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ABSTRACT 

Recent transportation bills have required each state to have a Highway Safety 

Improvement Program which emphasizes a data-driven approach to improving highway safety. 

This data-driven paradigm, coupled with the fact that approximately 40 percent of traffic crashes 

in the U.S. occur at intersections, has led to substantial research focusing on intersections. This 

study focuses on three areas of intersection safety: vehicular crashes, pedestrian and cyclist 

crashes, and crashes near ramp-terminal intersections. The impact of geometric characteristics on 

vehicular crashes at intersections using five years of crash data at an aggregate and disaggregate 

level. The within sample predictive ability of negative binomial models estimated using 

aggregate crash data (with empirical Bayes methodology) was compared to that of a disaggregate 

model estimated using a site-specific random effects negative binomial framework. Pedestrian 

and cyclist crashes are often difficult to model on a large scale as exposure information is 

typically not collected or maintained by road agencies. To this end, the characteristics affecting 

pedestrian and cyclist crashes at intersections have been examined using census tract-level 

commuter information from the American Community Survey in lieu of observed pedestrian and 

cyclist volume. Finally, ramp terminal intersections provide important points of connection 

between restricted access roadways (such as interstates) and adjacent land. The safety 

performance along the corridors adjacent to the ramp terminal intersections is directly related to 

the proximity between the ramp terminal and access points such as driveways and intersections. 

This study explores the effect of ramp terminal and access point proximity on corridor safety and 

provides a framework for road agencies to evaluate corridor-level safety implications based on 

the proximity between ramp terminals and access points, the volume of the crossroad, and the 

volume of the access point. 
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CHAPTER 1.  INTRODUCTION 

1.1 Statement of the Problem 

The Fixing America’s Surface Transportation (FAST) Act has continued to build upon 

the foundation laid by the enactment of the Moving Ahead for Progress in the 21st Century Act 

(MAP-21), which required that each state have in place a Highway Safety Improvement Program 

(HSIP). The purpose of the HSIP is to ensure every state “emphasizes a data-driven, strategic 

approach to improving highway safety on all public roads that focuses on performance”. This 

emphasis toward data-driven safety practices has resulted in significant research focusing on 

better understanding how various geometric characteristics and traffic conditions affect the 

frequency, type, and severity of crashes on specific roadway facility types such as road 

segments, ramps, and intersections. Gaining an improved understanding of the relationships 

between roadway characteristics and crashes will enable transportation safety professionals to 

develop appropriate and proactive policies and countermeasures that reduce potential for traffic 

crashes and the resultant injuries and fatalities. 

The first edition of the Highway Safety Manual (HSM) was developed by the American 

Association of State Highway and Transportation Officials (AASHTO) to provide guidance as to 

best practices that allow for prediction of the safety performance of road facilities with specific 

site conditions (AASHTO 2010). The HSM also provides a series of commonly used tool that 

facilitate the understanding of the relationships between roadway characteristics and crashes.  

Part C of the HSM provides a series of crash prediction models, commonly referred to as safety 

performance functions (SPFs), which can be utilized to estimate the frequency of traffic crashes 

on specific road facilities as a function of traffic volumes, roadway geometry, type of traffic 

control, and other factors. SPFs can be useful for estimating the safety impacts of site-specific 
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design alternatives through the implementation of an empirical-Bayes analysis or for prioritizing 

candidate locations for safety improvements on a network basis.  Various software programs and 

support tools have been designed to utilize SPFs, such as SafetyAnalyst (Lu et al. 2012) and the 

Interactive Highway Safety Design Model (IHSDM) (Lubliner et al. 2015). 

The HSM presents a series of SPFs for intersections and road segments of specific road 

types, such as rural two-lane highways, rural multi-lane highways, and urban/suburban arterial 

roadways.  Various states have conducted research pertaining to the utilization of the SPFs from 

the HSM, as well as to the development of jurisdiction-specific SPFs that have been estimated 

using local data or calibrated to local conditions.  These studies have been conducted in states 

including Colorado, Florida, Georgia, Illinois, Kansas, North Carolina, Oregon, Utah, and 

Virginia (Garber et al. 2010A; Persaud and Lyon 2009; Garber et al. 2010B; Tegge et al. 2010; 

Dixon et al 2012; Wang et al. 2011; Srinivasan, R. et al. 2011; Brimley et al. 2012; Bornheimer 

et al. 2012; Lu et al. 2012; Lubliner et al. 2012; Srinivasan, S. et al. 2011, Alluri et al. 2012A).   

Collectively, these studies have illustrated several important shortcomings of the base 

SPFs from the HSM. Among the most important of these concerns is that the accuracy of these 

SPFs has been found to vary considerably from state to state, a result that may be reflective of 

differences in geography, design practices, driver behavior, differences in crash reporting 

requirements, or other factors.  

Intersections are one of the facility types of greatest concerns as they have been shown to 

contribute to nearly 25 percent of annual fatalities in the United States and roughly half of all 

traffic-related injuries (Subramanian and Lombardo 2007). The HSM presents SPFs for 

intersections located on urban and suburban arterials, which were developed based on data from 

Minnesota and North Carolina and subsequently validated on data from Florida (Harwood et al. 
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2008). Given concerns as to the transferability of the base SPFs from the HSM for this facility 

type, this study involved the estimation of SPFs specific to urban/suburban intersections in the 

state of Michigan. The accuracy of the Michigan-specific SPFs is compared to results from the 

base SPFs from the HSM, both before and after calibration using local crash data. 

Although the HSM provides crash prediction methodologies for a vast array of roadway 

facilities and crash types, there are several areas that would benefit from additional research. One 

area that is somewhat under researched is the development of crash prediction models for 

pedestrian- and bicyclist-involved crashes. In order to utilize the SPFs for pedestrian and bicycle 

crashes included in the HSM, road agencies must have access to traffic counts of pedestrian and 

bicyclist activity, or the means to estimate those volumes. In many cases, particularly in the case 

of large-scale (i.e., statewide) studies, such data are generally not available. In order to facilitate 

the development of SPFs at a statewide level in a manner that is easily replicable, this study 

utilized data from the American Community Survey (ACS) to investigate the use of census-tract 

characteristics such as the density of walking or cycling commuters as pseudo-exposure 

measures. The ACS is publicly available data and road agencies with sufficient data from the 

survey can utilize the approach presented in this study to predict pedestrian and cyclist crashes in 

lieu of detailed count data. This study makes use of data from Michigan to demonstrate an 

approach for the development of crash prediction models for pedestrians and cyclists. 

Finally, this study examines the safety performance of road segments immediately 

downstream of the crossroad ramp terminal at service interchanges. This study examines how the 

rate of crashes varies based upon the proximity to the nearest access points (i.e., intersections or 

driveways) immediately downstream of the freeway exit ramp. Data from all service 

interchanges in the state of Iowa are used as a part of this study, which has two primary 
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objectives: 1) to develop guidelines for appropriate access point location on a crossroad location 

relative to ramp bifurcation points, and 2) to determine a minimum crossroad volume threshold 

at which point the proximity guidance is applicable (i.e., determining whether is there a 

minimum volume threshold below which the proximity of the first access point has negligible 

impact).  

The remainder of this document is dedicated to addressing the three high-level issues 

pertaining to intersection safety described above. A brief summary of the subsequent chapters if 

provided here: 

 Chapter 2 details the development SPFs for vehicular crashes on arterial 

roadways. These SPFs were estimated as volume-only models, volume and 

regional indicator models, as well as detailed geometric models. The variety of 

model complexity was intended to facilitate usage in circumstances when all data 

characteristics may not be known. 

 Chapter 3 details the development of pedestrian, cyclist, and combined non-

motorist SPFs. These models improve upon existing large-scale pedestrian and 

cyclist crash prediction models by incorporating census-tract level data to provide 

a measure of exposure which has not been utilized in the extant literature. 

 Chapter 4 examines the effect of access point proximity relative to freeway ramp-

terminal intersections. This research provides guidance to road agencies as to the 

general relationship that exists between access points location relative to ramp-

terminal intersections and the resulting crash rate. 

 The appendix includes an additional paper that was published during the course of 

the dissertation research, but on a topic outside the general focus of this 
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dissertation. This paper investigates the degree of injury severity sustained by 

crash-involved motorcyclists in consideration of changes to Michigan’s 

motorcycle helmet use law. 
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CHAPTER 2.  SAFETY PERFORMANCE FUNCTIONS FOR VEHICULAR CRASHES 

2.1 Study Objectives 

This study involves the estimation of SPFs for four types of intersections:  

1. Four-leg signalized (4SG); 

2. Four-leg stop-controlled (4ST); 

3. Three-leg signalized (3SG); and 

4. Three-leg stop-controlled (3ST). 

In addition to providing important tools for use in network screening and evaluation, this 

study also examines several important questions of interest to the broader safety research 

community. While a considerable amount of research has documented the calibration or 

estimation of jurisdiction-specific SPFs, the extant literature offers minimal guidance as to 

several important questions of concern to state and local road agencies. For example, the HSM 

provides limited guidance as to when the development of specific SPFs is desirable and/or 

feasible. To this end, several additional objectives are proposed as a part of this study: 

 Explore the implications of developing SPFs utilizing aggregate vs disaggregate data. 

More specifically, comparing the predictive capabilities of SPFs estimated on a data set 

where one observation represents five years of crashes at a specific site, versus where one 

observation represents one year. To account for repeated observations, a random effects 

model was estimated on the disaggregate data. The predictive capabilities were then 

analyzed naively (without site-specific intercepts) and then precisely (using site-specific 

intercept terms on the disaggregate data and empirical-Bayes calibration on the aggregate 

data). 
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 Examine the granularity of safety performance across various geographic regions (e.g., 

statewide, regional, county, MPO, city). Typically, SPFs are estimated using a sample of 

statewide data. However, as prior research has shown differences in safety performance 

across states, it is also reasonable to expect significant variability in safety trends within a 

single state.  

 Investigate the impact of including regional indicator variables in SPFs. Typically, SPFs 

are estimated using a sample of statewide data. However, as prior research has shown 

differences in safety performance across states, it is also reasonable to expect significant 

variability in safety trends within a single state. 

To accomplish these goals as well as make significant contributions to the research 

literature, an in-depth review of extant literature, data collection, and data analysis were 

conducted. These items are all thoroughly outlined in the remainder of this document. 

2.2 Literature Review 

Given the current emphases on data-driven strategic approaches for safety analysis, a 

priority area at the national level has been the identification of high-risk intersections and road 

segments.  Site identification is a critical component of a safety improvement program and the 

effective identification of sites that are candidates for improvements can be costly (Hauer et al. 

2002). Historically, a variety of methods have been used to identify and prioritize candidate sites 

for safety treatments. These have largely included simple methods such as the ranking of sites 

based upon system-wide crash frequency or crash rate data.  There are several drawbacks to such 

approaches.  For example, considering only crash frequency tends to ignore sites with low traffic 

volumes while using crash rates tends to disproportionately prioritize very low volume sites 

(Persaud 2001).  The use of crash rates also implicitly assumes a linear relationship between 
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crashes and traffic volume, which is not necessarily well supported by safety research (AASHTO 

2015B).  However, due to the minimal data requirements, these methods are still widely used by 

DOTs in site screening and the identification of crash hot spots (Alluri 2008).  

A bigger concern is that, given the random nature of crashes on a location-by-location 

basis, short-term trends in crash frequency or rate are not necessarily good predictors of long-

term crash frequency (Alluri). This concern relates largely to a phenomenon called regression-to-

the-mean (RTM).  In practical terms, RTM is reflected by the fact that roadway locations that 

experience particularly high short-term (e.g., one year) crash frequencies are likely to decrease 

closer to the average of similar sites (i.e., regress to the mean) over the long term (Hauer 1997). 

To address such concerns, short-term site-specific crash counts can be combined with estimates 

from predictive regression models to develop more accurate estimates of long-term (i.e., future) 

safety performance. An important tool in this process is the American Association of State 

Highway and Transportation Officials (AASHTO) Highway Safety Manual (HSM) (AASHTO 

2010).  Part C of the HSM provides a series of predictive models, referred to as safety 

performance functions (SPFs), which can be utilized to estimate the frequency of traffic crashes 

on specific road facilities as a function of traffic volumes, roadway geometry, type of traffic 

control, and other factors.   

SPFs establish a basis for evaluating roadway safety in consideration of the effects of 

traffic volume (AADT) roadway geometry, and other factors. SPFs for intersections take the 

following general form given in Equation 1: 
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𝑁 = 𝑒𝑥𝑝(𝛽 )𝐴𝐴𝐷𝑇 𝐴𝐴𝐷𝑇 ,  (1) 

where:  
𝑁  = predicted average crash frequency for a site with base conditions;  
𝐴𝐴𝐷𝑇  = annual average daily traffic (AADT) for the major road; 
𝐴𝐴𝐷𝑇  = annual average daily traffic (AADT) for the minor road; and 
𝛽 , 𝛽 , 𝛽  = estimated parameters. 

Although the HSM provides default SPF models, it is noteworthy that these models were 

developed using data from only a few states. This makes the transferability of the SPFs a critical 

issue that needs to be handled by state agencies and DOTs when they attempt to implement these 

models. While these SPFs can be directly applied, the HSM recommends that the equations are 

either calibrated using local (i.e., state or regional) data or that jurisdiction-specific SPFs are 

developed (AASHTO 2010).  The calibrated model must sufficiently capture local road and 

traffic features (Chen et al. 2012). Calibration of the SPFs is relatively straightforward, requiring 

the estimation of a calibration factor, C, as shown in Equation 2: 

𝑁 = 𝑁 × 𝐶 ,          (2) 

where: 
𝑁  = predicted annual average crash frequency for a specific site;  
𝑁  = predicted average crash frequency for a site with base conditions; and 
𝐶 = calibration factor to adjust SPF for local conditions. 

This calibration factor is simply equal to the ratio of the number of observed crashes 

within the jurisdiction to the predicted number of crashes as estimated by the SPF.  While 

calibration generally results in improved goodness-of-fit, research has shown that the suggested 

sample sizes for sites (30-50) and crashes (100 per year) in the HSM do not necessarily minimize 

predictive error in calibration (Shin et al. 2014).   

In addition to calibration for local factors, it is also important to note that the SPFs from 

the HSM are estimated for “base” conditions. At locations where base conditions are not met, the 
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SPFs are multiplied by crash modification factors (CMFs), which adjust the SPF for non-base 

conditions as shown in Equation 3: 

𝑁 = 𝑁 × 𝐶 × 𝐶𝑀𝐹  ,   (3) 

where: 
𝑁  = predicted annual average crash frequency for a specific site;  
𝑁  = predicted average crash frequency for a site with base conditions; 
𝐶 = calibration factor to adjust SPF for local conditions; and 
𝐶𝑀𝐹  = crash modification factor for condition i. 

These CMFs allow for crash estimates that distinguish between sites with various 

geometric or traffic control features.  For example, the HSM provides a series of CMFs in 

Chapter 12 specific to intersections on urban and suburban arterials.  Chapter 14 provides a 

catalog of various intersection CMFs based on prior empirical research.  In addition, the Federal 

Highway Administration (FHWA) maintains the Crash Modification Factor (CMF) 

Clearinghouse (FHWA 2015), a web-based database of CMFs that provides supporting 

documentation to assist users in estimating the impacts of various safety countermeasures. 

2.2.1 Summary of State Efforts in SPF Calibration and Development 

A recent study summarized the results of a nation-wide survey that was employed to 

assess the current status of safety analysis at state departments of transportation (Alluri and Ogle 

2012B).  The results of this survey demonstrated that most states experienced data-related issues 

that inhibited their ability to effectively conduct safety analyses. A Florida study cited the data 

requirements of the HSM were challenging as many of the factors were not available in the 

state’s roadway characteristics inventory database (Alluri et al. 2014). Similar results were found 

in Pennsylvania where several variables suggested in the HSM could not be included in SPFs 

due to lack of available data (Donnell et al. 2014). Several other studies have also identified data 

availability and completeness as hurdles in meeting the input requirements of the HSM and other 
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related tools such as SafetyAnalyst (Alluri et al. 2014; Donnell et al. 2014). A study in Georgia 

found that data quality and availability significantly affect the quality and reliability of SPFs 

(Alluri and Ogle 2012A) while research in Kansas noted that the scarcity of intersection data did 

not allow for the development of separate models for 3-leg and 4-leg stop-controlled 

intersections (Lubliner et al. 2014).   

Specific areas of concern included lack of sufficient data on traffic volumes and roadway 

characteristics, as well as a lack of geo-referenced spatial data (Alluri and Ogle 2012B). In most 

states, traffic data is generally available for higher classes of roadways (e.g., interstates, state 

routes, etc.), but is limited for local and low volume roads (Alluri and Ogle 2012B). Research in 

Colorado found that volume data for side-streets were not generally available for more than one 

or two years, and in many cases the count data did not coincide with the study period (Persaud 

and Lyon 2009). Thus, it was necessary to normalize available side-street AADT data over the 

study period using growth rates derived from the mainline AADT volumes (Persaud and Lyon 

2009). 

International studies (Sacchi et al. 2012; Cafiso et al. 2012; Cunto et al. 2015; Persaud 

and Nguyen 1998; Giuffre et al. 2014; Martinelli et al. 2009) also show that sampling of sites is 

often hindered by the availability of data. Studies in Brazil (Cunto et al. 2015) and Italy (Giuffre 

et al. 2014; Martinelli et al. 2009) found the need for manually collected data on traffic volumes, 

roadway geometry, and functional characteristics limited the number of sites that could feasibly 

be included in SPF estimation. 

Despite these limitations, Table 1 shows a significant number of recent state-level efforts 

aimed at either calibrating the HSM SPFs or developing state-specific SPFs using local data.  

The table summarizes recent studies, including details of the types of intersections that were 
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considered as a part of each study, the number of sites that were included by type, and the 

number of years of data that were used for model calibration of estimation. 

When examining SPF calibration for local conditions, there is significant variability in 

terms of whether the base models from the HSM over- or under-predict crashes within specific 

states.  Research in Kansas found a calibration factor of 0.21, indicating that crashes were 

significantly over-predicted at unsignalized three-leg and four-leg intersections in the state 

(Lubliner et al. 2014).  However, these studies note that the calibration factors were developed 

using a small sample dataset and, as such, they should be used with caution.  Calibration factors 

for urban intersections in Maryland ranged from 0.1562 for three-leg stop controlled 

intersections to 0.4747 for four-leg signalized intersections (Shin et al. 2014).  Research in 

Oregon (Monsere et al. 2011) and North Carolina (Srinivasan and Carter 2011) also tended to 

show significantly lower crashes than would be predicted by the base models from the HSM. 

Statewide HSM model calibration in Missouri generally showed calibration factors less than 1.0, 

suggesting that Missouri facilities experienced fewer crashes than the national average (Sun et al. 

2014).  However, the converse was true for urban three-leg and four-leg signalized intersections, 

where calibration factors of 3.03 and 4.91 were observed, respectively. The magnitude of these 

calibration factors was attributed to differences in crash definitions between Missouri and the 

states used as the basis for the HSM.   
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Table 1. Summary of studies involving calibration or development of specific SPFs 

State/ 
Country 

Site Type(s) 
No. of 
Sites 

No. of 
Years 

Calibrated 
HSM SPFs 

Jurisdiction 
Specific SPFs 

AB 4SG 99 3-7 No Yes 

AB; ON 4SG 515; 1629 6 Yes Yes 

Brazil  4SG; 4ST 353; 132 6 No Yes 

Brazil  4SG; 4ST 89; 92 3 Yes No 

BC SG 98 9 No Yes 

BC SG 51 3 No Yes 

CA; ON 4ST; 3SG/4SG 2202; >20 - No Yes 

CA 3ST; 4ST 378; 264 10 
 

No 
 

Yes 

CA 3ST, 4ST 1381, 907 10 No No 

FL 4SG 519 6 No Yes 

FL 4SG 177 6 No Yes 

FL 3ST, 4ST, 4SG 
31-321; 58; 34-

43; 21-459 
3 No Yes 

ITA 4ST (one-way) 92 7 No Yes 

MD 3ST, 4ST, 4SG 
152-162; 26-167; 
10-115; 35-244 

3 Yes No 

MO 3ST, 4ST 35-70; 25-70 1 Yes No 

OH 3ST, 4ST, 4SG 
50-200; 50-200; 
125-250; 50-200 

3 Yes No 

ON 3SG; 4SG 40; 230 6 No Yes 

ON 3ST; 3SG; 4ST; 4SG 117; 250; 59; 868 6 No Yes 

ON 3SG, 4SG 306, 1410 5 Yes Yes 

ON 3SG 59 6 No Yes 

ON 3SG; 4SG 137; 1691 6 Yes Yes 

OR 3ST; 4SG 202; 298 3 Yes Yes 

PA 3ST; 4ST; 3SG; 4SG 414; 86; 45; 105 8 No Yes 

SK 3ST; 4ST; 3SG/4SG 123; 121; 143 5 Yes Yes 

South Korea 3SG; 4SG 247; 201 2 No Yes 

VA 3ST; 3SG; 4ST; 4SG 
5367-8411; 183-
836; 1239-1570; 

182-568 
6 No Yes 

VA 4SG 35 4 No Yes 

VA 4SG 127 5 Yes Yes 

Site Type Key: U: Urban, US: Urban and Suburban, S: Sub-Urban, RML: Rural Multilane, R2L: 
Rural 2-Lane 2-Way, 3SG: 3-Leg Signalized, 4SG: 4 Leg Signalized, 3ST: 3-Leg Minor Stop-
Controlled, 4ST: 4-Leg Minor Stop Controlled, 4AWST: 4-Leg All-Way Stop  
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In contrast, a Florida study showed the base HSM models to underestimate fatal and 

injury crashes by a factor of two (Srinivasan et al. 2011) while SPFs that were calibrated for 

intersections in Ohio showed significant under-prediction at urban three-leg and four-leg 

signalized intersections (Troyer et al. 2015).  Research in Saskatchewan (Young and Park 2012) 

showed the HSM SPFs to typically under-predict crashes across the three intersection types 

examined.  Additional international work in Brazil explored the transferability of HSM models to 

urban intersections (Cunto et al. 2015). The results suggest that the calibrated HSM baseline 

SPFs should be used with caution, with the authors noting the importance of analyzing the 

effects of the calibration sample size on model stability.  Ultimately, it has been postulated that 

the differences in calibration factors are reflective of differences between individual jurisdictions 

and those states where the HSM models were developed (Shin et al. 2014; Sun et al. 2014). 

Given the significant variability in predictive performance across regions, a number of 

states have developed SPFs specific to their jurisdictions.  Virginia is one of several states that 

have conducted extensive research on SPFs, including the development of SPFs for 3-leg and 4-

leg signalized and stop-controlled intersections in urban and rural areas. Separate SPFs were 

developed on statewide basis, as well as at the regional-specific (Northern, Western, and Eastern 

regions) level to account for differences in various geographic areas of the state (Garber and 

Rivera 2010). 

Research in Colorado resulted in the development of SPFs for ten types of urban 

intersections, including separate SPFs for total and injury crashes (Persaud and Lyon 2009).  

SPFs were developed in Oregon for eight intersection types based on traffic control, land use, 

and number of legs (Monsere et al. 2011). These categories were chosen to align with the 

intersection types in the HSM.  
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A recent study in Pennsylvania (Donnell et al. 2014) examined rural two-lane 

intersections. SPFs were developed for three-leg and four-leg intersections with both signal and 

minor street stop-control. SPFs were also estimated for four-leg all-way stop controlled 

intersections on two-lane rural roads. 

Collectively, the domestic and foreign studies have indicated that direct application of the 

SPFs from the HSM (or other non-local source) does not tend to provide accurate results without 

either careful calibration or re-estimation using local data.  Consequently, the primary purpose of 

this study was to develop a series of SPFs and other safety tools that can be used by the 

Michigan Department of Transportation (MDOT) as a part of their continuing traffic safety 

efforts. 

2.2.2 Areas of Research Need 

One area in SPF application where minimal research has been conducted is the utilization 

of geographic indicator variables as crash modification factors in the SPF model. This 

methodology has been utilized in several studies (Savolainen et al. 2015, Kweon et al. 2014) 

where binary indicator variables were used to create CMFs for each of the geographic 

administrative regions of the state department of transportation. These geographic indicators are 

then be utilized to account for variations in geometric design standards, driver behaviors, and 

crash reporting differences between specific geographic locations.  This research utilized a vast 

array of explanatory variables in conjunction with the regional indicator variables to examine if 

the inclusion of regional indicators inhibits the ability to identify geometric variables which 

impact traffic crashes. 

Second, this study investigates the use of random effects models (sometimes referred to 

as random intercept or mixed models) to develop safety performance functions. Specifically of 
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interest is whether the same explanatory variables are identified by modeling traffic crashes on 

an aggregated data set versus on a disaggregated version. 

2.3 Data Description and Data Collection Process 

Ultimately, the accuracy of an SPF depends largely on the quality of the data from which 

it is developed.  The development of robust SPFs requires a crash database that is comprehensive 

and includes information on specific crash location, collision type, severity, relationship to 

junction, and types of maneuvers of the involved vehicles. Roadway data is also important, 

including the physical features within the right-of-way. Roadway geometry data that are 

recommended for use in safety analyses include: lane width; shoulder width and type; horizontal 

curve length, radius, and superelevation; grade; driveway density; and indicator variables for 

features such as auxiliary turn lanes (AASHTO 2010).  

In 2008, the Model Minimum Uniform Crash Criteria (MMUCC) guidelines were 

developed with funding provided by the National Highway Traffic Safety Administration 

(NHTSA) in collaboration with the Governor’s Highway Safety Association (GHSA), Federal 

Highway Administration (FHWA), Federal Motor Carrier Safety Administration (FMCSA), 

State DOTs, law enforcement agencies, and other traffic safety stakeholders.  The MMUCC 

consists of a recommended minimum set of data elements for States to include in their crash 

forms and databases (NHTSA 2008). This set includes 110 data elements, 77 of which are to be 

collected at the scene, 10 data elements to be derived from the collected data, and 23 data 

elements to be obtained after linkage to driver history, injury and roadway inventory data.  

As a part of this study, a comprehensive checklist of important data elements to be 

collected for the purposes of SPF development was created.  As a starting point, an inventory file 
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was obtained from MDOT. This file included location information for the following four types 

of site locations: 

 3-leg signalized intersections 
 4-leg signalized intersections 
 3-leg intersections with stop-control on the minor approach 
 4-leg intersections with stop-control on the minor approaches 

For the purposes of SPF development, the HSM suggests a minimum sample size of 30 to 

50 sites, which collectively experience a minimum of 100 total crashes per year.  For the 

purposes of this study, another objective was to provide SPFs that are able to account for 

important differences across each of MDOT’s seven geographic regions.  Consequently, the 

research began with the random selection of 50 intersections from each region within the four 

site types illustrated in Figure 1.  This figure also indicates the total number of intersections 

maintained by MDOT according to this inventory file. 

While 50 sites were identified within most regions and site types, there are several 

regions where sufficient numbers of sites were not available as shown in Table 2.  This was 

particularly true for three-leg signalized intersections as there are only 485 such locations across 

Michigan. 

 

Table 2. Sites by MDOT Region and Intersection Type 

Intersection 

Type 

MDOT Region 

Superior North Grand Bay Southwest University Metro Total 

3SG 9 24 26 21 38 38 55 211 

3ST 50 51 51 50 51 50 50 353 

4SG 48 50 51 50 52 50 50 351 

4ST 50 50 50 50 50 50 50 350 
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3-Leg, Minor Approach Stop-Controlled 

(N = 5,731 Sites) 

3-Leg Signalized 

(N = 485 Sites) 

4-Leg, Minor Approach Stop-Controlled 

(N = 2,695 Sites) 

4-Leg Signalized 

(N = 1,710 Sites) 

Figure 1. Intersection Site Types 

 

Once intersections were identified within each of the seven regions and four site types, 

data were collected from existing data sources that were either available publicly or through 

MDOT.  These data sources included the following databases and files: 

 Michigan State Police Statewide Crash Database; 
 MDOT SafetyAnalyst Calibration File; 
 Michigan Geographic Data Library (MiGDL) All Roads File; 
 MDOT SafetyAnalyst Annual Average Daily Traffic File; and 
 MDOT Sufficiency File. 
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A quality assurance/quality control (QA/QC) process was implemented to verify the data 

in these sources using MDOT’s online linear referencing tool, PR Finder, which allows users to 

identify locations based on the Physical Road (hence the PR) and mile point. Detailed aerial 

photography was then reviewed using Google Earth.  Further details of each respective data 

source is provided in the following sections of this document. 

2.3.1 Michigan State Police Statewide Crash Database 

The Michigan State Police (MSP) crash database contains details of all reported crash 

records in the state of Michigan. Records in this database are maintained at the crash-, vehicle-, 

and person-levels.  For the purposes of this research, 14 crash level fields from the database were 

obtained. The fields that were collected are defined here: 

 crsh_id- unique identifier for each crash, and was used as the basis for linking the 
spreadsheets 

 date_val-contains the date the crash occurred, which allowed the crash to be assigned to a 
particular year 

 fatl_crsh_ind-identifies the crash as having at least one fatality 
 num_injy_a-total number of people sustaining “A level” injuries in the crash 
 num_injy_b-total number of people sustaining “B level” injuries in the crash 
 num_injy_c-total number of people sustaining “C level” injuries in the crash 
 prop_damg_crsh_ind-identifes the crash as being property damage only (PDO) 
 crsh_typ_cd-defines the crash as single-vehicle or one of nine multiple-vehicle collision 

types 
 rdwy_area_cd-indicates where on the roadway a crash occurred, only crashes with codes 

relavent to intersections were considered 
 ped_invl_ind-indicates that a pedestrian was involved in the crash 
 bcyl_invl_ind-indicates that a bicycle was involved in the crash 
 intr_id-assigns the crash to a specific intersection node in the Calibration file 
 crnt_x_cord-the longitude at which the crash occurred 
 crnt_y_cord-the latitude at which the crash occurred 

As was previously mentioned, this crash was focused on “crash” level data. Crashes were 

defined based on the most significant injury sustained by anyone involved in the crash. Crashes 
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involving bicycles or pedestrians were separated from vehicle-only crashes for the purpose of the 

data analysis. 

2.3.2 Michigan DOT Calibration File 

A comprehensive database of potential intersections to be considered in this study, was 

furnished by MDOT. The file contained four spreadsheets relevant to this study, titled 3ST, 3SG, 

4ST, and 4SG. In all, 12,241 locations were identified in the file. In addition to identifying the 

sites, the file contained some information for each location, the most useful of which is described 

below: 

 A unique identifier corresponding to the crash database 
 PR|PRMP-the location of the intersection based on Michigan’s linear referencing scheme 

“Physical Road” and “Physical Road Mile Point” 

The information contained in this file was ultimately used as the basis for the selection of 

locations included in this study. Although additional information in the file is potentially useful, 

some problems arise when trying to use it. First, directions are of little concern for the creation of 

SPFs, while information such as which is the major leg and which is the minor leg is much more 

useful. Second, each entry in the file does not necessarily correspond to a complete intersection, 

but just a node in a link node network. The intersection of a boulevard with a two-way street is 

typically represented by two nodes, meaning that many of the entries in the file must be paired 

with another entry. Much of the information in this file was captured in more detail during a 

thorough data collection process leading to the creation of the final data set. 

2.3.3 Michigan Geographic Data Library (MiGDL) All Roads file 

In order to facilitate the use of GIS software for this project, a GIS shapefile was obtained 

from the Michigan Geographic Data Library from the Michigan Center for Geographic 
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Information (MCGI) website. The file consists of all the road segments found statewide. 

Although the file has a total of 36 attribute fields, the following three were of particular use for 

this project: 

 PR-Physical Road ID number 
 BMP-Beginning PR mile point for linear referencing system 
 EMP-Ending PR segment mile point  

2.3.4 Annual average daily traffic estimates from MDOT Safety Analyst file 

A zip file containing traffic volume used by MDOT’s SafetyAnalyst was used as the 

source for AADT information for this project. A .csv file was extracted from the zip file 

containing major and minor road AADT information for 34,915 nodes for the years 2000-2012. 

In addition to this information, the file also contained several identification fields identified 

below. 

 A unique identifier  
 A designation of US, state, interstate, etc. highway and route number  
 Identification of the SafetyAnalyst subtype 
 The names of the two intersecting roads 
 The PR and PRMP of the intersection on the major and minor roads 
 The cardinal direction of the roadway 

2.3.5 MDOT Sufficiency File 

MDOT sufficiency files were made available for the years 2004 through 2012. The 

sufficiency files contain 122 fields for the state maintained roads in Michigan. The data is broken 

into segments of varying length. As the research ultimately involved a detailed site review of 

each intersection the Sufficiency file was primarily used to determine major road speed limits as 

a part of this study.  
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2.3.6 Construction of the Preliminary Dataset 

For the purposes of this analysis, a study period from 2008 to 2012 was considered, based 

on the availability of data at the beginning of the project. To assemble the data set, the 

observations in the intersection specific tabs of the calibration file were converted into one large 

list of 12,241 locations. AADT was then linked to each intersection using the PR and PRMP 

fields. 

Crashes were queried from the MSP crash database for each of the 12,241 nodes in the 

MDOT Calibration file by matching the unique identifier fields.  

This crash query was exported as an Excel file containing the 14 fields discussed in the 

MSP Crash Database section. A threshold value of 0.04 miles was established as the maximum 

distance from an intersection node that a crash would be considered an “intersection” crash, 

requiring the mapping of the intersections and crashes using GIS software. The All Roads file 

was used as the framework for the map. Linear referencing was utilized to locate the intersection 

nodes (which did not have coordinates for location) on Michigan’s roadway network by Physical 

Road (PR) and Mile Point (MP). Crashes were then added to the map by latitude and longitude 

coordinates included in the crash report. To exclude crashes that were outside of the established 

0.04 miles, a buffer was used around each of the intersection nodes.  

The crashes that were within 0.04 miles of an intersection node were then tabulated by 

year, type, and severity so that each node would have a count of the crashes that occurred near it 

by type and severity. Of the 12,241 nodes provided in the Calibration file, 12,170 were able to be 

paired with AADT from the Safety Analyst file and mapped onto the All Roads file, with 71 

nodes having a PR or PRMP that did not correspond to either the Safety Analyst AADT file or 

the All Roads file.  
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While many of the aforementioned intersection nodes were representative of a complete 

intersection, many others were a portion of a more complex intersection such as a boulevard 

intersecting a two-way street, or the intersection of two boulevards, as shown in Figure 2. 

 

Figure 2. Boulevard-Style Four-Node Intersection 
 

Other nodes were not intersections at all, but the beginning or end point of a boulevard, 

the location of a median turnaround (Michigan Left), or the location of yield-controlled or 

uncontrolled merging and diverging lanes as shown in Figure 3.  

 

Figure 3. Example of Merge/Diverge Point Classified as an Intersection 
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This necessitated an exhaustive QA/QC of the data to join nodes of the same intersection 

together, as well as to remove the nodes that would not be considered an intersection from the 

dataset. Utilizing a logic function in Microsoft Excel, the names of the intersecting roadways 

from the AADT file were used so that nodes potentially belonging to the same intersection were 

identified. The PR Finder was used to locate the sites and view initial satellite imagery, with 

Google Earth providing additional satellite imagery.  Images were reviewed to verify whether 

nodes were properly identified as a complete intersection.  Nodes that were found not to be an 

intersection were excluded from further analysis, leaving a final data set consisting 10,621 

intersections. In order for the properly linked intersection nodes to have characteristics 

representative of the entire intersection, the crashes assigned to these nodes were summed, as 

was the AADT for each side of a boulevard; non-boulevard streets had their AADT values 

averaged. Table 3 provides details of the resulting data set, including a count of the number of 

intersections by type, as well as averages of the major AADT, minor AADT, and total annual 

crashes. 

Table 3. Average Major AADT, Minor AADT and Annual Crashes by Intersection Type 

  3SG 3ST 4SG 4ST 

Number of Intersections 485 5,731 1,710 2,695 

Average Major Road AADT 20,709 15,985 23,892 14,571 

Average Minor Road AADT 4,967 1,234 9,547 1,776 

Average Annual Crashes 2.67 0.42 7.78 1.05 

 

2.3.7 Manual Data Collection and Review 

In order to create a data set containing geometric data (e.g. road width, number of lanes), 

as well as road use characteristics (e.g. bus stops, roadside parking), a detailed site review was 

conducted utilizing Google Earth and the MDOT PR Finder.  Detailed geometry and site 
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characteristics data were obtained, with the following list summarizing the data collection 

process: 

 Number of Lanes: The number of lanes was determined for each approach and receiving 
leg. This information was disaggregated into the number of exclusive left-turn lanes, 
exclusive right-turn lanes, and through lanes. While both the entry approach and 
receiving lanes were reviewed, only the inbound lanes were considered for the purpose of 
the subsequent analysis. 

 Road widths: the widths of intersecting roads were measured from curb to curb for all 
approaches. For the purpose of analysis, if both legs were present these measured widths 
were averaged along the same street, otherwise the measured values were directly used.  

 Skew angle: The skew angle for each intersection was calculated as the smallest absolute 
difference between the headings of the intersecting approaches. The smallest angle was 
the variable of interest since it is the controlling situation where the available sight 
distance is minimum resulting in greater potential for crash occurrence.  A sample skew 
angle measurement is shown in Figure 4. 
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Figure 4. Skew Angle Measurement Example 

 Number of driveways: The total number of driveways were collected on both sides of the 
intersecting streets up to a distance of 0.04 miles from the center of the intersection along 
both the major and minor street.   

 Bike Lanes and Roadside Parking: Presence of exclusive bike lanes and roadside parking 
was also specified.  

 Bus Stops: Presence of bus stops within a distance of 1000 feet from the center of the 
intersection was investigated both for the major and minor road. Although bus stops are 
usually depicted on Google Maps, not all the bus stops can be located using the aerial 
view. Hence, more detailed exploration through Google Street View was required. 
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 Schools: A distance of 0.5 mile from the center of the intersection was used to explore for 
schools both on major and minor road. As with bus stops, Street View was used for 
verification where the aerial view was unclear. This field includes K-12 schools, as well 
as universities and colleges.  

 Pedestrian features: The presence of sidewalks and ADA ramps was specified both for 
the major and minor road. 

 Median Turn-around (MTA): A median turn-around refers to the case where, near an 
intersection, at least one road is a divided boulevard and left-turns onto the divided 
highway are prohibited. In such instances, left-turns are generally accommodated by 
vehicles making a right-turn, followed by a U-turn through the median as shown in 
Figure 5.  All such instances were indicated for vehicles attempting to turn left from both 
the major and minor road. 

 Distance of MTA: In cases were the presence of a median turn around was specified, its 
distance from the center of the intersection was also measured. 

 

Figure 5. Median Turn-around Field Example 
 

 Presence and length of storage lanes: The presence and lengths of storage lanes were 
determined as illustrated in Figure 6. For the case of intersections with two-way left-turn 
lanes (TWLTLs), no storage length was specified, though the presence of the turn lane 
was indicated in the database. 
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Figure 6. Storage Lane Length Measurement Example 
 

 Median Types: In cases where either of the major or minor road was divided the type of 
the median was also identified. Medians were classified into different categories 
including curbed, curbed with grass, curbed with grass and vegetation, grass only, 
concrete barrier, guardrail barrier, and asphalt medians.  

 Right-Turn-on-Red (RTOR): This field indicates those signalized intersections where 
vehicles are allowed to turn right while the signal head is red.  

 Flashing Beacon: Those intersections where a flashing beacon is installed as well 
as/instead of a stop sign were flagged during the data collection process.  

Table 4 and Table 5 provide summary statistics for all relevant variables among the stop-

controlled and signalized intersection databases, respectively.  Each table presents the minimum, 

maximum, and mean values, along with the standard deviation for each variable. Traffic crashes 

are more frequent at signalized intersections as opposed to unsignalized crashes, as well as at 

four-leg intersections as opposed to three-leg. This is due to the volume of traffic at each facility 

type, which follows the same general trend. 
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Table 4: Descriptive Statistics for variables of interest for Stop-Controlled Intersections 

Intersection Type 3-Leg Minor Stop Controlled 4-Leg Minor Stop Controlled 

Variable Min Max Mean 
Std. 
Dev. 

Min Max Mean Std. Dev. 

Maj Rd AADT 97.0 48824.0 13040.9 7541.93 929.00 50206.0 13618.02 7913.7 
Min Rd AADT 42.5 11630.5 516.65 965.36 85.00 44209.0 1898.66 3409.9 
Maj Rd Thru Lanes 2.00 8.00 3.07 1.07 1.00 6.00 3.12 1.09 
Maj Left Turn Lanes 0.00 2.00 0.58 0.81 0.00 2.00 0.99 0.98 
Min Rd Thru Lanes 0.00 2.00 0.96 0.24 0.00 4.00 1.98 0.26 
Skew 0.01 69.33 7.89 12.13 0.00 64.00 8.41 12.63 
Lighting Presence 0.00 1.00 0.72 0.45 0.00 1.00 0.76 0.43 
Maj Driveway Count 0.00 15.00 2.87 2.49 0.00 10.00 2.19 2.18 
Min Driveway Count 0.00 8.00 1.70 1.39 0.00 10.00 2.47 2.30 
Maj Sidewalk Presence 0.00 1.00 0.59 0.49 0.00 1.00 0.71 0.46 
Min Sidewalk Presence 0.00 1.00 0.40 0.49 0.00 1.00 0.67 0.47 
Ped Ramp Presence 0.00 1.00 0.52 0.50 0.00 1.00 0.45 0.50 
Maj Rd Width 24.76 155.24 52.77 19.08 22.00 171.00 51.26 18.58 
Min Rd Width 12.60 115.84 30.39 10.64 14.00 65.50 30.79 7.37 
Maj Rd Bike Lanes 0.00 1.00 0.00 0.07 0.00 1.00 0.03 0.16 
Min Rd Bike Lanes 0.00 1.00 0.00 0.05 0.00 1.00 0.01 0.08 
Maj Rd Bus Stop 0.00 1.00 0.18 0.38 0.00 1.00 0.20 0.40 
Min Rd Bus Stop 0.00 1.00 0.04 0.19 0.00 1.00 0.01 0.12 
Maj Rd Parking 0.00 1.00 0.07 0.25 0.00 1.00 0.16 0.36 
Min Rd Parking 0.00 1.00 0.21 0.41 0.00 1.00 0.55 0.50 
Maj Rd Median 0.00 1.00 0.02 0.13 0.00 1.00 0.04 0.20 
Min Rd Median 0.00 1.00 0.06 0.24 0.00 1.00 0.01 0.11 
Within 1/2 mile of K-12 
school 

0.00 1.00 0.34 0.47 0.00 1.00 0.27 0.44 

Within 1 mile of non-
motorized path 0.00 1.00 0.30 0.46 0.00 1.00 0.30 0.46 
Superior Region 0.00 1.00 0.14 0.35 0.00 1.00 0.14 0.35 
North Region 0.00 1.00 0.14 0.35 0.00 1.00 0.14 0.35 
Grand Region  0.00 1.00 0.14 0.35 0.00 1.00 0.14 0.35 
Bay Region 0.00 1.00 0.14 0.35 0.00 1.00 0.14 0.35 
Southwest Region 0.00 1.00 0.14 0.35 0.00 1.00 0.14 0.35 
University Region 0.00 1.00 0.14 0.35 0.00 1.00 0.14 0.35 
Metro Region 0.00 1.00 0.14 0.35 0.00 1.00 0.14 0.35 
Maj Rd Speed Limit 25.00 55.00 43.07 9.05 25.00 65.00 38.70 9.21 
Maj Rd One-Way 0.00 1.00 0.15 0.36 0.00 1.00 0.12 0.33 
Min Rd One-Way 0.00 0.00 0.00 0.00 0.00 1.00 0.02 0.15 
Total Crashes 0.00 19.00 0.49 1.25 0.00 24.00 1.23 1.83 
Fatal/Injury Crashes 0.00 6.00 0.10 0.40 0.00 7.00 0.32 0.67 
PDO Crashes 0.00 18.00 0.39 1.08 0.00 21.00 0.91 1.49 
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Table 5: Descriptive Statistics for Variables of interest for Signalized Intersections 

Intersection Type 3-Leg Signalized 4-Leg Signalized 

Variable Min Max Mean 
Std. 
Dev. 

Min Max Mean 
Std. 
Dev. 

Maj Rd AADT 4391.0 62094.0 20012.1 10001.9 4033.00 120082.0 21159.0 15155.6 
Min Rd AADT 45.00 42828.00 3810.40 4911.33 88.00 69321.00 8901.74 7999.21 
Maj Rd Thru Lanes 0.00 10.00 3.60 1.29 0.00 10.00 3.64 1.24 
Maj Left Turn Lanes 0.00 2.00 1.06 0.77 0.00 4.00 1.35 0.93 
Min Rd Thru Lanes 0.00 4.00 0.46 0.76 0.00 8.00 2.64 1.07 
Skew 0.00 74.34 10.21 14.51 0.00 61.04 9.85 14.25 
Lighting Presence 0.00 1.00 0.73 0.44 0.00 1.00 0.96 0.20 
RTOR Permitted 0.00 1.00 0.90 0.31 0.00 1.00 0.91 0.29 
Maj Driveway Count 0.00 10.00 2.38 2.18 0.00 13.00 3.40 2.71 
Min Driveway Count 0.00 7.00 1.34 1.41 0.00 14.00 3.74 2.61 
Maj Sidewalk 
Presence 0.00 1.00 0.71 0.45 0.00 1.00 0.79 0.40 
Min Sidewalk 
Presence 0.00 1.00 0.63 0.48 0.00 1.00 0.77 0.42 
Ped Ramp Presence 0.00 1.00 0.67 0.47 0.00 1.00 0.83 0.37 
Maj Rd Width 25.42 282.62 69.21 35.27 27.91 314.48 65.74 29.50 
Min Rd Width 14.77 176.45 45.17 16.58 25.99 188.98 50.23 21.68 
Maj Rd Bike Lanes 0.00 1.00 0.01 0.12 0.00 1.00 0.03 0.16 
Min Rd Bike Lanes 0.00 1.00 0.01 0.10 0.00 1.00 0.02 0.14 
Maj Rd Bus Stop 0.00 1.00 0.26 0.44 0.00 1.00 0.31 0.46 
Min Rd Bus Stop 0.00 1.00 0.06 0.23 0.00 1.00 0.20 0.40 
Maj Rd Parking 0.00 1.00 0.09 0.28 0.00 1.00 0.14 0.35 
Min Rd Parking 0.00 1.00 0.15 0.36 0.00 1.00 0.15 0.36 
Maj Rd Median 0.00 1.00 0.12 0.32 0.00 1.00 0.11 0.31 
Min Rd Median 0.00 1.00 0.10 0.29 0.00 1.00 0.04 0.20 
Within 1/2 mile of K-
12 school 0.00 1.00 0.16 0.37 0.00 1.00 0.40 0.49 
Within 1 mile of non-
motorized path 0.00 1.00 0.32 0.47 0.00 1.00 0.33 0.47 
Superior Region 0.00 1.00 0.04 0.20 0.00 1.00 0.13 0.34 
North Region 0.00 1.00 0.11 0.32 0.00 1.00 0.14 0.35 
Grand Region  0.00 1.00 0.12 0.33 0.00 1.00 0.15 0.35 
Bay Region 0.00 1.00 0.10 0.30 0.00 1.00 0.14 0.35 
Southwest Region 0.00 1.00 0.18 0.38 0.00 1.00 0.15 0.36 
University Region 0.00 1.00 0.18 0.38 0.00 1.00 0.14 0.35 
Metro Region 0.00 1.00 0.26 0.44 0.00 1.00 0.14 0.35 
Maj Rd Speed Limit 25.00 55.00 41.05 8.41 25.00 70.00 38.70 9.44 
Maj Rd One-Way 0.00 1.00 0.08 0.27 0.00 1.00 0.12 0.32 
Min Rd One-Way 0.00 1.00 0.09 0.29 0.00 1.00 0.11 0.31 
Total Crashes 0.00 30.00 3.90 3.82 0.00 61.00 8.41 8.31 
Fatal/Injury Crashes 0.00 6.00 0.88 1.14 0.00 13.00 1.93 2.13 
PDO Crashes 0.00 26.00 3.02 3.19 0.00 51.00 6.48 6.82 
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2.4 Study Methods 

2.4.1 Visual Data Analysis 

After the database was assembled, a series of preliminary analyses were conducted to 

examine general trends across the sample of study locations.  This included assessing the 

univariate relationships between traffic crashes and each prospective predictor variable.  

Correlation among predictor variables was also examined and helped to inform the subsequent 

estimation of the SPFs. To this end, visual analysis of the data was employed. Figure 7 shows the 

relationship between the number of crashes (all severities) and the annual average daily traffic 

(AADT) for the major approaches for signalized intersections, while Figure 8 conveys the same 

information for unsignalized intersections. These figures show that a non-linear relationship 

generally exists between traffic flow and the number of crashes.  Crashes are shown to increase 

less rapidly at higher volumes, which is consistent with prior research in this area. 

When examining the figure, there are several intersection locations that experienced 

significantly higher or lower numbers of crashes over the study period.  As a part of the data 

collection process, careful quality assurance and quality control procedures were followed.  This 

included a review of these potential outliers.  Ultimately, all of the intersections included in the 

study were similar in terms of their geometric and traffic control characteristics.  No sites were 

removed on the basis of their crash history during the study period.  It is important to note that 

these figures represent only the effects of major road traffic volumes.  Consequently, the effects 

of other important predictor variables are not reflected here.  As an example, fewer crashes 

tended to be observed at locations with medians or where specific turning movements were 

prohibited.  This explains several of the high volume locations that experienced fewer crashes on 

average. 
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Figure 7. Relationship Between the Number of Vehicle-Only Crashes and Major flow 
AADT for Signalized Intersections. 
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Figure 8. Relationship Between the Number of Vehicle-Only Crashes and Major flow 
AADT for Unsignalized Intersections 
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better fit and has been used widely to model crash frequency data. In the Poisson model, the 

probability of intersection i experiencing yi crashes during a one-year period is given by 

Equation 4, 

   
!i

y
ii

i y

EXP
yP

i


   (4)         

where P(yi) is probability of intersection i experiencing yi crashes and i is the Poisson 

parameter for intersection i, which is equal to the segments expected number of crashes per year, 

E[yi]. Poisson models are estimated by specifying the Poisson parameter i (the expected 

number of crashes per period) as a function of explanatory variables, the most common 

functional form being given by Equation 5, 

 𝜆 = 𝑒𝑥𝑝 (𝛽𝑋 )   (5) 

where Xi is a vector of explanatory variables and β is a vector of estimable parameters. 

A limitation of this model is the underlying assumption of the Poisson distribution that 

the variance is equal to the mean.  As such, the model cannot handle overdispersion wherein the 

variance is greater than the mean. Overdispersion is common in crash data and may be caused by 

data clustering, unaccounted temporal correlation, model misspecification, or ultimately by the 

nature of the crash data, which are the product of Bernoulli trials with unequal probability of 

events (Lord 2006).  Overdispersion is generally accommodated through the use of negative 

binomial models (also referred to as Poisson-gamma models).   

The negative binomial model is derived by rewriting the Poisson parameter for each 

intersection as shown in Equation 6, 

 𝜆 = 𝑒𝑥𝑝 (𝛽𝑋 + 𝜀 )   (6)  
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where EXP (e i) is a gamma-distributed error term with mean 1 and variance α. The addition of 

this term allows the variance to differ from the mean as shown in Equation 7:

VAR yi[ ]  E yi[ ] +aE yi[ ]2
   (7) 

The negative binomial model is preferred over the Poisson model since the latter cannot 

handle overdispersion and, as such, may lead to biased parameter estimates (Lord and Park 

2008). Consequently, the HSM recommends using the negative binomial model for the 

development of SPFs. 

If the overdispersion parameter (α) is equal to zero, the negative binomial reduces to the 

Poisson model. Estimation of 𝜆  can be conducted through standard maximum likelihood 

procedures. While alternatives, such as the Conway-Maxwell model, have the advantage of 

accommodating both overdispersion and underdispersion (where the variance is less than the 

mean) (Lord and Mannering 2010), the negative binomial model remains the standard in SPF 

development.  

Due to the presence of repeated observations resulting in temporal correlation among 

observations, random-effects were used to estimate models for the disaggregate data sets. The 

random effects framework allows the constant term β0 of Equation 6 to vary as shown in 

Equation 8. 

𝛽 = 𝛽 + 𝜔   (8) 

where the subscript i indexes a specific intersection 𝜔 is normally distributed with mean zero 

and a variance that is estimated as a model parameter that is allowed to vary across intersections. 

By allowing the constant term to vary, unobserved heterogeneity unique to each location 

resulting from repeated observations. The constant term can therefore take on a higher or lower 
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value at locations where crash frequency may be affected by the presence of variables not 

available in the data set. 

By allowing the intercept term to vary from site to site, the predictive ability of the model 

is improved as the site-specific intercept term obtained from the model effectively depends on 

the crash history at a given site. The predictive capability of the random effects framework is 

therefore not necessarily comparable to the predictive ability of the standard negative binomial 

framework alone. In this vein, a more applicable comparison of predictive ability can be made 

through the application of empirical Bayes (EB) methodology to the predicted crashes obtained 

from the standard negative binomial model, as described in the HSM. The EB method utilizes 

the overdispersion parameter, α to determine the weighed adjustment factor, w, which is then 

used to estimate the expected number of crashes at a given location when combining observed 

crash data with the number of crashes predicted by an SPF. The formula for this weighting factor 

is given in Equation 9: 

𝑤 =
( × )

   (9) 

where: 

𝛼 = overdispersion parameter, and 

𝑁  = predicted number of crashes by SPF. 
 

Upon determining w, the expected number of crashes can then be determined using 

Equation 10: 

𝑁 = 𝑤 × 𝑁 + (1 − 𝑤) × 𝑁   (10) 
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where:  

𝑁  = expected number of crashes determined by the EB method, 
w = weighted adjustment factor, and 
𝑁  = observed number of crashes at a site. 
 

For further details of the EB method, the reader is referred to the HSM (AASHTO 2010). 

Model goodness-of-fit metrics, such as log-likelihood and AIC, do not account for the 

application of EB to the standard negative binomial model. Therefore, in order to compare the 

negative binomial with EB approach to the random effects approach, the models can be assessed 

in terms of predictive ability. This study focuses on two metrics of model fit, Mean Absolute 

Deviance (MAD) and Mean Squared Predictive Error (MSPE) (Oh et al. 2003), which are shown 

in Equations 11 and 12, respectively: 

𝑀𝐴𝐷 = 𝛴 |𝑦 − 𝑦 |  (11)  

and 

𝑀𝑆𝑃𝐸 = 𝛴 (𝑦 − 𝑦 )   (12) 

where: 

n = the number of observations, 
i = the ith observation, 
𝑦  =the predicted value of the ith observation, and  
y = the observed value of the ith observation. 
 

As noted previously, several SPFs were developed at a part of this research at varying 

degrees of complexity.  The complexity of the SPFs is reflective, in part, on the underlying data 

requirements. MDOT collects or estimates AADT on its entire trunkline system on a regular 

basis.  While this is not necessarily the case with minor roads that are not state-maintained, 

AADT estimates have been developed for all such roads and were provided in the SafetyAnalyst 

AADT File that was used for the purposes of this study.  Consequently, these simpler AADT-
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only models will provide a viable short-term tool for use in high-level safety planning activities.  

As a part of this study, SPFs were examined at four levels of detail: 

 Uncalibrated HSM – The intersection models from Chapter 12 of the HSM were applied 
directly using traffic volume data for the study sites. 

 Calibrated HSM – The predicted number of crashes based upon the SPFs from the HSM 
were calibrated based upon the observed crashes at the study sites. 

 Michigan-Specific Models with AADT and Regional Indicators – A series of Michigan-
specific models were developed using only AADT for the major and minor roads.  A 
simple statewide model was estimated, as well as a similar model that included a series of 
binary indicator variable for each MDOT region. 

 Fully Specified Michigan-Specific Models – A series of detailed models were 
subsequently developed in consideration of AADT, regional indicator variables, and a 
diverse range of geometric variables. 

2.5 Results and Discussion 

2.5.1 Comparison of Uncalibrated and Calibrated HSM Models 

The base SPFs from Chapter 12 of the HSM were first applied to nearly all-inclusive 

datasets for each of the four intersection types.  These base models utilize only the AADT for the 

major and minor road as input values.    This was done as the data for specific geometric 

information for each site was not available at the system-wide level in MDOT’s SafetyAnalyst 

files (subsequent analysis beyond the initial calibration utilizes a sample of the data for which 

geometric information was manually collected).  Separate estimates were obtained for total 

crashes, property damage only (PDO) crashes, and fatal/injury (F/I) crashes. 

After applying these models, the resulting estimates for each study location were then 

compared to the observed values.  The ratio of the total observed crashes to the estimated crashes 

(from the base SPFs) for the entire sample is used to estimate a calibration factor, as shown in 

the Equation 13: 

𝐶 =    (13) 
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where C is the calibration factor Nobserved is the total number of crashes observed for a given 

intersection type, and NSPF is the total number of crashes predicted for a given facility type. The 

calibration factor can then be combined with the predicted crash value to obtain a more accurate 

estimated as shown in Equation 14: 

𝑁 , = 𝑁 , ∗ 𝐶  (14) 

where Ncalibrated,i is the calibrated prediction of crashes at a given location, Nspf,i is the uncalibrated 

predicted number of crashes at a a given location as given by the SPF, and C is the calibration 

factor obtained from Equation 13. 

The calibration factors  provide a measure of how close the base SPFs from the HSM fit 

the Michigan data.  The calibration factor for each of the three models (i.e., total, PDO, and F/I) 

and each of the four site types (3SG, 3ST, 4SG, and 4ST) are presented in Table 6. 

Table 6: Calibration Factors for HSM Models 

 Intersection Types 3SG 3ST 4SG 4ST 

Single-
Vehicle 

Total 0.950 0.266 0.977 0.333 

PDO 0.825 0.232 0.648 0.311 

Fatal-Injury 1.338 0.353 2.002 0.512 

Multi-
Vehicle 

Total 0.876 0.294 1.094 0.469 

PDO 1.100 0.340 1.331 0.563 

Fatal-Injury 0.561 0.171 0.750 0.301 

 

By briefly scanning the calibration factors for the HSM models, it is evident that the 

accuracy of the base SPFs from the HSM vary widely by site type, crash type, and crash severity 

level, thus suggesting that the estimation of Michigan-specific SPFs is appropriate for the given 

data sets. Calibration factors with values greater than one indicate the SPF tends to under predict, 

such as was observed for 3SG and 4SG fatal and injury crashes. Calibration factors with values 

less than one indicate that the default SPFs tend to over predict, as was observed for all stop-

controlled SPFs. The differences are reflective of several factors, including state-specific 
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differences (e.g., driver characteristics, road design standards, weather, etc.), as well as the fact 

that only AADT was considered (and not geometric or road use characteristics).  

2.5.2 Simple Michigan-Specific Safety Performance Functions 

Having established that the base SPFs from the HSM do not generally provide consistent 

fit across intersection types, crash types, and crash severity levels, a series of Michigan-specific 

SPFs have been developed.  These SPFs were (or will be) developed in two general forms: 

 Michigan-Specific Models with AADT and Regional Indicators – A series of Michigan-
specific models were developed using only AADT for the major and minor roads.  A 
simple statewide model was estimated, as well as a similar model that included a series of 
binary indicator variables for each MDOT region. 

 Fully Specified Michigan-Specific Models – A series of detailed models were 
subsequently developed in consideration of AADT, regional indicator variables, and a 
diverse range of geometric variables. 

2.5.2.1 AADT-Only SPFs 

This section presents the results of separate SPFs for fatal and injury (F/I) crashes and 

property damage only (PDO) crashes for three-leg signalized intersections. In order to 

demonstrate how SPFs can capture regional differences that would not otherwise be observable, 

an AADT-only SPF as well as a SPF with regional indicators have been developed.  These 

models account for general differences in safety performance across the seven MDOT regions 

due to crash reporting characteristics, driver behavior, and weather conditions, among other 

things. Most notably, the traffic volumes observed in the Metro region are typically higher than 

those in the rest of the state, meaning drivers may be more used to operating in congestion as 

well as capturing the non-linear relationship between volume and crash frequency. For these 

models, parameter estimates are provided for AADT on the major and minor road.  In model 
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with regional indicators, the Metro region serves as the baseline and indicator variables are then 

used to adjust the estimates to each of the other regions. 

Table 7, Figure 9, Figure 10, and Figure 11present the AADT only SPFs for four-leg 

signalized (4SG) intersections.  These locations showed crashes to increase much more rapidly 

with respect to major road AADT as compared to minor road AADT.   

Table 7. AADT Only SPF for Crashes at 4SG Intersections 

Variable 

Total 
Fatal and Injury 

Crashes 
Property Damage 

Only Crashes 

Value Std. Dev Value Std. Dev Value Std. Dev 

Intercept -7.859 0.295 -7.902 0.387 -8.436 0.315 

Major AADT 0.792 0.032 0.709 0.043 0.801 0.035 

Minor AADT 0.238 0.017 0.173 0.024 0.263 0.019 

Inverse Dispersion Parameter 0.352 0.017 0.339 0.032 0.380 0.019 

 

 

Figure 9. Graphical Form of Total Crash AADT Only SPF for Four-Leg Signalized (4SG) 
Intersections 
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Figure 10. Graphical Form of Fatal and Injury Crash AADT Only SPF for Four-Leg 
Signalized (4SG) Intersections 

 

Figure 11. Graphical Form of PDO Crash AADT Only SPF for Four-Leg Signalized (4SG) 
Intersections 
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controlling for the effects of traffic volume, crashes were highest in the Superior and North 

regions and lowest in the Metro region. In each of the figures, the predicted crash value for each 

region is illustrated up to the maximum traffic volume observed in that region. The regional 

differences are therefore largely explained by differences in volume in the Metro region in 

comparison to the other regions. It is also possible that additional factors, such as localized 

driving behavior, weather, and crash reporting practices also play some role. 

 

Table 8. SPF for Crashes at 4SG Intersections with AADT and Regional Indicators 

 

Variable 

Total 
Fatal and Injury 

Crashes 
Property Damage 

Only Crashes 

Value Std. Dev Value Std. Dev Value Std. Dev 

Intercept -10.045 0.365 -9.599 0.510 -10.696 0.392 

Major AADT 0.953 0.036 0.841 0.050 0.967 0.039 

Minor AADT 0.253 0.017 0.183 0.024 0.277 0.018 

Added effect of Superior region 0.616 0.075 0.522 0.104 0.620 0.080 

Added effect of North region 0.539 0.066 0.273 0.093 0.593 0.071 

Added effect of Grand region 0.384 0.061 0.299 0.082 0.399 0.065 

Added effect of Bay region 0.505 0.067 0.363 0.093 0.520 0.072 

Added effect of Southwest region 0.749 0.064 0.393 0.089 0.827 0.068 

Added effect of University region 0.451 0.065 0.309 0.090 0.472 0.070 

Inverse Dispersion Parameter 0.313 0.016 0.327 0.031 0.329 0.018 

*Note: Metro region serves as baseline reference category 
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Figure 12. Graphical Form of Total Crash AADT and Regional Indicator SPF for Three-
Leg Signalized (4SG) Intersections 

 
 

 

Figure 13. Graphical Form of Fatal and Injury Crash AADT and Regional Indicator SPF 
for Three-Leg Signalized (4SG) Intersections 
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Figure 14. Graphical Form of PDO Crash AADT and Regional Indicator SPF for Three-
Leg Signalized (4SG) Intersections 

 

Similar tables and figures were made for each of the other intersection types explored in 
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This suggests that fatal and injury crashes typically occur at locations that experience higher 

frequencies of PDO crashes. In other words, the more crashes at a site, the more likely one is to 

be fatal. Moving forward, this suggests that potential countermeasures for reducing the frequency 

of severe crashes can be identified by analyzing all crashes at an intersection. In some cases, 

specific crash types may be of particular interest to a researcher or road agency. To this end, 

Table 9 provides statewide details of the crash type distributions for each of the four site types by 

severity level (fatal/injury versus property damage only). 
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Table 9. Statewide Distribution of Crashes by Collision type  

  Proportion of Crashes by Severity Level for Specific Intersection Types 

Manner of Collision 
3SG   3ST   4SG   4ST 

FI PDO   FI PDO   FI PDO   FI PDO 
Single Vehicle 0.04 0.05   0.03 0.06   0.02 0.02   0.05 0.06 

Rear-end 0.42 0.51   0.28 0.35   0.35 0.45   0.16 0.24 

Rear-end Left-turn 0.01 0.02   0.04 0.03   0.01 0.02   0.02 0.02 

Rear-end Right-turn 0.01 0.03   0.03 0.04   0.01 0.02   0.01 0.02 

Head-on 0.02 0.01   0.03 0.01   0.01 0.01   0.01 0.00 

Head-on Left-turn 0.13 0.04   0.11 0.04   0.09 0.05   0.07 0.03 

Angle 0.25 0.20   0.30 0.32   0.37 0.25   0.53 0.44 

Sideswipe-Same 0.02 0.10   0.03 0.11   0.02 0.12   0.03 0.11 

Sideswipe-Opposite 0.01 0.02   0.01 0.01   0.01 0.02   0.01 0.02 

Other MV 0.02 0.03   0.01 0.03   0.02 0.03   0.02 0.04 

Pedestrian 0.04 0.00   0.05 0.00   0.03 0.00   0.04 0.00 

Bicycle 0.03 0.00   0.07 0.01   0.04 0.00   0.05 0.00 

 

2.5.3 Development of Fully Specified SPFs 

A variety of approaches could be utilized to develop fully specified SPFs due to the 

structure of the data set. The data was initially collected and organized such that each 

observation represented the details for one site for a given year. The simplest methodology to 

account for this fact is to combine all five years of data for each site into a single observation. 

For the sake of ease of interpretation, it is beneficial to include the duration of the study as an 

offset term, which results in scaling of the parameters such that the predictive equation can be 

applied to estimate the yearly crashes at an intersection. The expression given by Equation 6 and 

representing the estimated number of crashes for a given observation can thus be expanded as 

follows: 

𝜆 = 𝑒𝑥𝑝 (𝛽 + 𝛽 𝑋 + ⋯ + 𝛽 𝑋 + 𝛽 𝑋 + 𝜀 ). (15) 

where λi represents the five year predicted crash total at a given intersection; εi represents the 

gamma-distributed error term discussed in Chapter 4; X1 … Xn represent the variables that 

describe the intersection geometric and operational characteristics; β0, β1, … βn represent 
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estimable parameters; while Xduration and βduration represent the natural log of the duration (number 

of years of observations) of the study at a particular intersection and the parameter associated 

with the number of years of data observed at particular site constrained to equal one, 

respectively. Making the appropriate substitutions yields the following expression: 

 𝜆 = 𝑒𝑥𝑝 (𝛽 + 𝛽 𝑋 + ⋯ + 𝛽 𝑋 + 1 ∗ 𝑙𝑛 (𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) + 𝜀 ). (16) 

Simple algebra yields the following expression: 

𝜆 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 𝑒𝑥𝑝 (𝛽 + 𝛽 𝑋 + ⋯ + 𝛽 𝑋 + 𝜀 ). (17) 

These steps ensure that the parameter estimates given from the GLM fitting algorithm are in 

terms of a single year. 

Table 10 through Table 13 document the results of the model estimation for the five-year 

aggregated models. Parameters with a Z-Value of approximately 1 or larger are shown for each 

model. 

2.5.3.1 Fully-Specified SPFs without Regional Indicators Using Five-year Aggregated data 

Table 10. Fully-specified SPF for signalized three-leg intersections 

Parameter Estimate Std. Error z-Value p-Value 
Intercept -7.493 1.043 -7.190 <0.001 
Natural Log of Major Road AADT 0.634 0.108 5.880 <0.001 
Natural Log of Minor Road AADT 0.225 0.035 6.390 <0.001 
Major Road Through Lanes 0.053 0.045 1.190 0.235 
Right Turns on Minor Road 0.293 0.143 2.040 0.041 
RTOR Prohibited -0.172 0.162 -1.060 0.288 
Left Turns on Minor Road 0.188 0.142 1.320 0.186 
Major Road Median Presence -0.473 0.157 -3.000 0.003 
Minor Road Median Presence -0.283 0.170 -1.670 0.095 
Major Road One-Way Indicator -0.684 0.208 -3.290 0.001 
Minor Road One-Way Indicator -0.453 0.180 -2.520 0.012 
Major Road Parking Presence -0.444 0.212 -2.090 0.036 
Major Road Speed Limit 0.007 0.007 1.060 0.287 
Minor Road Bike Lane Presence -0.784 0.588 -1.330 0.182 
Minor Road Driveways 0.058 0.037 1.540 0.125 
Non-motorized Path within 1 Mile 0.258 0.109 2.370 0.018 
Lighting Presence 0.135 0.115 1.170 0.241 
Bus Stop Presence -0.169 0.125 -1.350 0.178 
Overdispersion parameter 0.367 0.044   
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Table 11. Fully-specified SPF for unsignalized three-leg intersections 

Parameter Estimate Std. Error Z-Value p-Value 
Intercept -10.0383 1.542 -6.510 <0.001 
Natural Log of Major Road AADT 0.7276 0.135 5.380 <0.001 
Natural Log of Minor Road AADT 0.4192 0.083 5.080 <0.001 
Right Turns on Major Road 0.7477 0.294 2.540 0.011 
Right Turns on Minor Road 0.593 0.315 1.880 0.060 
Left Turns on Major Road 0.1731 0.164 1.060 0.291 
Minor Road Median Presence -0.6747 0.389 -1.730 0.083 
Major Road Parking Presence -0.9354 0.386 -2.430 0.015 
Major Road Speed Limit -0.0142 0.012 -1.240 0.215 
Major Road Driveways -0.0617 0.037 -1.660 0.097 
Minor Road Driveways 0.1272 0.067 1.910 0.057 
Lighting Presence 0.3515 0.201 1.750 0.081 
Overdispersion parameter 0.211 0.019   

 

Table 12. Fully-specified SPF for signalized four-leg intersections 

Parameter Estimate Std.  Error Z-Value p-Value 
Intercept -7.305 0.609 -12.000 <0.001 
Natural Log of Major Road AADT 0.590 0.065 9.140 <0.001 
Natural Log of Minor Road AADT 0.154 0.031 4.950 <0.001 
Major Road Through Lanes 0.102 0.029 3.450 0.001 
Minor Road Through Lanes 0.233 0.036 6.440 <0.001 
Right Turns on Major Road 0.175 0.067 2.620 0.009 
Right Turns on Minor Road 0.223 0.064 3.490 <0.001 
RTOR Prohibited -0.309 0.098 -3.160 0.002 
Left Turns on Major Road 0.234 0.075 3.140 0.002 
Left Turns on Minor Road 0.152 0.072 2.100 0.035 
Major Road Median Presence -0.107 0.114 -0.950 0.344 
Minor Road Median Presence -0.634 0.152 -4.170 <0.001 
Major Road One-Way Indicator 0.194 0.098 1.970 0.049 
Minor Road One-Way Indicator 0.158 0.104 1.510 0.131 
Major Road Parking Presence -0.300 0.090 -3.320 0.001 
Major Road Speed Limit 0.006 0.004 1.660 0.097 
Minor Road Bike Lane Presence 0.351 0.192 1.830 0.067 
Major Road Driveways 0.015 0.011 1.340 0.180 
Non-motorized Path within 1 Mile 0.330 0.059 5.560 <0.001 
Lighting Presence 0.358 0.140 2.550 0.011 
Overdispersion parameter 1.404 0.179   
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Table 13. Fully-specified SPF for unsignalized four-leg intersections 

Parameter Estimate Std. Error Z-Value p-Value 
Intercept -8.699 1.043 -8.340 <0.001 
Natural Log of Major Road AADT 0.635 0.100 6.350 <0.001 
Natural Log of Minor Road AADT 0.386 0.060 6.430 <0.001 
Minor Road Through Lanes 0.367 0.215 1.710 0.087 
Right Turns on Minor Road 0.317 0.283 1.120 0.263 
Left Turns on Major Road -0.130 0.111 -1.170 0.243 
Left Turns on Minor Road 0.435 0.179 2.430 0.015 
Major Road Parking Presence -0.185 0.153 -1.210 0.225 
Major Road Speed Limit -0.009 0.008 -1.140 0.256 
Major Road Bike Lane Presence -0.509 0.384 -1.330 0.185 
Major Road Driveways 0.028 0.030 0.950 0.342 
Minor Road Driveways -0.034 0.027 -1.260 0.208 
Non-motorized Path within 1 Mile 0.157 0.112 1.400 0.161 
Presence of Flashing Beacons 0.601 0.262 2.300 0.022 
Sidewalk Presence -0.343 0.165 -2.090 0.037 
Skew Angle -0.006 0.004 -1.380 0.167 
Overdispersion parameter 0.598 0.063   

 

Consistent with expectation, the effect of traffic volume has a substantial effect on the 

expected crashes at an intersection. In all four models, the coefficient for traffic volume on both 

major and minor roadways was less than one, indicating as traffic volumes increase, the 

frequency of traffic crashes increases at a decreasing rate. When comparing three-leg 

intersections to four-leg intersections, the effect of traffic volume attributed to the minor road is 

typically larger on four-leg intersections, likely due to the higher number of conflicting 

movements at four-leg intersections. 

Higher numbers of through lanes on the major road were shown to be associated with 

increasing crash frequency on the signalized intersections, although the effect is less pronounced 

in the three-leg intersections than four-leg intersections (each lane increased the crash frequency 

by 5 percent and 11 percent, respectively). This effect is potentially attributable to road users 

crashing while attempting to maneuver their vehicle to turn on to the minor road or onto nearby 

driveways. 
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The number of minor road through lanes was associated with increasing crash frequency 

on the four-leg intersections. Locations with higher numbers of through lanes on the minor road 

would likely have relatively higher volumes of traffic on the minor road, therefore it makes sense 

that they would experience higher crash frequencies. The effect of minor road through lanes was 

most pronounced at unsignalized intersections, where each lane resulted in an increase of 44 

percent, compared to 26 percent for the signalized intersections. The effect is likely more 

pronounced at unsignalized intersections as multiple through lanes could result in vehicles 

obscuring the view of drivers, making it more challenging to find an appropriate gap to enter the 

mainline traffic or to cross the major road. Through lanes on the minor road of three-leg 

intersections represent intersections where only one lane is present for vehicles to enter the major 

road, so intuitively it makes sense that the effect of these lanes would be insignificant, especially 

as this scenario would also be heavily associated with low minor road traffic volumes, and thus, 

fewer conflicting movements. 

The presence of dedicated right turn lanes on the major road of three-leg unsignalized and 

four-leg signalized intersections was shown to be associated with increased crash frequency. 

This result is initially counter-intuitive, as one would expect that the dedicated turn lanes would 

remove vehicles from the traffic flow, reducing the likelihood of rear-end collisions as the 

deceleration of turning vehicles will not impact the though movement traffic. This result is 

potentially attributable to the fact that right turn lanes service driveways adjacent to the 

intersections as well as the intersections themselves. For all four facility types, the presence of 

right turn lanes on the minor road was associated to be with an elevated crash frequency. This 

effect is likely related to the fact that dedicated turn lanes on minor streets would deliberately be 

located at intersections with elevated minor road volumes, leading to more conflicts and crashes. 
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The prohibition of right turns when the traffic signal is red was associated with decreased 

crash frequency at signalized intersections. This is consistent with what would be expected for 

this particular crash countermeasure. At three-leg intersections, the observed reduction in crashes 

was 16 percent, while four-leg intersections with right-turn-on-red prohibition were associated 

with 27 percent fewer crashes. The discrepancy between the two facility types is probably 

partially due to the extra leg that vehicles would be turning on and off of. 

The presence of dedicated left turn lanes on the major roadway differed by facility type. 

No effect was significantly present for the three-leg signalized intersections, while crashes were 

19 percent higher at four-leg signalized intersections, 26 percent higher for three-leg 

unsignalized intersections, and 12 percent lower for four-leg unsignalized intersections. It is 

somewhat surprising that this effect differs so much for each facility type, however, the varying 

effects may be indicative of the differing circumstances at which dedicated left-turn lanes are 

provided: to account for high volumes of turning vehicles and to ensure the operational 

efficiency of the through movements. It is also worth noting that the parameter for left-turn lanes 

on the major roadway was much more significant for four-leg signalized intersections that for the 

unsignalized intersections. Intuitively, the elevated crash frequency at the four-leg signalized 

intersection makes sense, as the left-turn lane specifically present due to traffic patterns at the 

site including a relatively large volume of left-turning vehicles, resulting in more conflicts. This 

effect could potentially be more effectively examined if traffic timing information was available 

to assess if the movement is permissive (left-turning vehicles are allowed to use reasonable gaps 

in oncoming traffic to make their turn) or protected (left-turning vehicles only perform the 

turning maneuver when the traffic signal allows). The crash reduction associated with major leg 

left turn lanes on four-leg unsignalized intersections could be reflective of left-turn lanes helping 



52 
 

to minimize the rear-end collisions that would have occurred had the turning vehicles been left in 

the path of through traffic. Similarly to the four-leg signalized intersections, the increase in 

crashes at three-leg unsignalized intersections could potentially be due to the traffic volumes of 

turning vehicles rather than for the operational efficiency of through vehicles. 

Unlike the presence of dedicated left-turn lanes on the major road, dedicated left-turns on 

the minor road were consistently associated with increased traffic crash frequency, with the 

exception of no effect being determinable for three-leg stop controlled intersections. The effect is 

particularly large for four-leg unsignalized intersections (55 percent), which is relatively 

consistent with the other trends regarding lanes on the minor roadway of unsignalized 

intersections that were observed as a part of this study. Essentially, every lane on the minor 

roadways is indicative of more vehicles entering the higher-volume roadway resulting in more 

conflicting movements, and thus, more crashes. 

The presence of medians on the major roadway was associated with reductions in crashes 

of 38 percent on three-leg signalized intersections and 10 percent on four-leg signalized 

intersections, although it was only marginally significant for the latter. This is partially 

attributable due to the prevalence indirect left turns through the use of median-turnarounds, or 

Michigan Lefts, on divided roadways. This effect was tested for through the use of an interaction 

term between the presence of left-turn lanes and medians, however there was no noteworthy 

interaction between the two features.  

The presence of medians on the minor road was found to be associated with crash 

reductions of 25 percent for three-leg signalized intersections, 49 percent for three leg 

unsignalized intersections, and 47 percent for four-leg signalized intersections.  This effect may 

be reflective of low volumes or relatively few conflicting movements at intersections with 
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minor-road medians, or some other effect that is correlated with minor road medians but that is 

unaccounted for in this particular data set. 

Traffic crashes were 50 percent lower at three-leg signalized intersections where the 

major leg was a one-way street, while crashes were 21 percent higher at similar four-leg 

signalized intersections. The a priori expectation was that intersections with one-way streets 

would be associated with fewer crashes, as was observed on the three-leg signalized 

intersections. The elevated crash frequency for this type of four-leg signalized intersection could 

be reflective of specific traffic patterns or due to these locations being most prevalent in the 

densest urban environments. From a human factors standpoint, it is possible that drivers 

travelling through the intersection are unaccustomed to vehicles turning onto the roadway and 

travelling in the same direction as they are when the vehicle enters from the left side. Somewhat 

surprisingly, the effects are very similar for one-way minor roadways. 

To varying degrees, the presence of parking on the major roadway was associated with 

reduced crash frequency at each of the four facility types (36, 61, 26, and 17 percent at three-leg 

signalized, three-leg unsignalized, four-leg signalized, and four-leg unsignalized, respectively). 

This is quite possibly the result of a selectivity bias, in that parking would only be allowed where 

the crash history would suggest that it is relatively safe to do so. This is also potentially another 

instance where the presence of parking is associated with other safety features that are not 

accounted for in this data set. 

The speed limit of the major roadway was found to be associated with increased crash 

frequency for signalized intersections (about 3.6 percent for every five miles per hour at three-

leg signalized and 3 percent for every five miles per hour at four-leg signalized). For 

unsignalized intersections, higher major road speed limits were associated with decreased crash 
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frequency (7 percent for every five miles per hour on three-leg intersections and 4.5 percent for 

four-leg intersections). This result makes sense, as higher speed limits result in increased 

stopping sight distances at signalized intersections, which may result in dilemma zone related 

crashes, where drivers are caught in an area where they cannot determine whether they should 

proceed through the intersection or bring their vehicle to a stop. For unsignalized intersections, 

the reduced crash frequency is likely again due to selection bias, as speed limits would likely be 

relatively lower at intersections where substantial volumes of vehicles are entering the major 

roadway from the minor roadway and higher when the volume of traffic on the minor roadway is 

relatively low. 

The presence of a dedicated bike lane on the major road was shown to be associated with 

a 40 percent reduction of traffic crashes for four-leg unsignalized intersections. This is likely due 

to bike lanes being installed where engineering judgement deemed that they could be installed in 

a relatively safe manner. Additionally, the presence of bike lanes may be indicative of more 

available right-of-way, and thus, more room for vehicles to maneuver and avoid potential 

crashes. The presence of dedicated bike lanes on the minor roadway was found to be associated 

with a 54 percent lower crash frequency at three-leg signalized intersections and a 43 percent 

higher crash frequency at four-leg signalized intersections. It is hard to say why these have 

differing signs, although it may be due to relatively low representation within the data, or site-

specific characteristics at those sites where the bike lanes are located. 

For each driveway within 210 feet of the center of the intersection, traffic crashes 

decreased by 6 percent at three-leg stop controlled intersections, while increasing by 1.5 and 2.9 

percent at four-leg signalized and unsignalized intersections, respectively. It is somewhat 

intuitive that effect of driveways located near to the intersection would have a different effect on 
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three-leg intersections versus four-leg, as one side of the major roadway would typically be free 

for development at locations with three-legs, however, it is counterintuitive that more driveways 

would ever be associated with fewer crashes, unless the relationship between the number of 

driveways and crash frequency at unsignalized intersections is actually reflecting that locations 

with high driveway counts have lower traffic volumes and thus fewer crashes the other four-leg 

unsignalized sites.  

Each driveway on the minor roadway was shown to increase traffic crashes at three-leg 

signalized intersections by 6 percent, crashes at three-leg unsignalized intersections by 14 

percent, and decrease crashes at four-leg unsignalized intersections by 3 percent. The results of 

the three-leg intersections were consistent with expectation, as the larger number of driveways 

immediately adjacent to the intersection is indicative of a high density of conflicting movements. 

The result for four-leg unsignalized intersections is potentially to many driveways being for 

single-family homes, and therefore not reflective of a large volume of turning vehicles. 

Perhaps one of the most interesting findings of this study pertains to the association 

between crash frequency and proximity to recreational non-motorized paths. When located 

within one mile of a non-motorized path, three-leg signalized (29 percent), four-leg signalized 

(39 percent), and four-leg unsignalized intersections (17 percent) were all shown to exhibit 

higher crash frequencies. The nature of this finding is somewhat unclear, with one potential 

explanation being these intersections generally tend to serve lower volumes of traffic. Similar to 

the effects shown by the regional indicator variables: parameters that are generally associated 

with lower volume locations tend to indicate increased crash frequency as crashes tend to 

increase at a decreasing rate as volume increases. Table 14 shows the average major and minor 

traffic volumes for each intersection type when a non-motorized path is located within one mile 
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or less versus more than one mile of the intersection, which support the thought process 

regarding lower volume, particularly for signalized locations. 

Table 14. Relationship between traffic volume and non-motorized trail proximity 

Facility Type Non-motorized Trail Proximity Major AADT Minor AADT 
3SG 1 Mile or Less 19172 3555 
3SG More than 1 Mile 20473 3930 
3ST 1 Mile or Less 13232 429 
3ST More than 1 Mile 12958 555 
4SG 1 Mile or Less 18616 8318 
4SG More than 1 Mile 22438 9195 
4ST 1 Mile or Less 14095 1658 
4ST More than 1 Mile 13411 2003 

 

One of the most counterintuitive results in this study is that the presence of lighting at 

intersections was shown to be associated with higher crash frequency (14 percent at three-leg 

signalized, 42 percent at three-leg stop controlled, and 43 percent at four-leg stop controlled 

intersections). While prior research generally suggests locations with lighting tend to experience 

fewer crashes, these results are somewhat inconsistent. Within the context of this study, these 

results may be due to lighting being present primarily at either low-volume locations or sites 

with a history of excess crashes. In the same vein, the presence of a flashing beacon was found to 

be associated with an 82 percent increase in crashes on four-leg unsignalized intersections. This 

is likely reflective of the fact that flashing beacons have been strategically deployed at high crash 

locations.  

The presence of sidewalks were associated with 29 percent fewer crashes at four-leg 

unsignalized intersections. Given the urban/suburban nature of the data, locations without 

sidewalks are the minority. This effect is again likely picking up on a volume-related issue at 

these sites. Four-leg signalized intersections were also shown to have decreasing crash frequency 

as the skew angle of the intersection increased. Large skew angles are relatively rare in the data 
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set, but it is possible that drivers use more caution at locations with high skew, or that the high 

skew intersections serve relatively minimal traffic volumes. Bus stop presence near three-leg 

signalized intersections was shown to be associated with a 16 percent reduction in crashes. This 

is likely a relic of the data, as bus stops are frequently located on high-volume routes in the most 

densely populated areas of the state. 

2.5.3.2 Fully Specified SPFs with Regional Indicators using five-year aggregated data 

Tables 15 through 18 present the SPFs developed on aggregated data and utilizing 

regional indicator variables. Generally speaking, the inclusion of regional indicator variables had 

a relatively low impact on the coefficients of other variables, with the primary exception being 

the traffic volume coefficients. 

Table 15. Fully specified three-leg signalized intersection SPF with regional indicators 

Parameter Estimate Std. Error Z-Value p-Value 
Intercept -9.058 1.126 -8.040 <0.001 
Natural Log of Major Road AADT 0.737 0.112 6.570 <0.001 
Natural Log of Minor Road AADT 0.228 0.034 6.610 <0.001 
Major Road Through Lanes 0.076 0.048 1.580 0.114 
Right Turns on Minor Road 0.215 0.140 1.530 0.125 
RTOR Prohibited -0.264 0.161 -1.640 0.101 
Left Turns on Minor Road 0.214 0.138 1.550 0.122 
Major Road Median Presence -0.513 0.155 -3.320 0.001 
Minor Road Median Presence -0.291 0.166 -1.750 0.079 
Major Road One-Way Indicator -0.380 0.213 -1.780 0.075 
Major Road Parking Presence -0.334 0.213 -1.570 0.116 
Major Road Speed Limit 0.010 0.006 1.510 0.131 
Minor Road Bike Lane Presence -1.287 0.617 -2.090 0.037 
Non-motorized path within 1 Mile 0.200 0.110 1.820 0.069 
Lighting Presence 0.109 0.114 0.960 0.339 
Terminal Major Leg 0.450 0.341 1.320 0.187 
Superior Region 0.516 0.260 1.990 0.047 
North Region 0.672 0.178 3.770 <0.001 
Grand Region 0.547 0.177 3.090 0.002 
Bay Region 0.441 0.185 2.390 0.017 
Southwest Region 0.677 0.165 4.120 <0.001 
University Region 0.468 0.167 2.800 0.005 
Overdispersion Parameter 0.329 0.041   
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Table 16. Fully specified three-leg unsignalized intersection SPF with regional indicators 

Parameter Estimate Std. Error Z-Value p-Value 
Intercept -13.043 1.699 -7.670 <0.001 
Natural Log of Major Road AADT 0.921 0.161 5.730 <0.001 
Natural Log of Minor Road AADT 0.452 0.082 5.520 <0.001 
Minor Road Through Lanes -0.419 0.315 -1.330 0.183 
Right Turns on Major Road 0.897 0.279 3.220 0.001 
Major Road Parking Presence -0.822 0.384 -2.140 0.032 
Major Road Driveways -0.053 0.035 -1.500 0.134 
Minor Road Driveways 0.133 0.066 2.030 0.043 
Lighting Presence 0.278 0.206 1.350 0.178 
Sidewalk Presence 0.266 0.199 1.340 0.180 
Bus Stop Presence 0.306 0.252 1.220 0.224 
Superior Region 0.960 0.360 2.670 0.008 
North Region 0.679 0.344 1.980 0.048 
Grand Region 0.533 0.316 1.690 0.092 
Bay Region 0.451 0.346 1.310 0.192 
Southwest Region 1.124 0.343 3.280 0.001 
University Region 0.536 0.331 1.620 0.106 
Overdispersion Parameter 1.324 0.172   

 

Table 17. Fully specified four-leg signalized intersection SPF with regional indicators 

Parameter Estimate Std. Error Z-Value p-Value 
Intercept -8.621 0.648 -13.300 <0.001 
Natural Log of Major Road AADT 0.680 0.065 10.480 <0.001 
Natural Log of Minor Road AADT 0.175 0.030 5.920 <0.001 
Major Road Through Lanes 0.141 0.027 5.290 <0.001 
Minor Road Through Lanes 0.216 0.034 6.370 <0.001 
Right Turns on Major Road 0.206 0.062 3.340 0.001 
Right Turns on Minor Road 0.217 0.061 3.530 <0.001 
RTOR Prohibited -0.352 0.094 -3.740 <0.001 
Left Turns on Major Road 0.284 0.069 4.130 <0.001 
Left Turns on Minor Road 0.079 0.063 1.260 0.208 
Minor Road Median Presence -0.595 0.144 -4.130 <0.001 
Major Road One-Way Indicator 0.196 0.096 2.050 0.041 
Major Road Parking Presence -0.307 0.084 -3.660 <0.001 
Minor Road Bike Lane Presence 0.307 0.182 1.690 0.091 
Major Road Driveways 0.023 0.012 1.900 0.057 
Minor Road Driveways -0.014 0.013 -1.080 0.281 
Non-motorized path within 1 Mile 0.257 0.059 4.340 <0.001 
Lighting Presence 0.323 0.130 2.470 0.013 
Superior Region 0.526 0.118 4.460 <0.001 
North Region 0.554 0.112 4.960 <0.001 
Grand Region 0.418 0.102 4.080 <0.001 
Bay Region 0.546 0.107 5.120 <0.001 
Southwest Region 0.710 0.105 6.730 <0.001 
University Region 0.588 0.107 5.500 <0.001 
Overdispersion Parameter 0.184 0.017   
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Table 18. Fully specified four-leg unsignalized intersection SPF with regional indicators 

Parameter Estimate Std. Error Z-Value p-Value 
Intercept -9.583 1.078 -8.890 <0.001 
Natural Log of Major Road AADT 0.609 0.090 6.780 <0.001 
Natural Log of Minor Road AADT 0.361 0.061 5.950 <0.001 
Minor Road Through Lanes 0.396 0.212 1.870 0.062 
Left Turns on Minor Road 0.414 0.173 2.390 0.017 
Major Road One-Way Indicator 0.240 0.155 1.550 0.121 
Major Road Bike Lane Presence -0.500 0.391 -1.280 0.201 
Major Road Driveways 0.028 0.026 1.090 0.274 
Non-motorized path within 1 Mile 0.148 0.114 1.300 0.192 
Presence of Flashing Beacons 0.544 0.255 2.130 0.033 
Sidewalk Presence -0.171 0.119 -1.430 0.152 
Superior Region 0.461 0.215 2.140 0.032 
North Region 0.644 0.197 3.280 0.001 
Grand Region 0.706 0.185 3.810 <0.001 
Bay Region 0.495 0.189 2.610 0.009 
Southwest Region 0.553 0.192 2.890 0.004 
University Region 0.583 0.188 3.100 0.002 
Overdispersion Parameter 0.566 0.061   

 

2.5.3.3 Fully-Specified SPFs using Random Intercept Generalized Linear Mixed Models and 
disaggregated data 

For the purpose of comparison, a generalized linear mixed model (GLMM) was 

estimated for a disaggregate version of each of the four data sets. Rather than aggregating all five 

years of data at each site into one observation, this approach allows for to the level of the 

observations to be a site-year. To account for the correlation in crash frequency at intersections 

over the five years, a site-level random effect is used. The result is a data set with five times the 

number of observations, however the mean of the crash frequency is therefore five times lower. 

This comparison provides important insight into the effect of sample mean on the variance of the 

random intercept and subsequently on the overdispersion parameter for researchers the two 

methodological approaches. Tables 19 through 22 contain the model results for three-leg 

signalized intersections, three-leg unsignalized intersections, four-leg signalized intersections, 

and four-leg unsignalized intersections, respectively, which were estimated using a negative 

binomial model with a site-level random effect. 
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Table 19. Fully-specified SPF for signalized three-leg intersections with site-level random 
effect 

Parameter Estimate Std. Error z-Value p-Value 
Intercept -7.619 1.063 -7.170 <0.001 
Natural Log of Major Road AADT 0.647 0.107 6.030 <0.001 
Natural Log of Minor Road AADT 0.237 0.036 6.570 <0.001 
RTOR Prohibited -0.195 0.169 -1.150 0.250 
Left Turns on Minor Road 0.336 0.115 2.930 0.003 
Major Road Median Presence -0.384 0.157 -2.460 0.014 
Minor Road Median Presence -0.256 0.175 -1.460 0.143 
Major Road One-Way Indicator -0.666 0.210 -3.180 0.002 
Minor Road One-Way Indicator -0.503 0.187 -2.680 0.007 
Major Road Parking Presence -0.461 0.210 -2.200 0.028 
Major Road Speed Limit 0.008 0.007 1.110 0.266 
Minor Road Bike Lane Presence -1.317 0.589 -2.240 0.025 
Minor Road Driveways 0.046 0.037 1.240 0.215 
Non-motorized Path within 1 Mile 0.190 0.095 2.010 0.045 
Lighting Presence 0.195 0.119 1.630 0.103 
Bus Stop Presence -0.194 0.130 -1.490 0.135 
Overdispersion Parameter 0.039 0.014   
Variance of Random Effect   

σ2 0.387    
 

In contrast to the five-year aggregated model, the effect of major road through lanes and 

major road right turn was not significant. Additionally, the effect for minor road left turn 

presence and minor road bike lane were much more pronounced. With the exception of those 

aforementioned parameters, the random intercept model is quite similar to the five-year grouped 

model. The variance of the random effect was estimated to be 0.387, which that some of the 

heterogeneity of the data is being explained by the random intercept. The subsequent models 

suggest that the amount of variation in the data explained by the random intercept is directly 

correlated to sample mean, which is largely a function of traffic volume. 
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Table 20. Fully-specified SPF for unsignalized three-leg intersections with site level random 
effect 

Parameter Estimate Std. Error z-Value p-Value 
Intercept -11.4274 1.6416 -6.96 <0.001 
Natural Log of Major Road AADT 0.870 0.147 5.930 <0.001 
Natural Log of Minor Road AADT 0.414 0.089 4.630 <0.001 
Right Turns on Major Road 0.855 0.318 2.690 0.007 
Right Turns on Minor Road 0.631 0.320 1.970 0.048 
Minor Road Median Presence -0.524 0.409 -1.280 0.200 
Major Road One-Way Indicator -0.354 0.244 -1.450 0.147 
Major Road Parking Presence -0.946 0.389 -2.430 0.015 
Major Road Speed Limit -0.024 0.012 -2.070 0.039 
Minor Road Bike Lane Presence 1.401 1.200 1.170 0.243 
Major Road Driveways -0.048 0.038 -1.260 0.208 
Minor Road Driveways 0.124 0.066 1.880 0.060 
Lighting Presence 0.338 0.208 1.630 0.104 
Overdispersion Parameter 0.113 0.057   
Variance of Random Effect   

σ2 1.219    
 

The random effect model for three-leg unsignalized intersections indicated that there was 

an association between reduced crash frequency and the major roadway being a one-way as well 

as a crash increase associated with the presence of a minor road bike lane. The effect of major 

road left turn lane presence was no longer significantly observable. The model is relatively 

similar to the five-year grouped model barring those changes. The variance associated with the 

random effect is larger for this data set than for the others, indicating a potential relationship 

between mean crash frequency (this data set has the lowest) and site level variation. This 

suggests that less of the variation of the data is explainable with the captured variables, resulting 

in more of the data being explained by the random intercept term. The low frequency of crashes 

is generally attributable to relatively low traffic volume, particularly on the minor road. 
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Table 21. Fully-specified SPF for signalized four-leg intersections with site-level random 
effect 

Parameter Estimate Std. Error z-Value p-Value 
Intercept -7.131 0.615 -11.600 <0.001 
Natural Log of Major Road AADT 0.537 0.064 8.430 <0.001 
Natural Log of Minor Road AADT 0.173 0.033 5.250 <0.001 
Major Road Through Lanes 0.121 0.029 4.220 <0.001 
Minor Road Through Lanes 0.220 0.036 6.080 <0.001 
Right Turns on Major Road 0.228 0.069 3.320 0.001 
Right Turns on Minor Road 0.226 0.066 3.410 0.001 
RTOR Prohibited -0.322 0.103 -3.130 0.002 
Left Turns on Major Road 0.294 0.074 3.950 <0.001 
Left Turns on Minor Road 0.125 0.074 1.700 0.090 
Major Road Median Presence -0.111 0.115 -0.970 0.334 
Minor Road Median Presence -0.746 0.162 -4.620 <0.001 
Major Road One-Way Indicator 0.209 0.101 2.060 0.040 
Minor Road One-Way Indicator 0.142 0.108 1.320 0.187 
Major Road Parking Presence -0.304 0.094 -3.240 0.001 
Major Road Speed Limit 0.006 0.004 1.640 0.101 
Minor Road Bike Lane Presence 0.452 0.200 2.260 0.024 
Major Road Driveways 0.018 0.012 1.550 0.121 
Non-motorized Path within 1 Mile 0.224 0.052 4.350 <0.001 
Lighting Presence 0.426 0.149 2.870 0.004 
Skew Angle -0.002 0.002 -1.020 0.307 
Bus Stop Presence -0.071 0.068 -1.030 0.302 
Overdispersion Parameter 0.014 0.005   
Variance of Random Effect   

σ2 0.228    
 

The random effect model estimated for four-leg signalized intersections Illustrated that 

the effect of bus stop presence and skew angle were marginally significant, with relatively large 

p-Values in comparison to most of the other model parameters. Again, the standard deviation 

associated with the random effects is relatively large, indicating that there is site-to-site variation. 

This data set, which has the highest mean crash frequency, has the lowest random effect standard 

deviation, adding to the evidence of a relationship between sample mean and the site-specific 

variation accounted for by the random effect. This suggests that as sample mean increases, the 

variables in the data set are better able to explain the heterogeneity present in the data leaving 

less to be explained by the random intercept. 
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Table 22. Fully-specified SPF for unsignalized four-leg intersections with site level random 
effect 

Parameter Estimate Std. Error z-Value p-Value 
Intercept -9.758 1.039 -9.390 <0.001 
Natural Log of Major Road AADT 0.655 0.096 6.820 <0.001 
Natural Log of Minor Road AADT 0.363 0.061 5.980 <0.001 
Minor Road Through Lanes 0.446 0.203 2.200 0.028 
Right Turns on Major Road 0.180 0.169 1.060 0.288 
Right Turns on Minor Road 0.266 0.253 1.050 0.294 
Left Turns on Major Road -0.171 0.110 -1.550 0.121 
Left Turns on Minor Road 0.424 0.187 2.270 0.023 
Major Road Bike Lane Presence -0.641 0.413 -1.550 0.121 
Minor Road Driveways -0.029 0.023 -1.260 0.209 
Presence of Flashing Beacons 0.568 0.252 2.250 0.024 
Overdispersion Parameter 0.061 0.025   
Variance of Random Effect   

σ2 0.594    
 

The random effect model for four-leg unsignalized intersections is most different from 

the five-year grouped models. While the presence of right turn lanes on the major roadway was 

shown to be associated with increased crash frequency, no significant effect could be detected 

for major road driveways, sidewalk presence, major road parking, proximity to a non-motorized 

path, major road speed limit, and skew angle. The magnitude of the coefficients common to both 

models was relatively similar. The standard deviation associated with the random effect for this 

model demonstrates that for this data, the size of the random effect is somewhat proportional to 

the sample mean of crash frequency.  

One important difference between all of the five-year grouped models and the random 

effect model is the scale of the overdispersion parameter. For the random effects models, the 

overdispersion parameter is much smaller, indicating that the models are converging on the 

Poisson model. This is reflective of the fact that a substantial amount of variation in the crash 

data is due to site-specific characteristics that were not captured in this data set. This observation 

has important implications in the spatial transferability of SPFs specifically in the application of 
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empirical Bayes methodology, wherein the emphasis placed on the SPF would be relatively 

larger if the random effect model was used instead of the five-year aggregated model. Because 

the estimation of the random effects model results in the estimation of site-specific intercept 

terms, accuracy of crash prediction within the sample is typically very high (and site-specific 

crash history is considered in the model estimation), therefore application of empirical Bayes 

methodology is not necessary, however the same cannot be said for crash prediction outside of 

the sample. 

In order to truly gain insight into the predictive capabilities of each of the models 

discussed in this paper, each model was evaluated in terms of MAD and MSPE by estimating the 

crash frequency for each site year using the disaggregate data set. Additionally, the mean crash 

frequency and mean deviance (which does not utilize an absolute value and therefore allows for 

a determination as to whether a model tends to over- or under-predict) are also shown. The 

results of the goodness-of-fit calculations are shown in Table 23. 
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Table 23. Goodness of Fit Metrics for Each Model Type 

    Facility Type 
Metric Model 3SG 4SG 3ST 4ST 

 Mean Observed Crashes 3.900 8.410 0.490 1.230 

Mean 
Deviance 

AADT Only 0.016 0.103 -0.015 0.014 
AADT with Regional Indicators 0.049 0.061 -0.016 0.008 
Fully-Specified Aggregated -0.108 -0.489 -0.124 -0.050 
Aggregated with Regional Indicators 0.107 -0.164 -0.081 -0.020 
Aggregated using Site-Specific EB -0.056 -0.324 -0.072 -0.057 
Random Effects (Coefficients Only) -0.727 -1.090 -0.257 -0.305 
Random Effects (with Site-specific effect) -0.181 -0.314 -0.092 -0.065 

MAD 

AADT Only 2.699 4.461 0.631 1.122 
AADT with Regional Indicators 2.524 4.322 0.616 1.096 
Fully-Specified Aggregated 2.345 3.880 0.570 1.122 
Aggregated with Regional Indicators 2.318 3.610 0.574 1.099 
Aggregated using Site-Specific EB 1.607 2.396 0.464 0.855 
Random Effects (Coefficients Only) 2.340 3.771 0.529 1.071 
Random Effects (with Site-specific effect) 1.480 2.137 0.399 0.766 

MSPE 

AADT Only 13.321 47.710 1.212 2.966 
AADT with Regional Indicators 11.661 43.493 1.145 2.864 
Fully-Specified Aggregated 10.518 35.081 1.217 3.238 
Aggregated with Regional Indicators 10.009 28.873 1.130 3.012 
Aggregated using Site-Specific EB 4.696 10.770 0.684 1.593 
Random Effects (Coefficients Only) 11.466 33.809 1.317 3.085 
Random Effects (with Site-specific effect) 4.188 8.674 0.579 1.268 

 

As one would logically suspect, the simple, AADT-only models tended to have the 

highest prediction error. The models which considered regional indicators as well as AADT were 

slightly more effective at predicting crashes than the AADT-only models.  The aggregated, fully-

specified models with regional indicators outperform the aggregated, fully-specified model 

without regional indicators, however it is clear that the geometric variables explain more 

variation in the data than the regional information. Considering only the parameter estimates 

obtained from the random effects models, performance is comparable between the random 

effects and aggregate models, however, when the site-specific intercept terms are used to 

estimate crashes the random effects framework fits substantially better than the other models, 

with only the EB approach being comparable. Ultimately, random effects and EB are slightly 

different means to accomplish the same thing, which is to account for location-specific crash 
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history in the estimation of crashes. Both of these methodologies balance crash history at a 

specific site with the expected crash frequency based on similar locations, . The similarity 

between the parameter estimates and goodness-of-fit of the model on aggregate data and the 

random effect model on disaggregate data without the inclusion of the site-specific intercept term 

supports the idea that SPFs should be developed using aggregate data rather than disaggregate 

data with a random effects model in the development of SPFs with the intent of out-of-sample 

crash prediction. Furthermore, utilizing site-specific EB is more practical for predicting outside 

of the sample of intersections, as the site-specific intercept terms would not be known. 

2.6 Conclusions 

A variety of safety performance functions were estimated in this analysis. First, simple, 

volume-only naïve-pooled negative binomial models were estimated to gain high-level insight as 

to how Michigan-specific SPFs compare to those presented in the HSM. Second, in order to 

investigate the usefulness of regional indicators in crash prediction models, a series of naïve-

pooled negative binomial models containing only volume and region information were 

estimated. Next, a series of three types of fully-specified negative binomial SPFs were estimated 

which took into account a variety of geometric and operational characteristics: five-year 

aggregated, five-year aggregated with regional indicators, and a five-year disaggregated random 

intercept. 

The purpose of this series of model estimations is multifaceted. First, the models provide 

documentation that the inclusion of regional indicators is useful in identifying differences in 

safety performance due to characteristic that are geographically based without inhibiting the 

potential to make inferences about various geometric characteristics for this data set. Second, the 

models estimated in this section demonstrate high levels of similarity between the coefficients 
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estimated in the five-year aggregated and five-year disaggregated random intercept framework 

when the site-specific intercept terms are not included in crash prediction, however the random 

intercept term greatly outperforms the other models when the site-specific terms are utilized. 

Finally, the efforts put forth in this study serve to aid researchers in selecting a modeling 

framework for SPF development, particularly if the end goal is crash prediction as opposed to 

development of an explanatory model. 
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CHAPTER 3.  SAFETY PERFORMANCE FUNCTIONS FOR PEDESTRIAN AND 

CYCLIST CRASHES 

3.1 Background 

Worldwide, approximately 27 percent of all road traffic deaths occur among pedestrians 

and cyclists (WHO 2013).  In the United States, pedestrians accounted for approximately 12 

percent of all traffic fatalities (NHTSA 2009A) while pedalcyclist (operators of two-wheel or 

more human-powered vehicles) fatalities account for slightly less than two percent of all traffic 

fatalities (NTSAA 2009B). The development of safety performance functions for pedestrians and 

cyclists poses several challenges to road agencies. The first major issue that must be addressed is 

the collection of exposure data. Pedestrian and cyclist exposure data is difficult for researchers to 

obtain, as most road agencies do not collect such information. In order to circumvent this issue, 

certain studies have utilized methodologies to estimate pedestrian volume. A study utilizing data 

from Austin, Texas estimated walk-miles traveled to predict crashes at the census tract level 

(Wang and Kockelman, 2013). A subsequent study utilized the same estimated pedestrian data to 

develop a combined exposure variable of vehicle volume plus pedestrian volume (Wang, Sharda, 

and Wang, 2016). Demographic information has been utilized in the development of crash 

prediction models, specifically population as an exposure measure (Pulugurtha and Sambhara, 

2011). Using a variety of influence radii around intersections, the research found that pedestrian 

crashes generally increase with population, with the most pronounced effect being within 0.25 

miles of a signalized intersection. 

 At the onset of the project that serves as the basis for this research, it was known that 

pedestrian and cyclist volumes were not readily available within the state of Michigan. 

Subsequently, a two-faceted approach to investigating pedestrian and cyclist safety was taken, 
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wherein a series of vehicle-volume based models was developed and then improved upon 

through the incorporation of data from the American Community Survey.  

3.2 Literature Review 

Various studies have aimed to investigate specific scenarios that affect crashes involving 

pedestrians and cyclists in lieu of developing count data models, or developing count data 

models without pedestrian volumes. A recent study conducted in Beijing found that pedestrians 

frequently underestimate speed and stopping distance at high-speed crossings (Sun et al. 2015). 

A study of pedestrian crashes in Israel found that investigated crash typology finding that the 

majority of fatal and injury pedestrian crashes occurred in urban areas, with most crashes in 

general occurring at non-crosswalk locations (Gitelman et al. 2012). A study of intersection 

pedestrian crashes in Florida utilized log-linear models to analyze crash frequency without 

accounting for pedestrian volume as well as an ordered probit model to analyze pedestrian crash 

injury severity (Lee and Abdel-Aty, 2005). The study proposed the pedestrian exposure measure 

of total duration of walking trips. Pedestrian crashes in New Orleans were investigated using 

cluster analysis to identify locations for auditing for pedestrian safety (Tolford, Renne, and 

Fields; 2014). A cluster analysis in metropolitan Atlanta utilized spatiotemporal clustering and 

logistic regression to examine pedestrian crashes, finding suburban-style corridors with long 

blocks and a mix of high-speed state routes and local roads to be particularly dangerous for 

pedestrians (Dai 2012). Additionally, behavior such as darting into traffic and not crossing at 

crosswalks were identified as being particularly hazardous. In a similar vein as some of the 

previously mentioned cluster analysis, some approaches involve the use of heat maps or other 

forms of geo-spatial analysis (Kim 2009). 
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Cyclist crashes in Brussels were evaluated using logistic and autologistic regression 

models as well as a series of Bayesian logistic regression models (Vandenbulcke, Thomas, and 

Int Panis, 2014). Tram tracks, proximity to public administration buildings and bridges without 

cycling facilities were found to be more dangerous for cyclists, while contraflow cycling (bicycle 

lanes in both directions on a one-way street) was shown to be associated with decreased crash 

likelihood. 

A project focused on developing network screening criteria for pedestrian and cyclist 

crashes in Portland, Oregon utilized a subjective risk factor identification process in conjunction 

with spatial analysis in ArcGIS to identify corridors with potential for safety improvement 

(Bergh and Ray 2014, Bergh et al 2015). Kohonen neural networks were utilized in an Israeli 

study to identify five types of crashes that were particularly dangerous: urban elderly, pedestrian 

with two-wheel, rural night, youngsters at night, and rural children (Prato, Gitelman, and Bekhor 

2012). 

In some cases, counts of pedestrian and cyclist data are available or can be reasonably 

well estimated. A report from California outlined the process of using log-linear least squares 

regression models to estimate pedestrian volume based on land use, characteristics of the 

adjacent roadway, and socioeconomic characteristics (Grembek et al 2014). Research from 

Montreal modelled cyclist crashes at 647 signalized intersections using a two-equation Bayesian 

approach to simultaneously model injury frequency and activity (Strauss, Miranda-Moreno, and 

Morency; 2013). Vehicular turning movement volumes, bus stop presence and crosswalk length 

were found to increase injury frequency, while the presence of a median was associated with 

decreased frequency. In terms of cyclist activity, nearby employment, schools, metro stations, 

mixed land use, amount of bike facilities, and commercial land use were all associated with 
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increased activity, while fewer cyclists were observed at three-approach intersections. The 

bivariate Bayesian approach was utilized in subsequent research which was expounded upon to 

estimate models for pedestrian, cyclist, and vehicular crashes. (Strauss, Miranda-Moreno, and 

Morency; 2014). Turning movements were found to be a significant danger to cyclists, while 

driveway density was found to be dangerous to pedestrians. Further research utilizing Montreal 

as a testbed has investigated methodology to incorporate modern technology such as smartphone 

GPS data with actual bicycle counts to develop predictive models for bicycle volume (Strauss, 

Miranda-Moreno, and Morency, 2015). A study based in Hamilton, Ontario used a shortest-

distance algorithm to predict child-pedestrian activity (Bennet and Yiannakoulias, 2015). This 

volume estimation coupled with a case-control study design was utilized to develop conditional 

logistic regression models to examine what roadway characteristics were associated with 

intersection and mid-block crashes. The study suggests that route choice combined with behavior 

play a critical role in child pedestrian crashes. 

3.3 Data Description and Data Collection 

The data set utilized in this study represents a subset of the data collected in Chapter 2. 

The data in this particular analysis represent only those locations that have sidewalks. This 

subset was chosen as essentially zero crashes (pedestrian or cyclist) occurred at locations that did 

not have sidewalks. This suggests that there is a link between the roadway characteristics 

associated with pedestrian and cyclist crashes. In addition to generating a subset from the data, 

census-tract level information from the American community survey was associated to every 

intersection. Intersections which fall on the border of multiple census tracts were given averaged 

information. 
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3.3.1 American Community Survey Data 

In order to gain further insight into the factors affecting the frequency of pedestrian and 

cyclist crashes, commuter information was obtained from the American Community Survey 

(ACS). The ACS is a continually administered survey conducted by the United States Census 

Bureau and collects a variety of information that had previously been collected in the decennial 

census. 

Approximately 1 in 38 households per year is invited to be a part of the American 

Community Survey (ACS). Respondents complete a questionnaire via paper or internet and 

submit it to the U.S. Census Bureau. While the data is available at several levels of granularity, 

the level utilized in this study was that of the census tract. Census tracts are somewhat 

proportional to the density of people, with an optimally sized tract containing 4,000 people 

(census.gov). A map of Michigan census tracts and intersections utilized in this study is shown in 

Figure 15. 
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Figure 15. Michigan Census Tracts and Study Intersections 

While Figure 15 demonstrates the general size of census tracts across Michigan, it is 

difficult to make out the tracts in the urban areas, where the tracts have a finer level of 

granularity. To this end, Figure 16 presents a map which is zoomed to the metro-Detroit area. 
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Figure 16. Metro Detroit Census Tracts and Study Intersections 

Descriptive statistics for the three-leg and four-leg data used in this analysis are given in 

Table 24 and Table 25, respectively. 
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Table 24. Three-leg signalized intersection pedestrian and bicycle crash data set (n=156) 

Characteristic Average Std. .Dev. Minimum Maximum 
Major Road Traffic Volume 21196.33 10254.53 4625.00 61372.00 
Minor Road Traffic Volume 3920.92 5466.97 48.50 42330.00 
Major Road Through Lanes 3.69 1.35 0.00 10.00 
Major Road Right Turn Lanes 0.42 0.55 0.00 2.00 
Major Road Left Turn Lanes 0.99 0.78 0.00 2.00 
Minor Road Through Lanes 0.48 0.79 0.00 4.00 
Minor Road Right Turn Lanes 0.70 0.56 0.00 2.00 
Minor Road Left Turn Lanes 0.70 0.62 0.00 3.00 
Skew Angle 9.91 14.14 0.00 64.08 
Lighting Presence 0.79 0.41 0.00 1.00 
Right Turn On Red Prohibition 0.12 0.32 0.00 1.00 
Major Road Driveway Count 2.53 2.16 0.00 9.00 
Minor Road Driveway Count 1.50 1.48 0.00 7.00 
Major Road Bike Lanes 0.01 0.11 0.00 1.00 
Minor Road Bike Lanes 0.01 0.08 0.00 1.00 
Major Road Bus Stop Presence 0.35 0.48 0.00 1.00 
Minor Rad Bus Stop Presence 0.07 0.26 0.00 1.00 
Major Road Parking 0.12 0.32 0.00 1.00 
Minor Road Parking 0.21 0.40 0.00 1.00 
Major Road Median Presence 0.10 0.29 0.00 1.00 
Major Road Median Width 1.93 7.55 0.00 69.85 
Minor Road Median Presence 0.10 0.30 0.00 1.00 
Minor Road Median Width 1.66 5.92 0.00 37.67 
Superior Region 0.04 0.19 0.00 1.00 
North Region 0.10 0.30 0.00 1.00 
Grand Region 0.14 0.35 0.00 1.00 
Bay Region 0.10 0.29 0.00 1.00 
Southwest Region 0.17 0.37 0.00 1.00 
University Region 0.15 0.35 0.00 1.00 
Metro Region 0.31 0.46 0.00 1.00 
Major Road Speed Limit 38.59 7.59 25.00 55.00 
One-way Major Road 0.11 0.31 0.00 1.00 
One-way Minor Road 0.08 0.28 0.00 1.00 
Terminal Major Leg 0.03 0.18 0.00 1.00 
Population Density 2358.67 1917.14 102.33 12286.88 
Bicycle Commuter Density 14.00 42.50 0.00 349.59 
Pedestrian Commuter Density 72.10 229.63 0.00 2331.88 
Non-motorized Commuter Density 86.10 265.26 0.00 2681.47 
Average Median Household Income 41169.47 19546.23 6765.50 143659.00 
Parking 0.24 0.43 0.00 1.00 
Hiking trail within 1 Mile 0.03 0.18 0.00 1.00 
Biking Trail Within 1 Mile 0.00 0.00 0.00 0.00 
Median Age 36.54 7.07 15.55 51.30 
Total Pedestrian Crashes 0.24 0.58 0.00 3.00 
Total Bicycle Crashes 0.27 0.60 0.00 4.00 
Total Non-motorized Crashes 0.51 0.83 0.00 4.00 
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Table 25. Four-leg signalized intersection pedestrian and bicycle descriptive statistics 
(n=300) 

Characteristic Average Std. Dev. Minimum Maximum 
Major Road Traffic Volume 21705.09 15383.22 4265.00 118771.00 
Minor Road Traffic Volume 9070.39 7535.27 94.00 47926.00 
Major Road Through Lanes 3.63 1.23 1.00 10.00 
Major Road Right Turn Lanes 0.48 0.74 0.00 2.00 
Major Road Left Turn Lanes 1.29 0.94 0.00 4.00 
Minor Road Through Lanes 2.68 1.10 0.00 8.00 
Minor Road Right Turn Lanes 0.44 0.70 0.00 2.00 
Minor Road Left Turn Lanes 1.14 0.99 0.00 4.00 
Skew Angle 9.66 14.53 0.00 61.04 
Lighting Presence 0.98 0.15 0.00 1.00 
Right Turn On Red Prohibition 0.90 0.30 0.00 1.00 
Major Road Driveway Count 3.73 2.70 0.00 13.00 
Minor Road Driveway Count 4.00 2.64 0.00 14.00 
Major Road Bike Lanes 0.03 0.18 0.00 1.00 
Minor Road Bike Lanes 0.02 0.15 0.00 1.00 
Major Road Bus Stop Presence 0.35 0.48 0.00 1.00 
Minor Road Bus Stop Presence 0.22 0.42 0.00 1.00 
Major Road Parking 0.16 0.37 0.00 1.00 
Minor Road Parking 0.18 0.38 0.00 1.00 
Major Road Median Presence 0.10 0.30 0.00 1.00 
Major Road Median Width 3.64 13.26 0.00 93.80 
Minor Road Median Presence 0.04 0.19 0.00 1.00 
Minor Road Median Width 1.42 8.69 0.00 72.25 
Superior Region 0.12 0.32 0.00 1.00 
North Region 0.13 0.33 0.00 1.00 
Grand Region 0.14 0.34 0.00 1.00 
Bay Region 0.15 0.35 0.00 1.00 
Southwest Region 0.15 0.36 0.00 1.00 
University Region 0.16 0.36 0.00 1.00 
Metro Region 0.16 0.37 0.00 1.00 
Major Road Speed Limit 37.17 8.53 25.00 70.00 
One-way Major Road 0.13 0.34 0.00 1.00 
One-way Minor Road 0.12 0.33 0.00 1.00 
Population Density 2476.28 2004.74 34.25 16474.43 
Bicycle Commuter Density 14.96 37.31 0.00 306.15 
Pedestrian Commuter Density 77.55 203.76 0.00 2514.60 
Nonmotorized Commuter Density 92.50 233.25 0.00 2820.75 
Average Median Household Income 37332.33 15105.37 9795.00 100080.00 
Parking 0.24 0.43 0.00 1.00 
Hiking trail within 1 Mile 0.04 0.20 0.00 1.00 
Biking Trail Within 1 Mile 0.03 0.18 0.00 1.00 
Median Age 36.73 6.86 19.30 56.30 
Total Pedestrian Crashes 0.41 0.76 0.00 4.00 
Total Bicycle Crashes 0.53 0.96 0.00 8.00 
Total Non-motorized Crashes 0.95 1.38 0.00 10.00 
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Three variables were identified as exposure measures for this analysis: pedestrian 

commuter density, bicyclists commuter density, and the sum of those densities. In some cases, 

nobody within a census tract claimed to walk or cycle to work. Since a natural log transformation 

was going to be used on the data, the data was uniformly translated by adding a value of 1 person 

per square mile to each density. Figures 17 through 19 present pedestrian, cyclist, and non-

motorized crashes versus there appropriate commuter type for three-leg signalized intersections. 

Three-leg intersections have a lower average number of crashes than their four-leg counterparts 

(shown in Figures 20 through 22). This is due to the fact that there is one fewer exposure area in 

which a collision can occur. Each figure is shown with a linear equation and a R2 value to 

indicate the general relationship between exposure and crash frequency.  

 

Figure 17. Pedestrian crashes versus pedestrian commuter density at three-leg signalized 
intersections 
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Figure 18. Cyclist crash total versus cyclist commuter density at three-leg signalized 
intersections 

 

Figure 19. Non-motorized crash total versus non-motorized commuter density at three-leg 
signalized intersections 

The low R2 values associated with the trend-lines are generally reflective of the fact that 

factors other than non-motorized commuter volume impact the frequency of non-motorized 

crashes at intersections. This is further illustrated in figures 20 through 22. 
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Figure 20. Pedestrian crashes versus pedestrian commuter density at four-leg signalized 
intersections 

 

Figure 21. Cyclist crashes versus cyclist commuter density at four-leg signalized 
intersections 
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Figure 22. Non-motorized crashes versus non-motorized commuter density at four-leg 
signalized intersections 

3.4 Methodology 

These SPFs take the form of generalized linear models.  As crash data are comprised of 

non-negative integers, traditional regression techniques (e.g., ordinary least-squares) are 

generally not appropriate. Given the nature of such data, the Poisson distribution has been shown 

to provide a better fit and has been used widely to model crash frequency data. In the Poisson 

model, the probability of intersection i experiencing yi crashes during a one-year period is given 

by Equation 16, 
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   (16)        

where P(yi) is probability of intersection i experiencing yi crashes and i is the Poisson 

parameter for intersection i, which is equal to the segments expected number of crashes per year, 

E[yi]. Poisson models are estimated by specifying the Poisson parameter i (the expected 

number of crashes per period) as a function of explanatory variables, the most common 

functional form being given by Equation 17, 
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 𝜆 = 𝑒𝑥𝑝 (𝛽𝑋 )  (17) 

where Xi is a vector of explanatory variables and β is a vector of estimable parameters. 

A limitation of this model is the underlying assumption of the Poisson distribution that 

the variance is equal to the mean.  As such, the model cannot handle overdispersion wherein the 

variance is greater than the mean. Overdispersion is common in crash data and may be caused by 

data clustering, unaccounted temporal correlation, model misspecification, or ultimately by the 

nature of the crash data, which are the product of Bernoulli trials with unequal probability of 

events (Lord 2006).  Overdispersion is generally accommodated through the use of negative 

binomial models (also referred to as Poisson-gamma models).   

The negative binomial model is derived by rewriting the Poisson parameter for each 

intersection as shown in Equation 18, 

 𝜆 = 𝑒𝑥𝑝 (𝛽𝑋 + 𝜀 )       (18) 
  

where EXP (e i) is a gamma-distributed error term with mean 1 and variance α. The addition of 

this term allows the variance to differ from the mean as shown in Equation 19:

VAR yi[ ]  E yi[ ] +aE yi[ ]2
  (19) 

The negative binomial model is preferred over the Poisson model since the latter cannot 

handle overdispersion and, as such, may lead to biased parameter estimates (Lord and Park 

2008). Consequently, the HSM recommends using the negative binomial model for the 

development of SPFs. 

If the overdispersion parameter (α) is equal to zero, the negative binomial reduces to the 

Poisson model. Estimation of 𝜆  can be conducted through standard maximum likelihood 

procedures. While alternatives, such as the Conway-Maxwell model, have the advantage of 
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accommodating both overdispersion and underdispersion (where the variance is less than the 

mean) (Lord and Mannering 2010), the negative binomial model remains the standard in SPF 

development.  

The predictive ability of each of the models developed as a part of this research was o 

assessed using Mean Absolute Deviance (MAD) and Mean Squared Predictive Error (MSPE) 

(Oh et al. 2003), which are shown in Equations 20 and 21, respectively: 

𝑀𝐴𝐷 = 𝛴 |𝑢 − 𝑦 |    (20)  

and 

𝑀𝑆𝑃𝐸 = 𝛴 (𝑢 − 𝑦 )                                                                                                                   (21) 

 

where: 

n = the number of observations, 
i = the ith observation, 
𝑦  =the predicted value of the ith observation, and  
y = the observed value of the ith observation. 

3.5 Results and Discussion 

3.5.1 Preliminary Analysis of Pedestrian and Cyclist Crash Frequency 

To gain a fundamental understanding of frequency of pedestrian and cyclist traffic 

crashes in the state of Michigan, simple SPFs were developed which only accounted for major 

and minor road traffic volumes. These models were developed to predict total, fatal-injury, and 

property damage only (PDO) crashes at each of the four primary intersection types (three-leg 

stop-controlled, three-leg signalized, four-leg stop-controlled, and four-leg signalized) as shown 

in Table 26 and Table 27. 
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Table 26: Michigan Specific AADT Only Pedestrian Crash Models 

Severity 
Intersection 
Types 

Intercept 
(a) 

AADTmaj 
(b) 

AADTmin 
(c)  

Overdispersion 
factor (k) 

Total 

3ST -15.512 0.765 0.385 2.143 

3SG -9.044 0.402* 0.187 1.057 

4ST -11.613 0.547 0.269 2.254 

4SG -7.578 0.364 0.173 0.959 

FI 

3ST -15.099 0.742 0.338 1.000 

3SG -9.223 0.418* 0.182* 1.354 

4ST -11.52 0.529 0.271 2.712 

4SG -7.583 0.366 0.157 0.779 

PDO 

3ST -20.711 0.886 0.661 1.168E-13 

3SG -10.221 0.158* 0.283* 1.431E-16 

4ST -16.547 0.793* 0.247* <0.001 

4SG -10.535 0.316 0.311 0.977 

*The variable was not significant at 95% confidence interval 

 

Table 27: Michigan Specific AADT Only Bicycle Crash Models 

  
Intersection 
Types 

Intercept 
(a) 

AADTmaj 
(b) 

AADTmin 
(c)  

Overdispersion 
factor (k) 

Total 

3ST -14.744 0.778 0.394 1.214 

3SG -11.092 0.575 0.232 1.000 

4ST -11.173 0.618 0.188 1.184 

4SG -6.958 0.256 0.227 0.884 

FI 

3ST -15.567 0.873 0.353 0.939 

3SG -10.889 0.551 0.204 1.000 

4ST -11.555 0.659 0.157 0.083 

4SG -7.834 0.340 0.203 0.702 

PDO 

3ST -13.646 0.340* 0.591 1.648E-07 

3SG -14.18 0.654* 0.331* 7.56E-11 

4ST -11.718 0.408* 0.313 1.000 

4SG -6.087 -0.072* 0.323 0.749 

*The variable was not significant at 95% confidence interval 

 

In contrast to the models discussed in Chapter 2, the pedestrian- and bicycle-specific 

SPFs included AADT and crash data for the entire population of intersection locations.  This was 

due to the fact that the study intersections included a relatively small number of such crashes as 
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well as the fact exposure measures for pedestrians and cyclists were not initially available at the 

onset of the study, which inhibited the ability to estimate detailed models for non-motorized 

users. 

Each of the models show that crashes increase with respect to major road and minor road 

traffic volumes.  However, even in the highest volume cases, intersections are generally expected 

to experience only a fraction of a crash per year.  In any case, these models provide a general 

starting point for pedestrian and bicycle safety analyses.   

Another point worth noting is that most of the parameters in the PDO models are not 

statistically significant.  This is reflective of the limited number of police-reported pedestrian and 

bicycle crashes that involve no injuries. Crashes are generally reported if an injury is sustained 

or, alternately, if more than $1500 in property damage is sustained as a result of the crash. In 

pedestrian- and bicycle-involved crashes, it is generally unlikely that property damage beyond 

this level would be sustained without an injury resulting to the non-motorized user. While there 

are likely to be a significant number of crashes in which no injuries, nor property damage beyond 

this threshold are sustained, such crashes are not reported by practice. 

3.5.2 Detailed Analysis of Pedestrian and Cyclist Crash Frequency 

While the models discussed in the previous section provide general insight as to the 

relationship between traffic crashes involving pedestrians and cyclists and vehicular volume, 

they do not provide insight into the relationship between crash frequency and geometric 

characteristics. To gain further insight into the factors affecting pedestrian and cyclist crash 

frequency, data from the ACS was utilized as a substitute for observational volume data. 

Substantial effort was made to develop separate models for signalized and unsignalized 

intersections, however, due to the low frequency of pedestrian and cyclist crashes on 



85 
 

unsignalized facilities, this was not possible. Of the original sites collected for SPF development, 

a subset did not have sidewalks present. Initially, this seemed like a variable of interest for the 

development of crash prediction models for pedestrian and cyclist crashes, however, further 

investigation revealed that sites with no sidewalks had virtually no pedestrian or cyclist crashes, 

and therefore, were removed from the analysis. The following subsections present a total of eight 

types of models for crashes at signalized intersections. The results of this analysis will provide an 

insight to the relationship between pedestrian and bicycle crashes as well as a framework for 

which other researchers can investigate pedestrian and bicyclist crashes.  

3.5.2.1 Models for pedestrian crashes by signalized intersection type 

Table 28 illustrates the model results for pedestrian crashes at three-leg signalized 

intersections, Table 29 contains the model results for pedestrian crashes at four-leg intersections, 

while Table 30 contains a joint intersection model for pedestrian crashes where both three-leg 

and four-leg intersections were analyzed using the same model, with the two intersection types 

being differentiated using an indicator variable. 

Table 28. Pedestrian crashes at three-leg signalized intersections 

Parameter Estimate Std. Error z-Value p-Value 
Intercept -14.470 5.670 -2.550 0.011 
Natural log of walking commuter density 0.168 0.119 1.410 0.158 
Natural log of major road traffic volume 1.220 0.546 2.240 0.025 
Natural log of minor road traffic volume 0.273 0.155 1.760 0.078 
Census tract median income ($10,000s) -0.286 0.165 -1.730 0.083 
Major leg one-way -1.180 0.740 -1.600 0.111 
Major road median presence -1.240 0.904 -1.370 0.170 
Skew angle -0.029 0.019 -1.520 0.129 
Census tract median age -0.049 0.035 -1.410 0.160 
Bay Region -0.969 0.827 -1.170 0.241 
Overdispersion Parameter 0.957 0.700     
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Table 29. Pedestrian crashes at four-leg signalized intersections 

Parameter Estimate Std. Error z-Value p-Value 
Intercept -8.290 2.051 -4.041 <0.001 
Natural log of walking commuter density 0.159 0.078 2.030 0.042 
Natural log of major road traffic volume 0.647 0.207 3.122 0.002 
Natural log of minor road traffic volume 0.034 0.102 0.334 0.738 
Census tract median income ($10,000s) -0.129 0.090 -1.430 0.153 
Major road median presence -0.581 0.359 -1.617 0.106 
Skew angle -0.016 0.008 -1.935 0.053 
Census tract median age -0.027 0.019 -1.442 0.149 
Minor road parking 0.539 0.245 2.198 0.028 
Grand Region 0.759 0.272 2.786 0.005 
Bay Region -0.593 0.317 -1.874 0.061 
Overdispersion parameter 0.327 0.229     

 

Table 30. Joint model for pedestrian crashes at signalized intersections 

Parameter Estimate Std. Error z-Value p-Value 
Intercept -8.226 1.936 -4.249 <0.001 
Natural log of walking commuter density 0.119 0.064 1.877 0.060 
Natural log of major road traffic volume 0.655 0.190 3.450 0.001 
Natural log of minor road traffic volume 0.105 0.082 1.289 0.197 
Three-leg intersection -0.440 0.235 -1.874 0.061 
Census tract median income ($10,000s) -0.174 0.078 -2.221 0.026 
Major leg one-way -0.411 0.275 -1.494 0.135 
Minor road median presence -0.635 0.525 -1.210 0.226 
Major road median presence -0.530 0.330 -1.605 0.108 
Skew angle -0.019 0.008 -2.488 0.013 
Census tract median age -0.037 0.016 -2.295 0.022 
Minor road parking 0.440 0.220 2.000 0.045 
Grand Region 0.551 0.238 2.319 0.020 
Bay Region -0.410 0.310 -1.320 0.187 
Overdispersion parameter 0.495 0.239     

 

Pedestrian crashes at signalized intersections tend to increase as the density of walking 

commuters in the census tract of the intersection increase, as well as traffic volume at the 

intersection increases. These three characteristics are exposure measures indicating the amount 

of road users at a given location, so their relationship with crash frequency makes sense. Three-

leg intersections experience fewer crashes than four-leg intersections primarily due to having 

fewer conflict points between pedestrians and vehicles.  
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As the median income of the census tract of the intersection increased, crash frequency 

tended to decrease. This is likely capturing the fact that more people travel by automobile than 

by foot in higher income areas, or potentially indicative of infrastructure that is less auto-centric. 

As the median age of the census tract of the intersection increased, traffic crashes tended to 

decrease, which is likely indicative of fewer pedestrians. 

The three-leg and joint intersection models suggest that one-way major roads are 

associated with fewer pedestrian crashes which is again due to fewer conflicts between 

pedestrians and vehicles, specifically turning vehicles. Medians on the major street were shown 

to be associated with fewer pedestrian crashes in all three models, while minor street medians 

were shown to be associated with fewer crashes in only the joint model. Intuitively, one would 

expect that medians would reduce crashes by allowing pedestrians to focus on one direction of 

traffic at a time while crossing the street and allow slower moving pedestrians or people who 

enter the crosswalk late in the phase and who may not be able to cross the intersection in the 

allotted a time a refuge.  

As the skew angle of the intersection increased, pedestrian crashes tended to decrease. 

This could potentially be indicative that pedestrians are less inclined to cross at intersections with 

high skew or that pedestrians and drivers are more attentive at these locations.  

Parking on the minor street was associated with increased crash risk. The presence of 

vehicles parked on the side of the road could obscure vision of pedestrians and motorists alike.  

In the four-leg and joint models, the Bay region was shown to be associated with fewer 

pedestrian crashes, while the Grand region was shown to be associated with higher pedestrian 

crash frequency in each of the three models. These regional effects are possibly capturing unique 

characteristics about pedestrian crash reporting or pedestrian behavior in these areas. 
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3.5.2.2 Models for bicycle crashes by signalized intersection type 

Table 31 illustrates the model results for bicyclist crashes at three-leg signalized 

intersections, Table 32 contains the model results for bicyclist crashes at four-leg intersections, 

while Table 33 contains a joint intersection model for bicyclist crashes where both three-leg and 

four-leg intersections were analyzed using the same model, with the two intersection types being 

differentiated using an indicator variable. 

Table 31. Bicyclist crashes at three-leg signalized intersections 

Parameter Estimate Std. Error z-Value p-Value 
Intercept -14.111 3.774 -3.740 <0.001 
Natural log of bicycle commuter density 0.059 0.101 0.590 0.558 
Natural log of major road traffic volume 0.912 0.377 2.420 0.016 
Natural log of minor road traffic volume 0.178 0.115 1.550 0.120 
Number of minor road driveways 0.228 0.090 2.530 0.012 
Major leg one-way -0.686 0.615 -1.120 0.265 
University Region 1.254 0.372 3.370 0.001 
Overdispersion Parameter 0.042 0.290     

 

Table 32. Bicyclist crashes at four-leg signalized intersections 

Parameter Estimate Std. Error z-Value p-Value 
Intercept -7.680 1.866 -4.116 <0.001 
Natural log of bicycle commuter density 0.174 0.068 2.546 0.011 
Natural log of major road traffic volume 0.408 0.202 2.021 0.043 
Natural log of minor road traffic volume 0.121 0.101 1.197 0.231 
Census Tract Income ($10,000) -0.100 0.074 -1.344 0.179 
Number of minor road driveways 0.072 0.036 1.992 0.046 
Major leg one-way -0.719 0.358 -2.007 0.045 
Grand Region 0.428 0.293 1.459 0.145 
Bay Region -0.705 0.400 -1.764 0.078 
Southwest Region  0.373 0.302 1.232 0.218 
University Region 0.580 0.283 2.049 0.041 
Overdispersion Parameter 0.711 0.255   
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Table 33. Joint model for bicyclist crashes at signalized intersections 

Parameter Estimate Std. Error z-Value p-Value 
Intercept -10.276 1.967 -5.224 <0.001 
Natural log of bicycle commuter density 0.150 0.059 2.539 0.011 
Natural log of major road traffic volume 0.588 0.194 3.030 0.002 
Natural log of minor road traffic volume 0.151 0.077 1.948 0.051 

Census Tract Income ($10,000) -0.055 0.058 -0.949 0.342 
Three-leg intersection -0.227 0.236 -0.963 0.335 
Number of minor road driveways 0.099 0.034 2.938 0.003 
Major leg one-way -0.539 0.307 -1.759 0.079 
Superior Region 0.478 0.418 1.142 0.253 
North Region 0.527 0.344 1.531 0.126 
Grand Region 0.613 0.311 1.974 0.048 
Bay Region -0.394 0.405 -0.972 0.331 
Southwest Region  0.575 0.319 1.802 0.072 
University Region 0.985 0.309 3.184 0.001 
Overdispersion Parameter 0.647 0.219   

 

Cyclist crash frequency was shown to increase with the density of cyclist commuters in a 

census tract as well as the major and minor traffic volumes, which serve as exposure measures 

for the models. Similarly to the pedestrian models, cyclist crashes were shown to decrease as 

census tract income increased. From a geometric standpoint, three-leg intersections and major 

leg one-way streets were also shown to be associated with fewer crashes, a result that is also 

similar to that of the pedestrian models.  

As the number of minor road driveways increased, so too did predicted crash frequency. 

This suggests that there is difficulty for motorists and cyclists in detecting conflicts at driveways.  

From a regional stand point, the Bay region was associated with fewer crashes in both the 

four-leg and joint models, which is again similar to the pedestrian models. The University region 

was shown to be associated with increased crash frequency in all three cyclist models, while the 

Southwest and Grand regions were shown to be associated with increased crash frequency for the 

four-leg and joint models and the Superior and North were shown to be associated with increased 
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crash frequency in the joint model. While regional differences are likely attributable to reporting 

behavior and activity level, it is worth noting that the North and Superior regions are the least 

populous in the state and that their respective regional indicators are reflective of the fact that for 

a specific volume, they are more dangerous than the metro Region. 

3.4.2.3 Non-motorized Models for by signalized intersection type 

Table 34 illustrates the model results for non-motorist crashes at three-leg signalized 

intersections, Table 35 contains the model results for non-motorist crashes at four-leg 

intersections, while Table 36 contains a joint intersection model for non-motorist crashes where 

both three-leg and four-leg intersections were analyzed using the same model, with the two 

intersection types being differentiated using an indicator variable. 

Table 34. Non-motorized crashes at three-leg signalized intersections 

Parameter Estimate Std. Error z-Value p-Value 

Intercept -14.298 2.905 -4.922 <0.001 

Natural log of non-motorized commuter density 0.035 0.074 0.471 0.638 

Natural log of major road traffic volume 1.057 0.290 3.646 <0.001 

Natural log of minor road traffic volume 0.192 0.082 2.333 0.020 

Census Tract median income ($10,000) -0.148 0.076 -1.952 0.051 

Major leg one-way -0.591 0.461 -1.281 0.200 

Major road median presence -0.423 0.401 -1.056 0.291 

North Region 0.436 0.456 0.956 0.339 

Grand Region 0.741 0.377 1.965 0.049 

Bay Region 1.032 0.352 2.929 0.003 

University Region 1.338 0.355 3.769 <0.001 

Overdispersion Parameter 0.043 0.206   
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Table 35. Non-motorized crashes at four-leg signalized intersections 

Parameter 
Estimate Std. Error z-Value p-Value 

Intercept -7.792 1.658 -4.701 <0.001 
Natural log of non-motorized commuter density 0.160 0.058 2.756 0.006 
Natural log of major road traffic volume 0.531 0.161 3.303 0.001 
Natural log of minor road traffic volume 0.084 0.078 1.077 0.282 
Census tract median income ($10,000s) -0.061 0.065 -0.945 0.345 
Number of minor road driveways 0.036 0.029 1.236 0.216 
Major road median presence -0.446 0.265 -1.681 0.093 
Census tract median age -0.014 0.014 -0.944 0.345 
Minor road parking 0.344 0.197 1.747 0.081 
Grand Region 0.638 0.232 2.751 0.006 
Bay Region -0.455 0.269 -1.693 0.090 
University Region 0.383 0.208 1.841 0.066 
Overdispersion Parameter 0.484 0.141     

 

Table 36. Non-motorized crashes at signalized intersections 

Parameter Estimate Std. Error z-Value p-Value 

Intercept -7.958 1.440 -5.525 <0.001 
Natural log of non-motorized commuter density 0.124 0.047 2.664 0.008 
Natural log of major road traffic volume 0.563 0.138 4.084 <0.001 
Natural log of minor road traffic volume 0.135 0.059 2.293 0.022 
Three-leg intersection -0.323 0.176 -1.831 0.067 
Census tract median income ($10,000s) -0.087 0.052 -1.677 0.094 
Number of minor road driveways 0.053 0.027 1.981 0.048 
Major leg one-way -0.529 0.214 -2.470 0.014 
Minor road median presence -0.502 0.344 -1.462 0.144 
Major road median presence -0.381 0.225 -1.697 0.090 
Skew angle -0.008 0.005 -1.661 0.097 
Census tract median age -0.021 0.012 -1.702 0.089 
Minor road parking 0.264 0.166 1.588 0.112 
Grand Region 0.443 0.189 2.341 0.019 
Bay Region -0.587 0.243 -2.415 0.016 
University Region 0.385 0.179 2.152 0.031 
Overdispersion parameter 0.415 0.118     

 

The primary variable of interest in this analysis are the pseudo-exposure measures, 

pedestrian commuter density, bicyclist commuter density, and non-motorized commuter density. 
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Generally speaking, as this value increased, the number of combined pedestrian and cyclist 

crashes increased. Only one of the nine models estimated as a part of this study (three-leg 

signalized bike crashes) did not display a clear relationship between the commuter density and 

crash frequency. These measures certainly do not capture the exact behavior of non-motorized 

road users at any specific location to the same degree that directional counts would be able to, 

however, they do appear to be a reliable predictor of the general activity level in the area.  

The traffic volume on the major and minor streets is shown to have a substantial effect on 

the frequency of non-motorized crashes at signalized intersections. This result should come as no 

surprise, given that higher volume intersections likely result in more turning movements which 

are a likely movement to result in a collision with a non-motorized road user. 

Three-leg intersections tend to have a lesser frequency of crashes than their four-leg 

counterparts. Intuitively, this makes sense given that there are four areas that non-motorized 

users could potentially be using to navigate the intersection as opposed to three. In fact, the 

elasticity (or percent change) associated with this coefficient (for the joint intersection/non-

motorized user model) is a 0.276, indicating that the percent difference in predicted crashes 

involving non-motorized road users between four-leg and three-leg intersections is only slightly 

greater than 25%, suggesting a nearly directly proportional relationship between the number of 

potential crossing areas to the number of crashes. 

Geography was shown to play a part in non-motorized crash frequency. Perhaps 

unsurprisingly, intersections located in MDOT’s University region were shown to be associated 

with elevated crash frequency. MDOT’s Grand region was also shown to be associated with 

elevated non-motorized crash frequency which again is potentially attributable to a relatively 

active population in the area. Additionally, one factor that could be influencing the frequency of 
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crashes involving non-motorized road users in these areas could be the reporting tendencies 

present there. Conversely, MDOT’s Bay region was associated with lower frequencies of crashes 

involving pedestrians and cyclists. This may be attributable to general activity levels in the area 

or to differences in crash reporting practices. 

Higher levels of average median income of the census tract was found to be associated 

with lower crash frequency. This result is consistent with the extant literature which suggests that 

people are somewhat less likely to walk or bike as their income increases. The results were 

relatively consistent across each of the nine models. There are several possible explanations as to 

why lower-income areas are more likely to experience crashes involving non-motorized users. 

First and foremost, it is possible that the infrastructure in these areas in not conducive to use by 

non-motorized users. Older signals may not have signal heads for pedestrian crossings or meet 

minimum crossing time criteria and sidewalks may be in disrepair.  

Surprisingly, presence of bike lanes at intersections was not shown to have an effect on 

cyclist crashes. Generally speaking, bike lanes were not common in the data set during the study 

period. The minimal installation locations could have been further confounded due to selectivity 

bias, wherein locations with high levels of cyclists or cyclist crashes were chosen as locations for 

bike lane installation. Regardless, the impact of dedicated bike infrastructure could not be 

thoroughly investigated as a part of this study, however, it bears mentioning given the thrust of 

this research. The lack of bike infrastructure may be forcing more cyclists to the sidewalk, which 

helps to justify the estimation of joint non-motorized road user models. 

Interestingly, the number of non-motorized road user involved crashes was shown to 

increase as the number of driveways on the minor leg of the intersection increased. There are a 

variety of potential explanations for this observation. First, increasing driveway counts on the 
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minor leg of the intersection is indicative of higher levels of single family residential 

development. In these situations, people might be back out of their driveway or just be generally 

unaware of pedestrians or cyclists in the area. These types of behavior could lead to collisions 

where the non-motorized road user is struck where a sidewalk crosses a driveway. Additionally, 

these types of locations may be more prone to having visual obstructions, such as trees, shrubs, 

or fences which may make non-motorized users less conspicuous. 

Intersections where the major leg has one-directional vehicular travel were less prone to 

crashes involving non-motorized road users. One-way roads are provide drivers fewer variables 

to consider when maneuvering their vehicle. Additionally, pedestrians do not have to consider 

vehicles travelling in both directions when crossing the major street, which also means reduced 

turning movements, helping to minimize the number of conflicts between vehicles and non-

motorized road users. 

The presence of medians on the major and minor roads was associated with lower crash 

frequency. By providing non-motorized road users with a refuge, only one direction of flow 

needs to be considered at a time during a crossing maneuver. Additionally, the presence of 

medians may also restrict the turning movements of vehicles into driveways immediately 

adjacent to an intersection. 

The effect of skew angle on crashes involving non-motorized road users is somewhat 

counter-intuitive. As the degree of skew angle increases, crashes involving non-motorized road 

users tended to decrease. One potential explanation for this phenomenon is that with high-skew 

intersections, pedestrians and cyclists may tend to avoid crossing at these locations or that these 

locations. 
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The median age of people living within the census tract of an intersection was found to be 

inversely related to the expected non-motorized crash frequency of an intersection. There are a 

bevy of possible explanations for this finding. First, communities with older populations may be 

less likely to travel by non-motorized means. Second, younger median ages of census tracts are 

presumably due to the proliferation of young children within the community. Children may be 

specifically vulnerable to crashes whether on foot or on bicycle due to lack of experience as a 

road user and potential lack of attention paid to their surroundings. 

Finally, the presence of parking on the minor street was found to be associated with 

elevated crash frequency. This is potentially due to the visual obstruction that parked cars create 

for both vehicles and non-motorized road users. 

Beyond demonstrating the ability of the models to assess geometric and geographic 

characteristics associated with traffic crashes for pedestrians, cyclist, and combined non-

motorists, this research examined the predictive ability of each of the models. In order to provide 

an apples-to-apples comparison, the models were all applied to the five-year aggregated data. In 

order to predict the number of pedestrian and cyclist crashes using the combined non-motorist 

models, the predicted number of non-motorist crashes was multiplied by the pedestrian 

proportion of the non-motorist density and cyclist proportion of the non-motorist density, 

respectively. In the same vein, the model developed using both intersection types with a binary 

indicator to designate the number of legs was applied to the three-leg and four-leg data sets 

separately. By utilizing these approaches, an apples-to-apples comparison of the various models 

was achieved. Table 37 presents the average predicted crashes, MAD, and MSPE for each of the 

pedestrian models developed in this paper, while Table 38 presents the cyclist models.  
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Table 37. Goodness of Fit Summary for Pedestrian Models 

 
Average 

Predicted Crashes 
 MAD  MSPE 

Model type 3SG 4SG  3SG 4SG  3SG 4SG 

AADT Only Ped 0.050 0.086  0.275 0.448  0.374 0.686 

Fully Specified Ped 0.052 0.085  0.260 0.430  0.357 0.654 

Combined Intersection Ped 0.048 0.082  0.258 0.430  0.357 0.660 

Separate Intersection Non-motorized Total         

Pedestrian Proportion 0.103 0.178  0.305 0.478  0.371 0.623 

Combined Intersection Non-motorized Total          

Bicyclist proportion 0.051 0.064  0.287 0.556  0.411 1.158 

 

Table 38. Goodness of Fit Summary for Cyclist Models 

 
Average 

Predicted Crashes 
 MAD  MSPE 

Model type 3SG 4SG  3SG 4SG  3SG 4SG 

AADT Only Bike 0.027 0.089  0.282 0.561  0.419 1.112 

Fully Specified Bike 0.054 0.108  0.279 0.547  0.378 1.058 

Combined Intersection Bike 0.053 0.109  0.287 0.545  0.390 1.053 

Separate Intersection Non-motorized Total         

Bicyclist Proportion 0.054 0.066  0.287 0.559  0.408 1.158 

Combined Intersection Non-motorized Total          

Bicyclist proportion 0.051 0.064  0.287 0.556  0.411 1.158 

 

Generally speaking, the models estimated by simultaneously considering both 

intersection types using an indicator variable performed similarly to the models that were 

estimated separately for each combination of crash and intersection type. Conversely, the models 

estimated for combined non-motorist crashes and then multiplying the predicted non-motorized 

crash total by the pedestrian proportion of non-motorized commuters and cyclist proportion of 

non-motorized commuters tended to perform worse. 
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3.6 Conclusions 

The results of the analysis presented in this chapter represent a reasonable approach to 

predict pedestrian and cyclist crashes when pedestrian or cyclist volume data are unavailable. 

The methodology outlined in this paper serves to form a template with which road agencies can 

feasibly begin to evaluate intersections for pedestrian and cyclist safety. Separate SPFs were 

estimated for three crash categories: pedestrian crashes, cyclist crashes, and total non-motorized 

crashes. The models estimated for total non-motorized crashes were then multiplied by the 

proportion of the non-motorized commuters comprised of pedestrians and bicyclists so that 

model fit could be evaluated for each crash type and compared to the other models. Models for 

each crash type were estimated for three-leg signalized intersections, four-leg signalized 

intersections, and combined signalized intersections. Goodness of fit for the combined 

intersection models was evaluated separately for each intersection type. 

In addition to demonstrating the usefulness of a publicly available data source to improve 

the crash prediction efforts for pedestrians and cyclists, this section serves to document how 

pedestrian and cyclist crashes are affected by similar infrastructure components, at least in urban 

and suburban intersections in Michigan. In addition to the volume components that are 

traditionally expected to have a large influence on the frequency of crashes, this research 

demonstrates that in general, median presence, one-way roads, increasing skew angle, and 

increasing census tract age are associated with decreased crash risk while parking and driveways 

are associated with lower crash risk. Additionally, various areas of the state that are more prone 

to non-motorized crashes were identified through the use of regional indicator variables. 
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CHAPTER 4.  ACCESS POINT PROXIMITY TO CROSSROAD RAMP TERMINALS 

4.1 Background 

A principal concern pertaining to access management is controlling the location of 

driveways and intersections near the termination point of highway interchange off-ramps. Access 

point density is often identified as a primary contributor to poor safety performance on any type 

of corridor. Poor access management is associated with several undesirable impacts, including: 

increased frequency of crashes (including crashes with pedestrians and cyclists), and decreased 

roadway efficiency (Williams 2003). From the point of view of land owners and developers, 

locating intersections and driveways as close to ramp terminals seems ideal. Decades old design 

guidance allowed for access points as close as 100 feet (AASHTO 1991), however policy has 

changed over the past 26 years and many states have since adopted have adopted this range for 

use on their roadway networks, as demonstrated in Table 39 from NCHRP Report 420. 
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Table 39. Summary of Minimum Access Spacing Standards or Guidelines (adapted from 
Gluck, Levinson, and Stover 1999) 

State/Province Rural Urban 
1. Alabama 300 feet to access 100 feet to access 
2. Alberta 1,400 feet from signal to access Same 
3. California 500 feet from ramp to access Same 
4. Illinois 410 feet minimum distance 

from ramp to nearest 
intersection 

Same 

5. Iowa 660 feet rural primary highway, 
330 feet other road or street 

170 feet urban 

6. Kentucky 300 feet to access 100 feet to access 
7. Maryland Based on geometrics, speeds, 

volumes, presence of signals 
and queuing 

Same 

8. N. Dakota AASHTO guidelines AASHTO guidelines (100 feet) 
9. Ohio 600 feet for diamond 

interchange, 1,000 feet for 
cloverleaf 

 

10. Oregon 200 feet from frontage road, 
500 feet from ramp (suggested) 

Same 

11. Pennsylvania AASHTO guidelines (300 feet) AASHTO guidelines (100 feet) 
12. South Carolina 500 feet desirable, 300 feet 

minimum 
300 feet desirable, 150 feet 
minimum 

13. Texas AASHTO guidelines (300 feet) AASHTO guidelines (100 feet) 
14. Utah 300 feet to access 150 feet to access 
15. Virginia 200 feet from entrance ramp Same 
16. West Virginia 300 feet to access 100 feet to access 
17. Washington 300 feet to access 300 feet to access 
18. Wisconsin 1,000 feet to access, (500 feet-

minor roads) 
500 feet to access 

19. Wyoming 300 feet to access 150 feet to access 
 

Increased spacing for access points that are located within close proximity to ramp 

terminals has been a necessity, as the extant literature clearly documents issues that arise on 

these corridors, such as complicated weaving movements and complex signal operations which 

can lead to increased crash frequency as well as operational congestion (Gluck, Levinson, and 

Stover 1999; Gluck and Lorenz 2010).  It is easy to speculate that the aforementioned problems, 

which could be applied access spacing in general, may be exacerbated when drivers are 
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transitioning from an uninterrupted flow roadway (such as a freeway) to a crossroad. Figure 23 

provides insight as to the types of movements vehicles may have to accomplish prior to 

approaching the first access point on a multi-lane highway (Florida DOT 2014). 

 

Figure 23. Distance between an off-ramp and first signalized intersection (Florida DOT 
2014) 

Currently, the Iowa DOT specifies a distance of 600 feet between ramp bifurcation points 

and first access points, however 300 feet is used in some instances depending on the land use 

near the interchange. These values are illustrated in Table 40. 

Table 40. Iowa Design Guide Ramp to Access Point Spacing 
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The purpose of this study is two-fold: to assess an appropriate distance at which access 

points can be located adjacent to ramp terminals, as well as to determine a minimum traffic 

volume threshold for the aforementioned distances to be applicable. 

4.2 Literature Review 

Various research studies have investigated issues related to the spacing of the first access 

point relative to the ramp intersection. A recurring theme in the extant literature is the effect of 

access point proximity on congestion. One research project aimed at developing guidelines for 

access point location in Florida through the use of computer simulations found that signals 

should be placed at minimum of ¼ mile from the ramp bifurcation point, while ½ mile should be 

used in cases where high development is expected (Washburn and Kondyli, 2006). A recent 

study utilized a mixed-integer non-linear model to develop non-traditional lane assignment 

through pavement markings and signal timings in an urban setting to minimize congestion at the 

off-ramp intersection (Zhao and Liu; 2016). 

In addition to previous efforts that have focused on operational effects of access point 

location, the extant literature contains examples of studies focusing on the safety implications of 

access point proximity to ramp bifurcation points as well. A Virginia study utilized data from 

186 access road sections to estimate negative binomial and least square linear regression models 

to examine the effect of access point spacing relative to the ramp bifurcation point (Rakha et al. 

2008). The findings of this study were very pronounced: an increase in the spacing from 0 meters 

to 300 meters equated to an eight-fold decrease in crash rate, while an increase from 90 meters to 

180 meters resulted in a 50 percent decrease in the crash rate. A subsequent report documented 

the similarity of the results between the negative binomial and linear regression approaches 

(Rakha et al. 2010). 
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Efforts have been made by researchers to combine the safety and operational effects of 

access point proximity near interchanges into monetary value. A study in Florida examined the 

relationship between distance to the first access point on a frontage road and the effect on 

congestion and crashes on the adjacent freeway (Williams et al, 2004). Key findings of this study 

included marked improvements in traffic flow when the distance to the first access point on a 

frontage road was 200 feet to 600 feet, general decreasing trend in crash frequency as the 

distance to the access point increased, and large benefit/cost ratios through the purchasing of 

land near interchanges ahead of development occurring.  

 4.3 Data Set Assembly  

4.3.1 Interchange Manual Review and Identification of ‘Ramp’ Intersections 

Interchanges were manually identified using an attribute query of the GIMS database to 

identify any segment considered to be a “ramp”. This process resulted in the identification of all 

controlled-access highway to crossroad interchange locations, however, also included all system 

interchanges, including fully directional interchanges. Therefore, a preliminary manual review of 

all interchanges was conducted to identify such ramp terminal intersections. During the course of 

the manual review, other important information was collected including interchange type, traffic 

control on interchange ramps, whether roadways were divided and undivided, and whether or not 

a relevant spatial analysis could be conducted at each interchange.  Spatial analyses cannot be 

conducted for fully directional interchanges (as shown in Figure 25) or for certain interchanges 

which were included in the database which are not freeway or expressway interchanges 

(examples are shown in Figure 26).  Initially, it was found 406 interchanges in Iowa could be 

used as study locations for the spatial analysis. Subsequent quality control reduced the data set to 
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704 ramp corridors representing approximately 350 interchanges. 

The manual review included collecting the following information: 

 Distance to first driveway 

 Distance to every intersection in study area (up to 1 mile from exit ramp bifurcation 
point) 

 Distance to first field access 

 Count of driveways to first and second intersections and total 

 Median width at exit ramp bifurcation point, at first driveway, and at first 
intersection 

 Median type at exit ramp bifurcation point, at first driveway, and at first intersection 

 Volume of first access point 
o MSLINKs used to get volume from GIMS if first access point is an 

intersection 
o Volumes estimated based on driveway classification and the ITE Trip 

Generation Manual 

 Turning movements of first driveway 

 Side of the road for first driveway or intersection 

Figure 24 shows the measurement of a driveway from the ramp bifurcation point. These 

distances were measured from the ramp point to the center of the driveway on the orthophoto. 

The measurement was recorded to the nearest foot. 
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Figure 24. Example of GIS measurement to first driveway 

 

Volumes were estimated for the driveway access points using the ITE Trip Generation 

Manual. For each classification determined by the researchers, the number of trips were 

calculated using the average values listed in the manual. Due to the difference in weekday and 

weekend traffic, the AADT for the classification was calculated using the average of the sum of 

the Saturday trips, Sunday trips, and 5 times the weekday trips. Table 41 contains the categories 

and AADT values used. 
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Table 41. Driveway AADT Estimates from ITE Trip Generation Manual 

Classification AADT ITE Trip Generation Manual Page References 
Apartments 1310 327 
Camping 19 703,704 
Cemetery 574 1097 
Cell Tower 61 287,288 
Church 251 1044 
Construction 1124 99,104,106 
Event Center 4390 853,855 
Factory 4007 1509 
Farm 1124 99,104,106 
Farmhouse 10 290,295,297 
Fast Food 1605 1821 
Gas Station 1348 1888 
Golf 739 754,759,761 
Hospital 4234 1152 
Hotel 2054 571,576,578 
Maintenance 1124 99,104,106 
Mechanic 41 1880 
Office Building 2341 1196 
Park 714 660,663,668,670 
Parking 1152 82 
Restaurants 1031 1794 
School 1128 933 
Shopping Center 14855 1497 
Single House 10 290,295,297 
Single Restaurant 843 1794 
Storage 1382 208,213,215 
Store 2052 1693 
Truck Stop 1053 1896, 1794 
Vehicle Dealership 936 1519 

 

As these volumes are representative of the average example of the category, in some 

cases, particularly in the more rural areas of the state, the AADT estimated for the driveway 

exceeded that of the road the driveway was located on. In these instances, if the driveway was 

not opposite another roadway, the volume on the driveway was constrained to be equal to the 

volume on the main road. 

Throughout the process of assembling and reviewing the data set, several types of 

interchanges were identified which had to be excluded from the analysis. Fully directional 

interchanges needed to be excluded as the lack the requisite crossroad on which to have an 

access point. An example of a fully directional interchange is shown in Figure 25. 
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Figure 25.  Example of a Fully Directional Interchange (I-80 and I-29) 

The attribute query utilized to identify interchanges also identified non-interchange 

ramps, such as those shown in Figure 26. As the scope of this study was focusing on 

interchanges from uninterrupted flow facilities to crossroads, these sites were excluded from the 

analysis as well. 
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Figure 26.  Examples of Non-Relevant ‘Interchanges’ Found in Interchange Database 

4.3.2 Linear Referencing System 

The Iowa DOT GIMS database contains information for individual GIMS segments, 

commonly referred as MSLINKs, which is the name given to their unique identification field. 

This level of data is not a suitable analysis unit to investigate the effect of access point proximity 

relative to the ramp terminal, which necessitated the development of a unique procedure of 

combining the data into analyzable format. This was accomplished through the development of a 

linear referencing system, a system in which roadway features, traffic crashes, etc. are all located 

on along a route corresponding to the centerline of the roadway. The beginning of the route is 

assigned a mile point of 0.0, while the end of the route is assigned a mile point equal to the 

route’s length. Any point along the route can then be located based on the distance along the 

centerline from the beginning mile point. This approach is necessary to account for curved 

roadways. 
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Unique routes were created for each off-ramp terminal intersection. The route began (or 

ended depending on route directionality) at the point where the crossroad passed over or under 

the centerline of the controlled-access facility. The GIMS database does not have fields to 

facilitate linear referencing to the extent required for this analysis, therefore, all relevant GIMS 

segments (segments which represent the crossroad) were manually identified. This procedure 

required a large effort on the part of the research team, as any individual route in this analysis is 

potentially comprised of many separate GIMS segments. Figure 27 illustrates a typical route 

southbound at a diamond interchange, which is comprised of five segments of varying length. 

 

Figure 27. GIMS segments comprising a route 
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The individual GIMS segments are then dissolved in ArcGIS into one continuous 

segment. Two new fields were then added to the dissolved segments: a beginning point and an 

end point. The beginning point was set to equal zero for all of the segments while the end point 

was set to equal the calculated distance of the dissolved segments (in feet). The Create Routes 

tool in ArcGIS was then utilized to convert the dissolved segments into routes using the 

“TWO_FIELDS” option, with the beginning point serving as the “From-Measure Field” and the 

calculated end point serving as the “To-Measure Field”, as shown in Figure 28. An example 

route with the ramp terminal intersections, crashes, and distance points for reference this analysis 

is shown in Figure 29.  

 

 

Figure 28. Screen shot of the Create Routes Tool in ArcGIS 
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Figure 29. Typical Crossroad Route 

Following the creation of the routes, the position of relevant features (e.g., crashes, ramp 

terminal intersections, and GIMS segments) was identified by using the “Locate Features Along 

Routes” operation in ArcGIS as shown in Figure 30. 



111 
 

 

Figure 30. Locate Features Along Routes ArcGIS Interface 

The result of the Locate Features Along Routes procedure was the creation of several 

ArcGIS tables, such as the one shown in Figure 31.  
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Figure 31. Crashes Located Along Routes 

There are three fields that are created through the Locate Features Along Routes 

operation: RID, MEAS, and Distance. RID is a unique route identification number, MEAS is the 

location of a feature along a route, and Distance specifies how far off of the route a feature is 

actually located. This process was necessary so that the distance between roadway features, 

specifically between traffic crashes and the ramp terminal intersection, would be measured along 

the centerline of the roadway as opposed to a straight-line distance, which was crucial in 

situations where the roadway curved prior to the first access point. The linear referencing system 

allowed for the determination of what proportion of the distance between the ramp terminal 

intersection and the first access point each GIMS segment accounted for. Continuous properties 

of each GIMS segment, such as traffic volume, were then calculated as a weighted average for 



113 
 

the route, while categorical properties for each segment were applied to each route as a length-

weighted mode. The use of the length-weighted mode was designed to prevent instances of a few 

short segments being emphasized more than one long segment. 

4.3.3 Data Set Creation 

The resulting data set, referred to as the First Access Point (FAP) set due to simultaneous 

efforts to create other data sets that are beyond the scope of this paper, contains information 

about the roadway up to the first access point as well as more detailed information about that 

first access point, including estimated volumes, classification, turning movements, and distance 

from ramp bifurcation point. This data set was used to examine the relationship between crashes 

and distance to the first access point independent of anything that occurred after that access 

point. The five years of data (2010-2014) collected for 702 corridors represent a total sample size 

of 3,516 observations.  
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Table 42. Descriptive Stats for FAP Data Set (n=3,516) 

  Average Std. Dev. Minimum Maximum 
First Access Point Distance 760.129 638.498 1.000 4329.100 
Traffic Volume 5936.359 6924.324 10.000 44900.000 
Truck Route 0.322 0.554 0.000 2.000 
Average Median Width 5.159 12.634 0.000 138.316 
Average Number of Lanes 2.853 1.167 2.000 9.000 
Divided Proportion 0.241 0.412 0.000 1.000 
Average Surface Width 35.770 15.648 16.000 119.912 
Average Speed Limit 47.765 9.822 24.994 62.168 
Outside Shoulder Width 5.969 3.822 0.000 16.000 
Inside Shoulder Width 0.596 1.847 0.000 12.000 
FA-Driveway 0.485 0.500 0.000 1.000 
FA-Signalized 0.115 0.319 0.000 1.000 
FA-Three Leg 0.263 0.440 0.000 1.000 
FA-Four Leg 0.250 0.433 0.000 1.000 
FA-Five Leg 0.001 0.038 0.000 1.000 
No Left Out 0.027 0.162 0.000 1.000 
Yield Controlled 0.011 0.106 0.000 1.000 
Commercial DW 0.226 0.418 0.000 1.000 
Full Movement 0.972 0.166 0.000 1.000 
4 Leg Access Point 0.512 0.500 0.000 1.000 
3 Leg Access Point on Left 0.127 0.333 0.000 1.000 
3 Leg Terminal Access Point 0.017 0.130 0.000 1.000 
Three Leg Right Access Point 0.394 0.489 0.000 1.000 
Off Ramp AADT 1783.176 2367.084 10.000 16700.000 
On Ramp AADT 1661.417 2428.329 0.000 29400.000 
Average Ramp AADT 1722.297 2099.221 35.000 18200.000 
Access Point AADT 1093.728 2371.148 0.000 20300.000 
Right In Right Out 0.026 0.158 0.000 1.000 
Left Out Only 0.001 0.038 0.000 1.000 
Parallel Parking 0.083 0.276 0.000 1.000 
Driveway Through 0.026 0.158 0.000 1.000 
Signalized Access Point 0.115 0.319 0.000 1.000 
All Way Stop Access Point 0.007 0.084 0.000 1.000 
Yield/Uncontrolled Access Point 0.001 0.038 0.000 1.000 
Signalized Ramp 0.216 0.412 0.000 1.000 
Yield Controlled Ramp 0.038 0.192 0.000 1.000 
Total Crashes 1.227 2.740 0.000 24.000 

 

4.4 Statistical Analysis 

4.4.1 Visual Analysis 

To address access spacing relative to the location of freeway ramp bifurcation points, 

crash rates were calculated for all crashes occurring between the ramp bifurcation point and the 

first access point travelling away from the freeway along the crossroad. Figure 32 displays the 
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crash rates between the ramp bifurcation point and first access point plotted against the distance 

to the first access point. This plot appears to indicate an inflection point near 0.1 miles, 

indicating that locations where access points are located at less than this distance experience 

elevated crash rates. This can potentially be attributed to conflicting movements being located 

closely together as well as driver expectations and behavior when leaving a limited access 

facility. 

 

Figure 32. Crashes per Mile versus Distance to First Access Point at Ramp Bifurcation 
Points 

Examining the crashes per mile versus distance to first access point within various AADT 

ranges provides some insight into the interaction between crossroad volume and access spacing. 

Figure 33 presents the same information as Figure 32, however the data points are limited to 

those site years with an AADT between 1000 vehicles per day and 1500 vehicles per day. 
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Figure 33. Crashes per Mile versus Distance to First Access Point for 1000 to 1500 Vehicles 
per Day 

As can be seen in Figure 33, bands clearly begin to form that are generally associated 

with specific traffic volume ranges. Figure 34 presents the similar data to Figure 32 and Figure 

33, with the traffic volume restricted to between 5000 and 6000 vehicles per day.  

 

Figure 34. Crashes per Mile versus Distance to First Access Point for 5000 to 6000 Vehicles 
per Day 

In Figure 34, there are two distinct curved bands, with a 3rd beginning to form as well. 

Generally speaking, as the traffic volume presented in the figures increases, the bands appear at 
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higher crash rate magnitudes. Collectively, these plots demonstrate the relationship between 

traffic volume, access point proximity, and crash rate.  

 

4.4.2 SPF Development 

To discern the effects of the distance an access point is from the ramp bifurcation point, 

two models were estimated to determine how the crash risk changes as the distance to the first 

access point changes. The first model is focused on developing guidelines regarding access point 

spacing through the use of a series of binary indicators representing the location of the first 

access point in 100 feet increments. The second model was estimated using the distance as a 

continuous variable, along with the volume of traffic on the crossroad and the volume of traffic 

for the access point.  

These SPFs take the form of generalized linear models.  As crash data are comprised of 

non-negative integers, traditional regression techniques (e.g., ordinary least-squares) are 

generally not appropriate. Given the nature of such data, the Poisson distribution has been shown 

to provide a better fit and has been used widely to model crash frequency data. In the Poisson 

model, the probability of intersection i experiencing yi crashes during a one-year period is given 

by Equation 22, 

𝑃(𝑦 ) =
( )

!
  (22)        

where P(yi) is probability of intersection i experiencing yi crashes and i is the Poisson 

parameter for intersection i, which is equal to the segment’s expected number of crashes per 

year, E[yi]. Poisson models are estimated by specifying the Poisson parameter i (the expected 
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number of crashes per period) as a function of explanatory variables, the most common 

functional form being given by Equation 23, 

 𝜆 = 𝑒𝑥𝑝 (𝛽𝑋 )  (23) 

 where Xi is a vector of explanatory variables and β is a vector of estimable parameters. 

A limitation of this model is the underlying assumption of the Poisson distribution that 

the variance is equal to the mean.  As such, the model cannot handle overdispersion wherein the 

variance is greater than the mean. Overdispersion is common in crash data and may be caused by 

data clustering, unaccounted temporal correlation, model misspecification, or ultimately by the 

nature of the crash data, which are the product of Bernoulli trials with unequal probability of 

events (Lord 2006).  Overdispersion is generally accommodated through the use of negative 

binomial models (also referred to as Poisson-gamma models).   

The negative binomial model is derived by rewriting the Poisson parameter for each 

intersection as shown in Equation 24, 

 𝜆 = 𝑒𝑥𝑝 (𝛽𝑋 + 𝜀 )  (24)  

where EXP (e i) is a gamma-distributed error term with mean 1 and variance α. The addition of 

this term allows the variance to differ from the mean as shown in Equation 25:

[ ] [ ] [ ]2iii yEyEyVAR a+   (25) 

The negative binomial model is preferred over the Poisson model since the latter cannot 

handle overdispersion and, as such, may lead to biased parameter estimates (Lord and Park 

2008). Consequently, the HSM recommends using the negative binomial model for the 

development of SPFs. 

If the overdispersion parameter (α) is equal to zero, the negative binomial reduces to the 

Poisson model. Estimation of 𝜆  can be conducted through standard maximum likelihood 



119 
 

procedures. While alternatives, such as the Conway-Maxwell model, have the advantage of 

accommodating both overdispersion and underdispersion (where the variance is less than the 

mean) (Lord and Mannering 2010), the negative binomial model remains the standard in SPF 

development.  

Due to the presence of repeated observations resulting in temporal correlation among 

observations, random-effect models were estimated. Random effects are considered by re-writing 

the constant term in Equation 26 as follows: 

𝛽 = 𝑋𝛽 + 𝜔     (26)      

where ωi is a randomly distributed random effect for intersection j and all other variables are as 

previously defined. 

In contrast to intersection SPFs, where the measures of exposure are vehicle and/or non-

motorized road user volume, length is typically included, commonly as an offset variable 

(coefficient restricted to equal 1) as an additional measure of exposure in models for roadway 

segments. The principal characteristic of interest in this study was the segment length (the 

distance between the ramp bifurcation point and the first access point), therefore a unique 

functional for SPFs was utilized and is shown in the following equation: 

𝜆 = 𝑒𝑥𝑝 (1 ∗ 𝑙𝑛(𝐿𝑒𝑛𝑔𝑡ℎ) + 𝛽 ∗ 𝑙𝑛(𝐿𝑒𝑛𝑔𝑡ℎ) +  𝛽 ∗ 𝑙𝑛(𝐶𝑅𝐴𝐴𝐷𝑇) + 𝛽 ∗

𝑙𝑛(𝐴𝑃𝐴𝐴𝐷𝑇) + 𝜷𝑿)  (27) 

where Length is the distance between the ramp terminal intersection and the nearest access point, 

βLength is the coefficient associated with Length, CRAADT is the traffic volume of the crossroad 

running perpendicular to the freeway, βCRAADT is the coefficient associated with the crossroad 

volume, APAADT is the volume of traffic entering the roadway from the access point, βAPAADT is 

the coefficient associated with access point volume, β is the vector other model coefficients, and 

X is the vector of the remaining explanatory parameters.  
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4.5 Results and Discussion 

In order to develop useful guidance for road agencies, two crash prediction models were 

estimated. In an effort complimentary to the series of crash prediction model previously 

described, a detailed crash prediction model was developed treating the distance to the first 

access point as a continuous variable. While the interval based model is beneficial for identifying 

distance thresholds, the continuous model captures the true relationship of the data (e.g., there is 

not necessarily a huge difference between distances of 399 feet and 401 feet). Data was collected 

on an individual year basis for this analysis, therefore to account for correlation between 

repeated observations at individual sites, a random-intercept negative binomial model was 

estimated. The results of the model estimation are given in Table 43. 

Table 43. Crash prediction model with distance as a continuous variable 

Parameter Estimate Std. Error z-Value p-Value 
Intercept -10.049 0.484 -20.770 0.000 
Natural log of crossroad AADT 0.786 0.052 15.120 0.000 
Natural log of 1st access point AADT 0.082 0.024 3.410 0.001 
Natural log of distance to first access point -0.659 0.038 -17.250 0.000 
First access point on right side -0.335 0.096 -3.500 0.000 
First access point is terminal intersection -0.654 0.355 -1.850 0.065 
Signalized first access point 0.374 0.131 2.860 0.004 
Signalized ramp 0.833 0.119 6.980 0.000 
Yield controlled ramp 0.384 0.194 1.970 0.048 
Overdispersion parameter 0.049 0.015   

 

The variance associated with the random intercept was estimated to be 0.5975. 

Additionally, the log-likelihood associated with the random intercept model was determined to 

be -3515.15. In comparison to the log-likelihood of the same model estimated using naïve-

pooled negative binomial framework (-3778.05), the random intercept model provides superior 

fit. An analysis of deviance test was subsequently performed, which confirmed that the random-
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intercept model is a significantly better fit than the naïve-pooled model. This information 

suggests that while a wide variety of parameters was found to significantly affect the crash rate at 

these sites (and are discussed in the following paragraphs), there are still unobserved site-specific 

parameters that also have an impact on crash rate. 

The model estimated for this study examined the volume of the crossroad as well as the 

volume at the first access point. As one would expect, both of these volumes were found to have 

a substantial impact on crash frequency along the corridor. It is interesting to note that the 

parameter associated with the first access point traffic volume is relatively small. This suggests 

that the effect of access point volume increases rapidly at low volumes and then plateaus as 

access point volume increases. This is noteworthy because it implies that access points present 

crash risk to the corridor with relatively little regard for the amount of vehicles that utilize them. 

The primary variable of interest in this study was the distance to the first access point 

from the point of ramp bifurcation. This site characteristic was included in the model as an offset 

term, as well as a separate estimable parameter. The offset term is constrained to a value of one, 

effectively resulting in the estimation of crash rates on a per mile basis. The estimated parameter 

associated with this characteristic was negative, which indicates that by increasing the distance to 

the first access point, the expect crash rate between the ramp bifurcation point and first access 

point decreases. 

A variety of access point configurations were examined to ascertain best practices with 

regards to movement restrictions. Two approach configurations, driveways and three-leg 

intersections on the right side (right turn for vehicles traveling away from the highway on the 

crossroad) as well as three-leg terminal intersections (the crossroad ends in a t-intersection) were 

shown to have lower crash rates in comparison to the base scenario of the first access point being 
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a four-leg intersection. Movement restrictions, such as right-in, right-out were also considered in 

the model estimation, but were not found to have a significant effect on crash rate. This is 

potentially due to this data set focusing explicitly on the first access point, while full corridor 

investigations could find that roadways with higher densities of restricted movement access 

points perform better than corridors with full-movement access points. 

Finally, traffic control was shown to play a substantial role in crash rate. Signalized 

ramps and first access points were both associated with elevated crash rate. This is fairly 

intuitive, as these scenarios are most commonly present at locations with high traffic volumes, 

and therefore, the highest crash risk. Somewhat counterintuitively, yield controlled ramps (slip 

ramps) were found to be associated with higher crashes as well. This again is likely due to these 

being in locations where a large volume of vehicles are exiting the highway. 

There were two principal foci behind this investigation that can be addressed graphically 

using the estimated crash prediction model: 1) illustrate the relationship between the spacing 

between the ramp bifurcation point and the first access point, and 2) illustrate the role that 

crossroad traffic volume plays on the rate or crashes at a given location. Figure 35 is the 

graphical interpretation of the crash prediction model with crossroad volume plotted on the x-

axis. 
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Figure 35. Crashes per mile versus crossroad traffic volume by distance to access point, 
access point volume of 100 vehicles per day 

Figure 35 demonstrates that as traffic volume on the crossroad increases, crash rate also 

increases. This figure again demonstrates that the rate of traffic crashes increases much more 

rapidly with respect to traffic volume when the first access point is near to the ramp bifurcation 

point. The differences in crash frequency attributable to the distance between the ramp terminal 

intersection and first access point beyond 1,100 feet are not very pronounced. 

Figure 36 is a zoomed version of Figure 35 emphasizing the low end of the volume 

spectrum and provides critical insight into a low-volume threshold at which was not able to be 

addressed with the previous plots.  
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Figure 35. Low crossroad volumes, crashes versus crossroad volume 

Figure 36 illustrates that from a practical sense, there is still a marked difference in crash 

rate between a corridor with crossroad volumes of 100 vehicles per day when the access point is 

located at 100 feet versus 300 feet (0.3 crashes per mile). The difference in crash rate when the 

distance between the ramp terminal intersection and first access point is increased from 300 feet 

to 500 feet (0.08 crashes per mile) is not nearly as pronounced. This figure further illustrates that 

the crash rate on a roadway is more sensitive to traffic volume when the distance between the 

ramp terminal and first access point is smaller, suggesting that high volume access points should 

generally be located further from the ramp terminal. Figure 37 again presents the SPF 

graphically, however, this the distance to the first access point is plotted on the X-axis. 
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Figure 36. Crashes per mile versus distance to the first access point for various cross road 
volumes 

Figure 37 is based on a right-side access point with a volume of 100 vehicles per day. 

Each bar represents a specific cross road traffic volume. This plot is useful for identifying 

inflection points in the curve which represent a substantial change in safety performance. For 

instance, the lowest curve (200 crossroad vehicles per day) is relatively unaffected by increasing 

the distance to the access point beyond 100 feet. As crossroad traffic volume increases, a wider 

range of access point distances have a pronounced effect on crash rate. Collectively, these plots 

and figures provide insight into the relationship between crash rate, the distance between the 

ramp intersection and the first access point, and the traffic volume present at the first access 

point.  

The second model was developed on aggregated crash data for the five years of the study 

period. This model utilized a series of indicator variables for the distance between the ramp 

bifurcation point and the first access point. These ramp distance indicators were estimated as 

interaction terms with access point volume, as intuitively, one might expect that the effect of 

access point volume is highly related to the distance to the access point, i.e., locating a high-

volume access point close to the ramp bifurcation point would have a much more pronounced 
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effect than locating a low-volume access point at the same location. Results of the model are 

shown in Table 42. 

Table 44. Five-year aggregated SPF results 

Parameter Estimate 
Std. 
Error z-Value p-Value 

Intercept -14.205 0.413 -34.418 <0.001 
Natural log of crossroad AADT 0.801 0.052 15.476 <0.001 
First access point on right side -0.347 0.092 -3.757 <0.001 
First access point is terminal intersection -0.626 0.343 -1.825 0.068 
Signalized first access point 0.357 0.123 2.912 0.004 
Signalized ramp 0.793 0.116 6.835 <0.001 
Yield controlled ramp 0.340 0.188 1.805 0.071 
Interaction: Natural log of access point volume vs access distance intervals  

50 feet 0.729 0.039 18.597 <0.001 

100 feet 0.569 0.131 4.340 <0.001 
200 feet 0.358 0.029 12.306 <0.001 
300 feet 0.171 0.030 5.629 <0.001 
400 feet 0.155 0.021 7.435 <0.001 
500 feet 0.116 0.022 5.199 <0.001 
600 feet 0.097 0.023 4.299 <0.001 

600-1000 feet 0.070 0.017 4.178 <0.001 
Overdispersion parameter 0.601 0.057   

 

Ultimately, the results presented in Table 43 provide guidance as to appropriate distance 

thresholds for access point location, due to distance threshold indicator variables. Speaking 

generally, when access points are located further away from the ramp bifurcation point, crash 

rate is reduced. This affect is first noticeable at 1000 feet from the ramp intersection. The effect 

is relatively consistent between 1000 feet and 600 feet, with a noticeable increasing trend as the 

distance becomes less than 600 feet.  

4.6 Conclusions 

The results of the analysis of the distance between ramp intersections and the nearest 

access point provide valuable guidance for road agencies. Perhaps the most valuable contribution 

of this project to the extant literature is the incorporation of access point volume into the 
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functional form of the crash prediction model. Several previous studies have used loosely 

defined, arbitrary terms such as “major intersection” and “minor intersection” to define the 

access points in lieu of volume metrics (Rakha et al. 2008, Rakha et al. 2010), however, the 

framework utilized in this approach provides road agencies with a more flexible, robust basis for 

decisions as it relates to granting roadway access to the crossroads adjacent to ramp 

intersections. Model results were intuitive in that four-leg access points and left-turn access 

points were more dangerous in comparison to the base case of access points on the right side 

only (as a vehicle travels away from the freeway). Additionally, signalized ramp terminals and 

signalized access points were associated with higher crash rates on the corridors. Traffic volume 

on the crossroad was shown to play a significant role in the crash rate on a per mile basis, while 

the relatively small coefficient for traffic volume from the access point is indicative access point 

presence, regardless of the volume of vehicles, is associated with reduced safety performance. 

These findings provide road agencies and transportation safety researchers with useful 

information pertaining to the safety of roadway corridors adjacent to freeway ramp intersections. 

This paper demonstrates that will almost always be adversely impacted by the introduction of 

access points along a corridor, these effects can be mitigated by locating access points as far 

from the ramp bifurcation point as possible. Crash rate is significantly impacted when the 

distance between the ramp terminal and access point is less than 1000 feet, with the most 

pronounced effects being observed when the distance is 600 feet or less. 
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CHAPTER 5.  SUMMARY 

This document investigated traffic safety in three specific areas: vehicular crashes at 

intersections, pedestrian and cyclist crashes at intersections, and crashes on corridors adjacent to 

ramp terminal intersections. The results documented in the preceding chapters provide useful 

insight into approaches to effectively evaluate safety at these facility types.  

5.1 Safety Performance Functions for Vehicular Crashes 

SPFs for four intersection types (three-leg signalized, three-leg stop-controlled, four-leg 

signalized, and four-leg stop-controlled) were developed at a variety of complexity levels. In 

order to accomplish this task, a dataset containing a wide range of geometric and operational 

characteristics was developed. Three types of “fully specified” negative binomial SPFs: five-year 

aggregated, five-year aggregated with regional indicators, and a five-year disaggregated random 

intercept, were estimated and compared to volume-only and volume with regional indicator 

models. Ultimately this study provides researchers with information that is useful in ascertaining 

some of the pros and cons of various modeling frameworks and approaches. The series of models 

estimated in this study provide documentation that the inclusion of regional indicators provides 

insight on location-specific phenomena associated with crash frequency without overriding the 

potential to make inferences about various geometric characteristics for this data set. The 

regional indicators utilized in this study represent the Michigan Department of Transportation’s 

operational/maintenance regions. These seven regions are relatively diverse in terms of traffic 

volume, which is largely reflective of the underlying population density of each region. The 

Metro region (which includes Detroit and its suburbs) was used as a basis to which the other 

regions were compared. Typically, the regional indicators for the non-Metro regions had positive 

coefficients associated with them. This is largely reflective of two things: the non-linear 
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relationship between traffic volume and crashes at intersections (where the rate at which traffic 

crashes increase decreases as volume increases) and generally higher volumes in the Metro 

region. Simultaneously considering the volume-crash relationship and the higher traffic volumes 

of Metro region explains why for a specific volume, other regions would expect more crashes. 

This finding is supported by the fact that proximity to DNR non-motorized paths (a variable that 

is indicative of lower traffic volumes) was associated with increased crash frequency. In addition 

to the effects of volume captured by the regional indicators, several of the regions (notably the 

Superior, North, and Southwest) experience relatively severe winters in terms of snow fall which 

likely also plays a role in the effects of the regional indicators.  

In terms of the wide array of geometric characteristics considered in each of the models, 

the fully specified models possess a great deal of similarity between the coefficients estimated in 

the five-year aggregated, five-year aggregated with regional indicators, and 5-year disaggregated 

random intercept model framework.  

Generally speaking, the fully-specified models with regional indicators outperform the 

fully specified models without regional indicators in terms of the model goodness of fit metrics 

Mean Absolute Deviance (MAD) and Mean Square Predictive Error (MSPE). When the site-

specific intercept terms were excluded from the crash prediction estimates, the random-effect 

models performed similarly to the aggregated five-year models, however, the models 

dramatically outperformed  

Finally, the efforts put provides support for selecting a modeling framework for SPF 

development if the end goal is to utilize empirical-Bayes methodology to account for site specific 

crash history. Models were estimated for four facility types, each with its own unique data 

characteristics, most notably sample mean. This research illustrates the relationship between 
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sample mean, the magnitude of the variance of random (effects) intercept negative binomial 

models, and the associated overdispersion parameter. As sample mean decreases, the amount of 

variation of the data explained random intercept, quantified in terms of the variance, increases. 

When the variance associated with the random intercept term increases, which results in a 

decrease in the overdispersion parameter. Consequently, if a researcher wishes to utilize the 

empirical-Bayes approach to incorporate crash history into crash prediction, data sets with low 

sample means will put higher weight on the model results than a comparable aggregated crash 

model.  

Future work on this topic will include exploration of other modeling frameworks, such as 

the generalized Poisson, which is equipped to handle under- and overdispersion. An additional 

topic that warrants investigation is a meta-analysis, particularly focusing on studies that initially 

calibrated the HSM and then found it appropriate to estimate jurisdiction specific models. Such 

an analysis may provide insight as to specific characteristics that may be associated with 

discrepancies between specific locations and the data used in the HSM. Given that investigating 

the predictive ability of the SPFs was developed using the various frameworks was a focus of 

this study, splitting the data into training and testing subsets to investigate the out of sample 

predictive ability of the model types used is also an area of interest.  

5.2 Safety Performance Functions for Pedestrian and Cyclist Crashes 

Pedestrian and cyclist exposure measures are not commonly maintained by road agencies, 

and as such, it is difficult for researchers to effectively model crashes for these types of road 

users on a large scale.  Subsequently, studies sometimes forgo pedestrian and/or cyclist exposure 

measures (Lee and Abdel-Aty, 2005) in crash frequency estimation or approach the problem in 

terms of a risk factor-based analysis (Bergh and Ray 2014, Bergh et al 2015).  The HSM 
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provides a rough framework for the estimation of pedestrian activity at an intersection 

(AASHTO 2010). Various studies in pedestrian and cyclist safety have utilized study-specific 

counts (Moreno, and Morency; 2013; Strauss, Miranda-Moreno, and Morency; 2014; Strauss, 

Miranda-Moreno, and Morency, 2015), and estimated data (Grembek et al 2014), and proposed 

exposure measures (Lee and Abdel-Aty, 2005), however, the methodologies used to capture 

pedestrian activity in these studies is not necessarily simple for other researchers or safety 

professionals to replicate. The methodology outlined in Chapter 3 serves to form a template with 

which road agencies can feasibly begin to evaluate intersections for pedestrian and cyclist safety 

through incorporation of the American Community Survey. Separate SPFs were estimated for 

three crash categories: pedestrian crashes, cyclist crashes, and non-motorized crashes. Models for 

each crash type were estimated for three-leg signalized intersections, four-leg signalized 

intersections, and combined signalized intersections. 

In addition to demonstrating the usefulness of a publicly available data source to improve 

the crash prediction efforts for pedestrians and cyclists, this section serves to document how 

pedestrian and cyclist crashes are affected by various infrastructure components, at least at urban 

and suburban intersections in Michigan. Similarities between the factors affecting pedestrian and 

cyclist crashes were observed, beginning with the fact that essentially no pedestrian or bicycle 

crashes occur at intersections without sidewalks. In addition to the volume components that are 

traditionally expected to have a large influence on the frequency of crashes, this research 

demonstrates that in general, median presence, one-way roads, increasing skew angle, and 

increasing census tract age are associated with decreased crash risk while parking and driveways 

are associated with lower crash risk. Additionally, certain MDOT regions performed differently 
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from the rest of the state in terms of pedestrian and cyclist safety, which is likely reflective of the 

actual number of pedestrians and cyclists in that area. 

This study presents several approaches to modeling traffic crashes involving pedestrians 

and cyclists which were compared using MAD and MSPE. Two modeling approaches tended to 

outperform the others: estimating separate models for each crash type (pedestrian and cyclist) 

and intersection type (three-leg signalized, four-leg signalized), and estimating separate models 

for each crash type but simultaneously considering each intersection type with the use of an 

indicator variable. The worst predictive performance of the models estimated for this study 

considered pedestrian and cyclist crashes combined into non-motorized crashes and then used the 

proportion of pedestrian commuter density and cyclist commuter density relative to the 

combined non-motorized road user density to determine the number of predicted crashes for each 

separate crash type.  

This study is limited in that no actual pedestrian or cyclist data was available to serve as a 

means to verify the effectiveness of the ACS data as exposure measure. Future work in this area 

could attempt to estimate similar models using observed pedestrian and cyclist volumes, 

estimated volumes using land use data or other sources, and the ACS data to contrast the 

differences in results and provide insight into the explanatory and predictive capabilities of each 

model. Additionally, pedestrian and cyclist crashes could be aggregated at the census tract level, 

rather than the intersection level to provide another perspective as to the factors affecting these 

types of crashes. 

5.3 Access Point Proximity to Crossroad Ramp Terminals 

Corridors adjacent to ramp terminal intersections are a focal point in the access 

management policies of many road agencies. While the extant literature clearly demonstrates that 
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higher access point density is associated with increased crash risk, the issue of locating an access 

point near to a ramp terminal intersection is not often approached as a pure access point density 

issue. This paper substantially adds to the extant literature in this area. Several previous studies 

have used loosely defined, arbitrary terms such as “major intersection” and “minor intersection” 

to define the access points in lieu of volume metrics (Rakha et al. 2008, Rakha et al. 2010), 

however, this is one of the first studies to incorporate access point volume into the analysis 

framework. The utilization of access point volume estimated based on existing roadway 

information where available, in conjunction with driveway volume from the ITE Trip Generation 

Manual in the model instead of access point classifications, which can be arbitrary, provides road 

agencies with a flexible structure on which they can base their specific access management 

policy. 

The analysis approach utilized in this study was two-pronged. First a thorough visual 

inspection of the data was undertaken to gain high-level insight into the underlying relationships 

between traffic volume, distance between the ramp intersection and first access point, and the 

crash rate (in vehicles per mile). The visual inspection of the data revealed an inverse 

relationship between crashes per mile and distance between the ramp intersection and access 

point. When separate traffic volume intervals were examined, an increasing relationship between 

traffic volume and crash rate became visible, as one would expect. 

Following the visual analysis, a detailed statistical analysis was conducted utilizing 

random effects negative binomial regression models. Model results were intuitive in that four-leg 

access points and left-turn access points were more dangerous in comparison to the base case of 

access points on the right side only (as a vehicle travels away from the freeway). Additionally, 

signalized ramp terminals and signalized access points were associated with higher crash rates on 
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the corridors. In order to facilitate interpretation of the model results, a series of graphical 

representations of the model were created. These figures demonstrate the relationship that exists 

between crash rate, traffic volume, and the distance between the ramp terminal intersection and 

the nearest access point. 

This study was somewhat limited in terms of geometric characteristics present on the 

crossroad, due in part to the rural nature of many interchanges in the state of Iowa. Future work 

could aim to incorporate data from other, more densely populated areas which may provide 

better insight as to specific geometric characteristics effecting safety near ramp terminal 

intersections. Additional information could also be collected for comparable corridors that are 

not ramp-adjacent. This would allow for an analysis to provide insight as to the safety of these 

corridors relative to the broader population of roadways in Iowa which could potentially result in 

the determination of a “base” level of safety to which the ramp-adjacent corridors could be 

compared. Finally, given that one of the most commonly identified reasons for locating access in 

close proximity to ramp terminal intersections is loss of potential revenue, an ideal component 

that could be added to this research in the future would involve approaching the problem from 

economic standpoint utilizing monetary values associated with crash severity. This approach will 

allow road agencies and developers to communicate in terms of the same units.  

5.4 Conclusion 

The research contained in this dissertation represent significant contributions to the body 

of research literature in traffic safety. The findings help to shed light on several under-researched 

areas of transportation safety, specifically intersection safety. In addition to the filling gaps in the 

extant literature, these findings also represent useful approaches to solving problems that 

researchers and road agencies alike must address. This research accomplishes several tasks, most 
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notably: examining the consequences of selecting various model frameworks for the estimation 

of crash prediction models, utilizing existing data sources to improve the ability to model 

pedestrian and cyclist crashes, and providing support to road agencies in addressing access 

management related to the proximity of ramp terminal intersections and access points. 

Collectively, this document adds to the extant body of research in these areas in ways that 

provide utility to road agencies and researchers alike. Additionally, this document provides 

insight into future work that will continue to add value to transportation safety literature 
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Abstract 
On April 13, 2012, Michigan instituted reforms to its long-standing universal helmet law (UHL) and 
thus became the 28th state with a partial helmet law, which requires helmet use by only a subset of the 
riding population. Given continuing increases in motorcycle fatalities, helmet use remains a divisive policy 
issue facing state governments. The existing research literature includes several before-and-after studies 
that evaluate the effects of changes in motorcycle helmet laws on metrics such as helmet use and statewide 
motorcycle fatalities. However, a comprehensive assessment of the effects of helmet use laws on the full 
range of crash injury outcomes is lacking. Important evidence was added to inform the continuing debate 
about the efficacy of UHLs. A detailed, disaggregate-level study was conducted to assess the degree of 
injury severity sustained by motorcyclists involved in crashes before and after Michigan’s transition from a 
UHL to a partial helmet law. By control- ling for various rider, roadway, traffic, and weather characteristics, 
results of the study demonstrate that helmets reduced the probability of fatalities by more than 50%. Injuries 
tended to be less severe in crashes that involved deer, occurred at lower speeds, or occurred in inclement 
weather but more severe in high-speed collisions or when drugs and alcohol were involved. The riders 
who tended to be more susceptible to severe injury were female, younger (age 21 to 30 years), or older 
(age 51 to 70 years). 
 
Introduction 
 
On April 13, 2012, the Michigan legislature amended Section 658 of the Michigan Vehicle Code (PA 
300 of 1949) and weakened a universal helmet law (UHL) for motorcycles that had been in place since 
1969. The resultant partial helmet law (PHL) allows motor- cycle operators more than 21 years of age to 
ride without a helmet if they have had a motorcycle endorsement for at least 2 years or have passed a 
motorcycle safety course and carry $20,000 of insurance per person on the motorcycle. This legislative 
change made Michigan one of 28 states with a PHL, which requires helmet use by only a subset of the riding 
population (1). As of August 2013, only 19 states have UHLs and three have no helmet laws (1). On a map 
of helmet laws by state, Figure 1 shows that UHLs are predominantly in effect along the East Coast and 
the West Coast. 
 
Helmet use laws have been an issue of considerable debate among the motorcycle community and the 
general public, even though helmets have been shown to be 29% effective in preventing motorcycle fatalities 
and 67% effective in preventing brain injuries resulting from motorcycle crashes (2). Research also has 
shown that riders who do not wear helmets also are more likely to require a skilled nursing facility, and 
various studies have shown that fatality rates are lower in states with UHLs (3–5). The existing research 
literature includes numerous studies that have examined the effects of motor- cycle helmet use and UHLs. 
The National Highway Traffic Safety Administration estimates that 17,572 lives were saved by motor- 
cycle helmets from 1984 to 2005, and an additional 11,568 could have been saved by helmet use (6). 
Research has demonstrated that helmets save lives and that helmeted riders have lower hospitalization rates 



144 
 

and are 2.4 times less likely to suffer a head injury (7, 8). Furthermore, research has shown that after a 
repeal of helmet laws, the number of drinking-related and unhelmeted fatal crashes increases significantly 
(9). Extensive research also has been conducted to examine how helmet laws affect helmet use, because 
rates can be more than 90% in UHL states versus rates as low as 55% in PHL states (4).  
 
Collectively, these findings are consistent with those of many prior studies, which have shown conclusive 
benefits of helmet use and UHLs (10–22). In fact, PHLs have been suggested to be essentially equivalent 
to a full repeal because of the difficulty of enforcing violations, which usually are based on age and experience 
(11). 
 
However, some studies have drawn conflicting conclusions about UHL efficacy. For example, Stolzenberg 
and D’Alessio found no significant difference in the rate of fatal brain injuries 18 months after Florida 
repealed its UHL in 2000 (23). They also noted that various prior studies had failed to consider temporal 
trends appropriately. Other research has shown that the impacts of helmet laws may be understated if appropriate 
controls (e.g., temperature and weather) are not accounted for (5).  
 
Opponents of helmet use legislation frequently cite potential economic benefits that increased tourism would 
generate as a result of fewer riding restrictions. However, a 2012 study estimated that the weakening of 
Michigan’s helmet use law would result in increases of 42% in monetary costs and 54% in non- monetary 
costs resulting from motorcycle-involved crashes (24). On average, initial medical costs were $5,000 higher 
for unhelmeted riders than for helmeted riders (25); after the weakening of Florida’s motorcycle helmet law, 
the medical costs of motorcyclists being admitted to hospitals with head, brain, or skull injuries more than 
doubled from $21 million to $44 million (26). Compounding this rise was a parallel increase in treatment 
costs for such injuries from $34,518 to roughly $40,000. 
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Despite these economic benefits, which are well supported, debate continues about the efficacy of helmet use 
laws in reducing motor- cycle fatalities (27–32). The principal objective of this study was to determine the 
impacts of the recent weakening of Michigan’s UHL on injury outcomes in crashes that involve motorcycles. 
A detailed, disaggregate-level assessment was developed for motorcyclist crash injury outcomes before and 
after the weakening of Michigan’s helmet use law. A random effects ordered probit model was estimated to 
ascertain the effects of helmet use while controlling for other important factors. Collectively, the results 
provide important evidence to guide subsequent policy decisions in Michigan and other states. 
 
To assess the effects of helmet use on the degree of injury sustained as a result of motorcycle crashes in the 
state of Michigan, an ordered probit model was developed. The ordered probit is an appealing analytical 
framework in that it accounts for the ordinal nature of injury data, which can be ranked in ascending order 
of severity from property damage only (no injury) to fatal injury. For the ordered probit model, a latent 
variable (z) is specified as a linear function for each crash observation (33, 34), such that 
 
 𝑧 = 𝛽𝑋 + 𝜀                                                                                                                           (1) 
 
where,  
 
𝛽 = vector of estimable parameters, 
𝑋 = vector of variables determining discrete ordering for each crash observation, and 
𝜀 = disturbance term 
 
The, observed ordinal-injury data (y) for each observed crash are defines as 
 

𝑦 =

⎩
⎪
⎨

⎪
⎧

1      𝑖𝑓 𝑧 ≤ 𝜇                         
2      𝑖𝑓 𝜇 < 𝑧 ≤ 𝜇               
3      𝑖𝑓 𝜇 < 𝑧 ≤ 𝜇               
…                                               
𝑖       𝑖𝑓 𝑧 > 𝜇                     

                  (2) 

 
where µ are estimable threshold parameters that define y (which corresponds to integer ordering) and i is 
the highest integer-ordered response. The µ parameters are estimated jointly with the model parameters β, 
and µ0 can be set to 0 without loss of generality. The estimation problem then becomes one of determining 
the probability of i-specific ordered responses for each crash injury (n). If the error term ε is assumed to be 
normally distributed across observations with a mean of 0 and variance of 1, then an ordered probit model 
results.  
 
Setting the lower threshold µ0 equal to 0 results in the outcome probabilities  
 
𝑃(𝑦 = 1) = 𝛷(𝜇 − 𝛽𝑋) − 𝛷(𝜇 − 𝛽𝑋)                                                                                      (3) 
 
where Φ equals the standard normal cumulative density function; and 𝜇  and 𝜇  represent the upper and 
lower thresholds, respectively, for injury severity i. For the purposes of this study, one potential concern in 
analyzing injury severity data is that the rider and pillion passenger on the same motorcycle probably share 
common unobserved effects, for example, being exposed to similar impact forces, wearing similar gear, or 
sharing other similarities that cannot be captured by the available data from the crash report form. Failure 
to account for this correlation potentially can result in inefficient or biased parameter estimates. To address 
this issue, a motorcycle-specific disturbance term (𝜑 ) is added to account for the random unobserved 
effects z that are specific to each crash-involved motorcycle c as follows: 
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𝑧 = 𝛽𝑋 + 𝜀 + 𝜑                                                                                                           (4) 
 
The random effects ordered probit model is estimated by standard maximum likelihood methods. 
 
Data Summary 
 
Summary statistics for all motorcycle crashes occurring in the state of Michigan over two periods (April 13 
to December 31, 2011, and April 13 to December 31, 2012) are listed in Table 1. The April 13 date coincides 
with enactment of the PHL and, as such, enables a direct comparison of changes in motorcycle crashes 
before and after the helmet law change.  
 
During this period in 2011(when the UHL was in place), 2,979 motorcycles were involved in crashes in the 
state of Michigan, of which 105 resulted in motorcyclist fatalities. During the same period in 2012 (under 
the PHL), motorcycle crashes increased by 6.3% to 3,166 and fatalities increased by 11.4% to 117; 
incapacitating injuries also increased by 11.2% (from 544 to 605), thus providing general data that crash 
severity increased after the helmet law change.  
 
Over the 2011 period, the helmet use rate among all crash-involved motorcyclists in Michigan was 94.3%. 
During the same period in 2012, the rate dropped to 72.5%. The latter rate is close to the estimated statewide 
use rate of 73.0% determined in a recent direct observation survey (35). The variables in Table 1 other than 
helmet use and injury severity were largely consistent between the two periods. 
 
Results and Discussion 
 
Results of the random effects ordered probit model that was estimated as part of this study are presented in 
Table 2. They show that various motorcyclist, crash, roadway, and temporal factors influence the severity 
of injuries sustained as a result of motorcycle crashes. In interpreting model results from Table 2, a positive 
coefficient implies that as that variable is changed from 0 to 1, the probability of a fatal injury increases 
while the probability of the motorcyclist sustaining no injury decreases (and vice versa for negative 
coefficients).  
 
The interpretation of changes on interior injury categories is not intuitive but requires the calculation of 
elasticities. As presented in Table 3, elasticities indicate the percentage of change in the probability of each 
injury outcome as each variable is increased from 0 to 1. In practical terms, these values represent the 
percentage change in the probability of a specific severity level due to the effects of a specific indicator 
variable. For example, the results indicate that the probability that a crash results in property damage only 
(O) increases by 27.2% when a rider is wearing a helmet (versus not wearing a helmet); similarly, the 
probability of a possible (C) injury increases by 10.7% when a helmet is used. Conversely, the likelihood 
of nonincapacitating (B), incapacitating (A), and fatal (K) injuries decrease by 5.4%, 26.1%, and 51.6%, 
respectively. Collectively, these findings provide additional evidence to demonstrate that helmet use leads 
to consistent, pronounced reductions in injury severity.  
 
Including helmet use, a total of 22 explanatory variables significantly affect the injury severity outcomes 
of motorcyclists involved in a crash. Age has a significant influence on the severity of injuries sustained by 
motorcyclists. The model shows that motorcycle riders from 21 to 30 years of age and from 51 to 70 years 
of age had similar injury outcome characteristics and were more likely to experience severe crash-related 
injuries. The younger motorcyclists may be inherently riskier drivers and engage in reckless behavior while 
riding, and the finding that they are at greater risk of injury is consistent with past studies (20). Older drivers 
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may be at greater risk of injury or fatality due to the effects of aging, such as reduced reaction time or 
frailty; this finding also is consistent with past findings (36). Gender also had an effect on injury outcomes 
because females were at greater risk of severe or fatal injury.  
 
Alcohol use and drug use significantly increase the likelihood of a motorcyclist sustaining a fatal injury (by 
112.9% and 237%, respectively). These results are not surprising, because alcohol and drug use can affect 
cognitive abilities in many ways, potentially leading to slower reaction times, poor judgment, and a false 
sense of confidence. These findings are consistent with previous studies and strengthen the argument for 
continuing education and enforcement campaigns aimed at reducing impaired riding (20).  
 
Riders involved in collisions with a deer were less likely to experience fatal injuries and more likely to 
experience no injury, probably because the mass of a deer is smaller than that of a motor vehicle. 
Motorcyclists involved in collisions with large trucks were 208.9% more likely to experience a fatal injury. 
This finding is not surprising because of the sheer size and mass differential between a motorcycle and a 
large truck.  
 
Crash type also significantly affected injury severity levels of crash-involved motorcyclists. Riders involved 
in single-vehicle, rear-end, or same-direction-sideswipe crashes were less likely to experience severe 
injuries, whereas those involved in head-on or head-on, left-turn collisions were more likely to experience 
severe injuries. These results are consistent with past studies and are related to the speed differential and 
crash force characteristics associated with each crash type (36). Riders who crashed at a stop-controlled or 
signalized intersection were less likely to experience severe injuries. This finding may be related to the 
speed of travel when the crash occurred; motorcyclists stopped or moving slowly may be less likely to be 
injured than those traveling at full speed, especially on a freeway.  
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Table 1. Michigan Crash Severity Analysis: Summary Statistics 

Factor 
Number 

Observed 
Percentage 

of Total 
Factor 

Number 
Observed 

Percentage 
of Total 

Driver motorcycle endorsement   Month   
Endorsed 3,118 49.5 April 247 4 
Not endorsed 2,842 45.1 May 953 15.5 
Unknown 343 5.4 June 1,184 19.3 
Driver's license (state)   July 1,147 18.7 
Michigan 5,807 92.1 August 1,146 18.6 
Other 283 4.5 September 749 12.2 
Unknown 213 3.4 October 502 8.2 
Driver helmet use   November 186 3 
Yes 4,908 77.9 December 31 0.5 
No 838 13.3 Day of the week   
Unknown 557 8.8 Weekday 4,030 65.5 
Driver age (years)   Weekend 2,115 34.4 
<16 22 0.3 Time of day   
16 to 29 1,493 23.7 Midnight-3 a.m. 313 5.1 
30 to 59 3,608 57.2 3-6 a.m. 215 3.5 
≥60 986 15.6 6-9 a.m. 380 6.2 
Unknown 194 3.1 9 a.m.-noon 548 8.9 
Driver gender   Noon-3 p.m. 1,133 18.4 
Male 5,783 91.7 3-6 p.m. 1,596 26 
Female 388 6.1 6-9 p.m. 1,185 19.3 
Unknown 132 2.4 9 p.m.-midnight 771 12.5 
Driver injury severity   Unknown 4 0.1 
Fatal (K) 203 3.2 Weather   
Incapacitating (A) 1,000 15.9 Clear 4,966 80.8 
Nonincapacitating (B) 2,069 32.8 Cloudy 925 15.1 
Possible (C ) 1,459 23.1 Other 254 4.1 
None (O) 1,419 22.5 Light   
Unknown 153 2.4 Daylight 4,425 72 
Driver impairment   Dark lighted 616 10 
Drugs 16 0.3 Dark unlighted 756 12.3 
Alcohol 395 6.3 Other 175 2.8 
Both 6 0.1 Unknown 3 0.1 
Neither 5,886 93.4 Road condition   
Passenger helmet use   Dry 5,690 92.6 
Yes 516 79.9 Wet  300 4.9 
No 81 12.5 Other 152 2.5 
Unknown 49 7.6 Speed limit (mph)   
Passenger gender   <30 802 13.1 
Male 55 8.5 30-50 2,743 44.6 
Female 580 89.8 >50 2,544 41.4 
Unknown 11 1.7 Unknown 56 0.9 
Passenger injury severity    Crash type   
Fatal (K) 19 2.9 Single motor vehicle 3,154 51.3 
Incapacitating (A) 149 23.1 Head-on 374 6.1 
Nonincapacitating (B) 257 39.8 Angle 828 13.5 
Possible (C ) 123 19 Rear-end 992 16.1 
None (O) 91 14.1 Sideswipe 464 7.6 
Unknown 7 1.1 Unknown 333 5.4 
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Table 2. Random Effects Ordered Probit Model: Parameter Estimates 
Parameter Estimate SE t-Statistic p-Value 
Constant 1.479 0.098 15.1 <0.001 
Helmet use -0.298 0.054 -5.52 <0.001 
Age 21-30 years 0.146 0.055 2.65 0.008 
Age 51-70 years 0.131 0.048 2.71 0.007 
Female 0.322 0.057 5.65 <0.001 
Alcohol use 0.547 0.086 6.32 <0.001 
Drug use 0.893 0.356 2.51 0.012 
Deer involved collision -0.53 0.078 -6.81 <0.001 
Large truck involved collision 0.822 0.191 4.32 <0.001 
Single-vehicle collision -0.318 0.07 -4.52 <0.001 
Rear-end collision -0.857 0.08 -10.73 <0.001 
Same-direction sideswipe collision -0.654 0.101 -6.51 <0.001 
Head-on collision 0.369 0.149 2.48 0.013 
Head-on or left-turn collision 0.519 0.103 5.04 <0.001 
Stop controlled intersection -0.219 0.075 -2.92 0.004 
Signalized intersection -0.408 0.068 -6.02 <0.001 
Horizontal curve on nonfreeway 0.16 0.065 2.45 0.014 
Speed limit 40-45 mph 0.25 0.059 4.22 <0.001 
Speed limit 50-55 mph 0.218 0.065 3.37 0.001 
Speed limit >55 mph 0.297 0.067 4.41 <0.001 
Rain or snow -0.306 0.123 -2.48 0.013 
November or December -0.273 0.123 -2.21 0.027 
Weekend 0.104 0.044 2.35 0.019 
Thresholds     

Mu(01) 1.021 0.041 25.21 <0.001 
Mu(02) 2.527 0.087 28.94 <0.001 
Mu(03) 4.128 0.145 28.5 <0.001 

SD of random effect                                     
Sigma 1.090 0.070 15.5600 <0.001 
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Table 3. Random Effects Ordered Probit Model: Elasticities 

Variable 
Percentage of Change in Probability of Injury Outcome 

O C B A K 
Helmet use 27.2 10.7 -5.4 -26.1 -51.6 
Age 21-30 years -13.8 -5 3 12.6 23.5 
Age 51-70 years -12.5 -4.4 2.8 11.2 20.4 
Female -29 -11.6 5.6 28.3 56.8 
Alcohol use -45.6 -21.3 6.8 49.3 112.9 
Drug use -64.4 -37.4 3.1 81.6 237.5 
Deer-involved collision 56.9 13.1 -15.1 -40.9 -61.8 
Large truck involved collision -60.9 -34.2 4.2 75.2 208.9 
Single-vehicle collision 30.5 10.5 -6.8 -27 -49.2 
Rear-end collision 94.8 17.9 -25.8 -63 -92.2 
Same-direction sideswipe 
collision 72.6 13.9 -20 -48.3 -69 
Head-on collision -32 -14 5.5 33 70.6 
Head-on or left-turn collision -43.4 -20.2 6.5 46.8 106.5 
Stop controlled intersection 22.2 6.5 -5.5 -17.9 -29.6 
Signalized intersection 42.6 11.1 -10.9 -32.5 -51.3 
Horizontal curve on nonfreeway -15 -5.5 3.2 13.9 26.2 
Speed limit 40-45 mph -23.2 -8.7 4.8 21.7 41.4 
Speed limit 50-55 mph -20.8 -7.2 4.6 18.6 33.9 
Speed limit >55 mph -28.4 -9.8 6.3 25.3 46.1 
Rain or snow 31.9 8.4 -8.2 -24.3 -38.4 
November or December 28.2 7.6 -7.2 -21.9 -35 
Weekend -9.9 -3.4 2.2 8.8 16 

 
 
Crashes that occurred along horizontal curves on nonfreeway roads tended to result in more severe injuries, 
consistent with past studies and probably is a result of restricted sight distances associated with curved road 
segments (20). Higher speed limits also were associated with more severe injury outcomes for 
motorcyclists. Crashes occurring on roads with speeds greater than 55 mph (freeways) resulted in a 46.1% 
increase in the likelihood of a fatal injury, a finding that was not surprising. Crashes occurring in the rain 
or snow tended to result in less severe injuries, consistent with past studies and most likely due to slower 
travel speeds and more cautious riding in poor weather (36). Similarly, crashes occurring in the months of 
November and December tended to result in less severe injuries, most likely due to the winter weather 
conditions Michigan experiences during these months that would result in slower travel speeds and more 
cautious riding. Finally, crashes occurring on a weekend tended to result in slightly more severe injuries 
than crashes occurring on a weekday, maybe because of riskier driving behavior during weekend riding 
than in daily commuting during the standard work week. 
 
Conclusions 
 
This study adds evidence to inform the continuing debate about the efficacy of UHLs. On April 13, 2012, 
the State of Michigan repealed its UHL in lieu of a PHL, which requires helmet use only for inexperienced 
and uninsured riders. After the PHL was enacted, helmet use rates decreased from more than 94% to 
approximately 73% (35). To understand the broader impacts of this helmet use policy, a detailed, 
disaggregate-level study was conducted to assess the degree of injury severity sustained by crash-involved 
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motorcyclists before and after Michigan’s transition from a UHL to a PHL. By controlling for various rider, 
roadway, traffic, and weather characteristics, the results showed helmets to reduce the probability of 
fatalities by more than 50%. Injuries also tended to be less severe in crashes that occurred at intersections, 
at low speeds, and under inclement weather conditions. Conversely, injuries were more severe in high-
speed collisions or when drugs and alcohol were involved in the crash. Female riders, as well as younger 
(age 21 to 30 years) and older (age 51 to 70 years) riders tended to be more susceptible to injury.  
 
Ultimately, the study results provide additional support for UHLs. Detractors of UHLs often posit that riders 
should be free to choose whether to wear a helmet and that safety advocates should focus instead on 
furthering education to encourage helmet use without mandating it by law. Despite evidence to support 
UHLs, a 2012 survey conducted in Florida found the vast majority of riders in favor of the state’s mandatory 
training law but less supportive of a mandatory helmet law (37).  
 
However, sound evidence has been presented to argue that UHLs are necessary to protect individuals from 
their own poor choices (38). A recent analysis found that although other measures could lead to increased 
helmet use rates and fewer injuries, UHLs are the most effective measures for promoting safety and 
mitigating the economic impacts of injuries and fatalities (39). These findings are echoed by a 2010 study 
that suggests legislation may be a more effective and efficient means to increase helmet use than educational 
programs (40).  
 
Helmet use rates in states with UHLs are around 94%, and compliance rates in states without UHLs are 
around 50% (41). Coupled with results from the overwhelming body of evidence from the research 
literature and compelling evidence on the effectiveness of helmets demonstrated in this study, this fact 
suggests that states should carefully consider moving toward UHLs. 
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