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ABSTRACT 

 

 The aim of this research was to demonstrate the feasibility of the static granular bed 

reactor (SGBR) as a replacement for the conventional mixed and heated anaerobic digester 

typically operating at municipal wastewater treatment plants (WWTP). The static granular bed 

reactor (SGBR) is a high rate anaerobic granular reactor. The SGBR operates at a short hydraulic 

retention time (HRT) (i.e 1 to 2 d) while maintaining a long solids retention time (SRT). 

Conversely to conventional digesters the SGBR separates the SRT from the HRT, reducing 

energy and volume requirements. The SGBR is downflow reactor with a dense bed of granules 

that entraps particles which helps to facilitate hydrolysis. Anaerobic treatment of primary and 

secondary municipal sludge was studied with a laboratory and pilot-scale SGBR at organic 

loading rates (OLR) from 2.8 ± 0.9 to 5.5 ± 1.7 g COD/L·d and 3.3 ± 2.0 g COD/L·d, 

respectively. The results of this research demonstrated the SGBR system’s potential to be a 

practical and competitive alternative to conventional anaerobic digestion of wastewater sludges. 

The laboratory (76 ± 4%) and pilot-scale (71 ± 0.4%) SGBR produced a biogas with a higher 

methane content than the conventional anaerobic digester tested (59 ± 2.8%). Effluent VFA 

concentrations remained below 40 mg/L as HAc, indicating the potential to reduce process 

instability due to the buildup of intermediates. The low VFA concentrations of the SGBR’s 

effluent also reduces odors compared to the liquid streams of conventional anaerobic digesters. 

The SGBR produced an effluent with low organic matter; average TSS and COD removal 

efficiencies remained above 90%.
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CHAPTER 1. INTRODUCTION 

 

The production of residuals from primary and secondary treatment has been steadily 

increasing due to the increasing number of municipal wastewater treatment plants (WWTP) and 

more strict discharge standards (Wang et al., 2008). Stabilizing the residuals from primary and 

secondary treatment with anaerobic digestion has been proven to be one of the most efficient 

stabilization technologies (Wang et al., 2008; Riau et al., 2010). It is standard practice to use 

large well mixed and heated anaerobic reactors to help compensate for the slow growth of 

methanogenic organisms. To make anaerobic digestion more efficient and economical research is 

focused on accelerating the digestion process and increasing the production of methane.  

Current research trends in the digestion of municipal sludge commonly focus on 

pretreatment of the feedstock. Frequently researched pretreatment technologies include 

mechanical (ultrasound, high pressure and lysis), thermal hydrolysis, chemical oxidation 

(ozonation), biological (thermal phased anaerobic) and alkali treatments (Appels et al., 2008; 

Carrere et al., 2010). Pretreatments can be used to help the digestibility of the substrate, but they 

also increase capital and operational costs and have the potential to produce inhibitory 

compounds (Sakai et al., 2007; Lv et al., 2010).  

There has been a lack of research done on modifying the anaerobic microbial 

communities to enhance the anaerobic digestion of wastewater sludges. The research presented 

here will propose a different strategy to conventional anaerobic digestion and shows the potential 

to reduce detention times and decrease the concentration of organic compounds in the effluent 

(including odor causing compounds). This study takes advantage of the natural granulation of 
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anaerobic microbes to digest municipal wastewater residuals. Anaerobic granules consist of a 

dense aggregation of microbes from different trophic groups (Uyanik et al., 2002; Liu and Tay, 

2004; Baloch et al., 2008). These aggregates of microbes have desirable settling characteristics, 

allowing them to be maintained inside of the reactor. The volume of the anaerobic reactor can be 

minimized along with the hydraulic retention time (HRT) by retaining a larger population of 

degrading microorganisms inside of the reactor. A shorter HRT will reduce operation and capital 

costs, making anaerobic digestion a more attractive form of treatment (Ripley et al., 1986).  

There are currently several high rate anaerobic reactor configurations that utilize 

anaerobic granules. The upflow anaerobic sludge blanket (UASB) is the most commonly utilized 

anaerobic granular reactor. However, the treatment efficiency of the UASB reactor is affected by 

the influent solids concentration (Bal and Dhagat, 2001). High influent solids concentrations 

encourage solids to wash out of the reactor and the overall removal efficiency of the USAB 

reactor suffers. Other granular reactor configurations are faced with similar challenges when 

treating wastewaters high in particulate matter. This research evaluates the ability of another high 

rate anaerobic reactor configuration, the static granular bed reactor (SGBR), to treat the high 

solids waste of primary and secondary sludge.  

The SGBR is a simple downflow high rate anaerobic digestion system developed at Iowa 

State University (Mach, 2000). The SGBR system distributes wastewater over a dense bed of 

active anaerobic granules. The downflow operation of the SGBR allows influent solids to be 

trapped within the active granular bed, promoting hydrolysis. Particulate matter can only be 

biologically hydrolyzed after becoming physically removed either by entrapment in the sludge 

bed or adsorption (Elmitwalli et al., 2001b). Solids trapped within the granule bed of the SGBR 
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are within close proximity to degrading biomass, enabling extracellular enzymes to carry out 

hydrolytic reactions. 

Laboratory and pilot-scale SGBR systems have been successfully used to treat a variety 

of wastewaters including synthetic wastewater consisting of non-fat dry milk, industrial 

wastewater, pork slaughterhouse wastewater, landfill leachate, and dairy wastewater with 

excellent results (Evans and Ellis, 2004; Debik et al., 2005; Evans and Ellis, 2010; Park et al., 

2012; Turkdogan et al., 2013; Park et al., 2015; Oh et al., 2015). The objective of this research 

was to evaluate the ability of the SGBR system to treat primary and secondary municipal sludge 

in a high rate system operating with a short (i.e. one day) HRT.  
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CHAPTER 2. LITERATURE REVIEW 

 

The main objective of a municipal wastewater treatment plant (WWTP) is to produce an 

effluent that will maintain or even restore the chemical, physical and biological integrity of the 

receiving environment. Raw wastewater is subjected to several physical, chemical and biological 

processes to remove contaminants, making it suitable to discharge into the environment. The 

residuals (solids and organic material) collected from these different wastewater treatment 

processes also require treatment. The production of sludge from WWTP in the United States is 

estimated to be around 6.2 million dry tonnes per year (Kargbo, 2010; Bolzonella et al., 2012). 

Anaerobic digestion of residuals from WWTP is favorable due to the large diversity of easily 

degradable organic matter, nutrients and alkalinity from inorganics (Gerardi, 2003).   

Anaerobic digestion is an attractive method of treating wastewater residuals due to its 

ability to reduce the volume of solids, destroy pathogens and produce biogas. The anaerobic 

conversion of organic matter to biogas reduces its volume, which results in reduced disposal 

costs. Up to 90% of the degradable organic matter in wastewater can be stabilized by anaerobic 

digestion, compared to only 50% by aerobic digestion (McCarty, 1964; Demirel et al., 2005; 

Hassan and Nelson, 2012). When compared to aerobic digestion, anaerobic digestion produces 

significantly less sludge and requires less energy input (Leitão et al., 2006). Aerobic treatment of 

municipal wastewater residuals requires substantial operation and maintenance costs (Sing and 

Viraraghavan, 1999).  Anaerobic digestion does not require oxygen, depends on less nutrients 

than aerobic digestion and produces a renewable source of energy (i.e. methane). 
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Biogas from anaerobic digestion can be used as a renewable source of energy due to the 

high methane composition. The anaerobic digestion process produces a gas mixture composed 

predominantly of methane (65-70%) and carbon dioxide (30-35%) along with trace 

concentrations of nitrogen, hydrogen sulfide and water vapor (Appels et al., 2008). As the 

relative concentration of methane increases so does the biogas’ energy potential. Anaerobic 

digestion is a cost effective biological treatment due to its low sludge production, low energy 

requirements and high energy recovery rate (Chen et al., 2008). 

 

Microbial Process of Anaerobic Digestion 

A diverse community of microorganisms is required to carry out the digestion of the 

complex organic matter found in wastewater residuals. No bacterium is able to produce all of the 

enzymes required to degrade the large variety of substrates that are found in wastewater sludges 

(Gerardi, 2003). Several microbial populations are necessary to complete the various reactions 

required to convert complex organic matter into biogas (i.e. mostly methane and carbon dioxide) 

and new bacterial cells (Gerardi, 2003). The anaerobic digestion of organic material follows the 

steps shown in Figure 2.1. The transformation of organic matter to methane can be divided into 

four distinct stages: hydrolysis, acidogenesis, acetogenesis, and methanogenesis.  
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Figure 2.1: Anaerobic degradation pathways of complex organic matter (Appels et al., 2008) 

During the first stage of anaerobic digestion, insoluble and/or complex organic matter is 

converted to soluble molecules that can pass through bacterial cell walls. Microorganisms release 

extracellular enzymes that hydrolyze insoluble organic materials and break down large insoluble 

organic molecules into simpler soluble molecules (Verma, 2002). Hydrolyzing bacteria degrade 

lipids, polysaccharides, proteins, and nucleic acids into soluble organic matter such as fatty acids 

and amino acids (Mondala et al., 2013). These simpler compounds can now be passed along the 

food chain and taken up by other bacterial populations.  The products of hydrolysis are now the 

correct size and form to pass through the cell walls of bacteria where they can be used as energy 

or nutrient sources (Parkin and Owen, 1986). 

During acidogenesis, the second step of anaerobic digestion, products created during 

hydrolysis are further degraded into volatile fatty acids (VFA), ammonia, CO2, H2S, and other 
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products (Appels et al., 2008). During the third stage of anaerobic digestion, acetogenic bacteria 

convert the products of acidogenesis to simple organic acids (i.e. mostly acetic acid), carbon 

dioxide and hydrogen (Mondala et al., 2013). Methanogenesis occurs when methanogenic 

microorganisms convert acetic acid, hydrogen and carbon dioxide to methane. 

There are two main pathways for methanogenesis to take place. The main pathway for 

methane production involves the cleavage of acetic acid (CH3COOH). Splitting acetic acid into 

methane and carbon dioxide accounts for approximately seventy percent of the methane 

produced in an anaerobic digester (Gujer and Zehnder, 1983).  Methane in an anaerobic digester 

is also produced from carbon dioxide and hydrogen gas. Hydrogen is used as an electron donor, 

while carbon dioxide is reduced and used as an electron acceptor. The two pathways of methane 

formation are demonstrated below. Equation 1.1 and equation 1.2 show the splitting of acetic 

acid into methane and the formation of methane from hydrogen and carbon dioxide, respectively. 

CH3COOH  CH4 + CO2                           (1.1) 

CO2 + 4H2  CH4 + 2H2O               (1.2) 

The initial hydrolysis step is the rate limiting step in the digestion of wastewaters 

containing substantial amounts of particulate and complex organic matter (Singh and 

Viraraghavan, 2004). The rate of methane and carbon dioxide production are proportional to 

decay of particulate material and accumulation of soluble compounds (Gujer and Zehnder, 

1983). Methane and carbon dioxide are primarily produced from soluble compounds, therefore 

methane formation is proportional to the rate of hydrolysis. 



8 
 
 

 

Conventional Reactors 

A major challenge for using anaerobic digestion to treat sludge is the slower growth rate 

of anaerobic organisms. Slow growth rates of microorganisms are typically compensated for by 

process modifications such as increasing the digestion temperature (typically 35°C) and 

lengthening the detention times (typically between 10 and 30 d) of microorganisms. A schematic 

of a conventional anaerobic digester is displayed in Figure 2.2. 

 

Figure 2.2: Conventional anaerobic digester (Appels et al., 2008) 

In a typical municipal anaerobic digester the solids retention time (SRT) and hydraulic 

retention time (HRT) are both the same. The HRT is defined as the average time liquid spends in 

the digester while, the SRT refers to the average time microorganisms are retained in the reactor.  

The SRT must be long enough to allow adequate time for the critical organisms to grow and 

mature for complete digestion of complex organic matter (Parkin and Owen, 1986). At short 

detention times the methanogic bacteria will be withdrawn from the digester faster than they can 



9 
 
 

 

reproduce. Detention times less than 10 days will result in significant washout of methanogenic 

bacteria (Gerardi, 2003). In a conventional digester the SRT is controlled by the volume of the 

digester. To increase the time microorganisms have to digest organic material (SRT) the volume 

of a conventional digester must be increased resulting in larger capital and operation costs. There 

are alternatives to the conventional method of anaerobic digestion.  

 

Anaerobic Granular Reactors 

Anaerobic granules can be utilized to increase the SRT and reduce the reactor’s volume 

and HRT. By conserving the degrading population of microorganisms (increasing the SRT) in 

the reactor, the HRT can be reduced. A shorter HRT will reduce reactor volume, operation and 

capital costs, making anaerobic digestion a more attractive form of treatment (Ripley et al., 

1986). Anaerobic granules have desirable settling characteristics, enabling the biomass to be 

maintained inside of the reactor, thus making the HRT independent of the SRT (Karadag et al., 

2015). Anaerobic digesters that utilize granules are the highest efficiency reactors to treat high 

strength organic wastewater and produce biogas (Soto et al., 2011; Baeta et al., 2012; Wu et al., 

2016).  

The high biomass concentration in anaerobic granules enables rapid organic matter 

degradation and requires less reactor volume (Liu et al., 2003). The granules are maintained 

inside of the system, controlling the growth rate and concentrations of microorganisms and 

increasing the reactor’s SRT. Increasing the SRT reduces the rate at which slow growing 

microorganisms are washed out of the system (Ittisupornrat et al., 2015). As the SRT increases 

so does the treatment efficiency because the microbial population has more time to develop and 
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mature. The active biomass retained within the system is closely related to an anaerobic 

digester’s treatment efficiency (Uyanik et al., 2002). By maintaining the bacterial populations in 

the system anaerobic granular reactors can treat high strength organic wastewaters without 

external separation or recirculation of the wastewater (Lim and Kim, 2014). 

Increasing the SRT allows slow growing bacteria to become more enriched and increases 

the diversity of the biological community (Clara et al., 2005). Increasing the diversity of 

microorganisms also increases the physiological capabilities of the wastewater treatment 

technology. To ensure effective digestion of complex organics the microbial population must be 

of adequate quantity and concentration. A long SRT protects against a loss in digestion 

efficiency caused by fluctuations in temperature, potential inhibitory compounds, and slowly 

degradable compounds. As the SRT increases the food to microorganism (F/M) ratio is inversely 

affected. A larger SRT allows more micrograms to compete for the same amount of feed 

material. As the F/M ratio decreases so does the sludge production, resulting in lower sludge 

handling costs (Ittisupornrat et al., 2015). The use of dense granules in anaerobic digestion 

decreases the potential for microorganisms to be washed out, compared to other reactor types 

(Karadag et al., 2015).  

 

Anaerobic Granule Characteristics 

Anaerobic granules consist of a dense and diverse aggregation of microbes from different 

trophic groups (Uyanik et al., 2002; Liu and Tay, 2004; Baloch et al., 2008). The different 

groups of microorganisms form a complex food chain, depending on each other for essential 

nutrients (Diaz et al., 2006). Acetogens and methanogens need to be in close proximity of each 
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other for efficient hydrogen transfer between species (Lv et al., 2010). It is difficult to provide 

optimal conditions for the growth and interspecies interactions of microbes in a conventional 

digester (Lv et al., 2010). Granules can generate methane efficiently and at a high rate because 

there are different physiological types of microorganism located close to one another, increasing 

the rate of interspecies electron transfer (Diaz et al., 2006). Several researchers have suggested 

that the core of the granule consists of mainly methanogens which are sensitive to oxygen, while 

facultative bacteria dominate the granule’s outer layers (Shen and Guiot, 1996; Baloch et al., 

2008).  

Anaerobic granules contain a well-developed pore structure, allowing fluid flow through 

the granule and the mass transfer of essential nutrients (Wu et al., 2016). The porous structure of 

a granule consists of a connected system with many branches similar to a system of arteries. An 

anaerobic granule typically has a wide main channel with many small sized sub-channels 

merging into bigger ones eventually connecting to the main channel (Wu et al., 2016). The size 

and length of a granules’ channels depends on its diameter. Wu et al. (2016) concluded that 

granules with a large diameter (3-3.5 mm) have a larger pore size and a bigger pore volume than 

smaller granules (0.5-2 mm). A larger granule pore size may allow for increased substrate 

transport along with an increase in biogas production. After the granule reaches a certain size the 

well-defined pore structure deteriorates, resulting in vacant areas and channels that penetrate 

toward the granule’s interior (Diaz et al., 2006). The internal geometry is likely to have any 

effect on the biogas production rates. The biogas production in a granule based reactor could be 

proportional to the size of the granule (Wu et al., 2016).   

Diaz et al. (2006) observed granules of differing sizes and physical properties inside of a 

single bioreactor. The size and color of a granule may be an indication of its age. Small and 
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compact granules primarily consisted of younger microbial populations. Younger granules were 

observed to be black in color and mainly gram negative bacteria (Diaz et al., 2006). As granules 

aged, they became lighter in color (grey) and dominated by gram positive bacteria and Archaea. 

As granules became older they lost their compact spherical shape and became large and less 

dense (Diaz et al., 2006). After 4 weeks the granule’s center became vacant as a result of 

biomass decay (Diaz et al., 2006). These older granules were brown in color and contained no 

gram positive bacteria. A lack of metabolic activity was observed at the interior of the more 

mature (brown and grey) granules, possibly due to the lack of nutrient transfer to the interior 

(Diaz et al., 2006). As granules aged microbial activity was observed mainly at the outer edges, 

possibly due to inefficient nutrient diffusion to the center. 

The activity of various microbial populations is determined by measuring their 

byproducts. These byproducts can be gas production or the accumulation of soluble 

intermediates such as propionate and butyrate (Gujer, and Zehnder, 1983). Lim (2008) found 

high concentrations of acetate, propionate and iso-valerate near the top of the SGBR granule bed. 

The buildup of VFA indicated that most of the insoluble organic matter was hydrolyzed near the 

top of the digester. Granule reactors that are not mixed encourage different zones of 

microorganisms at different locations in the reactor. Baloch et al. (2008) found that acidogenesis 

was the dominant reaction close to the influent point, while methanogenesis dominated 

downstream of the acidogens. 

Baloch et al. (2008) analyzed anaerobic granular sludge samples from different 

compartments of a granular bed baffled reactor (GRABBR). The morphology of a granule was 

found to be influenced by the dominant reaction taking place in each compartment of the 

GRABBR (Baloch et al., 2008). The morphology of anaerobic granules may be influenced by the 
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dominant species of microorganism along with the growth and decay rates of microorganism 

(Lim and Kim, 2014). The granules in the methanogenic zone remained densely packed, smooth 

and relatively stable. Conversely, disintegration and floatation was observed in granules 

maintained in the acidogenic zone (Baloch et al., 2008). Granules dominated by acidogenic 

reactions contained a less dense core, an irregular outer surface and reduced structural stability. 

The high concentration of relatively fast growing acidogenic bacteria could produce fissures and 

broken surfaces, reducing the structural stability of the granule (Baloch et al., 2008). Granules 

with fissures and broken surface are less favorable to methanogenic microorganisms due to 

reduced stability and increased oxygen transfer (Baloch et al., 2008). The morphologies of 

granules from methanogenic and acidogenic zones are displayed in Figure 2.3. 

 

Figure 2.3: Granule from methanogenic dominant zone (left) and one dominated by acidogenic dominant zone 
(right) (Baloch et al., 2008) 

The diversity of the methanogenic subpopulations increases with the complexity of the 

waste composition (Liu and Tay, 2004). A wider range of enzymes are required to break the 

various linkages of complex organic matter. Granules grown on complex substrates are larger 

and more diverse than those grown on simple substrates (Lim and Kim, 2014). The granule 
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communities have been observed changing and adapting to their food source. Kovacik et al. 

(2010) demonstrated that a change in feed source from ethanol, propionate and acetate to just 

acetate resulted in a decrease in microbial diversity. Without ethanol in the feed source, the 

population of microorganisms that normally converted ethanol and propionate to hydrogen and 

acetate decreased substantially. When ethanol and propionate were omitted from the influent, 

hydrogen and formate consuming methanogens gave way to acetate consuming methanogens due 

to a lack of hydrogen and formate production (Kovacik et al., 2010). 

 

Upflow Anaerobic Sludge Blanket (UASB) System 

Currently there are several anaerobic reactor configurations that take advantage of 

anaerobic granules. The upflow anaerobic sludge blanket (UASB) reactor is often utilized in 

industrial and municipal wastewater settings. The UASB reactor is one of the most common 

anaerobic digestion systems currently in use (Nelson et al., 2012). In the UASB reactor contains 

a blanket of granular sludge which is kept in suspension by the upward flow of wastewater into 

the system. The density of anaerobic granules in a UASB reactor needs to be large enough to 

resist the shear stress supplied by the hydraulic upflow of the influent and the biogas. Excessive 

hydraulic loadings in a UASB can lead to the washout of biomass with the effluent (Bal and 

Dhagat, 2001). 

The UASB reactor requires a gas-liquid-solid separation device, which occupies between 

16 and 25% of the reactor volume (Hashemian and James, 1990). This device must be properly 

operated and maintained to achieve the maximum treatment efficiency. Blockages in the gas 

separator compartment of the UASB can result in failure to separate solids from the effluent 
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(Hashemian and James, 1990). Improper alignment of effluent weirs can also result in hydraulic 

short circuiting and reduced treatment efficiencies in the UASB (Heffernan et al., 2011). The 

sludge bed height of a UASB reactor needs to be controlled to prevent it from extending above 

the entrance of the gas liquid separator, thus increasing the potential to discharge solids with the 

effluent. The UASB reactor also requires an operator to control the sludge bed height in the 

reactor by appropriately discharging granular sludge (Heffernan et al., 2011).  

While treating raw municipal wastewater with the UASB reactor at organic loading rates 

(OLR) between 1.56 and 1.6 kg chemical oxygen demand (COD)/m3·d, Singh and Viraraghavan 

(2004) observed COD removal efficiencies ± standard deviation (SD) of 84 ± 2.1%, 87 ± 2.5%, 

81 ± 3.2%, 79 ± 1.0% and 56 ± 2.8% at 20, 32, 15, 11 and 6°C, respectively. A significant 

reduction in COD removal efficiency was observed when the UASB reactor’s temperature was 

reduced from 11 to 6°C (Singh and Viraraghavan, 2004). Singh and Viraraghavan (2004) 

determined that above 11°C the temperature of the UASB reactor did not significantly affect the 

total suspended solids (TSS) removal efficiency. The effluent TSS produced by the UASB from 

raw municipal wastewater ranged from 10 to 30 mg/L and had a volatile suspended solids 

(VSS)/TSS ratio of 0.8 ± 0.15. However, a decline in TSS removal was noticed once the upflow 

velocity of the UASB reactor reach a critical point (Singh and Viraraghavan, 2004).  

VFA are formed as intermediate products during the anaerobic digestion process. The 

accumulation of VFA reflects a kinetic imbalance in the microbial populations involved in the 

anaerobic digestion process. The total VFA concentration as acetic acid was maintained below 

35 mg/L for a UASB treating raw municipal wastewater at HRTs from 48 to 6 h and during 

stable operational periods at 32, 20, 15, and 11°C (Singh and Viraraghavan, 2004). The 

VFA/alkalinity ratio in the effluent of a UASB reactor treating raw municipal wastewater ranged 
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from 0.032 to 0.14 at HRTs from 48 to 6 h and during stable operational periods at 32, 20, 15, 

and 11°C (Singh and Viraraghavan, 2004). While treating raw municipal wastewater with the 

UASB reactor the average gas composition at 20°C and an HRT of 48 h was 65 to 70% methane, 

12 to 15% carbon dioxide and 15 to 20% nitrogen (Singh and Viraraghavan, 2004). A 

psychrophilic (20 ± 1°C) UASB reactor treating municipal wastewater at an OLR between 0.15 

and 1.2 kg COD/m3·d had a COD removal efficiencies in the range of 80 to 84% (Singh and 

Viraraghavan et al., 1998). The UASB reactors treated low strength wastewater at temperatures 

between 6 and 20°C, with removal of COD, BOD, and SS ranging from 38 to 90%, 47 to 91%, 

and 50 to 92%, respectively (Singh and Viraraghavan, 1999). Singh and Viraraghavan (1999) 

also found that the average biogas production fluctuated from 0.167 to 0.199 L methane/g 

CODremoved and the methane composition ranged from 65 to 86%.  

The average treatment efficiencies of full scale UASB reactors treating municipal 

wastewater preceding grit removal in semi-tropical regions is displayed in Table 2.1. The 

average design flowrates for the WWTP varied from 30,000 to 164,000 m3/d.  

Table 2.1: The average treatment performance of UASB reactors located in semi-tropical regions (Heffernan et al., 
2011) 

UASB Location  Source 
Effluent  Removal efficiency % 

COD 
(mg/L) 

TSS 
(mg/L)  COD  TSS 

India  Sato et al. (2006)  364  357  43  18 

India  Heffernan et al. (2011)  285  107  46  49 

Brazil  Oliveira & von Sperling (2009)  251  85  65  71 

Brazil  Heffernan et al. (2011)  247  112  62  54 

Middle East Lit  Nada et al. (2006)  221  63  71  85 

Middle East  Heffernan et al. (2011)  337  40  52  84 
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The Static Granular Bed Reactor (SGBR) System 

The static granular bed reactor (SGBR) was developed by researchers at Iowa State 

University. The SGBR system utilizes anaerobic granules like the UASB reactor to treat 

wastewater. Unlike other granular reactors the SGBR does not require mixers, gas-liquid-solid 

separation devices, recirculation pumps, or heat exchangers. The SGBR has a simple downflow 

configuration, allowing influent to flow through a bed of active anaerobic granules (Ellis and 

Evans, 2008). The downward flow regime of the SGBR allows for the biogas to be easily 

separated from the granule bed and liquid at the top of the system. The SGBR uses active 

granules similar to the UASB reactor, but it operates in a downflow configuration instead of an 

upflow. Due to the downflow configuration, the SGBR acts like a bioreactor and a filter and is 

not susceptible to solids washout under high hydraulic loading rates like the UASB.  

The SGBR has been used successfully to treat a variety of wastewaters including 

synthetic wastewater consisting of non-fat dry milk, industrial wastewater, pork slaughterhouse 

wastewater, landfill leachate, and dairy wastewater (Evans and Ellis, 2004; Debik et al., 2005; 

Evans and Ellis, 2010; Park et al., 2012; Turkdogan et al., 2013; Park et al., 2015; Oh et al., 

2015). The results obtained from Evans and Ellis (2004) using the SGBR system to treat 

municipal wastewater are displayed in Table 2.2. At steady state operation the SGBR system had 

COD removal efficiencies between 74 and 84%. Conversely to the UASB reactor, the SGBR’s 

ability to remove TSS increased when the HRT of the system was decreased. As the hydraulic 

flow into the system increases, the granule bed of the SGBR may become more compact (Evans 

and Ellis, 2004). This bed compaction and decrease in the bed porosity of the SGBR system 

improves solid entrapment and retention (Evans and Ellis, 2004).  
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Table 2.2: Performance of the SGBR system treating municipal wastewater based on TSS and CBOD5 

HRT 

Municipal Wastewater SGBR Effluent 

TSS 
(mg/L) 

CBOD5 
(mg/L) 

TSS 
(mg/L) 

CBOD5 
(mg/L) 

pH Alkalinity     
(mg CaCO3/L) 

Methane 
(%) 

48 106 ± 58 29 ± 6.6 29 ± 12 17 ± 6.5 7.08 ± 0.23 286 ± 18 64 ± 11 

36 274 ± 72 170 ± 96 11 ± 2.9 24 ± 6.4 6.75 ± 0.24 465 ± 77 61 ± 24 

24 301 ± 99 135 ± 68 12 ± 2.4 26 ± 9.0 6.80 ± 0.19 338 ± 74 64 ± 5.1 

18 163 ± 56 84 ± 40 8.2 ± 3.5 31 ± 5.8 6.91 ± 0.20 ND 76 ± 7.6 

12 236 ± 109 167 ± 106 7.8 ± 4.1 57 ± 9.4 7.07 ± 0.33 353 ± 32 39 ± 9.8 

8 187 ± 100 107 ± 39 5.6 ± 3.3 30 ± 12 7.23 ±0.17 323 ± 74 23 ± 2.0 
 

Primary and Secondary Municipal Sludge Characteristics 

Residuals from primary wastewater treatment are a combination of floating fats, oils and 

grease along with solids collected at the bottom of the primary clarifier. The residuals from 

secondary wastewater treatment are composed primarily of microbial cells (proteins and 

polysaccharides) and suspended solids produced during aerobic biological treatment (Mondala et 

al., 2009). The mixture of primary and secondary sludge is composed of 60 to 80% 

carbohydrates, fats and proteins (Gerardi, 2003). Approximately 80% (30% primary sludge and 

50% secondary sludge) of the organic waste input into a WWTP ends up in the anaerobic 

digesters (Gerardi, 2003). While, Foresti et al. (2006) estimates that 40 to 60% of the total 

organic matter in raw sewage is collected from primary and secondary clarifiers and sent to the 

anaerobic digesters.  

Secondary sludge contains more non-biodegradable solids and is more resistant to 

degradation than primary sludge (Grady et al., 2011). The biodegradation of secondary sludge is 

limited by the hydrolysis of compounds produced from death and lysis of activated sludge 
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bacterial cells (Parkin and Owen, 1986). The biodegradation of primary sludge and secondary 

sludge are displayed in Figure 2.4. Primary sludge has a higher potential for COD reduction 

compared to that of secondary sludge. The digestion curve stabilizes at SRT larger than 10 days 

as all of the sludge compounds are significantly reduced (Appels et al., 2008). A short SRT will 

result in the washout of methanogenic bacteria and the accumulation of VFA. At a long enough 

SRT when the substrate is almost completely degraded the system’s performance is controlled by 

the death and lysis of biomass (Grady et al., 2011).  

 

Figure 2.4: Secondary sludge and primary sludge digestion in a conventional anaerobic digester (Parkin and Owen, 

1986) 
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CHAPTER 3. MATERIALS AND METHODS 

Influent Characteristics 

A laboratory-scale SGBR was used to treat primary and secondary municipal sludge. 

Sludge samples were obtained from the Ames Water Pollution Control Facility (WPCF) located 

in Iowa. The Ames WPCF is designed to treat dry-weather flow of 8.6 million gallons per day. 

Characteristics of influent and effluent of the Ames WPCF are demonstrated in Table 3.1.  

Table 3.1: Ames WPCF treatment efficiencies (datum is from calendar years 2010 and 2011) 

Parameter Influent Effluent 

Oxygen Demand (mg/L) 162 4 

Suspended Solids (mg/L) 220 7 

Ammonia (mg/L) 23 0.2 

Dissolved Oxygen (mg/L) -- 9.6 
 

At the Ames WPCF, solids from the secondary clarifiers are returned to the primary 

clarifiers. Solids from the primary clarifiers are then sent to the anaerobic digesters. The 

characteristics of the two primary anaerobic digesters operating at the Ames WPCF are 

demonstrated in Table 3.2.  

Table 3.2: Ames WPCF digester characteristics (data is from calendar years 2014 and 2015) 

  
Temp pH Volatile 

Acids 
ALK Digester Supernatant 

   °C    (mg/L)  (mg/L) % T.S. % V.S. % T.S. % V.S. 

   Digester #1 

Average 36.3 7.0 579 3621 2.8 65.6 3.2 61.6 
Maximum 41.7 7.2 1180 5000 3.7 72.8 14.7 73.0 
Minimum 30.6 6.8 234 2780 2.1 56.4 2.2 20.6 

  Digester #2 

Average 36.5 7.0 437 3396 2.5 66.4 3.1 62.4 
Maximum 40.0 7.6 3710 4520 3.1 72.6 11.8 77.0 
Minimum 30.6 6.6 90 600 1.8 58.4 1.9 21.8 
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The sludge collected from the Ames WPCF was stored in a refrigerator at 4°C before 

feeding the system. The storage time was between 4 and 5 weeks. The characteristics of the 

sludge remained nearly constant throughout the study due to the low storage temperature (Han et 

al., 1997b). The particulate COD (PCOD) consistently made up between 91 and 98% of the total 

COD (TCOD) in the influent. The low influent soluble COD (SCOD) indicates little activity 

associated with hydrolysis, the first step of digestion. Primary and secondary sludge was diluted 

to facilitate hydraulic flow through the reactor. The influent was created by diluting the sludge 

with tap water at a 1:15 ratio. The characteristics of the influent are demonstrated in Table 3.3.  

Table 3.3: Laboratory-scale SGBR influent characteristics 

Parameter Study Mean ± SD 

TSS (mg/L) 2267 ± 593 
VSS (mg/L) 1694 ± 391 

TCOD (mg/L) 5693 ± 1483 
SCOD 314 ± 137 

VFA (mg/L as HAc) 245 ± 35 
pH 6.02 ± 0.69 

Alkalinity (mg/L as CaCO3) 457 ± 110 
 

Initially the HRT of the SGBR was set at 48 h. The HRT of the system started at 48 h and 

was gradually reduced to 24 h over the course of the study. The SGBR’s feeding rate was varied 

by modifying the HRT of the system. The variation in OLR with HRT is displayed in Table 3.4. 

The HRT was reduced in a stepwise manner while maintaining a consistent substrate 

concentration in the influent. The HRT was gradually decreased to give the microbial population 

contained in the SGBR time to acclimate. The reduction of the HRT in a stepwise fashion results 

in greater reactor stability and performance (Barker and Stuckey, 1999; Saner et al., 2016). The 
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OLR varied throughout the study to demonstrate the feasibility and resiliency of the SGBR 

system.  

Table 3.4: OLR conditions and corresponding HRT 

Operation Time HRT OLR OLR 

(d) (h) (g COD/L·d) (g TSS/L·day) 

62 48 2.8 ± 0.9 1.0 ± 0.4 

151 36 4.1 ± 0.7 1.5 ± 0.2 

10 30 5.0 ± 1.0 1.5 ± 0.4 

89 24 5.5 ± 1.7 1.7 ± 0.7 
 

Laboratory-scale SGBR System Setup 

The laboratory-scale SGBR system was operated for a period of approximately 10 

months at room temperature (e.g., 22 ± 2 ). The laboratory-scale SGBR system consisted of a 

2-liter reactor with 1-liter of working volume, a 4-liter tank for influent storage, a Masterflex 

peristaltic pump, magnetic stir plate, and a gas meter. The peristaltic pump was utilized to feed 

the influent into the top of the reactor. The hydraulic loading was not large enough to maintain a 

constant flow into the system. Intermittent feeding can cause surges of acid and hydrogen 

production and decrease the pH depending on the buffering capacity of the system (Parkin and 

Owen, 1986). Increasing the system’s SRT and/or frequency of feedings can minimize the 

impacts of intermittent feeding. The laboratory-scale SGBR system was fed once per hour to 

minimize the impacts of intermittent feeding. 

The SGBR reactor was fitted with influent and gas ports at the top, and effluent drain at 

the bottom and a backwash port on the side. A schematic representing the SGBR system is 

displayed in Figure 3.1. A stainless steel mesh (2 mm) was installed at the bottom of the reactor, 
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to prevent granules from being washed out from the reactor. Marbles (1.3 cm) along with gravel 

were placed over the steel mesh and below the granules, to support the granule bed. Finally 

approximately 1 L of granules were added to the reactor. The reactor was seeded with anaerobic 

granules from the City Brew Brewery in La Crosse, Wisconsin. The SGBR system was seeded 

with approximately 76.5 g of granular sludge with a TSS of 76,500 mg/L. 

 

Figure 3.1: Laboratory-scale SGBR system schematic 

During the startup of an anaerobic granule digester it is common to use a seed sludge to 

establish a microbial community in the reactor (Ahring, 2003 and Nelson et al., 2012). 

Pregranulated sludge is advantageous for reducing the startup phase of granule based reactors. 
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The seed sludge provides an active microbial community that will kick start the digestion process 

without the buildup of potentially inhibitory intermediate products such as VFA (Nelson et al., 

2012). The buildup of VFA in an anaerobic digester could cause a reduction in pH and ultimately 

lead to process failure. At a low pH VFA are undissociated and can become toxic when they pass 

through the cellular membrane, dissociating and reducing the pH (Boe, 2006; Appels et al., 

2008). It is important to regularly monitor the performance of an anaerobic digester to detect 

irregularities in system performance. 

The effluent of the SGBR was sampled twice a week to analyze the performance and 

health of the SGBR system. The SGBR influent and effluent were tested for TSS, COD, 

alkalinity, pH and VFA according to The Standard Methods for the Examination of Water and 

Wastewater (APHA, 1998). The test method used for each parameter is displayed in Table 3.5.   

Table 3.5: The test method for each parameter  

Parameter Description Section 

TSS Total Suspended Solids Dried at 103-105°C 2540 D. 
VSS Fixed and Volatile Solids Ignited at 550°C 2540 E. 
COD Closed Reflux, Titrimetric Method 5220 C. 

Alkalinity Titration Method 2320 B. 

pH Electrometric Method 4500-H+ B. 
VFA Distillation Method 5560 C. 
SVI Settling Characteristics 2710 

 

The influent and effluent samples were filtered with glass fiber filter paper (Whatman 

GF/C, 1.2µm pore size) to analyze TSS and VSS. The SCOD fraction was determined by 

measuring the COD of a filtered sample. The influent and effluent pH was analyzed using a 

Fisher Scientific Accumet excel, model XL15 pH meter. The biogas production was estimated 

using a wet tip gas meter (Speece, Nashville, TN). The wet tip gas meter was calibrated to 
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measure a 75 mL volume of biogas per tip. The composition of the biogas was analyzed by a 

Gow Mac gas chromatograph series 580 (Bethlehem, PA). The gas chromatograph column used 

detected relative components of nitrogen, methane and carbon dioxide. The gas chromatograph 

system was calibrated with a gas standard composed of 70% methane, 25% carbon dioxide and 

5% nitrogen.  
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CHAPTER 4. LABORATORY-SCALE RESULTS AND 

DISCUSSION 

COD and Suspended Solids (SS) Removal Efficiencies 

The SGBR’s ability to remove TCOD and TSS from primary and secondary sludge is 

demonstrated in Figure 4.1 and Figure 4.2, respectively. The process efficiency of the SGBR 

system was evaluated under diverse OLRs ranging from 2.8 to 5.5 g COD/L·d. As the OLR 

increased the TSS and TCOD removal efficiencies remained above 90%. The average suspended 

solids (SS) and COD removal efficiencies are demonstrated in Table 4.1. The average effluent 

TCOD and SCOD were maintained between 247-353 mg/L and 122-175 mg/L, respectively. 

 

Figure 4.1: Laboratory-scale SGBR TCOD removal 
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Figure 4.2: Laboratory-scale SGBR TSS removal 

Table 4.1: SGBR effluent COD and SS characteristics 

HRT (h)  48  36  30  24 

OLR (g COD/L∙d)  2.8 ± 0.9  4.1 ± 0.7  5.0 ± 1.0   5.5 ± 1.7 

TSS (mg/L)  53.0 ± 27.1  79.9 ± 38.8  182 ± 48.7  77.0 ± 36.0 

TSS Removal (%)  95.6 ± 1.0  96.6 ± 1.7  92.0 ± 2.1  96.4 ± 1.7 

TSS Range (mg/L)  18 ‐ 110  12 ‐ 206  126 ‐ 214  14 ‐ 178 

VSS (mg/L)  36.3 ± 19.2  74.5 ± 38.6  143 ± 38 a   60 ± 28 a 

VSS Removal (%)  97.7 ± 1.2  96.0 ± 2.1  92.2 ± 2.1 a  96.3 ± 1.7 a 

VSS Range (mg/L)   6 ‐ 64  8 ‐ 180  99 ‐ 168 a  11 ‐ 140 a 

TCOD (mg/L)  247 ± 57.8  353 ± 82.3  300 ± 96.6  291 ± 115 

TCOD Removal (%)  95.6 ± 1.0  94.2 ± 1.4  94.5 ± 1.8  94.7 ± 2.1 

TCOD Range (mg/L)  159 ‐ 333  158 ‐ 553  191 ‐ 373  100 ‐ 518 

SCOD (mg/L)  122 ± 58.3  175 ± 40.5  126 ± 10.0  129 ± 51.9 

SCOD Reduction (%)  61 ± 19  44 ± 13  60 ± 32  59 ± 17 

SCOD Range (mg/L)  48 ‐ 173  109 ‐ 275  129 ‐ 134  34.8 ‐ 222 

 
a VSS was estimated based on the average TSS/VSS ratio of the 48 and 36 h HRT (i.e. 0.785) 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250 300

%
 R
em

o
va
l

TS
S 
(m

g/
L)

Operation Time (days)

Eff TSS Inf TSS TSS Removal %
HRT = 48 h 36 30 24



28 
 
 

 

As the OLR increased the average TCOD of the effluent maintained stable. The SGBR 

system maintained a TCOD removal efficiency above 90.6% for OLR ranging from 2.8 to 5.5 g 

COD/L·d. The relationship of effluent TCOD and SCOD with HRT is demonstrated in Figure 

4.3. After each decrease in HRT an increase in the effluent COD concentration was observed. 

After the SGBR had time to acclimate to the increased OLR the effluent COD concentrations 

stabilized. The microbial communities of anaerobic granules are highly structured and capable of 

responding to quick and major changes in their environment (Kovacik et al., 2010). The diversity 

of microorganisms contained in anaerobic granules enables them to adapt to changes in their 

environment.  

 

Figure 4.3: Comparison of laboratory-scale SGBR effluent TCOD and SCOD 
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The SGBR system maintained a TSS removal efficiency above 90.8% under the various 

OLR applied. The average effluent TSS for the 30 h HRT and 24 h HRT was 182 and 77 mg/L, 

respectively. The 30 h HRT was applied to the SGBR system for only two weeks. The HRT was 

gradually decreased to put less stress on the microbial communities in the SGBR system. As the 

granules became acclimated to the increased OLR the TSS and TCOD removal efficiencies 

increased during the 24 h HRT. The range of effluent SS concentrations is demonstrated in 

Figure 4.4.  

 

Figure 4.4: Comparison of laboratory-scale SGBR effluent TSS and VSS 
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depends on particle size and composition. While VSS refers to the portion of volatile suspended 

solids in a water sample. The calculation for percent VS reduction is displayed in Equation 4.1. 

%	 	
	

100																																																																																										 4.1  

The reduction in VS of a 14 L conventional mesophilic digester treating primary and 

secondary sludge from Mashalltown, IA ranged from 32% at a 24 d HRT (1.2 g VS/L·d)  to 47% 

at a 40 d HRT  (0.8 g VS/L·d) (Han et al., 1997b). The reduction in volatile solids (VS) of a 15 L 

conventional mesophilic digester treating sludge from the Ames WPCF ranged from 32.5% at a 

10 d HRT (2.9 g VS/L·d)  to 46.8% at a 15 d HRT  (2.1 g VS/L·d) (Han and Dague, 1997a).  

The reduction of volatile solids will vary from plant to plant regardless of the efficiency 

of the anaerobic digestion process. The non-biodegradable portion of municipal sludge varies 

widely (35-80%) depending on the wastewater source and previous treatment (Parkin and Owen, 

1986). Therefore, the reduction of volatile solids is not the only indicator that should be used to 

measure the efficiency of an anaerobic digester. As a general guide volatile solids reduction 

should be above 30 to 40% (Parkin and Owen, 1986). The SGBR is able to remove solids at a 

higher rate than conventional digesters because it acts like a filter and a bioreactor. The SGBR 

averaged over 90% solids removal during this study. 

 

Biogas Production and Composition 

Biogas composed predominantly of methane and carbon dioxide is produced when 

organic matter is degraded under anaerobic conditions. The quantity of biogas produced depends 

on the level of organic loading, amount of volatile solids and the carbon to nitrogen ratio in the 

substrate (Mata-Alvarez et al., 2000; Senturk et al., 2012; Ketheesan and Stuckey, 2015). The 
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stability of the SGBR can be estimated by biogas production and composition. Under periods of 

system imbalance methane composition and biogas production will decrease. For example the 

carbon dioxide fraction of the biogas can be used as an indicator of digester performance. An 

anaerobic system that is imbalanced (i.e. organically overloaded) will exhibit an increase in the 

carbon dioxide fraction of the biogas (Ripley et al., 1986). The carbon dioxide component of 

biogas can also vary by substrate composition. Waste high in carbohydrates will produce more 

carbon dioxide than protein rich waste (Parkin and Owen, 1986). 

The rate of biogas production will generally increase as the OLR and the 

microorganism’s feed source increases. The growth of microorganisms will continue to increase 

with an increase in food source until a maximum growth rate is achieved (Clara et al., 2005). The 

biogas production of the SGBR is displayed in Figure 4.5.  The gas production of the laboratory-

scale SGBR increased with each increase in OLR.  

 

Figure 4.5: Laboratory-scale SGBR system biogas production by HRT 
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Low methane production could be a result of high influent PCOD and low operational 

temperature (Singh and Viraraghavan, 1999). The PCOD of this study composed between 91 and 

98% of the influent’s TCOD. Several research groups have shown the particulate matter can 

make up to 85% of the TCOD in domestic wastewater (Levine et al., 1985; Zeeman et al., 1997; 

Elmintealli et al., 2001b). When the influent contains all particulate matter, soluble matter results 

from the hydrolysis of the particulate matter (Grady et al., 2011). The growth of biomass is 

controlled by the soluble substrate concentration. The microorganisms must wait for hydrolysis 

of the particulate substrate to occur before they can degrade organic matter.   

The maximum conversion of a substrate to methane is an important parameter in 

determining the potential of treating wastewater under anaerobic conditions (Elmitwalli et al., 

2001a). The ability of a substrate to be converted to methane can determine its biodegradability 

and the potential treatment efficiency. High amounts of carbon dioxide and hydrogen gas in the 

biogas is an indication of reactor instability (Leitão et al., 2006). As the methane content in the 

biogas increases, anaerobic biodegradation increases. The composition and production rate of 

biogas is an indication of reactor performance.  

The gas composition of the SGBR system is displayed in Figure 4.6. During the 24 h 

HRT of this study the SGBR produced gas with a composition of 76 ± 4.0% methane, 18 ± 1.6% 

carbon dioxide and 4 ± 2.3% nitrogen gas. The biogas composition for a sample collected from 

an Ames WPCF digester in December 2011 was 59 ± 2.8% methane, 37 ± 1.8% carbon dioxide. 

The methane content of the laboratory-scale SGBR treating sludge from the Ames WPCF was 

22% greater than that of the Ames WPCF digester.  
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Figure 4.6: Laboratory-scale SGBR system and conventional digester biogas composition treating primary and 
secondary sludge 

 

The biogas composition of 15 urban WWTP in Canada and the US was 63 ± 2% methane 

and 37 ± 4% carbon dioxide (Lackey et al., 2015). The biogas composition of a 15 L mixed 

conventional mesophilic digester treating sludge from the Ames WPCF ranged from 67 to 71% 

methane, 24 to 27% carbon dioxide, and 4 to 7% nitrogen at OLR ranging from 2.1 g VS/L·d (15 

d HRT) to 2.9 g VS/L·d (10 d HRT) (Han and Dague, 1997a). The biogas composition of a 14 L 

conventional mesophilic digester treating primary and secondary sludge from Mashalltown, IA 

ranged from 65 to 72% methane, 24 to 27% carbon dioxide, and 2 to 5% nitrogen at OLR 

ranging from 0.8 g VS/L·d (40 d HRT) to 1.2 g VS/L·d (24 d HRT) (Han et al., 1997b). 

 

Theoretical Methane Yield 

The theoretical value of methane production is proportional to the organic matter 

destroyed. The theoretical volume of methane production per gram of COD removed is 0.35 L 
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CH4/g COD removed. The theoretical volume of methane is generally less than the actual 

volume due to a fraction of organic matter being utilized for microbial growth, and not all of the 

gas produced is captured and measured accurately (Parkin and Owen, 1986). The theoretical 

methane production was based on the assumption that 90% of the COD removed was converted 

to methane (Oh et al., 2015). The volume of methane produced per mass of COD removed for 

each backwashing period is displayed in Table 4.2. Overall 0.14 L CH4/g COD removed was 

observed during this study. The laboratory-scale SGBR methane yield is consistent with the 

expected yield values for anaerobic municipal sludge digestion (i.e. 0.08 and 0.18 L CH4/g COD 

removed) (Noyola et al., 2006). The theoretical methane yields are displayed graphically in 

Figure 4.7.  

Table 4.2:  Actual methane production based on COD removal 

Backwash 
interval 
(d) 

TCOD 
loaded by 
influent (g) 

TCOD 
discharged by 
effluent (g) 

TCOD 
Removed by 
backwash (g) 

COD 
removed 

(g) 

CH4 
production 

(L) 

L CH4/g 
COD 

removed

99  345.6  15.0  62.6  268.0  24  0.10 
31  109.7  8.5  73.4  27.9  7.8  0.31 
34  143.0  8.7  69.9  64.3  8.5  0.15 
43  156.7  9.2  77.6  69.9  11  0.17 
56  294.7  18.7  28.7  247.2  25  0.11 
18  38.9  4.7  74.2  ‐40.0  8.8  ‐0.25 

16  88.0  4.2  63.9  19.9  7.8  0.44 
15  82.5  3.2  26.0  53.2  7.4  0.15 

Total  1259  72.1  476.4  710.5  92  0.14 
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Figure 4.7: Actual and theoretical methane yield (laboratory-scale SGBR) 

The formation of biogas pockets inside the sludge bed could result in a discordance in the 

biogas measurement (Soto et al., 2011). Abrupt release of the biogas from pockets in the SGBR’s 

sludge bed was most notable during backwashing periods. The applied upflow velocity from 

backwashing was great enough to initiate the separation of gas bubbles from the granule surface 

(Soto et al., 2011). The volume of biogas released from the SGBR due to backwashing was 

approximately 1380 ± 114 mL per backwash cycle. 

Another possible reason the actual methane yield does not match the theoretical is the 

supersaturation of methane that can exit the reactor with the effluent. Dissolved methane that 

leaves with the effluent could result in incorrect estimations of methane production. Contrary to 

common belief effluent from anaerobic treatment is often supersaturated with methane, resulting 

in a miscalculation of the methane production (Keller and Hartley, 2003). Approximately 20 to 

60% of the theoretical methane production could be dissolved in the effluent (van Haandel and 

Lettinga, 1994; Agrawal et al., 1997; Singh and Viraraghavan, 1998; Keller and Hartley, 2003; 

Souza et al., 2011). The amount of dissolved methane in the effluent can be significant, 

‐0.3

‐0.2

‐0.1

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8

yi
el
d
 C
H
4
 (L
) 
/ 
C
O
D
re
m
o
ve
d
 (g
)

Backwashing period

Actual yield Theoretical yield Overall yield



36 
 
 

 

depending on reactor operational conditions. The solubility of methane is reduced by high ionic 

strength and increased by the presence of hydrophobic material such as fats and oil micelles 

(Souza et al., 2011).   

The amount of methane dissolved in the effluent composed of between 36 and 41% of the 

total methane yield for a UASB reactor treating municipal wastewater at 25°C and located 900 m 

above sea level (Souza et al., 2011). The dissolved methane concentrations for the UASB reactor 

were 1.37 to 1.67 times higher than those calculated using Henry’s Law. The UASB’s total 

methane yield calculated by Souza et al. (2011) increased from 0.14 - 0.15 L CH4/g COD 

removed to 0.22 - 0.24 L CH4/g COD removed when the amount of dissolved methane in the 

effluent was quantified.  

 

Backwashing the SGBR and Solids Mass Balance 

Not all of the influent solids can be converted to methane. Solids can accumulate in and 

on top of the SGBR’s granule bed, resulting in excessive head loss. The SGBR system requires 

backwashing because it acts as a filter as well as an anaerobic digester. Head loss in the SGBR 

system occurs periodically due to the entrapment of solids in the granule bed. Slowly 

biodegradable and non-biodegradable solids will accumulate in the system. The head and 

treatment efficiency of the system can be restored by periodic backwashing. Evans and Ellis 

(2004) determined that controlled wastage of solids through backwashing was essential in 

treating municipal wastewater with the SGBR. Backwashing helps to alleviate head loss, and it 

can also provide a degree of bed mixing which may be beneficial (Park et al., 2012). Mixing in a 
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digester disperses metabolic end products and toxic materials contained in the influent (Parkin 

and Owen, 1986). 

The system was backwashed by pumping effluent into the underdrain of the system, 

pushing accumulated solids out of the system through a drain port above the granule bed. The 

duration between backwashing was based on the system’s head loss and the accumulation of 

solids on top of the SGBR’s granule bed. The time between backwashing decreased as the OLR 

of the system increased. An upflow velocity of 1 m/h was determined to be sufficient to dislodge 

accumulated solids while maintaining the anaerobic granules in the SGBR system (Oh et al., 

2015). Oh et al. (2015) noticed significant buildup of non-degraded particulate organics in the 

SGBR system at a HRT less than 18 h and OLR greater than 3.5 kg COD/m3·day. During this 

study significant solids build up was first noticed during the 36 h HRT with a corresponding 

OLR of 4.1 ± 0.7 g COD/L·d.  

A solids mass balance was performed on the SGBR system to analyze solids removed by 

degradation, backwashing, and with the effluent. The following solids balance was adopted from 

Park et al. (2012). Several assumptions were made in order to calculate the solids balance of the 

SGBR system. The COD removed was assumed to be converted to methane at a ratio of 0.35 L 

CH4/g COD adjusted to standard temperature and pressure (STP). Next it was assumed that the 

solids removed by methane conversion can be approximated by dividing methane production by 

the ratio of influent PCOD to TSS as demonstrated below in Equation 4.2. TSSconversion is the TSS 

removed by the TSS conversion to methane. 

TSS 	
CH 	production L from	TSS
0.35	 / 	 ∗ PCOD/	TSS

																																																																																										 4.2  
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Equation 4.3 differentiates the methane production from SCOD removal and methane 

from solids degradation. The total methane production was measured by accounting for 

measured biogas production, methane solubility and methane that escaped due to backwashing. 

Dissolved methane can also be discharged from the reactor through the effluent. The volume of 

dissolved methane that exited the SGBR system with the effluent was estimated using Henry’s 

Law, as displayed in Equation 4.4. The Henry’s Law constant at 298.15 (K = 0.0014 mol/L/atm) 

was used to calculated the solubility of methane at STP (Oh et al., 2015). The process of 

backwashing the system depressurizes the system. The volume of methane released from the 

reactor due to backwashing was approximately 1380 ± 114 mL per backwash cycle.  

	 	 	 	 	 	 	 	 																										 4.3   

1.4 ∗ 10 3
∗

∗ 1700
1

273.15
1

298.15 ∗ 1 ∗ 22.4 ∗ 																																		 4.4   

Equation 4.5 estimates the methane from SCOD removal. This assumes that the SCOD 

(e.g. VFA) removed was all converted to methane. 

	 	 	 	 	 	 	 ∗ 0.35 / 	 												 4.5   

Equation 4.6 combines the soluble and particulate fractions of COD.  

																																																																																																																								 4.6   

Equation 4.7 estimates the amount of solids unaccounted for.  

	 	 	 	 																																																		 4.7   

The solids balance was calculated for each backwashing period as displayed in Table 4.3. 

The average ratio of influent PCOD to TSS was calculated for each backwashing period. The 
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average methane composition in the biogas was used for each period as if the methane 

composition was stable. The accumulation of solids increased substantially during long periods 

between backwashing. A	chart	displaying	the	fate	of	the	solids	load	into	the	SGBR	system	is	

demonstrated	in	Figure	4.8. The influent TSS were removed by degradation (22%), 

backwashing (50%), effluent (3.7%) and 24% were unaccounted for. Solids removal in a 

conventional heated and mixed anaerobic digester is typically between 40 and 60%. 

Table 4.3: Laboratory-scale SGBR solids balance 

Backwash 
Interval (d) 

Solids 
loaded by 
Influent (g) 

Solids 
Discharged by 
Effluent (g) 

Solids Removed 
by Degradation 

(g) 

Solids Removed 
by Backwash 

(g) 
Unaccounted 
Solids (g) 

99  120  3.6  29.9  33.2  54 
31  48  1.6  11.5  38.9  ‐4 
34  52  1.8  12.6  37.0  1 
43  66  2.3  15.9  41.2  7 
56  110  4.9  27.8  15.2  62 
18  38.9  1.7  8.4  39.3  ‐10.5 
16  34.6  1.5  7.6  33.9  ‐8.4 
15  32.4  1.4  7.1  13.8  10 

Total  503  19  121  253  111 
percent of 

total  100%  3.7%  24.0%  50.3%  22.0% 
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Figure 4.8: Fate of laboratory-scale SGBR solids 

Hydrolysis of solids appeared to be rate limiting based on the amount of solids that were 

backwashed from the SGBR. As the time between backwashing increased so did the solids that 

were unaccounted for as displayed in Figure 4.9.  Carefully monitoring the accumulation of 

solids on top of the bed and backwashing the system was essential in treating primary and 

secondary sludge with the SGBR.  
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Figure 4.9: Overall solids accumulation in the laboratory-scale SGBR system 

The SGBR was capable of separating solids from the influent because it acts like a filter 

and a bioreactor. Biological and physical processes both play an essential role in anaerobic 

digestion of particulate matter. Particulate matter can only be biologically hydrolyzed after 

becoming physically removed either by entrapment in the sludge bed or adsorption (Elmitwalli et 

al., 2001b). The influent was composed primarily of solids as indicated by the average influent 

PCOD of 94.5 ± 2.4%. The UASB reactor does not effectively retain particulate matter. When 

treating wastewaters high in particulate matter the UASB reactor allows solids to pass through 

the bioreactor with little hydrolysis and stabilization (Grady et al., 2011). 

 

COD Mass Balance 

The principal equation for the mass balance is displayed below in Equation 4.8 (Oh et al., 

2015). The results of the COD mass balance for each HRT are displayed in Table 4.4. As 

demonstrated in Figure 4.10, 22% of the COD input into the SGBR system was unaccounted for. 
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There are several possibilities for the unaccounted COD: accumulated solids in and on top of the 

granule bed, dissolved methane leaving with the effluent, cell synthesis, methane lost to the 

atmosphere, and sulfate reduction (Lobato et al., 2012). 

	 	 	 	 																																				 4.8  

Table 4.4: COD mass balance of the SGBR system 

HRT 
Influent 
TCOD 

Effluent 
TCOD CH4production

Backwash 
TCOD 

Unaccounted 
TCOD 

 (h) (g) (g) (g COD) (g) (g) 

48 88 7.7 40 37 2.5 
36 490 36 148 247 59 
30 40 2.4 11 5 21 
24 489 26 116 185 163 

Total 1107 71 315 474 245 
% of Total 100% 6.5% 28% 43% 22% 

 

 

Figure 4.10: COD mass balance of the laboratory-scale SGBR system treating primary and secondary municipal 

sludge 
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As	discussed	above	dissolved	methane	that	leaves	with	the	effluent	could	also	result	

in	unaccounted	COD.	Depending	on	the	reactor	configurations	and	substrate	composition,	

effluent has the potential to be supersaturated with methane. COD removal can also be affected 

by sulfate reducing bacteria. Sulfate	reducing	bacteria	use	sulfate	as	an	electron	acceptor	to	

oxidize	various	organic	compounds	 Singh and Viraraghavan, 1998). Sulfate reduction reduces 

the methane yield for each unit of converted COD (Colleran et al., 1995). Problems with 

competitive inhibition can arise between sulfidogenic bacteria and methanogenic archaea during 

anaerobic digestion of sulfide containing wastewater Barber	and	Stuckey,	2000 .	While 

treating low strength municipal wastewater with the UASB reactor Singh and Viraraghavan 

(2004) determined that sulfate reducing bacteria removed 25 to 35% of the COD, while 

methanogens removed COD at a rate of 35 to 45%. Conversely,	Lobato	et	al.	 2012 	concluded	

that	low	concentrations	of	sulfates	in	domestic	wastewater	 20	to	100	mg	SO4/L 	results	in	

low	COD	removal	due	to	sulfate	reduction.	 

Unaccounted COD could potentially be used for cell synthesis (Singh and Viraraghavan, 

2004). The average biomass yields were between 0.057 and 0.122 g VSS/g CODremoved for an 

SGBR system treating slaughterhouse wastewater at HRT and OLR from 48 to 20 h and 2.97 to 

8.23 kg COD/m3·d, respectively (Park et al., 2012).  Typical biomass production rates for high 

rate anaerobic digesters are between 0.05 and 0.1 g VSS/g CODremoved (Grady et al., 2011). The 

growth yield of biomass is very low in anaerobic systems (Grady et al., 2011). 

 The COD mass balance performed on pilot and demonstration-scale UASB reactors by 

Souza (2010) quantified COD removal in the following ways: effluent SCOD (14 to 24%), 

Sludge in the effluent (10 to 20%), sludge accumulated in the UASB reactor (8 to 10%), methane 
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in the biogas (24 to 30%), dissolved methane (16 to 18%) and sulfate reduction (4.5 to 5%) 

(Lobato et al., 2012). Oh et al. (2015) determined an unaccounted TCOD of 19.3% in the SGBR 

system while treating dairy processing wastewater as displayed in Figure 4.11. 

 

Figure 4.11: COD mass balance on the pilot-scale SGBR system treating dairy processing wastewater (Oh et al., 

2015) 

Sludge Volume Index (SVI) of the Backwash Material 
 

The SVI measurement quantifies the propensity of sludge to settle and compact. The SVI 

was calculated to evaluate the ability of the backwash material to be dewatered and settled. The 

SVI value of the backwash material was obtained by measuring the volume of sludge settled in a 

1000 mL beaker. The volume of settled sludge vs time is displayed in Figure 4.12. 

Unaccounted 
tCOD 461,510 

(19.3) 
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Figure 4.12: Settling volume of laboratory-scale SGBR backwash material 

The SVI for backwashed material with a TSS ranging from 8100 to 8345 mg/L was 

determined to be between 51 ± 2.5 and 52 ± 2.6 mL/g, respectively. A SVI value less than 80 

mL/g indicates excellent settling and compaction characteristics (Grady et al., 2011). The solids 

wasted with backwash water could be dewatered for ultimate disposal or land application. 

 

Hydrolysis, Acidification and Methanogenesis 
 

The percentages of hydrolysis, acidification, and methanogenesis reactions were 

calculated to determine the SGBR’s ability to degrade primary and secondary sludge. Equation 

4.9 through Equation 4.12 demonstrate the calculations required to express the volume of 

methane as COD. Where Vdissolved corresponds to the volume of dissolved biogas released with 

the effluent based on Henry’s Law.  The Henry’s Law constant at 298.15 (K = 0.0014 

mol/L/atm) was used to calculated the solubility of methane at STP (Oh et al., 2015). 
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	 ∗ %																																																																																																																													 4.10  

1.4 ∗ 10 3

∗
∗

1700
1

273.15
1

298.15 ∗ 1 ∗ 22.4 ∗ 											 4.11  

∗ 	
	

0.35	 	
																																																																																																												 4.12  

Equation 4.13 through Equation 4.15 calculates the percentages of hydrolysis, 

acidification, and methanogenesis (Oh et al., 2015). The conversion factor of 1.28 g COD/g VFA 

was assumed (Danalewich et al., 1998; Rössle and Pretorius, 2001; Oh et al., 2015). The 1.28 g 

COD/g VFA is based on typical VFA composition distributions for prefermenters in domestic 

wastewater treatment (Rössle and Pretorius, 2001). 

% 100 																																																																																													 4.13  

% 100 																																																																																					 4.13  

% 100 																																																																																																																																						 4.15  

Table 4.5 estimates the percentages of hydrolysis, acidification, and methanogenesis for 

each HRT. The rate of hydrolysis and methanogensis remained stable as the HRT was decreased 

during the study. The acidification step was negative because the VFA concentration of the 

influent (245 ± 35 mg/L as HAc) were greater than the VFA concentrations in the effluent (11 to 

30 mg/L as HAc). The results indicate that influent organic matter was not completely converted 

to methane possibly due to the high fraction of influent PCOD (Oh et al., 2015). Evans and Ellis 

(2004) determined that hydrolysis or mass transport limitations could be reasons for incomplete 

degradation of suspended solids in a SGBR system treating municipal wastewater. During high-

rate anaerobic treatment at 30°C, Elmitwalli et al. (2001a) estimated the maximum hydrolysis, 
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acidification and methanogenesis for suspended COD in domestic sewage at 87 ± 5%, 78 ± 4% 

and 77 ± 4%, respectively.  

Table 4.5: Hydrolysis, acidification and methanogenesis of the SGBR system 

Operation 
Time  HRT  OLR  CODCH4 Hydrolysis Acidification  Methanogenesis

(d)  (h)  (g COD/L∙d)  (g)  (%)  (%)  (%) 

62  48  2.8  43  22  ‐5.3  25 
151  36  4.1  157  24  ‐7.1  26 
10  30  5.0  12  25  ‐5.4  28 
89  24  5.5  125  23  ‐9.0  25 

 

VFA, Alkalinity and pH 

The VFA, alkalinity and pH of an anaerobic digester are interconnected. The success of a 

digester depends on maintaining an acceptable buffering capacity along with avoiding excessive 

VFA concentrations (Ripley et al., 1986). Accumulation of VFA in a digester can result in a 

decline in system pH, affecting methanogenic populations. As demonstrated in Table 4.6, 

effluent pH, alkalinity, and VFA values were stable during the duration of the study.  

Table 4.6: Effluent pH, VFA and alkalinity examples for the SGBR system 

  HRT (h) 
  48 36 24 

pH 6.64 ± 0.25 6.63 ± 0.21 6.62 ± 0.15 
VFA (mg/L as HAc) NM 19 ± 5.5 16 ± 4.4 

Alkalinity (mg/L as CaCO3) 463 ± 67 534 ± 89 438 ± 58 
 

A good indicator of the anaerobic process needs to be able to detect metabolic stress 

before it causes major issues. The VFA concentration is a good indicator of performance because 

it can detect imbalances in the system relatively quick, within 2 days in most cases (Ahring et al., 
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1995). Overloading and sudden variations in HRT and OLR can result in the accumulation of 

VFA in an anaerobic digester (Leitão et al., 2006).  

As discussed above, VFA are formed as intermediate products in anaerobic digestion. 

The accumulation of VFAs may be a result of unstable kinetics between the microbial groups 

involved in the digestion process. The acidogenic conversion phase of anaerobic digestion is 

nearly fivefold faster than the methanogenic conversion phase (Ketheesan and Stuckey, 2015). 

The accumulation of VFA reflects a kinetic imbalance in the microbial populations involved in 

the anaerobic digestion process. Stressful operational and environmental conditions can result in 

an increase in VFA producers and a decrease in VFA consumers, leading to reactor instability 

(Leitão et al., 2006). 

The stability of an anaerobic digester depends on the effective production and 

consumption of VFA. Operating an anaerobic system at a long SRT results in essentially no 

accumulation of VFA in the effluent (Parkin and Owen, 1986). The VFA of the SGBR’s effluent 

were between 30 and 11 mg/L as HAc for OLR ranging from 0.85 to 3.4 g VSS/L·d. The 

average volatile acid (VA) concentrations of the AWPC digesters ranged from 579 mg/L to 437 

mg/L. Reducing the VFA concentrations in the effluent also reduces the amount of odorous 

compounds (Han et al., 1997b). 

Maintaining the system’s pH in the optimal range prevents the dominance of acidogenic 

microorganisms which results in the accumulation of VFA (Ketheesan and Stuckey, 2015). The 

optimal pH range of 6.5 and 8.2 for methane production (Oh et al., 2015). Inhibition of 

methanogens starts to become noticeable around a pH of 6 (Ketheesan and Stuckey, 2015). The 

pH of the SGBR’s effluent was maintained between 7.17 and 6.19 for the duration of the study. 
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The pH of an anaerobic system is important in controlling parameters that can significantly affect 

hydrolysis along with VFA production (Huang et al., 2015).  

As the HRT of the system decreased from 48 h to 36 h, there was an increase in the VFA 

production as demonstrated in Figure 4.13. This increase in VFA production during the decrease 

in HRT resulted in a reduction in alkalinity as demonstrated in Figure 4.14. The effluent pH 

remained stable during the increase in HRT (Figure 4.14), indicating that the alkalinity was used 

to maintain a stable pH in the system (Oh et al., 2015). A decrease in the system’s pH would be a 

result of the buildup of VFA concentration causing the destruction of the bicarbonate buffering 

capacity (Ripley et al., 1986). Carbonate buffering comes from the degradation of nitrogenous 

organics (i.e. proteins) to ammonia (Parkin and Owen, 1986). Ammonia will react with carbon 

dioxide to form ammonium bicarbonate. The SGBR maintained enough buffer capacity to 

counteract the increase in VFA production due to an increase in the OLR. 

 

Figure 4.13: Laboratory-scale SGBR effluent VFA concentrations 
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Figure 4.14: Variation of effluent pH and alkalinity 

The effluent pH cannot necessarily be used as an indicator of process performance. The 

accumulation of VFA can be concealed by the digester’s buffering capacity, resulting in a stable 

pH. Due to the possible concealment of VFA, monitoring only the pH is not sufficient to detect 

process imbalances (Ketheesan and Stuckey, 2015). Monitoring alkalinity and VFA is also 

important to detect process stability. The VFA/alkalinity ratio can be used to detect the degree of 

acidification in the anaerobic digestion process (Demirel and Yenigun, 2004; Ketheesan and 

Stuckey, 2015). A VFA/alkalinity ratio less than 0.3 reflects reactor stability, while a ratio 

between 0.3 and 0.4 indicates the possibility of digester instability (Oh et al., 2015). As 

demonstrated in Figure 4.15 the VFA/alkalinity ratio remained between 0.02 and 0.08 for the 

duration of the study.  
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Figure 4.15: Variation in the ratio of VFA to alkalinity of the effluent 

The VFA of a laboratory-scale 14 L conventional mesophilic digester treating primary 

and secondary sludge from Mashalltown, IA at HRT ranging from 24 d SRT (1.2 g VS/L·d)  to 

40 d SRT (0.8 g VS/L·d) were maintained between 200 mg/L as HAc (Han et al., 1997b). The 

VFA, Alkalinity and pH of a laboratory-scale 15 L conventional mesophilic digester treating 

sludge from Ames WPCF at HRT ranging from 10 d SRT (2.9 g VS/L·d) to 15 d SRT (2.1 g 

VS/L·d) were maintained between 180 and 300 mg/L as HAc, 5000 to 6100 as CaCO3 and 7.0 to 

7.4, respectively (Han and Dague 1997a).  
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CHAPTER 5. SECONDARY AND PRIMARY SLUDGE 

TREATMENT BY ON-SITE PILOT-SCALE STATIC 

GRANULAR BED REACTOR (SGBR) 

 

Introduction 

A laboratory-scale of the SGBR system was conducted to determine its ability to treat 

primary and secondary sludge. The laboratory-scale SGBR consistently removed greater than 

90% of the TCOD and TSS. The laboratory-scale reactor was successfully operated at HRT and 

OLR ranges from 48 to 24 h and 2.8 to 5.5 g COD/L·d, respectively. The objective of this 

research was to evaluate the ability of a pilot-scale SGBR system to treat primary and secondary 

municipal sludge at a high rate. 

 

Materials and Methods 

A 1,000 gallon on-site pilot-scale SGBR system was used to treat primary and secondary 

sludge at the Ames WPCF. The primary and secondary sludge was diluted with chilled plant 

water at a ratio of 1:15 to create the influent. The influent was stored in a 650 gallon feed tank. 

The influent was pumped from the feed tank to the top of the SGBR using a Masterflex 

peristaltic pumps (Models L/S 77521-40). The influent was distributed across the top cross-

section of the anaerobic reactor with a 3/4-inch perforated PVC pipe. A gravel underdrain was 

installed to support the granule bed. The SGBR system was seeded with approximately 400 

gallons of anaerobic granule sludge from an operating UASB reactor at City Brew Brewery in La 

Crosse, Wisconsin.  
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A 65-gallon tank was used to collect effluent for backwashing the system. A 4-inch 

diameter weir was installed above the operating water level in the reactor to allow backwashed 

water to be discharged from the reactor. The entire SGBR system was retrofitted on site with 

3/4-inch PVC piping and fittings. The biogas produced by the SGBR system was collected 

through a port on the top and vented to the outside of the building. The rate of biogas production 

during operation was measured using an Actaris Schlumberger oil gas meter. The biogas was 

routed through a steel wool scrubber to remove hydrogen sulfide. A schematic of the pilot-scale 

SGBR setup is displayed in Figure 5.1. 

 

Figure 5.1: Schematic of the pilot-scale SGBR system: (1) Influent storage tank, (2) Influent pump, (3) Influent 
distributor, (4) H2S scrubber system, (5) Gas meter, (6) SGBR reactor, (7) Sampling port, (8) Drain and 

backwashing valve system, (9) Effluent overflow pipe, (10) Effluent storage tank, (11) Backwash pump, (12) 
Backwashing water discharge system 
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The flowrate of the influent was controlled to set the HRT of the SGBR. The HRT of the 

reactor was initially started out at 48 h. The reactor’s HRT was based on the reactors active 

volume of granular biomass. Influent, effluent and biogas samples were collected and analyzed 

frequently to evaluate the health and performance of the reactor. The TCOD, SCOD, TSS, 

alkalinity, VFA and gas composition were all analyzed. The reactor was backwashed every one 

to two weeks in order to remove excessive buildup of solids in and on the granule bed.  

The SGBR influent and effluent were tested for TSS, COD, alkalinity, pH and VFA 

according to The Standard Methods for the Examination of Water and Wastewater (APHA, 

1998). The test method used for each parameter is displayed in Table 5.1.  The influent and 

effluent samples were filtered with glass fiber filter paper (Whatman GF/C, 1.2µ pore size) to 

analyze TSS and VSS. The SCOD was also measured using the filtered wastewater sample. The 

influent and effluent pH was analyzed using a Fisher Scientific Accumet excel, model XL15 pH 

meter. The biogas production was estimated using a RITTER© wet-test (drum-type) gas meter. 

The composition of the biogas was analyzed by a Gow Mac gas chromatograph series 580 

(Bethlehem, PA).  

Table 5.1: The test method for each parameter 

Parameter Description Section 

TSS Total Suspended Solids Dried at 103-105°C 2540 D. 
TCOD Closed Reflux, Titrimetric Method 5220 C. 

Alkalinity Titration Method 2320 B. 

pH Electrometric Method 4500-H+ B. 
VFA Distillation Method 5560 C. 
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Results and Discussion 

The characteristics of the influent and effluent are demonstrated in Table 5.2. The 

influent was sampled at a port on top of the SGBR. There was a significant variation in influent 

TCOD and TSS due to a lack of mixing in the influent storage tank.  

Table 5.2: Pilot-scale SGBR influent and effluent characteristics 

   Influent  Effluent 

   Average  SD  Average  SD 

pH  5.73  0.16  6.66  0.11 

Alkalinity  
(mg/L as CaCO3) 

613  58  828  28.2 

VFA (mg/L as HAc)  1069  185  19.7  8.2 

TCOD (mg/L)  6586  4073  251.3  110.6 

SCOD (mg/L)  1474  530  82.0  33.8 

TSS (mg/L)  2604  1904  118.3  63.4 

 

The SGBR system’s ability to remove TCOD and TSS from primary and secondary 

sludge at a 48 h HRT is demonstrated in Figure 5.2 and Figure 5.3, respectively. The process 

efficiency of the SGBR system was evaluated under an OLR of 3.3 ± 2.0 g COD/L·d. The TSS 

and TCOD removal efficiencies were 91.9 ± 7.0% and 95.2 ± 3.2%, respectively. The effluent 

TCOD and TSS were maintained between 50.6-382 mg/L and 20-213 mg/L, respectively.  
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Figure 5.2: Pilot-scale SGBR TSS removal 

 

 

Figure 5.3: Pilot-scale SGBR TCOD removal 
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As demonstrated in Figure 5.4, the alkalinity, pH and VFA/alkalinity ratio of the effluent 

were monitored to make sure the system was operating within the appropriate ranges for 

methanogens. Research has shown that the inhibition of methanogens can start to become 

noticeable around a pH of 6 (Ketheesan and Stuckey, 2015). The pH increased and the VFA 

concentrations decreased from effluent to influent.  The consumption of influent VFA may have 

been primarily responsible for the increase in pH. The influent and effluent VFA concentrations 

were measured between 863 and 1370 mg/L as HAc and 13 and 34 mg/L as HAc, respectively. 

The VFA/alkalinity ratio of the SGBR effluent remained below 0.04. A VFA/alkalinity ratio less 

than 0.3 reflects reactor stability. 

 

 

Figure 5.4: Pilot-scale SGBR variation of effluent pH, alkalinity and the VFA to alkalinity ratio 
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The SGBR system was able to treat and generate methane from a high particulate waste 

stream (67 ± 24% influent PCOD). At a 48 h HRT and an OLR of 3.3 ± 2.0 g TCOD/L·d the 

SGBR system produced a biogas with 70.5% methane, 25.8% carbon dioxide and 3.4% nitrogen. 

As demonstrated in Figure 5.5 the methane content in the biogas of the pilot-scale SGBR was 

16% greater than the Ames WPCF digester treating sludge from the same source.   

 
   

 

Figure 5.5: Pilot-scale SGBR and Ames WPCF digester biogas composition 

 

The quantity of methane produced is an indication of the SGBR system’s ability to 

degrade solids. The results presented in Figure 5.6 were attained from the solids mass balance as 

presented in Park et al. (2012). The COD mass balance results are demonstrated in Figure 5.7. 

The theoretical conversion ratio of 0.35 L CH4/ g COD was used to estimate the COD consumed 

to generate methane. The methane production due to particulate degradation was estimated by 

subtracting the reduction in influent and effluent SCOD from the total methane production. 

Methane generation was measured daily and the dissolved methane in the effluent was calculated 
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using Henry’s Law. The pilot-scale SGBR was not backwashed during the period analyzed, 

resulting in higher quantities of COD and solids unaccounted for. The unaccounted TSS could be 

a result of solids accumulated in the SGBR system, effluent that is supersaturated with methane, 

methane lost to the atmosphere, sulfate reduction and biomass growth.  

 

 

Figure 5.6: Pilot-scale SGBR solids balance 
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Figure 5.7: Pilot-scale SGBR COD mass balance 

 
The measured cumulative biogas production is displayed in Figure 5.8. A leak was 

discovered on the 8th operational day, solids degradation was estimated using the average daily 

methane production after the leak was patched. The average methane production was estimated 

by separating the weekly operational days (4) and non-operation days (3).  

 

Figure 5.8: Cumulative biogas production 
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Conclusion 

 The pilot-scale SGBR showed the ability to degrade and remove solids from primary and 

secondary sludge. The pilot-scale SGBR has the potential to produce a biogas with a higher 

methane content than a conventional digester. The pilot-scale SGBR discharged effluent with 

low organic material, removing 91.9 ± 7.0% and 95.2 ± 3.2% of the influent TSS and COD, 

respectively.  The effluent VFA concentrations were maintained between 13 and 34 mg/L as 

HAc. Low effluent VFA concentrations could potentially reduce process instability from the 

buildup of intermediates. The low effluent VFA concentrations of the SGBR can reduce odors 

compared to the liquid streams of conventional anaerobic digesters. 16.5% of the influent solids 

were converted to methane. The unaccounted COD could be a result of solids accumulated in the 

SGBR system, effluent that is supersaturated with methane, methane lost to the atmosphere 

during backwashing, sulfate reduction and biomass growth. 
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CHAPTER 6. ENGINEERING SIGNIFICANCE 

 

The simple operation and construction of the SGBR system makes it an economical 

option for anaerobic treatment of wastewater. Ancillary heating and mixing are not required to 

operate the SGBR system. Due to the slow growth rate of methanogenic organisms it is standard 

practice to use large mixed and heated reactors in anaerobic digestion. The key to any efficient 

anaerobic reactor is to develop and maintain a large, stable, viable methanogenic population 

(Parkin and Owen, 1986). Maintaining a mature population of microorganisms inside of the 

anaerobic digester allows for a smaller reactor volume and a reduced HRT.  

In a conventional anaerobic digester the feedstock is concentrated as much as possible to 

reduce the volume of the reactor. Dewatering of the sludge before the digester would not be 

required when using the SGBR, reducing operational costs. The average total solids 

concentration of the sludge in the Ames WPCF digesters was between 2.5 and 2.8%. The target 

solids concentration of the influent for this study was 0.2%. When treating sludge with the 

SGBR the solids could be pulled from the clarifier faster to reduce the solids concentration. 

Reducing the sludge bed height of the clarifier would also increase its solids removal efficiency. 

Reducing the height of the sludge bed reduces the possibility for solids to be re-suspended. 

Table 6.1 compares conventional mesophilic anaerobic digestion of wastewater sludges 

with the SGBR. The SGBR has the potential to produce a biogas with higher methane content 

while operating at lower temperatures and HRT. The methane content of the biogas of a 

laboratory-scale SGBR operating at a 1 d HRT was up to 14% higher than the conventional 

digesters operating at 20 d HRT (Table 6.1). The SGBR showed the ability to consistently 
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produce an effluent with over 90% solids removal compared to the 30 to 50% solids removal 

from conventional mesophilic digesters (Table 6.1). The effluent of the SGBR system had lower 

VFA concentrations and potentially odor causing compounds than conventional digesters (Table 

6.1). Offensive odors are a result of elevated VFA concentrations (Rudolfs and Heukelekian, 

1930; Fisher and Greene, 1945; Han et al., 1997b). Conventional reactors are subject to process 

upsets from the accumulation of VFA due to organic and hydraulic fluctuations. As the OLR 

increased for this laboratory-scale study the effluent VFA concentration remained stable (i.e. 

below 30 mg/L as HAc). The effluent VFA concentrations were an order of magnitude lower 

than the VFA concentrations present for the mesophilic digesters presented in Table 6.1.  

Table 6.1: Comparing anaerobic digestion of municipal sludges with laboratory-scale conventional digesters and 
the SGBR system 

Source 
Reactor 

configuration 

HRT OLR VFA Alkalinity 
pH 

VS 
reduction Biogas 

methane 
% d g VS/L·d mg/L 

mg/L as 
CaCO3 

% 

Han and 
Dague, 1997a 

Single-stage 
Mesophilic 

 10-15 2.1-2.9 
180-
300 

5000-
6100 

7.0-7.4 32.5-46.8 67-71 

Han et al., 
1997b 

Single-stage 
Mesophilic 

24-40 1.2-0.8 200 NR NR 32-47 65-72 

Song et al., 
2004 

Single-stage 
Mesophilic 

20 1.43 
579± 

97 
6412±545 7.67±0.1 43.5±8.4 64.7±2.6 

Bolzonella et 
al., 2012 

Single-stage 
Mesophilic 

20 2.2 
570± 
400 

8400±790 7.8±0.1 36±3.5 63±5 

This study 
Ambient 
SGBR 

1-2 0.85-3.4 15-24 429-531 6.62-6.64 NR 76±4 

NR = Not reported 
 

The heavy metal concentrations of the sludge treat by the SGBR is important to consider. 

Heavy metals are non-degradable and can accumulate to inhibitory and toxic concentrations 

(Sterritt and Lester, 1980; Chen et al., 2008). The extent of metal inhibition depends on the 

soluble concentration and type of metal along with the distribution of microorganisms in the 
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digester (Mudhoo and Kumar, 2013). The physical and chemical properties (e.g. redox potential, 

electronegativity, solubility product of the corresponding metal sulfide complex, pearson 

softness index, electron density and covalent index) inside of the digester controls the toxicity of 

heavy metals (Workentine et al., 2008; Chen et al., 2014). Heavy metals can be precipitated in 

anaerobic treatment by the addition of sulfide (Kieu et al., 2011; Chen et al., 2014). The 

operating solids level has been shown to impact the toxicity of heavy metals, possibly due by 

providing protection from metal inhibition (Chen et al., 2008).The ions of heavy metals 

concentrations can be reduced by precipitation, sorption and chelation by organic and inorganic 

ligands (Chen et al., 2014).  

 Municipal sewage sludges can contain significant concentrations of heavy metals. The 

most common heavy metals include chromium (Cr), iron (Fe), cobalt (Co), copper (Cu), lead 

(Pb), zinc (Zn), cadmium (Cd) and nickel (Ni) (Mudhoo and Kumar, 2013). Lin et al. (1999) 

concluded the relative toxicities to anaerobic granular sludge were Cu>Cr>Cd>Zn>Ni>>Pb (1 d 

HRT) and Cu>Cr=Zn>Cd>Ni>>Pb (2 d HRT). The 50% inhibitory concentrations are displayed 

in Table 6.2. Copper had the highest toxicity of the metals tested (Table 6.2). The inhibitory 

heavy metal concentrations were dependent on the HRT. The heavy metal concentrations of the 

sludge to be treated with the SGBR should be quantified in order to select an appropriate HRT. 

Modifying the HRT of the system could also result in a change in the inhibitory concentration of 

certain heavy metals.  
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Table 6.2: 50% inhibition of methane production in a UASB reactor (mg/L) (Lin et al., 1999) 

Metal 
HRT 
1 d 

HRT 
2 d 

Cd 450 330 

Cr 200 250 
Cu 90 130 
Ni 2000 1600 
Pb 8800 8000 
Zn 690 270 
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CHAPTER 7. CONCLUSIONS 

 
A laboratory-scale SGBR was utilized to treat a high particulate waste stream (i.e. 94.5 ± 

2.4% influent PCOD). During this study the laboratory-scale reactor operated at HRT and OLR 

ranges from 48 to 24 h and 2.8 to 5.5 g COD/L·d, respectively. The TCOD and TSS removal 

efficiencies of the SGBR were maintained above 90%. The backwash material displayed 

desirable settling characteristics with an approximate SVI of 50 mL/g. The effluent VFA 

concentrations were maintained between 11 and 30 mg/L as HAc. The biogas of the laboratory-

scale SGBR was composed of 76 ± 4% methane (1 d HRT). The influent COD was removed by 

degradation (28%), backwashing (43%), effluent (6.5%) and 22% were unaccounted for.  

The pilot-scale SGBR showed the ability to treat primary and secondary sludge on-site at 

the Ames WPCF. During this study the pilot-scale reactor operated at a HRT and an OLR of 48 h 

and 3.6 g COD/L·d, respectively. The average TSS and COD removal efficiencies were 91.9 ± 

7.0% and 95.2 ± 3.2%, respectively.  The effluent VFA concentrations were maintained between 

13 and 34 mg/L as HAc. The biogas was composed of 70.5% methane and 16.5% of the influent 

solids were converted to methane.  

Both the laboratory and pilot-scale SGBR demonstrated the potential to increase the 

composition of methane compared to the biogas of a conventional anaerobic digester. Low 

effluent VFA showed the potential to reduce process instability due to the buildup of 

intermediates and reduce odors compared to the liquid streams of conventional anaerobic 

digesters. Both the laboratory and pilot-scale SGBR discharged effluent with low organic 

material, the average TSS and COD removal efficiencies were maintained above 90%. The 

unaccounted COD could be a result of solids accumulated in the SGBR system, effluent that is 
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supersaturated with methane, methane lost to the atmosphere, sulfate reduction and biomass 

growth. 

The SGBR performs like a bioreactor as well as a filter. Particulate matter can only be 

biologically hydrolyzed after becoming physically removed either by entrapment in the sludge 

bed or adsorption (Elmitwalli et al., 2001b).  Particulate matter that is trapped in the granule bed 

of the SGBR can become hydrolyzed. Conversely the UASB reactor is limited by the influent 

solids concentration. Treatment of primary and secondary sludge with the SGBR offers the 

advantages of a long SRT and solids entrapment by the granule bed. 
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