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ABSTRACT 

To improve predictions of contaminant transport in rivers, two analytical models and 

one empirical model were evaluated. Analytical solutions of the model of Reichert and 

Wanner (1991), which represents mixing in the advective zone by dividing the channel into a 

flowing zone and a stagnant zone, were developed for two cases: a spill in the stagnant zone 

and a maintained injection in the flowing zone. Compared to the case of a flowing zone spill 

solved by Schmalle and Rehmann (2014), contaminant clouds for a stagnant zone spill travel 

more slowly, spread more, and shift from positive to negative skewness. These differences 

are due to the initial delay in advection of the cloud caused by transfer from the stagnant 

zone to the flowing zone. The solution for a maintained injection in the flowing zone differs 

from that from the ADE only for small times and distances from the source. This study 

provides further solutions to be used as building blocks in constructing more complex 

solutions for contaminant transport in the advective zone of a river.  

The second model introduces an analytical solution for a transient storage model that 

accounts for surface storage and hyporheic exchange as well as for lateral inflow and decay 

in the main channel and two storage zones. Analysis of temporal moments shows that the 

subsurface storage zone affects the transport even if the transfer coefficient between 

subsurface storage and the main channel is two orders of magnitude smaller than the transfer 

coefficient for surface storage. The analytical solution for the two-storage model is not only 

practical but it also avoids the challenges of modifying and calibrating the existing numerical 

model that accounts for only one storage zone.   

To avoid the challenges of estimating the parameters for mixing models from limited 

data about the flow, an empirical model was developed that uses data readily available at 
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gaging stations operated by the U.S. Geological Survey (USGS). The empirical model 

represents the tracer response with the Gumbel distribution, which has a skewness coefficient 

close to the value observed in tracer studies. The proposed model predicts arrival times of the 

leading and trailing edge better than a similar method developed by the USGS, and it 

underestimates the peak concentration by an average of 17%. The proposed method mimics 

the non-Fickian behavior of the transport observed in rivers while avoiding the computational 

cost and data requirements of more complex models. 



1 

CHAPTER 1.    INTRODUCTION 

Significance and Problem Definition  

Many municipalities across the United States rely on rivers as a primary source of 

drinking water (Waldon 1998), and a leak or spill of toxic chemicals is an ever-present 

danger both to the river and to downstream municipalities. Such a dramatic spill occurred in 

Charleston, WV in 2014. Crude 4-methylcyclohexanemethanol (MCHM), a highly toxic 

chemical used in coal mining, leaked from a chemical plant near the Elk River approximately 

1.6 km upstream of the water intake for the Charleston, WV metropolitan area. This spill 

affected almost 300,000 people and left them without access to drinking water for more than 

a week (Mistich 2017). In addition to chemical plants located near rivers, thousands of 

gallons of chemicals are transported on highways and railroads every day, and accidents on 

highways or railroad bridges are almost inevitable. After a Canadian National rail accident at 

a bridge over the Cheakamus River north of Vancouver, British Columbia, 41,000 L of a 

highly toxic chemical was released into the river and affected the biota in the river and 

surrounding areas (Rivord et al. 2014). Forecasting and responding to such spills requires 

efficient and reliable methods for predicting contaminant transport.  

To predict the concentration C of a contaminant as a function of time t and distance x, 

the one-dimensional advection dispersion equation (ADE) 

2

2

C C C
U K

t x x

  
 

  
    (1.1) 

is commonly used (Schmalle and Rehmann 2014). The ADE results from the shear 

dispersion theory of Taylor (1954), and it requires only two parameters: the mean velocity U 

and the dispersion coefficient K. The simplicity and attractiveness of the ADE comes with 
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some limitations. For example, the ADE applies only when the tracer or the contaminant is 

fully mixed across the river channel, or, in other words, beyond the advective zone. The 

length of the advective zone can be small for creeks, narrow rivers, and irrigation canals and 

large for wider channels, ranging from meters to hundreds of kilometers (Schmalle and 

Rehmann 2014). In the advective zone, Taylor’s dispersion theory does not apply, and a 

different model is needed.  

A few models address contaminant transport in the advective zone of a river but, 

because of the complexity of transport near the source, some either require a great deal of 

information about the flow (Boxall and Guymer 2003; Zhang 2011) or need to be calibrated 

for dispersion (Pagsuyoin et al. 2012). A relatively simple model that separates the river 

channel into two sections—a flowing zone and a stagnant zone—was proposed by Reichert 

and Wanner (1991) and solved analytically by Schmalle and Rehmann (2014). This model 

predicts concentrations better than the ADE, but the only available analytical solution 

focuses on the case of instantaneous injection in the flowing zone. To construct more general 

solutions for transport in the advective zone, this model needs to be evaluated for a greater 

range of contaminant transport scenarios.   

Although ADE becomes applicable once the contaminant or tracer has passed the 

advective zone, tracer studies have shown that tracer response curves are more skewed and 

long-tailed than the Gaussian distribution predicted by the ADE. Over long distances the 

contaminant experiences disturbances such as pools, riffles, boulders, debris, and 

recirculation zones in the river channel, and it can interact with ground water. These factors 

cause tracer response curves to be skewed and long-tailed (Nordin and Troutman 1980). A 

model that attempts to predict the non-Gaussian behavior of the tracer response curves and 
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account for the aforementioned factors is the transient storage model (TSM) (Bencala and 

Walter 1983; Nordin and Troutman 1980). The TSM resembles the ADE but adds the 

element of exchange between the main channel and a storage zone.   

While the TSM produces much better results than the ADE (Deng et al. 2004), 

detailed tracer studies have shown that the transfer rate between the main channel and surface 

storage zone differs from the transfer rate between the main channel and the subsurface, with 

faster exchange occurring at the surface and slower exchange occurring within the 

subsurface. The greater residence time in the subsurface can affect the chemical behavior of 

the contaminant (Choi et al. 2000), so Choi et al. (2000) and Phanikumar et al. (2007) 

suggest separating the transfer at the surface and the transfer within the subsurface by 

introducing a second storage zone into the TSM.  

Tracer studies have been modeled with a modified version of the One-Dimensional 

Transport with Inflow and Storage (OTIS) package that was originally designed for 

onestorage zone (Runkel 1998). Although OTIS can be conveniently used for a prescribed 

mass flux varying with time, it must be calibrated for instantaneous slug releases by defining 

upper boundary conditions that vary with time (De Smedt et al. 2005). To avoid challenges 

of modifying OTIS and calibrating it to instantaneous slug releases, an analytical model for a 

two-storage TSM is needed. 

Despite the fact that the TSM and the advective zone model are reliable and efficient 

methods for analyzing contaminant transport in rivers, the parameters involved in these 

models are most reliably determined in tracer experiments whose results apply only to 

specific flow conditions at the time of the experiment. Also, conducting detailed tracer 

studies to estimate model parameters is not cost-effective. To avoid the challenges of 



4 

estimating the parameters involved in other mixing models, Jobson (1997) introduced a 

method to estimate travel times and concentrations of a contaminant using only the 

discharge, the mean annual discharge, the drainage area, and the slope of a river. Although 

Jobson’s approach is easy to use, it has shortcomings arising from its simplicity. For 

example, the method does not account for the constant skewness coefficient of 1.18 observed 

in measured tracer response curves (Gonzalez-Pinzon et al. 2013). To improve predictions of 

contaminant transport with limited data, a method that accounts for constant skewness is 

needed. 

Objectives  

The overall objective of this research is to develop models that can be used to predict 

contaminant transport.  

1) The objective of Chapter 2 is to expand the analytical solutions available for constructing 

solutions for contaminant transport in the advective zone. Solutions using the model of 

Reichert and Wanner (1991) will be presented for a contaminant spill that occurred in the 

non-flowing section of a river and maintained pollution in the flowing section of a river. 

2) The objective of Chapter 3 is to develop an analytical solution using a transient storage 

model with two storage zones that accounts for lateral inflow and decay in the main 

channel as well as in the storage zones. 

3) The objective of Chapter 4 is to develop empirical relationships that can be used to predict 

tracer response curves that produce improved estimates of travel time and concentrations 

and maintain the persistent skewness observed in the field. 
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Organization of the Dissertation  

The following chapters discuss improvements to models of contaminant transport. A 

model for predicting contaminant concentrations near the source is developed in Chapter 2. 

Chapter 3 focuses on a model that accounts for two storage zones, lateral inflow, and decay 

in predicting contaminant transport farther downstream. Chapter 4 presents an empirical 

model that accounts for the persistent skewness observed in tracer-response curves measured 

in field experiments. Conclusions and possible future studies are described in Chapter 5.  
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CHAPTER 2.    FURTHER ANALYTICAL SOLUTIONS FOR CONTAMINANT 

TRANSPORT IN THE ADVECTIVE ZONE OF A RIVER  

A paper to be submitted to the Journal of Hydraulic Engineering 

Rusen Sinir, Chris Rehmann, and Halil Ceylan 

Abstract  

To address limitations of the one-dimensional advection-dispersion equation (ADE) 

in describing the advective zone of a river, analytical solutions for two more cases of a model 

proposed by Reichert and Wanner (1991) for advective zone contaminant transport are 

obtained and evaluated. The governing equations of the model, which divides the river 

channel into a flowing zone and a stagnant zone, are solved for the case of a spike injected 

into the stagnant zone of a river channel and for the case of maintained injection, where 

concentration at a point in the flowing zone is held constant. Compared to the case of a 

flowing zone spill, contaminant clouds for a stagnant zone spill travel more slowly, spread 

more, and shift from positive to negative skewness. These differences are due to an initial 

delay in advection of the cloud caused by transfer from the stagnant zone to the flowing 

zone. The solution for a maintained injection in the flowing zone differs from that obtained 

from the ADE only at small times and distances from the source. The present study provides 

further solutions to be used as building blocks in constructing more complex solutions for 

contaminant transport in the advective zone of a river.   

Introduction  

The one-dimensional advection dispersion equation (ADE) has been extensively 

studied and applied to numerous problems in river mixing under different conditions to 

estimate concentrations of contaminants after spills. Although the ADE approach is attractive 
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and easy to implement, it is limited to the far field, and it does not apply unless a balance 

between differential advection and transverse mixing is reached (Fischer et al. 1979; Taylor 

1954). The required distance can range from as small as 10 m in narrow streams to 1000 m in 

large rivers (Schmalle and Rehmann 2014). Hence, better models for estimating contaminant 

transport in the advective zone of a river are needed.  

To improve the accuracy of the estimates, several studies have used two- or three-

dimensional versions of the ADE to deal with the complexity of near-field processes 

(Pagsuyoin et al. 2012; Ye and McCorquodale 1996; Zhang 2011). For example, Pagsuyoin et 

al. (2012) used a two-dimensional model that accounts for advection and spreading in the x- 

and y-directions only. Because this model does not account for dispersion, spreading 

coefficients must be calibrated. Another two-dimensional model by Zhang (2011), which 

accounts for eddy diffusivities requires a great deal of additional information and 

computational effort. Knowledge of the detailed velocity distribution allows dividing the 

river channel into multiple stream tubes (Boxall and Guymer 2003), but that approach 

increases the complexity of the predictions.  

Reichert and Wanner (1991, hereafter referred to as R&W) proposed a model to 

capture key elements of the transport in the near field such as arrival time of the centroid and 

peak concentration. The model divides the river channel into a flowing zone and a stagnant 

zone. The fraction of the channel occupied by the stagnant zone is . The flowing zone 

velocity is U/(1-), whereas the stagnant zone has zero velocity. Transfer between the two 

zones is controlled by the transfer coefficient .  The governing equations for the 

contaminant concentrations C1 for the flowing zone and C2 for the stagnant zone are given as 
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where t is time and x is the streamwise coordinate. Because R&W did not disclose their 

solution method, Schmalle and Rehmann (2014) introduced an analytical solution to avoid 

challenges of numerically solving hyperbolic partial differential equations and to increase the 

accuracy and the effectiveness of the model. 

The R&W model produces better results than the one-dimensional ADE for 

concentrations in the advective zone with less information and effort than two- or three-

dimensional models require (Schmalle and Rehmann 2014). The case when instantaneous 

injection occurs in the flowing zone was studied and understood well by R&W and Schmalle 

and Rehmann (2014). They found that (1) increasing the stagnant zone fraction  decreases 

the peak concentration and increases the spread of the cloud and (2) increasing transfer 

coefficient β causes an increase in the peak concentration and a decrease in the spread of the 

cloud. They also discussed that narrow initial pulses cause an additional pulse to occur on the 

tracer response curves. Schmalle and Rehmann (2014) also gave analytical expressions for 

estimating the parameters (U, , ) involved in the governing equations from measurements.  

Although the solution of Schmalle and Rehmann (2014) allows solutions for other 

types of contaminant injections in the flowing zone to be constructed using superposition, it 

does not address injections into the stagnant zone. To be able to construct additional solutions 

for estimating concentrations in the advective zone, the objective of this study was to 

investigate two more cases: (1) an instantaneous injection into the stagnant zone and (2) a 

maintained injection into the flowing zone. The solutions are derived in the next section, and 

the results for tracer-response curves and spatial moments are presented in the following 



10 

section. After the behavior of spatial moments and concentration curves are discussed, 

conclusions are presented. 

Methods  

The solution of the system of Eqs. (2.1) and (2.2) for a spill in the stagnant zone 

proceeds by applying a Laplace transform in time and solving the system of ordinary 

differential equations (ODEs) in space . The initial conditions for the system of equations for 

spill in the stagnant zone case are that there is no contaminant in the flowing zone—i.e., 

1( ,0) 0C x  —and there is an instantaneous injection (spike) into the stagnant zone: C2(x,0) = 

(M/A)(x), where M is the initial mass of the spill, A is the cross-sectional area of the river 

channel, and (x) is the Dirac delta function.  

The Laplace transform of concentrations in zone j is given by 

      
0

, , ,st

j j jL C x t C x s e C x t dt



        (2.3) 

Upon applying the Laplace transform to Eq.(2.2), one can obtain  2 ,C x s  as  

      2 1 2, , ,0C x s C x s C x
s s
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2C  can then be eliminated from the transformed form of Eq. (2.2) for 1C  using Eq. (2.4) to 

obtain a first order ODE 
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The solution of Eq. (2.5) with the given boundary conditions and for the case of no transfer 

between zones ( = 0) is 
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. One can then obtain  2 ,C x s by substituting Eq. (2.6) into 

Eq. (2.4)  
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The convolution theorem allows the concentrations in the flowing and stagnant zones to be 

expressed as  
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where 
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where H(z) is the step function and I1(z) is the modified Bessel function of the first kind and 

the first order.  

The solution of the system of Eqs. (2.1) and (2.2) for maintained pollution in the 

flowing zone follows the same procedure used for the spill in the stagnant zone. In the case 

of maintained pollution, the concentration at x = 0 is held constant at C0 (C1(0,t) = C0), and 

the river channel is initially clean everywhere (C1(x,0) = 0). The solution of Eq. (2.5) is 
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and from Eq. (2.4) 
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Inverting the transforms gives 
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Computing the concentrations requires numerically evaluating the integrals in Eqs. 

(2.8) and (2.9) because they do not have closed-form solutions. To reduce computational cost 

and increase accuracy of the integrals, Gaussian quadrature is used.  

Computing spatial and temporal moments provides an understanding of how bulk 

quantities such as the mass, position of the centroid, and skewness behave and helps to 

determine the parameters involved in the model from field measurements (Schmalle & 

Rehmann 2014). To compute spatial and temporal moments, the approach presented by 

Schmalle and Rehmann (2014) is followed. Results are listed in the Appendix. 
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Results 

 

Fig. 2.1. Evolution of parameters computed from spatial moments: (a) position of the 

centroid; (b) variance; (c) rate of change of the variance; (d) skewness. Results are computed 

for  = 0.15. 

At large times the spatial moments in flowing and stagnant zones behave similarly, 

but at small times the behavior differs (Fig. 2.1). At small times (t/T < 3, where T = 

(1−)/), although the centroid for the stagnant zone moves quite slowly, the centroid for 

the flowing zone and centroid for the entire channel move at a speed slightly less than U [Fig. 

2.1(a)]. The variance for the stagnant zone behaves differently from the variances for the 

flowing zone and the entire channel at small times (t/T < 6). For t/T < 2, the variance for the 

stagnant zone is less than those for the entire channel and the flowing zone and it grows 

faster for 1 < t/T < 3 [Fig. 2.1(b)]. The rate of growth of variance for stagnant zone increases 
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well above 2K∞ and begins to decrease after t/T=3 (Fig. 2.1(c)). The skewness coefficient for 

the stagnant zone is initially zero because of the initial condition of a spike. For t/T < 2, it is 

extremely large because the spike takes time to develop a Gaussian-like distribution. As time 

increases, values of the skewness coefficient for the stagnant zone, the flowing zone, and the 

entire channel all approach zero. This is expected because of the asymptotic behavior of the 

model as either time or distance downstream increases [Fig. 2.1(d)]. 

 

Fig. 2.2. Comparison of the spatial moments for a spill in the stagnant zone and a spill in the 

flowing zone. 

Because of the asymptotic behavior of the R&W model, the behavior of the spatial 

moments for the cases of a spill in the flowing zone and a spill in the stagnant zone have 

similarities after sufficient time has elapsed. Spatial moments of the entire channel for both 
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cases were computed to compare their behavior. At early times (about t/T < 2), the centroid 

for a spill in the stagnant zone moves more slowly than the centroid for a spill in the flowing 

zone [Fig. 2.2(a)]. The variance for a spill in the stagnant zone is larger than the variance for 

a spill in the flowing zone [Fig. 2.2(b)], and the rate of growth for a spill in the stagnant zone 

case is larger than the growth rate of a spill in the flowing zone case until they both approach 

2K∞ [Fig. 2.2(c)]. At early times, the skewness for a spill in the stagnant zone is positive, 

while it is negative for a spill in the flowing zone [Fig. 2.2(d)]. 

 

Fig. 2.3. Comparison of tracer-response curves for a spill in the stagnant zone (solid line) 

and a spill in the flowing zone (dotted line). The initial mass is the same. 
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Tracer-response curves for the cases of spills in the flowing and stagnant zones differ 

near the source but approach one another farther downstream (Fig. 2.3). The comparison 

involves an initial Gaussian pulse for the case of a spill in the flowing zone, as in Schmalle 

and Rehmann (2014), and an initial spike for the case of a spill in the stagnant zone; the cases 

have the same initial mass. For xʹ = Dyx/(UB2) < 0.08, where the model should not apply 

(R&W), the shapes of the curves for the two cases are quite different. The curve for the 

stagnant zone injection exhibits a sharp front and a long tail, while the concentrations for the 

flowing zone injection reach a peak value greater by more than a factor of 2. The sharp front 

for the stagnant zone injection remains visible throughout the advective zone, though by xʹ = 

0.28 it is small. As Schmalle and Rehmann (2014) discuss in detail, a narrow initial pulse can 

lead to a separate pulse in the tracer-response curves for the case of spill in the flowing zone. 

On the other hand, a spill in the stagnant zone case does not yield a separate pulse in 

downstream concentrations.  

Except for small times and small distances from the source, the R&W model applied 

to a maintained injection in the flowing zone yields results similar to those predicted with the 

ADE (Fig. 2.4). The main difference is the arrival of the contaminant at the measurement 

site. While the ADE predicts a smooth increase from zero in concentration, the R&W model 

yields a sharp jump in concentration. Differences between the predictions of the two models 

are largest for small values of xʹ. By xʹ = 0.28, the predictions are nearly identical, but even 

for small values of xʹ, the concentrations are close for Ut/x > 1.  
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Fig. 2.4. Comparison of R&W model and ADE for the case of a maintained injection in the 

flowing zone.  Results are computed for   = 0.15,   = 4.5 × 10-3 s-1, and U = 0.6 m/s. 

Discussion 

Differences arise in the spatial moments between the case with a flowing zone 

injection and the case with a stagnant zone injection because of initial movement of the tracer 

cloud. In the case of a spill in the flowing zone, the cloud begins moving downstream and 

exchanging with the stagnant zone immediately, while in the case of spill in the stagnant 

zone, the cloud first transfers from the stagnant zone to the flowing zone and then starts 

moving downstream. Therefore, the centroid for the stagnant zone in the case with a stagnant 

zone injection moves little at early times [Fig. 2.1(a)], while centroids for a spill in the 

flowing zone move at a speed closer to U (Schmalle and Rehmann 2014). The majority of the 
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initial contaminant is transferred to the flowing zone and moving downstream by the time the 

centroid for the stagnant zone moves at the same rate as the centroid for the flowing zone 

[Fig. 2.1(a)]. This delay in advection causes the centroid for the entire channel to move 

slower in the case of a stagnant zone spill than the centroid for the entire channel for a 

flowing zone spill [Fig. 2.2(a)].  

Differences in behavior caused by initial conditions can be observed for higher 

moments as well. For a flowing zone spill the variance for the stagnant zone always exceeded 

the variances for both the flowing zone and the entire channel (Schmalle and Rehmann 

2014). For a stagnant zone spill, however, the variance for the stagnant zone is less than 

variances for the flowing zone and the entire channel at small times and then rapidly 

increases and becomes larger than variances for the flowing zone and the entire channel [Fig. 

2.1(b)]. This rapid increase arises because, although most of the contaminant is being 

transported downstream, a small amount remains at the injection site. In a similar way, the 

skewness differs between the flowing zone injection and the stagnant zone injection. In the 

former case, in which the cloud begins moving immediately, the skewness is negative 

throughout the advective zone (Schmalle and Rehmann 2014). In the latter case, because 

downstream concentrations are less than upstream concentrations at small times, the 

skewness coefficient for the stagnant zone is positive; once the bulk of the cloud is moving 

downstream, the skewness becomes negative [Fig. 2.2(d)].  

To compute tracer response curves, the case with stagnant zone injection uses a spike 

as an initial condition, while the case with flowing zone injection uses a Gaussian pulse with 

restrictions on the initial width (Schmalle and Rehmann 2014). Having an initial pulse that is 

too narrow causes an additional pulse to occur in the tracer response curves for the case with 
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a flowing zone injection (Fig. 2.3), while an additional pulse does not occur in the case with 

stagnant zone injection even if the initial condition is a spike. The hyperbolic nature of Eq. 

(2.1) shows that an initial spike will be advected downstream as exchange with the stagnant 

zone occurs. In contrast, for a stagnant zone injection, advection does not occur until 

contaminant has transferred from the stagnant zone to the flowing zone. To model a flowing 

zone injection, recommendations by Schmalle and Rehmann (2014) with respect to the width 

of the initial Gaussian pulse should be followed to avoid an additional pulse in the tracer 

response curves.  

Although the R&W model outperformed the ADE in predicting measured 

concentrations in the advective zone of a river for an instantaneous injection (Schmalle and 

Rehmann 2014), results from the R&W model for a maintained injection in the flowing zone 

do not differ significantly from the predictions of the ADE (Fig. 2.4). The R&W model 

predicts a sharp front in the tracer response curve and therefore a later arrival of the 

contaminant at a measurement site (Fig. 2.4) because it does not account for dispersion. 

Measurements in the advective zone for a maintained injection are needed to evaluate how 

well the R&W model predicts compared to the ADE. 

The work presented here expands the solutions available for predicting contaminant 

transport in the advective zone. As Schmalle and Rehmann (2014) discuss, R&W presented 

examples of predictions of their model but gave no details of the solution method as to 

whether it was analytical or numerical. The analytical solution of Schmalle and Rehmann 

(2014) provides a way to estimate concentrations in the advective zone without the cost and 

effort of a numerical solution, but it is limited to a flowing zone injection. The present study 
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fills this gap by providing further analytical solutions that can be used to construct solutions 

for other injection types using superposition, as in Fischer et al. (1979, ch. 2).   

Conclusions  

To estimate contaminant transport in the advective zone of a river and construct 

useful solutions for different scenarios of contamination in rivers, the model proposed by 

Reichert and Wanner (1991) was solved analytically using Laplace transforms and evaluated 

for two cases: a spill in the stagnant zone and a maintained injection in the flowing zone. The 

delay in advection of the contaminant cloud caused by transfer from the stagnant zone 

explains the differences between the solution for a stagnant zone injection and the solution 

for the flowing zone injection: For the case of stagnant zone injection the centroid of the 

cloud moves more slowly, the variance is larger, and the skewness starts positive before 

becoming negative. As R&W showed, far enough downstream all solutions of their model 

approach the ADE solution. The solution of the R&W model for a maintained injection in the 

flowing zone is similar to the solution from the ADE; differences appear at small times and 

distances from the source. This work expands the solutions available for constructing more 

complex solutions and predicting contaminant transport in the advective zone. 
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Appendix. Computation of Spatial and Temporal Moments 

Spatial moments are obtained by solving a system of equations derived by 

multiplying Eqs. (2.1) and (2.2) by xn and then integrating, as described by Schmalle and 

Rehmann (2014). The initial conditions for the system of moment equations are all zero 

except that S0x = M/α, where M is the initial mass of contaminant injected per unit area. 

    0 1 e t T

xF t M      (2.16) 

  
 

0

1
1 e t T

xS t M





 

  
 

  (2.17) 

  
 

2 3 2 3

1 {e 3 2 ] [3 2 ]}
1

[x

t TMU
F t t t t        

 

        


  (2.18) 

   2 2

1 {e [2 2 ] [2 2 ]}t T

x

MU
S t t t     



        (2.19) 

 

 
 

       

      

2
22 2 2

2 2 2

2 2 2 2

{e 2 1 1 6 1 2 1 2 3[ ]
1

1 2 1 6 1 2 1 3 }[ ]

t

x

TMU
F t t t

t t

       
 

       

        


      
 (2.20) 

 

 
 

       

     

2 2 2 2

2 2

2 2 2

1
1 [6 1 1 2 2 2 3 ]

1

e [ 6 1 2 1 2 1 1 3 ]

{

}

x

t T

S t MU t t

t t

       
 

       

          


      
 (2.21) 

 

 
 

      

       

         
 

33 3

3 3 3

2 2 2 3 3

3 3 2

2 2 3 3

1
e 6 1 1 2 1 10 1

1

6 1 3 2 6 5 3

{ [

]

[

]

1 3 4

1 6 1 2 1 10 1 6 1 2 4 5

3 1 4 }

t T

xF t MU

t t t

t

t t

    
 

       

        

   

     


       

        

 

  (2.22) 



23 

 

 
 

    

       

      
    

33 2

3 2 3

2 2 2 3 3

2 3

2 2 2 3 3

1
e 24 1 1 5 1

1

6 1 1 2 4 5 6 1 1 2

1 24 1 1 5 1

{

6 3 2 6 5 6 1 2

[

]

[

]}

x

t TS t MU

t t t

t t t

    
 

       

    

       

    


      

    

   







  (2.23) 

Temporal moments are computed from Eqs. (2.6) and (2.7) as described by Nordin 

and Troutman (1980). The arrival time of the centroid t, the temporal variance 
2

t , and the 

numerator of the skewness coefficient gtf  are computed from the temporal moments. For the 

flowing zone  
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For the stagnant zone  
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For the entire channel 
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CHAPTER 3.    ANALYTICAL SOLUTION OF TWO-STORAGE MODEL FOR 

INSTANTANEOUS SLUG RELEASE 

A paper to be submitted to Journal of Hydraulic Engineering  

Rusen Sinir, Chris Rehmann, and Halil Ceylan 

Abstract 

An analytical solution of the transient storage model with surface and hyporheic 

storage zones (2-storage model) in rivers is presented and evaluated as a means for avoiding 

the challenges of numerical solutions. The analytical solution for a 2-storage model is 

obtained by utilizing Laplace transform methods for an instantaneous slug release. The 

solution includes lateral inflow and decay terms that might be useful to those working on 

nutrient uptake. Analysis of temporal moments shows that the subsurface storage zone 

affects the transport even if the transfer coefficient between subsurface storage and the main 

channel is two orders of magnitude smaller than the transfer coefficient for surface storage. 

Comparison with available data showed the present solution to be as capable of estimating 

tracer response curves as the numerical package that has been widely used. 

Introduction 

Transport of contaminants in rivers is affected by the interaction of the contaminant 

with zones with slowly moving flow such as pools, recirculation zones, vegetated areas, and 

bed sediment (Bencala 1983; Choi et al. 2000; De Smedt et al. 2005; Wörman et al. 1998). 

Although the one-dimensional advection-dispersion equation (ADE) is widely used to predict 

contaminant transport, measurements from tracer experiments show that its ability to 

estimate concentrations accurately suffers because it cannot represent transport rates smaller 

than that established by the main channel velocity (Boano et al. 2014). A sound model should 
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include effects of slower moving compartments of the river if it is to be able to represent 

transport in natural streams.  

To address some of the shortcomings of the ADE, Bencala and Walter (1983) 

proposed the transient storage model (TSM), which uses first-order exchange to account for 

interaction of the contaminant with a storage zone such as a recirculation zone,. The TSM 

requires only two more parameters than the ADE: the ratio of the transient storage zone area 

to the main channel area and the transfer coefficient between the main channel and the 

storage zone. The tracer enters a recirculation zone as it passes in the main channel, and after 

the main cloud moves downstream, the recirculation zone begins releasing contaminant back 

into the main channel. This slow release causes a long-tailed distribution of contaminant 

concentrations not well represented by the ADE (Nordin and Troutman 1980). Although the 

TSM estimates concentrations in the main channel reasonably well (Boano et al. 2014), 

larger storage time scales caused by sections of the river channel where slow exchange 

occurs with the main channel are underestimated because exchange parameters depend 

strongly on the duration of the injection and processes with larger time scales (Bencala et al. 

2011; Boano et al. 2014; Wörman et al. 2002).  

The standard transient storage model cannot account for both exchange with surface 

storage zones and hyporheic exchange, the slower exchange happening between the main 

channel and the subsurface flow (Choi et al. 2000; Wörman et al. 1998; Wörman et al. 2002). 

Hyporheic exchange occurs in streambed sediments, while surface water interacts with 

groundwater. Drivers of hyporheic exchange can be either hydrostatic or hydrodynamic. 

Hydrostatic drivers are factors that increase hydraulic head, such as riverbed topography, 

boulders, ripples, dunes, vegetation, and channel debris. Hyporheic zones generally gain 
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stream water from areas with steep slopes, and flow in hyporheic zones returns to the stream 

when the slope is mild. Hydrodynamic drivers usually occur in high-velocity fields, and they 

depend on streambed permeability, bed shear stress, and roughness height (Boano et al. 2014; 

O’Connor et al. 2010; Stonedahl et al. 2013). Because contaminant penetrates into riverbed 

sediments and groundwater and returns to the stream farther downstream, the residence time 

in the hyporheic zone is larger than in surface storage zones, and contaminant spends more 

time in contact with the substrates. Therefore, representing hyporheic exchange properly is 

important for predicting the biogeochemistry of stream ecosystems (Bencala 2000).   

To account for the effects of surface storage and hyporheic exchange separately, Choi 

et al. (2000) developed a two-storage-zone model that included a main channel with 

concentration cm and cross-sectional area A, a surface storage zone with concentration cs, and 

a subsurface zone with concentration ch:     
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Eq. (3.1) predicts the evolution of the concentration cm in time t along the streamwise 

coordinate x by accounting for advection at mean velocity U, dispersion with dispersion 

coefficient K, exchange between the two storage zones with transfer coefficients Es and Eh, 

lateral inflow with concentration clat and flow per unit length qlat, and decay with rate 

coefficient km. In addition to representing exchange with the main channel, Eqs. (3.2) and 

(3.3) account for decay with rates ks and kh. The parameters s and h are the ratios of the 

storage zone area and main channel area for the surface storage and hyporheic zone, 
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respectively. The model, denoted here as TSM2, ignores any interaction between the two 

storage zones.  

There has been a great deal of effort to identify the characteristics of contaminant 

transport both in the field and with lab experiments. Briggs et al. (2010) and Johnson et al. 

(2014) measured the area of the surface transient storage (STS) based on surveys of cross-

sectional velocity. Once they located the STS, they were able to measure the concentration in 

the STS. The area of the hyporheic zone and concentrations in the hyporheic zone are not 

easy to measure using current methods. Phanikumar et al. (2007) used a wavelet 

decomposition method based on ADCP measurements to separate surface transient storage 

from hyporheic exchange by concluding that separation of the two storage mechanisms 

would avoid physically unrealistic solutions and parameters. Anderson and Phanikumar 

(2011) developed a 3D particle-transport model for the St. Clair River that compared 

multirate transient storages, and results indicated that TSM based on a single exchange rate is 

inadequate to represent complex storage dynamics in rivers.  

The two-storage version of one-dimensional transport with inflow and storage (OTIS, 

Runkel 1998) has been widely used to simulate breakthrough curves for the main channel 

and two storage zones (Briggs et al. 2010; Gooseff et al. 2013; Johnson et al. 2014; 

Stonedahl et al. 2010). OTIS is based on the Crank-Nicholson finite difference scheme, and it 

allows different boundary and initial conditions to be specified. The main goal of simulation 

and modeling is to estimate parameters affecting transport (transfer coefficient E, fraction of 

the storage zone area , inflow, etc.) for a given data set of concentration distributions. 

Fortunately, OTIS has a module (OTIS-P) that uses nonlinear least-squares analysis to 

estimate parameters involved in the contaminant transport (Runkel 1998). Wörman et al. 
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(2002) developed the advective storage path model (ASP model), which relates basic 

hydrodynamic principles of transport in rivers to streambed properties. Many studies (Briggs 

et al. 2010; Johnson et al. 2014; O’Connor et al. 2010; Stonedahl et al. 2013) have 

emphasized physical measurement of TSM parameters to decrease modeling estimation 

errors caused by lack of knowledge of the parameters.  

Davis et al. (2000) and De Smedt et al. (2005) gave an analytical solution for the 

TSM with only one storage zone, whereas Kazezyilmaz-Alhan and Medina (2006) neglected 

surface transient storage and focused only on hyporheic zone exchange with possible 

advection and dispersion in the hyporheic zone. Kumar and Dalal (2014) obtained an 

analytical solution for a model that accounts for absorbed and dissolved solutes in the 

hyporheic zones. These solutions shed light on how a single storage zone can affect the 

contaminant transport under different circumstances. As noted by Phanikumar et al. (2007) 

separating surface storage from hyporheic exchange would increase realistic representation 

of parameters and solutions. To this end, the present study will focus on analytical solution of 

the two-storage model.  

Methods 

Dimensional analysis helps to identify the parameters that control the contaminant 

transport. If L is a distance downstream and a mass M of contaminant is initially injected into 

the main channel, then Eqs. (3.1)-(3.3) show that the main channel concentration depends on 

the various parameters as 
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with similar relationships for cs and ch. Dimensional analysis then gives 
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The last equality defines several dimensionless parameters, including an inverse Péclet 

number , dimensionless exchange coefficients Es and Eh, and dimensionless decay 

coefficients m, s, and h. The non-dimensional governing equations are 
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The initial conditions are an instantaneous slug release to the main channel and no 

contaminant in the two storage zones:    ,0mC X X  and    ,0 ,0 0s hC X C X  .   

The solutions of Eqs. (3.6)-(3.8) follows the approach used by De Smedt et al. (2005) 

for the TSM and Schmalle and Rehmann (2014) for an advective zone model. The Laplace 

transform of the concentrations in zone j is given by 
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The Laplace transform applied to Eqs (3.7) and (3.8) with the given initial conditions yields 

    , ,s
s m

s s s

C X s C X s
s



  


 
  (3.10) 

    , ,h
h m

h h h

C X s C X s
s



  


 
  (3.11) 

which can be eliminated from the transformed version of Eq. (3.6) to obtain  
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where s h mq       . If there is no transfer between the main channel and the two 

storage zones, no decay, and no lateral inflow, the solution to Eq. (3.12) is the classical ADE 

solution: 
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Therefore, the solution for Eq. (3.12) can be written as  
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To be able to invert the solution by using the generalized convolution theorem of Sneddon 

(1972, pp. 228-229),  
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Eq. (3.14) is rewritten in terms of three transform variables s1, s2, and s3  
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Inverting with respect to s1 yields 
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Then inverting with respect to s2 and s3, respectively, gives 
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where  s s s s     ,  h h h h     ,  z  is the Dirac delta function, and  1I z  is 

the Bessel function of the first kind and first order. After applying the generalized 

convolution theorem, the concentration in the main channel can be expressed as 

1 2 3 4m m m m mC C C C C    , where 
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Although the solutions of the TSM by Davis et al. (2000) and De Smedt et al. (2005) 

did not provide expressions for the concentration in the storage zone, the concentrations in 

the surface storage and the hyporheic zones are computed here because recent studies have 

used grab samples or multiple probes located across the surface storage zones to report 

concentrations (Becker et al. 2013; Johnson et al. 2014). Eqs. (3.10) and (3.11) suggest that 

the concentrations Cs and Ch can be computed using either convolution or the capacitance 

coupling described by Young and Jones (1991): 
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Computing the concentrations in the main channel and the two storage zones requires 

evaluating the integrals in Eqs. (3.20)-(3.24). The adaptive Gaussian quadrature method, 

which requires fewer intervals than the trapezoidal rule for given accuracy, was implemented 

to reduce the computational cost. 

Temporal moments of the concentration curves help in understanding how parameters 

in the governing equations affect the overall transport. Having an analytical solution for the 

TSM2 allows computing temporal moments from the Laplace transforms of the 

concentrations as described by Nordin and Troutman (1980) 
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Moments are computed up to n = 4 and used to compute mean travel time of the 

centroid , variance 2, skewness coefficient CSK, and kurtosis Kr. They are defined in 

terms of the moments as  
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Results of these four bulk quantities for the case with no decay and lateral inflow are 

given in the Appendix. 

Results and Discussion 

 

Fig. 3.1. (a) Effect of variable βh by setting βs constant for αs =αh (b) effects of variable αh 

by setting αs constant for βh = βs on the concentration curves with  = 0.0011.  

The effects of having the second (hyporheic) storage zone on the concentration curves 

are investigated for different ratios of the second storage zone’s area and the transfer 

coefficient with respect to the first storage zone by setting constant. One of the advantages 

of an analytical solution is to allow the effects of parameters to be investigated easily (Fig. 

3.1). The transfer coefficient and the area of the second storage zone seem to exhibit similar 

behavior in the concentration curves. As βh/βs decreases, the peak concentration in the main 
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channel increases due to less contaminant being transferred to the hyporheic storage [Fig. 

3.1(a)]. Likewise, decreasing αh results in increasing peak concentration because the capacity 

of the second storage is diminishing [Fig. 3.1(b)].  

 

Fig. 3.2. Effects of variable αh and βh by setting αs and βs constant on (a) the arrival time of 

the centroid, (b) variance, (c) skewness coefficient, (d) kurtosis ( = 0.0011 constant for all) 

Although variables αh and βs seem to affect the spread of the data and its tail, it is not 

clearly seen in the concentration curves. To this end, temporal moments were computed for 

different ratios of the area and the transfer coefficient of the hyporheic storage with respect to 

surface storage parameters. The computed temporal moments for TSM2 were then 

normalized by the temporal moments for TSM by simply neglecting the second storage 

transfer coefficient and lumping together the total storage area. The arrival time of the 
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centroid (μm ) is not affected by the change in the transfer coefficient (βh ) and the area of the 

hyporheic storage zone [Fig. 3.2(a)] because the cloud in the main channel travels at mean 

velocity in terms of shear dispersion and is affected only by the total storage area. If the 

hyporheic storage area (αh) is less than 20% percent of the surface storage area (αs), the 

variance is not affected by the hyporheic storage [Fig. 3.2 (b)]. On the other hand, smaller 

transfer coefficient values result in large values for skewness and the kurtosis [Fig. 3.2(c)-

(d)] because a small transfer coefficient would increase the residence time of the contaminant 

in the hyporheic storage and cause later release, resulting in a long-tailed distribution of the 

concentrations.      

 

Fig. 3.3. Fitting current model to 2011 field experiment data from Johnson et al. (2014) 
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Johnson et al. (2014) claimed that including lateral inflow improved the fit of the 

model to their data. Using their parameters, the current model estimates concentrations as 

well as OTIS that Johnson et al. (2014) used in their fitting of the data. Although lateral 

inflow has little effect on the tail, it affects the peak concentration. In the 2011 experiment by 

Johnson et al. (2014), the peak concentration is underestimated with lateral inflow (Fig. 3.3), 

while the 2012 experiment including lateral inflow yields a better estimate for the peak 

concentration (Fig. 3.4).  

 

Fig. 3.4. Fitting current model to 2012 field experiment data from Johnson et al. (2014) 

The analytical solution presented here complements numerical models such as OTIS. 

De Smedt et al. (2005) verified their analytical solution of the TSM by comparing their 

results to OTIS estimates for an artificial experiment. In a similar way, comparison to the 
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data of Johnson et al. (2014) using parameters they determined with OTIS supports the 

current analytical solution. The analytical solution also avoids some of the challenges of 

numerical modeling: Because OTIS uses a finite system and prescribed upper boundary 

conditions or mass flux, the parameters and the length of the reach must be calibrated to 

avoid the influence of the upper boundary. On the other hand, the current analytical model is 

obtained for an infinite system and is not affected by an upper boundary and the length of the 

reach. When analyzing instantaneous slug-release experiments with the TSM2, the analytical 

solution becomes more useful. Moreover, the standard OTIS package includes only one 

storage zone and must be modified to include a second storage zone. In contrast, the current 

model has two storage zones and can be reduced to the TSM by simply neglecting the 

hyporheic storage parameters in the solution.  

Conclusions 

The transient storage model with storage zones to account for surface storage and hyporheic 

storage was solved analytically using Laplace transforms and evaluated. The two storage 

zones interact with the main channel but not with one another. The case investigated in this 

study involves an initially clean river system with an instantaneous slug release into the main 

channel. Moreover, the analytical solution includes lateral inflow and decay parameters that 

can be useful for those working on nitrate removal and nutrient uptake in rivers. Although 

data on concentrations in the surface and hyporheic storage zones are limited, the present 

study illustrates how concentrations in the two storage zones can be computed if needed. 

Detailed analysis of the theoretical moments helps in understanding how the hyporheic 

storage might affect the overall transport: As the ratios of the area and the transfer coefficient 

for the hyporheic storage to the surface storage become smaller, hyporheic storage becomes 
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negligible and the model reduces to the one-storage model. Comparison with the available 

data in the literature shows that the solution is capable of estimating tracer response curves as 

well as OTIS and does not require additional effort required in applying numerical model.  
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Appendix. Computation of Temporal Moments 

Quantities based on temporal moments for the main channel are 
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The same quantities for the surface storage zone are  
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These can be applied to the hyporheic storage by replacing subscript s with subscript h. 
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CHAPTER 4.    PREDICTING TRACER RESPONSE CURVES WITH CONSTANT 

SKEWNESS 

A paper to be submitted to the Journal of Hydraulic Engineering  

Rusen Sinir, Chris Rehmann, and Halil Ceylan 

Abstract  

Estimating the arrival time and concentration of a contaminant at a water intake after 

a spill is crucial for planning a response to protect the public and the biota in a stream. The 

work in this chapter aims to provide a simple approach for predicting tracer response curves 

that reproduce the persistent skewness observed in field measurements. The skewness 

coefficient predicted by the scalene triangle method of Jobson (1997) is shown to decrease 

with distance from the source. A new method is developed that predicts constant skewness 

by describing concentration curves with the Gumbel distribution, which has a skewness 

coefficient of 1.1395. The two parameters affecting arrival times in the Gumbel distribution 

are determined with an empirical relationship between the temporal variance of the cloud and 

the travel time t of the centroid and a regression model to predict t using only discharge 

and distance from the source. The proposed model predicts arrival times of the leading and 

trailing edge better than the Jobson method, and it underestimates the peak concentration by 

an average of 17%. The proposed method mimics the non-Fickian behavior of the transport 

observed in rivers without the computational costs associated with more complex models. 

Introduction  

Contaminant spills in rivers threaten water supplies and the biota in affected rivers. 

Predicting the contaminant transport, including concentrations and arrival times at 

downstream sites, is important for planning responses to spills. Many models have been used 
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to predict contaminant concentrations (Rutherford 1994), including the one-dimensional 

advection-dispersion equation, the transient storage model, and the aggregated dead zone 

model. However, all of these methods have shortcomings, including an inability to predict 

the skewness observed in tracer-response curves measured in dye studies. The work in this 

chapter develops and evaluates an empirical model to describe observed concentration curves 

more reliably.  

Contaminant transport is often modeled by the one-dimensional advection-dispersion 

equation (ADE). For example, the Incident Command Tool for Drinking Water Protection 

(Samuels et al. 2015), which bases its transport calculations on the ADE, was applied to 

predict arrival times and concentrations for a spill in the Elk River in West Virginia (Bahadur 

and Samuels 2015). Along with advection at the mean velocity, the ADE attributes transport 

to a Fickian flux proportional to a dispersion coefficient, which can be computed from 

empirical formulas and basic information on the flow and geometry of the channel. However, 

comparisons between the predictions of the ADE and results from tracer studies have 

demonstrated flaws in the Fickian model (e.g., Deng et al. 2004):  For example, the temporal 

variance increases more quickly than predicted (Gonzalez-Pinzon et al. 2013), and as a result, 

the peak decreases more quickly than predicted (Jobson 2001). Also, while the ADE predicts 

that tracer response curves become symmetric far downstream of the source, measured 

concentration curves have long tails (Nordin and Troutman 1980). In fact, the mean value of 

the skewness coefficient for 384 curves was found to be approximately constant at 1.18 

(Gonzalez-Pinzon et al. 2013). 

Other models have tried to address the shortcomings of the ADE by accounting for 

trapping and release from recirculation zones. These models assume that the long tails of 
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tracer response curves arise from tracer entering pools, side embayments, areas with 

vegetation, or the subsurface and slowly returning to the main channel. For example, the 

transient storage model (TSM) adds exchange with a storage zone to the ADE (Bencala and 

Walter 1983; Nordin and Troutman 1980), and the aggregated dead zone (ADZ) model 

accounts for trapping through a dispersive fraction specified in each of the sub-reaches in a 

stream (Beer and Young 1983). Although the TSM predicts a greater magnitude of skewness 

than the ADE predicts, the skewness still decreases rapidly with downstream distance 

(Nordin and Troutman 1980). The ADZ model applied to sub-reaches in series can predict 

constant skewness, but specifying the number of sub-reaches is difficult because it is not a 

physical parameter of the system (Gonzalez-Pinzon et al. 2013).  

Two other approaches for predicting contaminant transport could produce tracer 

response curves with persistent skewness. Jobson (1997) presented a method based on 

regression analysis of tracer data collected from almost 100 different rivers by the U.S. 

Geological Survey (USGS). Jobson (1997) represented the tracer response curve as a scalene 

triangle defined by the peak concentration and the arrival times of the peak and the leading 

and trailing edges of the contaminant cloud. To facilitate the predictions, Jobson (1997) 

produced empirical formulas for these parameters that require only information typically 

available at USGS gaging stations: the discharge at the time of interest, slope of the river, 

mean annual discharge, and drainage area. This method performs better than the ADE at 

predicting the decrease in the peak concentration with distance downstream (Jobson 1997), 

but its ability to predict persistent skewness has not yet been evaluated.  

One functional form of the tracer response curve that does have constant skewness is 

the Gumbel probability distribution, which is commonly used to model extreme hydrologic 
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events (Brutsaert 2005). Gonzalez-Pinzon et al. (2013) noted that its skewness coefficient of 

1.1395 is close to the value observed in the large dataset that they compiled, and they applied 

it to estimate tracer response curves by using empirical relationships based on their meta-

analysis of temporal moments. However, as Gonzalez-Pinzon et al. (2013) noted, the 

parameters of the Gumbel distribution (and other probability distributions) have no physical 

connection to the tracer response curves they are used to model. Therefore, the purpose of the 

work in this chapter is to evaluate the skewness predicted by the Jobson method and develop 

an approach to predict contaminant transport with the Gumbel distribution using parameters 

readily available at USGS gaging stations. The next section explains the evaluation of the 

Jobson method and develops the new prediction method, and the following section presents 

the skewness predicted by the Jobson method and evaluates the new method by comparing 

tracer response curves in general, and arrival times and peak concentrations in particular. 

Methods  

Evaluating the Jobson method 

The parameters of the scalene triangle used by Jobson (1997) to describe the tracer 

response curve depend on the arrival time of the peak concentration. As noted in the previous 

section, the Jobson method uses as input the discharge Q, the mean annual discharge Qa, the 

drainage area Da, and the slope S. It computes the velocity of the peak concentration using  

    
0.919 0.469

0.1590.094 0.0143P a a

a

Q
V D Q S

D



     (4.1) 

when the slope is known (where /a aQ Q Q  , 5/4 1/2 /a a aD D g Q  , and g is the acceleration of 

gravity) and  
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0.821 0.465

0.02 0.051P a a

a

Q
V D Q

D



     (4.2) 

when the slope is not known. The arrival time of the peak concentration at a station a 

distance L from the source is then computed as tP = L/VP, and the arrival time of the leading 

edge is tL = 0.89tP. Jobson (1997) expressed the tracer response curve in terms of a unit 

concentration, defined as Cu = 106CQ/M , where C is the concentration and M is the mass, 

and he related the unit peak concentration to its time of arrival using  

 
0.0790.760( / )

857 aQ Q

up PC t


  (4.3) 

The time of arrival of the trailing edge, defined as the time at which the concentration 

falls to 10% of the peak value, is given by tT = tL + td10, where the duration is computed as 

td10 = 2×106/Cup.  

The skewness coefficient predicted by the Jobson method is computed from the 

temporal moments. The nth moment is defined as  

 
0

( , )n

nM t C x t dt


    (4.4) 

Then the time of arrival of the centroid t, the temporal variance 
2

t , and the skewness 

coefficient t are computed as  
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The dependence of the skewness coefficient on downstream distance is evaluated for 

different rivers with discharges ranging over five orders of magnitude. Data collected from 

USGS gaging stations for analysis of skewness are presented in Table 4.1.  

Table 4.1. River discharge and drainage area data collected from USGS gaging stations. 

 

 

The proposed method 

The proposed approach blends the advantages of the Jobson method and the 

advantages of the Gumbel probability distribution. The Gumbel distribution is given by 

  
   

exp exp exp
t a t aM

C t
Qb b b

     
       

     

   (4.8) 

where 0.5772ta b  , 2 26 /tb   , M is the mass of contaminant injected, and Q is the 

discharge. In many datasets it has a constant skewness coefficient close to the value observed 

by Gonzalez-Pinzon, et al,. (2013), but the parameters a and b have not been related to the 

physical processes of contaminant transport. Following Jobson (1997), a method is 

developed to estimate a and b from data from USGS gaging stations. The rationale is that, in 

a case with negligible dispersion, the time of arrival would be t = L/(Q/A), where A is the 

cross-sectional area of the channel. Because the geometry of the river channel is unknown in 

Rivers and Gaging Stations Q (m
3
/s) Q a (m

3
/s) Da (km

2
)

Missouri River at NE city, NE 1362.0 1130.8 1061896

Des Moines River at Fort Dodge, IA 100.8 54.2 10852

North Raccoon River near Jeferson, IA 9.7 24.7 4193

Floyed River at Alton, IA 2.3 2.7 694

Iowa River at Marshalltown, IA 17.7 27.0 3968

Sinsinawa River near Menominee, IL 0.7 0.8 103

Middle River near Indianola, IA 3.2 8.4 1268

Little Sioux River at Linn Grove, IA 29.7 22.3 4009
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general, an empirical relationship from Jobson (2001) can be used to estimate the cross 

sectional area  

 2

0 1

w
A w wQ    (4.9) 

where w0, w1, and w2 are coefficients. The second term on the right resembles the form 

usually used in hydraulic geometry formulas, and the first term on the right is added to 

account for pools and recirculation zones (Jobson 2001). Introducing an exponent  to 

account for effects of dispersion yields   

  2

0 1

w

t

L
w w Q

Q



     (4.10) 

The four parameters θ, w0, w1 and w2, were obtained by regression using data from Nordin 

and Sabol (1974). After estimating t, 
2

t  is estimated from the meta-analysis of Gonzalez-

Pinzon et al. (2013), which yields 2 1.5681.629t t   with t in s and 
2

t  in s2. These formulas 

allow a and b in the Gumbel distribution to be computed.  

The proposed method was evaluated by comparing its predictions of peak 

concentrations and arrival times to measured values from the data compiled by Nordin and 

Sabol (1974) and the predictions of the ADE and the Jobson method. The arrival time of the 

peak is simply tP = a, and the arrival times of the leading and trailing edges were defined as 

the times when the concentration is a fraction  of the peak concentration: i.e., C = ϕCp (Fig. 

4.1). These times were determined from  

 
   

exp 1 exp exp 0
t a t a

b b


     
        

     
  (4.11) 
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with a root-finding algorithm. To compare with the predictions of the Jobson method, times 

between tL and tP and tP and tT were computed with linear interpolation. Travel times from 

the ADE were computed using the formulas of Rehmann (2015). 

 

Fig. 4.1. Schematic of the peak concentration Cp and arrival times of the leading edge (tL), 

peak concentration (tP), and trailing edge (tT). The leading and trailing edges are defined in 

terms of a fraction ϕ of the peak concentration. 

Results and Discussion  

Skewness predicted by the Jobson method 

The skewness coefficient of tracer response curves predicted by the Jobson method 

decreases as the distance from the source increases (Fig. 4.2). This decrease occurs for rivers 

with discharges ranging from 0.1 m3/s to 1000 m3/s. The mean value of t computed for these 

examples is 0.41, about three times smaller than the value from the meta-analysis of 
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Gonzalez-Pinzon et al. (2013). Like the ADE and TSM, the Jobson method does not predict 

persistent skewness. While the skewness from the ADE and TSM decrease as x-1/2, the rate of 

decrease of skewness from the Jobson method increases as the cloud moves downstream 

(Fig. 4.2). This decreasing skewness suggests that the Jobson method’s ability to estimate the 

travel time of the trailing edge will worsen downstream.  

 

Fig. 4.2. Decrease in the skewness coefficient computed for rivers with flows ranging from 

10-1 m3/s to 103 m3/s.  

Evaluation of the proposed method 

The empirical formula for the time of arrival of the centroid of the contaminant cloud 

[Eq. (4.10)] fits measurements well (Fig. 4.3). The regression analysis gave 

  
1.148

0.7761.291 0.976t

L
Q

Q
    (4.12)  
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with R2 = 0.83. The value of the exponent  exceeds the value of 1 that would be expected 

for advection only. This 15% difference reflects the faster travel of the centroid when 

dispersion is present. The regression compares well with the corresponding formula of 

Jobson (1997): Eq. (4.1) for the velocity of the peak fit measurements from a larger dataset 

with R2 = 0.70. Eq. (4.12) is also simpler than the formula of Jobson (1997) because the 

velocity of the centroid is expressed in terms of only the distance downstream and the 

discharge.  

 

Fig. 4.3. Regression analysis to develop Eq. (4.12) for the time of arrival of the centroid 
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Fig. 4.4. Comparison of the tracer response curves predicted by the proposed, ADE, and 

Jobson methods to measured concentrations. 

Comparison of the predicted tracer response curves to measured tracer response 

curves shows differences in the behavior of each method (Fig. 4.4). In this example, the 

proposed method estimates the arrival times of leading and trailing edges well, and the ADE 

estimates the times within about 10%. The Jobson method underestimates the arrival times, 

but the predictions are mostly within 10%. Both the ADE and the proposed method 

underestimate the peak concentration and overestimate the time of the peak, while the Jobson 

method overestimates the peak concentration. The proposed method better captures the long 

tail and skewness of the concentration curve. The Jobson method reproduces the slopes of the 

measured curve for times between 30 and 40 h but misses the long tail. Similarly, the curve 
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predicted by the ADE, which is approximately Gaussian, does not reproduce the skewness of 

the measurements.    

 

Fig. 4.5. Histograms of the ratio of the predicted and measured arrival times of the leading 

edge: (a) proposed method, (b) ADE method, and (c) Jobson method. The fraction ϕ is taken 

to be 0.1. The data for the measured times and ADE and Jobson estimates were retrieved 

from Rehmann (2015). 

The proposed method estimates arrival times better than Jobson’s method. The 

proposed method estimates 20% of the times of the leading edge within 95% of the measured 

value and 70% within 75% of the measured value [Fig. 4.5(a)]. For the same ranges, the ADE 

estimates 29 and 89% [Fig. 4.5(b)], and the Jobson method estimates 14 and 58% [Fig. 

4.5(c)]. Similar results hold for the arrival times of the trailing edge and peak concentration. 

The proposed method estimates 28% of the times of the trailing edge within 95% of the 
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measured value and 64% within 75% of the measured value [Fig. 4.6(a)]. The ADE method 

estimates 34% of data within 95% and 88% within 75% [Fig. 4.6(b)], while Jobson method 

estimates 12 and 55% for the same range [Fig. 4.6(c)]. The proposed method estimates 14 

and 67% of the arrival times of the peak within 95 and 75% of the measured values [Fig. 

4.7(a)], and the Jobson method estimates 12 and 56% within the same ranges [Fig. 4.7(b)]. 

Although the ADE predicts arrival times better than the other methods, it requires a good 

estimate of the mean velocity of the river.  

 

Fig. 4.6. Histograms of the ratio of the predicted and measured arrival times of the trailing 

edge: (a) proposed method, (b) ADE method, and (c) Jobson method. The fraction ϕ is taken 

to be 0.1. The data for the measured times and ADE and Jobson estimates were retrieved 

from Rehmann (2015). 
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Fig. 4.7. Histograms of the ratio of the predicted and measured arrival times of the peak 

concentration: (a) proposed method and (b) Jobson method. The data for the measured times 

and Jobson estimates were retrieved from Rehmann (2015). 

 

The ADE yields conservative estimates of the arrival times, while the proposed 

method and Jobson method are conservative on one side of the cloud. The Jobson method 

and ADE tend to underestimate the time of the leading edge, with mean ratios of predicted to 

measured times of 0.83 and 0.96, respectively, while the proposed method tends to 

overestimate with a mean ratio of 1.07. Therefore, both Jobson and ADE methods are 

conservative with respect to the time of first arrival of the contaminant cloud, while on 

average the proposed method predicts a later arrival. The Jobson method underestimates the 

time of the trailing edge with a mean ratio of 0.85, while the proposed method and ADE are 

conservative by overestimating the times with mean ratios of 1.15 and 1.02, respectively. As 
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discussed earlier, the Jobson method predicts decaying skewness that causes poor estimates 

of the trailing edge, while the proposed method predicts more accurately on the tail as 

expected with constant skewness.  

 

Fig. 4.8. Histograms of the ratio of the predicted to measured peak concentration: (a) 

proposed method and (b) Jobson method. The data for the measured times and Jobson 

estimates were retrieved from Rehmann (2015). 

Both the proposed method and the Jobson method poorly estimate the peak 

concentration. The proposed method estimates 7.5% and 45% of the peak concentrations 

within 90% and 70% of the measured values, respectively, while the Jobson method 

estimates 20% and 30% for the same range. The Jobson method is conservative, with a mean 

ratio of the predicted to measured peak concentration of 1.18, while the proposed method 

tends to underestimate with a mean ratio of 0.83. In about 25% of the predictions from the 
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proposed method, the peak concentration is about 75% of the measured value. An 

overestimate of the temporal variance of the tracer response curve would lead to an 

underestimate of the peak concentration.  

The proposed method provides a simple way to reproduce the constant skewness 

observed in tracer response curves. To predict concentrations downstream of a spill in a river 

with simple geometry, the ADE requires only the mean velocity and dispersion coefficient. 

However, as noted above, the skewness of the concentration curves decreases with distance 

from the source. The TSM requires more input and computational effort, but it fits the 

observed data better than the ADE. Nevertheless, it still exhibits the Fickian behavior of the 

ADE and suffers decaying skewness (Hunt 1999). To account for non-Fickian behavior and 

persistent skewness caused by longer tails, the fractional ADE has been used (Deng et al. 

2004). However, few analytical solutions to the fractional ADE are available, and its 

numerical solution requires significant effort (Deng et al. 2004). In contrast, the proposed 

method reproduces tracer response curves with constant skewness using only data readily 

available from USGS gaging stations.  

Conclusions  

The work in this chapter aimed to improve predictions of arrival times and 

concentrations of resulting contaminant clouds so that response to spills in rivers can be 

improved. In particular, the proposed method presents a way to predict tracer response curves 

with skewness that remains constant as the cloud moves downstream. An evaluation of the 

behavior of the skewness coefficient t predicted with the Jobson method, which models the 

tracer response curve as a scalene triangle, showed that, as predicted by other models, t 
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decreases downstream. This result contrasts with measurements, which shows that t is 

constant at approximately 1.18.  

An empirical method is proposed that models the tracer response curve with the 

Gumbel distribution, which has a skewness coefficient (1.1395) close to the value observed 

in rivers. The method uses only the mass of the spilled contaminant, the discharge Q, and the 

distance L from the source of the spill to compute tracer response curves and estimate the 

arrival times of the leading edge, the trailing edge, and the peak concentration. The 

parameters of the Gumbel distribution are determined by regression of the arrival time of the 

centroid μt with Q and L and a relationship between t and the temporal variance from 

Gonzalez-Pinzon et al. (2014). The proposed method predicts arrival times better than the 

Jobson method but underestimates the peak concentration by an average of 17%. 

Nevertheless, the proposed method provides a way to produce tracer response curves with 

constant skewness using data available at gaging stations.  
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CHAPTER 5.    GENERAL CONCLUSIONS 

Summary 

The models developed in this research are aimed at making predicting contaminant 

transport more effective. In Chapter 2, analytical solutions of the Reichert and Wanner 

(1991) model for transport near the source of a spill were obtained for different initial 

conditions and evaluated with the parameters estimated by Schmalle and Rehmann (2014). 

Chapter 3 focused on an analytical solution of a transient storage model with two storage 

zones that accounts for lateral inflow and decay in the main channel and the two storage 

zones. While the work in Chapters 2 and 3 built on the transient storage model, Chapter 4 

used a different approach: The model described there represented the tracer response curve 

with a function that preserves the persistent skewness observed in tracer-response curves 

measured in field experiments. 

Significant Findings 

 The analytical solutions of the advective zone model in Chapter 2, which apply to a 

contaminant spill in the stagnant zone of a river and maintained pollution in the flowing 

zone, expand the information available for constructing solutions for more complex 

mixing situations in the advective zone of a river. 

 Compared to the case of a flowing zone spill, contaminant clouds for a stagnant zone spill 

travel more slowly, spread more, and shift from positive to negative skewness. These 

differences are due to an initial delay in advection of the cloud caused by the transfer 

from the stagnant zone to the flowing zone.  

 The solution for a maintained injection in the flowing zone differs from that produced 

using the ADE only at small times and distances from the source.  
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 The analytical solution of the transient storage model with two storage zones gives an 

efficient way of estimating downstream concentrations of an instantaneous slug release 

with lateral inflow and decay. The analytical solution avoids the need to define upper 

boundary conditions and account for finite reach length that constrains numerical models. 

 Even if the transfer coefficient of the subsurface storage zone is small compared to the 

transfer coefficient of the surface storage zone, subsurface storage still affects the tracer 

response curves and the bulk quantities of the curves. 

 The Jobson method predicts decaying skewness, as do the ADE and TSM. Therefore, the 

Jobson method cannot reproduce observed persistent skewness from tracer response 

curves in field measurements.  

 The empirical model with constant skewness predicts travel times better with fewer 

parameters than required by Jobson’s method. 

Future Work  

Further research related to the work in Chapter 2 would be exploring and evaluating 

new cases of contaminant transport near the source, and building a code package that could 

be utilized for different scenarios using superposition methods.     

Estimating many of the parameters involved in Chapter 3 with measurements and 

relating them to flow conditions would reduce the need for tracer studies. An example of 

such a task would be using an acoustic Doppler current profiler to predict the transfer 

coefficient between the main channel of a river and the recirculation zones to separate the 

area of the recirculation zones from the main channel. Having more measured parameters 

would not only provide more realistic results but also allow for more practical parameter 

estimation from temporal moments of the tracer response curves.  
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Defining a scaling factor for mean arrival time with respect to discharge and distance 

from source would increase the accuracy of the estimations described in Chapter 4. Defining 

new empirical relationships for rivers that have similar magnitudes of discharge would also 

increase the accuracy. 
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