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ABSTRACT 

 A new empirical formula is developed for estimating the longitudinal dispersion 

coefficient. Velocity profiles are computed from the momentum equation as presented by 

Shiono and Knight (1991), and the dispersion coefficient is computed from the velocity 

profiles using the theory of shear dispersion (Taylor 1953, Fischer et al. 1979). To simplify 

the application, results of the numerical integration are expressed in terms of the aspect ratio 

of the channel, the friction factor, the dimensionless eddy viscosity, and the secondary flow 

coefficient using multiple regression. For laboratory data, 83.3% of the empirical estimates 

from the initial formula fall within 50% of values from tracer measurements. After 

adjustment of the initial formula, the second formula predicts the data of Nordin and Sabol 

(1974) as well as the formula of Wang and Huai (2016). For example, both the proposed 

formula and the formula of Wang and Huai (2016) have mean and median values of the 

discrepancy ratio of −0.12 and standard deviation less than 0.5.  
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CHAPTER 1.  INTRODUCTION 

Motivation and Significance 

 The longitudinal dispersion coefficient is a key parameter for quantifying spreading 

of pollutants during transport in rivers and streams, and this research aims to improve the 

estimation of the longitudinal dispersion coefficient. The change of the concentration of a 

conservative pollutant in rivers and streams depends on advection by the flow and spreading 

by several mechanisms, including shear dispersion and interaction with recirculation zones.  

The advection-diffusion model, derived from conservation of contaminant mass, can provide 

an analytical solution for the pollutant concentration as a function of time and distance from 

the injection. Because the analytical solution involves the longitudinal dispersion coefficient 

as a parameter; estimating the longitudinal dispersion coefficient is critical for predicting the 

pollutant concentrations.  

Several methods are used to determine the longitudinal dispersion coefficient: tracer 

studies, the acoustic Doppler current profiler (ADCP) method, the USGS/Jobson method, and 

empirical formulas. Tracer studies give the best estimates because they can measure the 

effect of recirculation zones and other factors leading to dispersion. The ADCP method 

usually underestimates the dispersion coefficient since it does not consider the effects of 

recirculation zones. Empirical formulas save time and labor, as well as costs compared to 

tracer studies and the ADCP method. Also, some empirical estimates are more accurate than 

the USGS/Jobson method. Still, the estimates from empirical formulas can be improved. For 

example, commonly used formulas estimate the dispersion coefficient with a mean absolute 

error of 37-320% (Wang and Huai 2016).   
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Most empirical formulas account for the properties of the flow and geometry of the 

channel, but they express the dispersion coefficient in terms of only the ratio of the mean 

velocity and shear velocity and the ratio of channel width and channel depth. The scatter in 

the predictions and the differences between predicted and measured values of the dispersion 

coefficient suggest that other parameters may be important. In fact, the momentum equation 

used by Wang and Huai (2016) accounted for transverse turbulent momentum flux (as 

quantified by the transverse eddy viscosity) and secondary flow, though their proposed 

formula for the dispersion coefficient did not. To improve accuracy of estimating the 

dispersion coefficient, a new formula is developed in this study considering secondary flow 

and eddy viscosity.    

Objectives 

This study will determine the effect of secondary flow and the dimensionless eddy 

viscosity on the dispersion coefficient. The research aims to develop a new formula for the 

dispersion coefficient that will provide better estimates than other empirical estimates.  

Hypotheses 

 The hypothesis behind this work is that estimates of the longitudinal dispersion 

coefficient can be improved by including the effects of transverse turbulent momentum flux 

and secondary flow. The former is characterized by the dimensionless eddy viscosity, and the 

latter is characterized by the secondary flow coefficient. These parameters will be defined 

precisely in Chapters 2 and 3.  



3 

Outline of Thesis 

 The work will be presented in four parts. Chapter 2 will include background 

information, such as basic concepts about dispersion, methods for estimating the dispersion 

coefficient, and a discussion of empirical formulas. Methods to obtain a new formula will be 

explained in chapter 3. Results and discussion will be combined in chapter 4 to analyze 

results and to improve the performance of the initial formula. Conclusions are presented in 

Chapter 5.  
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CHAPTER 2.  BACKGROUND 

Mechanisms of Dispersion 

Shear Dispersion 

 The interaction of transverse mixing with velocity gradients across a channel 

produces shear dispersion, a primary cause of longitudinal spreading of contaminants 

(Rutherford 1994, p. 179). Mixing in the transverse direction y causes a parcel of tracer to 

sample different velocities, and after enough time has passed, the tracer cloud will spread in 

the streamwise direction x. Thus, if transverse mixing (as measured by the transverse mixing 

coefficient Dy) is large, tracer parcels will sample more of the velocities, and shear dispersion 

will be diminished. In contrast, if the transverse mixing is small, differences in the velocities 

between tracer parcels will be larger, and shear dispersion will increase.  

Taylor (1954) quantified shear dispersion in a pipe by analyzing the deviations of the 

velocity and concentration from their cross-sectional averages U and C. Beyond a certain 

distance, the longitudinal flux of contaminant can be expressed as proportional to the 

streamwise concentration gradient; the coefficient of proportionality is the longitudinal 

dispersion coefficient K. Fischer (1967) extended this concept to rivers and wrote the 

dispersion coefficient as  

 
0 0 0

1 1
( ) ( ) ( ) ( )

( )

B y y

y

K u y h y u y h y dydydy
A D h y

        (2.1) 

where y is the transverse coordinate starting at the bank, B is the width of the channel, A is 

the cross-sectional area, h(y) is the local flow depth, Dy is the transverse mixing coefficient, 

and u′(y) = u(y) − U is the deviation of the depth-averaged velocity u(y) from the cross-
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sectional average. Expressing the flux in this way allows the concentration to be predicted 

from the one-dimensional advection-dispersion equation (ADE):  

 
2

2

C C C
U K

t x x

  
 

  
  (2.2) 

where t is time. The ADE is widely used to predict the transport of pollutants despite the 

challenge of specifying the dispersion coefficient K. 

Recirculation Zones 

Recirculating flows happen near river bends and in side embayments and other 

irregularities in channels, and tracer is likely to be trapped in these regions, which are called 

recirculation zones (Rutherford 1994). Recirculation zones violate an assumption of Eq. 

(2.2), the homogeneity of turbulent flows. Although the recirculation zone is modeled as 

uniform along the channel (e.g., Rutherford 1994), they occur sporadically in natural 

channels. Additionally, the rate of exchange in and out of recirculation zones is small; 

therefore, once tracer is trapped in the recirculation zone, the releasing time is extended.  

Estimates of Dispersion  

Tracer Studies 

Tracer studies are widely used to estimate the longitudinal dispersion coefficient. 

Many tracers have been used to measure spreading, but fluorescent dyes, such as Rhodamine 

WT, are most common because they can be measured at low concentration (Rutherford 1994, 

p. 235). The response curve of a tracer is obtained by measuring the concentration at certain 

downstream distances for a period of time. Then the dispersion coefficient can be determined 

with the method of moments or by routing (Rutherford 1994, ch. 4). 
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Tracer studies have several advantages and disadvantages. Tracer studies are 

considered more accurate than other methods because they account for the conditions for the 

specific reach of the river being investigated, including the geometry, flow, and weather 

(Carr and Rehmann 2007). However, for the same reason the results from tracer studies are 

restricted to those conditions. Tracer studies are relatively easy to conduct for small streams, 

and the tracer input rate can be optimized to account for the conditions in the field 

(Rutherford 1994). Rutherford (1994, ch. 5) outlined several challenges with tracer studies: 

(1) The planning, costs, labor, and coordination increase with the size of the river; (2) 

multiple tracer studies are needed under different conditions to obtain more general 

information about dispersion in the river; (3) a study must be designed to account for 

trapping of tracer in sediments or vegetated areas; and (4) in studies with natural tracers, the 

background concentrations in the main channel and tributaries must be determined.  

Acoustic Doppler Current Profiler 

The acoustic Doppler current profiler (ADCP) method serves as an alternative way to 

estimate the longitudinal dispersion coefficient K. Fischer et al. (1979, p. 130) described 

using velocities measured with propeller meters to compute K using the theory of shear 

dispersion. Exploiting the ability of an ADCP to provide velocity profiles with higher spatial 

resolution, Bogle (1997) used measurements from an ADCP to estimate K in the Sacramento 

Delta, and Carr and Rehmann (2007) and Shen et al. (2010) refined and evaluated the method 

thoroughly.  

The ADCP uses the Doppler effect to measure three components of velocity. As an 

ADCP moves across a cross section of a river, it emits a sequence of high frequency sounds 

underwater; meanwhile moving particles in the river reflect the sound back to the ADCP with 
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a different frequency. The instrument detects and uses the Doppler shift to compute velocities 

in various depth bins so that a detailed velocity profile can be developed for the cross section 

of the river.  The velocity profile is used along with an estimate of the transverse mixing 

coefficient in the theory of shear dispersion, as expressed in Eq. (2.1), to compute the 

longitudinal dispersion coefficient (e.g., Carr and Rehmann 2007).  

On one hand, the ADCP serves as an excellent option instead of tracer studies since 

the ADCP can obtain a relatively accurate result by measuring and averaging the velocities of 

multiple transections. On the other hand, the ADCP cannot measure velocity profiles near the 

river bed and shallow stream reaches (Shen et al. 2010).   

USGS/Jobson Method  

 Jobson (1996) documented a method used by the United States Geological Survey 

(USGS) to predict longitudinal dispersion from time-of-travel studies in rivers and streams. 

The tracer-response curve is represented as a scalene triangle by specifying the time of 

arrival the leading edge (TL), the time of arrival of the peak concentration (TP) and the unit-

peak concentration Cup, and the time of arrival of the trailing edge, taken as the time of 

arrival (T10) of a concentration equal to 10% of the peak. The concentration is zero before the 

leading edge and after the trailing edge. Using data compiled by Nordin and Sabol (1974), 

Jobson (1996) related the velocity of the peak concentration to parameters mostly available at 

gaging stations: drainage area, reach slope, mean annual river discharge, and the discharge at 

the time of the measurement. Once the time of the peak is known, then other parameters 

specifying the tracer response curve can be computed.   

Predictions from the method of Jobson (1996) can be related to the parameters of the 

ADE by considering the temporal moments of the tracer response curve. The time of arrival 
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of the trailing edge TT, where the concentration is zero, can be calculated by using similar 

triangles:      

 
10

1.11
0.9

upT P

P up

CT T

T T C


 


  (2.3) 

The longitudinal dispersion coefficient K can be calculated from the time of passage of the 

centroid (µt) and the temporal variance 2

t , which for the triangle are given by 

 
3

L P T
t

T T T


 
   (2.4) 

and 

 2 2 2 21
( )

18
t L P T L P L T T PT T T T T T T T T         (2.5) 

Then, neglecting the initial variance and using the frozen cloud approximation gives 

 
2 2

2

t

t

U
K




   (2.6) 

These equations connect the Jobson method to the ADE.   

Empirical Formulas 

 Early attempts to develop formulas to predict the dispersion coefficient include the 

work of Elder (1959) and Fischer et al. (1979). Elder (1959) focused on the vertical variation 

of velocity and excluded the transverse variation to find 

 *5.93K Hu  (2.7)  

where H is averaged channel depth. However, because the transverse variation is more 

important for dispersion in rivers (Fischer et al. 1979; Rutherford 1994), Elder’s formula is 

not usually used.  

The formula of Fischer et al. (1979) is based on approximating Eq. (2.1) as 
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2 20.07

y

u l
K

D


   

where l is the maximum distance from the bank to the peak velocity in the cross section. 

Using the observed ranges 
*0.23 / 0.7yD u H   and 2 20.17 / 0.25u U  , Fischer et al. 

(1979) chose 
*0.6yD u H , 2 2/ 0.2u U  , and l ≈ 0.7B to obtain  

 

22

* *

0.011
K B U

u H H u

  
   

   
  (2.8) 

This formula has been used extensively. For example, the Incident Command Tool for 

Drinking Water Protection (Samuels et al. 2015) employs Eq. (2.8) to compute the evolution 

of a contaminant cloud after a spill.  

Several researchers have used dimensional analysis and regression to develop 

formulas for the dispersion coefficient using the compilation of Nordin and Sabol (1974), 

which consists of 59 datasets measured from 26 U.S. rivers. Seo and Cheong (1998) related 

the dispersion coefficient to properties of the flow (U and 
*u ), properties of the fluid (density 

 and dynamic viscosity ), and channel geometry (B, H, bed shape factor Sf, and sinuosity 

Sn). Dimensional analysis then yielded  

 1

* *

, , , ,f n

K UH U B
f S S

u H u H




 
  

 
  (2.9) 

The bed shape factor and sinuosity describe irregularities in natural streams, especially those 

that can cause secondary flow. Seo and Cheong (1998) dropped Sf and Sn because they are 

not easy to obtain, and they also neglected the Reynolds number because it had a negligible 

effect on the longitudinal dispersion. Then Eq. (2.13) was simplified to  
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 2

* *

,
K U B

f
u H u H

 
  

 
  (2.10) 

By applying robust estimation to Eq. (2.14) the dispersion coefficient was expressed as  

 

1.4280.620

* *

5.915
K B U

u H H u

  
   

   
  (2.11) 

 Kashefipour and Falconer (2002) exploited the success of Eq. (2.11) in developing 

their own formula. Similar dimensional analysis and regression between HU and BU versus 

K produced 

 
*

10.612 ( )
U

K HU
u

   (2.12) 

To assess the performance of empirical formulas, Kashefipour and Falconer (2002), as well 

as others, used the discrepancy ratio (DR):  

 10DR log
p

m

K

K

 
  

 
  (2.13) 

where Kp is the longitudinal dispersion coefficient predicted from an empirical formula and 

Km is the longitudinal dispersion coefficient measured from experiments. Perfect agreement 

gives DR = 0, while underestimates give DR < 0 and overestimates give DR > 0. By 

conducting the discrepancy ratio test, Kashefipour and Falconer (2002) found Eq. (2.11) 

overestimated and Eq. (2.12) underestimated. Their proposed formula results from a linear 

combination of Eqs. (2.11) and (2.12): 

 

20.5720.620

*

* *

7.428 1.775
uK B U

u H H U u

     
       

       

  (2.14) 

 Some researchers have used the theory of shear dispersion to develop formulas for the 

dispersion coefficient. Deng et al. (2001) brought the shape factor into the analysis by 
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specifying a symmetric function to describe the shape of the channel. They also assumed a 

velocity profile based on applying Manning’s equation locally in the cross section and 

developed a formula for the transverse mixing coefficient, given by 
0 * ( )y yD D u h y , where  

 

1.38

0

*

1
0.145

3,520
y

B U
D

H u

 
   

 
  (2.15) 

The result of using this information in Eq. (2.1) involved a complicated numerical integral, 

which Deng et al. (2001) expressed as a function of B/H. Their proposed formula is 

 

25/3

* 0 *

0.15

8 y

K B U

u H D H u

  
   

   
  (2.16) 

The numerical coefficient 0.15 in Eq. (2.16) is the product of 0.01, which arises from the 

semi-theoretical analysis, and a “revision constant” of 15, which Deng et al. (2001) 

introduced to account for the difference between smooth and rough channels observed by 

Fischer (1967).   

Rather than specify a velocity profile, Wang and Huai (2016) computed a velocity 

profile by solving the momentum equation of Shiono and Knight (1991). For steady uniform 

turbulent flow, the streamwise momentum equation is 

        0uv u w gS u v u w
y y y z

   
    

         
    

  (2.17) 

where the overbar denotes a time average, primes denote fluctuations from the time average, 

 is water density, g is the acceleration of gravity, and S0 is the longitudinal channel slope. 

Shiono and Knight (1991) integrated Eq. (2.17) over the depth to obtain 

    0 0 yx d
gHS H H u v

y y
   

 
      

  (2.18) 
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where 0 is the bottom shear stress, yx is the depth-averaged transverse Reynolds stress, and 

the subscript d denotes a depth average. In obtaining this version of the momentum equation 

the sides of the channel are assumed to be vertical. In Eq. (2.18) the first term on the left is 

the component of the fluid’s weight in the streamwise direction; the second term is the bed 

shear stress; the third term involves transverse momentum transport by Reynolds shear stress; 

and the term on the right is related to secondary flow, which can occur at bends in rivers 

because of pressure gradients that drive transverse flow. Following Shiono and Knight 

(1991), Wang and Huai (2016) expressed the bottom shear stress in terms of a friction factor 

f: 

 2

0
8

f
U    (2.19) 

They introduced the shear velocity 
*u  as a measure of bottom shear stress: 

0
*u




       (2.20) 

and computed the Reynolds shear stress with an eddy viscosity: 

 

1
2

*
8

yx

u f u
u H uH

y y
  

  
   

  
  (2.21) 

where λ is the dimensionless transverse eddy viscosity and u is the depth-averaged 

streamwise velocity. Inserting Eqs. (2.19) and (2.21) into Eq. (2.18) gives 

  
1/2

2 2

0

1
( )

8 8
d

f u
gHS fu H u H u v

y y y
   

    
     

     

  (2.22) 

Several researchers have used forms of Eq. (2.22) to study the transverse variation of velocity 

in channels (e.g., Shiono and Knight 1991, Ervine et al. 2000). 
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Wang and Huai (2016) determined the velocity profile for cases in which the 

secondary flow [i.e., the term on the right side of Eq. (2.22)] can be neglected. To facilitate 

the integration required by applying Eq. (2.1), they expressed the velocity profile in terms of 

Fourier series, and to simplify the calculation of the dispersion coefficient, they assumed that 

the integral depends only on B/H. As noted above, Deng et al. (2001) used a similar 

approach, though with a different velocity profile. These calculations yielded a formula for 

the dispersion coefficient K1 in a rectangular flume, and Wang and Huai (2016) used 

regression analysis and the maximum-dissimilarity algorithm to determine the dispersion 

coefficient K2 for natural channels. In particular, they used 

 2 1
1 2

* *

ln ln
K K

u H u H
 

   
    

   
 (2.23)  

with 
1 0.5815  and 2  4.3223   to obtain 

 

1.160.3619

* *

17.648
K B U

u H H u

  
   

   
  (2.24) 

Wang and Huai (2016) used the mean error rate and mean absolute error rate with several 

datasets to show that Eq. (2.24) predicts the dispersion coefficient better than other formulas.  

Summary 

The previous models considered the variation of dispersion coefficient with B/H and

*/U u ; however, none of the previous work analyzed eddy viscosity and secondary flow as 

variables in these models. Therefore, this study will explore a new equation for the dispersion 

coefficient that includes more parameters—specifically, those describing momentum 

transport by eddies and secondary flow—in order to improve the accuracy of empirical 

estimates. 
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CHAPTER 3.  METHODS 

 This section explains the methods to obtain the new model for the dispersion 

coefficient. The streamwise momentum equation as presented in Eq. (2.22) is used to 

calculate the velocity profile, which is then used to compute the dispersion coefficient as a 

function of four main variables with the key result from the theory of shear dispersion, Eq. 

(2.1). A function describing the dependence of the dispersion coefficient on the four 

variables is determined with regression analysis. 

Calculation of Velocity Profile 

 As in Wang and Huai (2016), the velocity profile is computed from a version of the 

momentum equation from Shiono and Knight (1991). To include the effects of secondary 

flow, the last term in Eq. (2.22) is expressed with the formulation of Ervine et al. (2000):  

 2

2( )du v u    (3.1) 

where 
2  is the secondary flow coefficient. Inserting Eq. (3.1) into Eq. (2.22) yields 

 

1/2

2 2 2

0 2

1
( )

8 8

f u
gHS fu H u H u

y y y
    

    
    

     

  (3.2) 

This second order linear differential equation has been solved by several researchers (e.g., 

Shiono and Knight 1991, Ervine et al. 2000, Wang and Huai 2016); here the solution is 

written as    

 
2 1

1 2

1 2 1 2

1/2

1/2 1 1
1

y yr r
r r

B B
d r r r r

e e
u e e

e e e e


  
   

  
 (3.3)  

where d = 8gHS0/f and r1 and r2 are given by  
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 (3.4)  

The velocity profile is written in a dimensionless form by normalizing by 0gHS . Then the 

dimensionless velocity û  is  

 
2 1

1 2

1 2 1 2

1/21/2

8 1 1
ˆ 1

r r
r r

r r r r

e e
u e e

f e e e e

     
    

    
 (3.5) 

where /y B   is a dimensionless transverse coordinate starting at a bank.  

Calculation of Dispersion Coefficient 

 The dispersion coefficient is computed using the theory of shear dispersion, which 

results in Eq. (2.1). In this study, the channel is assumed to be rectangular. Therefore, the 

local depth does not change across the channel, and Eq. (2.1) can be written as  

 
0 0 0

1 B y y

y

K u u dydydy
D B

       (3.6)  

In dimensionless terms Eq. (3.6) can be expressed as  

 
1

2 0 0 0
0

ˆ ˆ*
yKD

K u u d d d
gHS B

 

          (3.7) 

where û  is the deviation of the dimensionless velocity from the cross-sectional average. The 

transverse mixing coefficient is taken to be proportional to the transverse eddy viscosity so 

that 
*yD u H , in which   is a dimensionless coefficient. The product   denoted as Dy0  

in Eq. (2.15) is approximately 0.15 for straight channels and 0.6 for meandering rivers 

(Fischer et al. 1979; Shiono & Knight 1991).  This formulation suggests that the 

dimensionless dispersion coefficient K* is a function of four parameters: 
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 2

*

* , , ,
B U

K F
H u

 
 

  
 

 (3.8) 

That is, K* depends on the aspect ratio of the channel, the friction factor (which is related to 

*/U u ), the dimensionless eddy viscosity, and the secondary flow coefficient. The function F 

was determined numerically by Matlab with the four parameters given as inputs, and the 

codes are attached in Appendix A.  

Regression Method for K* 

 Obtaining an analytical solution of K* is difficult due to the triple integration in Eq. 

(3.7). Therefore, K* is computed by numerical integration, and a multiple regression model is 

introduced to estimate K* by using selected data. This section includes the processes for 

estimating the model (e.g., building the regression model), selecting the data, and comparing 

the regression models.  

Multiple Regression Model 

 When a dependent variable y is a linear function of n explanatory variables x1, x2,…, 

xn,  

 0 1 1 2 2 n ny x x x           (3.9) 

(where ε is the error from parameter estimation), then multiple regression can be used to 

estimate the unknown parameters β0, β1, β2,…, βn in Eq. (3.9). Once m observations occur, 

the multiple regression can be expressed in a matrix form:  

 0 1 1 2 2 n nY X X X E          (3.10) 
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. The method of 

least squares is used to estimate β0, β1, β2,…, βn by minimizing the residuals. In this case, K* 

is assumed to be a product of the powers of three variables—B/H, */U u , and λ—and 

exp(a4ϕ2):  

  
21

3

0 4 2

*

* exp

aa

aB U
K a a

H u
 

  
   

   
  (3.11) 

in which a0, a1, a2, a3, and a4 are parameters to be estimated. The different treatment of the 

secondary flow coefficient anticipates a different dependence; the proposed form becomes 1 

when 2 = 0. Then, by taking natural logarithm of both sides of Eq. (3.11), the function for 

K* can be expressed in the form of Eq. (3.10).  

Selection of Data for Regression 

Specifying the ranges of the four parameters helps to constrain attempts to develop a 

formula for the dispersion coefficient. The parameters B/H and */U u  can be measured 

during field experiments, and ranges are determined from the experimental data compiled by 

Nordin and Sabol (1974). The aspect ratio B/H ranges from 16.1 to 266.7, and the parameter 

U/u* ranges from 1.5 to 24.2. The median and mean of B/H are 41.8 and 55.9, and the 

distribution is right-skewed (Figure 1). The median and mean of */U u  are 6.5 and 8.2, and 

the distribution is also right-skewed. Because of the skewness, the mean values of both 

parameters are slightly affected by outliers. Therefore, the medians of B/H and */U u  are 

selected as base values.  
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There are no direct methods to estimate λ and ϕ2; however, some previous work 

confines the range of the two parameters. Knight (1999) concluded that the dimensionless 

transverse eddy viscosity λ is in the range of 0.07−0.5. A parabolic variation of the eddy 

viscosity, which conforms to the law of the wall, would give a cross sectional average eddy 

viscosity with  = 0.067 (Shiono and Knight 1991). Therefore, the base value of λ is set to 

0.067. Ervine et al. (2000) indicated that the secondary flow coefficient ϕ2 is less than 0.5% 

for straight changes and between 2% and 5% for meandering channels. The base value of ϕ2 

is assumed to be zero; that is, in the base case, no secondary flow occurs.  

The base value for each variable (say B/H = 41.8, */U u  = 6.5, λ = 0.067, and ϕ2 = 0) 

is used for observing effective ranges of variables since K* cannot be computed for extreme 

values of the input variables. After trial and error, five values for each variable were found to 

confine the ranges of variables (Table 1). There are 54 = 625 combinations of these values 

Figure 1. Histograms determined from the data of Nordin and Sabol (1974). (a) 

B/H; (b) */U u .  
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included used in the regression analysis. The range matrices of B/H and */U u  were selected 

from the data of Nordin and Sabol (1974), and the extreme values were eliminated. Median 

values are used as the middle value among the ranges in Table 1. Knight (1999) estimated 

that dimensionless eddy viscosity λ is 0.13 for open channels, 0.16 for a trapezoidal channel, 

0.22 for rough floodplains, and 0.27 for smooth floodplains; the value of 0.33 is a moderately 

high value among the range of 0.07−0.5. Ervine et al. (2000) indicated that the secondary 

flow coefficient is less than 0.005 for straight rivers and between 0.02 and 0.05 for 

meandering rivers. Three values of ϕ2 are chosen for counting the effect of secondary flow on 

straight channels, and two values are used to explore the meandering channels.  

Table 1. Data selection 

Variables B/H U/u* λ ϕ2 

Range matrix 16

25

40

85

150

 
 
 
 
 
 
  

 

3

5

7

12

18

 
 
 
 
 
 
  

 

0.13

0.16

0.22

0.27

0.33

 
 
 
 
 
 
  

 

0

0.003

0.005

0.02

0.035

 
 
 
 
 
 
  

 

 

In addition to the values in Table 1, 80 sets in Table 7 in Appendix B are added to 

stabilize the regression. The stabilization data are assumed to be common data for practical 

cases: the median value of B/H and */U u  in the data of Nordin and Sabol (1974) are used 

for stabilization, and since the triple integration in Eq. (3.7) is derived from the assumption of 

rectangular channels, a value of 0.13 for λ is selected for stabilization. Two values of ϕ2 are 

chosen as 0.005 and 0.02 for representing straight channels and meandering channels. Every 
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10 sets vary within a selected range of each variable in Table 1 by fixing the other three 

variables at selected values respectively.  

Regression Model Selection 

 Three parameters are applied to evaluate all types of models: the coefficient of 

determination R2, Akaike’s information criterion (AIC), and Schwarz’s Bayesian criterion 

(SBC). The coefficient of determination indicates the goodness of fit; higher R2 occurs for 

better fits. Smaller values of AIC indicate a preferred model whose expected entropy is 

maximized (Akaike 1981). A small value of SBC is also preferred for model selection. All 

possible terms in regression models are summarized in Table 2. X1–X4 are the four variables, 

and X5–X14 are interaction terms between pairs of variables.   

Table 2. Terms for selecting a regression model  

Terms  Expressions Terms Expressions 

X1 ln
B

H

 
 
 

  X8  2ln ln
B

e
H

 
 

 
 

X2 
*

ln
U

u

 
 
 

 X9 
* *

ln ln
U U

u u

   
   

   
 

X3  ln   X10  
*

ln ln
U

u


 
 

 
 

X4  2ln e
  X11  2

*

ln ln
U

e
u

 
 

 
 

X5 ln ln
B B

H H

   
   

   
  X12    ln ln   

X6 
*

ln ln
B U

H u

  
   

   
  X13    2ln ln e

   

X7  ln ln
B

H


 
 

 
 X14    2 2ln lne e
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Fourteen models, with different numbers of terms, were compared (Table 2). The 

models including more terms are more accurate since R2 is larger and AIC and SBC are 

smaller (i.e., more negative). Wang & Huai (2016) employed only B/H as a variable in their 

model for K*, and their model is not shown here because B/H is not optimal for a one-

variable model. The value of R2 of Model 1, which is the best one-variable model, is much 

smaller than Model 6 because of missing the consideration of */U u , λ, ϕ2, and interaction 

terms. In this case, the relations between K* and all four variables need to be specified; also, 

the goodness of fit and simplicity of the model should be balanced. Thus, Model 6 is selected 

for conducting regression analysis. In Model 6, the four variables X1–X4 are included, and the 

two interaction terms, X9 and X11 related to */U u  and the secondary flow coefficient, are 

considered. Thus, Model 6 is optimum for conducting regression analysis to estimate the 

response Y = ln(K*). The relationship can be built as 

 0 1 1 2 2 3 3 4 4 9 9 11 11Y X X X X X X               (3.12) 

where βi are the parameters to be estimated with the regression.  
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Table 3. Comparison of models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model No. R-Square AIC SBC Variables in Model 

1 0.7092 351.1216 360.21522 X2 

2 0.9138 -494.5006 -480.86028 X1 X2 

3 0.9747 -1346.2017 -1328.01461 X1 X2 X11 

4 0.9819 -1578.3770 -1555.64306 X1 X4 X9 X11 

5 0.9857 -1740.1204 -1712.83964 X1 X2 X3 X4 X11 

6 0.9879 -1856.7744 -1824.94695 X1 X2 X3 X4 X9 X11 

7 0.9885 -1886.4581 -1850.08380 X1 X2 X3 X4 X9 X11 X13 

8 0.9888 -1903.2256 -1862.30452 X1 X2 X3 X4 X9 X11 X13 X14 

9 0.9891 -1918.7894 -1873.32157 X1 X2 X3 X4 X6 X9 X11 X13 X14 

10 0.9893 -1932.7698 -1882.75512 X1 X2 X3 X4 X6 X9 X10 X11 X13 X14 

11 0.9895 -1946.0898 -1891.52834 X1 X2 X3 X4 X5 X6 X9 X10 X11 X13 X14 

12 0.9896 -1946.3338 -1887.22562 X1 X2 X3 X4 X5 X6 X7 X9 X10 X11 X13 X14 

13 0.9896 -1944.3394 -1880.68438 X1 X2 X3 X4 X5 X6 X7 X9 X10 X11 X12 X13 X14 

14 0.9896 -1942.3410 -1874.13918 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 
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CHAPTER 4.  RESULTS AND DISCUSSION 

This chapter illustrates the effect of four parameters—the channel aspect ratio, the 

friction factor, the dimensionless eddy viscosity, and the secondary flow coefficient—on the 

velocity profiles and dispersion coefficient and evaluates the new empirical formula for the 

dispersion coefficient. The influence of the four variables on the velocity profiles and 

longitudinal dispersion coefficient are interpreted, and the results of the regression analysis 

contributing to the model selection for K* are presented. The new model is evaluated with 

laboratory data and measurements from natural rivers, and it is compared with other models 

to assess its performance.  

Velocity Profiles  

 The velocity profiles give insight into the effect of the four parameters on the 

dispersion coefficient because the dispersion coefficient is computed from the dimensionless 

velocity deviation û , as Eq. (3.7) shows. The uniformity of velocity profile largely 

influences K: if the velocity profile is more uniform, the deviation of dimensionless velocity 

from cross-sectional average will become less, and the dispersion coefficient will be less as 

well.  

The following figures, Figure 2 to 5, show the effects of B/H, */U u , λ, and ϕ2 on the 

velocity profiles. Each figure varies one variable and sets the other three variables to the base 

values. The base values of B/H and */U u  are chosen as 41.83 and 6.45, respectively, the 

median values from the data of Nordin and Sabol (1974); λ is fixed at 0.067, which is the 

cross-sectional average from the law of the wall; and ϕ2 is set as 0, which represent the case 
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of no secondary flow. In each figure, the black line shows the velocity profile at base values 

of four variables, and the red and blue lines are comparison groups.  

The velocity profile becomes more uniform as the aspect ratio B/H increases (Figure 

2). Away from the banks, both the term representing the divergence of the turbulent flux and 

the secondary flow term in the momentum equation (Eq.(3.2)) become small compared to the 

other terms as B/H increases. A scaling analysis of the momentum equation can explain the 

importance of its terms as a function of B/H. The main balance is between the bottom shear 

stress and the x-component of the weight. Away from the banks, the ratio of the divergence 

of the turbulent flux and the bottom shear stress is  

 

1/2

2

2

1/2
2

8divergence of the turbulent flux

1bottom shear stress

8

f u
H u

y y B

f H
fu








   
  

      
  

 
  (4.1) 

As B/H increases with a constant velocity (or in other words, f is an independent fixed value), 

the divergence of the turbulent flux decreases in importance. Near the banks (for y ~ , say), 

a balance between the divergence of the turbulence flux and bottom shear stress gives an 

estimate for the dimensionless boundary layer thickness / B : 
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1/2 8 B

B f H





   

    
  

  (4.2) 

Eq. (4.2) shows that the dimensionless boundary layer decreases as B/H increases if f is fixed. 

Away from the banks the secondary flow term relative to the bottom shear stress is  
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  (4.3) 
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Increased B/H causes the importance of secondary flow to decrease at a given velocity. These 

results satisfy intuition: One would expect the effects of the banks to decrease as the channel 

widens. Because the velocity profile is more uniform with increasing B/H, the dimensionless 

dispersion coefficient would become smaller as well.   

 

Figure 2. Effect of /B H  on the velocity profile 

Although B/H does not affect the peak value of the velocity, the friction factor does 

(Figure 3). The peak velocity increases as the friction factor decreases, or */U u  increases, as 

shown in Eq. (3.5). Away from the banks, the main balance in the momentum equation [Eq. 

(3.2)] is between the first two terms: the x-component of the weight (per unit volume) and the 

bottom shear stress. This balance gives  

      0

*

8 8
ˆor

gHS U
u u

f f u
       (4.4)  
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For a smaller friction factor f, a larger velocity is needed to balance the gravitational 

component in the streamwise direction. Also, as shown above, a larger friction factor (or 

smaller value of */U u ) decreases the width of the boundary layer, which confirms the 

boundary layer thickness δ below: 

 

1/4 1/4 1/4

1/2 1/2 1/2

*0
8 8 8

u f U f f
H H H

ugHS
   



     
       

     
  (4.5) 

Therefore, because the velocity profile becomes less uniform as */U u  increases, the 

dimensionless dispersion coefficient would be expected to increase with */U u  as well. 

 

Figure 3. Effect of */U u on the velocity profile 

Over the range of typical values, the dimensionless eddy viscosity has little effect on 

the velocity profile (Figure 4). As with B/H, Eq. (4.4) shows that  does not affect the peak 

velocity; the effects of the dimensionless eddy viscosity are confined to the boundary layers 
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near the banks. The uniformity of the velocity profile slightly decreases with an increase of λ. 

As shown in Eq. (4.5), the boundary layer thickness for zero or small secondary flow is 

proportional to 1/2, so a factor of 7.5 change in  results in a boundary layer that is 2.5 times 

larger. These results indicate that the dimensionless dispersion coefficient should increase as 

the dimensionless eddy viscosity increases, though perhaps not strongly.  

 

Figure 4. Effect of the dimensionless eddy viscosity on the velocity profile 

The secondary flow coefficient affects not only the symmetry of the profiles but also 

the size of the boundary layer (Figure 5). When no secondary flow is present (ϕ2 = 0), the 

velocity profile is symmetric, and as ϕ2 becomes positive and larger, the profiles become 

more skewed toward the right bank. Unlike the other three parameters, ϕ2 affects the 

thicknesses of the boundary layers on the left and right banks differently: As ϕ2 increases, the 

boundary layer on the left widens, while the boundary layer on the right contracts. Because 

the boundary layer thickness is inversely proportional to r1,2, and r2, a smaller root of the 
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linear differential equation, leads to a larger boundary layer on the left; in contrast, the larger 

root r1 induces a smaller boundary layer on the right. In the special case of no secondary flow 

(Figures 2, 3 and 4), the velocity profiles are symmetrical since the absolute values of r1 and 

r2 are equal in Eq. (3.4). Overall, the uniformity of velocity profile decreases with increasing 

secondary flow coefficient, and dispersion coefficient is expected to increase with more 

secondary flow.  

 

Figure 5. Effect of the secondary flow coefficient 2  on the velocity profile 

Dimensionless Dispersion Coefficient 

The variation of the dimensionless dispersion coefficient */K u H  with the four 

variables, shown in Figure 6 to 9, is helpful for understanding the dispersion process. From 

Eq. (3.7), the relation between the dispersion coefficient K and K* is  
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K K
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and the dispersion coefficient is normalized by u*H 
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 for a rectangular channel. The 

dimensionless dispersion coefficient is  
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  (4.8) 

The dimensionless dispersion coefficient K* is calculated by Matlab, and Dy0 is obtained by 

Eq. (2.15).  

The black stars in Figure 6 to 9 are at the base values in order to compare how other 

three variables affect the univariate figures. As in the previous subsection, B/H and */U u  are 

fixed at 41.83 and 6.45, respectively, the median values from Nordin and Sabol (1974), and λ 

is fixed at 0.067, the average assuming the law of the wall holds, and the secondary flow 

coefficient  ϕ2 is fixed at zero, which means no secondary flow occurs.  

The dimensionless dispersion coefficient varies non-monotonically with B/H (Figure 

6). The base group indicates that */K u H decreases with B/H in the range 15 < B/H < 70 and 

increases with B/H for larger values. When λ is increased to 0.3 in the green star group, the 

region of decreasing */K u H  extends to B/H = 160. As the secondary flow coefficient and 

*/U u  change for the blue and red star groups respectively, the slopes of B/H change as well. 

The change of slope indicates that the variation of */K u H  with B/H is related to the other 

three variables, yet the higher value of */U u  contributes to stabilize the slope change since 

the slope of red group shifts to be positive as */U u  decreases to 3. Also, when B/H is more 
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than 200, */K u H  of the green star group is close to that of the base value group, which 

implies that when B/H is large, the influence of dimensionless eddy viscosity on 

dimensionless dispersion is not as strong as the case that B/H is less than 100.  

 

Figure 6. Effect of /B H  on the dimensionless dispersion coefficient 

For the values of parameters considered in Figure 7, */K u H  always increases with 

*/U u . With no secondary flow (ϕ2 = 0), */K u H  is linearly proportional to */U u  on the 

log-log plot; in fact the dimensionless dispersion coefficient follows an approximately linear 

relation. The green and blue star groups are parallel to the base value group, which means 

that changing B/H and λ does not alter the variation of */K u H  with */U u . After */U u  = 

20, the slope of the red star group increases, which indicates that secondary flow influences 

the variation of */K u H with */U u . From Eq. (4.3), the secondary flow term in the 

momentum equation is important when 
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  (4.9) 

The influence of */U u  on the effect of secondary flow is large since the term has an 

exponent of −2 compared to the term involving B/H; in other words, when */U u  is large, 

secondary flow can have significant impact.  

 

Figure 7. Effect of */U u on the dimensionless dispersion coefficient 

The dimensionless dispersion coefficient also follows a power law with 

dimensionless eddy viscosity (Figure 8). Both the red and green star groups are parallel to the 

base group. Therefore, the variation of */K u H  with dimensionless eddy viscosity is not 

affected by B/H and */U u . By increasing secondary flow coefficient from zero to 0.025, the 

slope of the blue star group decreases, which means secondary flow coefficient influences the 

relation between */K u H  and .  

 



32 

 

Figure 8. Effect of dimensionless eddy viscosity on dimensionless dispersion coefficient 

The results in Figure 9 reflect the balance of terms in the momentum equation, Eq. 

(3.2). Plotting against exp(ϕ2) anticipates the empirical relation because that factor is one 

when no secondary flow exists. As the analysis of velocity profiles suggests, the 

dimensionless dispersion coefficient increases as secondary flow becomes stronger. A 

comparison of the last two terms in the momentum equation gives 
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  (4.10) 

Eq. (4.10) shows that when   
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the secondary flow is significant. That is, secondary flow becomes more important as */U u  

increases; B/H increases, or  decreases. These results can be seen by comparing the red, the 

blue, and green star curves to the base group, denoted by the black curve.  

 

Figure 9. Effect of the secondary flow coefficient, expressed as 2e
 , on the dimensionless 

dispersion coefficient 

The results for the dimensionless dispersion coefficient give insight into the empirical 

formula to be developed: 1) the dimensionless dispersion coefficient does not depend on the 

four variables in isolation; their effects can combine; 2) the secondary flow coefficient 

affects the variation of the dimensionless dispersion coefficient on the other three variables; 

and 3) */U u  has the largest influence on the magnitude of the dimensionless dispersion 

coefficient.   
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Development of the New Model for K* 

Regression Assessment  

Based on the numerical calculations, Figure 10 shows that there are approximate 

linear relations between  ln *K  and 
*

ln
U

u

 
 
 

, ln
B

H

 
 
 

,  ln  ,  2ln e
 , 

2

*

ln
U

u

  
   

  
, and 

 2

*

ln ln
U

e
u

 
 

 
 . Therefore, the regression method can be used to specify the relations 

between K* and the four variables, as well as the interaction terms.  

In Figure 10, the ranges of B/H and */U u  are from the data of Nordin and Sabol 

(1974); the dimensionless eddy viscosity varies within the range of 0.07 to 0.5 (Shiono 

1999); the secondary flow coefficient falls in the range of 0 to 0.05 (Ervine et al. 2000). The 

figures are plotted based on similar scenarios when analyzing the dimensionless dispersion 

coefficient, say observing the change of one variable by fixing other three variables. Since 

the variable in Figure 10f is an interaction term involving  2ln e
 and 

*

ln
U

u

 
 
 

, the 

comparison groups of ϕ2 are made. The comparison groups show that changing the value of 

ϕ2 does not affect the linear relationship between  ln *K  and  2ln e
 . 
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Figure 10. Multiple regression on ln( *)K  : (a) ln( *)K versus ln( / )B H ; (b) ln( *)K versus

*ln( / )U u ; (c) ln( *)K versus ln( ) ; (d) ln( *)K versus  2ln e


; (e) ln( *)K versus

   * *ln / ln /U u U u ; (f) ln( *)K versus  2

*ln( / ) lnU u e
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Regression Analysis  

 Model 6 is used for regression analysis to obtain an expression for K*. The 

relationship can be built as shown in Eq. (3.12). Table 4 shows the values of parameters, βi. 

Thus, Eq. (3.12) can be written as: 

1 2 3 4 9 114.20 ( 1.36) 1.4 0.44 ( 50.54) 0.33 46Y X X X X X X                    (4.12) 

Inserting the definitions of the model parameters and solving for K* gives 

* 2

2

1.4 0.33ln( / ) 461.36

50.540.44

*

* 0.015

U u

B U
K e

H u





 

   
   

   
   (4.13) 

the expression of dimensionless dispersion coefficient is derived as: 

* 2

2

1.4 0.33ln( / ) 460.36

50.540.44

* 0 *

0.015
2

U u

y

K B B U
e

u H D H H u





 

     
      

    
              (4.14) 

where Dy0 is defined in Eq. (2.15) and is related to the transverse mixing coefficient.  

Table 4. Parameter estimates 

 

 

 

 

 

 

 

Because the p-value is less than the level of significance, which defaults as 0.05, the 

null hypothesis is rejected. In other words, X1 X4, X9, and X11 can be modeled by multiple 

Parameter Estimates 

Variable DF 

Parameter 

Estimate 

Standard 

Error t Value Pr > |t| 

95% Confidence 

Limits 

Intercept 1 -4.19682 0.13235 -31.71 <.0001 -4.45668 -3.93696 

X1 1 -1.35955 0.01295 -105.00 <.0001 -1.38497 -1.33413 

X2 1 1.40479 0.12101 11.61 <.0001 1.16721 1.64238 

X3 1 0.43973 0.02856 15.40 <.0001 0.38365 0.49581 

X4 1 -50.54427 2.67543 -18.89 <.0001 -55.79723 -45.29131 

X9 1 0.33419 0.02953 11.32 <.0001 0.27620 0.39217 

X11 1 46.00017 1.29442 35.54 <.0001 43.45870 48.54164 
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regression. The t-statistics are given by the ratio of parameter estimate to standard error, and 

the 95% confidence intervals can be obtained based on the t-value. 

The analysis of variance for Model 6 is summarized in Table 5. There are 705 sets 

data in total, and 696 sets are used for regression analysis. Mean squared error (MSE) is 

0.069. Since the p-value is less than the level of significance 0.05, the null hypothesis, which 

is 
1 2 3 4 9 11 0           , is rejected; therefore, Model 6 is useful for estimating K*. 

The coefficient of determination R2 for Model 6 is 98.79%.  

Table 5. Analysis of variance (ANOVA) 

 

 

 

 

The previous section indicates the variables are not independently related to 

dimensionless dispersion coefficient. This model confirms observations from Figure 7 and 

Figure 9: */U u  and the secondary flow coefficient have significant interactive influence on 

the dimensionless dispersion coefficient.  

 

 

 

 

 

 

Analysis of Variance 

Source 

 DF 

Sum of 

Squares 

Mean 

Square  F Value Pr > F 

Model 6 3896.02407 649.33735 9413.47 <.0001 

Error 690 47.59594 0.06898   

Corrected Total 696 3943.62001    



38 

Evaluation of the New Model 

 The new model Eq. (4.14) is assessed in this section by using data from the laboratory 

experiments of Perucca et al. (2009) and Wang & Huai (2016) shown in Table 6 and plotted 

in Figure 11. Both research groups conducted experiments for flows in straight rectangular 

channels, for which Dy0 is 0.15. Neither research group estimated values of λ and ϕ2. 

However, the values can be estimated based on previous work. Shiono and Knight (1991) 

indicated that λ is 0.13 for open channels, and that value is adopted here. Ervine et al. (2000) 

found that ϕ2 is less than 0.5% if a channel is straight and between 2%-5% when a channel is 

meandering. Because secondary flow coefficient is related to the transverse mixing 

coefficient (Deng et al. 2001), an estimate for ϕ2 is  

 0

02

0.145
0.05 0.11 0.145

0.6 0.145

y

y

D
D


  


    (4.15) 

where the values of 0.145 and 0.6 are the lower and upper bounds of Dy0 respectively from 

Fischer et al. (1979). Once Dy0 is computed with Eq. (2.15) ϕ2 can be computed with Eq. 

(4.15).  
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Table 6. Comparison with lab experiment data. The channel slope is 0.00075 for the study of 

Perucca et al. (2009) and 0.0004 for the study of Wang & Huai (2016). The Manning 

roughness coefficient is 0.01 for both. 

 

  

 

Figure 11. Comparison of Knew1 in Eq.(4.14) and tracer study measurements. The solid line 

shows the case in which Knew1 is equal to Ktracer; the two dashed lines bound the range of 

0.5<Knew1/ Ktracer<2.  

Research 

Group 
B (m) H (m) U (m/s) u* (m/s) Ktracer (m

2/s) 
Knew1 (m

2/s) 

Eq.(4.14) 

Perucca et al. 

(2009) 

0.44 0.035 0.104 0.016 0.01 0.00539 

0.44 0.04 0.188 0.017 0.017 0.03382 

0.44 0.053 0.232 0.02 0.032 0.05152 

0.44 0.05 0.136 0.019 0.006 0.01042 

0.44 0.068 0.144 0.022 0.013 0.01143 

0.44 0.082 0.166 0.025 0.035 0.01532 

0.44 0.065 0.087 0.022 0.01 0.00313 

Wang & Huai 

(2016) 

  

  

  

  

1 0.12 0.11 0.022 0.0137 0.01086 

1 0.14 0.118 0.023 0.0165 0.01344 

1 0.16 0.125 0.025 0.0219 0.01500 

1 0.18 0.133 0.027 0.0254 0.01965 

1 0.2 0.14 0.028 0.0239 0.02356 
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The new formula predicts dispersion coefficients from laboratory experiments well 

(Figure 11). Nine of the twelve estimates from Knew1 fall in the range of 0.5 < Knew1/Ktracer < 2, 

and only two estimates—all from the data of Perucca et al. (2009)—have comparatively large 

error. Knew1 estimates perform better with the experimental results of Wang & Huai (2016). 

The discrepancy ratio in Eq. (2.13) is employed to assess the accuracy of Knew1 more 

quantitatively.  

1
10DR(new1) log new

tracer

K

K

 
  

 
     (4.16) 

The mean of DR(new1) is -0.088, and the median is -0.095. The overall estimates from Knew1 

tend to be slightly underestimated but still in a reasonable range (e.g., the standard deviation 

is 0.24), and both the mean and median values of DR(new1) are close to zero, where Knew1 is 

equal to Ktracer,  

 To be used in predicting dispersion coefficients in natural channels, the estimates 

need to be adjusted. When Knew1 is applied to the data of Nordin and Sabol (1974), the 

dispersion coefficients are underestimated by two orders of magnitude. As noted in chapter 2, 

Deng et al. (2001) and Wang and Huai (2016) made similar adjustments to their formulas, 

which were derived for straight channels with smooth banks. Since the model of Wang and 

Huai (2016) and the new model are based on the momentum equation (Shiono and Knight 

1991) and the dispersion coefficient solution in Eq. (2.1), a relationship between K1 in Eq. 

(2.23) from Wang and Huai (2016) and Knew1 is expected (Figure 12). The model of Wang 

and Huai (2016) is defined as 

20.6239

1

* *

0.0798
K B U

u H H u

  
   

   
, which is derived from building 

an univariate model for B/H to estimate the triple integral in Eq. (2.1). 
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Figure 12. 1

*

ln( )newK

u H
versus 1

*

ln
K

u H

 
 
 

  

In Figure 12, the relation between K1 estimated from Wang and Huai and Knew1 is 

11

* *

ln 0.7655ln 0.9587newKK

u H u H

   
    

   
     R2 = 0.9888   (4.17) 

Then plugging Eq. (4.17) into Eq. (2.23) to get 2

*

ln
K

u H

 
 
 

 , and in this case   

22

* *

ln ln newKK

u H u H

   
   

   
    (4.18) 

A new revision model is built: 

2 1

* *

ln 0.4451ln 4.821new newK K

u H u H

   
    

   
    (4.19) 

and the form of Eq.(4.19) can be changed into 
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2
* 2

0.62 0.15ln( ) 20.47
22.50.16 0.45 0.22

0.4451

* 0

19.14
( ) ( 2) ( )

( ) *

U

unew

y

K B B U
e

u H D H H u




 
    (4.20) 

Knew2 is the revised model of Knew1 for calculations for natural rivers,  

 

Figure 13. Comparison of models for the dispersion coefficient for natural rivers; the two 

dash lines bound the range of 0.5<Kpredicted / Ktracer<2. 

 The revised model in Eq. (4.20) is evaluated with the data from Nordin and Sabol 

(1974) and compared with the models of Deng et al. (2001) and Wang and Huai (2016) in 

Figure 13. The secondary flow coefficient ϕ2 is estimated from Eq. (4.15), and dimensionless 

eddy viscosity is set to be 0.27 for smooth floodplain (Shiono 1999). The three models are 

selected because all three are based on Taylor’s shear dispersion theory. Eq. (4.20) and the 
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model of Wang & Huai (2016) produce similar results; both models underestimate slightly 

on average because the mean and median of both models are −0.12. The standard deviations 

of both models are less than half an order of magnitude. The predictions of Deng et al. (2001) 

tend to overestimate by about half an order of magnitude.  

Summary 

Examining how the velocity profiles and dimensionless dispersion coefficient vary 

with the aspect ratio, friction factor, dimensionless eddy viscosity, and secondary flow 

coefficient shows that the variation with each variable cannot be isolated. Therefore, a model 

with appropriate interaction terms is selected, and regression analysis is used to obtain Knew1, 

an expression for the dispersion coefficient. Applied to laboratory data, the expression 

predicts 83.3% of the results within a factor of 2—that is, 0.5 < Knew1/Ktracer < 2. However, 

Knew1 underestimates dispersion for natural rivers since the environmental conditions are 

more complicated than lab conditions. Therefore, Knew1 is adjusted using the revision model 

from Wang and Huai (2016). The new expression Knew2 performs better than the model of 

Deng et al. (2001) model about as well as the model of Wang and Huai (2016).  
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CHAPTER 5. CONCLUSION  

 This research aimed to provide better estimates for the dispersion coefficient with 

limited information, such as knowing B/H and */U u  only. By utilizing the observed ranges 

of secondary flow coefficient (e.g., relating the secondary flow coefficient to the transverse 

mixing coefficient) and certain values of dimensionless eddy viscosity (say λ = 0.067, 0.13, 

and 0.27 for the boundary layer, open channel, and smooth floodplain, respectively), the 

dispersion coefficient can be justified with two more factors for improving the accuracy of 

the estimation. The expression for K is developed using the shear dispersion theory of Taylor 

(1954) and the momentum equation presented by Shiono and Knight (1991). Multiple 

regression is used to relate the dimensionless dispersion coefficient K* to B/H, */U u , the 

dimensionless eddy viscosity , and the secondary flow coefficient 2, and an appropriate 

model is selected with two interaction terms, involving */U u  and 2e
 . Thus, the initial 

model Knew1 is estimated. The initial model fits the experiments results conducted by Perucca 

et al. (2009) and Wang & Huai (2016) well: 83.3% of the experimental results are predicted 

within the range 0.5 < Knew1/Ktracer < 2. However, an adjustment needs to be made since the 

initial model underestimates the dispersion coefficient for natural channels. By using the 

revision model provided by Wang and Huai (2016), the second model Knew2 is obtained. The 

performance of Knew2 for natural rivers is better than the model of Deng et al. (2001), and it is 

as good as the model produced by Wang & Huai (2016), which is tested to be relatively 

accurate with the data of Nordin and Sabol (1974).   
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APPENDIX A MATLAB CODES 

K* calculation 

% Oct. 5, 17  
% Yuqi Song 
% Data Input for Kstar Calculation 

  
    clear; close all 

     
    % read data 

[NSdata] = xlsread('C:\Users\Yuqi 

Song\Desktop\Thesis\Thesis\NSdata.xlsx','Sheet3'); 

  

    % obtain variables  
    w1     = NSdata(:,6)';         % w1   = B/H 
    u1     = NSdata(:,7)';         % u1   = U/ustar 
    L      = NSdata(:,8)';         % lambda is the lateral dimensionless           

eddy viscosity 
    Phi_2  = NSdata(:,9)';         % secondary flow coefficient 
    f      = 8.*u1.^(-2);          % f is friction factor;     
    g      = 9.8; 
 

    % Kstar calculation 
Kstar  = Calcs_K_Function(w1,f,L,phi_2);        % K* 

 

 

Calcs_K_Function 

function [K] = Calcs_K_Function(w1,f,L,phi_2) 

  

  
    % Sept. 16, 17 
    % Yuqi Song 
    % Momentum Method for getting dispersion coefficient 

         
    g  = 9.8;           %  Acceleration of gravity (m/s2) 
    ny = 101;           %  Number of points in y 

  

     
    y = linspace(0,1,ny); 

    
    % r1, r2, A1, A2, wd equations 

  
    r1   = w1./L.*sqrt(8./f).*(phi_2+sqrt(phi_2.^2+L.*f.*sqrt(f./8)./4)); 

     
    r2   = 2.*phi_2.*w1./L.*sqrt(8./f)-r1; 

     
    wd   = g*(8./f); 

     
    A1   = (exp(r2)-1)./(exp(r1)-exp(r2)); 
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    A2   = (exp(r1)-1)./(exp(r2)-exp(r1));      

         
    for i  = 1:length(w1) 
        u  = 

sqrt((wd(i).*A1(i).*exp(r1(i).*y)+wd(i).*A2(i).*exp(r2(i).*y)+wd(i))./g); 
        uprime = u-trapz(y,u); 
        K(i) = -trapz(y,uprime.*cumtrapz(y,cumtrapz(y,uprime))); 
    end 
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APPENDIX B STABILIZATION DATA 

Table 7. Stabilization data 

U/u* B/H λ ϕ2 

16 6.448529 0.13 0.02 0.005 

30.88889 6.448529 0.13 0.02 0.005 

45.77778 6.448529 0.13 0.02 0.005 

60.66667 6.448529 0.13 0.02 0.005 

75.55556 6.448529 0.13 0.02 0.005 

90.44444 6.448529 0.13 0.02 0.005 

105.3333 6.448529 0.13 0.02 0.005 

120.2222 6.448529 0.13 0.02 0.005 

135.1111 6.448529 0.13 0.02 0.005 

150 6.448529 0.13 0.02 0.005 

41.83333 3 0.13 0.02 0.005 

41.83333 4.666667 0.13 0.02 0.005 

41.83333 6.333333 0.13 0.02 0.005 

41.83333 8 0.13 0.02 0.005 

41.83333 9.666667 0.13 0.02 0.005 

41.83333 11.33333 0.13 0.02 0.005 

41.83333 13 0.13 0.02 0.005 

41.83333 14.66667 0.13 0.02 0.005 

41.83333 16.33333 0.13 0.02 0.005 

41.83333 18 0.13 0.02 0.005 

41.83333 6.448529 0.13 0.02 0.005 

41.83333 6.448529 0.152222 0.02 0.005 

41.83333 6.448529 0.174444 0.02 0.005 

41.83333 6.448529 0.196667 0.02 0.005 

41.83333 6.448529 0.218889 0.02 0.005 

41.83333 6.448529 0.241111 0.02 0.005 

41.83333 6.448529 0.263333 0.02 0.005 

41.83333 6.448529 0.285556 0.02 0.005 

41.83333 6.448529 0.307778 0.02 0.005 

41.83333 6.448529 0.33 0.02 0.005 

41.83333 6.448529 0.13 0 0 

41.83333 6.448529 0.13 0.003889 0.003889 

41.83333 6.448529 0.13 0.007778 0.007778 

41.83333 6.448529 0.13 0.011667 0.011667 

41.83333 6.448529 0.13 0.015556 0.015556 

41.83333 6.448529 0.13 0.019444 0.019444 
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41.83333 6.448529 0.13 0.023333 0.023333 

41.83333 6.448529 0.13 0.027222 0.027222 

41.83333 6.448529 0.13 0.031111 0.031111 

41.83333 6.448529 0.13 0.035 0.035 
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