equilibration was too 

computationally expensive, and worse yet, the resulting coordination numbers were not 

reliably high. Something interesting about the data was that the sample in the low 

frequency condition responded better to static confining forces than the sample in the 

high frequency condition, even after the dynamic excitation had been turned off (after 0.2 

seconds).  

It was hypothesized that damping played a significant role in the densification of a 

virtual triaxial test sample. Results from a small pilot study confirmed this hypothesis. 

The next step was to quantitatively asses the influence of damping on sample volume at 

the end of the equilibration window. 
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A small study was designed to help gain some valuable insight into the process. Six 

equilibration simulations were performed. During the first 0.2 seconds of equilibration, a 

seed near the centroid of the sample was vibrated at 1000 Hz with an amplitude of 0.03 

mm in the 3 translational degrees of freedom (high frequency excitation). The sample 

was also subject to a confining pressure of 200 kPa. During the latter 0.2 seconds of 

equilibration, the vibration was turned off leaving the confining pressure to quasi-

statically compress the sample. This study was very similar to the sample seen in Figure 

24. The goal of the study was to find the threshold of damping during the quasi-static 

equilibration regime that allowed the sample to compress down close to its true steady 

state volume while maintaining stability. It was expected that at some lower limit of 

damping, the kinetic energy was not reduced enough to compress the sample at all, and 

that this lower limit occured well above the required damping to maintain a stable 

sample. 

The simulation parameters used for the study were the following: 

 Particle diameter = 3mm 

 Young's modulus = 29x10
9
 Pa 

 Viscous damping coefficient = 0.4 N-s/m 

 Cohesion = 50 Pa 

 Rolling friction coefficient = 0.5 

 Sliding friction coefficient = 0.01 

 Coefficient of restitution = 0.01 

 Confining pressure = 200 kPa 

The viscous damping coefficient was varied from 0.08 N-s/m to 0.18 N-s/m during 

the static portion only. The dynamic portion of each test maintained 0.18 N-s/m of 

viscous damping. Figure 26, Figure 27, and Figure 28 show the results of these tests. 
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Figure 26: Volume evolution with respect to time in dynamic and static regimes  

  

Figure 27: Volume evolution in static regime only  

 

From Figure 26 and Figure 27, varying damping during the static regime significantly 

affected the final volume of the sample. At very low damping (0.09 N-s/m and below), 

the sample became unstable. On the high end of damping (0.15 N-s/m and higher), the 

volume did not come very close to a true minimum. The volume is best minimized by the 

test run in which damping coefficient was set to 0.13 N-s/m. It is noted from Figure 28 

that there is a true optimal damping coefficient that will minimize volume. 
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Figure 28: Sample volume as a function of damping at 0.4 seconds of equilibration 

Since our optimal volume was achieved using a damping of 0.13 N-s/m, average 

coordination number should be checked in this sample to make sure that the static regime 

had not reduced it. Figure 29 shows the evolution of the coordination number with 

respect to time of the sample that was assigned a damping coefficient of 0.13 N-s/m. 

 

Figure 29: Coordination number evolution, damping = 0.13 N-s/m 

Several additional equilibration simulations were run with stiffer and softer particles. 

Figure 30 shows the results of studies that vary particle stiffness. Optimal damping 

coefficient changed slightly, but the sample behavior was very sensitive to these very 

small changes, so it was necessary document them. 
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Figure 30: Sample volume as a function of damping at 0.4 seconds of equilibration 

of various particle Young’s moduli  

Figure 30 shows the optimal damping coefficients for various particle Young’s 

moduli for use during the static regime of equilibration. It was suspected that the curve 

for Young’s modulus = 29x10
9
 Pa could use some additional refinement because the 

minimum should have occurred at a magnitude that falls between the minimums of the 

other two curves.  

Post processing methods 

There were several methods available in the literature for processing stresses within a 

sample. These methods fell into two classes, particle methods and boundary methods 

(O’Sullivan, 2011b). Both classes of methods calculated sample stresses adequately for 

stiff particles (Young’s modulus > 10
9
 Pa), but only the boundary methods worked well 

for softer particles. As seen in Bagi (1999), the Gauss integral theorem related boundary 

forces to stresses by way of volume. This method was directly implemented in the 

LIGGGHTS input script. A description of the implementation is outlined here. 

1. Detected the height of the sample. 

2. Divided the sample into ten layers of equal thickness. 

3. Detected the average radius of each layer. 

4. Calculated the cross sectional area for each layer assuming that the layer is 

roughly cylindrical. 
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5. Calculated the average cross sectional area, Aave, of all layers.  

6. Summed forces on the one of the caps (in our case, the upper cap), FA. 

7. Calculated the average axial stress, σA, from FA and Aave. 

Axial stresses were calculated every time confining pressures were updated 

(discussed in the physical triaxial test and oedometer sections). 

Cap adjustments 

At the end of equilibration of a virtual triaxial test sample, the deviator stress was 

usually non-zero. Just as in a physical triaxial test, the upper cap needed to be adjusted 

until the deviator stress was sufficiently close to zero (ASTM, 2007a). Indeed, the 

magnitude of axial strain incurred during the cap adjustment process was minimal. An 

upper limit of ± 0.1% axial strain adjustment had been set. When the required adjustment 

was greater than ± 0.1% of strain, then the sample was deemed poor and was discarded.  

Several triaxial tests were simulated without any cap adjustment. From the results of 

these tests, it was possible that the global elastic modulus of the sample could be 

approximated at small strains. A plot of the stress-strain response of a simulated triaxial 

test is shown in Figure 31. 

 

Figure 31. Stress-strain response of triaxial test sample 
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Figure 32. Stress-strain response of a triaxial test sample at very small strains 

The sample in Figure 31 consisted of particles of diameter = 3 mm and Young's 

Modulus = 29x10
9
 Pa. The approximate elastic modulus of the sample near zero strain 

was 3.56x10
8
 Pa. Linearizing the stress-strain relationship at very small strains allowed 

for linearly extrapolating the required strain adjustment that would yield zero deviator 

stress. In the case of the sample in Figure 31, the required axial strain adjustment was -

0.0222%, which was well below the limit of 0.1%. Of course, linear extrapolation of the 

slope to zero deviator stress resulted in a slight overestimation of the magnitude of cap 

adjustment. Therefore, the adjustment was made in small steps, 1/10
th

 of the estimated 

adjustment, and the deviator stress was checked after each small adjustment. This 

allowed for stopping the adjustment before any significant overshoot occurred. 

Significant overshoot was undesirable because backtracking the cap would cause the 

sample to undergo hysteresis, which has been shown to cause irreversible particle 

reorientation even at very small stains (O’Sullivan et al., 2008).  

After the adjustment was made, the deviator stress should be sufficiently close to 

zero. In Jiang et al. (2003), a criterion was used such that the first principle stress in the 

sample was less than 5% away from the magnitude of confining pressure. The same 

criterion was used here. Since the simulation program output was standardized to 

deviator stress, an equivalent criterion for deviator stress was constructed. The deviator 

stress should be less than 2.5% of the confining pressure. As an example, a sample 

subject to 200 kPa of confining pressure would be allowed to have a maximum initial 
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deviator stress of 5 kPa. Additional adjustments were required if the initial adjustment did 

not satisfy the deviator stress criteria. After the deviator stress was brought sufficiently 

close to zero, the adjusted axial strain was set to zero.  

It should be noted that cap adjustments were very rarely needed. It was found that if 

interparticle friction was low (coefficient of friction ~ 0.01) during equilibration, and the 

number of particles in the sample was sufficiently high (8000+), then the resulting first 

deviatoric stress in the sample (as measured by the cap reaction) was close to zero. In 

other words, the sample approached an isotropic stress state as equilibration progressed. 

Physical variation 

Although DEM is a deterministic method, the triaxial test specimens generated for 

each simulation were random. Referring back to the section entitled ‘Algorithmic 

construction,’ equation 3.38 calculated the direction of a vector using random numbers. 

The vector was used to place neighbor particles around a parent particle. The random 

numbers were generated using an established method, the Mersenne twister, which used 

the CPU clock of a computer to establish a seed or a basis for calculating a random 

number in a uniform distribution (Matsumoto and Nishimura, 1998).    

Physical triaxial tests have physical sample variation as well, but they also have 

measurement error. Measurement error was eliminated due to the nature of deterministic 

virtual measurements, therefore it was enough to simply quantify the physical variation in 

random samples with respect to critical points on resulting stress-strain and volumetric 

strain curves. A study was performed to quantify the physical variation in mechanical 

responses of virtual specimens as a function of total number of particles in a sample.  

 LIGGGHTS source code modifications 

Two modifications were made to the default LIGGGHTS installation. The first 

modification was a change in the C++ source code that calculates cohesion. Even though 

the current project used a Hertzian contact scheme, the cohesion calculations were 

inherited from Hookean calculation files. In the source (src) folder of the installation, the 

file “pair_gran_hooke_history.cpp” contains the relevant calculations that needed to be 

changed. The variable, Acont, was declared on line 122 and was defined in the 

conditional branches of the following lines. Acont was the area over which the cohesion 
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acts. Equation 2.45 shows how cohesive force was constructed within the LIGGGHTS 

program. 

 𝐹𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 = 𝐶 × 𝐴𝑐𝑜𝑛𝑡 (2.45) 

where Fcohesion = the interparticle force due to cohesion; 

Acont = the projected interparticle area; and 

C = a cohesion coefficient which was defined as “cohesion energy density.” The physical 

meaning of C varied with respect to the construction of Acont. 

The geomechanical definition of cohesion was also a continuum definition. The 

projected cohesive area accounted for the void space around a particle (sphere). 

Therefore, the projected area was represented by equation 2.46. 

 𝐴𝑐𝑜𝑛𝑡 = (𝐷𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒)
2 (2.46) 

where Deffective was the effective diameter between two interacting particles; see 

equation 2.47. 

 𝐷𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 2(
1

𝐷𝑖
+

1

𝐷𝑗
)
−1

 (2.47) 

where Di and Dj were diameters of two interacting particles. 

After updating the cohesion area definition, a compile flag needed to be set to enable 

aspherical aggregates (molecule package). While in a terminal, the compile flag was set 

by navigating to the “liggghts_path/src” directory and issuing a “make molecule-yes” 

command, then a “make clean-all” command. Then the source code was compiled 

normally and the updated cohesion definition and the aspherical aggregate capability 

were enabled. 

Physical Laboratory Tests 

To address the objective of this study, hopper and direct shear tests were conducted at 

the Advanced Soil Dynamics Laboratory at the Department of Agriculture and 

Biosystems Engineering at Iowa State University (Ames, IA). Direct shear, oedometer, 

and triaxial tests were performed at the Department of Civil Engineering, Graduate 

Laboratories at the University of Michigan (Ann Arbor, MI). Finally, blade mixing and 

cone penetrometer tests were performed in the Singularity Solutions Laboratory (Ann 

Arbor, MI). A brief description of each type of laboratory test is described here. 
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Triaxial Test 

The triaxial compression test was first performed by Karman (1911) to study brittle 

rock mechanics. The test has since been adapted to study many natural and granular 

materials including soils (Bishop and Henkel, 1957), gravel, agricultural products, and 

collections of manufactured particles. 

A generic schematic of a triaxial test setup is shown in Figure 33.  

 

Figure 33. Triaxial test schematic 

Three methods were used for conducting triaxial tests on soils, ASTM D2850 for 

unconsolidated undrained (UU) soils; ASTM D4757 for consolidated undrained (CU) 

soils; and ASTM D7181 for consolidated drained (CD) soils. These three types of triaxial 

tests existed to accommodate soil composition, consolidation, and the resulting 

application of the soil strength data collected from the tests. Fine grained soils generally 

experienced undrained loading (CU, UU) while coarse grained soil experience drained 
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conditions (CD). Similarly, fast rates of loading that did not allow pore pressure to 

dissipate support undrained loading conditions (CU, UU), even in coarse grained 

materials, while slow rates of loading often supported drained conditions (CD). Soil 

consolidation generally referred to the volume reduction of the triaxial test sample right 

before the onset of triaxial compression. When the sample was in a triaxial cell and was 

subjected to confining pressures, some consolidation of the sample occurred, meaning, 

the volume was reduced. When the volume reached a steady state minimum, the sample 

had reached the end of consolidation and was termed consolidated. If the triaxial 

compression began before the sample was fully consolidated, the sample was called 

under-consolidated. 

Axial stresses and strains were measured during a triaxial compression test. The 

expected qualitative stress-strain and volumetric strain responses are shown in Figure 34 

for drained and undrained conditions. 

 

Figure 34. Generic triaxial test response data for (a) drained conditions, (b) 

undrained conditions (Mitchell, 2005) 
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Important points on the stress strain response are shown in Figure 35.  

 

Figure 35. Important points on the stress strain response of a triaxial test specimen 

(Mitchell 2005) 

In Figure 35, point a was important because the effective elastic modulus of the 

sample was calculated here. Point b was where the peak strength of the sample was 

observed. Point c was the critical state of the sample where the sample compression 

occurred under unchanging axial stresses and constant volume. Figure 35 also shows the 

critical state strength which is observed at much larger strains than point c. 

It is interesting to note that the stress-strain response to triaxial compression was 

traditionally plotted using the first principle deviatoric stress on the Y-axis and axial 

strain on the X-axis (see Figure 34). The deviatoric stress was a stress state that was 

written in matrix form. The first principle deviatoric stress is shown in equation 2.48. 

 𝜎𝑑 =
(𝜎1−𝜎3)

2
 2.48 

where σ1 and σ3 are the first and third principle stresses, and σd is the first principle 

deviatoric stress. The deviatoric stress state was an important concept in failure theories 

because it was the stress state that contributes to shape change (Collins, 2003). 

Oedometer Test 

The oedometer test is a confined compaction test. Soil specimen were extruded into 

hollow cylindrical space with low aspect ratio (i.e., a short, squat, cylinder) so that its 
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initial geometry resembled a disk. The specimen was confined on the top and bottom by 

porous media so that moisture drained from the specimen. The specimen was then 

incrementally compressed. Each increment of compression entailed a period of time in 

which the specimen's volume reached steady state. It may take several minutes to several 

days for the specimen to properly drain and achieve a steady state volume under a given 

compressive load. The specimen may undergo one or several unload/reload cycles to 

further provide insight into the compaction behavior of a specimen. Figure 36 shows a 

schematic of the oedometer test apparatus.  

 

Figure 36. Oedometer test apparatus (Sandbaekken et al., 1986) 

The compressive force that was applied to the sample was a known quantity. 

Therefore, calculating the average axial stresses in the specimen was the same as in the 

triaxial test. Calculating the third principal stress (or the radial stresses) required that a 

strain gauge be placed on the outside of the oedometer ring (see Figure 36) to measure 

hoop strains. Hoop strains may be converted to radial soil stresses by pressure vessel 

equations. Raw data gathered from a single increment of loading in an oedometer test is 

shown in Figure 37. 
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Figure 37. Coefficient of permeability is calculated from the axial compression 

versus time data raw data (Sandbaekken et al., 1986) 

The raw data was treated to provide more insight into the compaction behavior of 

soil. As seen in Figure 37, permeability constants were extracted from the data. Mean 

pressure was plotted against void ratio or volumetric strain to find the oedometer 

modulus. Also, the unloading cycles revealed the preconsolidation pressure in the 

specimen.  

Direct Shear Test 

Direct shear tests, as described in ASTM D3080, were used to characterize 

mechanical properties of granular materials. The direct shear test was a drained 

laboratory test where a granular specimen was loaded into a circular or square shaped 

chamber and sheared under a known normal force along a specified shear plane. Porous 
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platens were placed above and below the specimen to enable drainage during shearing. 

Figure 38 shows a cut-away side view of the direct shear apparatus (DSA). 

 

Figure 38. Direct shear box diagram, cross sectional view (Source: ASTM, D3080) 

Undisturbed and reconstituted specimens were used in the DSA. Undisturbed 

specimens were gathered from sampling tube methods (ASTM, D1587). Alternatively, 

reconstituted samples were tamped to the desired bulk density according to ASTM 

D3080, section 7.5.2. In the case of moist specimens, the test was run for a minimum of 

50x the 50% consolidation time so that only a drained response was captured. 

Shear box displacement and vertical piston displacement was captured and stored 

continuously during the test. A calibrated and capable load cell was used to measure the 

resistance of the granular material to shearing. There were two significant output data sets 

from the direct shear test. The first was a displacement vs. shear stress curve which 

described the strength of the granular material and from which it was possible to describe 

the Mohr-Coulomb failure envelope. The second was a height change vs. displacement 

curve which described the volume change behavior during shearing.  

The direct shear test was a quick and easy way to characterize soils; however, the 

accuracy of the test was impeded by the imposition of a shear plane. Therefore, the 

measured shear strength did not necessarily occur on the weakest failure plane. Despite 

its limitations, it was an effective calibration tool because a virtual direct shear test will 

exhibit the same forced shear plane. Therefore, the error in physical and virtual direct 

shear tests was consistent.  
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Hopper Discharge Test 

A grain hopper was developed and built by Research Assistant, Mohammad 

Mousaviraad at the Soil Dynamics Laboratory at Iowa State University. The hopper was 

used to collect data on granular material flow and was used as a validation tool for DEM 

calibration. The hopper footprint was a square with side length=27cm. The hopper walls 

were made of transparent Lexan polypropylene sheet. The hopper bucket was 50 cm in 

height. Three chute configurations were available, 0 degree, 30 degree, and 60 degree. A 

load cell was placed under a collection bucket under the discharge chute of the hopper to 

measure massflow rate. In addition, a string potentiometer coupled ball was used to 

continuously measure the height of the center of the granular surface. The hopper 

discharge test was used to measure the mechanical flow characteristics of corn grains. 

Figure 39 shows the hopper in the 60 degree chute configuration, filled with corn grains 

before a discharge test. The grey ball at the top of the corn grain assembly was the string 

potentiometer coupled ball. 

 

Figure 39. Hopper filled with corn grains before discharge test 
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Corn grains were gently poured into the hopper in the loosest state possible until the 

desired fill height was achieved. Then, the data acquisition system was activated and the 

hopper-stop plate was quickly pulled to initiate grain flow. The mass leaving the hopper 

and the top surface center displacement was continuously measured. The test concluded 

when the hopper was empty. 

Blade Mixing Test 

A blade mixing apparatus was developed to validate DEM calibration models. A 

torsional load cell was fabricated by outfitting a hollow, square (side length=20 mm), 

aluminum shaft with four strain gages in a full Wheatstone bridge configuration (Figure 

40). It was calibrated by applying a known moment load to the shaft and measuring 

voltage drop across the Wheatstone bridge circuit. Voltage drop was amplified using an 

Avia HX711 instrumentation amplifier. 

 

Figure 40. Full Wheatstone bridge torque cell mounted on shaft 

 A string potentiometer was pulley-coupled to the aluminum shaft to measure angular 

position. A rectangular (100 mm x 23 mm) steel mixing blade was also bolted to the 

shaft.  The shaft-blade assembly was lowered into a low density polyethylene (LDPE) 

bucket while a bearing constrained all movement except cylindrical rotation. The LDPE 

bucket was reinforced with wooden 2x4’s to prevent excessive base deformation during 

operation.  

The bucket was filled with granular material and lightly tamped and leveled (Figure 

41) to a desired height and bulk density. The bulk density of the media in the mixing 

bucket was measured and recorded. 
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Figure 41. Blade mixing apparatus 

Each material testing trial undergoes a consistent procedure. After the granular media 

is leveled and the data acquisition equipment is active, the blade shaft is manually rotated 

to sweep the blade through the granular material. Shaft torque and blade angle was 

measured continuously with respect to time at 10 Hz. Data was acquired via an Arduino 

Uno microcontroller and saved as comma separated value file on a computer in real time. 

After the data trace was secured, the blade was removed and the granular specimen was 

mixed or re-pluviated to establish virgin conditions. 

 

Cone Penetrometer Test 

The construction of the soil cone penetrometer was described in ASABE S313.3 

(2006). It was typically a slender shaft affixed to a 30 or 60 degree steel cone which 

penetrated soil either in-situ or in lab conditions. The cone was manually plunged into a 

soil surface at a constant rate. The resistance exhibited by the soil was measured by a 

load cell which lay in series with the shaft. The depth of penetration was monitored by an 

ultrasonic range sensor. It was often necessary to place a plate at the surface of the soil to 
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accurately and consistently measure penetration depth because ultrasonic sensors over 

uneven terrains created noisy depth profiles.  

The inner diameter of the PVC pipe section was 10.3 cm. The ratio of container 

diameter to ASABE cone diameter was 8.2.  The PVC pipe section had an adhesively 

bonded ruler affixed to its inner diameter to determine fill height. The weight scale on 

which the soil and pipe was weighed was zeroed with only the pipe section present to 

determine the weight and bulk density of the soil.   

ASABE EP542 (2006) defines the standard method for reporting cone penetrometer 

resistance using a metric called the cone index, also referred to as cone resistance or 

penetration resistance. The cone index was calculated in equation 2.49.  A typical cone 

penetration resistance or cone index curve was shown in Figure 42. 

 𝑞 =
4𝐹𝑐𝑜𝑛𝑒

𝜋𝐷𝑐𝑜𝑛𝑒
 (2.49) 

Where q=cone index; 

Fcone = reaction force; 

Dcone=diameter of the ASABE cone (Dcone for 30 degree cone = 12.53 mm). 

 In uniform soils, penetration resistance typically reached a steady state limit, qlim. 

Undrained shear strength was shown to correlate with qlim (Schmertmann, 1975). 

 

 

Figure 42. Typical cone penetration resistance or cone index (Source: Alvaro and 

Ooi, 2016) 
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Cone penetrometer tests were used in a lab setting to characterize Michigan 2NS 

Sand (2NS) and Norfolk Sandy Loam (NSL). Cone penetrometer tests underwent 

consistent procedures. The initially dry soil samples were reconstituted to the desired 

moisture and bulk density and added to the PVC pipe section. The data acquisition 

system was activated and the cone of the cone penetrometer device was brought to the 

top of the soil assembly. Care was taken to ensure that the cone penetrometer was close 

to vertical and that the ultrasonic senor had a clean flat surface to reflect off of in order to 

capture accurate depth measurements. The cone was manually lowered into the soil using 

as little force as possible (to avoid dynamic effects). The cone was lowered until the 

bottom of the container was reached. The data acquisition system was disconnected and 

data was secured. The specimen was then removed and re-pluviated into the container for 

subsequent testing.  
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CHAPTER 3. A COUPLED SLIDING AND ROLLING FRICTION MODEL FOR 

DEM CALIBRATION 

Abstract 

The accuracy of dense Discrete Element Method (DEM) simulations is sensitive to 

initial density, contact orientation, and interparticle interaction parameters (i.e., contact 

stiffness, friction, cohesion, particle size and shape, restitution). Although studies have 

characterized the effects of individual particle interaction parameters on mechanical 

responses of loaded granular material, research combining parameters for calibration is 

scarce.  Robust calibration methodology combining sliding and rolling friction 

coefficients was developed and validated to predict critical state soil strength of initially 

dense DEM particle assemblies.  

Introduction 

Triaxial test simulations have been used effectively to calibrate discrete element 

methods (DEM) parameters to mechanical responses of granular materials using open-

loop and probabilistic methods (e.g., Zhang et al., 2011; Wang and Tonon, 2010; 

Medina-Cetina and Khoa, 2011; Belheine et al., 2009; Salot et al., 2009). However, 

closed-loop and single-iteration calibrations of DEM parameters to bulk mechanical 

behavior is challenging because many interparticle interactions are coupled such that they 

attenuate or intensify each other’s effects on mechanical outcomes. One such coupling is 

the complex interaction of sliding and rolling friction. It has been shown that sliding 

friction coefficient is positively associated with bulk friction characteristics (Liu et al., 

2005; Widulinski et al., 2009; Zhao et al., 2011). Similarly, Huang et al. (2013) showed 

that rolling friction coefficient significantly affected the bulk internal friction angle of 

dense granular assemblies. Rolling friction was of particular interest because it simplifies 

particle shape modeling (Wensrich and Katterfeld, 2012). Free particle rotation 

interlocked particles have been described in the context of shear band development 

(Iwashita and Oda, 1998) and strength (Utili and Nova, 2008). To show the moderating 

effects of rolling friction, Widuliński et al. (2009) compared the effects of varying the 

sliding friction coefficient in two rolling friction conditions. These studies provided 

insight into the complexity of interaction between sliding friction and rolling friction, but 
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limited information has been reported. Modeling physically accurate shearing behavior in 

soils required robust shape approximation which is computationally impractical for real-

world systems. Rotationally-free DEM codes with shape approximation cannot develop 

expected shear capacity without moment to resist rotation. Indeed, rolling friction models 

were introduced in DEM code to bridge this gap. However, the complexity of kinetic 

shear resistance has increased with the addition of the rolling friction coefficient. To ease 

calibration, a semi-empirical combined friction model was proposed based on single 

particle behavior. This combined friction model strongly correlated with critical state 

mechanical strength from triaxial and direct shear test simulations making it an ideal base 

for calibration.  

DEM applications in terramechanics 

DEM was used to simulate natural geomechanical phenomena (Utili and Nova, 2008) 

and soil-tool interaction problems (Obermayr et al., 2013; Shmulevich, 2010; and Chen et 

al., 2013). When particles in a DEM environment were used to model granular 

geomaterials, particle interaction parameters were generally tuned within the context of 

standardized lab tests (uniaxial, triaxial, oedometer, and Cassagrande's shear test). The 

selection of the lab test varied with respect to the physical phenomena, failure plane 

orientation, and strain rate that are being simulated. For instance, virtual uniaxial test 

simulations were used to calibrate DEM parameters to unconfined strength (Yoon, 2007). 

For simulating dynamic processes, stress wave velocities were the target of calibration 

(Holt et al., 2005).  Triaxial test simulations were commonly used as a calibration tool for 

simulation of slow, pseudo-static, in-situ soil manipulation (Ting et al., 1989).  However, 

Salazar et al. (2015) demonstrated that even mechanical responses from simple box shear 

tests were difficult to calibrate against. 

 

Background 

Discrete Element Method 

Discrete element method (DEM) is numerical technique where particle interactions 

are modeled using equations of motion and contact laws. Cundall and Strack (1979) 

developed DEM from to simulate the behavior of granular materials. Equations of motion 
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for each particle are shown in equations 3.1 and 3.2. The resultant force on a particle, 

Fresultant, is calculated in equation 3.1  

 𝐹𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 = 𝑚�̈� (3.1) 

where  

m = particle mass and 

�̈� = particle acceleration. 

The resultant moment on a particle, Mresultant, is calculated by equation 3.2 

 𝑀𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 = 𝐼�̈� (3.2) 

where 

I = mass moment of particle inertia and 

�̈� = angular particle acceleration. 

Fresultant and Mresultant account for body forces, force fields, and interparticle 

interactions. DEM codes, such as the open-source LIGGGHTS, use idealized elastic 

spheres to model contacts between particles that interact with each other according to 

Hookean or Hertzian contact laws. In addition, forces that depend on contact (e.g., micro-

scale cohesion, restitution (damping), sliding friction, and rolling friction) can also act on 

particles. Hertzian contact is simplified in DEM code for efficient calculation, as in 

equation 3.3. 

 𝐹𝑛 = 𝑘𝑛𝛿𝑛 (3.3) 

where 𝑘𝑛 =
4

3
𝐸∗√𝑅∗𝛿𝑛; 

1

𝐸∗
=

1−𝜈1
2

𝐸1
+

1−𝜈2
2

𝐸2
; 

1

𝑅∗
=

1

𝑅1
+

1

𝑅2
; 

kn = normal stiffness; 

δn = normal overlap; 

E1,E2 = Young’s modulus of 1
st
 and 2

nd
 particle respectively; 

ν1,ν2 = Poisson’s ratio of 1
st
 and 2

nd
 particle respectively; 

R1,R2 = Radius of 1
st
 and 2

nd
 particle respectively. 
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When contact is established, contact-dependent interparticle forces, such as friction, 

can be activated. Force due to sliding friction between two particles exhibiting relative 

tangential motion is calculated by equation 3.4 

 𝐹𝑠𝑙𝑖𝑑𝑖𝑛𝑔 = 𝜇𝑠𝑁 (3.4) 

where 

μs = sliding friction coefficient, and 

N = normal contact force. 

Per the usual convention, the orientation of the direction vector of Fsliding is opposite 

the tangential relative velocity vector. In addition to sliding friction, rolling friction is 

present as a contact-dependent force. Rolling friction is a particle’s resistance to relative 

rolling motion between particles as a function of normal contact forces (N) and shear 

stiffness. Two rolling friction models are built into LIGGGHTS: the Constant Directional 

Torque (CDT) model and the Elasto-Plastic Spring Dashpot (EPSD) model. The CDT 

model adds torque to a particle by equations 3.5, 3.6, and 3.7 (LIGGGHTS Manual 

2015). 

 𝑇𝐶𝐷𝑇 =
µ𝑅𝑁𝜔𝑠ℎ𝑒𝑎𝑟

|𝜔𝑠ℎ𝑒𝑎𝑟|𝑅𝑒𝑓𝑓
 (3.5) 

 𝜔𝑟 = 𝜔1 − 𝜔2 (3.6) 

 ωshear = 𝑝𝑟𝑜𝑗𝑠ℎ𝑒𝑎𝑟 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑝𝑙𝑎𝑛𝑒(𝜔𝑟) (3.7)  

where 

ω1 = angular velocity of particle 1, 

ω2 = angular velocity of particle 2, 

Reff = effective radius of two particles in contact,  

N = normal force acting between particles in contact, and  

μR = rolling friction coefficient. 

The rotational resistance in the CDT model can exceed the moment required to fully 

mobilize a particle and therefore, it can create an oscillatory equilibrium state. On the 

other hand, rotational resistance in the EPSD model is bounded by full mobilization 

torque. The torque contribution from the EPSD model is described in equations 3.8-3.12. 

Note that since equation 3.9 limits resistance torque, the rolling resistance behavior is 

perfectly plastic above full mobilization torque. 
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 𝑇𝐸𝑃𝑆𝐷,𝑡+𝛥𝑡 = 𝑇𝑟,𝑡 + 𝛥𝑇𝑟 (3.8) 

 |𝑇𝑟,𝑡+𝛥𝑡| ≤  𝑇𝑟−𝑚𝑎𝑥 (3.9) 

 𝑇𝑟−𝑚𝑎𝑥 = µ𝑟𝑅𝑒𝑓𝑓𝑁 (3.10) 

 𝛥𝑇𝑟 = −𝑘𝑟𝛥𝜃𝑟 (3.11) 

 𝑘𝑟 = 𝑘𝑡𝑅𝑒𝑓𝑓
2  (3.12) 

where 

𝑇𝐸𝑃𝑆𝐷,𝑡+𝛥𝑡 = torque contribution in next DEM calculation cycle, 

𝑇𝑟,𝑡 = torque contribution in previous DEM calculation cycle, 

kr = radial particle stiffness, 

kt = tangential particle stiffness, and 

𝛥𝜃𝑟 = incremental relative rotation between particles. 

Ai et al. (2011) reported that the EPSD model is superior to the CDT model in terms of 

achieving low-kinetic energy steady state conditions for pseudo-static DEM analyses. 

 

Methods 

Single particle model 

A single particle model was developed to study the combined effects of sliding and 

rolling friction at the micro-scale. A rigid sphere was placed on a surface while two 

forces acted on it (Figure 43). The particle exhibited motion only resisted by inertia, 

sliding friction, and rolling friction. A free body diagram of the single particle model is 

shown in Figure 44.  
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Figure 43. Single particle model of rigid sphere on plane.  

 

 

 

Figure 44. Free body diagram of single particle model. 

Where Ft = arbitrary force oriented parallel with surface that the particle is resting on, 

N = arbitrary force acting perpendicular to the surface that the particle is resting on, 

Fc = contact force, 
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Fs = force due to sliding friction, 

MR = moment due to rolling friction, 

V(t) = velocity of particle, and 

ω(t) = angular velocity of particle. 

The energy balance of the single particle system provided a fundamental coupling of 

resistance to rotational and translational motion against a rigid plane (equation 3.13).   

 
𝑑

𝑑𝑡
𝐸𝑖𝑛 = 

𝑑

𝑑𝑡
𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 +

𝑑

𝑑𝑡
𝐸𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 +

𝑑

𝑑𝑡
𝐸𝑣𝑖𝑠𝑐𝑜𝑢𝑠 (3.13) 

where  
𝑑

𝑑𝑡
𝐸𝑖𝑛 = instantaneous power transferred to the system; 

𝑑

𝑑𝑡
𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐= rate of change of particle kinetic energy; 

𝑑

𝑑𝑡
𝐸𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛= rate of energy dissipation through friction; 

and 
𝑑

𝑑𝑡
𝐸𝑣𝑖𝑠𝑐𝑜𝑢𝑠= rate of energy dissipation from viscous effects. 

To simplify analysis, a rigid sphere was considered. Therefore, elastic and plastic strain 

energy was not included in equation 3.13. In addition, the rigid sphere was non-cohesive. 

Equation 3.14 describes the friction term of the energy balance equation. 

 
𝑑

𝑑𝑡
𝐸𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = µ𝑠𝑁 𝑣𝑠 + µ𝑅𝑁 𝑟 𝜔 (3.14) 

where vs = sliding velocity (tangential velocity); 

and r = particle radius. 

In order to reduce sliding and rolling friction coefficients into a single effective friction 

term, the rate of dissipation needed to be truncated so that it was only dependent on linear 

velocity and normal contact force (equation 3.15). 

 
𝑑

𝑑𝑡
𝐸𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛−𝑠𝑖𝑚𝑝𝑙𝑒 = µ𝑒𝑓𝑓𝑁 𝑉 (3.15) 

where Efriction-simple = Efriction with combined sliding and rolling terms; 

and μeff = effective fiction coefficient that combines sliding and rolling friction 

coefficients. 

To proceed, a single particle model with null rolling friction coefficient, μR=0, was 

considered, relationships between linear and angular velocity needed to be established. 

By the definition of rolling friction coefficient in the EPSD model, boundary conditions 



93 

 

 

for the ratio of angular velocity to linear velocity for a rigid body were limited by 

equation 3.16. 

 0 ≤  
ωr

V
≤ 1 (3.16) 

A rolling Hertzian sphere’s resistance to motion was dependent on the magnitude of the 

normal force present. In fact, it was found that the ratio of shearing forces to normal 

forces affects the upper bound of 
𝜔𝑟

𝑉
 (Figure 45).  Numerical simulations of a rolling 

sphere on a flat plane reveal that, in the absence of μR, the sliding friction coefficient 

affected 
𝜔𝑟

𝑉
 up to a ceiling.   

 

Figure 45. Relationship between tangential and linear velocity for various force 

ratios with respect to sliding friction coefficient 

The limiting friction for each force ratio, Ft/Fn, is plotted in Figure 46. 
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Figure 46. Limiting friction coefficient with respect to force ratio 

The limiting coefficient of sliding friction was a linear function of Ft/Fn which was 

approximated as µ𝑙𝑖𝑚𝑖𝑡~0.28(
𝐹𝑡

𝐹𝑛
). Since 

𝜔𝑟

𝑉
 was not affected by sliding friction 

coefficients above the limiting friction, any sliding friction coefficients that exceed the 

limiting friction were superfluous. Therefore, the minimum effective coefficient of 

friction was defined by the condition statement in equation 3.17 and 3.18. Observations 

by Suhr and Six (2016) of contact force dependent coefficient of friction confirm the 

results in Figure 46.  

 𝑖𝑓 
𝜔𝑟

𝑉
≥ 1, 𝑡ℎ𝑒𝑛 µmin = µ𝑙𝑖𝑚𝑖𝑡 (3.17) 

 𝑒𝑙𝑠𝑒 µmin =
𝜔𝑟

𝑉
µ𝑙𝑖𝑚𝑖𝑡 (3.18) 

The extreme case of µ𝑅 = 0 was reduced to a boundary condtion.  The other extreme 

case of µ𝑅 ≥ µ𝑠 was trivial. The relationship between  
𝜔𝑟

𝑉
 and µ𝑒𝑓𝑓 were now effectively 

described. Adding rolling friction coefficient back into the system, angular velocity was 

linearly related to total moment, and rolling resistance moment was linearly related to 

rolling friction coefficient. Therefore the function for  
𝜔𝑟

𝑉
 was nearly linear with respect to 

rolling friction coefficient (equation 3.19). 
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𝜔𝑟

𝑉
= (1 −

µ𝑅

µ𝑠
′ ) (3.19) 

where µ𝑠
′ =  

𝜔𝑟

𝑉
µ𝑚𝑖𝑛 + µs(1 − 

𝜔𝑟

𝑉
) 

By including equation 3.18 into energy dissipation rate (equation 3.13), and substituting 

µ𝑠
′  for µs to respect the limits established by µmin, the new frictional dissipation rate 

equation was written as equation 3.20. 

 
𝑑

𝑑𝑡
𝐸𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = µ𝑠

′𝑁𝑉 + µ𝑅  
𝜔𝑟

𝑉
𝑁𝑉 (3.20) 

Factoring out N and V resulted in equation 3.21. 

 
𝑑

𝑑𝑡
𝐸𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = [µ𝑠

′ + µ𝑅
𝜔𝑟

𝑉
] 𝑁 𝑉 (3.21) 

The effective coefficient of friction was capped by µs, therefore the contribution of the µ𝑅 

is linearly adjusted to µ𝑅
′  (equation 3.22). 

 µ𝑅
′ = µ𝑅(1 −

µ𝑠
′

µ𝑠
) (3.22) 

The linear adjustment of µ𝑅 was an approximation that yields good results for calibration 

purposes. The reduced frictional dissipation rate equation (3.15) provided a template to 

extract an effective friction coefficient (equations 3.23 and 3.24). 

 If µR > µmin, then µ𝑒𝑓𝑓 = µ𝑠
′  +  µ𝑅

′ 𝜔𝑟

𝑉
 (3.23) 

 else µ𝑒𝑓𝑓 = µ𝑠
′  (3.24) 

The equation for effective friction coefficient was only valid for rolling friction 

coefficients that were smaller than the sliding friction coefficient. In the case where 

rolling friction coefficient exceeded sliding friction coefficient, the effective friction 

coefficient was capped by sliding friction.  In addition, the minimum effective friction 

coefficient was zero.  Therefore, a complete solution for effective friction coefficient of 

Hertzian sphere on a plane is presented in equations 3.25-3.27. 

 If  µ𝑅 ≥ µ𝑠, then µ𝑒𝑓𝑓 = µ𝑠; (3.25) 

 Else if µ𝑅 < µ𝑠 and µ𝑅 > µ𝑚𝑖𝑛 then µ𝑒𝑓𝑓 = µ𝑠
′  +  µ𝑅

′ 𝜔𝑟

𝑉
;  (3.26) 

 Else µ𝑒𝑓𝑓 = µ𝑠
′   (3.27) 

Where 
𝜔𝑟

𝑉
 is described in Figure 45. 
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To verify the model for effective friction coefficient, the single particle model was 

simulated 81 times in LIGGGHTS and only the sliding and rolling friction coefficients 

were uniformly varied between 0 and 1 per a 9
2
 factorial design. A Hertzian contact 

model was used and the Young’s modulus and Poisson’s ratio of the sphere and wall 

were 1.0x10
9
 Pa and 0.3, respectively. Cohesion and damping were excluded from the 

simulations. The current set of simulations was run with shear history activated. 

However, in preliminary studies, it was found that shear history did not affect the results 

at all. In addition, tangential contact components were very insensitive to changes. Steady 

state particle acceleration was captured and stored. The equation of motion combining 

sliding and rolling friction was used to assess effective friction (equation 3.28). 

 

 𝐹𝑡 − 𝐹𝐹 = 𝑚
𝑑𝑣(𝑡)

𝑑𝑡
 (3.28) 

where  𝐹𝐹 = µ𝑒𝑓𝑓𝑁. 

 

Substituting the acceleration obtained from the single particle numerical model and 

solving for μeff produced the raw data shown in Figure 47. The approximation for μeff was 

shown as the translucent surface. The residual error between the numerical model and the 

approximation was shown as a color map projected below the data. Points were plotted 

with respect to normalized rolling friction (μR/μs) because the EPSD rolling friction 

model was insensitive to μR greater than μs. 



97 

 

 

 

 

Figure 47. Effective friction coefficient, approximation compared to numerical 

simulation for Ft/Fn =1. 

The residual error in Figure 47 was likely due to the linearization of rolling friction 

effects which are non-linear with respect to normal force, Young’s modulus, and 

viscoelastic constants (Karapetyan, 2010). However, for the purposes of calibration, the 

error was small and did not detract from the utility of this approximation. Large error 

may occur when the particle Young’s modulus is low, such that there becomes a 

significant different between the particle radius and the effective contact radius.  This 

error should be quantified in future work.  

The DEM model used to simulate the results in Figure 47 was tested for sensitivity to 

tangential contact stiffness and damping. The variation in effective friction was found to 

𝜇𝑒𝑓𝑓 
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be much smaller than the residuals calculated in Figure 47. Therefore, tangential stiffness 

and damping were left activated for all subsequent simulations. 

Figure 47 verified the utility of μeff for a single particle rolling on a plane. For 

calibration purposes, the relationship between μeff and bulk friction angle needs to be 

tested. It was hypothesized that μeff is proportional to bulk friction angle for dense 

granular assemblies. Equations 3.25-3.27 provided the framework for the scale-invariant 

interparticle friction angle.  As such, it was also hypothesized that the relationship 

between interparticle friction angle and critical state friction angle was scale-invariant.  

Triaxial tests 

The influence of effective friction needed to be quantified on the macro-scale, 

especially with respect to global strength and volume change characteristics of dense 

granular assemblies.  

Eleven triaxial test simulations were ran with different combinations of sliding and 

rolling friction coefficients. All triaxial tests were created as cylindrical specimens with 

varying numbers of DEM particles (all exceeding 10,000) shown in Figure 48a. An 

approach similar to the one described by Wang and Tonon (2010) was used to write a 

custom operator for LIGGGHTS to model confining pressure for membrane-wrapped 

cylindrical specimens. The confining pressure in the triaxial test simulations was varied, 

and the specimens were equilibrated under the confining pressure until void ratio and 

reaction forces at the caps approached steady state. The caps were adjusted slightly (less 

than 0.01% strain) to produce an isotropic stress state in the specimen. After numerical 

inspection that the specimen was in equilibrium at an isotropic stress state, it was 

deviatorically compressed until axial strain reached 35%, as shown in Figure 48. 
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Figure 48. Triaxial test specimen, a) before triaxial compression, and b) after 

triaxial compression. 

Direct shear tests 

Ten direct shear tests were also modeled in DEM with each test exceeding 10000 

particles.  The virtual shear box was a 3D rectangular prism with a square base (100 mm 

x 100 mm) and a height of 50 mm. The lid of the shear box acted as a rigid body and 

exerted normal force on the particle assembly within the box. Both sliding and rolling 

friction coefficients between the particles and the box wall were kept at 0.9. Particles 

were initialized in random positions in the shear box at a target solid fraction. The large 

potential energy in the system due to particle overlap was dissipated over 100k DEM 

calculation cycles. Upon reaching equilibrium, the top half of the shear box was 

advanced at a rate of 0.1 mm/s until the total displacement reached 12 mm. Reaction 

forces from the upper half of the shear box was monitored. The bulk friction angle from 

virtual direct shear tests is reported by the ratio of shear to normal force acting on the 

box. A particle assembly in the shear box is shown in Figure 49. 
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Figure 49. Boundary conditions of virtual direct shear test 

Particle size distribution 

O’Sullivan et al advised that monodisperse spheres cannot model real soils because 

crystallization occurred at high packing densities  (2002) and O’Sullivan cautioned that 

monodisperse spheres could not form a realistic number of contacts per particle so the 

moment imparted on particles was not physically accurate (2011). However, in the 

presence of rolling friction, the moment imparted on a virtual particle was independent of 

particle size distribution and shape.  Mono and polydisperse specimens were created to 

assess differences in mechanical response.  The poly disperse specimens were created 

using a Gaussian distribution of particle centered on a mean radius.  The mean radius and 

standard deviation of particles are reported for each specimen. 

Results 

The triaxial test simulations were run until axial strain reached 25%. Volumetric 

strain and deviator stress (equation 3.29) were calculated and plotted for each simulation. 

 𝜎𝑑 = 
𝜎1−𝜎3

2
 (3.29) 
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In the triaxial/biaxial test case, third principle stress is equal to confining pressure 

(σ3=P0). As described in equation 30, first principle stresses, σ1, were obtained by 

dividing the triaxial test specimen into ten layers (n=10) along the z-axis (see Figure 48). 

The reaction at the cap of the triaxial test apparatus (R) was then divided by surface area 

at the interface between each layer (Ai). Then, deviator stresses from each layer were 

averaged over the entire specimen. 

 

 𝜎1 =
1

𝑛
∑

𝑅

𝐴𝑖

𝑛
𝑖=1  (3.30) 

Monodisperse vs. Polydisperse 

A common observation in numerical simulations of mono and poly-disperse 

specimens was that the critical state strength of granular assemblies was independent of 

variance in particle size distribution as long as the mean particle size remains constant.  

That is, a monodisperse specimen with particle radius = 1.5 mm exhibits a similar critical 

state strength as a polydisperse specimen with a Gaussian size distribution and mean 

radius = 1.5 mm. Figure 50 shows the virtual stress-strain and volume change response of 

mono and poly-disperse specimens with identical microscale friction characteristics. 

Initial void ratio was iterated to match complete mechanical responses between mono- 

and polydisperse specimens. Yan and Dong (2011) reported identical observations in 

cubic triaxial tests of polydisperse sphere. Details of the DEM simulation parameters 

were summarized in Table 9. Noting this observation, subsequent triaxial tests were 

performed using both monodisperse and polydisperse specimens. 
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Figure 50. Stress-strain (a) and volume change (b) response from triaxial tests with 

mono and poly-disperse specimens 
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Table 9. DEM parameters for comparison of mono and polydisperse triaxial test 

specimens 

  Specimen 

DEM Parameter Monodisperse Polydisperse 

Input Parameters   

Particle radius, r 1.5mm mean=1.5mm, SD=0.03mm 

Contact model Hertz 

Youngs modulus, E 2.9x10
6
 kPa 

Poisson's ratio, ν 0.3 

Sliding friction coef, μs 0.5 

Rolling friction model EPSD2 

Rolling friction coef, μR 0.2 

Confining pressure, P0 50 kPa 

Initial void ratio, e0 0.7390 0.7770 

Number of particles 29468 26775 

 

Effective friction coefficient 

Additional mono and polydisperse triaxial test simulations were performed with DEM 

characteristics identical to the parameters shown in Table 9, except particle size, sliding 

friction, rolling friction, and confining pressure. The DEM parameters used in the 

simulations are shown in Table 10. Additional triaxial test simulation data from Yan and 

Dong (2011), Huang et al. (2014), Thornton (2000), Kozicki (2012), and Gong et al. 

(2012) is included to provide additional corroboration for the interparticle-to-bulk friction 

relationship defined by combining sliding and rolling effects. It is interesting to note that 

the mentioned authors used various contact formulations and particle size distributions. 

The relationships described the effective friction coefficient are independent of particle 

size and contact style. 
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Table 10. DEM parameters and specimen properties of triaxial test simulations 

Trial 
Mono-
poly 

disperse 
E [kPa] 

P0 

[kPa] 

Mean 
particle 

radius [m] 

Std dev of 
particle radius 

[m] 
μs μR 

1 mono 2.9x10
6
 50 0.0017 0 0.5 0.2 

2 poly 2.9x10
6
 50 0.0017 0.0002 0.4 0.2 

3 mono 2.9x10
6
 70 0.0012 0 0.4 0.2 

4 poly 2.9x10
6
 100 0.0013 0.0002 0.4 0.1 

5 mono 2.9x10
6
 120 0.002 0 0.2 0.2 

6 poly 4.0x10
6
 30 0.002 0.0003 0.3 0.1 

7 mono 5.0x10
6
 120 0.0012 0 0.35 0.25 

8 mono 4.0x10
6
 120 0.0016 0 0.5 0.5 

9 poly 4.0x10
6
 30 0.001 0.0002 0.3 0.2 

10 mono 2.9x10
6
 400 0.005 0 0.6 0.32 

11 mono 2.9x10
6
 400 0.005 0 0.6 0.5 

 

The virtual triaxial test results were analyzed to find the critical state strength of the 

material.  To determine the critical state strength, volume change was monitored and 

deviator stress was recorded when dilatancy angle approached zero.  The bulk friction 

angle at critical state was determined by constructing Mohr’s circle for each trial. 

The calculation of μeff  required the force ratio, Ft/Fn, to be known.  In the case of 

granular assemblies, Ft/Fn was calculated from the bulk friction angle, ϕ (equation 3.31). 

 
𝐹𝑡

𝐹𝑛
= tan (φ)   (3.31) 

Equation 3.30 was necessary for all 𝜇𝑅 < 𝜇𝑚𝑖𝑛. 

The interparticle friction angle, ϕp, was calculated by equation 3.32. 

 𝜑𝑝 = tan−1( 𝜇𝑒𝑓𝑓) (3.32) 

Figure 51 shows the relationship between interparticle friction angle and bulk friction 

angle at critical state from the simulated parameter sets in Table 10. 
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Figure 51. Relationship between effective interparticle friction angle and bulk 

critical state friction angle from virtual triaxial test simulations (Note: this not a 

simple reproduction of data, rather it follows the methods to calculate ϕp defined in 

section 0). 

The linear portion of the bulk friction angle curve was empirically related to the 

interparticle friction angle by the linear regression equation (3.32), where R
2
=.93, 

RSS=1.29.  

 𝜑 = 0.682𝜑𝑝 + 14.7 (3.33) 

The external virtual triaxial test simulation data found in Figure 51 was generally 

simulated using spheres with either free or fixed rotation in the absence of a rolling 

friction model.  In the case of free rotation, μR was taken as zero. For instance, Thornton 

(2000) reported that bulk friction angle did not necessarily increase as interparticle 

sliding friction increased. However, our analysis showed that increasing sliding friction 

alone did not increase the effective interparticle friction angle, ϕp and therefore, all of 
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Thornton’s data was concentrated below ϕp=5
o
.   In the case of fixed rotation, μR=μs was 

assumed. However, μR=μs was not always a valid assumption because the effective 

friction paradigm only considered moment imparted on a particle from friction effects, 

therefore, fixed rotation often produced stronger particle assemblies when compared to 

equivalent μR=μs systems. For instance, Huang et al. (2014) reported fixed rotation 

triaxial test simulation with 𝜑𝑝 = 27𝑜 and 𝜑 = 49𝑜, which deviated significantly from 

the prediction of equation 3.32. However, equation 3.32 performed well for the strength 

ranges of real sands, powders, and other natural granular materials. 

Bulk friction angle of granular material varied with respect to the testing method. 

Therefore, virtual direct shear tests were also used to investigate the relationship between 

effective interparticle friction angle, ϕp, and critical state bulk friction angle, ϕ (Figure 

52). 

 

Figure 52. Bulk friction angle with respect to interparticle friction angle from direct 

shear tests 
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The direct shear data reported in Figure 52 was qualitatively similar to triaxial test 

data. There was a notable quantitative difference in that virtual direct shear tests reported 

higher bulk friction angles than virtual triaxial tests for equivalent granular materials. 

Discussion 

Two hypotheses were tested using the framework established in equations 3.25-3.27.  

1) Effective friction coefficient, μeff, was uniquely proportional to the bulk friction angle: 

The results in Figure 51 showed a clear relationship between interparticle friction (as 

determined by μeff) and bulk friction angle. 

2) Effective friction coefficient provided a scale-invariant calibration parameter. Table 10 

showed that, though various particle sizes and size distributions were used to generate 

triaxial and direct shear test specimens, the resulting interparticle friction angle scaled 

uniquely with bulk friction angle. Future work will address implementing μeff in scaling 

laws for dense granular dynamics. 

Calibration 

The empirical relationship from Figure 51 was leveraged to calibrate a DEM 

simulation to physical test results. This study considered the triaxial test data on Toyura 

sand reported by Fukushima and Tatsuoka (1984).  The calibration table is presented in 

Table 11. 

Table 11. Calibration procedure for Toyura sand 

  Parameter Value Reference 

Physical triaxial test data 

P0 [kPa] 400 

Fukushima and 

Tatsuoka (1984)  

Stress ratio, 

b 3.3 

Bulk 

friction 

angle, ϕ 

[deg] 32.2
o
 

Calibration 

Desired ϕp 25.5
o
 Eqn 3.33, figure 9 

desired μeff 0.476 Equation 3.32 

Ft/Fn 0.630 Equation 3.31 

Possible DEM parameter set 

Rmean 1.6mm Scale-invariant  

μs 0.476 equation 3.25 

μR 0.476 equation 3.25 
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The DEM parameter sets from calibration were not unique solutions for critical state 

strength. Some additional material characterization produced initial guesses for either μs 

or μR, however, if none was available, μR=μs was used.  Figure 53 shows the stress strain 

response of a virtual triaxial test with the calibrated parameter set.   

 

Figure 53. Stress-strain response of virtual triaxial tests with calibration parameters 

If relative density of a physical specimen was available, more rigorous calibration, 

especially of volume change, was performed by appending the relative density method 

proposed by Salot et al. (2009). Minimum and maximum virtual packing densities were 

unique to particle size, distribution, and stiffness. Therefore, the scale invariance of 

calibration in Table 11 did not apply. This study also considered direct shear test 

response from Lings and Deitz (2004) of Leighton Buzzard sand at 90% relative density. 

Table 12 shows the relevant bulk mechanical characteristics of Leighton Buzzard sand 

and the accompanying calibration set. Figure 54 and Figure 55 show the stress-
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displacement and volume change response of the virtual direct shear tests that correspond 

to the calibrated parameter set from Table 12. 

Table 12. Direct shear calibration table including relative density effects 

  Parameter Value Reference 

Physical direct shear test data 

Crit state 
friction 

angle, ϕ 
[deg] 

31
o
 Lings and Deitz (2004)  

Desired 
Peak 

friction 
angle 
[deg] 

48
o
 Lings and Deitz (2004)  

Relative 
density, Dr 

[%] 
90% Lings and Deitz (2004) 

Height 
change 
[mm] 

1.5mm Lings and Deitz (2004) 

Calibration 

Desired ϕp ~9
o
 Figure 10 

desired μeff 0.17 Equation 3.32 

Ft/Fn 0.50 Equation 3.31 

Possible DEM parameter set 

Rmean 1.5mm 
 

μs 0.2 equation 3.25 

μR 0.1 equation 3.25 

Young’s 
Modulus 

[Pa] 
1x10

9
 Pa  

Initial void 
ratio 

0.72 Salot et al. (2009) 
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Figure 54. Direct shear calibration of internal friction angle 

 

Figure 55. Direct shear calibration of volume change (vertical displacement) 
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Some error in the peak strength and vertical displacement targets were observed. Note 

that in the current study, Salot at al’s (2009) relative density method scaled nearly 

linearly with peak strength in the majority of the range of relative density. However, at 

very high and very low initial void ratios, the packing density deviated from the assumed 

linearity. The monodisperse specimen from Figure 50 and Table 9 was iterated over 

many different initial void ratios. The relationship between initial void ratio and peak 

strength is shown in Figure 56. 

 

Figure 56. Peak strength vs. initial void ratio 

Conclusion 

Effective friction coefficient (μeff) of a granular material varied linearly with critical 

state strength of dense granular assemblies and was used to calibrate DEM particle 

interaction parameters to mechanical responses of triaxial tests. A linear statistical model 

that related μeff to bulk friction angle was used to calibrate DEM simulations. 

This study demonstrated the value of using µeff as a low-error friction term that 

improved the accuracy of statistical calibrations of DEM parameters to physical 

phenomena. However, more work is needed to determine analytical and empirical 

expressions for relative initial density in DEM specimens (e.g., Salot et al. 2009), 

specimen angularity, and dynamic parameters to further refine the accuracy of 

calibration. In addition, work that narrows the physical ranges of μR would push the 

predictive capacity of DEM simulation. 
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CHAPTER 4. DEVELOPMENT OF DEM CALIBRATION 

Introduction 

DEM inputs needed to be understood micro-mechanically and phenomenologically 

before thoughtful calibration could take place. Large data sets were generated and 

explored to provide a foundation understanding of univariate relationships between 

micromechanical inputs to mechanical responses of dense granular material subject to 

shearing. In addition, dimensional analysis was used to combine multiple DEM input 

variables to study interactions. Alternate micro-mechanical formulations for interparticle 

DEM interactions were also considered when traditional, popular, or otherwise built-in 

formulations were not adequate. 

A statistical approach was used for analyzing data in the exploratory phase of DEM 

calibration development. Analytical and semi-empirical approaches for sliding rolling 

friction were discussed in Chapter 3. 

DEM  

For the subsequent statistical analyses, results from many DEM simulations were 

parsed and analyzed. DEM simulations used the familiar Hertz-Mindlin contact law 

described in the Methods chapter. The rolling friction was modeled using the EPSD 

model built into LIGGGHTS. Additionally, particle shape and cohesion were modeled 

using techniques that will be described here.  

Particle shape was modeled using multi-spheres or clump logic. Aspherical particles 

can be created by bonding spherical particles together. Pill shaped particles were used in 

the current study. Kozicki et al. (2012) reported that as the aspect ratio of pill shaped 

clumps increases, the strength and dilatancy also increase. Figure 5 from chapter 2 shows 

what the clumps look like and their influence on mechanical behavior. 

  The EPSD rolling friction model was applied to each particle whether or not clump 

logic was used to influence particle shape. DEM specimens were contrasted using a mix 

of clumps and single spheres. The parameter, %Aspherical, indicates what percentage of 

the specimen was made of pill shaped clumps. The aspect ratio parameter was a ratio of 

the major and minor dimensions of the pill.  
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The cohesion formulation used in the current study was projected-area cohesion. A 

small study assessing the effects of projected area cohesion coefficient on mechanical 

behavior of virtual triaxial test specimens is presented later in this chapter. Refer to 

equations 5.4 and 5.5 for the calculation of attractive forces between particles. 

Finally, the structural state of a DEM assembly was often described by void ratio, 

porosity, or solid fraction. Solid fraction and void ratio will be used interchangeably with 

the reminder to the reader that void ratio and solid fraction are related by equation 4.1. 

  𝑣𝑜𝑖𝑑 𝑟𝑎𝑡𝑖𝑜 =
1

𝑆𝑜𝑙𝑖𝑑𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛
− 1. 4.1 

Statistical Method 

An exploratory experimental design was devised to relate DEM inputs to mechanical 

responses of drained triaxial tests.  

Design of experiment 

An experiment was designed to assess the statistical relationships between DEM 

input parameters and mechanical responses of virtual triaxial tests. A fractional factorial 

design of experiment was generated with the following assumptions: 

DEM input parameters 

Sliding friction coefficient: 3-level variable (0.1, 0.55, 0.9), assumed non-linear 

Rolling friction coefficient: 2 level variable (0.1, 0.5), assumed linear 

Young’s modulus: 3-level variable (29x10
7
, 29x10

8
,29x10

9
 Pa), assumed logarithmic 

scale 

Projected-area cohesion coefficient: 2-level variable (0, 35kPa), assumed linear 

Percentage of specimen aspherical: 2-level variable (10, 30%), assumed linear 

Aspect ratio of aspherical particles: 2-level variable (1.5, 2.0), assumed linear 

Test parameters 

Initial solid fraction: 3 level variable (0, 50, 100%), assume non-linear 

Confining stress: 3-level variable (2x10
5
, 6x10

5
, 10x10

5
 Pa), assumed non-linear 

A full factorial design of eight independent, 2-and-3 levels variables required 1024 

experimental runs; too many to complete in a timely manner. A fractional factorial model 

was used to cut down on the number of virtual triaxial test runs.  The total number of test 
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runs was limited to 150. The experimental design was generated using the R software 

(2013) and is shown in Table 13.

Table 13. Mixed Level Fractional Factorial Experimental Design 

Trial 
Cohesion (2) 

Pa 
Confining 

Pressure (3) Pa 

Young's 
Modulus (3) 

Pa 

Rolling 
Friction 

Coefficient (2) 

Sliding 
Friction 

Coefficient (3) 
Relative 

Density (3) 
Aspect 

Ratio (2) 
% Aspherical 

(2) 

1 0 600000 2.9E+09 0.1 0.1 0 1.5 0.1 

2 35000 600000 2.9E+09 0.1 0.1 0 1.5 0.1 

3 35000 600000 2.9E+10 0.1 0.1 0 1.5 0.1 

4 0 1000000 2.9E+10 0.1 0.1 0 1.5 0.1 

5 35000 1000000 2.9E+10 0.1 0.1 0 1.5 0.1 

6 0 600000 2.9E+09 0.5 0.1 0 1.5 0.1 

7 35000 600000 2.9E+09 0.5 0.1 0 1.5 0.1 

8 35000 600000 2.9E+10 0.5 0.1 0 1.5 0.1 

9 0 1000000 2.9E+10 0.5 0.1 0 1.5 0.1 

10 35000 200000 2.9E+08 0.1 0.55 0 1.5 0.1 

11 35000 600000 2.9E+08 0.1 0.55 0 1.5 0.1 

12 0 1000000 2.9E+08 0.1 0.55 0 1.5 0.1 

13 0 200000 2.9E+09 0.1 0.55 0 1.5 0.1 

14 35000 200000 2.9E+10 0.1 0.55 0 1.5 0.1 

15 0 600000 2.9E+10 0.1 0.55 0 1.5 0.1 

16 0 600000 2.9E+08 0.5 0.55 0 1.5 0.1 

17 35000 1000000 2.9E+08 0.5 0.55 0 1.5 0.1 

18 0 200000 2.9E+09 0.5 0.55 0 1.5 0.1 

19 35000 200000 2.9E+09 0.5 0.55 0 1.5 0.1 

20 0 600000 2.9E+09 0.5 0.55 0 1.5 0.1 

21 35000 1000000 2.9E+09 0.5 0.55 0 1.5 0.1 

22 35000 200000 2.9E+10 0.5 0.55 0 1.5 0.1 

23 0 600000 2.9E+10 0.5 0.55 0 1.5 0.1 

24 35000 600000 2.9E+08 0.1 0.9 0 1.5 0.1 

25 35000 1000000 2.9E+08 0.1 0.9 0 1.5 0.1 

26 0 200000 2.9E+09 0.1 0.9 0 1.5 0.1 

27 35000 200000 2.9E+09 0.1 0.9 0 1.5 0.1 

28 0 1000000 2.9E+09 0.1 0.9 0 1.5 0.1 

29 0 200000 2.9E+10 0.1 0.9 0 1.5 0.1 

30 35000 200000 2.9E+10 0.1 0.9 0 1.5 0.1 

31 0 600000 2.9E+08 0.5 0.9 0 1.5 0.1 

32 35000 600000 2.9E+08 0.5 0.9 0 1.5 0.1 

33 35000 1000000 2.9E+08 0.5 0.9 0 1.5 0.1 

34 0 200000 2.9E+09 0.5 0.9 0 1.5 0.1 

35 35000 200000 2.9E+09 0.5 0.9 0 1.5 0.1 

36 0 600000 2.9E+09 0.5 0.9 0 1.5 0.1 

37 0 1000000 2.9E+09 0.5 0.9 0 1.5 0.1 

38 35000 200000 2.9E+10 0.5 0.9 0 1.5 0.1 

39 35000 200000 2.9E+08 0.1 0.1 0 1.5 0.3 

40 35000 600000 2.9E+09 0.1 0.1 0 1.5 0.3 

41 35000 1000000 2.9E+09 0.1 0.1 0 1.5 0.3 

42 35000 600000 2.9E+10 0.1 0.1 0 1.5 0.3 

43 35000 600000 2.9E+08 0.1 0.55 0 1.5 0.3 

44 35000 600000 2.9E+09 0.1 0.55 0 1.5 0.3 

45 0 1000000 2.9E+09 0.1 0.55 0 1.5 0.3 

46 35000 1000000 2.9E+09 0.1 0.55 0 1.5 0.3 

47 0 600000 2.9E+10 0.1 0.55 0 1.5 0.3 

48 35000 600000 2.9E+10 0.1 0.55 0 1.5 0.3 

49 0 1000000 2.9E+09 0.5 0.55 0 1.5 0.3 

50 35000 600000 2.9E+10 0.5 0.55 0 1.5 0.3 

51 35000 200000 2.9E+08 0.1 0.9 0 1.5 0.3 

52 0 600000 2.9E+09 0.1 0.9 0 1.5 0.3 

53 0 1000000 2.9E+09 0.1 0.9 0 1.5 0.3 

54 35000 1000000 2.9E+09 0.1 0.9 0 1.5 0.3 

55 0 600000 2.9E+10 0.1 0.9 0 1.5 0.3 

56 0 1000000 2.9E+10 0.1 0.9 0 1.5 0.3 

57 35000 600000 2.9E+08 0.5 0.9 0 1.5 0.3 

58 35000 1000000 2.9E+08 0.5 0.9 0 1.5 0.3 

59 35000 200000 2.9E+09 0.5 0.9 0 1.5 0.3 

60 0 600000 2.9E+09 0.5 0.9 0 1.5 0.3 

61 35000 1000000 2.9E+09 0.5 0.9 0 1.5 0.3 

62 35000 600000 2.9E+10 0.5 0.9 0 1.5 0.3 

63 35000 600000 2.9E+09 0.1 0.1 0 2 0.1 

64 35000 600000 2.9E+10 0.1 0.1 0 2 0.1 

65 35000 600000 2.9E+10 0.5 0.1 0 2 0.1 

66 35000 200000 2.9E+09 0.1 0.55 0 2 0.1 

67 35000 1000000 2.9E+10 0.5 0.55 0 2 0.1 

68 35000 1000000 2.9E+08 0.1 0.9 0 2 0.1 

69 35000 200000 2.9E+10 0.1 0.9 0 2 0.1 

70 0 1000000 2.9E+10 0.5 0.9 0 2 0.1 

71 35000 1000000 2.9E+10 0.1 0.1 0 2 0.3 

72 0 200000 2.9E+08 0.5 0.1 0 2 0.3 

73 0 1000000 2.9E+08 0.1 0.55 0 2 0.3 
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Trial 
Cohesion (2) 

Pa 
Confining 

Pressure (3) Pa 

Young's 
Modulus (3) 

Pa 

Rolling 
Friction 

Coefficient (2) 

Sliding 
Friction 

Coefficient (3) 
Relative 

Density (3) 
Aspect 

Ratio (2) 
% Aspherical 

(2) 

74 0 600000 2.9E+10 0.1 0.55 0 2 0.3 

75 35000 600000 2.9E+10 0.5 0.9 0 2 0.3 

76 35000 1000000 2.9E+10 0.5 0.9 0 2 0.3 

77 35000 600000 2.9E+08 0.1 0.1 0.5 1.5 0.1 

78 35000 200000 2.9E+10 0.1 0.1 0.5 1.5 0.1 

79 0 600000 2.9E+09 0.5 0.55 0.5 1.5 0.1 

80 35000 1000000 2.9E+09 0.5 0.55 0.5 1.5 0.1 

81 35000 200000 2.9E+08 0.1 0.9 0.5 1.5 0.1 

82 35000 1000000 2.9E+10 0.5 0.9 0.5 1.5 0.1 

83 35000 200000 2.9E+08 0.1 0.55 0.5 1.5 0.3 

84 0 200000 2.9E+10 0.1 0.55 0.5 1.5 0.3 

85 35000 600000 2.9E+08 0.5 0.55 0.5 1.5 0.3 

86 0 600000 2.9E+10 0.5 0.55 0.5 1.5 0.3 

87 0 200000 2.9E+10 0.1 0.9 0.5 1.5 0.3 

88 35000 600000 2.9E+08 0.5 0.9 0.5 1.5 0.3 

89 0 1000000 2.9E+10 0.5 0.9 0.5 1.5 0.3 

90 35000 600000 2.9E+10 0.5 0.1 0.5 2 0.1 

91 0 1000000 2.9E+08 0.1 0.55 0.5 2 0.1 

92 0 200000 2.9E+09 0.1 0.55 0.5 2 0.1 

93 0 200000 2.9E+10 0.1 0.55 0.5 2 0.1 

94 35000 200000 2.9E+10 0.1 0.55 0.5 2 0.1 

95 35000 600000 2.9E+08 0.5 0.55 0.5 2 0.1 

96 0 200000 2.9E+10 0.1 0.9 0.5 2 0.1 

97 0 600000 2.9E+09 0.5 0.9 0.5 2 0.1 

98 0 600000 2.9E+09 0.1 0.1 0.5 2 0.3 

99 35000 600000 2.9E+09 0.1 0.1 0.5 2 0.3 

100 35000 1000000 2.9E+09 0.1 0.1 0.5 2 0.3 

101 35000 600000 2.9E+08 0.1 0.9 0.5 2 0.3 

102 0 200000 2.9E+09 0.1 0.9 0.5 2 0.3 

103 35000 200000 2.9E+09 0.1 0.9 0.5 2 0.3 

104 0 600000 2.9E+09 0.1 0.9 0.5 2 0.3 

105 0 1000000 2.9E+09 0.1 0.9 0.5 2 0.3 

106 0 600000 2.9E+08 0.1 0.1 1 1.5 0.1 

107 35000 1000000 2.9E+08 0.1 0.1 1 1.5 0.1 

108 35000 200000 2.9E+09 0.1 0.1 1 1.5 0.1 

109 0 200000 2.9E+10 0.1 0.1 1 1.5 0.1 

110 0 200000 2.9E+08 0.1 0.55 1 1.5 0.1 

111 35000 200000 2.9E+08 0.1 0.55 1 1.5 0.1 

112 0 200000 2.9E+09 0.5 0.55 1 1.5 0.1 

113 0 200000 2.9E+10 0.5 0.55 1 1.5 0.1 

114 35000 200000 2.9E+08 0.1 0.9 1 1.5 0.1 

115 0 600000 2.9E+08 0.1 0.9 1 1.5 0.1 

116 35000 600000 2.9E+09 0.5 0.9 1 1.5 0.1 

117 35000 1000000 2.9E+09 0.5 0.1 1 1.5 0.3 

118 35000 1000000 2.9E+10 0.5 0.1 1 1.5 0.3 

119 35000 200000 2.9E+08 0.1 0.55 1 1.5 0.3 

120 0 1000000 2.9E+08 0.1 0.55 1 1.5 0.3 

121 0 200000 2.9E+10 0.1 0.55 1 1.5 0.3 

122 35000 200000 2.9E+10 0.5 0.55 1 1.5 0.3 

123 0 600000 2.9E+08 0.1 0.9 1 1.5 0.3 

124 0 200000 2.9E+09 0.1 0.9 1 1.5 0.3 

125 35000 600000 2.9E+08 0.5 0.9 1 1.5 0.3 

126 35000 1000000 2.9E+08 0.5 0.9 1 1.5 0.3 

127 0 1000000 2.9E+10 0.5 0.9 1 1.5 0.3 

128 35000 600000 2.9E+08 0.1 0.1 1 2 0.1 

129 0 1000000 2.9E+09 0.1 0.1 1 2 0.1 

130 35000 600000 2.9E+09 0.5 0.1 1 2 0.1 

131 0 600000 2.9E+10 0.5 0.1 1 2 0.1 

132 35000 1000000 2.9E+10 0.5 0.1 1 2 0.1 

133 0 1000000 2.9E+08 0.1 0.55 1 2 0.1 

134 0 1000000 2.9E+09 0.1 0.55 1 2 0.1 

135 0 600000 2.9E+08 0.5 0.55 1 2 0.1 

136 35000 600000 2.9E+08 0.5 0.55 1 2 0.1 

137 35000 200000 2.9E+08 0.1 0.9 1 2 0.1 

138 0 200000 2.9E+09 0.1 0.9 1 2 0.1 

139 35000 200000 2.9E+09 0.1 0.9 1 2 0.1 

140 0 600000 2.9E+09 0.5 0.9 1 2 0.1 

141 35000 200000 2.9E+10 0.5 0.9 1 2 0.1 

142 35000 1000000 2.9E+09 0.1 0.1 1 2 0.3 

143 0 600000 2.9E+10 0.1 0.1 1 2 0.3 

144 0 1000000 2.9E+10 0.1 0.1 1 2 0.3 

145 35000 200000 2.9E+10 0.1 0.55 1 2 0.3 

146 35000 1000000 2.9E+09 0.5 0.55 1 2 0.3 

147 0 600000 2.9E+10 0.5 0.55 1 2 0.3 

148 35000 1000000 2.9E+08 0.1 0.9 1 2 0.3 

149 35000 200000 2.9E+09 0.1 0.9 1 2 0.3 

150 0 600000 2.9E+09 0.5 0.9 1 2 0.3 

 

Table 13 continued 
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All variables that were assigned two levels had been studied in the literature and 

shown to have linear relationship with at least peak strength or critical state strength of 

associated triaxial test responses. Other variables that were chosen to be three level 

variables did not have conclusive information to assume linearity. For instance, Thornton 

(2000) showed an unclear relationship between sliding friction and critical state strength; 

therefore, sliding friction was assigned three levels. 

Initial solid fraction 

Repeatability 

The large dataset allowed the study of univariate effects of initial solid fraction on 

mechanical responses of triaxial tests. The generation of initial states was not 

deterministic. However, the calculations cycles of DEM simulations were deterministic. 

Therefore, a quick test of the reliability of the initial states was performed to verify the 

initial state algorithm. The constant input parameters of the simulations were as follows: 

Contact Formulation: Hertz-Mindlin 

Young's Modulus = 29x10
4
 kPa 

Particle diameter = 3 mm 

Confining pressure = 200 kPa 

Sliding friction = 0.3 

Rolling friction = 0.3 

% Aspherical = 28-29% 

Aspect ratio of aspheres = 1.5 

Cohesion = 50 Pa 

Viscous damping coefficient = 1 N-s/m 

 

Repeatability of triaxial tests was assessed at solid fraction of 1.50 and is shown in 

Figure 57. 
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Figure 57. Repeatability of triaxial tests at initial solid fraction=1.50.  

The stress-strain and volume change responses of the three DEM triaxial specimens 

are very close, but not identical. Variation in the experimental results can be attributed to 

variation in initial state. 

Initial solid fraction analysis 

Initial solid fraction was a 2-level variable in the experimental design.  A study was 

designed to assess the linearity of solid fraction with respect to various mechanical 

responses of a virtual soil sample subject to triaxial compression.  Only over-consolidated 

samples were considered. The effects of initial solid fraction were assessed on five 

outcomes of the mechanical response of a triaxial test (peak stress, strain at peak stress, 

minimum volumetric strain, dilatancy angle, and maximum volumetric strain). Figure 58 

shows a clear positive association between peak strength and initial solid fraction. 
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Figure 58. Correlating peak strength with initial solid fraction 

Conversely, the association between strain-at-peak-strength and initial solid fraction 

was negative (Figure 59). The result in Figure 59 was expected because in physical 

testing, the strain at which peak strength occurs was typically delayed as the initial state 

was loosened. 

 
Figure 59. Relationship between strain at peak strength with initial solid fraction 

Figure 60 shows an unclear relationship between minimum volumetric strain and 

initial solid fraction. Although a slight positive association existed, a greater association 
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was expected because of the prevailing thought that the contractile regime in triaxial test 

results was accentuated as initial solid fraction decreased. 

 
Figure 60. Unclear relationship between minimum volumetric strain and initial solid 

fraction 

Although Figure 60 shows discouraging volume change results for calibration 

purposes, Figure 61 points to reasonable positive association between dilatancy angle and 

initial solid fraction. 

 
Figure 61. Relationship between maximum dilatancy angle and initial solid fraction 

Finally, Figure 62 adds additional encouraging association between maximum 

volumetric strain and initial solid fraction.  
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Figure 62. Correlating maximum volumetric strain with initial solid fraction 

All mechanical outcomes except minimum volume strain (Figure 60) exhibited linear 

dependence on initial solid fraction. 

Critical state strength 

The exploratory data set in Table 13 was used to statistically relate sliding and rolling 

friction coefficients to critical state strength from virtual triaxial tests. The univariate 

relationships between friction coefficients and critical state strength were not adequate 

for DEM input parameter calibration, so combinations of sliding and rolling friction 

coefficient were experimented with while controlling for other input variables. The R 

statistical package (2013) was used to calculate regression coefficients and assess the fit 

of the combined friction models. 
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Figure 63. Linear  multivariable regression model of sliding (µs) and rolling friction 

(µR) vs critical state strength (σd_cs/P0), from linear regression fit, A=3.16, B=4.23, 

(R
2
=0.94, RSE = 0.60, both terms, p < 0.05). 

Figure 63 shows that linear combinations of sliding and rolling friction produced a 

statistical model with a high goodness of fit (R
2
=0.94), but the model produced non-

unique parameter sets for µs and µR. Adding the interaction term, µsµR (p=0.22) did not 

improve the model. Non-linear combinations of µs and µR were explored as well.  

Five non-linear forms of µs and µR were tested using the non-linear regression 

technique in the R statistical package.  

σd_cs/P0 

Aµs + BµR 



122 

 

 

Friction term 1: 10µ𝑠
√µ𝑅  

 

Friction term 2:   
𝑎0(1 − exp(−𝑎1𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑡𝑒𝑟𝑚1𝑎2))

    𝑤ℎ𝑒𝑟𝑒 𝑎0 = 5.5; 𝑎1 = 0.334; 𝑎2 = 1.49
 

 

Friction term 3: 
𝜇𝑠𝜇𝑅

1+𝜇𝑅
 

 

Friction term 4: 
𝜇𝑠𝜇𝑅

1+3𝜇𝑅
 

 

Friction term 5: 1 + 4(1 − exp(−12.4 ∗ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑡𝑒𝑟𝑚4) 

 

Each friction term was related to the non-dimensional critical state strength, σd_cs/P0. 

Friction term 1 produced poor results, so it was transformed further to produce friction 

term 2. The results of friction term 2 regression analysis are shown in Figure 64. 

 
 

Figure 64. Friction term 2 vs non-dimensional critical state strength (R
2
=0.98) 

Friction term 2 in Figure 64 presented the same problem as the linear combination of 

friction in Figure 63 where a single friction term described a wide variety of possible 

σd_cs/P0 

Friction term 2 
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critical state strengths. In an attempt to improve the fit, friction term 3 was correlated 

with non-dimensional critical state strength ( 

Figure 65).  

 

 

Figure 65. Friction term 3 vs non-dimensional critical state strength (R
2
=0.93) 

The correlation between friction term 3 and normalized strength was significantly 

worse than friction term 2. Friction term 4 is shown in Figure 66. Friction term 4 

exhibited considerable scatter from the simulation data, but captured the overall trend of 

the data. It is possible that Friction term 4 can be further refined to account for the 

variance seen in Figure 66. 

σd_cs / P0 

Friction term 3 
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Figure 66. Friction term 4 vs non-dimensional critical state strength (R
2
=0.94) 

Transforming friction term 4 and controlling for log(E)/10, yielded Figure 67. As 

previously mentioned, refining Friction term 4 to account for particle stiffness tightened 

the scatter of simulation data. In addition, the transformed term produced a linear 

correlation with normalized granular strength. 

σd_cs / P0 

Friction term 4 
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Figure 67. Friction term 5 including Young's modulus transformation (R
2
=0.98, 

RSE=0.39) 

The statistical residual plot associated with friction term 5 is shown in Figure 68. 

 

Figure 68. Residual plot of friction term 5 vs critical state strength 

  

σd_cs / P0 

1.09(1 + (1 − exp(−12.4 ∗ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑡𝑒𝑟𝑚4)))
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The residual plot in Figure 68 makes the deviation from the fit line apparent. A 

deviation of 100kPa is common for all values of friction term 5. 

Friction term 5 is a better model than friction terms 1-4; however, it is purely 

empirical and not theoretically relevant. Additional work to obtain a semi-empirical 

correlation between friction coefficients and critical state strength is needed for more 

robust calibration. In addition, there is still considerable qualitative scatter in the 

correlation between Friction term 5 and normalized strength. An analytical or semi-

analytical solution for a correlative term will have to eliminate the non-unique solutions 

for normalized strength shown in Figure 67. 

 

Final void ratio 

The void ratio of virtual triaxial test specimens was analyzed at critical state, or when 

dilatancy angle approached zero, and was termed the final void ratio, ef. The exploratory 

data set in Table 13 was parsed and transformed to describe ef as a function of DEM input 

parameters. The combined predictive term, equation 5.1, was manually developed using 

the R statistical software (equation 5.1, R
2
=0.988, RSE=0.0478).   

 

 𝑒𝑓 =
A log(𝐸)

log(𝑃0)
+ 𝐵µ𝑠 +

𝐶µ𝑠

1+µ𝑅
0.25+0.64 5.1 

Where A = 0.578, t-statistic=3.83, p=0.012; 

B = 1.16, t-statistic=7.941, p=0.000051; 

C = -1.40, t-statistic=-5.602, p=0.0025. 

 

Figure 69 shows the correlation of equation 5.1 to ef. 
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Figure 69. Correlation of predictive term to final void ratio 

Figure 69 indicates that the final void ratio can be readily described by DEM 

parameters. The effect sizes of the linear statistical model show that the two terms which 

include friction coefficients (B and C) influence the model much more than the stiffness 

and confining pressure term (A). Indeed, friction is a dominant predictive factor as 

related to final void ratio. 

Volumetric contraction 

The contraction of overconsolidated physical triaxial test specimens is related to grain 

deformation rather than reconfiguration (Whitman et al., 1964). Virtual triaxial test 

specimens were constructed to identify the DEM input parameters which contribute the 

most to the contraction of overconsolidated soils. Sliding and rolling friction coefficients 

were held at 0.5 and 0.55 respectively. Eight triaxial test specimens were compressed 

A log(𝐸)

log(𝑃0)
+ 𝐵µ𝑠 +
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deviatorically and the minimum volumetric strain was recorded. Each specimen was 

isotropically consolidated at a lower coefficient of sliding friction, 0.1. Confining 

pressure and Young’s modulus of the Hertzian particles was varied. The radius of the 

particles was held constant at 1.5 mm over all virtual experiments. Since the Hertzian 

stiffness of spherical particles is non-linear with respect to interparticle contact force, an 

experimental effective stiffness term that includes Young’s modulus, as well as confining 

pressure, was created to describe the relationship between DEM input parameters and 

global volumetric strain (equation 4.2). 

 𝑘𝑒 =
log10𝐸

log10𝑃0
 (4.2) 

The effective stiffness term is related to minimum volumetric strain in  

Figure 70. 

 

 

Figure 70. Experimental effective stiffness term related to minimum volumetric 
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Figure 70 includes only constant radius particles. Therefore, a complete empirical 

understanding of specimen contraction should include specimens composed of differing 

particle radii. 

Dilatancy 

The dilatancy angle of a virtual triaxial test specimen was measured for each 

simulation in the DOE. A non-dimensional parameter that describes the initial state of the 

virtual specimen was used as a correlative factor. The initial state is tentatively defined in 

equation 4.3. 

 𝐼 =
𝑙𝑜𝑔(𝐸)

𝑒0
0.25 log (𝑃0)

 (4.3) 

Initial state is strongly related to dilatancy angle, as shown in Figure 71. 

 

 

Figure 71. Dilatancy angle as related to initial state variable 
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Initial state accounts for considerable variation by itself, and by adding friction 

coefficients, as seen in Figure 72 further improved the descriptive model.  

 

 

Figure 72. Dilatancy angle as related to initial state and friction 

Finally, including angularity creates a term that linearly relates to dilatancy angle. 

Figure 73 shows that while high goodness of fit (R
2
) can be attained; significant root-

square error (RSE) limits the use of this statistical term in predictive DEM calibration. 

Analytical models that account for particle angularity are difficult to derive in three 

dimensions. Therefore, statistical methods need to be refined to meet the requirements of 

DEM parameter prediction. 
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Figure 73. Dilatancy angle as related to initial state, friction, and angularity, 

R
2
=0.93, RSE=0.34, n=77 

Relative density 

Salot et al. (2009) has shown the importance of relative density in relating physical 

density to virtual density. A method was developed to assess the maximum and minimum 

void ratio of a virtual granular assembly. Virtual assemblies are defined by material 

properties, external loads, and a structural state, and the limits of possible structural states 

are defined by material properties and external loads. Therefore, a virtual experiment was 

designed to assess the limits of structural state with respect to material properties and 

loads. Material properties include the following: 

 Sliding friction 

 Rolling friction 

 Cohesion 

 Particle stiffness 
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I
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 Particle size and distribution 

 Particle shape 

The maximum void ratio was determined by lightly air-pluviating cohesionless virtual 

specimens into a virtual box. The external load was then applied left to equilibrate. Then 

the void ratio of the specimen was measured. The minimum void ratio was determined by 

exciting the virtual specimen with triaxial mechanical vibrations while still under external 

load. The minimum void ratio after an extended period of vibration was measured. In 

order to understand the effect of friction, the particle stiffness, size, distribution, and 

shape were held constant. A Hertzian formulation was used for the particles with a 

Young’s modulus of 29x10
8 

Pa. Spherical particles of diameter 3mm with a 

monodisperse distribution were assembled using the default random particle insertion 

method in LIGGGHTS. The vertical load was also restricted to 10 kPa. The sample was 

confined so that lateral reaction pressure was unbounded.  

Table 14. Experimental design of relative density study 

Specimen # Sliding Friction Rolling Friction 

1 0.2 0.1 

2 0.3 0.1 

3 0.4 0.3 

4 0.5 0.4 

5 0.05 0.05 

6 0.05 0.03 

 

Six simulations were run in the LIGGGHTS DEM environment. The time history 

evolution of void ratio is shown in Figure 74. Each void ratio time history curve is 

characterized by an intermediate plateau and a final asymptote. The first plateau 

corresponds with the maximum void ratio, and the final asymptote corresponds with the 

minimum void ratio. 
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Figure 74. Time history of void ratio in relative density simulations 

The maximum and minimum void ratios were extracted from the data in Figure 74 

and presented in Table 15. 

Table 15. Maximum and minimum void ratios of virtual granular assemblies from 

relative density simulations 

Sliding Friction 
Coefficient 

Rolling Friction 
Coefficient 

Maximum Void 
Ratio 

Minimum Void 
Ratio 

0.05 0.03 0.65 0.46 

0.05 0.05 0.66 0.42 

0.2 0.1 0.77 0.53 

0.3 0.2 0.86 0.59 

0.4 0.3 0.93 0.64 

0.5 0.4 1.01 0.70 

 

There is an unclear relationship in the complex interaction of sliding and rolling 

friction which will be addressed in detail in a subsequent chapter. Without a rigorous 

interaction model for sliding and rolling friction coefficient, it is difficult to elegantly 

draw a correlation to maximum and minimum void ratios. 

The data in Table 15 envelopes the final void ratios from the earlier DOE (Figure 69), 

The maximum void ratios from the relative density tests are consistently higher than the 
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final void ratios from the triaxial tests. The expectation was that granular assemblies 

initialized at the final void ratio would not exhibit any dilatancy, and aside from 

contraction due to grain deformation, would exhibit a constant volume response. 

Although the focus of current DEM calibration efforts were focused on dry and drained 

unsaturated media, undrained constant-volume conditions could potentially be modeled 

using careful prescription of initial state. 

Cohesion calibration 

Common cohesion models in DEM codes have been described in Chapter 2. Several 

models for cohesive granular materials are available in DEM literature as well as in 

commercial and open-source DEM software. Water bridging models are very commonly 

used in geomechanical simulation, however, the phenomenological performance of water 

bridging models is limited. Figure 75 shows the strength of cohesive DEM assemblies 

subjected to direct shear. The strength of the granular assemblies does not consistently 

increase as user-input cohesion coefficients increase. 

 

Figure 75. Typical water bridging model in DEM, assessed in virtual direct shear 

test (Source: Jiang and Shen, 2013 ) 

SJKR2 calibration 

The JKR model is a cohesion formulation that was described in detail in Chapter 2. 

The built-in water bridging formulation of cohesion (SKJR2) in LIGGGHTS was tested 

to see if it was suitable for modeling bulk granular assemblies. Seven direct shear tests 

were ran until they reached a shear displacement of 15 mm. The vertical stress was varied 

over two levels (60-100kPa). The cohesion energy density was varied over three levels 
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(100, 1000, 2000 kJ/m
3
). Critical state shear strength was captured at shear displacement 

of 12 mm. 

 

Figure 76. Evaluation of SKJR2 cohesion model in LIGGGHTS 

The SKJR2 model behaved rather similarly to the water bridging model evaluated in 

Figure 75. As such, the usefulness of the SKJR2 model was limited. The non-

responsiveness of critical state strength to increases in the user-defined cohesion energy 

density was problematic for modeling real soils and powders that exhibit higher cohesion 

than what the SKJR model delivered. 

Projected area cohesion 

A new cohesion model was developed to address the shortcomings of the SKJR water 

bridging model. Macro-scale cohesion was continuum concept. As such, micro-scale 

cohesion, equation 4.5, was formulated as if void space around a particle was non-

existent (i.e. as part of a continuum). Each particle of diameter, d, was projected onto a 

2D square of side length, d.  The area of the 2d square is the area over which the micro-

scale cohesion acts (equation 4.4). 

 𝐴𝑠𝑞𝑢𝑎𝑟𝑒 = 𝑑2 (4.4) 

 𝐹𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 = 𝐶𝐴𝑠𝑞𝑢𝑎𝑟𝑒 (4.5) 

 

where Asquare = projected area of a square. 
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d = diameter of particle. 

Fcohesion = micro-scale cohesive force acting between particles 

C = cohesion coefficient, Pa. 

A small study tested the sensitivity of the micro-scale cohesion formulation on the 

mechanical behavior of DEM particle assemblies subjected to triaxial compression. All 

virtual triaxial tests were run with the following DEM parameter set: 

Sliding friction coefficient = 0.55 

Rolling friction coefficient = 0.55 

Young’s modulus = 1x10
10

 Pa 

Confining pressure = 200kPa 

Particle diameter = 3mm 

% Aspherical = 44% 

Particle aspect ratio = 2 

Absolute damping coefficient = 1 N-s/m 

All specimens were isotropically consolidated. The micro-scale cohesion energy 

density was varied over a moderate range (Table 16). 

Table 16. Cohesion range 

Specimen Cohesion Energy Density [J/m
3
] 

1 1 

2 50000 

3 150000 

4 200000 

5 300000 

 

Initial void ratio (after isotropic consolidation) changed slightly with respect to 

cohesion coefficient (Figure 77). 
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Figure 77. Covariance of micro-scale projected area cohesion coefficient and initial 

void ratio after isotropic consolidation 

Despite the small covariance of void ratio with cohesion coefficient, significant data 

was gleaned from the simulations. Figure 78 shows the linearity of the global deviatoic 

stress with respect to cohesion coefficient over many strain levels. It was reasonable to 

assume that the effects of the small void ratio covariance subsided as axial strains 

exceeded 15%. Therefore, the behavior of the projected area cohesion model was well 

predicted using linear regression methods.  

For the purposes of calibration, it was found that the projected area cohesion could be 

included in a linear statistical model for a complete Mohr Coulomb failure criteria for 

simulated granular materials because the covariance in Figure 77 is small enough to be 

neglected. 
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Figure 78. Deviatoric stress at various strain levels of virtual triaxial specimens 

using the projected area cohesion model 

Summary and Conclusions 

Exploratory fractional factorial design of experiment analyses were conducted on 

virtual test data from many DEM simulations. Statistical regression methods were used to 

describe and predict the complex role of friction, stiffness, and initial state on strength 

and volume change characteristics of loaded granular assemblies.  

The repeatability of DEM simulations was assessed and was found to be good using 

random particle insertion built into LIGGGHTS as well as the 3D extension of Bagi 

(2005). The initial structural or configurational state of a virtual granular assembly was 

highly correlated with granular strength, dilatancy, and final volume change conditions. 

The sliding and rolling friction coefficients served as a baseline strength upon which the 

initial state was additive. Over-consolidated initial states added to the baseline strength, 

whereas under-consolidated initial states reduced strength from the baseline. However, 

the critical state strength of virtual granular assemblies was unaffected by initial state. In 

properly controlled statistical analysis, particle stiffness was only correlated with the 

contractile regime of the volume change curve, which is consistent with physical 

experiments by Whitman et al. (1964). Cohesion models were also explored, and it was 

found that the SKJR models of cohesion were not appropriate for meso-scale modeling of 
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dense granular systems, especially those that exhibit cohesion intercepts on Mohr-

Coulomb failure envelopes. On the other hand, the phenomenological behavior of 

projected-area cohesion scaled linearly with its user-input coefficient. Finally, relative 

density was examined as a function of sliding and rolling friction coefficient. It was 

found that sliding friction was moderated by rolling friction, which made the prediction 

of phenomenological behavior difficult when relying on independent sliding and rolling 

friction terms. Additional focus is required to discern the moderating effects of rolling 

friction on resistance to motion. 
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CHAPTER 5. VALIDATION STUDIES 

Introduction 

The DEM calibration methodology developed in previous chapters required testing. 

This chapter details three studies which investigated the strength and weakness of the 

DEM calibration approach. Three different studies were developed with the thought that 

different mechanisms of deformation of granular assemblies were explored.  The first 

study compared physical and virtual blade mixing of sand using the new DEM calibration 

methods. The blade mixing study investigated quasi-static shear conditions of granular 

deformation. The second study described cone penetrometer experiments. The cone 

penetrometer was an important test because, aside from ubiquity, it introduced a mixed 

mode of granular deformation: combined compaction and shearing. The final validation 

study compared physical and virtual hopper discharge of agricultural grains. The DEM 

calibration methodology, when founded in appropriate theory, extended to all dry 

granular materials. Thus, agricultural grains were an appropriate granular medium for 

testing the calibration methodology. In addition, the dense particle flow behavior in the 

hopper discharge experiments presented yet another mode of deformation of granular 

assemblies. 

Blade Mixing 

Soil-tool interaction in DEM 

Many soil-tool interaction problems were simulated using DEM including cutting, 

blade sweeping, and cone penetration (Shmulevich, 2010). Shmulevich et al. 2007 

performed blade cutting simulations on various blade geometries using a calibrated soil 

model from Asaf et al. 2007. Zhang and Li (2006) consider cohesive effects of moisture 

when modeling soil-blade interaction in 2D using breakable bonds.  Using similar 

methods, Sadek et al. (2011) performed soil calibration using laboratory direct shear tests 

over a range of moisture contents. A tool-soil problem simulated by Obermayr et al. 

(2011) used triaxial test data as a basis for calibration as well as the relative density 

model proposed by Salot et al. (2009). Correlation between experimental and non-
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rotational DEM model showed that the relative density method of calibration finds 

applications outside of standard geotechnical testing. 

Methods - direct shear test 

Six specimens of Michigan 2NS sand underwent direct shear testing at three normal 

loads. The critical state shear strength of each specimen was recorded and plotted (Figure 

79) for calculation of the critical state friction angle, ϕ. 

 

Figure 79. Mohr-Coulomb failure envelope of critical state shear strength for 

Michigan 2NS sand from direct shear tests 

The minimum and maximum void ratios of the Michigan 2NS sand was also 

determined at emin = 0.54 and emax = 0.82 [ASTM 4253, 4254, and 854-06].  
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Physical blade sweep 

A torsional load cell was fabricated by outfitting a hollow, square aluminum shaft 

with 4 strain gages in a full Wheatstone bridge configuration (Figure 40). It was 

calibrated by applying a known moment load to the shaft and measuring voltage drop 

across the Wheatstone bridge circuit. 

A string potentiometer was pulley-coupled to the aluminum shaft to measure angular 

position. A rectangular (100 mm x 23 mm) steel mixing blade was also bolted to the 

shaft.  The shaft-blade assembly was lowered into a bucket while a bearing constrained 

all movement except cylindrical rotation. The bucket was filled with 2NS sand and 

lightly tamped and leveled (Figure 41). The void ratio of the prepared sand specimen was 

0.65 (relative density, Dr = 40%). The bulk density of the sand specimen was 

1600 kg/m
3
. The bulk volume of the sand was approximately 3750 cm

3
.  

After the sand was leveled and the data acquisition equipment was active, the blade 

shaft was manually rotated to sweep the blade through the sand. Shaft torque and blade 

angle was measured through three trials of the blade sweep (Figure 80). 

 

Figure 80. Blade shaft reaction torque from physical blade sweep tests 
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Each of the three blade-sweeps were rotated at different speeds to assess the 

sensitivity of shaft reaction torque on shaft velocity. The shaft velocity curves for each 

test are shown in Figure 81. 

 

Figure 81. Shaft velocity for each run of the physical blade sweep test 

From Figure 80 and Figure 81, shaft reaction torque was sensitive to shaft velocity 

greater than 4 deg/s. Therefore, the DEM simulation of the blade sweep system was 

performed at a shaft velocity of 2 deg/s.  

DEM Setup 

A cylindrical bin of radius of 15 cm was initialized with an elastic wall of Young’s 

modulus 200 GPa and Poisson’s ratio of 0.3. Bottom surface of the bin was also modeled 

by the same elastic wall, but the top of the bin was left open. The interaction between the 

walls and the particles were modeled by the Hertzian contact law. The sliding and rolling 

friction coefficients acting between the particles and wall were 0.3 and 0.155, 

respectively. The steel blade was modeled as a tri-surface mesh with Young’s modulus of 

200 GPa and Poisson’s ratio of 0.3. The shaft was omitted from the simulation. However, 

the blade’s rotation was centered on the rotation axis of the shaft. In addition, the reaction 

0

2

4

6

8

10

12

0 20 40 60 80

Shaft 
Ang. Vel 
[deg/s] 

Time [sec] 

Run 1

Run 2

Run 3



144 

 

 

forces acting on the blade were transformed to a reaction torque acting on the shaft axis. 

The blade was rotated at 2 deg/sec. 

The physical sand specimen, after leveling, was approximately 70 mm deep. 

Therefore, the cylindrical DEM specimen was initialized at a depth of 70 mm. The bulk 

density of the physical sand was matched in DEM at 1.596 g/cm
3
, but only after the 

specimen was brought to equilibrium at a desired initial state. Therefore, the particle 

density was highly dependent on the void ratio immediately before the simulation started. 

Calibration 

Calibration was carried out using the information flow chart in Figure 82.  

 

Figure 82. DEM Calibration flow chart for dry, non-cohesive granular material 

The coefficients of sliding and rolling friction are identified by the effective friction 

angle method in Syed et al. (2017) based on the critical state strength of the 2NS sand 

(Figure 79). Particle-scale Young’s modulus was chosen at 10
8
 Pa to keep the timestep 

size above 10
-6

 seconds. Poisson’s ratio was arbitrarily chosen to be 0.3. The particle 

radius was set to 2 mm so that reasonable computation times could be achieved on 

available computing hardware (AMD Opteron 6274, 32 cores @ 2.2 Ghz). The relative 

density of the physical specimen was estimated to be 40%. However, the shaft blade 
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geometry and the irregular bin shape create some error in the determination of physical 

relative density. In addition, precise prescription of virtual initial state is often 

confounded by tool geometry; especially in cases where a blade is represented by shell 

surface. Regardless, the virtual relative density was approximately prescribed at 40%. 

The actual virtual relative density after specimen preparation was approximately 51%. 

Using the initial void ratio and physical bulk density, the particle scale density was 

prescribed at 2606 kg/m
3
. The coefficient of restitution was arbitrarily set to 0.1. 

Absolute damping was not active in this simulation.  Table 17 summarizes the calibrated 

DEM input parameters. 

Table 17. DEM input parameters 

Input Parameters 

Sliding friction, μs 0.3 

Rolling friction, μR 0.155 

Particle radius [mm] 2.0 mm (mono disperse) 

Young’s modulus [Pa] 1x10
8
 Pa 

Target virtual relative density, Dr [%] Estimated 40% 

Intermediate Values 

Maximum void ratio, emax 0.873 

Minimum void ratio, emin 0.446 

Initial void ratio, e0 0.655 

Actual virtual relative density 51% 

Particle-scale density 2606 kg/m
3
 

Number of particles 87884 
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Results and discussion 

The virtual blade reaction torque about the axis of rotation was measured and 

compared to the physical reaction torque acting on the shaft (Figure 83). The virtual and 

physical steady state reaction torque is in agreement. However, the transient response of 

the virtual test lags behind the physical results. It was hypothesized that the particle scale 

stiffness could be increased to reduce the error below 15 degrees of shaft rotation. 

 

Figure 83.Virtual and physical shaft reaction torque in blade mixing. Virtual blade 

velocity = 2 deg/s 

In addition to the lag, the simulation exhibits a noisy signal compared to the physical 

test results. This is attributed to the ratio of the blade characteristic length to the average 

particle diameter. Figure 84 shows a moving average of the shaft torque reaction from 

simulation compared to the average shaft torque from physical testing.  

0

500

1000

1500

2000

2500

0 20 40 60 80

S
h

a
ft

 T
o

rq
u

e
 N

-m
m

 

Blade angle [deg] 

run_1 run_2 DEM



147 

 

 

 

Figure 84. Average physical vs. moving average DEM blade mixing 

Indeed, from Figure 84, the lagging nature of the DEM simulation compare to the 

physical testing is still apparent, even after smoothing and averaging operations. 

Additional work is necessary to explain the shortcomings of the current DEM simulation. 

When the blade speed was increased to 6 deg/s, the calibrated DEM model under-

predicted the shaft reaction torque. It seemed that dynamics became a significant 

contributor to shaft torque at 6/deg/s. It was hypothesized that the coefficient of 

restitution would improve the agreement between virtual and physical experiments in the 

dynamic case. Coefficient of restitution was uniformly varied over 5 blade mixing 

simulations and shaft torque was recorded as a function of blade rotation. The results of 

the virtual experiment are shown in Figure 85. 
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Figure 85. Blade mixing at shaft velocity 6 deg/s. Run 3 = Physical experiment. 

Coefficient of restitution varied from 0.1 to 0.9 in virtual experiments. 

Figure 85 shows that increasing coefficient of restitution did not improve shaft 

reaction torque prediction. Indeed, the signal became noisier as the coefficient of 

restitution was increased. 

Density scaling test 

Thornton (2000), O’Sullivan et al. (2002), and Gong et al. (2012) used density scaling 

to increase the critical time step and speed up DEM simulation times in the simulation of 

standard, quasi-static geotechnical tests. The limits of density scaling were often 

described in terms of strain rate, but for tool-soil interaction problems, strain rate was 

difficult to know a priori. Practical limits of density scaling needed to be developed. 

Density scaling was tested on the blade sweep simulation at a blade rotation speed of 2 

deg/s with monodisperse particles with radii of 2 mm. Particle density was scaled by a 

factor of 16 to achieve a 4x increase in the critical timestep. Figure 86 shows the 
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difference between density-scaled and unscaled specimens.  The particle interaction 

parameters for both samples were the same as in Table 17 and initial void ratio was 

e0=0.655. 

 

Figure 86. Comparison of density scaled and unscaled DEM blade sweep 

simulations, ρs=particle scale density 

The DEM comparison in Figure 86 shows that density scaling added significant 

inertial effects to a 2 deg/s blade sweep and therefore was unsuitable for this speed and 

type of simulation. 

Cone Penetrometer 

Cone penetrometer testing was a simple and easy method for characterizing in-situ 

soil strength. Modeling soil reaction from conical tip penetration for DEM material 

calibration was helpful to predict dynamic soil behaviors including shear, compression 

and cutting (Gill and VandenBerg, 1968) simulation of tool-soil interaction problems. 

Asaf et al. (2007) simulated wedge sinkage on soil and performed energy analysis that 

showed that friction energy is the dominant source of resistance to deformation. 

Calibration was performed using two different wedge angles because non-unique 
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solutions were found when minimizing error with a single wedge. Their studies showed 

that 20 and 30 iterations were required to minimize the objective function until matching 

the penetration energy into soil from a physical experiment. Ucgul et al. (2014) used 

angle of repose tests to calibrate a soil model for cone and disk penetration simulation. 

Interestingly enough, hysteretic contact models used by Ucgul et al. (2014) exhibited 

better correlation than Hertz-Mindlin to physical test results, but it is unclear as to 

whether or not hysteretic contact stiffness was required for such simulations. The number 

of DEM particles contacting the ASABE cone was also factor in the accuracy of solution. 

Jiang and Yu (2006) suggested that 13 DEM particles was the minimum that should 

contact the cone. The size of the virtual container in which the cone penetrometer test 

was performed had an effect on the magnitude of cone penetration resistance. Bolton and 

Gui (1993) showed that cone penetration resistance test was insensitive on soil container 

radii larger than 40 times the cone base radius. The ASABE (ASAE standards, 1999) 

cone base had a diameter of 12.53 mm. Following Bolton and Gui’s (1993) suggestion, a 

DEM virtual container with a diameter of 501.2 mm could be used for DEM cone 

penetrometer modeling. Preliminary DEM simulation showed that the experimental 

container size effects can be attenuated or amplified by DEM particle size, stiffness, and 

friction. Many studies used different approaches in modeling cone penetration in soil to 

address DEM particle scaling, contact models and boundary to median particle size 

(B/d50) (Table-1). Previous experimental and DEM simulation studies showed that 

calibration procedure of DEM material properties using simple test such as cone 

penetrometer required further understanding of particle size to cone penetrometer ratio, 

simulation versus laboratory tests geometry scaling ratio and robust DEM material 

properties calibration methodology.  
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Table 18. Review of DEM simulation formulation and parameters for virtual cone 

penetrometer (and similar) studies 

Study Type Particle Size Initial State μs μR Normal Stiffness B/d50 

Alvaro and Ooi, 

2016 

30 deg 

ASABE 
5mm +/-10% 

Porosity = 0.53 

before 

consolidation 

0.2-0.8 0.1 

Hookean-

Hysteretic,  

100/500-2500 

kN/m 

NR [b] 

Arroyo et al., 

2011 
CPT[a] 26.5mm Cu 

[c]
 =1.31 0.75<Dr<0.97 0.35 0 and inf 

Hookean, 

300MN/m 
2.7 

Falagush et al., 

2015 
CPT 1-2mm 

Porosity 0.37-

0.42  
0.2-1.0 prohibited 

Hookean,  

500 KN/m 
18 

Jiang et al., 2014 CPT 7.6mm Cu=1.3 
2D_Void 

Ratio = 0.27 
0-0.5 n/a  

Hookean, 

75MN/m 
21 

[a] CPT refers to Cone Penetration Test commonly used in geotechnical site characterization 

[b] NR- Not Reported 

[c] Cu = Coefficient of Uniformity 

 

The objective of the study was to develop DEM calibration of sandy loam soil with 

different initial relative density and validate the DEM model using ASABE standard cone 

penetrometer testing.  

Materials and methods - cone penetrometer test  

A cone penetrometer device was developed with commercial-off-the-shelf 

components. An analog S-type load cell (500-lb capacity) was fixed to a smooth rod and 

ASABE cone tip (a 30-degree cone and 12.53 mm cone base diameter). The analog signal 

from the load cell was read using the ADC built into the Arduino which was used to 

transfer data back to a PC for analysis. An ultrasound range finder was used to determine 

depth of penetration. The cone penetrometer device was used to measure cone 

penetration resistances of Norfolk Sandy Loam (NSL) that has particle size distribution 

of 72% sand, 17% silt and 11% clay (Batchelor, 1984).  

Norfolk Sandy Loam (NSL) was provided from the National Soil Dynamics 

Laboratory in Auburn, AL. The soil was prepared at a moisture content of 6.3% (d.b.). To 

simplify calibration, NSL was calibrated as cohesion-less media. Soil bulk densities of 
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1.71 Mg/m
3
 and 1.22 Mg/m

3
 (Tekeste et al., 2007) were assumed as the maximum and 

minimum bulk density for initial bulk density in DEM simulation.  

Cone penetration resistance of NSL was measured using ASAE standard cone 

penetrometer (Figure 87). The soil specimens were prepared in a section of PVC pipe that 

was 102 mm in diameter. Specimens were pluviated and tamped periodically to attain 

desired bulk densities that correspond to the relative densities. The specimen height 

inside the PVC pipe section ranged from 200 to 230 mm. The PVC pipe section and data 

acquisition system is shown in Figure 87. The cone penetrometer was manually plunged 

into the NSL very slowly at approximate speed of 16.5 mm/sec. to maintain quasi-static 

conditions. 

 

   

(A) (B) (C) 

 

Figure 87. PVC pipe section filled with loose Norfolk sandy loam soil at 6.3% 

moisture content (A);  Arduino data acquisition system ans S-beam load cell (B); 

and ASABE 30- deg cone (C).  

DEM soil pone penetrometer and DEM model calibration  

The 30 degree ASABE cone has a diameter of 12.53 mm. The diameter of the virtual 

container was modeled to be 500 mm. The depth of the virtual container was 300 mm. 
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The DEM particle radius was 2 mm. Comparing characteristic lengths of the ASABE 

cone to the particle provides, a cone diameter to particle diameter of three was used to 

ensure three particles at randomly in contact to the cone at once. 

DEM material properties calibration  

The DEM calibration procedure after (Syed et al., 2017) was used to determine DEM 

soil parameters including the initial soil assembly structural states of the virtual NSL 

DEM soil model. The DEM algorithm (Figure 82) comprised of the assumption that 

relative density and bulk density strongly influences the kinematic and inertial behaviors 

of particle dynamic systems; and the critical state soil strength strongly affects the kinetic 

particle dynamic behaviors. Assuming this cause-effect relationship of soil properties and 

mechanical behaviors, the DEM material properties (sliding friction coefficient, rolling 

friction coefficients, contact stiffness) were calibrated using automated iterative DEM 

simulations in LIGGGHTS (Open source DEM code) (Syed et al., 2017). The initial void 

ratio and particle scale density were also iteratively adjusted in relation to the DEM 

particle size and bulk density. Viscous damping DEM properties were assumed to have 

negligible influence for quasi-static tool-soil DEM simulation and were not included in 

the DEM calibration methodology.    

Critical state internal angle of friction was estimated from quick direct shear tests at 

low normal stresses. Based triaxial test estimated relationship between octahedral shear 

stress and octahedral normal stress, a yield function with non-cohesion (Bailey and 

Johnson, 1989) was assumed for the DEM soil contact model selection. The estimated 

friction coefficient values of sliding (μs=0.03) and rolling (μR=0.025) were used for the 

DEM simulation. Relative densities of 5%, 30%, and 90% were used to determine the 

initial void ratios for DEM simulations of three density conditions. From simulations 

described in Salot et al. 2009, the maximum and minimum void ratios for the virtual NSL 

are emax=0.66 and emin=0.42. Therefore, three DEM cone penetrometer simulations will 

be performed at void ratios near eloose=0.65, emedium=0.61, and edense=0.44. Relative 

density (Dr) was characterized as 𝐷𝑟 =
𝑒𝑚𝑎𝑥−𝑒

𝑒𝑚𝑎𝑥− 𝑒𝑚𝑖𝑛
.  
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Stable DEM soil specimens 

A technique was developed to create stable DEM soil assembly in the cylindrical 

specimens at initial states (Figure 88). DEM particles were initialized in a cylindrical 

container with a rigid base and a temporary lid, and were allowed to equilibrate over 

many DEM cycles.  During this time, the reaction force on the lid of the cylinder was 

monitored. The reaction force decreased over the DEM calculation cycles as the 

specimen tended toward the minimum potential energy state. Eventually, the specimen 

could no longer equilibrate, at which point, the cylinder was transversely vibrated with 

amplitude of 0.1xParticle Radius at 30 Hz. The vibration is turned off when the lid 

reaction reaches zero. At this point, the sample is completely stable and the lid can be 

removed. Figure 89 shows the trend of lid reaction force as equilibration progresses. 

 

 

 

Figure 88. DEM cone penetrometer simulation side view 
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Figure 89. Lid reaction forces over time 

DEM particle size sensitivity 

DEM particle size was varied to assess their contribution to the reaction force of an 

ASABE cone penetrating a dense granular assembly at 16.5 mm/s.  Effect of particle size 

on signal noise (Figure 90) showed smaller particles seem to reduce the noise in the cone 

resistance data.  

Indeed, the practical requirements of particle size involve the number of contact with 

a tool face at any given moment during a simulation. Since the cone penetrometer device 

is relatively small to begin with, it demands small DEM particles in the simulation of its 

operation. In addition, computational demands of smaller particles very often limit 

particle size. The necessary balance between particle size, tool geometry, and 

computational demand is often upended by computational demand.  
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Figure 90. Effect of particle size on DEM predicted signal noise 

It is computationally infeasible to run multiple iterations of the DEM simulation with 

DEM particle similar to the physical soil particle size distribution or at 1 mm particle 

diameter size. As particle size decreases, critical stable time step and particle count take 

computationally long simulation times. After preliminary tests, DEM particle radius of 

2 mm was chosen to validate the DEM simulation of cone penetrometer at different 

relative density. 

Results and discussion - Norfolk Sandy Loam cone penetrometer test 

The results from physical cone penetrometer testing are shown in Figure 91. The soil 

penetration resistance exhibited softening for all initial relative density values. The loose 

specimens exhibited softening before 50 mm of penetration, while the densest specimen 

softened at around 110 mm of penetration. In a remolded uniform soil specimen without 

hardpan, the relatively uniform steady-state deformation after the softening could be 

explained by the cavity-expansion theory of soil penetration tests as noted in Yu and 

Mitchel (1998). 
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Figure 91. Cone penetration resistance measurement from Norfolk Sandy Loam soils for 

three Relative Density (RD) values of 5%, 20% and 90%. 

 

NSL cone penetrometer DEM simulation  

The DEM soil model for NSL was calibrated using direct shear test data. A Hertzian 

particle contact formulation was used with Young’s modulus = 1x10
8
 Pa and Poisson’s 

ratio =0.3. The sliding and rolling friction coefficients were 0.03 and 0.025, respectively. 

The particle density was 2000 kg/m
3
. Initial void ratios were varied to approximate the 

physical relative density values of NSL.  The physical relative densities are estimated 

from average volume measurements of soil in the PVC cylinder. 

Table 19 and  

Table 20 show the approximate physical and DEM relative densities. The physical 

relative densities are estimated from average volume measurements of soil in the PVC 

cylinder. 
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Table 19. Initial states of soil used for cone penetration tests 

Physical 

Specimen # 
Condition 

Physical relative 

soil density 

1 Loose 5.0% 

2 Medium 30% 

3 Dense 90% 

 

 

Table 20. Initial states of virtual cone penetrometer tests 

Virtual Specimen # Condition Virtual Relative Density DEM Initial Void Ratio 

1 Loose 7% 0.641 

2 Loose 22% 0.606 

3 Medium 43% 0.556 

4 Medium 52% 0.534 

 

The DEM particle radius was chosen to be 2 mm for reasonable computation times, 

and as a result, the noisy cone resistance signal needed to be smoothed using a moving 

average technique which used the arithmetic mean of +/- 20 data points for each step. 

Figure 92 shows the moving average and raw signal of DEM simulation cone penetration 

resistance. 
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Figure 92. Comparing moving averaged to raw DEM cone penetration resistance, 

red line = moving average, blue points = raw DEM cone resistance. 

The data points from raw DEM in Figure 92 exhibit considerable scatter because the 

contact between the virtual cone penetrometer and the DEM particles is intermittent. 

Effect of particle size on DEM predicted signal noise shows that the noise can be reduced 

considerably by reducing the particle size, and consequentially, increasing the tool 

diameter-to-particle diameter ratio.  

The moving average method in Figure 92 was reliable for resolving general transient 

trends and steady state behavior. However, localization, shear plane prediction, and 

assessing the effects of small tool features will require smaller particles. 
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Figure 93. Comparing Comparison of physical and virtual experiments of the cone 

penetrometer test, RD=relative density. 

The comparison between the physical tests and calibrated DEM simulations are 

shown in Figure 93. The trend of increasing cone resistance as initial density increases 

for both physical and virtual experiments (Figure 93). The cone penetration resistance for 

the dense state 90% RD physical was not successfully modeled in DEM. Further DEM 

calibration will be required for dense soil conditions. Utilizing direct shear test (less than 

100 kPa consolidation stress) in the DEM calibration may also affect the robustness of 

the DEM calibration for reproducing the initial void ratio and optimize the DEM 

parameters. In predicting soil compaction behavior from wheel loading, Bailey and 

Johnson (1989) soil compaction model for Norfolk sandy loam was developed from 

triaxial test with 500 kPa confining stress. As shown in Figure 93 and a close-up 

comparison between the physical RD=5% and virtual RD=7% conditions in Figure 94, 
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DEM predicted transient and steady state cone resistance force in close agreement to the 

physical experiment. 

 

 

Figure 94. Comparison of virtual and physical tests at low relative density 

Comparing the mean steady state or near steady state cone penetration resistance 

between the DEM simulation and physical experiments (Figure 95), DEM predicted 

steady state forces were similar to the physical data except for the 90% physical relative 

density  . 
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Figure 95. Comparison of physical and virtual steady state cone penetration 

resistance for different relative density 

Figure 95 also showed the increased in cone penetration resistance with increase in 

relative density was captured both in DEM and physical tests. The hypothesis proposed 

by Salot et al. (2009) that physical relative density can be set equal to virtual relative 

density is supported by the data in Figure 95.  

Conclusion  

DEM model for Norfolk Sandy Loam (NSL) was developed using the proposed DEM 

calibration methodology and validated using cone penetration test. Within the range of 5 

to 30% relative density, DEM model predicted the soil cone penetration resistance with 

reasonable minimum errors. Relative density, a critical soil property parameter, was 

successfully integrated into DEM calibration methodology and showed strong influence 

on both physical test and DEM simulation of cone resistance. The current DEM 

calibration methodology requires further improvement for simulation and DEM material 

properties calibration of higher relative density. The quasi-static calibration algorithm 

developed for DEM soil model uses critical state internal friction angle as an anchor and 
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requires that engineers determine the appropriate relative density of the material without 

altering other DEM parameters. Future work will involve creating very dense DEM 

model, yet stable DEM specimens to verify whether the proposed calibration applies to 

high density soils subject to cone penetrometer testing.  

Hopper Discharge 

Many studies of granular flow have used hopper discharge to calibrate DEM 

parameters. Anand et al. (2008) use a pseudo-3D DEM model of hopper discharge to test 

various parameters in Beverloo’s massflow rate equation (1961) with very close 

agreement. Ketterhagen et al. (2008) examined the effects of constraining particle 

rotation on hopper discharge and found that DEM models generally agree with Jenike 

theory in predicting mass-flow and funnel-flow conditions. Segregation of fines was also 

observed in the funnel-flow conditions. Höhner et al. (2013) uncovered an interesting 

limitation in that, while hexagonal particles self-align and block flow in physical 

discharge experiments, the polyhedral DEM model of hexagonal particles do not exhibit 

such alignment. However, other particle shapes (icosa-, dodeca-, octa-, and tetrahedra) 

exhibited reasonable discharge flow behavior. Markauskas et al. (2015) simulated hopper 

discharge of maize kernels using multisphere and single particle approaches using 

methods from Wensrich and Katterfield (2012) to approximate rolling friction 

coefficient.  Markauskas et al. noted a significant change in hopper discharge time when 

moving from single sphere to multisphere methods.   

The grain-grain sliding friction coefficient was difficult to measure directly 

(Gonzalez-Montellano et al., 2012). However, it was deduced by comparing direct shear 

tests to DEM simulations (Coetzee and Els 2009). Coetzee and Els (2009) modeled corn 

grains using two particle clumps whose parameter calibration was performed in the 

context of 2D direct shear and Oedometer tests. Sliding friction coefficient, μs=0.12, was 

selected for their simulations to represent bulk internal friction angle, θ=24deg. Although 

porosity was not considered, Coetzee and Els showed qualitative agreement comparing 

simulations with blade sweep experiments. González-Montellano (2012) experimentally 

determined many DEM parameters for maize kernels including grain-wall friction, 

stiffness, and coefficient of restitution. However, Coetzee (2016) founds that massflow 



164 

 

 

rate from DEM hopper discharge simulations was insensitive to grain-wall friction, 

stiffness, and contact damping. Alternate measurements from hopper discharge were also 

studied, such as drag on a submerged load cell in a discharging bed (Moysey et al., 2013). 

Although massflow rate and reaction forces were often used as calibration points for 

DEM simulations, there was little evidence that showed the effects of initial state on the 

volumetric change in granular flow. In this study, it was shown that the initial state of a 

granular assembly affected grain velocity independently of massflow rate. In addition, 

calibration processes accounted for the state of the physical bulk material, as well as the 

familiar particle scale properties. The proposed calibration process was inspired by the 

work of Coetzee (2016) and Wensrich and Katterfield (2012). 

Physical test methodology 

A small hopper was used to discharge 14 kg of gently air pluviated corn grains on to a 

load cell. The bulk density, ρb, of the corn was 800 kg/m
3
. The cross section of the 

hopper was a square of side length 26 cm. As pluviated, the height of the corn assembly 

was approximately 26 cm. The cross-section of the discharge chute of the hopper was a 

10 cm x 10 cm square. A 60 degree includes surface connected the main hopper body to 

the discharge chute. A string potentiometer was used to monitor the height of the center 

of the top surface of the corn grain assembly. The load cell and the string potentiometer 

data was collected at a sample rate of 15 Hz using an Arduino controller.  

DEM methodology 

A virtual hopper test was created using the open-source LIGGGHTS software.  The 

physical hopper geometry was replicated in the virtual environment.  The LVDT ball 

from the physical experiment was approximated using the DEM parameters shown in 

Table 21. Interparticle contact was simulated using the Hertz-Mindlin model with history 

effects. Rolling friction was simulated using the built-in EPSD model.  

Calibration 

When calibrating DEM spheres to aspherical kernels, it was  hypothesized that the 

scaling needed to satisfy two inertial requirements:  1) particle-scale rotational inertia, 2) 

bulk inertia. The rotational inertia was enforced by equating the kernel’s radius of 
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gyration to that of the sphere (equation 5.2). The kernel was approximated by an ellipsoid 

with three principle semi-axes, x, y, and z.  

 
𝐼𝑘𝑒𝑟𝑛𝑒𝑙

𝜌𝑘𝑒𝑟𝑛𝑒𝑙
4

3
𝜋 𝑥 𝑦 𝑧 

=
𝐼𝑠𝑝ℎ𝑒𝑟𝑒

𝜌𝑠𝑝ℎ𝑒𝑟𝑒
4

3
𝜋 𝑟3

 (5.2) 

The ellipsoidal kernel had three mass moments of inertia. However, for this analysis, 

only the maximum and minimum values of rotational inertia are considered. Algebraic 

manipulation revealed that rotational inertia could be enforced by setting the radius of the 

sphere equal to rave. 

 𝑥2 + 𝑦2 = 8 𝑟max
2  (5.3) 

 𝑦2 + 𝑧2 = 8 𝑟min
2  (5.4) 

 𝑟𝑎𝑣𝑒 =
𝑟min+𝑟max

2
 (5.5) 

 𝜌𝑘𝑒𝑟𝑛𝑒𝑙𝑥 𝑦 𝑧 = 𝜌𝑠𝑝ℎ𝑒𝑟𝑒 𝑟𝑎𝑣𝑒
3  (5.6) 

From equation 5.6, rave=4mm.  Finally, the bulk inertia was enforced by equating the 

bulk density of the physical specimen to that of the virtual specimen (equation 5.7). 

 𝜌𝑏 = 𝜌𝑠𝑝ℎ𝑒𝑟𝑒 𝑆 (5.7) 

Where S = initial solid fraction; 

ρb = bulk density. 

Recall that solid fraction and void ratio were related by equation 5.8. 

 𝑒 =
1

𝑆
− 1 (5.8) 

Where e = void ratio 

The initial void ratio of a granular assembly was controlled by several methods.  In 

the current study, particles’ friction coefficients were manipulated as they were pluviated 

into the hopper. Lower friction coefficients during pluviation yielded lower void ratios, 

and vice versa. In addition, the hopper was vibrated to obtain slightly denser samples than 

was possible by pluviation alone. 

Bulk and particle density 

All hopper specimens were pluviated with particle density, ρs=1300 kg/m
3
. After the 

particle assembly reached equilibrium, the solid fraction of the virtual assembly was 

measured and ρs was adjusted so that the virtual bulk density exactly matched the 

physical bulk density of the grain specimen (ρb=800 kg/m
3
). Equation 6.7 was always 
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enforced, regardless of the particle size or void ratio of the assembly just before before 

discharge. 

Rolling friction 

Rolling friction models added moment to spheres to mimic the effects of shape, 

angularity and surface roughness. In the case of corn kernels, the effects of shape on 

rotation behavior outweighed the effects of roughness. Therefore, the current analysis 

focused on using the particle geometry to develop a suitable rolling friction coefficient. 

The following analysis was adapted and simplified from Wensrich and 

Katterfield (2012). Consider the 2d projection of the rigid ellipsoid on a plane in Figure 

96.  External moment, Ma, was acting on the ellipsoid to rotate it 'over-center.' 

 

Figure 96.  Free body diagram of rigid ellipsoid on a plane 

To rotate the ellipse over-center, Ma must have exceeded the Fg-Fc couple. 

 𝑀𝑎 ≥ 𝐹𝑐  𝑒𝑐 (5.9) 

Now consider the 2d project of a rigid sphere with rolling friction, as in Figure 96, 

with similar moment, Ma, acting on it.  In order for the sphere to have exhibited rotation, 

Ma must have exceed maximum rolling resistance MR. Elastoplastic spring dashpot 

(EPSD) models of rolling resistance defined MR with respect to a coefficient of rolling 

friction, μR, normal contact forces, Fc, and sphere radius, rs. Therefore, the mobilization 

condition was described by equation 5.10. 

 𝑀𝑎 ≥ 𝑀𝑅 = 𝜇𝑅 𝐹𝑐  𝑟𝑠 (5.10) 

c 
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Comparing equations 5.9 and 5.10, the sphere's rolling resistance was analogous to 

the ellipsoid's eccentric contact. 

 𝜇𝑅′ =
𝑒

𝑟𝑠
 (5.11) 

 

 

Figure 97. Free body diagram of rigid sphere on plane 

Many corn kernels in the physical sample may have had an initial fabric which more 

closely resembles Figure 98, where the ellipsoid was already over center and required no 

additional moment to rotate. In this case, the rolling friction coefficient was effectively 

zero. For the purposes of this analysis, 50% of the corn kernels were assumed over-center 

(Figure 98), thus the rolling friction coefficient was approximated by equation 5.12. 

 𝜇𝑅 =
𝜇𝑅

′

2
 (5.12) 

 

Figure 98. Free body diagram of over-center ellipsoid 

The micromechanical model was used to determine the rolling friction coefficient, 

particle size, and particle density. 
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Other DEM parameters 

Additional DEM parameters were taken from Gonzalez-Montellano et al. (2012), see 

Table 21. Although Coetzee’s (2009) reported that dry corn under direct shear conditions 

exhibited an internal friction angle of 23 degrees and selected 0.12 as the coefficient of 

sliding friction. The methodology from Syed et al. (2017) predicted the effective friction 

coefficient to be 0.134. The difference between Coetzee and Els (2009) and Syed et al. 

(2017) was nearly the same considering the statistical scatter in Syed et al’s direct shear 

model. 

Table 21. DEM parameters for hopper discharge of corn grains 

Parameter Value Source 

Young’s Modulus 298.1 MPa Gonzalez-Montellano et al (2012) 

Poisson’s Ratio 0.3 - 

Sliding friction coefficient 

particle-particle 
0.12 Coetzee and Els 2009 

Rolling friction coefficient 

particle-particle 
0.532 Current Study 

Sliding friction coefficient 

particle-wall 
0.336 Gonzalez-Montellano et al. (2012) 

Coefficient of restitution, 

particle-wall 
~0.60 Gonzalez-Montellano et al. (2012) 

Coefficient of restitution, 

particle-particle 
~0.25 Gonzalez-Montellano et al. (2012) 

Particle radius 4 mm Current study 

Particle density 1334 kg/m
3
 Current study 

 

Note that the rolling friction coefficient calculated in the previous analysis produced a 

rolling friction coefficient that was larger than the sliding friction coefficient. Thus, the 
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micromechanical EPSD rolling friction model limited the rolling friction coefficient to 

the ceiling set by the sliding friction coefficient. 

The DEM parameters in Table 21 served as an anchor for calibration efforts. The 

initial relative density of the corn assembly was not prescribed and required iteration to 

arrive at a calibrated DEM parameter set. 

Calibration using simulation data 

Sensitivity analyses were performed to verify DEM parameters from Table 21. In 

addition, sensitivity analyses were used to describe the effects of the initial configuration 

of the virtual corn grains. 

Mass flow of grain discharge was typically used to calibrate DEM parameters to 

granular material flow. However, mass flow did not fully capture the bulk response of the 

granular material. Two hopper systems were simulated with identical bulk density, 

interparticle friction, and particle size. The DEM parameters from Table 21 were used 

except the sliding and rolling friction coefficients were set to 0.5. The initial void ratios 

of the systems differed (e0=0.743 vs. 0.594). In this case, the mass flow curves of both 

the systems are identical (Figure 99), but the displacements of the LVDT ball were not 

the same (Figure 100). This observation indicates that granular calibration using hopper 

tests could be enhanced by capturing some feature of volume change, as the LVDT ball 

did. 

 

Figure 99. Remaining mass in hopper vs. time 
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Figure 100. Displacement of the LVDT ball during grain discharge from the hopper 

 

Five DEM hopper discharges were simulated to provide a baseline for calibration.  

The hopper specimens were prepared by air pluviating the grains into the hopper.  The 

friction coefficients were not varied between pluviation and discharge.  Therefore, the 

relative density of all simulations was that of a gently, air-pluviated specimen. As 

expected, the slope of the mass vs. time curves (Figure 100) decreased as the sliding 

friction coefficient increased.  It was important to remember that as pluviation friction 

increased, initial void ratio also increased. However, as evident from Figure 99, the initial 

void ratio did not affect the mass flow of discharge as long as bulk density was held 

constant. Therefore, the variation in the discharge mass curves in Figure 101 was only 

due to the change in sliding friction coefficient. 
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Figure 101. Mass leaving the hopper with respect to time over various DEM sliding 

friction coefficients 

The ball displacement vs. time curves in Figure 102 showed how the center of the top 

surface of the granular bed changed as discharge ensued.  The initial void ratio for each 

simulation was noted because, from Figure 100, the effects on the ball velocity were 

independent from friction. 

 

Figure 102. DEM Displacement of the LVDT ball as a function of sliding friction 

coefficient and initial void ratio 
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Figure 103 plots the DEM massflow rate with respect to sliding friction coefficient, 

μs. The experimental massflow rate was satisfied by μs=0.467. The DEM ball velocity 

was also plotted with respect to μs in Figure 104 and it did not converge with the 

experimental ball velocity. Therefore, the next course of action was to simulated hopper 

tests using μs=0.467 while varying the initial void ratio. 

 

Figure 103. Massflow rate with respect to sliding friction coefficient 

 

Figure 104. DEM and physical LVDT ball velocity as a function of sliding friction 

coefficient 
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Simulations varying initial void were performed by varying friction during pluviation.  

As pluviation friction decreased, the initial void ratio also decreased. As pluviation 

friction approached zero, the initial void ratio tended to the lower limit of 0.577 for 

random packed monodisperse spheres (Song et al., 2008). However, since flexible 

spheres were used (with the same elasticity as real corn kernels), additional energy was 

used to further densify the packing. Kinetic energy was introduced into the system by 

vibrating the hopper in three translational directions (Amplitude=0.1 x particle diameter, 

freq=100Hz) to produce slightly more compact specimens. Figure 105 shows ball 

velocity with respect to initial void ratio while denoting the compaction method. 

 

Figure 105. Ball velocity as a function of initial void ratio 

Two points from Figure 105 that had nearly the same initial void ratio, but different 

compaction methods, exhibited vastly different steady state ball velocities. It was 

hypothesized that kinetic energy from dynamic compaction may have changed the fabric 

of contact between the specimens, which resulted in different bulk volume change 

behavior. It would be interesting for further studies to investigate the effects of initial 

fabric on bulk volumetric flow behavior. 

90

92

94

96

98

100

102

104

106

108

110

0.54 0.59 0.64 0.69 0.74

Ball Velocity 
[mm/s] 

Initial Void Ratio 

Experimental ball velocity 

Dynamic compaction 

Variable friction air pluviation 



174 

 

 

Calibration result 

The calibration of DEM spheres to physical kernels and hopper test results showed 

good agreement in both discharge mass (Figure 106) and ball velocity (Figure 107). The 

initial void ratio was 0.551. 

 

Figure 106. Comparison of physical and DEM experiments of corn mass discharging 

from hopper 

 

Figure 107. Comparison of physical and calibrated DEM model of LVDT ball 
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Images of the physical hopper test (Test 1) were compared with the virtual hopper 

discharge simulation in Figure 108.  

       

 

 

 

Figure 108. Images of physical (left) and virtual (right) hopper discharge test (Test 

1) 

Indeed, close scrutiny of Figure 108 showed that the sinkage of the LVDT ball in 

both physical and virtual tests was highly correlated. However, the shape of the upper 
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surface of the grain assembly differed from physical to virtual. The virtual test showed 

that particles created stacks in the corners of the hopper where the physical test showed 

no such thing. In addition, the discharge rate between physical and virtual was slightly 

asynchronous, which was also apparent in Figure 107. Improved calibration is possible 

with a larger hopper and granular specimen because fully developed flow during 

discharge around the LVDT ball only exists for a very short period of time and 

calibration to this small timeframe was difficult. 

Conclusions and future work 

Conclusions from the hopper discharge experiments are listed here. 

 Increased sliding friction resulted in decreased massflow rate and ball velocity. 

 Massflow rate was unaffected by initial void ratio as long as bulk density was 

held constant 

 Initial void ratio uniquely affected ball velocity 

 Massflow rate and volumetric flow rate were decoupled (within limits) 

 Calibration of granular flow considered initial void ratio after sliding friction 

coefficient was calibrated. 

Future work should explore the role of the initial state of polydisperse and 

multisphere particles on volumetric flow rate. Also, the fabric of specimens may 

influence the volumetric flow. To enhance the accuracy of calibration, larger hopper tests 

(25 kg+) should be correlated with DEM because the steady state velocity of the ball 

existed for less than 2 seconds using a 14 kg specimen of corn kernels. In addition, a 

methodical procedure for bringing DEM specimens to a target void ratio should be 

developed and standardized. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

This chapter presents an overview of the technical merit and scientific value gained 

from the study and an overview of the lessons learned. The conclusions are grouped into 

four categories (e.g., conclusions about statistical calibration, friction, relative density, 

and structured calibration) and associated with outcomes, benefits, and applications. The 

conclusions also associated with the goal of the research. Finally, future work in DEM 

modeling of soils and granular material is recommended, starting with refined particle 

interactions to practical handling of large scale simulations. 

Statistical Calibration 

Statistical methods for calibrating DEM input parameters to mechanical behavior of 

dense granular materials were limited by assumptions about non-linearity and statistical 

interactions. Therefore, a more theoretically driven approach should be used to develop 

DEM calibration models. Sliding and rolling friction coefficients were particularly 

difficult to calibrate using statistical methods because the nature of their statistical 

interaction was unknown a priori. Therefore, the quality of a statistical interaction model 

was highly dependent on the form of the assumed interaction term. A theoretical structure 

for the interaction of sliding and rolling behavior, such as effective friction, enhanced the 

modeling capability.  

On the other hand, statistical calibration of DEM relative density and effective 

friction coefficient was useful because their relationship to strength and dilatancy was 

linear in practical ranges for common geomaterials. In addition, some granular systems 

were difficult to calibrate with a theoretical guide. Calibration of granular flow through a 

hopper was successfully calibrated using purely empirical methods.  

Statistical methods in calibration of DEM input parameters was an invaluable tool 

when theoretical methods fell short of predicting phenomenological outcomes of DEM 

simulations; however, the use of statistical methods should be preceded by exhaustive 

theoretical calibration. 
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Friction 

A theoretical accounting for total friction acting between two DEM particles was very 

important in understanding the non-linear and interactive contribution that sliding and 

rolling friction coefficients had on internal friction angle of dense granular materials. A 

combined friction coefficient, termed effective friction coefficient resolved the interaction 

between micromechanical sliding and rolling resistance, and thus, was used in a statistical 

calibration of DEM inputs to mechanical behavior of dense granular materials. Micro-

scale effective friction uniquely correlated with critical state strength of granular 

materials. Particle stiffness, size, and structural state had no effect on critical state 

internal friction angle. Therefore, DEM friction coefficients were calibrated before any 

other parameters are considered. Pre-calibrating the friction coefficients simplified DEM 

parameter calibration greatly because the design space of calibration was reduced by two 

variables. In addition, the effects of friction on latent concepts, like relative density, were 

controlled because pre-calibrated friction coefficients did not change throughout 

calibration of the remaining DEM parameters. 

Relative Density 

The initial structural or configurational state of dense DEM particle assemblies was a 

latent input variable in DEM simulations that simplified calibration. The initial state was 

measured using common geotechnical and granular mechanics concepts such as void 

ratio, porosity, and solid fraction. As in traditional drained granular mechanics, the 

relative density of a DEM assembly was strongly associated with peak strength and 

dilatancy. In addition, the relative density had no effect on the critical state strength of a 

granular assembly. The latent nature of relative density confounded its ability to be 

modeled using generic statistical methods. The friction coefficients chosen to calibrate 

critical state strength altered the maximum and minimum possible void ratios associated 

with a virtual granular assembly. Thus, the initial void ratio that corresponded with a 

particular initial relative density was determined after friction coefficients were 

calibrated. The relative density was a powerful link between physical and virtual 

specimens because when the physical and virtual relative densities were equated, the 

degree of impending dilation or contraction was approximately accounted for. A 
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calibration method that calibrated DEM friction coefficients and relative density 

sequentially was robust enough to capture peak and critical state friction angles, as well 

as dilatancy. Furthermore, absolute volumetric strain was also captured by relative 

density. Indeed, equating physical and virtual relative density captured substantially more 

key features of soil and grain mechanical behavior than other methods available today. 

Structured Calibration 

A structured, closed-loop calibration model was developed after exhaustive 

theoretical and empirical studies. The calibration model began with an anchoring step. 

The critical state strength of drained granular material was measured using triaxial or 

direct shear laboratory tests. Using semi-empirical methods proposed in the current study, 

sliding and rolling friction coefficients were prescribed. Subsequently, friction 

coefficients, along with stiffness, particle size distribution, and cohesion, defined a 

material without an initial state. The possible initial states of a virtual material were 

determined numerically in any DEM code. Likewise, the possible initial states of physical 

granular material were determined by air-pluviation or vibratory compaction. Equating 

relative density between physical and virtual systems created a prescription of initial void 

ratio for virtual specimens. Attaining a specific initial void ratio in DEM simulations was 

difficult. Additional work should focus on fast DEM techniques to minimize system 

energy in desired structural states. 

The proposed structured calibration did not require open ended iteration for soil and 

grain problems such as blade mixing, cone penetration, and hopper discharge. A single 

pass through the calibration algorithm created viable DEM parameter sets suitable for 

simulation of complex cutting and compaction soil and other granular material. 

Summary of Conclusions 

The goal of the study was to develop a clear methodology to calibrate DEM 

parameters to mechanical behavior from laboratory tests of drained soil and other 

granular materials. The calibration algorithm presented in this study was an intelligent, 

structured, and closed loop method which relates simple geotechnical laboratory tests to 

DEM parameters without open ended iteration. Validation studies showed that the 



180 

 

 

presented method was robust with respect to cutting and compaction behavior in the 

context of cone penetrometer and blade mixing simulations. In addition, bulk granular 

flow of corn grains from a hopper was also modeled successfully. Properly calibrated 

models of granular material have helped develop insights into the mechanisms of bulk 

material handling and soil deformation as a result of soil-tool interaction. 

Future Work 

The studies performed and insights gained have paved a path forward to guide future 

research in DEM calibration methodology. For the advancement of the current DEM 

methodology, further research will be needed in the following areas. 

Cohesion models 

Additional work is needed to refine cohesion models that scale realistically with 

normal stresses. The current cohesion models, like JKR, add attractive forces between 

particles, but do not mechanistically increase net attractive forces as a particle assembly 

becomes denser. Future algorithms to model cohesion need to consider detection of a 

local coordination number to adjust attractive forces accordingly. 

Initial state algorithms 

In the Methods Chapter, a particle generation algorithm was described in detail. The 

reality is that 3D particle packing algorithms are very limited. One problem with particle 

generation is that for each particle that is inserted, the optimal position of the new particle 

is unknown; and the optimal position of the new particle remains unknown until a great 

deal of particle assembly volume has already been generated. Therefore, smart heuristics 

which can guide an algorithms’ placement of particles need to be developed so that 

generation can be fast and linear. Heuristics also need to point to a desired and stable 

void ratio so that many DEM computation cycles are not wasted on achieving a particular 

structural or configurational state. 

Dynamics 

This study focused on DEM parameters without inertial or velocity sensitivity.  

Indeed, real particle systems are often most accurately modeled dynamically and further 

research is required to adapt DEM parameters that influence dynamic behavior.  
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Absolute viscous damping 

From early results presented in the Methods chapter on absolute viscous damping, it 

is reasonable to hypothesize that absolute viscous damping could be a critical parameter 

in modeling saturated drained soil responses.  

Contact damping – coefficient of restitution 

Results from the blade mixing study presented in the Validation Studies chapter 

showed that the contact damping (coefficient of restitution) has an unclear influence on 

the mechanical response of soil under dynamic mixing (blade shaft velocity = 6 deg/sec). 

Theoretical reasoning suggests that an increase in coefficient of restitution should 

increase the resistance on the mixing blade, but simulation results do not show expected 

trends. Further work is needed to refine the understanding of contact damping on 

phenomenological behavior. 

DEM computational efficiency for large scale simulations 

Finally, the practical aspects of granular simulation have to be addressed rigorously. 

Work by Thornton (2000) showed that the critical timestep size could be increased by 

altering particle density and slowing Rayleigh wave propagation through a particle. This 

“density scaling” was a first attempt at managing the computational demands of dense 

DEM simulation. During the course of this study, an interesting hypothesis was 

developed to limit the Rayleigh wave propagation speed numerically (without altering 

particle density). A velocity filter could be added to the integration of DEM particle 

position which would cut off velocities higher than a critical user-defined value. This 

“Rayleigh bypass” integration method could be used for pseudo-static and slow dynamic 

systems. Thorough investigation is required to document the benefits and limitations of a 

Rayleigh bypass integrator. 
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