
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2017

Flow and transport from a stream to a well in an
unconfined aquifer
Cynthia Louise Maroney
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Environmental Engineering Commons, and the Hydraulic Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Maroney, Cynthia Louise, "Flow and transport from a stream to a well in an unconfined aquifer" (2017). Graduate Theses and
Dissertations. 15237.
https://lib.dr.iastate.edu/etd/15237

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=lib.dr.iastate.edu%2Fetd%2F15237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1087?utm_source=lib.dr.iastate.edu%2Fetd%2F15237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15237?utm_source=lib.dr.iastate.edu%2Fetd%2F15237&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


 
Flow and transport from a stream to a well in an unconfined aquifer 

 
 

by 
 
 

Cynthia Louise Maroney 
 
 
 
 

A dissertation submitted to the graduate faculty 
 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 

 
 

Major:  Civil Engineering (Environmental Engineering) 
 
 

Program of Study Committee: 
Chris Rehmann, Major Professor 

James Rossmanith 
Kristie Franz 

William Simpkins 
Say Kee Ong 

Shankar Subramaniam 
 

 
The student author and the program of study committee are solely responsible for the content 
of this dissertation. The Graduate College will ensure this dissertation is globally accessible 

and will not permit alterations after degree is conferred. 
 
 
 

Iowa State University 
 

Ames, Iowa 
 

2017 
 

Copyright © Cynthia Louise Maroney, 2017. All rights reserved.



ii 
 

 

DEDICATION 

 

This dissertation is dedicated to my children, James and Sarah, and my mother, 

Norma.  



iii 
 

TABLE OF CONTENTS 

 
LIST OF FIGURES ................................................................................................................. vi 

LIST OF TABLES ................................................................................................................. viii 

NOMENCLATURE ................................................................................................................ ix 

ACKNOWLEDGMENTS .................................................................................................... xvii 

ABSTRACT ........................................................................................................................... xix 

CHAPTER 1:  INTRODUCTION ............................................................................................ 1 

1.1 Significance and Problem Definition ......................................................................... 1 

1.2 Objectives ................................................................................................................... 2 

1.3 Dissertation Organization ........................................................................................... 3 

References ............................................................................................................................. 4 

CHAPTER 2:  STREAM DEPLETION RATE FOR A RADIAL COLLECTOR WELL IN 

AN UNCONFINED AQUIFER NEAR A FULLY PENETRATING RIVER ........................ 1 

Abstract ................................................................................................................................. 1 

2.1 Introduction ................................................................................................................ 2 

2.2 Methods ...................................................................................................................... 8 

2.2.1. Model for an unconfined aquifer ........................................................................ 8 

2.2.2. Solution for stream depletion rate ..................................................................... 12 

2.2.3. Solution for the stream depletion rate ............................................................... 14 

2.2.4. Cases without vertical flow ............................................................................... 17 

2.2.5. Parameter values and ranges ............................................................................. 18 

2.3. Results ...................................................................................................................... 19 

2.3.1.  Effect of hydrogeologic parameters .................................................................. 19 

2.3.2.  Effect of well design parameters....................................................................... 22 

 

 

 



iv 
 

2.4 Discussion ................................................................................................................ 26 

2.4.1. Choice of dimensionless parameters ................................................................. 26 

2.4.2. Merits of the present approach .......................................................................... 28 

2.4.3. Implications for designing and operating radial collector wells ....................... 30 

2.5 Conclusion ................................................................................................................ 32 

References ........................................................................................................................... 34 

Supplemental material ........................................................................................................ 38 

CHAPTER 3: FLOW TO A PARTIALLY PENETRATING VERTICAL WELL IN AN 

UNCONFINED AQUIFER NEAR A STREAM ................................................................... 41 

Abstract ............................................................................................................................... 41 

3.1 Introduction .............................................................................................................. 41 

3.2 Methods .................................................................................................................... 47 

3.2.1. Model for an unconfined aquifer ...................................................................... 47 

3.2.2. Solution for stream depletion rate ..................................................................... 50 

3.2.3. Solution for hydraulic head for a partially penetrating well ............................. 52 

3.2.4. Parameter values and ranges ............................................................................. 55 

3.2.5. Finite difference model ..................................................................................... 56 

3.3.  Results .................................................................................................................. 58 

3.3.1. Stream depletion rate ........................................................................................ 58 

3.3.2. Comparison of numerical and analytical solutions ........................................... 60 

3.3.3. Drawdown ......................................................................................................... 61 

3.4.  Discussion ............................................................................................................. 67 

3.4.1. Comparison to previous work ............................................................................... 67 

3.4.2. Analytical versus numerical model ................................................................... 68 

3.4.3. Implications for practice ................................................................................... 69 

3.5  Conclusion ................................................................................................................ 70 

References ........................................................................................................................... 73 



v 
 

CHAPTER 4: TRANSPORT TO A VERTICAL WELL IN AN AQUIFER NEAR A 

STREAM ................................................................................................................................ 77 

Abstract ............................................................................................................................... 77 

4.1 Introduction .............................................................................................................. 77 

4.2 Methods .................................................................................................................... 81 

4.2.1.  Two-dimensional model of the aquifer and stream .......................................... 81 

4.2.2. Dimensional analysis ........................................................................................ 82 

4.2.3. Calculating the breakthrough curve ...................................................................... 83 

4.3 Results ...................................................................................................................... 85 

4.4 Discussion ................................................................................................................ 90 

4.5 Conclusions .............................................................................................................. 92 

References ........................................................................................................................... 94 

CHAPTER 5: GENERAL CONCLUSIONS.......................................................................... 97 

5.1 Summary .................................................................................................................. 97 

5.2 Significant Findings ................................................................................................. 98 

5.3 Future Work ........................................................................................................... 100 

APPENDIX MODEL VARIATIONS .................................................................................. 101 

 

 

 

 

 

  



vi 
 

LIST OF FIGURES 

Figure 2.1  Conceptual model for a radial collector well installed in an anisotropic, 
unconfined aquifer adjacent to a fully penetrating stream: (a) plan view, (b) 
profile view ...........................................................................................................3 

    
Figure 2.2  Effect of streambed conductance coefficient on stream depletion rate: solid  

lines with symbols, current SDR model; dashed lines, Hantush (1965); plain 
solid line, Theis (1941). The anisotropy parameter is κz = 7×10−5. ....................20 

 
Figure 2.3  Effect of anisotropy (i.e., κz = Kz/Kx) on stream depletion rate. .........................21 
 
Figure 2.4  Effect of the ratio γ = Sy/(SsH) on stream depletion rate. ....................................22 
 
Figure 2.5  Effect of lateral configuration on stream depletion rate. ....................................23 
 
Figure 2.6  Effect of normalized lateral length Λ = ℓi/H on stream depletion rate. Lateral 

configuration (a) in Fig. 2.5 is used. ...................................................................24 
 
Figure 2.7  Effect of the aspect ratio ρx = Lx/H on stream depletion rate. The SDR is   

plotted against tD rather than τ because the interpretation is simpler, as  
discussed in section 2.4.1. ...................................................................................25 

 
Figure 2.8  Effect of the ratio ρz = Lz/H on stream depletion rate. The curves are plotted   

for two values of the anisotropy parameter: κz = 0.01 and κz = 0.1. ...................26 
 
Figure 3.1  Conceptual model for a partially penetrating well installed in an anisotropic, 

unconfined aquifer adjacent to a fully penetrating stream. .................................48 
 
Figure 3.2  Effect of degree of penetration of the well screen for a vertical well located      

at the bottom of an unconfined aquifer. ..............................................................59 
 
Figure 3.3  Effect of the well screen location for a vertical well with Λ = 0.1. ....................60 
 
Figure 3.4  Comparison of hydraulic head at 52.5 feet below the initial water table        

(level 11 of the finite-difference model) .............................................................61 
 
Figure 3.5  Comparison of development of drawdown for a vertical well that fully 

penetrates an unconfined aquifer observed at xD = 1, yD = 0, and zD = −0.5 ......62 
 
Figure 3.6  Development of drawdown for wells with z0D = −0.5 predicted at xD = 1 and    

yD = 0 for various reference levels zD .................................................................63 
 



vii 
 

Figure 3.7  Development of drawdown for wells with a degree of penetration of 0.2. a)    
top of screen is at top of initial saturated thickness with zD = 0.1, b) well    
screen centered at center of initial saturated thickness with zD = 0.5, and c)   
base of well screen at the bottom of the aquifer with zD = 0.9. ..........................66 

 
Figure 4.1  Conceptual model for a fully penetrating vertical well installed in an  

unconfined aquifer adjacent to a fully penetrating stream with constant 
contamination in the stream. ...............................................................................81 

 
Figure 4.2  Effect of the streambed conductance coefficient χ on the streamlines for          

κy = 1. The well is at (x, y/Lx) = (1, 0), and the fraction of flow between  
adjacent streamlines is constant ..........................................................................85 

 
Figure 4.3  Arrival of water at the well as a function of Damköhler number for various 

values of streambed conductance coefficient χ with κy = 1. ...............................86 
 
Figure 4.4  Times to reach steady state in the breakthrough curve as a function of 

Damköhler number and streambed conductance coefficient for κy y = 1. The 
time Ts to steady state is defined such that the concentration is 99% of the 
steady state value ................................................................................................87 

 
Figure 4.5  Steady state concentration of contaminant at the well as a function of 

Damköhler number and streambed conductance coefficient for κy = 1 ..............89 
 
Figure 4.6  Dependence of steady state concentration at the well on horizontal      

anisotropy parameter κy and Damköhler number. ...............................................89 
 
Figure A.1  Conceptual model for a slanted well installed in an anisotropic,          

unconfined aquifer adjacent to a fully penetrating stream ................................101 
 
 
  



viii 
 

LIST OF TABLES 

Table 2.1  Dimensionless parameters affecting the stream depletion rate .............................4 
 
Table 2.2  Survey of solutions for SDR with constant stream stage. Wells are vertical 

unless otherwise noted. BC = boundary condition ...............................................5 
 
Table 2.3  Values for the dimensionless parameters. The example from Moore et al.  

(2012) use Case C at Site 1 .................................................................................18 
 
Table 3.1  References for analytical solutions for saturated flow to wells. .........................43 
 
Table 3.2  Default values for the dimensionless parameters used for simulations for      

SDR and hydraulic head. ....................................................................................56 
 
Table 3.3  Parameters used in the MODFLOW model and dimensionless parameters    

used in the analytical model ................................................................................57 
  



ix 
 

NOMENCLATURE 

Roman symbols 

A ( ) ( ) ( )( )2 2 2 2cos sini y
D De x xξπ ω α ω ω α ω ω α′ ′ ′+ − +  

Am cell area in MODFLOW 

aL longitudinal dispersivity 

aT transverse dispersivity 

b′ thickness of streambed 

C concentration of contaminant 

Cb KxAm/d, MODFLOW conductance 

C0 constant concentration in the river 

Cw concentration of solute at a well 

Da Damköhler number, λRT0 

DL longitudinal diffusion coefficient 

DT transverse diffusion coefficient 

d distance from MODFLOW model boundary to constant head source 

F term resulting from inversion of Fourier transform 

Fi fraction of total flow carried by ith streamline 

Fr F-term with change of variables for a point sink 

F


  F-term for a partially penetrating vertical well 

f̂   hat denotes function in Fourier space 

f   bar denotes function in R-space 



x 
 

f   tilde denotes function in both Fourier and R-space  

H saturated thickness of aquifer 

H(z) Heaviside step function 

h hydraulic head 

ha hydraulic head, MODFLOW 

hb hydraulic head at a general head boundary, MODFLOW 

h   head in both Fourier and R-space 

sh   steady state head in both Fourier and R-space 

0h   time varying term for head in both Fourier and R-space 

nh   nth time varying term for head in both Fourier and R-space 

h


  hydraulic head for a partially penetrating vertical well 

hD 2
xK Hh Qπ  , dimensionless head 

i counter  

K hydraulic conductivity of aquifer 

Kx hydraulic conductivity of the aquifer in the x-direction 

Ky hydraulic conductivity of the aquifer in the y-direction 

Kz hydraulic conductivity of the aquifer in the z-direction 

K′ hydraulic conductivity of streambed 

Lx distance from the stream to the center of a caisson or well 

Lz vertical position of laterals or half way point of vertical well screen 

ℓ length of vertical section of well screen 



xi 
 

ℓi length of the ith lateral of a radial collector well 

ℓT total length of the laterals of a radial collector well 

N number of lateral well screens  

Ns number of streamlines 

n counter 

Pe Péclet number 

p zω κ = cosr φ   

Q well discharge 

Qb flow through general head boundary, MODFLOW 

q y zξ κ κ  = sinr φ   

qs flow through the streambed 

R term resulting from inversion of the R-transform for a radial collector well 

Rc retardation coefficient 

R′ R-term resulting from inversion of the R-transform for a point sink 

Rr R-term with change of variables 

R


  R-term for a partially penetrating vertical well 

r 2 2p q+   

r1 distance of observation point from well (Neuman,1974) 

S storage coefficient 

Ss specific storage 

Sy specific yield 

s drawdown  



xii 
 

sD dimensionless drawdown 

SDR stream depletion rate 

SDRʹ  dimensionless stream depletion rate for a point sink 

SDR′   Fourier and R-transform of stream depletion rate for a point sink 

SDR′   stream depletion rate for a point sink in R-space 

SDR H   stream depletion rate (Hantush, 1965) for a radial collector well 

SDR H′   stream depletion rate (Hantush, 1965)  

SDRT   stream depletion rate (Theis, 1941) for a radial collector well 

SDRT′   stream depletion rate (Theis, 1941) 

SDR s′   steady stream depletion rate for a point sink 

SDR s′    steady stream depletion rate in R-space for a point sink 

T aquifer transmissivity 

Ti travel time of water in ith streamtube 

T0 dimensionless time 2
e xHL Qη   

Ts time to reach steady state 

t duration of pumping 

Dt   ( )2
x sK t S H , dimensionless time 

x horizontal coordinate (perpendicular to the stream) 

Dx   x/H, dimensionless x-coordinate 

x′ x-coordinate of point-sink 



xiii 
 

Dx′   x H′ , dimensionless x-location of point-sink  

0Dx   x-coordinate of center of caisson normalized by H 

y horizontal coordinate (along the stream) 

Dy   y H , dimensionless y-coordinate 

y′ y-coordinate of point-sink 

Dy′   y H′ , dimensionless y-coordinate of point-sink 

z vertical coordinate (positive upward) 

Dz   z H , dimensionless z-coordinate 

z′ z-coordinate of point-sink  

Dz′   z H′ , dimensionless z-coordinate of point-sink  

0Dz   z-coordinate of laterals normalized by H 

Greek symbols 

α ( )xK H K b′ ′−  

β0 solution to ( ) ( )2 2 2
0 0 0tanh z y zβ γ β κ κ ξ ω κ β= − −   

βn solution to ( )2 2 2tan n n z y n zβ γ β κ κ ξ ω β κ= − + +  

γ Sy/S non-dimensional parameter  

δ( ) dirac delta function  

ε ( )2
xQ K H  , flow parameter 

ζ0 root of ( ) ( )2 2
0 0 0tanh z zζ γ ζ κ ω κ ζ= −  



xiv 
 

0ζ


  root of ( )2 2
0 0 0tanh rζ γ ζ ζ= − −  

ζn roots of ( )2 2tan n n z n zζ γ ζ κ ω ζ κ= − +  

nζ


  roots of ( )2 2tan n n nrζ γ ζ ζ= − +  

ηe effective porosity 

θi orientation of ith lateral of a radial collector well 

κy Ky/Kx horizontal anisotropy 

κz Kz/Kx vertical to horizontal anisotropy 

Λ H   ratio of length scale for vertical 

Λi i H  ratio of length scale for the ith lateral of a radial collector well 

ΛT total length of the laterals ℓT normalized by H 

λ rate of decay 

λs ( )2 2
y zω κ ξ κ+   

λ0 2 2 2
0 z yβ κ κ ξ ω− −  

λn 2 2 2
n z yβ κ κ ξ ω+ +  

0µ   2 2
0 zζ κ ω−  

0µ   ( )2 2
0z rκ β− −  

nµ  2 2
n zζ κ ω−  

nµ  ( )2 2
z nrκ β−  

ξ y variable in Fourier space  



xv 
 

ρx xL H , horizontal ratio of length scale for well 

ρz zL H , vertical ratio of length scale for well 

σ variable for integration 

τ ( )2 2
x x s xTt SL K t S L= , dimensionless time parameter 

sΦ   steady state term in hydraulic head for a point sink 

sΦ


  steady state term in hydraulic head for a partially penetrating vertical well 

0Φ   time dependent term in stream depletion rate for a radial collector well 

0′Φ   time dependent term in stream depletion rate for a point sink 

0Φ


  time dependent term in hydraulic head for a partially penetrating vertical well 

nΦ   nth time dependent term in stream depletion rate for a radial collector well 

n′Φ   nth time dependent term in stream depletion rate for a point sink 

nΦ


  nth time dependent term in head for a partially penetrating vertical well 

ϕ ( ) ( )1 1cos sinp r q rφ − −= =    

χ ( )x xK L K b′ ′ , streambed conductance coefficient 

ω x variable in R space 

 

Other notation 

 

GHB general head boundary, MODFLOW 



xvi 
 

HTY Huang, Tsou, Yeh (2012) 

MODFLOW the United States Geological Survey’s three-dimensional finite-difference 
groundwater model 

 
PCG2 preconditioned conjugate gradient 2 solver package 
 
R- transform that is a combination of Fourier sine and cosine transforms  

 

  



xvii 
 

ACKNOWLEDGMENTS 

 I would like to acknowledge and thank the Department of Civil, Construction, and 

Environmental Engineering for the financial support and teaching experiences that allowed 

me to complete the research for this degree and gain valuable experience. 

 My greatest thanks go to my advisor, Dr. Chris Rehmann who always had a tip, trick, 

or other piece of wisdom to keep my research and writing progressing. I learned a 

tremendous amount of academic knowledge along with how to keep going in spite of dead 

ends, lack of knowledge, and other obstacles. My path toward this degree has been a personal 

journey of growth in which Dr. Rehmann has served as a role model, mentor, and friend. 

Special thanks go to Dr. James Rossmanith and his infinite level of patience with my journey 

through the math department. I would also like to thank Dr. Bill Simpkins who also served 

on my master’s committee at the end of the last century and provided practical suggestions 

for the improvement of my research. Finally, I want to acknowledge my other committee 

members Dr. Kristie Franz, Dr. Say Kee Ong, and Dr. Shankar Subramaniam for their 

support. 

 My mother’s pride and belief in me has kept me going when things have felt too 

overwhelming. She has always been there for me through all my tears and joys. My children, 

James and Sarah, provided a unique kind of support by accepting that their mother went to 

school every day like they do. To my children, my pursuit of this degree was an ordinary 

activity for their not so normal mother. They kept my feet on the ground by reminding me 

that there are always meals to prepare, laundry to be washed, school activities to attend, and 

family adventures to be taken.  



xviii 
 

 Special thanks go to my academic family Dr. Jen Jefferson, Lauren Schwab, Ian 

Willard, Rusen Sinir, Zhimin Li, and Yuqi Song. I also want to recognize the other people 

that I have worked in study groups with and other friends from campus including David 

Dziubanski, Dr. David Green, and Dr. Mike Lawrinenko. Additional thanks go to Dr. Beth 

Hartman, Dr. Kaoru Ikuma, Dr. Bob Horton, and Dr. Toby Ewing who have also served as 

mentors for me. 

 Many other people made this journey possible by assisting and supporting me as I 

made major changes to my life including Michael Abele, Vicky Arndt, Leilani McDonald, 

Denise Bachelder, Loretta Eue, Amy Gerhls, Anita White, all the other members of 

WATCH, Brenda Cloyd, Doug Truex, and Dr. Daria Schmidt.  

  



xix 
 

ABSTRACT 

Flow, stream depletion rate (SDR), and transport are evaluated with three analytical 

models for wells installed in a semi-infinite, homogeneous, anisotropic, unconfined aquifer 

near a fully penetrating stream with a streambed with reduced conductivity. The first model, 

presented in Maroney and Rehmann (2017), involves re-evaluating the calculations of Huang 

et al. (2012) for the SDR of a radial collector well. The present solution for SDR has a single 

integral that requires numerical evaluation, while the previous model has five. Analytical 

results show that at steady state the flow through the streambed equals the pumping rate of 

the well. That is, the steady SDR is one, and it does not depend on streambed or aquifer 

properties or the well design. Before the SDR reaches steady state, streambed conductance, 

aquifer anisotropy, and the position of the well relative to the stream affect SDR much more 

than the orientation, length, and depth of the lateral well screens.  

The second model builds on the method developed for SDR for a radial collector 

well. It provides flow and SDR for a partially penetrating vertical well installed in a semi-

infinite, homogeneous, unconfined aquifer adjacent to a stream with a reduced conductivity 

streambed. Like the model for SDR of a radial collector well, the SDR for this case has only 

one improper integral that must be evaluated numerically. Steady drawdown is symmetric 

across the horizontal plane at the center of the aquifer for a well centered in the aquifer. The 

supply of water from the stream decreases hydraulic gradients at the top and bottom of the 

aquifer. The model for a partially penetrating well provides quantitative guidance for 

practical applications. For example, for removing contaminants, a well with small degree of 

penetration should be placed near the level of the contamination, and for dewatering—which 
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aims for maximum drawdown and minimum SDR, the well should be placed as high in the 

aquifer as possible. 

Streamlines from a river to a nearby well are used to compute the concentration of a 

contaminant in a well. Concentration at the stream is constant and transport to the well is 

through advection, retardation, and decay. Both the well and steam fully penetrate the 

aquifer, which has horizontal anisotropy. The stream has a streambed with reduced 

conductivity. As shown by dimensional analysis and supporting arguments, the concentration 

at the well depends on four dimensionless parameters: dimensionless time, a streambed 

conductance coefficient χ, the ratio κy of the horizontal hydraulic conductivities, and the 

Damköhler number, which accounts for advection, retardation, and decay by combining the 

properties of the aquifer, well, and contaminant. For fixed χ and κy, the timing and magnitude 

of the steady state concentration at the well depend only on the Damköhler number. The 

special case of no streambed (χ→∞) yields conservative estimates of the time of first arrival, 

steady state concentration, and (except for low Damköhler number) the time to steady state. 
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CHAPTER 1:  INTRODUCTION 

1.1 Significance and Problem Definition 

 Alluvial aquifers are the primary source of water for supply, agriculture, and industry, 

and in many areas of the United States supplying enough water of acceptable quality is a 

challenge. Over-pumping of wells in an alluvial aquifer can reduce flow in the river and 

water levels in the aquifer. Such reductions along the Republican River have led to an 

interstate dispute between Kansas, Nebraska, and Colorado (Hendee, 2014). The 

interconnection between surface water and groundwater must be recognized for good 

management of water resource systems such as the Republican River and its associated 

aquifer.  

Agricultural runoff is a source of nutrients and pesticides in rivers which require 

removal prior to delivery to the drinking water system. The interconnection between a river 

and its aquifer provides a path for contaminants to flow to wells and enter the drinking water 

system. When the level of nitrates in the Des Moines and Raccoon Rivers is high, nitrates 

that appear in the water produced by the riverbank filtration system increase the cost of water 

treatment substantially (KCCI, 2015).  

 Riverbank filtration (RBF) systems exploit the hydraulic connection between surface 

water and groundwater systems to produce water of good quality. Wells pumping in surficial 

aquifers near streams induce flow from the stream into the groundwater system. The surface 

water is filtered naturally as it flows through the subsurface materials. Straining, chemical 

reactions, sorption, dispersion, diffusion, and decay act to remove bacteria, nutrients, 

pesticides, and other contaminants. Quantifying the quantity and quality of flow from the 
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river to the well helps water managers, producers, and users plan treatment processes and 

manage the regional water system. Stream depletion rate (SDR), or the fraction of the well’s 

flow that comes from the stream, quantifies the relationship between extraction of 

groundwater and flow through the streambed that results from pumping of a well. Water 

users and regulators also use the SDR to predict the quality of the pumped water and to 

determine how pumping influences the water budget (Ray et al., 2002). Although the SDR 

can be used to estimate contaminant concentrations in pumped water, the estimates do not 

account for removal in the aquifer. An approach to predict the quality of water in the well in 

terms of properties of the stream, aquifer, and well is needed. 

1.2 Objectives 

 The objectives of this research are to increase the understanding of the flow and 

transport from rivers to wells by developing several analytical models that can be used to 

evaluate the flow of water to a well in an unconfined aquifer, estimate the contribution of 

streamflow to the well, and predict the concentration of the solute at the well. The non-

dimensional parameters describing aquifer properties, streambed properties, well design and 

transport are evaluated to determine the effect they have on flow to the well or the 

development of stream depletion. 

1) The objective of Chapter 2 is to investigate the SDR for riverbank filtration systems, 

particularly a radial collector well, in unconfined aquifers by re-evaluating the work of 

Huang et al. (2012), evaluating the effects of vertical flow in an aquifer on the SDR, and 

quantifying the effects of dimensionless parameters on the development of SDR. 
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2) The objective of Chapter 3 is to evaluate how flow to a partially penetrating vertical well 

in an unconfined aquifer is affected by a nearby stream and vertical flow in the aquifer 

and how SDR is affected by the amount of penetration and depth of the well screen. 

3) The objective of Chapter 4 is to examine transport from a stream to a nearby well in an 

aquifer and predict the concentration of a contaminant accounting for advection, 

retardation, and decay and the effects of a reduced conductivity streambed. 

1.3 Dissertation Organization 

The following chapters discuss the flow of water and transport of contaminants to 

wells in unconfined aquifers that are bounded on one side by a river. The river is modeled as 

a feature that fully penetrates the aquifer. The SDR for a radial collector well is evaluated in 

Chapter 2 and has been published in the Journal of Hydrology (Maroney and Rehmann, 

2017). A model for flow of water and SDR for a well that partially penetrates an unconfined 

aquifer builds on the research in Chapter 2 and is evaluated in Chapter 3. Chapter 4 presents 

a method to use velocity vectors generated from the flow model developed in Chapter 3 to 

estimate the steady state timing and concentration of a contaminant that travels from a stream 

to a nearby vertical well. The conclusions, significant findings, and suggestions for further 

research follow in Chapter 5.  
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CHAPTER 2:  STREAM DEPLETION RATE FOR A RADIAL COLLECTOR WELL 

IN AN UNCONFINED AQUIFER NEAR A FULLY PENETRATING RIVER 

A paper accepted by the Journal of Hydrology 

Cynthia Maroney and Chris Rehmann 

Abstract 

The stream depletion rate (SDR) is computed for a radial collector well installed in a 

semi-infinite, anisotropic, homogeneous, unconfined aquifer near a fully penetrating stream 

with a streambed with reduced conductivity. For small pumping rates dimensional analysis 

and other arguments allow the SDR to be expressed as a function of eight parameters that 

describe the effect of properties of the aquifer and streambed as well as the configuration and 

placement of the well. The calculations employ some results from Huang et al. (2012, J. 

Hydrol.), who expressed the SDR as a quintuple integral, but by computing four of the 

integrals analytically, the present solution requires less computational effort. Analytical 

calculation shows that the SDR in steady state does not depend on the streambed properties 

(or any other parameters): Given enough time, the flow through the streambed will equal the 

pumping rate of the well. Values of SDR are supported by comparing to previous solutions 

for special cases corresponding to appropriate limiting values of the parameters. Effects of 

the eight dimensionless parameters are studied systematically: The properties of the 

streambed, anisotropy of the aquifer, and the position of the well affect the SDR more 

strongly than the orientation, length, and depth of the laterals. 
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2.1 Introduction 

Wells located in high yielding aquifers next to a water body exploit the natural 

filtration by the soil and blending with groundwater to produce large volumes of water of 

acceptable quality. The quantity and quality of water produced by riverbank filtration 

systems varies because of the dynamic nature of the connection between the surface water 

and groundwater. To estimate the quality of the effluent and evaluate the effect of pumping 

on local and regional water budgets, producers and regulators use the stream depletion rate 

(SDR)  

 SDR sq
Q

=   (2.1) 

or the ratio of the flow qs from the stream and the pumping rate Q of the well. We evaluate 

the effect of several parameters on the SDR for a radial collector well in an unconfined 

aquifer so that radial collector wells can be designed and operated more effectively.  

 Dimensional analysis helps to identify the parameters that control the SDR for a 

radial collector well in a homogeneous, anisotropic, unconfined aquifer (Fig. 2.1). If the 

aquifer is infinitely long in the y-direction, the flow from the stream depends on the rate Q 

and duration t of pumping; the streambed hydraulic conductivity K′ and thickness b′; aquifer 

properties including the saturated thickness H, horizontal hydraulic conductivity Kx (or 

transmissivity T = KxH), vertical hydraulic conductivity Kz, specific yield Sy, and specific 

storage Ss (or storage coefficient S = SsH); distance Lx from the stream to the caisson; and the 

length ℓi, vertical position Lz, and orientation θi of the laterals. The relationship can be 

simplified by realizing that the streambed parameters can be combined in a conductance 

coefficient (Hantush, 1965) and the specific yield, specific storage, and saturated thickness 
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Fig. 2.1. Conceptual model for a radial collector well installed in an anisotropic, unconfined 
aquifer adjacent to a fully penetrating stream: (a) plan view, (b) profile view.  
 
can be combined as the ratio Sy/S. Then, dimensional analysis yields 

( )2 2SDR , , , , , , , , , , , , , , , ,yx i xz z
i i i z x z

x x x x

SK L LK LTt Qf f
SL K b H K K H S H H

θ τ χ θ κ ε γ ρ ρ
 ′

= = Λ ′ 

  (2.2) 

The second equality in (2.2) defines several dimensionless parameters to be considered 

(Table 2.1). 

 Previous work on this problem, which is summarized in Table 2.2, offers insight into 

the effects of the parameters in the dimensional analysis on SDR. For a fully penetrating 

vertical well in an aquifer near a fully penetrating stream, Theis (1941) and Glover and 

Balmer (1954) neglected vertical flow and found the SDR to be   

 1/2

1SDR erfc
2T τ

 ′ =  
 

  (2.3) 

Initially the SDR is small because the flow to the well is from the aquifer. As time passes, or 

τ increases, the cone of depression expands to include the streambed, and SDR increases. At 

large times, SDR approaches one, and the flow to the well is supplied entirely by the stream. 

The change in SDR depends on the diffusion time scale 2 / ( / )xL T S  (Jenkins, 1968); changes 
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Table 2.1. Dimensionless parameters affecting the stream depletion rate. 

Parameter Description 

2
x

Tt
SL

τ =
  

Time normalized by hydraulic diffusion time 

x

x

K L
K b

χ
′

=
′   

Streambed conductance coefficient 

z
z

x

K
K

κ =
  

Anisotropy parameter: ratio of vertical and horizontal 
conductivities 

i
i H

Λ =


  
Dimensionless length of ith lateral 

iθ   Angle between the ith
 lateral and positive x-axis 

2
x

Q
K H

ε =
  

Well strength 

yS
S

γ =
  

Ratio of specific yield and storage coefficient 

x
x

L
H

ρ =
  

Dimensionless distance between stream and caisson 

z
z

L
H

ρ =
  

Dimensionless depth of laterals (defined as positive) 

 

in SDR take longer for greater distances between the well and the stream, less conductive 

aquifers, or aquifers in which more water is released per unit change in head.  

Several models have allowed for a streambed with reduced permeability. For a case 

with negligible vertical flow, the SDR depends on the conductance coefficient 

/x xK L K bχ ′ ′= , which characterizes the flow processes associated with the streambed 

(Hantush, 1965): 

 1/2
1/2 1/2

1 1 1SDR erfc exp erfcx
2 4 2H χτ
τ τ τ

     ′ = − − +     
     

  (2.4) 
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Table 2.2. Survey of solutions for SDR with constant stream stage. Wells are vertical unless 
otherwise noted. BC = boundary condition. 

References  Stream treatment Streambed Dupuit 
assumption? Other features 

Theis (1941) 
Glover and Balmer (1954) Constant head BC None  Yes  

Hantush (1965) Third-type BC Reduced 
permeability Yes  

Hunt (1999) Surface source:  
zero-width 

Reduced 
permeability Yes Surface recharge 

Zlotnik et al. (1999) Surface source: 
finite-width 

Reduced 
permeability Yes Finite width 

aquifer 

Butler et al. (2001) Surface source: 
finite-width 

Reduced 
permeability Yes  

Hunt (2003) Surface source: 
zero-width Aquitard Yes, in 

aquifer 
1D vertical flow in 
top layer 

Zlotnik (2004) Constant head BC  None  Yes, in 
aquifer 

Leakage from 
below, two streams 

Sun and Zhan (2007) Constant head BC Reduced 
permeability Yes Two streams 

Yeh et al. (2008) Constant head BC  None  Yes 
Finite width 
aquifer, two 
streams 

Zlotnik & Tartakovsky 
(2008) 

Surface source: 
zero-width 

Reduced 
permeability Yes 

Finite width 
aquifer, leakage 
from below 

Hunt (2008) Surface source: 
finite-width Aquitard Yes, in 

aquifer 

Finite width 
aquifer, free surface 
aquitard 

Hunt (2009) Surface source: 
zero-width 

Reduced 
permeability Yes Two layer aquifer, 

leakage from above 

Tsou et al. (2010) Constant head BC   Yes Slanted or 
horizontal well 

Ward and Lough (2011) Surface source:  
zero-width 

Reduced 
permeability Yes Two-layer aquifer 

Sedghi et al. (2012) Constant head BC None No Two streams 

Huang et al. (2012) Third-type BC Reduced 
permeability No Radial collector 

well 

Huang et al. (2014) Third-type BC Reduced 
permeability No 

Two streams or 
stream and 
impermeable unit 

Huang et al. (2016a) Third-type BC Reduced 
permeability  No 

Two streams, 
lateral no-flow BC, 
radial collector well 
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where erfcx( ) is the scaled complementary error function, defined as 

( ) ( )2erfcx exp erfc( )z z z= . Small χ, which corresponds for example to a thick streambed 

with low conductivity, leads to smaller SDR. However, for any χ > 0, the SDR approaches 

one given enough time; that is, even for streambeds with small conductivity, all of the flow to 

well will eventually come from the stream. This observation differs from results for a radial 

collector well in an unconfined, anisotropic aquifer with vertical flow, which show that the 

steady-state SDR decreases as Kʹ/Kx decreases (Huang et al., 2012, hereafter HTY). 

However, steady SDR of less than one must be incorrect because a water balance applied to a 

semi-infinite aquifer shows that in steady state all of the well’s flow must come from the 

stream. 

  The temporal evolution of the SDR becomes more complicated when gravity 

drainage supplies the well. Analytical solutions for both a semi-infinite aquifer (HTY) and an 

aquifer bounded by two streams and two no-flow boundaries (Huang et al., 2016a) predict an 

intermediate stage in which delayed yield from the aquifer (Neuman, 1972) maintains 

constant SDR. The unsteady behavior of SDR can be important in practice when times to 

steady state are large. For example, the Theis solution in Eq. (2.3) shows that SDR = 0.99 

when τ = 3910, and the Hantush solution in Eq. (2.4) shows that when streambed 

conductance is included, the time to steady state increases. The result from Eq. (2.3) applied 

to wells near the Cedar River in Iowa (Turco and Buchmiller, 2004) indicates that the time to 

steady state ranges from 1 d for wells close to the river in highly conductive soil to 3100 d 

for wells farther away in less conductive soil. Pumping tests to determine aquifer properties 

typically last less than 3 d (Chin, 2006, p. 744), and the post-construction tests of two radial 
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collector wells near the Des Moines River lasted 3 and 4 d (Moore et al., 2012), while a test 

of a radial collector well in the Tailan River Basin included 16 d of pumping (Appiah-Adjei 

et al., 2012). Therefore, understanding the unsteady behavior of SDR can help in interpreting 

data collected during short-term pumping tests, especially if water quality data are included. 

Previous work allows the effect of several of the other parameters in Eq. (2.2) on 

SDR to be determined in cases with vertical flow. The value of the SDR in the intermediate 

stage depends on anisotropy, or the ratio of vertical and horizontal hydraulic conductivities, 

i.e., κz = Kz/Kx: As κz decreases, gravity drainage decreases, and more flow comes from the 

stream (Huang et al., 2016a). Lateral configuration affects SDR less than anisotropy. Lateral 

configurations that reduce the distance between the well and the stream—either by increasing 

the length of laterals pointed toward the stream or by orienting more laterals toward the 

stream—produce a slightly higher surface water percentage (i.e., SDR) before steady state is 

reached (Moore et al., 2012).    

The last four parameters in Eq. (2.2) have not been studied in detail for flow to radial 

collector wells. As shown in section 2.2.1, the parameter Q/KxH2 determines whether the 

drawdown is large enough for nonlinear effects to be important. The parameter γ = Sy/S 

determines the duration of the intermediate stage with constant drawdown (and presumably 

SDR); as γ increases, the duration of the intermediate stage also increases for a well pumping 

in an infinite unconfined aquifer (Neuman, 1975). The two ratios of length scales 

characterize the location of the well. Locating the well closer to the stream, or reducing ρx = 

Lx/H, increases the fraction of the well’s flow that comes from the stream (Moore et al., 

2012). Under certain conditions locating a radial collector well deeper in the aquifer can 

increase SDR (Huang et al., 2016a).  
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 In this paper the HTY solution is re-evaluated to investigate the causes of differences 

between SDR in aquifers with and without vertical flow and to quantify the effects of the 

parameters from the dimensional analysis more fully. In section 2.2 we modify the Theis 

(1941) and Hantush (1965) solutions for use with a radial collector well and present a more 

efficient calculation of SDR from the HTY solution. We present the SDR as a function of 

various parameters in section 2.3, discuss the results in section 2.4, and list conclusions in 

section 2.5.  

2.2 Methods 

 In this section we present the model of a radial collector well near a stream in an 

unconfined aquifer, the solution for the hydraulic head, the solution for stream depletion rate, 

and Theis and Hantush models for SDR adapted for radial collector wells. The first two 

subsections are similar to the development in HTY except for linearizing the water table 

boundary condition differently and computing roots of transcendental Eqs.s in a simpler and 

more robust way.  

2.2.1. Model for an unconfined aquifer 

The model of a radial collector well in a homogeneous, anisotropic unconfined 

aquifer follows that of HTY. The stage of the fully-penetrating stream is constant, and the 

well discharge Q is uniformly distributed along N lateral well screens. The origin of the 

coordinate system is at the top of the streambed and in line with the well. Then if a point sink 

of strength Q is located at (xʹ, yʹ, zʹ), the hydraulic head h is governed by  

 ( ) ( ) ( )
2 2 2

2 2 2 ' ' 'x y z s
h h h hK K K S Q x x y y z z

x y z t
δ δ δ∂ ∂ ∂ ∂

+ + = + − − −
∂ ∂ ∂ ∂

  (2.5) 
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where Ky is the hydraulic conductivity in the y-direction and δ( ) is the Dirac delta function. 

Before pumping begins at t = 0 and far from the well, there is no drawdown—that is, h = 0 at 

t = 0, as x→∞, and as |y|→∞. Because the unit underlying the aquifer is assumed to be 

impermeable, the vertical flow there is zero: 

 0 ath z H
z

∂
= = −

∂
  (2.6) 

At the interface between the streambed and aquifer, the flow in the aquifer equals the flow 

across the streambed: 

 0 at 0x
h KK h x
x b

′∂
− = =

′∂
  (2.7) 

As the conductivity of the streambed increases or the thickness of the streambed decreases, 

the stream approaches a constant-head boundary, as in the Theis (1941) solution for SDR.   

In general the boundary condition for the water table depends nonlinearly on the head 

gradients (Yeh et al., 2010): 

 
22 2

aty x y z z
h h h h hS K K K K z h
t x y z z

 ∂ ∂ ∂ ∂ ∂   = + + − =    ∂ ∂ ∂ ∂ ∂    
  (2.8) 

HTY assumed that small drawdown would make the nonlinear terms negligible and allow the 

boundary condition to be applied on z = 0, and Huang et al. (2016a) quantified the necessary 

criteria as |h|/H < 0.1 and |∂h/∂x| + |∂h/∂y| < 0.01. Another approach is to express the key 

assumptions in terms of input variables by estimating ratios of terms in Eq. (2.8). Neglecting 

the third term on the right side relative to the fourth on the right side requires 

 
( )

2

2 2

( / ) 1~ 1
/

z

z x

K h z h Q
K h z z H K H

ε
π π

 ∂ ∂ ∂
= = << ∂ ∂ ∂  

  (2.9) 
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in which the scaling for the head [i.e., h ~ Q/(π2KxH)] from HTY has been used. If the first 

and second terms on the right side are comparable to each other, then neglecting them 

requires 

 
( )

2

2 2 2 2

( / ) ~ 1
/

x

z z x z x

K h x Q
K h z K L

ε
π π κ ρ

∂ ∂
= <<

∂ ∂
 (2.10) 

Expanding the last term in Eq. (2.8) in a Taylor series around z = 0 shows that if condition 

(2.9) is satisfied, the boundary condition can be applied at z = 0. If these conditions hold, 

then Eq. (2.8) can be approximated with  

 at 0y z
h hS K z
t z

∂ ∂
= − =

∂ ∂
  (2.11) 

as in HTY. If Sy = 0, the boundary condition becomes a no-flux condition, and the aquifer 

becomes confined. The accuracy of the approximations leading to Eq. (2.11) varies: For the 

base-case example of HTY and a pumping test near the Russian River (Jasperse, 2009), the 

largest neglected terms are about 1% and 3% of the retained terms, respectively, while for a 

pumping test near the Ohio River (Schafer, 2006) and the Case D design of a radial collector 

well near the Des Moines River (Moore et al., 2012), the errors are 10% and 26%, respectively. 

However, conditions (2.9)  and (2.10) are conservative for a radial collector well because 

distributing the total flow Q over the laterals will cause smaller maximum drawdown than for 

a point sink. 

Computing the SDR requires calculating the flow from the stream. Darcy’s law 

applied at the interface of the stream and the aquifer can be integrated over the area of that 

interface. Using the boundary condition in Eq. (2.7) yields 

 
0 0

0
0

s x xH H
x

h Kq K dydz h dydz
x b

∞ ∞

=− −∞ − −∞
=

′∂
= − = −

′∂∫ ∫ ∫ ∫     (2.12) 
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The problem of computing the flow qs can be simplified by integrating the governing Eq. 

(2.5) over spatial coordinates. For example, integrating over y and using the boundary 

conditions for y → ∞ removes one dimension from the problem. In a confined aquifer, 

another dimension can be removed by integrating over z. In an unconfined aquifer, however, 

the boundary condition (2.11) leads to the need for the head at the water table. Therefore, 

instead of integrating the governing Eq., we compute the flow from the stream and the SDR 

by using the solution of HTY for the head.   

 To use the solution of HTY for the head to compute stream depletion rate, we adopt 

the HTY notation regarding dimensionless variables: 

( ) ( )
2

2, , , , , , , , , , ,x x
D D D D D D D D

s

K t K Hx y z x y zx y z x y z t h h
H H H H H H S H Q

π′ ′ ′   ′ ′ ′= = = =   
   

 (2.13)  

The governing Eq. (2.5) becomes 

 ( ) ( ) ( )
2 2 2

2
2 2 2
D D D D

y z D D D D
D D D D

h h h h x x y y z z
x y z t

κ κ π δ δ δ∂ ∂ ∂ ∂ ′ ′ ′+ + = + − − −
∂ ∂ ∂ ∂

  (2.14) 

where κy = Ky/Kx, with hD = 0 at tD = 0, as xD→∞, and as |yD|→∞. The bottom boundary 

condition (2.6) becomes / 0D Dh z∂ ∂ =  at zD = −1, and the top boundary condition (2.11) 

becomes 

 at 0D D
z D

D D

h h z
t z

γ κ∂ ∂
= − =

∂ ∂
  (2.15) 

The boundary condition at the streambed becomes 

 0 at 0D
D D

D

h h x
x

α∂
+ = =

∂
  (2.16) 
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where / /x xK H K bα χ ρ′ ′= − = − , as defined by HTY. The flow from the stream can be 

expressed in dimensionless terms as the stream depletion rate: 

 
0

2 01
SDR

D
D D Dx

h dy dzα
π

∞

=− −∞
′ = ∫ ∫  (2.17) 

as shown by HTY.  

2.2.2. Solution for stream depletion rate 

HTY solved for the head by applying a Laplace transform in time, a Fourier transform in y, 

and an R-transform in x. The Fourier transform pair is 

 
1 1ˆ ˆ( ) ( ) and ( ) ( )
2 2

D Di y i y
D D Df f y e dy f y f e dξ ξξ ξ ξ

π π

∞ ∞ −

−∞ −∞
= =∫ ∫    (2.18) 

The R-transform of a function f(x) is 

 ( ) ( )
( )1/20 2 2

cos sin2( ) ( ) D D
D D

x x
f f x dx

ω ω α ω
ω

π ω α

∞ −
=

+
∫  (2.19)  

and the inverse R-transform is 

 ( ) ( )
( )1/20 2 2

cos sin2( ) ( ) D D
D

x x
f x f d

ω ω α ω
ω ω

π ω α

∞ −
=

+
∫  (2.20) 

 After inverting the Laplace transform, HTY found the Fourier- and R-transform of 

the head (denoted by a tilde) to be  

 0
1

s n
n

h h h h
∞

=

= + + ∑     (2.21) 

The first term on the right side of Eq. (2.21) is the transformed steady-state head distribution: 
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[ ] ( )

[ ] ( )

cosh (1 ) cosh
for 0

sinh
cosh (1 ) cosh

for 1
sinh

s D s D
D D

z s s
s

s D s D
D D

z s s

A z z
z z

h
A z z

z z

λ λ
κ λ λ

λ λ
κ λ λ

′ +
′− ≤ ≤

= 
′+ ′− − ≤ ≤

  (2.22) 

where ( )2 2 /s y zλ ω κ ξ κ= +   and 

 ( ) ( )
2 2

cos sin
D D Di y x x

A e ξ ω ω α ω
π

ω α
′ ′ ′−

=
+

   (2.23) 

The last two terms on the right side of Eq. (2.21) represent the transformed time-varying 

portion of the head. The first of those is defined as  

 
[ ] ( ) ( )

( ) ( )
2

00 0 0 0 0
0

0 0 0 0 0

2 cosh (1 ) cosh sinh
1 2 cosh sinh

xD z D D

z z

A z z z
h eλ ρ τβ β κ β γλ β

λ γ β κ β κ γλ β

′+ − +  =
+ + +  

  (2.24) 

for 0D Dz z′ ≤ ≤  and  

 
[ ] ( ) ( )

( ) ( )
2

00 0 0 0 0
0

0 0 0 0 0

2 cosh (1 ) cosh sinh
1 2 cosh sinh

xD z D D

z z

A z z z
h eλ ρ τβ β κ β γλ β

λ γ β κ β κ γλ β

′ ′+ − +  =
+ + +  

  (2.25) 

for 1 D Dz z′− ≤ ≤ , where 2 2 2
0 0 z yλ β κ κ ξ ω= − −  and β0 is the solution to 

 ( )2 2 2
0 0

0

tanh z y
z

γβ β κ κ ξ ω
κ β

= − − −  (2.26)  

Eq. (2.26) is equivalent to Eq. (29) of HTY, but solving it is simpler because the hyperbolic 

tangent is bounded. The summand of the final term in Eq. (2.21) is given by 

 
[ ] ( ) ( )

( ) ( )
22 cos (1 ) cos sin

1 2 cos sin
n xn D n z n D n n D

n
n n z n z n n

A z z z
h e λ ρ τβ β κ β γλ β

λ γ β κ β κ γλ β
−

′+ +  =
+ + −  

  (2.27) 

for 0D Dz z′ ≤ ≤  and  
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[ ] ( ) ( )

( ) ( )
22 cos (1 ) cos sin

1 2 cos sin
n xn D n z n D n n D

n
n n z n z n n

A z z z
h e λ ρ τβ β κ β γλ β

λ γ β κ β κ γλ β
−

′ ′+ +  =
+ + −  

  (2.28) 

for 1 D Dz z′− ≤ ≤ , where 2 2 2
n n z yλ β κ κ ξ ω= + +  and βn is the solution to 

 ( )2 2 2

tan n z y
n

n z

γ β κ κ ξ ω
β

β κ

+ +
= −  (2.29)  

as presented in HTY.1 To avoid spurious roots—especially for smaller values of γ, we 

obtained βn by solving 

 
2

2 2sin cos y
n n n n

z z

κ ωβ β γ β β ξ
κ κ

 
= − + + 

 
 (2.30)  

HTY computed the head for a point sink by inverting the Fourier- and R-transforms in Eqs. 

(2.22), (2.24), (2.25), (2.27), and (2.28).  

2.2.3.  Solution for the stream depletion rate 

To compute SDR, HTY integrated over the laterals to obtain the head distribution 

caused by pumping from a radial collector well, and then they computed the flow from the 

stream (and thus SDR) using Eq. (2.12). These calculations involve five numerical 

integrations.  Because our focus is the stream depletion rate, we compute as many of the 

integrals as possible analytically. The Fourier transform and R-transform of the SDR in Eq. 

(2.17) is  

 

0

2 1 0
SDR

D
D D Dx

h dy dzα
π

∞

− −∞ =
′ = ∫ ∫   (2.31) 

The integration over yD can be accomplished by using Eq. (2.18) with ξ = 0 because  

                                                 
1Typographical sign errors in the denominators of equations (2.27) and (2.28) were verified with H.D. Yeh (pers. 
comm., 2014) and corrected here.   
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 ( ) ( )ˆ2 0D Df y dy fπ
∞

−∞
=∫  (2.32)   

Using Eq. (2.32), Eq. (2.31) becomes 

 
0

2 1

2SDR D Dh dzα π
π −

′ = ∫   (2.33) 

For the steady SDR, integrating the transformed steady head distribution in Eq. (2.22) 

over zD and using identities for hyperbolic functions yields 

 2 2
0

2SDR s

z s

A

ξ

α π
π κ λ
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Inverting the R-transform with Eq. (2.20), using trigonometric identities, and evaluating the 

result at xD = 0 gives 

( ) ( ) ( ) ( )

( ) ( )

2 2 2 2 20
0

2 20

cos sin cos sin2SDR

2 1 cos sin

1

D

D D D D
s

x

D D

x x x x
d

x x d

ω ω α ω ω ω α ωα ω
π ω ω α ω α

α αω ω ω
π ω α ω

∞

=

∞

′ ′  − −
′ = −   

+ +  

 ′ ′= − − +  
=

∫

∫  (2.36)  

where the final integral was evaluated using methods in sections 10.13-10.15 of Hildebrand 

(1976). Therefore, the stream depletion rate in steady state is 1. That is, all of the water 

pumped by the well—whether it is a point sink or a radial collector well—eventually comes 

from the stream. 
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 For the unsteady terms in the SDR, all but the integral over ω, which results from the 

inverse R-transform, can be computed analytically using steps similar to those for the steady 

term. The integral over yD is again computed using the property in Eq. (2.32). The 

transformed unsteady head distributions in Eqs. (2.24) and (2.25) and Eqs. (2.27) and (2.28) 

are integrated over zD, and identities for hyperbolic and trigonometric functions are used to 

yield the unsteady SDR for a point sink: 

 00
1

2SDR 1 n
n

R dα ω
π

∞∞

=

 ′ ′ ′ ′= + Φ + Φ 
 

∑∫   (2.37) 
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and 2 2
0 0 zµ ζ κ ω= − , 2 2

n n zµ ζ κ ω= + , and ζ0 and ζn are the roots of Eqs. (2.26) and  (2.30), 

respectively, with ξ = 0. If the total flow to the well is distributed evenly over the laterals, 

then the SDR for the radial collector well can be computed by integrating over the laterals. 

Because the laterals are horizontal, ( )0 cosD D ix x σ θ′ = +  and 0D Dz z′ = , where x0D and z0D are 

the x- and z-coordinates of the center of the laterals, normalized by H. Then 

 
0

1

1SDR SDRi
N

iT

dσ
Λ

=

′=
Λ ∑∫   (2.41) 



17 
 

where ΛT is the total length ℓT of the laterals, normalized by H. The result of the integration is 
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and Φ0 and Φn are the same as 0′Φ  and n′Φ  in Eqs. (2.38) and (2.39) except with z0D replacing 

Dz′ . The integral in Eq. (2.42) was evaluated numerically with Matlab’s quadgk function, 

which uses adaptive Gauss-Kronrod quadrature with a maximum of 650 intervals. Matlab 

functions for computing the stream depletion rate with Eq. (2.42) are included in the 

supplementary material. 

2.2.4. Cases without vertical flow 

 To investigate the importance of vertical flow, the SDR for the full model is 

compared to SDR from the Theis (1941) and Hantush (1965) solutions modified for use with 

radial collector wells. In terms of the model described in section 2.1, both solutions 

correspond to the case of γ = 0, and the Theis (1941) solution would also have χ→∞. 

Integrating Eq. (2.3) over the laterals as in Eq. (2.41) gives 
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and integrating Eq. (2.4) over the laterals gives  
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   (2.45) 

Eqs. (2.44) and (2.45)—which we refer to as the Theis and Hantush models, respectively—

provide special cases to be used in interpreting the full solution for SDR for a radial collector 

well. 

2.2.5. Parameter values and ranges 

Unless otherwise noted, the simulations for the following sections use the default values for 

the dimensionless parameters shown in Table 2.3. The radial collector well has three laterals 

equal in length and spacing (Fig. 2.1). The default values of χ, κz, and γ are taken from Table 

1 of Huang et al. (2012), and typical ranges are estimated from previous work. The 

streambed conductance coefficient χ = KʹLx/Kxbʹ can vary over many orders of magnitude 

because of wide variation in hydraulic conductivities of the streambed (Calver, 2001) and 

typical aquifer material (Chin, 2006, Table 6.2); values of χ > 10−4 are considered in the 

analysis. The ratio κz of vertical and horizontal conductivities for glacial outwash and fluvial 

Table 2.3. Values for the dimensionless parameters. The example from Moore et al. (2012) is 
Case C at Site 1. 
 

Parameter Default value Moore et al. (2012) Range considered 
(θ1, θ2, θ3) (0, 2π/3, 4π/3) (π/2, 3π/4, π, 5π/4, 3π/2) See Fig. 1 
Λi 1 4.67 0.5-2 
χ 2 0.12 > 10−4 

κz 0.1 0.2 10−4-100 
γ 300 167 100-103 

ρx 2 2.03 0.5-4 
ρz 0.8 0.75 0.35-0.8 
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deposits can range from 0.01 to 0.5. (Freeze and Cherry, 1979; Todd and Mays, 1980); we 

consider values between 10−4 and 1. Neuman (1972) determined a range of γ of 3 to 1400 

using results from the field study of Prickett (1965); these values are consistent with ranges 

estimated from data in Tables 6.2 and 6.5 in Chin (2006) and estimates of typical saturated 

thicknesses.    

2.3. Results 

2.3.1.  Effect of hydrogeologic parameters 

The streambed conductance coefficient χ affects the SDR much more strongly than the 

orientation of the laterals (Fig. 2.2). In particular, larger χ, which results from more 

conductive or thinner streambeds, leads to larger SDR. For infinite χ the full solution 

approaches the Theis solution in Eq. (2.44). As in the Hantush solution given by Eq. (2.45), 

the increase in SDR from zero occurs later for cases with smaller streambed conductance 

coefficient. Also, with smaller χ the SDR for the full model departs from the Hantush 

solution at a smaller value of SDR. That is, when the resistance from the streambed is larger, 

gravity drainage supplies more of the flow to the well. For a fixed value of κz, the value of 

SDR in the intermediate stage can decrease so much as χ decreases that the curve appears to 

have no intermediate stage. However, comparing the full solution and Hantush solution for χ 

= 10−4 (say) shows that little water from the stream flows to the well during the elastic 

release stage. The SDR eventually reaches one for all non-zero values of χ, as in the Hantush 

model.  

The ratio of the vertical and horizontal conductivities controls the value of the SDR in 

the intermediate stage (Fig. 2.3), while the ratio of specific yield and storage coefficient 
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Fig. 2.2.  Effect of streambed conductance coefficient on stream depletion rate: solid lines 
with symbols, current SDR model; dashed lines, Hantush (1965); plain solid line, Theis 
(1941). The anisotropy parameter is κz = 7×10−5. 
 
controls the duration (Fig. 2.4). For a fixed value of κz = Kz/Kx, the value of the SDR in the 

intermediate stage increases with χ (Fig. 2.2), while for a fixed value of χ, it decreases as κz 

increases (Fig. 2.3). When gravity drainage occurs, a larger vertical conductivity increases 

vertical flow and reduces the fraction of the well’s flow that comes from the stream. For the 

curves in Fig. 2.3 the intermediate stage is apparent, though for κz = 1 SDR ≈ 0 in the 

intermediate stage and for κz = 10−4 the intermediate stage is close to steady state. Huang et 

al. (2016a) noted that larger vertical conductivity (with other parameters fixed) leads the 

SDR to behave as in a confined aquifer and that vertical flow can be neglected. For large κz 

the SDR can be computed with the simpler Hantush model, but the storage  
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 Fig.. 2.3. Effect of anisotropy (i.e., κz = Kz/Kx) on stream depletion rate.  

coefficient S must be taken as the specific yield instead of SsH. The vertical flow is still 

important when κz is large; gravity drainage causes stream depletion to occur later in time.  

The duration of the intermediate stage increases as γ, the ratio of the specific yield 

and storage coefficient, increases (Fig. 2.4). For γ less than O(102), the plateau in the SDR 

curve is not reached, while at γ = 103, it extends over two orders of magnitude in τ. As noted 

in section 2.1, similar behavior is observed for drawdown caused by a well pumping in an 

unconfined aquifer with no stream (Neuman, 1975). When the specific yield is much greater 

than the storage coefficient, the delay between gravity drainage and elastic release increases.  
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Fig. 2.4. Effect of the ratio γ = Sy/(SsH) on stream depletion rate. 

 Also, when the specific yield (and γ) approaches zero, the aquifer behaves as if it were 

confined, as noted in section 2.2.3. 

2.3.2.  Effect of well design parameters 

The results regarding the effect of lateral configuration are similar to those of Moore 

et al. (2012) (Fig. 2.5). The SDR is larger for configurations in which more laterals point  

toward the stream, and beyond a certain time, the effect of the configuration is small. In the 

intermediate stage, SDR for case (b) (streamward laterals) exceeds the SDR for case (a) 

(symmetric laterals) by about 0.05 and SDR for case (c) (landward laterals) by about 0.1. 

Numerical modeling by Moore et al. (2012) of radial collector wells near the Des Moines  
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Fig. 2.5.  Effect of lateral configuration on stream depletion rate.  

River yielded qualitatively similar results: SDR values in their cases that direct laterals 

streamward exceed SDR from a case with symmetrical laterals, as for the curves in Fig. 2.5.  

Longer laterals, measured by an increase in the normalized lateral length Λ = ℓ/H, 

produce only a slight increase in SDR (Fig. 2.6). The effect of Λ is largest during the early 

stages of the SDR’s evolution. Still, even when the laterals are four times longer, the SDR in 

Fig. 2.6 increases by at most 0.05. One might expect a larger increase in SDR when Λ is 

larger because some of the laterals are closer to the stream; however, the effect is offset 

somewhat by distributing the flow to the well over a greater total lateral length. As the 

laterals become shorter and as time and the horizontal scale of the cone of depression 

increase, the SDR of the radial collector well approaches the SDR of a point sink, computed  
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Fig. 2.6. Effect of normalized lateral length Λ = ℓi/H on stream depletion rate. Lateral 
configuration (a) in Fig. 2.5 is used. 
 
with Eq. (2.37). In fact for Λ = 0.5, the SDR is indistinguishable from that of a point sink 

over the entire evolution. 

The stream depletion rate is larger when the caisson is closer to the stream, as 

measured by the aspect ratio ρx = Lx/H (Fig. 2.7). The HTY scaling in Eq. (2.13) and their 

solution show that the horizontal scale of the cone of depression is the aquifer thickness H 

rather than the distance Lx between the caisson and the stream. Therefore, the aspect ratio ρx 

measures relative distance from the stream because an increase in Lx or decrease in H means 

the cone of depression takes longer to reach the stream. As a result, for smaller ρx the total 

flow from the stream is larger, and the initial increase in SDR, the intermediate stage, and 

steady state are reached earlier—that is, at smaller values of tD.   
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Fig. 2.7. Effect of the aspect ratio ρx = Lx/H on stream depletion rate. The SDR is plotted 
against tD rather than τ because the interpretation is simpler, as discussed in section 2.4.1. 
 
 Stream depletion rate is also larger when the laterals are deeper in the aquifer (Fig. 

2.8). The SDR does not depend strongly on ρz = Lz/H before or after the intermediate stage, 

but during the intermediate stage the SDR for ρz = 0.8 is about 0.1 higher than the SDR for ρz 

= 0.35 when κz = 0.1. The increase in flow from the stream results from the larger potential 

gradient of hydraulic head when the laterals are deeper in the aquifer. When κz decreases, the 

SDR in the intermediate stage increases, as in Fig. 2.3, and the effect of the vertical position 

of the laterals becomes larger. The decreased vertical flow not only increases the fraction of 

the well’s flow that come from the stream but also magnifies the differences  

caused by the vertical position. The dependence on lateral depth and vertical hydraulic 
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Fig. 2.8. Effect of the ratio ρz = Lz/H on stream depletion rate. The curves are plotted for two 
values of the anisotropy parameter: κz = 0.01 and κz = 0.1.  
 
conductivity for a semi-infinite aquifer is consistent with the calculations of Huang et al. 

(2016a) for an aquifer bounded by two streams and two no-flow boundaries. The 

implications of these results and others involving the position and configuration of the well 

are discussed in section 2.4.3.  

2.4 Discussion 

2.4.1. Choice of dimensionless parameters 

Even in this idealized model of a radial collector well near a river, understanding 

what affects and controls the stream depletion rate is complicated because the flow from the 

stream depends on thirteen parameters and variables. The dimensional analysis leading to Eq. 
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(2.2) simplifies the problem by showing that for small pumping rates (i.e., ε = Q/KxH2 << 1 

as assumed for this problem) the SDR can be expressed as a function of eight dimensionless 

parameters, and the analysis in section 2.3 evaluates the effect of each parameter on the SDR 

systematically. This large number of parameters and the ability to recast them by combining 

dimensionless groups in different ways leads to some formulations being more informative 

than others.  

 The main factor that influences the choice of dimensionless parameters is the length 

scale of changes in the horizontal direction. For an aquifer bounded by two streams and two 

impermeable boundaries, the length scale is the distance between the caisson and the stream 

(Huang et al., 2014, 2016a). However, as noted in the discussion of Fig. 2.7, for a semi-

infinite aquifer the aquifer thickness H controls the scale of changes in the horizontal 

direction (Huang et al., 2012). The ratio of terms in Eq. (2.7) is related to α = −KʹH/Kxbʹ, and 

the parameter α appears naturally in the HTY solution. In contrast, in the Hantush model for 

a confined aquifer, changes in the horizontal direction occur on the length scale Lx, and the 

parameter χ = KʹLx/Kxbʹ appears in the solution. Therefore, the comparison with the Hantush 

model in Fig. 2.2 focuses on χ. HTY discussed the conductance of the streambed in terms of 

the ratio Kʹ/Kx. Although for a fixed value of ρx = Lx/H any of the three parameters can be 

used to describe the effects of the streambed, by including the thickness of the streambed, the 

parameters α and χ emphasize its importance in determining the streambed’s conductance.  

 The difference in horizontal length scales between the semi-infinite and bounded 

aquifers affects the parameter measuring differences between vertical and horizontal 

hydraulic conductivities. For the semi-infinite aquifer in the present analysis and in HTY, the 
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key parameter measuring the effects of anisotropy is κz = Kz/Kx, while for the bounded 

aquifers of Huang et al. (2014, 2016a), the parameter involves the square of the ratio of 

horizontal and vertical length scales, such as 2 2/z x xK L K H  in our notation. Huang et al. 

(2016a) argued that the horizontal length scale in this parameter should be the smallest 

distance between the stream and the end of a lateral. In any case, the parameter for measuring 

the effect of the vertical-horizontal anisotropy arises naturally by comparing the magnitudes 

of the first and third terms in Eq. (2.5). 

 A similar choice of scales is involved with the dimensionless time. In the scaling and 

solution of HTY the time variable tD = Tt/SH2 arises. However, because the aquifer thickness 

does not appear explicitly in the solutions for confined aquifers, the comparisons to the Theis 

and Hantush models in section 2.3 require the time variable 2/ xTt SLτ = , and for consistency 

τ is used in the discussion of the effects of most of the other parameters. The exception is the 

aspect ratio ρx = Lx/H (Fig. 2.7), for which plotting SDR against tD simplifies the 

interpretation. Although for the cases of Theis (1941) and Hantush (1965) the time scale 

2 / ( / )xL T S  emerges from the one-dimensional diffusion equation governing the flow—

where T/S is the hydraulic diffusivity (Freeze and Cherry, 1979, p. 61), in the current case 

with multi-dimensional flow, the time scale H2/(T/S) is more appropriate.  

2.4.2. Merits of the present approach 

 The expression for stream depletion rate presented here has some advantages over 

previously reported results. The solution in Eq. (2.42) satisfies analytical limits and matches 

the Theis and Hantush models for simpler cases, as shown in Figs. 2.2, 2.3, and 2.5. The present 

solution is much simpler to compute than that of HTY because, as noted in section 2.2, Eq. 
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(2.42) requires one numerical integration, while the original version of HTY requires five: two 

for inverting transforms, two for integrating over the area between the streambed and aquifer, 

and one for accounting for sinks over the length of the laterals. Furthermore, the two integrals 

in the inverse transforms and the integral over y are improper. Therefore, computing SDR with 

the HTY approach requires significant care and computational effort. These demands 

motivated Huang et al. (2016a) to consider a radial collector well in an aquifer bounded by two 

streams and two no-flow boundaries; in that case, the SDR can be expressed in terms of double 

infinite sums, which are simpler to compute accurately than multiple integrals. Huang et al. 

(2016a) note that the solution for the bounded case matches the solution of HTY for small 

time, but after the no-flow boundaries and second stream affect the flow, the two solutions 

diverge. 

  Like all models, the approach here is limited by its assumptions, including the fully 

penetrating, straight stream and homogeneous aquifer and streambed. We followed HTY in 

invoking the assumption that a partially-penetrating stream can be approximated by a fully-

penetrating stream if ρx > 1.5 (Jacob, 1950). Spalding and Khaleel (1991) used a two-

dimensional numerical model to compute the SDR for a vertical well near a partially-

penetrating stream, and they compared to predictions from analytical solutions, including 

those of Theis (1941) and Hantush (1965). Although ignoring disconnection between the 

stream and water table led to only small errors, treating the stream as fully-penetrating 

caused larger errors (e.g., 20% after 58.5 d of pumping) even though the distance from the 

well to the stream was 2.5 times the aquifer thickness. The effect of partial penetration can be 

considered by extending the model of Hunt (1999) for a zero-width stream or the model of 

Butler et al. (2001) for a finite-width stream.   
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 The conditions under which assuming homogeneity is acceptable can be assessed with 

the work of Lackey et al. (2015), who modeled pumping near a sinusoidally meandering 

stream with heterogeneous conductivity in the streambed—high Kʹ in the pools (bends) and 

low Kʹ in the riffles (straight sections) during high flow and the opposite during low flow. 

The heterogeneity of the streambed conductivity is less important in three conditions. If the 

distance Lx between the well and the stream is larger than the scale of the heterogeneity (e.g., 

the wavelength of the meandering), then differences in Kʹ are averaged over the cone of 

depression in the stream depletion process. Also, Lackey et al. (2015) defined ranges over 

which the SDR was sensitive to Kʹ; outside those ranges, the conductance can be taken as 

homogeneous. The calculations of Lackey et al. (2015) show that the importance of 

heterogeneity depends on the target value of SDR; as it decreases—for example, because of 

stricter limitations on stream depletion, differences between cases with homogeneous 

streambeds and cases with heterogeneous streambeds become smaller.    

2.4.3. Implications for designing and operating radial collector wells 

 As noted in section 2.4.2, one of the benefits of a systematic analysis of the 

parameters affecting stream depletion rate is that it can help in the design and operation of a 

radial collector well. Parameters affecting SDR the most include properties of the streambed, 

anisotropy of the aquifer, and the position of the well, which are represented by χ (or α), κz, 

and ρx and shown in Figs. 2.2, 2.3, and 2.7, respectively. However, once a site is chosen, the 

properties of the aquifer and streambed are set. Of the parameters remaining for design—the 

horizontal position of the well and the lateral orientation, length, and depth, which are 

represented by ρx, θi, Λi, and ρz and examined in Figs. 2.7, 2.5, 2.6, and 2.8, respectively—
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the horizontal position affects the SDR more strongly than the others during unsteady 

conditions. 

 Our analysis focuses on the effect of the parameters on stream depletion rate, but 

other considerations will also affect the choice of values. Orienting the laterals toward the 

stream increases the SDR (Fig. 2.5), but the orientation and the length of the laterals can be 

constrained by subsurface obstacles such as foundations of structures or boulders and other 

geologic features. Although Moore et al. (2012) stated that increasing the lateral length 

would reduce hydraulic interference between laterals, calculations with Eq. (2.42) show the 

SDR to increase only slightly with longer laterals at times before steady state (Fig. 2.6). Still, 

the reduced velocity into longer laterals will reduce clogging and required maintenance. The 

depth dependence of the equivalent 2D entry resistance computed by Haitjema et al. (2010) 

suggests placing the laterals at mid-depth (Moore et al., 2012). Because raising the laterals 

increased the head in the caisson by only a small amount, Moore et al. (2012) recommended 

choosing the lateral elevation to allow sufficient suction head and efficient construction. Our 

calculations for a homogeneous aquifer indicate that an increased lateral depth increases SDR 

during unsteady conditions (Fig. 2.8).   

Given enough time, a steady state will be reached in which all of the water to the well 

comes from the stream. The time to steady state, which is proportional to 2 /xSL T , decreases 

for smaller distances between the caisson and the stream and for more conductive soils, 

which have larger transmissivities and smaller storage coefficients. In practice the times to 

reach steady state can be quite large; in particular, by causing the intermediate stage with 

constant SDR, vertical flow increases the time to steady state, as illustrated in Fig. 2.2. For 

example, using the conditions at Site 1 in Moore et al. (2012) in the simpler SDR models 
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yields times for SDR to reach 95% and 99% of 0.03 d and 0.8 d for the Theis model and 11d 

and 293 d for the Hantush model. The full model gives times that are orders of magnitude 

larger: 1900 d for SDR = 0.95 and 49,000 d for SDR = 0.99. For cases in which steady state 

occurs after a long time, the intermediate stage becomes more important. As shown in Fig. 

2.4, for large γ the intermediate stage can last long enough that it acts as a quasi-steady state. 

In such a case the value of the vertical hydraulic conductivity (or more precisely, the ratio κz) 

is important because it sets the value of the SDR in the intermediate stage (Fig. 3).  

2.5 Conclusion 

The stream depletion rate for a radial collector well pumping in a homogeneous 

anisotropic unconfined aquifer near a fully penetrating stream with a low-conductivity 

streambed was recomputed using the solution of Huang et al. (2012). Dimensional analysis 

and other arguments showed that for small pumping rates (i.e., ε = Q/KxH2 << 1 as assumed 

for this problem) the SDR can be expressed as a function of eight dimensionless parameters. 

The effects of these parameters were examined systematically using comparisons with two 

simpler cases derived from the solutions of Theis (1941) and Hantush (1965). Key 

conclusions are as follows: 

1. While the HTY solution requires five numerical integrations to compute SDR, Eq. 

(2.42) requires only one. The present solution avoids much of the computational cost 

and challenges related to computing the integrals accurately. 

2. Quantitative values of SDR computed with Eq. (2.42) match the Hantush model for 

appropriate limiting values of the parameters. In particular, in steady state the SDR is 

one—that is, the flow through the streambed is equal to the pumping rate of the well. 
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3. At a given time before steady state, SDR is smaller for smaller streambed 

conductance coefficient χ = K′Lx/Kxb′. Either χ or α = −K′H/Kxb′, defined by HTY, 

can be used to describe the conductance of the streambed. These two parameters are 

better than the ratio K′/Kx because they include the thickness b′ of the streambed.   

4. The value of SDR in the intermediate stage of the evolution decreases as κz = Kz/Kx 

increases, and the duration of the intermediate stage increases as γ = Sy/SsH increases. 

5. The properties of the streambed, anisotropy of the aquifer, and distance between the 

well and the stream affect the SDR more strongly than the lateral orientation, length, 

and depth of the laterals. However, for a selected site, properties of the aquifer and 

streambed are set, and the other parameters are left for design of the well. Increasing 

the length and depth of the laterals, reducing the distance between the caisson and the 

stream, or orienting more laterals toward the stream increases the SDR during 

unsteady conditions. 
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Supplemental material 

SDR = compute_SDR(1E4,0.1,7E-5,[1,1,1],[0,2*pi/3,4*pi/3],300,2,-0.8) 
 
function SDR = compute_SDR(tau,chi,kappaz,Lambda,theta,gam,rhox,rhoz) 
%  COMPUTE_SDR   Compute the stream depletion rate for a radial collector 
well 
%   
%  Cynthia Maroney and Chris Rehmann 
  
%  Set constants 
  
   Nt      = 20;                      %  Number of terms to sum for PhiN 
  
%  Define variables from the main dimensionless variables in Table 1 
  
   N       = length(Lambda);          %  Number of laterals   
   alpha   = -chi/rhox;               %  Alternate form of streambed 
conductance coefficient 
   LambdaT = sum(Lambda);             %  Total length of laterals 
normalized by aquifer thickness 
   x0D     = rhox;                    %  Dimensionless distance from 
stream to caisson 
   z0D     = -rhoz;                   %  Dimensionless vertical position 
of laterals 
   tD      = rhox^2*tau;              %  Alternate form of dimensionless 
time 
    
%  Compute integrals in equation (42) 
  
   intPhi0R = NaN*ones(N,1); 
   intPhinR = NaN*ones(N,Nt); 
   for i = 1:N 
      intPhi0R = 
quadgk(@(omega)Phi0R(omega,gam,kappaz,alpha,tD,x0D,z0D,Lambda(i),theta(i))
,0,Inf); 
      for n = 1:Nt 
         intPhinR(i,n) = 
quadgk(@(omega)PhinR(omega,gam,kappaz,alpha,tD,x0D,z0D,Lambda(i),theta(i),
n),0,Inf); 
      end 
   end 
    
%  Compute SDR 
  
 SDR = 1 + (2*alpha/(pi*LambdaT))*sum(intPhi0R);   
%     SDR = 1 + (2*alpha/(pi*LambdaT))*sum(sum(intPhinR,2));   
%    SDR = 1 + (2*alpha/(pi*LambdaT))*sum(intPhi0R+sum(intPhinR,2));          
%  Eq. 42 of paper 
        
function intgd = Phi0R(omega,gam,kappaz,alpha,tD,x0D,z0D,Lam,theta) 
% 
%  PHI0R  Product of Phi0 and R  
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% 
%     Cynthia Maroney and Chris Rehmann, 12-27-16 
  
%  Compute zeta0 
  
   zeta0 = NaN*ones(size(omega)); 
   zetap = (-
kappaz+sqrt(kappaz^2+4*gam^2*kappaz*omega.^2))/(2*gam*kappaz);         %  
Initial guesses--see HTY 
   for i = 1:length(omega); 
       zeta0(i) = fzero('fzeta0',zetap(i)+1e-9,[],omega(i),kappaz,gam); 
   end 
   zeta0 = abs(zeta0);                                                               
%    [omega',zeta0'] 
%  Compute integrand 
  
   mu0   = zeta0.^2*kappaz-omega.^2 
%    [omega',mu0'] 
   Phi0  = 
2*gam*cosh(zeta0*(1+z0D)).*exp(mu0*tD)./(zeta0.*((2*gam+1).*zeta0*kappaz.*
cosh(zeta0)+(gam*mu0+kappaz).*sinh(zeta0))); 
%    [omega',Phi0'] 
    
   R     = -(alpha*(cos(omega*x0D)-
cos(omega*(Lam*cos(theta)+x0D)))+omega.*(sin(omega*x0D)-
sin(omega*(Lam*cos(theta)+x0D)))) ... 
           ./(cos(theta)*(omega.^2+alpha^2)); 
   intgd = Phi0.*R; 
%    zindx = find(om == 0); 
%    if ~isempty(zindx) 
%        intgd(zindx) = (1-alpha*x0D)/alpha^2; 
%    end 
    
   nandx = find(isnan(intgd)); 
   if ~isempty(nandx) 
       intgd(nandx) = 0; 
   end 
 
function intgd = PhinR(omega,gam,kappaz,alpha,tD,x0D,z0D,Lam,theta,n) 
 
%  PHINR  Product of Phin and R  
% 
%     Cynthia Maroney and Chris Rehmann, 12-27-16 
  
%  Compute zetan 
  
   zetan = NaN*ones(size(omega)); 
   zetap = ((2*n-1)*pi/2)*ones(size(omega));                                
%  Initial guesses--see HTY 
   for i = 1:length(omega); 
       zetan(i) = fzero('fzetan',zetap(i)+1e-9,[],omega(i),kappaz,gam); 
   end 
   zetan = abs(zetan);                                                               
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%  Compute integrand 
  
   mun   = zetan.^2*kappaz+omega.^2; 
   Phin  = -2*gam*cos(zetan*(1+z0D)).*exp(-
mun*tD)./(zetan.*((2*gam+1).*zetan*kappaz.*cos(zetan)+(kappaz-
gam*mun).*sin(zetan))); 
   R     = -(alpha*(cos(omega*x0D)-
cos(omega*(Lam*cos(theta)+x0D)))+omega.*(sin(omega*x0D)-
sin(omega*(Lam*cos(theta)+x0D)))) ... 
           ./(cos(theta)*(omega.^2+alpha^2)); 
   intgd = Phin.*R; 
%    zindx = find(om == 0); 
%    if ~isempty(zindx) 
%        intgd(zindx) = (1-alpha*x0D)/alpha^2; 
%    end 
    
   nandx = find(isnan(intgd)); 
   if ~isempty(nandx) 
       intgd(nandx) = 0; 
   end 
 
function y = fzeta0(zeta0,omega,kappaz,gam) 
%  FZETA0   Equation (26) with xi = 0 
%  Use the tanh version because the exp and sinh/cosh versions become 
large 
  
y = zeta0*tanh(zeta0)+gam*(kappaz*zeta0.^2-omega^2)/kappaz; 
 
function y = fzetan(zetan,omega,kappaz,gam) 
  
y = zetan.*sin(zetan)+cos(zetan)*gam.*(zetan.^2+omega.^2/kappaz); 
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CHAPTER 3: FLOW TO A PARTIALLY PENETRATING VERTICAL WELL IN 

AN UNCONFINED AQUIFER NEAR A STREAM 

A paper to be submitted to the Journal of Hydrology 

Cynthia Maroney and Chris Rehmann 

Abstract 

 The flow and stream depletion rate are computed for a vertical well that partially 

penetrates a semi-infinite, anisotropic, homogeneous, unconfined aquifer adjacent to a 

stream. The stream fully penetrates the aquifer and has a streambed with lower conductivity. 

The stream depletion rate (SDR) is developed using the method in Maroney and Rehmann 

(2017, J. Hydrol.) and can be expressed in terms of one improper integral. SDR increases as 

the degree of penetration decreases and as the depth of the well increases.  The steady state 

drawdown is symmetric about the middle of a well located in the center of the aquifer. The 

intermediate stage drawdown for a partially penetrating well located in the middle of the 

aquifer is largest at the center of the well. The stream provides a source of water to reduce 

hydraulic gradients near the top and bottom of the aquifer. The theoretical model provides 

quantitative guidance for managing drawdown and SDR in practical applications, such as 

supplying water, dewatering, and remediating contaminated sites. 

3.1 Introduction 

 Understanding the flow of groundwater and surface water to wells located near a 

stream in an unconfined alluvial aquifer is important for achieving designs for maximizing 

water production, dewatering, or remediating aquifers. The development of drawdown for a 

well located next to a stream in an unconfined aquifer is influenced by vertical and horizontal 
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flow within the aquifer and flow of surface water into the groundwater system that occurs as 

a result of pumping. Vertical wells may be screened only in small portions of the aquifer to 

prevent the water table from moving below the top of the well screen or to focus on 

collecting contaminants, and calculations are needed to determine how the length and 

location of the well screen affect the flow of water to the well. This chapter builds on 

previous work summarized in Table 3.1 for evaluating saturated flow to wells in confined, 

leaky and unconfined aquifers and Table 2 of Maroney and Rehmann (2017) for stream 

depletion rate (SDR), or the fraction of the well’s flow that comes from the stream. Presented 

here is a model for flow to a vertical well adjacent to a stream and with a screen section that 

does not cover the saturated thickness of the unconfined aquifer. In particular, this chapter 

evaluates how flow to a vertical well in an unconfined aquifer is influenced by vertical flow 

in the aquifer, the length of the screen relative to the saturated thickness of the aquifer, and 

the presence of a stream with a reduced permeability streambed. 

The concept of delayed response for flow to a well in an unconfined aquifer was 

extended by Neuman (1972, 1973) in the three-dimensional analytical model for a 

homogeneous, anisotropic, unconfined aquifer that models the water table as a free surface  

allowing for vertical flow. In this model aquifer the vertical wells are screened through the 

entire saturated thickness and have a constant discharge. Flow to a well initially comes from 

release of water from storage by aquifer compression and water expansion, and with time, 

gravity drainage contributes to and eventually dominates the flow producing the delayed 

response observed in time-drawdown curves. Vertical hydraulic conductivity Kz, storativity 

Ss and specific yield Sy control the level and duration of the intermediate stage of the 

evolution of drawdown and the development of SDR. With all other parameters fixed   
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Table 3.1. References for analytical solutions for saturated flow to wells. 

Reference Well Type Aquifer Type Stream Other Features 
Theis (1935) Full vertical Confined None  

Hantush and Jacob 
(1955) 

Full vertical Leaky None Overlying aquitard 

Boulton (1954) Full vertical Unconfined-no 
vertical flow 

None Overlying aquitard 

Hantush and 
Papadopoulos (1962) 

Radial 
collector 
well 

Vertical flow Constant 
head 

 

Hantush (1964) Full vertical Confined None  

Hantush (1965) Full vertical Unconfined-vertical 
flow 

Streambed  

Cooley and Case (1973) Full vertical Leaky None Unsaturated flow 

Neuman (1972, 1973) Full vertical Unconfined-vertical 
flow 

None  

Neuman (1974) Full 
vertical, 
Partial 

Unconfined-vertical 
flow 

None  

Murdoch (1994) Interceptor 
trench 

Confined None  

Hunt (1999) Full vertical Unconfined- no 
vertical flow 

Surface 
source: zero 
width 

 

Kawecki (2000) Horizontal Confined 
Unconfined 

None Approximation of 
vertical flow 

Zhan and Cao (2000) Horizontal Confined None  

Butler et al. (2001) Full vertical Unconfined-no 
vertical flow 

Surface 
source: finite 
width 

Finite width 
aquifer 

Zhan et al. (2001) Horizontal Confined None  

Fox et al. (2002) Full vertical Unconfined-no 
vertical flow 

Surface 
source: finite 
width 

 

Zhan and Zlotnik (2002) Slanted; 
partial 

Unconfined-vertical 
flow 

None  
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Table 3.1. continued 

Reference Well Type Aquifer Type Stream Other Features 
Hunt (2003) Full vertical Leaky Surface 

source: zero 
width 

Stream in aquitard 

Kompani-Zare et al. (2005) Horizontal Confined None  

Sun and Zhan (2006) Horizontal Leaky aquifer Constant head Reservoir 

Hunt (2005) Partially 
penetrating, 
nonvertical  

Leaky top  None  

Hunt (2006) Partially 
penetrating, 
nonvertical 

Unconfined-
vertical flow 

None  

Butler et al. (2007) Full vertical Leaky Surface 
source: 
constant flux 

Underlying 
aquitard 

Sun and Zhan (2007) Full vertical Unconfined-
no vertical 
flow 

Surface 
source: 
constant flux 

Two streams 

Yeh et al. (2008) Full vertical Confined Constant head Wedge, two 
streams 

Hunt (2009) Full vertical Unconfined-
no vertical 
flow 

Surface 
source: zero 
width 

Underlying 
aquitard 

Sedghi, et al.(2009) Full vertical, 
partially 
penetrating 

Confined, 
unconfined 

None Wedge shaped 

Tsou et al. (.2010) Horizontal, 

slanted 

Confined Streambed  

Huang et al, (2012) Radial 
collector 
well 

Unconfined-
vertical flow 

Streambed  

Sedghi, et al. (2012) Full vertical Unconfined-
vertical flow 

None Wedge shaped 
underlying aquitard 

Huang et al. (2016a) Radial 
collector 
well 

Confined, 
unconfined-
vertical flow 

Streambed Two streams 
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drawdown increases as the vertical to horizontal anisotropy κz = Kz/Kx increases. The duration 

of the intermediate stage of drawdown increases as the ratio γ = Sy/S increases and gravity 

drainage is delayed (Neuman, 1975).  As specific yield nears zero, drawdown evolves as for 

a confined aquifer. 

As the degree of penetration decreases, the drawdown takes longer to develop and the 

delayed response occurs when the drawdown is smaller. The effect of partial penetration for a 

well in an unconfined aquifer that is infinite in extent is less further away from the well and 

as the ratio of the vertical to horizontal hydraulic conductivity Kz/Kx increases (Neuman, 

1974). At distances exceeding H(Kx/Kz)1/2 where H is the saturated thickness and times 

greater than 2
110 /yS r T —where Sy is the specific yield, r1 is the distance from the well, and T 

is the transmissivity—the degree of penetration of a well is less important. The Hantush 

(1964) model for unsteady flow to a well in a compressible confined aquifer and Dagan’s 

(1967) solution for a homogeneous, rigid water table aquifer serve as bounds for Neuman’s 

(1974) model for a partially penetrating well. The Hantush (1964) solution is the early time 

bound, while Dagan’s (1967) provides the late time bound.  

Flow to a partially penetrating well in a homogeneous, anisotropic aquifer with 

leakage through an overlying unit matches the Hantush (1964) model for a confined aquifer 

but differs from the same Hantush model with a leaky boundary (Hunt, 2005). For a confined 

aquifer, partial penetration has minimal effect on drawdown about one aquifer thickness 

away from the well. Applying the Zhan and Zlotnik (2002) model for a well in an unconfined 

aquifer shows that drawdown increases when the degree of penetration of the screen 

decreases for a well at the bottom of the aquifer (Hunt, 2006). In a wedge shaped unconfined 
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aquifer decreasing the penetration of the well results in reduced stream depletion from a 

constant head stream boundary (Sedghi et al., 2009). 

The presence of a streambed reduces drawdown and delays SDR (Hantush, 1965),  

Hantush’s (1965) solution builds on a model for a fully penetrating vertical well installed in a 

semi-infinite aquifer near a constant head stream that neglects vertical flow (Theis, 1941; 

Glover and Balmer, 1954) by allowing for a reduced permeability streambed using the 

conductance coefficient /x xK L K bχ ′ ′= , where Lx is the distance between the river and well 

and K′ and b′ are the conductivity and thickness of the streambed. As χ increases, the 

development of SDR is delayed. Streambed properties, aquifer anisotropy, and the position 

of a radial collector well have a greater impact on SDR than the configuration of the collector 

well laterals for a collector well located near a fully penetrating stream in a homogeneous, 

anisotropic, unconfined aquifer with vertical flow (Maroney and Rehmann, 2017). Large 

streambed conductance χ caused by a high streambed conductivity or a thin streambed 

increases SDR, and as χ approaches infinity, the SDR approaches the value predicted by the 

Theis (1941) model. As χ decreases, SDR is reduced and delayed compared to the Hantush 

(1965) model, and gravity drainage contributes more flow to the well. 

Drawdown can develop on both sides of a shallow stream modeled as a surface 

source in unconfined aquifers with no vertical flow (Hunt, 1999). Drawdown in Butler’s 

(2001) solution for a well in a finite aquifer with a shallow stream approaches that of an 

infinite aquifer as modeled by Theis (1935) when the stream conductance parameter is small. 

When the conductance parameter is large, drawdown approaches the Theis (1941) model for 

a fully penetrating stream. Drawdown for a well near a wide stream is reduced compared to 



47 
 

that for a well near a stream of negligible width in an aquifer of semi-infinite extent (Fox et 

al., 2002) 

Previous work has not evaluated the flow to a well that partially penetrates an 

unconfined aquifer and is installed near a stream that fully penetrates the aquifer. This 

chapter investigates how flow to vertical wells with screened intervals that are less than the 

saturated thickness of an unconfined aquifers is influenced by the presence of a stream, the 

vertical flow in the aquifer and how the SDR is affected by the degree of penetration of the 

well screen and 4) the depth of the well screen. A model for hydraulic head for vertical well 

located near a stream in an unconfined aquifer is given in section 3.2. A general solution for 

SDR as a function of dimensionless parameters is also presented in section 3.2. The results 

are presented in section 3.3 with a discussion of the results in section 3.4 and conclusions in 

section 3.5. 

3.2 Methods 

3.2.1. Model for an unconfined aquifer 

The model presented in this chapter is similar to the model for a radial collector well 

(Maroney and Rehmann, 2017). The assumptions are that the well is located near a stream in 

a homogeneous, anisotropic, unconfined aquifer that is infinite in extent along the stream (y-

direction) and away from the stream (x-direction) (Fig. 3.1). Flow into the well is uniform 

along the length of the well screen. The streambed hydraulic conductivity K′ and thickness b′ 

and the aquifer properties of saturated thickness H, horizontal hydraulic conductivity Kx, 

vertical hydraulic conductivity Kz, specific storage Ss, and specific yield Sy are site specific  
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Fig. 3.1. Conceptual model for a partially penetrating well installed in an anisotropic, 
unconfined aquifer adjacent to a fully penetrating stream. 
 
parameters that control the flow from the stream. The rate Q and duration t of pumping along 

with distance from the stream to the center point of the well Lx, the vertical position of the 

center of the well screen Lz, and length of the well screen ℓ are parameters that can be 

designed to suit the goals of the project.  

The streambed parameters combine to create a streambed conductance coefficient 

described by Hantush (1965) and modified by HTY for an unconfined aquifer. The specific 

yield and storage coefficient (S = SsH) form the ratio Sy/S and the ratio of vertical to 

horizontal hydraulic conductivity forms a parameter that reflects the anisotropy of the 

aquifer. The dimensional analysis becomes  

( )2 2SDR , , , , , , , , , , , , , ,y xz z
D z x z

x x x

S LK LTt K H Qf f t
SH K b H K K H S H H

α κ ε γ ρ ρ
 ′

= − = Λ ′ 

   (3.1) 
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where the right-hand side identifies the dimensionless parameters for the model presented in 

this chapter. These dimensionless parameters are the same parameters used by HTY and 

Maroney and Rehmann (2017) except with the horizontal angle θ omitted and are discussed 

in Maroney and Rehmann (2017) for a radial collector well. In this chapter Λ represents the 

ratio of the length of well screen to initial saturated thickness and is referred to as the degree 

of penetration.   

The stream fully penetrates the aquifer and the stream stage is constant. The origin of 

the coordinate system is located at the intersection of the streambed and pre-pumping water 

level with the x-direction in line with the well. For a point sink Q located at (xʹ, yʹ, z’), the 

governing equation for hydraulic head h becomes 

 ( ) ( ) ( )
2 2 2

2 2 2x y z s
h h h hK K K S Q x x y y z z

x y z t
δ δ δ∂ ∂ ∂ ∂ ′ ′ ′+ + = + − − −

∂ ∂ ∂ ∂
  (3.2) 

where δ( ) is the Dirac delta function. There is no drawdown prior to the start of pumping. At 

any time far away from the well, pumping has no effect and h = 0 as x→∞, and as |y|→∞. 

Assuming the unit underlying the aquifer is impermeable, there is no vertical flux through the 

bottom of the aquifer: 

  0 ath z H
z

∂
= = −

∂
  (3.3) 

At the streambed boundary, flow through the streambed equals flow in the aquifer: 

 0 at 0x
h KK h x
x b

′∂
− = =

′∂
 (3.4) 

The water table is represented with a linearized free surface equation:  

 at 0y z
h hS K z
t z

∂ ∂
= − =

∂ ∂
  (3.5) 
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 Maroney and Rehmann (2017) showed that for a point sink Eq. (3.5) holds when 2ε π<<  

and 2 2
z xε π κ ρ<< . They showed that these conditions are satisfied for certain cases of radial 

collector wells. They argued that these conditions are conservative because the well’s flow 

will be distributed over a lateral or well screen. The linearized condition for vertical wells 

will usually apply because pumping rates for vertical wells are typically much smaller than 

for radial collector wells. 

3.2.2. Solution for stream depletion rate 

The SDR for a point sink can be found by applying Darcy’s law across the streambed 

and following the method for hydraulic head described by Huang et al. (2012) and for SDR 

defined by Maroney and Rehmann (2017). In this chapter x0D is the distance from the stream 

to the well and z0D is the vertical coordinate of the center of the well screen, normalized by 

H.  

 00
1

2SDR 1 n
n

R dα ω
π

∞∞

=

 ′ ′ ′ ′= + Φ + Φ 
 

∑∫   (3.6) 

where 
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( ) ( ) ( ) ( )
0

0 0
0

0 0 0 0 0

2 cosh 1
2 1 cosh sinh

Dt
D

z z

z eµγ ζ
ζ γ ζ κ ζ γµ κ ζ

+  ′Φ =
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  (3.7) 
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02 cos 1

2 1 cos sin
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where ω is the R-transform variable, 2 2
0 0 zµ ζ κ ω= − , 2 2

n n zµ ζ κ ω= − , and ζ0 and ζn are the 

roots of 

 ( )2 2
0 0

0

tanh z
z

γζ ζ κ ω
κ ζ

= − −   (3.10) 

 
( )2 2

tan n z
n

n z

γ ζ κ ω
ζ

ζ κ

+
= −   (3.11) 

For flow that is uniform along the screen section of the well, the SDR for a partially 

penetrating vertical well can be found by integrating over the screened portion of the well. 

This gives 

 00
1

21 n
n

SDR Rdα ω
π
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=

 = + Φ + Φ Λ  
∑∫   (3.12) 

where 
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z z
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2 sin 1 sin 1
2 2

2 1 cos sin

n Dt
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e µγ ζ ρ ζ ρ

ζ γ ζ κ ζ κ γµ ζ

−  Λ   Λ    − + + − + −              Φ =
+ + −  

  (3.14) 

 
( ) ( )
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0 0

2 2

cos sinD Dx x
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ω ω ω α ω

ω α

−  =
+

  (3.15) 

The R-inversion was performed numerically with Matlab’s quadgk function using a 

maximum of 650 intervals. 
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3.2.3. Solution for hydraulic head for a partially penetrating well 

 A solution for the hydraulic head for a partially penetrating well near a stream is 

found by beginning with Eqs. (16) and (17) from Huang et al. (2012) solution for the 

hydraulic head for a point sink in an unconfined aquifer near a fully penetrating stream. The 

Huang et al. (2012) notation for dimensionless variables given in Eq. (2.13) is followed as 

described in Maroney and Rehmann (2017). Huang et al (2012) found a solution for head by 

using a Laplace transform in time, a Fourier transform in y, and an R-transform in x. After 

solving the problem in the transformed space, the Laplace transform of the solution was 

inverted analytically and the integrals for the Fourier transform and R-transform were 

inverted numerically. The integrand for this problem is doubly oscillating and difficult to 

integrate numerically. 

 An alternate approach is to apply a change of variables to the problem by setting 

zp ω κ=   and y zq ξ κ κ=   where ξ is the Fourier transform variable. Next change (p,q) 

to (r,ϕ) by setting 2 2r p r= +  where cosp r φ=  and sinq r φ= . The solution for a point 

sink becomes 

 

2
0 00 0

1

2
0 00 0

1
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Db s n r r D D

ny
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π

π

κ φ
κ

κ φ
κ

∞∞

=

∞∞

=
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where 

 ( ) ( )0cos sinz
r D D

y

F y y rκ φ
κ
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  (3.17) 
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  (3.18) 

Evaluating the problem for a vertical well that partially penetrates the aquifer requires 

integrating Equation (3.16) from the top of the well screen zD1 to the bottom of the well zD2.  

Now 

 2
00 0

1

2 z
s n

ny

h FRdrd
πκ φ

κ

∞∞

=

 = Φ + Φ + Φ 
Λ  

∑∫ ∫


   

  (3.19) 
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 ( )2 2
0 0z rµ κ ζ= − −   (3.23) 

 ( )2 2
n z nrµ κ ζ= +   (3.24) 

where 0ζ


 and nζ


 are the roots of 

 ( ) ( )2 2
0 0

0

tanh rγζ ζ
ζ

= − −   (3.25) 

 ( ) ( )2 2tan n n
n

rγζ ζ
ζ

= − +   (3.26) 

The improper integral in Eq. (3.19) was computed numerically using Matlab’s quadgk 

function that applies adaptive Gauss-Kronrod quadrature for a maximum of 2000 intervals. 

The finite limit integral was evaluated with the Matlab trapz function for a maximum of 200 

intervals. 

3.2.4. Parameter values and ranges 

The default values for the calculations for the calculations for SDR and hydraulic 

head in Section 3.3 are given in Table 3.2. The default values used for κy, κz, γ, and α are the 

same as those listed in Table 1 of Huang et al. (2012) with typical ranges described in 

Maroney and Rehmann (2017). The vertical well is assumed to have a screen length that 

extends for 20% of the full depth of the saturated thickness of the aquifer and may be located 

at the base of the of the aquifer for water supply or collection of dense non-aqueous phase 

liquids (DNAPLs), in the center of the saturated thickness to dewater a site, or at the top of 

the zone of saturation to collect contaminants at near the water table. 
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Table 3.2. Default values for the dimensionless parameters used for simulations for SDR and 
hydraulic head.  

Parameter Default value Range considered 
Λ 0.2 0.2 to 1 
α −1 −0.1 to −1 

κz 0.1 10−3, 10−1 
κy 1 1 
γ 300 300 

x0D  2 2 
y0D 0 0 
z0D 0.5 −1 to 0 

 
3.2.5. Finite difference model 

 A finite-difference model was developed for the conceptual model described in 

section 3.1.3 and Fig. 3.1 using the United States Geological Survey (USGS) groundwater 

flow model MODFLOW 2000 (Harbaugh et al., 2000). The dimensional data used in this 

model is similar to the East Well Field located in the alluvial aquifer of the Cedar River near 

Cedar Rapids, Iowa (Turco and Buchmiller, 2004). There is a direct connection between the 

river and the aquifer deposits which are composed of fine- to coarse-grained sands and 

gravels up to 100 feet thick. Siltation has occurred upstream of a low head dam resulting in a 

reduced permeability streambed. The typical well is screened for 20 feet and rests at the 

bottom of the aquifer. The saturated thickness is approximately 65 feet. 

The model has 350 rows, 250 columns, and 13 layers with the horizontal cell sizes 

ranging from 2 feet near the river to 1000 feet at the boundary of the model. The top layer is 

10 feet thick and the other layers are each 5 feet thick. The parameters used for this model 

are uniform unless specified (Table 3.3). A free surface represents the water table. No flow 

passes through the bottom of the model. The well is operated with a constant pumping rate 
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Table 3.3. Parameters used in the MODFLOW model and dimensionless parameters used in 
the analytical model. 

Parameter Value Dimensionless 
parameter 

Value 

Model top elevation, ft 70 Λ 0.31 
Model bottom elevation, ft 0 α −0.38 
Well pumping rate, ft3/d −150,000 κz 0.1 
Horizontal hydraulic conductivity, ft/d 170 γ 130 
Vertical hydraulic conductivity, ft/d 17 x0D 1.92 
Specific storage, ft−1 0.00005 z0D −0.85 
Specific yield 0.42   
Steady state groundwater level, ft 65   
Stream stage, ft 65   
Riverbed hydraulic conductivity, ft/d 1   
Riverbed thickness, ft 1   

 
and is modeled with MODFLOW’s well package. The well is located 125 feet away from the  

river with the pumping flow split between layers 10 through 13. The horizontal hydraulic 

conductivity is uniform and the same in all layers. The vertical to horizontal anisotropy ratio 

is set at 0.1 (Turco and Buchmiller, 2004).  

General head boundaries are used to allow for the aquifer’s presence beyond the 

model area as the analytical model is semi-infinite in extent. MODFLOW’s general head 

boundary (GHB) package calculates the flow Qb through the boundary by Qb = Cb(hb−ha), 

where Cb = KxAm/d is the conductance, hb is the head at the boundary outside of the model 

(distance to constant head), ha is the head in the model, Kx is the horizontal hydraulic 

conductivity of the material between the boundary and the model, Am is the area of the cell, 

and d is the distance to the boundary (Anderson and Woessner, 2002). The hydraulic 

conductivity of the aquifer is used to determine the conductance between the boundary of the 

model and the remote constant head boundary. The distance to the boundary head is set at 

1,000,000 feet to represent the head infinitely far away. The stream is also modeled as a head 
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dependent boundary to represent the fully penetrating stream condition of the analytical 

model presented in this chapter. The GHB package is used and the constant head boundary is 

set at 1 foot outside the model limits. The streambed hydraulic conductivity is used to 

determine the conductance between the river and the boundary cell. 

 The model is solved using the preconditioned conjugate gradient 2 (PCG2) solver 

package. A head change requirement of 0.0001 feet was chosen for closure, which occurred 

after 219 iterations. The final mass balance discrepancy for the entire model was 0.01%. 

Flow out of the model is entirely through the well, and flow into the model is through the 

lateral boundaries with more than 99% entering through the boundary cells representing the 

river and less than 0.01% entering through the GHB cells representing the continuation of the 

aquifer. 

3.3.  Results 

3.3.1. Stream depletion rate 

 Vertical wells with screens that penetrate a larger portion of the saturated thickness of 

the aquifer and have the lowest end located at the base of the aquifer demonstrate a reduction 

in the SDR during the intermediate stage (Fig. 3.2). During the intermediate stage, the SDR 

for a well screened through the entire saturated thickness (Λ = 1) is about 0.15 lower than the 

SDR for a well screened in the lower tenth of the aquifer (Λ = 0.1) when κz = 0.001. The 

present model (Eq. 3.8) matches the Hantush (1965) model for SDR for the special cases 

shown in Fig. 3.2 for a well located at the bottom of the aquifer with the Hantush solution 

providing the analytical limits. The curves follow the Hantush model with S = SsH for small 

time 2
x s xK t S Lτ = and follow the Hantush case with S = Sy for large time. As κz increases  
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Fig. 3.2. Effect of degree of penetration of the well screen for a vertical well located at the 
bottom of an unconfined aquifer.  
 
the degree of penetration for a well located as the base of the aquifer has less impact on the 

development of SDR; however, the SDR is reduced during the intermediate stage and 

approaches the Hantush (1965) model with S = Sy (Fig. 3.2). SDR increases as κz decreases, 

as in the case of a radial collector well (Maroney and Rehmann, 2017), with the SDR 

increasing more for a well with a smaller Λ compared to a well with large Λ. For a well 

screened at the bottom of the aquifer and small Λ the potential gradient of the hydraulic head 

is larger compared to a well with a larger Λ. 

Wells screened near the top of the saturated zone have smaller SDR during the 

intermediate stage (Fig. 3.3).  For a well screened in the top tenth of the saturated zone and κz 

= 0.001 the SDR during the intermediate stage is about 0.52 less than that of a well screened 
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Fig. 3.3. Effect of the well screen location for a vertical well with Λ = 0.1. 
 
in the lowest tenth of the saturated thickness. When Λ is small the deeper well has an 

increased hydraulic gradient compared to a shallow well with the same Λ. When the degree 

of penetration of the well is small—particularly when the well is located at the top of the 

aquifer the intermediate and late stages of SDR develop more slowly, and the curves no 

longer follow the Hantush model with S = Sy at late time (Fig. 3.3).  

3.3.2. Comparison of numerical and analytical solutions 

The numerical model and the analytical model in Eq. (3.19) produce comparable 

hydraulic heads in the vicinity of the well, and the numerical model slightly under-predicts 

hydraulic head at larger values of x (Fig. 3.4). Relative error ranges from less than 1% to 

15% within 125 feet of the well to 61% at 1000 feet from the well. The finite—difference  
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Fig. 3.4. Comparison of hydraulic head at 52.5 feet below the initial water table (level 11 of 
the finite-difference model. 
 
model draws less than 1% of the water through the GHB that represents the infinite extent of 

the aquifer with more than 99% passing through the river boundary. Increasing the resolution 

of the analytical model did not change the solution, while the results from the finite-

difference model continued to change as the resolution increased. 

3.3.3. Drawdown 

For a fully penetrating well, the drawdown develops in three stages as observed by 

Neuman (1972) (Fig. 3.5). Initially water is released because of the compressibility of the 

water and aquifer material. In the intermediate stage gravity drainage delays the spreading of 

the cone of depression. Eventually gravity drainage dominates the flow, and drawdown 

approaches a steady state value. The curves follow the Hantush (1965) model with S = SsH 

during the early time and with S = Sy for large time. Compared to the intermediate stage of  
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Fig. 3.5. Comparison of development of drawdown for a vertical well that fully penetrates an 
unconfined aquifer observed at xD = 1, yD = 0, and zD = −0.5. 
 
the Neuman (1974), the intermediate stage in the present model for a fully penetrating well 

has less drawdown. 

For a partially penetrating well, the drawdown depends on position of the screen, the 

degree of penetration, and the vertical position of the observation (Fig. 3.6). Steady state 

drawdown for a well centered in the aquifer z0D = −0.5 is symmetric about the observation 

point of zD = −0.5 with drawdown decreasing as the observation point moves away from the 

center of the aquifer with drawdowns for zD = −0.3 and −0.7 similar and zD = −0.1 and −0.9 

similar. At the center of the aquifer the drawdown is smaller for larger Λ as the well has 

more area for flow to enter. At the top and bottom of the aquifer, the opposite occurs with 

smaller drawdown occurring for smaller Λ. For all levels of observation and all degrees of  
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Fig. 3.6. Development of drawdown for wells with z0D = −0.5 predicted at xD = 1 and yD =0 
for various reference levels zD.  

zD =- 0.3H 

zD =- 0.1H 

zD =- 0.5H 
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Fig. 3.6. continued. Development of drawdown for wells with z0D = −0.5 predicted at xD = 1 
and yD = 0 for various reference levels zD. 
 
Penetration, steady state occurs near the same tD. The Hantush (1965) model predicts just one 

value for steady state regardless of the observation level, while the drawdown predicted by 

the Neuman (1974) model continues to increase because the aquifer is infinite in extent. The 

differences between the steady values of drawdown in the present model and the Hantush 

model increase as Λ decreases. 

The evolution of unsteady drawdown does not have the symmetry of the steady state 

drawdown (Fig. 3.6). For a partially penetrating well centered in the aquifer, drawdown is  

zD = -0.7H 

zD =- 0.9H 
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largest at the middle of the screen (Fig. 3.6c). The drawdown during the intermediate stage 

develops sooner and is larger when Λ is smaller. The drawdown curves are closer to the 

Hantush condition as compared to those in Fig. 3.6c. Near the bottom of the aquifer 

drawdown in the intermediate stage is larger for the fully penetrating well but is smaller for 

Λ = 0.2 (Fig. 3.6e). At a higher level in the aquifer water the drawdown during the 

intermediate stage is smaller than at the center of the aquifer (Fig. 3.6b). Drawdowns during 

the intermediate stage for all values of Λ are small and grouped together. Drawdown at 

observation levels near the top of the aquifer are smallest compared to the Hantush curve 

(Fig. 3.6a). When Λ = 0.2 and the screen is centered in the aquifer, the dimensionless 

drawdown is lower during the intermediate stage when a stream is present compared to 

Neuman’s (1974) model for an equivalent well (Fig. 3.6). 

Drawdown is largest for wells screened in the center of the saturated thickness and 

smaller for wells screened near the top and bottom (Fig. 3.7). The drawdowns for screens 

near the top (z0D = −0.1, Fig. 3.7a) and bottom (z0D = −0.9, Fig. 3.7c) are nearly identical and 

about half of the drawdown for a well screened in the center (z0D = −0.5, Fig. 3.7b). The 

drawdown for a well in the center exceeds the drawdown predicted by the Hantush model at 

steady state, while the drawdown for the other cases is always much less than the Hantush 

prediction. The drawdown for a well near a river contrasts sharply with the drawdown for a 

well in an infinite aquifer (Neuman, 1974). For wells screened at the top or in the center 

(Fig.s 3.7a, b), the drawdown for a well near a river is equal to or slightly less than the 

drawdown predicted by the Neuman model. However, for a well screened near the bottom  
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Fig. 3.7. Development of drawdown for wells with a degree of penetration of 0.2. a) top of 
screen is at top of initial saturated thickness with zD = 0.1, b) well screen centered at center of 
initial saturated thickness with zD = 0.5, and c) base of well screen at the bottom of the 
aquifer with zD = 0.9.  

c) 

b) 

a) 
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(Fig. 3.7c), the drawdown for a well near a river is much less than that predicted by the 

Neuman model. 

3.4.  Discussion 

3.4.1. Comparison to previous work  

The development of the SDR takes longer for a well with small penetration in the 

same aquifer than for a well that fully penetrates the saturated zone as is described with the 

Hantush (1965) model with the condition of S = Sy (Fig. 3.3). This phenomenon was noted by 

Neuman (1974) when comparing the hydraulic head for a partially penetrating well in an 

unconfined aquifer with the Theis (1935) model using the Sy for gravity drainage. Release of 

water from storage in the aquifer during the early stage delays the early time development of 

drawdown. As S/Sy becomes small, the early time period of drawdown decreases. When the 

degree of penetration of the well is small, the elastic release occurs longer, and the drawdown 

increases during the intermediate and late stages of flow. This translates to the evolution of 

SDR. During the early stages when release of water from storage is larger less flow comes 

from the stream delaying the SDR. This effect becomes more pronounced when z0D is small 

(i.e., the well is shallow).  

Drawdown for a well centered in the aquifer is greatest at the center of the well 

decreasing above and below the well (Fig. 3.6) indicating that vertical flow occurs from both 

above and below the center of the well. Drawdown in the intermediate stage is less than the 

Hantush (1965) model for the condition of S = SsH also demonstrating the presence of 

vertical flow. At the center of the well with Λ = 0.2 (Fig. 3.6c) the present model is similar to 

the Neuman (1974) model during the intermediate stage; however, the drawdown for the 
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present model is much less near the top of the aquifer (Fig. 3.7a) due to the contribution of 

flow from the river. Deeper in the aquifer the present model has a larger drawdown than the 

Neuman (1974) model; however, the gradient between the center (Fig. 3.6c) and bottom (Fig. 

3.6e) of the aquifer is smaller compared to the Neuman (1974) model. Water from the river 

contributing to flow to the well results in reduced hydraulic gradient from below the center of 

the well. 

Flow from the river provides a source of water to maintain gravity drainage for a well 

with small Λ located at the bottom of the aquifer. The entire saturated thickness of the 

aquifer drains toward a well at the bottom of the aquifer. The small drawdown during the 

intermediate stage for the present model compared to the Neuman (1974) model and during 

steady state compared to the Hantush (1965) model shows the river is contributing flow to 

the well through gravity drainage (Fig. 3.7c). Flow from the river through upward flow from 

below the well regulates the evolution of the drawdown when Λ is small and the well is 

located at the top of the aquifer (Fig. 3.7a). For the case of Λ = 0.2 and the well at the top of 

the aquifer the drawdown during the intermediate stage is close to the Neuman (1974) case 

and much smaller than the Hantush (1965) model indicating that vertical flow in the aquifer 

has a large influence on the development of drawdown. The well receives water through 

vertical flow from below the well, and this flow is maintained by the river.  

3.4.2. Analytical versus numerical model 

Both the analytical and finite-difference models presented in the chapter require 

discretization of a semi-infinite domain. While the solution for head of Huang et al. (2012) 

requires evaluating two improper integrals to invert Fourier and R-transforms, switching to 

polar coordinates allows one integral to be computed over a finite domain. Still, Eq. (3.12) 
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for SDR and Eq. (3.19) for hydraulic head each require one numerical evaluation of an 

improper integral. Although the integrands are highly oscillating, adaptive Gauss-Kronrod 

quadrature allows them to be evaluated reliably. 

The finite-difference representation in the MODFLOW model is also based on a 

choice of a limited model area. Consideration of a larger finite domain can be addressed with 

the use of irregular grids and telescopic mesh refinement where a coarse grid models the 

regional problem which is used to define the boundaries of the smaller domain system 

(Anderson and Woessner, 2002). A finite-difference model with a large number of nodes 

requires more computer storage and computational requirements; however, accuracy is 

improved. The semi-infinite domain of the present model requires the choice of a large area 

to establish appropriate boundaries and thus a large number of nodes. The data for the present 

model composed of 350 rows, 250 columns, and 14 layer requires a large amount of 

computer storage, and the resulting heads continued to change as the grid was refined. The 

storage requirement for the analytical model is much less than the space utilized for the 

finite-difference model; however, the analytical model requires a greater computational time 

to operate for an equivalent number of nodes.  

3.4.3. Implications for practice 

Drawdown data from aquifer tests can be used with the flow model in Eq. (3.19) to 

determine vertical and horizontal hydraulic conductivities, storativity, specific yield, and 

streambed properties for partially penetrating wells located near a stream in an unconfined 

aquifer of semi-infinite extent as described by Eq. (3.2). Values of α, γ, and χ can be adjusted 

in Eq. (3.19) to match the drawdown versus time plot from the aquifer test. Increasing χ 
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shifts the curve earlier in time; increasing κz decreases the drawdown during the intermediate 

stage; and increasing γ increases the duration of the intermediate stage. 

A well with a small degree of penetration located at the bottom of the aquifer has a 

small drawdown and receives more flow from the river, which is an advantage for water 

supply when river bank filtration is desired. The same well is suited for collection of 

contamination such as DNAPLs or other contaminants concentrated at the bottom of the 

aquifer; however, flow from the river will blend with the groundwater. When the degree of 

penetration is increased and the base of the well is at the bottom of the aquifer, SDR and 

drawdown decrease along with the average flux in the well. Small drawdown and reduced 

SDR would aid the collection of a contaminant floating on top or near the water table. A well 

with small Λ located near the top of the aquifer will meet these requirements. Dewatering 

wells, which aim to maximize drawdown and minimize SDR, should be placed as high up in 

the aquifer as possible to reduce SDR but still extend below the required depth of drawdown. 

3.5  Conclusion 

 The Huang et al. (2012) solution for flow to a point sink was modified and used to 

develop a model for flow to a partially penetrating well near a fully penetrating stream with a 

reduced permeability streambed in a homogeneous, anisotropic, unconfined aquifer, The 

point-sink solution for SDR developed by Maroney and Rehmann (2017) was modified for 

use with a vertical well that partially penetrates an unconfined aquifer and is near a fully-

penetrating stream with a reduced permeability streambed. The effects of the degree of 

penetration of the well screen and location of the well screen in the aquifer were evaluated 
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and compared to the Hantush (1965) model for flow from a stream to a well and for SDR 

along with the Neuman (1974) model for flow to a well in an unconfined aquifer. 

1. The SDR is reduced during the intermediate stage as the degree of penetration Λ = 

ℓ/H decreases or κz = Kz/Kx increases for a well located at the base of the aquifer and 

approaches the Hantush (1965) model for SDR with S = Sy. 

2. For a well with small Λ, the effect from elastic release of water is prolonged as the 

degree of penetration decreases or the well is higher in the aquifer, and SDR is 

delayed beyond the limit of the Hantush (1965) condition for SDR with S = Sy. 

3. The solution in Eq. (3.19) for hydraulic head matches the finite-difference model 

designed for the same aquifer, stream, and well properties with the models matching 

well where the finite-difference cells are small but with greater error where the cells 

are large. 

4. Steady state drawdown is symmetric about the midpoint of the saturated thickness 

decreasing away from the center of the saturated thickness. At the center, drawdown 

in smaller for larger Λ, while at the top and bottom the opposite occurs with smaller 

drawdown for smaller Λ. 

5. Drawdown for a partially penetrating well located in the middle of the saturated 

thickness behaves as it would for an infinite aquifer during the intermediate stage of 

flow. Near the top and bottom of the aquifer drawdowns are smaller due to the source 

of water from the river. 

6. The theoretical model provides quantitative guidance for practical applications. For 

example, for removing contaminants, a well with small Λ should be placed near the 
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level of contamination, and for dewatering—which aims for maximum drawdown 

and minimum SDR, the well should be placed as high in the aquifer as possible.  
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CHAPTER 4: TRANSPORT TO A VERTICAL WELL IN AN AQUIFER NEAR A 

STREAM 

A paper to be submitted to Groundwater 

Cynthia Maroney and Chris Rehmann 

Abstract 

Transport of a contaminant from a stream to a well is computed with a model that 

includes advection, retardation, and decay. The well and the stream both fully penetrate the 

saturated thickness of a homogeneous, anisotropic aquifer, and the stream has a reduced 

conductivity streambed. Dimensional analysis and supporting arguments are used to reduce 

the dependence of the concentration at the well to four dimensionless parameters: 

dimensionless time, a streambed conductance coefficient χ, a horizontal anisotropy 

parameter κy, and the Damköhler number, which compares time scales of advection and 

decay. Concentrations are computed by tracking decay along streamlines calculated for the 

two-dimensional flow field. For fixed χ and κy, the timing and magnitude of the steady state 

concentration at the well depends only on the Damköhler number, which incorporates 

aquifer, well, and contaminant properties. The special case of no streambed (χ→∞) yields 

conservative estimates of the time of first arrival, steady state concentration, and (except for 

small Damköhler number) the time to steady state at the well. 

4.1 Introduction 

Nonpoint source pollution from bacteria, nitrates, or pesticides poses a risk for water 

production in agricultural watersheds with shallow groundwater sources. Nitrate is one of the 

contaminants of concern in the alluvial aquifer system in Iowa. The cost for the Des Moines 
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area to add a nitrate treatment facility was $4.1 million with operating costs of up to $7,000 

per day (Des Moines Water Works, 2015). Riverbank filtration serves as a pretreatment 

process for high capacity water supply wells located near streams and reduces the risk of 

nonpoint source contaminants entering the pumping effluent. Understanding the transport of 

contaminants between a river and wells aids in assessing, managing, and controlling nonpoint 

source contaminants; planning and operating water collection systems that use the hydraulic 

connection between the river and well; and developing regulations to protect connected 

ecosystems and public health. 

Methods to assess of nonpoint source contamination in alluvial aquifers include index 

based methods, statistical methods, and physical process based methods for analyzing 

contaminant transport between streams and wells. Index or overlay methods use soil type, 

surface slope, depth of unsaturated zone, and regional climate along with other properties to 

develop risk maps (Aller et al., 1987). Statistical methods include national regression models 

(Nolan and Hitt, 2006; Lee et al., 2003) and artificial neural networks (Al-Mahallawi et al., 

2012). Physical process based methods involve solving groundwater flow and contaminant 

transport equations either numerically or analytically. Fully three-dimensional transport 

solutions have high—and sometimes prohibitive—costs (Kourakos and Harter, 2014). 

Process based models, such as those created using MODFLOW coupled with MT3DMS 

(Jiang and Somers, 2009; Gallardo et al, 2005), are useful for point source problems where 

site specific information is desired (Kourakos et al., 2012). 

Streamline transport is an alternative to a full three-dimensional transport model 

(Kourakos and Harter, 2014). Kourakos et al. (2012) developed a streamline model for 

contaminant transport referred to as the NonPoint Source Assessment Toolbox (NPSAT) 
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composed of steady state groundwater flow, backward particle tracking, and one-dimensional 

unsteady transport along the streamlines which allows for the effect of nonpoint source 

contaminants to be evaluated. Kourakos et al. (2012) applied NPSAT to an aquifer in an 

irrigated agricultural region and found that time for nitrates to appear in wells is controlled 

by recharge and well pumping rates along with the effective porosity of the aquifer.   

Existing analytical solutions for contaminant transport to wells are primarily for one-

dimensional or uniform flow fields. They include the van Genuchten and Alves (1982) 

solutions for the one-dimensional advection and dispersion equation and the widely used 

Domenico (1987) model with a finite source of contaminant subject to one-dimensional 

groundwater flow, dispersion, and decay. One-dimensional analytical models have even been 

applied to the riverbank filtration problem. By approximating the flow and transport as one-

dimensional, Mustafa et al. (2016) computed the increase in contamination caused by 

increasing the pumping rate or pumping time.  

 Analytical solutions are difficult to achieve in two- and three-dimensions because in 

general flow fields are non-uniform and dispersion coefficients vary (Zhan and Sun, 2007). 

Batu (1996, 1997) developed a three-dimensional model of advection, dispersion, retardation, 

and decay to compute transport from rectangular sources of constant concentration in vertical 

planes normal to the unidirectional flow. The calculations of Taylor and Guha (2017) of 

transport from a point source of contamination in uniform unidirectional flow to a stream 

show that the timing and magnitude of the peak concentration entering the stream depend on 

the Damköhler number, or the ratio of the advection and decay times, and the Péclet number, 

or the ratio of the dispersion and advection times. In particular, the peak concentration can 



80 
 

occur sooner and reach larger values than when only advection, retardation and decay are 

considered (Taylor and Guha, 2017). 

  A few analytical solutions have been developed that include varying dispersion 

coefficients in flow to a well. For confined aquifers Chen et al. (2002) computed radial 

dispersion and transport for flow to a fully penetrating well, and Chen (2010) considered a 

partially penetrating well. Tartakovsky (2000) applied the Dupuit approximation and used 

conformal mapping to obtain a solution for two-dimensional flow to a well. Lai et al. (2016) 

applied a Laplace transform in time and a generalized integral transform for the spatial 

dimension to produce an exact solution for radial advection and dispersion. However, none 

of these solutions include a stream or nonpoint source pollution. 

 This chapter presents a model to produce a breakthrough curve for a contaminant 

drawn from a stream by a nearby fully penetrating well in an unconfined aquifer. The model 

neglects dispersion but accounts for decay, retardation, and advection by the two-

dimensional flow—as well as the effects of a streambed with reduced conductivity on the 

flow. In section 4.2, the model is developed, and dimensional analysis is used to identify the 

key relationships controlling the breakthrough curve. Results for important features of the 

breakthrough curve, including magnitude and timing of steady state concentration, are 

presented in section 4.3 and discussed in section 4.4. Conclusions are summarized in section 

4.5. 
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4.2 Methods 

4.2.1.  Two-dimensional model of the aquifer and stream 

Transport of a decaying contaminant from a stream to a well is computed (Fig. 4.1). 

The stream fully penetrates the aquifer, and it has a streambed with reduced hydraulic 

conductivity Kʹ and thickness of bʹ. The fully penetrating vertical well with constant 

discharge Q uniformly distributed over the screen is installed a distance Lx from the stream. 

The aquifer is homogeneous and anisotropic with hydraulic conductivities Kx and Ky in the x- 

and y-directions, respectively. No contamination exists in the aquifer before time t = 0, and at  

t = 0 a contaminant of constant concentration C0 arrives in the stream. In general, transport 

occurs through advection, dispersion, and decay. 

 

Fig. 4.1. Conceptual model for a fully penetrating vertical well installed in an unconfined 
aquifer adjacent to a fully penetrating stream with constant contamination in the stream (plan 
view). 
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4.2.2. Dimensional analysis 

 Dimensional analysis helps to identify the key parameters that affect Cw, the 

concentration of the contaminant reaching the well. Along with the time t, saturated thickness 

H of the aquifer, streambed properties, and concentration in the river, Cw depends on 

parameters related to decay (the decay rate λ of the contaminant), advection (hydraulic 

conductivities, the pumping rate, distance from the stream to the well, effective porosity ηe, 

and retardation coefficient Rc), and dispersion (the linear and transverse hydrodynamic 

dispersion coefficients DL and DT, respectively):  

 ( )0, , , , , , , , , , , , ,w x y x e c L TC f t H K b C K K Q L R D Dλ η′ ′=    (4.1) 

The large number of parameters can be reduced with several observations. The pumping rate, 

saturated thickness, and porosity should appear only in the average linear velocity—that is, in 

the form Q/ηeHLx. The governing equation for the contaminant concentration shows that only 

product of the decay rate and retardation coefficient—not the individual parameters—is 

important, and the solution of Maroney and Rehmann (2017) suggests that the effects of 

aquifer conductivities and streambed parameters can be expressed with the parameters κy = 

Ky/Kx and /x xK L K bχ ′ ′= . Then dimensional analysis gives 

 0
0 0 0

, , , , , , , , , ,w T T
c y y

L L L

C a at L tf R T f Da Pe
C T a a T a

λ χ κ χ κ
   

= =   
   

  (4.2) 

where 2
0 e xT HL Qη= is a travel time. The ratio of the advection time to reaction time is 

known as the Damköhler number Da= λRcT0; the ratio of advection time to dispersion time is 

the Péclet number Pe; and the ratio of transverse to longitudinal dispersion coefficients 

simplifies to the ratio of transverse to longitudinal dispersivities aT/aL.  
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To simplify the problem further, dispersion is neglected, and only the effects of 

advection and decay are considered. Dispersion occurs through mechanical processes such as 

spreading from the center of mass of the contaminant caused by velocity gradients in the 

pores and dispersion along preferred flow pathways; the latter produces the scale effect of 

increasing dispersivity as the area of measurement increases. Schulze-Makuch (2005) 

quantified the relationship of flow scale Lf to longitudinal dispersivity as m
L fa cL=  where Lf 

and aL are in meters, c is a property of the geologic material and m is a scaling exponent 

which ranges from 0.40 to 0.94 for geologic material. Neglecting dispersion is justified when 

Pe >> 1, or dispersion is small relative to advection. For the flow paths of Lx = 5 m and Lx = 

200 m, the corresponding aL are 0.35 m and 6.21 m for Pe = 14 and Pe = 32, respectively. 

Thus longitudinal dispersion is small related to advection and can be neglected. Because 

longitudinal dispersivity is 5 to 20 times larger than the transverse dispersivity (Charbeneau, 

2000), transverse dispersion can be neglected also, and Equation (4.2) shows that the 

concentration at the well depends on four dimensionless parameters: dimensionless time, the 

Damköhler number, the streambed coefficient, and the ratio κy.   

4.2.3. Calculating the breakthrough curve 

 Breakthrough curves for contaminants entering a well were developed using an 

approach that accounts for advection and decay (Charbeneau 2000, section 6.5). Quantifying 

advection requires computing the average linear velocity 

 andx y
e e

K h K hv v
x yη η

∂ ∂
= − = −

∂ ∂ 

  (4.3)  

Average linear velocities were computed using a special case of Eqs. (16) and (17) of Huang 

et al. (2012). For the flow, stream, and well described in section 4.2.1, the velocities are 
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 (4.4) 

For most of the aquifer, the integrals in Eq. (4.4) were evaluated using adaptive Gauss-

Kronrod quadrature. When y = yʹ, however, the lack of exponential decay in the integrand for 

vℓx makes numerical integration difficult. Instead the head was computed in part with 

adaptive quadrature and in part by expressing integrals in terms of the Meijer G function; 

then the average linear velocities were computed with finite differences and Darcy’s law.  

The decay of the contaminant along streamlines was computed, and the breakthrough 

curve was constructed. Streamlines were generated from the velocity field using Matlab’s 

streamline function, and average linear velocities interpolated along the streamline were used 

to estimate the travel time of the water. By the method of characteristics (Charbeneau 2000, 

p. 326), the concentration of contaminant arriving at the well in the ith streamtube is 

C0exp(−λRcTi), where Ti is the travel time of water in the streamtube. The contamination 

arriving in each streamtube is combined in time using a discrete form of a convolution 

integral (Charbeneau 2000, p. 327) to produce the breakthrough curve:   

 ( ) ( )0
1

s
c i

N
R T

w c i i
i

C t C H t R T e Fλ−

=

= − ∆∑   (4.5) 

where Ns is the number of streamlines, H(z) is the Heaviside step function, and ΔFi is the 

fraction of the total flow carried by the ith
 streamtube. 
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4.3 Results 

The streamline pattern depends strongly on the streambed conductance coefficient χ 

(Fig. 4.2). Large streambed conductance produces a large flow field from the river that wraps 

around the well at (x, y) = (Lx, 0)—or (x/Lx, y/Lx) = (1, 0), and small streambed conductance 

results in a thin flow field that remains close to the river at x = 0. Although the streamlines 

extend about the same distance in y, the spacing, which reflects a constant fraction of the 

well’s flow, increases as the streambed becomes more conductive. As χ increases, the 

streamlines become nearly perpendicular to the stream, and the river approaches a constant-

head boundary. The drop in hydraulic head across the streambed affects the hydraulic 

Fig. 4.2. Effect of the streambed conductance coefficient χ on the streamlines for κy = 1. The 
well is at (x/Lx, y/Lx) = (1, 0), the river is at x/Lx = 0, and the fraction of flow between 
adjacent streamlines is constant. 
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gradient between the river and well. A small χ, which can result from low streambed 

permeability or large streambed thickness, leads to increased head loss across the streambed 

and reduced head difference between the aquifer side of the streambed and the well. 

Travel time along streamlines is larger for streamlines farther from the well, and 

except for the streamlines far from the well, the travel time increases as the streambed 

conductance decreases (Fig. 4.3). The lengths of the streamlines close to the well (i.e., the 

ones for which the fraction of the total flow is small) do not vary much with χ, and the larger 

times for small χ reflect the smaller gradients in the aquifer. The travel times increase with 

the length of the streamline, and because the streamlines far from the well are much longer 

for large χ than for small χ, the travel time is larger when χ is larger. 

Fig. 4.3. Arrival of water at the well as a function of Damköhler number for various values of 
streambed conductance coefficient χ with κy = 1. 
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The Damköhler number strongly affects the time to reach steady state concentration 

at the well (Fig. 4.4). For a large pumping rate, well close to the river, or small aquifer 

properties of effective porosity or saturated thickness, or a large rate of decay, the Damköhler 

number is large and a small time is required for the flow of the contaminant to accumulate at 

the well. When decay occurs quickly compared to advection (i.e., large Da), streamlines 

farther from the well contribute little contaminant because it has mostly decayed. As the 

Damköhler number decreases, the time required for the flow of contaminant to accumulate to 

steady state takes longer because more of the streamtubes contribute to the concentration at 

the well. The plateaus occur because at low Da almost no decay occurs, and the 

 

Fig. 4.4. Times to reach steady state in the breakthrough curve as a function of Damköhler 
number and streambed conductance coefficient for κy = 1. The time Ts to steady state is 
defined such that the concentration is 99% of the steady state value. 
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concentration at the well equals the concentration in the river. For fixed χ and κy, these 

results hold for any combination of pumping rate, distance between the well and river,  

effective porosity, saturated thickness, and decay rate. The dependence of the time to steady 

on streambed conductance coefficient reflects the results in Fig. 4.3: When Da is large and 

the main contribution comes from the first few streamlines, times are larger for smaller χ. 

However, when Da is small and most of the streamlines contribute to contamination at the 

well, times are larger for larger χ.  

The steady state concentration of the contaminant at the well decreases sharply with 

Damköhler number (Fig. 4.5). For small Damköhler number—that is, when the advection 

time is smaller than the decay time, contaminant reaches the well without much decay, and 

concentrations are close to the concentration in the stream. When the Damköhler number is 

large, the time for flow to accumulate at the well is large compared to the time for decay, and 

concentrations at the well approach zero. For intermediate values of the Damköhler number, 

the concentrations reflect the results in Fig. 4.4: For 10-2 < Da < 1, the times to steady state 

decrease with increasing χ. Therefore, the concentrations increase with increasing χ.  

Horizontal anisotropy in hydraulic conductivities has a minor effect on the steady 

state concentration of contaminant at the well (Fig. 4.6). When Kx is larger than Ky (i.e., κy < 

1) and the Damköhler number is small, the concentration at steady state is slightly reduced 

and when the Damköhler number is large, the concentration is increased. The reverse is true 

when Ky is larger as the symmetry of the hydraulic system is rotated. When concentrations 

are high (i.e., small Da), the relative differences between concentration curves is small. For 

Da > 0.07, the differences between the cases with κy = 1 and κy = 0.5 exceed 10%. 
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Fig. 4.5. Steady state concentration of contaminant at the well as a function of Damköhler 
number and streambed conductance coefficient for κy = 1. 

 
Fig. 4.6. Dependence of steady state concentration at the well on horizontal anisotropy 
parameter κy and Damköhler number. 
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4.4 Discussion 

The relationships in the previous section can be used to predict the steady state 

concentration of a contaminant at a pumping well. For example, Figs. 4.4 and 4.5 provide 

information to estimate the timing and magnitude of contamination in wells near the Des 

Moines River (Moore et al., 2012). Conditions for their site 1 include H = 15 m, Lx = 30.5 m, 

and Q = 2800 m3/d. The aquifer material is composed of sand and gravel with an effective 

porosity estimated to be 0.25 (Fetter, 2001). Aquifer hydraulic conductivity of Kx = 58.8 m/d 

and streambed resistance of bʹ/Kʹ = 2.8 d yield a streambed conductance coefficient χ = 0.2. 

With a retardation coefficient of Rc = 1 and decay rates estimated as λ = 1 d-1 for bacteria 

(Hipsey et al., 2008) and λ = 0.75 d-1 for nitrate (Chapra, 1997), the Damköhler numbers are 

0.12 and 0.09 respectively. Then Fig 4.5 gives Cw/C0 of 0.2 for bacteria and 0.24 for nitrate 

in steady state. Fig. 4.4 gives Tx/T0 of 24 and 30, or times of 3.0 and 3.7 d, for bacteria and 

nitrate. 

To simplify the analysis leading to the relationships discussed in section 4.3, the flow 

was assumed to be steady. In terms of the temporal development of the concentration at the 

well, that assumption leads to conservative estimates. A well that has been pumping for a 

long time with an established flow pattern has a greater risk of a contaminant entering the 

pumping effluent compared to a well that just begins to pump and has an undeveloped zone 

of influence. The times estimated by Maroney and Rehmann (2017) for the flow field to 

reach steady state are typically much smaller than the durations of pumping for water supply 

wells. Therefore, assuming a steady flow field is not only conservative but also practical. 

The relationships in section 4.3 allow accounting for the effects of the streambed 

through the conductance coefficient χ, but in practice determining the thickness and 
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hydraulic conductivity of the streambed is challenging. However, if the main concern is the 

maximum concentration of the contaminant, then assuming no streambed (i.e., χ →∞) gives a 

conservative, estimate as shown in Fig. 4.5. Neglecting the streambed also would give the 

smallest times of arrival in many cases. Fig. 4.3 shows that the time of first arrival, which 

occurs for a fraction of zero, decreases as χ increases, and except at low Da the time to the 

steady state concentration is smallest for large χ. 

  As shown in section 4.2.2, dispersion is of secondary importance compared to 

advection. However, it does contribute to the transport of contaminants. Taylor and Guha 

(2017) found that for transport from an instantaneous release in a well to a river, the peak 

concentration can occur sooner and can be higher with dispersion than when only advection 

and retardation are considered. The case presented here is for a constant nonpoint source 

flow toward a well, but similar results can be expected. Accounting for dispersion in this case 

would require a numerical solution because the dispersion coefficients vary throughout the 

aquifer. 

 The model presented in this chapter does not consider the travel time through the 

streambed. Flow takes longer to pass through a streambed with a low conductance, allowing 

more time for decay to occur. Therefore, the concentrations in Fig. 4.5 are conservative (i.e., 

high) because they account for only decay in the aquifer. Assessing the importance of decay 

in the streambed involves comparing the travel times through the streambed and to the well. 

Identifying the value of y at which the travel time through the streambed is the largest 

fraction of the total travel time is not clear. The largest head drop across the streambed—and 

therefore the smallest travel time—occurs at y = yʹ, but the smallest travel time in the aquifer 

occurs there as well. 
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4.5 Conclusions 

The transport of a contaminant from a river to well installed in a homogeneous, 

anisotropic aquifer was investigated using flow vectors generated from a special case of the 

flow model presented in Chapter 3 for two-dimensional flow. Both the river and the well 

fully penetrate the saturated thickness, and the river has a streambed with reduced 

conductivity. Dimensional analysis showed that the concentration at the well is a function of 

14 parameters but can be reduced to a function of 5 dimensionless parameters. The Péclet 

number was greater than 1 showing that that dispersion time is small compared to advection 

time, and dispersion can be neglected reducing the number of parameters to four. Then the 

time to reach steady state and steady state concentration at the well were evaluated as 

functions of Damköhler number, streambed conductance coefficient χ, and horizontal 

anisotropy parameter κy. Significant findings are as follows: 

1. The effects of advection, retardation, and decay are captured by the Damköhler number, 

which includes properties of the well, aquifer, and contaminant. If dispersion is 

negligible, then for fixed values of χ and κy, the concentration at the well and the time for 

the steady state concentration can be predicted with the Damköhler number alone. 

2. Many streamlines are short when the streambed is less conductive (i.e., χ is smaller), but 

because the hydraulic gradient in the aquifer between the river and the well is smaller, the 

travel times are higher and concentrations at the well are smaller for a given Damköhler 

number. 

3. The case of no streambed (i.e., χ→∞) provides conservative estimates of the steady state 

concentration, time of first arrival, and—except for low Da—time to steady state 

concentration. 
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4.  Effects of horizontal anisotropy on the steady state concentrations are small. At large Da, 

the differences between concentrations for different κy are relatively larger because the 

concentrations themselves are small.  
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CHAPTER 5: GENERAL CONCLUSIONS 

5.1 Summary 

 Planning and operating high capacity riverbank filtration systems requires knowledge 

about the stream depletion rate, drawdown, and quality of the water pumped by these 

systems. In Chapter 2 an analytical model of a radial collector well was used to evaluate SDR 

in terms of dimensionless parameters that include properties of the aquifer, streambed, and 

well. The parameters examined were the streambed conductance coefficient χ; vertical to 

horizontal anisotropy of the aquifer κz; the ratio γ =  Sy /SsH, which includes the effects of 

vertical flow; the ratio of length of the well screen to saturated thickness of the aquifer Λ; the 

orientation of the lateral well screens θi; dimensionless distance from the river to the caisson 

ρx; and dimensionless depth of the lateral well screens ρz. Although Huang et al. (2012) had 

computed the SDR for unsteady flow to a radial collector well, the work in Chapter 2 

corrects an error and systematically studies the effects of the dimensionless parameters on the 

SDR.  

The research for the radial collector well in Chapter 2 leads to extensions for other 

well configurations. Chapter 3 evaluated the SDR and drawdown caused by a partially 

penetrating vertical well near a stream. The systematic evaluation of the dimensionless 

parameters in Chapter 2 allowed the work in Chapter 3 to focus on how the depth and degree 

of penetration affects SDR and drawdown for partially penetrating wells. These models can 

be used to provide guidance for the design and operation of water supply, remediation, or 

dewatering systems.  
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A special case of the flow model presented in Chapter 3 is used in Chapter 4 to 

predict the concentration of a contaminant at a fully penetrating well located near a stream 

with a streambed with reduced conductivity. Dimensional analysis and arguments regarding 

the importance of dispersion were used to express the concentration as a function of four 

dimensionless parameters: dimensionless time, a horizontal anisotropy parameter, the 

streambed conductance coefficient χ, and the Damköhler number Da, which measures the 

relative importance of advection and decay. Streamlines were computed for the velocity flow 

field generated from the special case model, and the concentration at the well was computed 

by summing the contributions of individual streamtubes. The effects of three dimensionless 

parameters on the timing and magnitude of the steady state concentration at the well were 

evaluated. 

5.2 Significant Findings 

The models pertaining to flow and transport from a stream with a reduced 

conductivity streambed to a well in an unconfined aquifer provided the following important 

contributions: 

• The analytical solution for SDR for a radial collector well provides an efficient solution 

involving only one numerical integration compared to the five required by Huang et al. 

(2012). 

• SDR for a point sink at steady state is shown analytically to be one for a well located near 

a river in a semi-infinite, unconfined aquifer.  

• When the streambed conductance defined as χ = KʹLx/Kxbʹ or α = -KʹH/Kxbʹ  is smaller 

SDR is smaller. Both parameters are better for describing the effects of the streambed 
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than just the ratio of streambed hydraulic conductivity Kʹ to aquifer hydraulic 

conductivity Kx because the streambed thickness is included. 

• The ratio of vertical to horizontal hydraulic conductivity Kz/Kx controls the value of SDR 

during the intermediate stage and the ratio of specific yield to storativity controls the 

duration of the intermediate stage. 

• The streambed properties, aquifer anisotropy, and distance between the well and the 

stream affect SDR more than the length, depth, and orientation of the laterals of a radial 

collector well. 

• For a partially penetrating vertical well SDR is reduced during the intermediate stage 

when κz = Kz/Kx is large or the degree of penetration Λ = ℓ/H is small and the well is at 

the base of the aquifer. 

• Drawdown for a partially penetrating vertical well vertically centered in an aquifer and 

located near a stream is similar to that observed for an infinite aquifer. However, a 

partially penetrating well located near the top or bottom of the aquifer experiences 

smaller drawdown due to the river supplying water. 

• The Damköhler number combines the effects of advection, retardation, and decay and 

includes well, aquifer, and contaminant properties. For negligible dispersion and fixed 

streambed conductance coefficient and horizontal anisotropy ratio, the steady state 

concentration at the well and time to reach the steady concentration can be predicted from 

the Damköhler number. 

• A low conductivity streambed shortens many of the streamlines but reduces the hydraulic 

gradient between the stream and the well. The reduced gradient results in longer travel 

time to the well and smaller concentration for a specific Damköhler number. 
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• Conservative estimates for the steady state concentration, time of first arrival, and (except 

at low Da) time to steady concentration can be predicted with the case of no streambed. 

5.3 Future Work 

Further work on this topic includes pursuing practical applications of the analytical 

models and exploring the implications of the assumptions in more detail. An example of the 

former would be to investigate the extent of the effects of partial penetration of a well—that 

is, to determine the conditions under which the partially penetrating well can be treated as 

fully penetrating and thus simplifying the application of the formulas derived in Chapter 3. 

The analytical solution in Chapter 3 provides physical insight into how the various 

parameters affect drawdown. Future work could involve developing a method for 

determining aquifer and streambed parameters from aquifer testing based on the analytical 

solution. It could also evaluate averaging the hydraulic head in observation wells as an 

alternative approach in the analysis of the evolution of drawdown. 

Although the models in Chapter 2 to 4 are accompanied by discussions of the 

assumptions and their implications, further work to explore the implications of relaxing the 

assumptions would provide more information about how generally the models apply. The 

assumption of a straight river, fully penetrating river can be examined with numerical 

simulations of a sinuous or shallow stream to recompute SDR, drawdown, and transport and 

compare to the results from the analytical models. Dispersion can be added to the analysis of 

Chapter 4 with a finite-difference model of the transport accounting for variable dispersion 

coefficients; such a study would show whether dispersion decreases the arrival time and 

increases the peak concentration at the well.  
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APPENDIX MODEL VARIATIONS 

  The conceptual model for a slanted well near a stream in a homogeneous, anisotropic, 

unconfined aquifer is the more general version of the models given in Chapters 2 and 3. The 

stream fully penetrates the aquifer, the stream stage is constant and the flow rate through the 

well screen is uniform. The origin of the coordinate system is at the intersection of the 

streambed and pre-pumping water level with the x-direction in line with the well as shown in 

Fig. A.1. The point sink Q is located at (Lx, Ly, Lz). The governing equation, boundary 

conditions, and initial conditions are given in Chapter 2. 

 For flow that is uniform along the screen section of the well, the SDR for a vertical, 

slanted, or horizontal well can be found by integrating the SDR for a point sink (Eq. (2.37)) 

over the screened portion of the well. For any well, the integration points are 

Fig. A.1. Conceptual model for a slanted well installed in an anisotropic, unconfined aquifer 
adjacent to a fully penetrating stream: (a) 2-D view, (b) plan view, (c) profile view. 
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 ( ) ( )cos cosD xx σ θ ν ρ′ = +   (A.1) 

 ( )sinD zz σ ν ρ′ = +   (A.2) 

where ρx and ρz are the coordinates of the center of the well screen, normalized by H and μ0, 

μn, ζ0, and ζn as defined in Chapter 2. This gives 
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