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ABSTRACT 

In high-speed, high density PCB bus systems, high frequency signal losses and 

crosstalk can have great impacts on signal integrity and digital timing, which can distort 

transmitted signals, worsen eye diagrams, and attenuate signal amplitudes. Also, these 

impacts make digital signals and their energy smearing over multiple bit positions as 

known as jitters, and cause the phenomenon of inter-symbol interference (ISI) in digital 

signal transmissions. 

            The main objective of this thesis is to analyze and develop efficient topology 

circuits for compensating bus system high frequency losses by using equalization 

techniques. The thesis has focused on study of various practical and efficient circuit 

topologies in order to improve its digital signals at receiver ends. The investigated 

equalization topologies include a shunt RC, series RL, Maxim’s, Agilent’s, and proposed 

equalizer circuits. It is found that with the application of the proposed equalization 

techniques, the quality of digital signals and eye diagrams is really improved up to the 

50 inch lossy channels by using both the post-emphasis and de-emphasis compensation 

techniques.   

Signal Integrity is an important research area in high-speed, high density digital 

transmission systems, and many factors, such as transmission line loss, circuit 

discontinuities, and non-linearity of passive and active components can easily distort 

signal quality to make them becomes unreliable in particular at high frequencies. 

Equalization is a powerful technique to restore distorted signals, which employs passive 

component as an equalizer applied to wired transmission channels. 
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A distorted signal can be resulted from different sources. One of dominant 

contributions is transmission line contains loss, including both conductor and dielectric 

losses. For a digital signal, jitter is an important characterization of distorted signals, 

which describes the signal turbulence in the time domain and time delay makes the 

signal postponed in a communication system. 

This thesis mainly focuses the topology analysis, improvement, and development 

of passive equalizers, including shunt RC and series RL circuit equalizers. It is found these 

circuits can be applied to an interconnection solely, or combined with these two circuits 

as a RLC circuit. With this topology, the eye probe receives higher signal quality and less 

jitters. The delay and jitter are minimized after the compensation circuit applied. After 

the optimization, relocate the equalizer circuit before the transmission line and discuss 

the different influence on the signal. 
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Chapter 1  

Introduction 

1.1 Motivation 

For a PCB circuit or interconnects system, high  frequency is preferable in order to get 

wide bandwidth and meanwhile keeping compact circuit size in digital and analog 

communications; But in comparison to low frequency communication operation, high 

frequency signals can much easily become distorted, such as signal irregular time delay, 

crosstalk, and ground bounce. Transmission lines printed on a PCB board are considered 

as ideal at a low frequency; however, their behavior at high frequency can be 

significantly distorted it is an important research to obtain good quality signals at 

receiver end for modern high speed digital circuit design. 

The primary AC losses of transmission Lines are from conductor loss, which 

includes not only DC loss, but also that from the high frequency resistivity of conductors. 

At high frequencies, the currents flow mainly in the conductor surface area which is 

known as “Skin Effect”. A much smaller current conduction area along 
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transmission line at high frequencies leads to its high resistance or high loss due to this 

skin effect. On the other hand, dielectric loss is due to that its dielectric constant is not 

pure real and it contains an imaginary part that results in a dielectric loss, which is 

commonly found in a PCB substrate such as FR4.  

 

Figure 1.1 Lossy channel 

 

Figure 1.2 Input waveform 
 

Figure 1.3 Output waveform 
It is found that both conductor loss and dielectric loss can cause signal distortion 

in particular at high frequencies. Moreover, those losses prolong the rise time of signals, 

reduce signal levels, and worsen signal quality. For instance, a unit pulse signal input to 

a transmission line system shown as Figure 1.1, where the transmission line is a lossy 

channel. A distorted signal is generated after passing through this lossy transmission 

channel.  The amplitude of the signal is reduced unevenly as a function of frequency and 
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the signal is delayed by the lossy media. As a result, it is hard to determine the signal 

logically at the receiver end of the system. For design of signal traces of high speed 

digital circuits, the signal integrity techniques for ensuring signal quality becomes more 

and more essential nowadays. In common practice of signal integrity engineers, the eye 

diagram is a very efficient tool to determine the quality of signal and performance of a 

digital communication system in order to make the system working properly.  

1.2 Outline of the Thesis 

There are total seven chapters in this thesis. After a brief introduction in 

Chapter1, Chapter 2 reveals the possible resources of signals’ distortion when they are 

propagating along a high speed transmission line; it also summarizes composition of 

various losses inside high speed interconnects. In Chapter 3, high speed signal jitter is 

defined and illustrated, and the Inter-Symbol Interference (ISI) in a multiple trace 

system is explained. Next, Chapter 4 shows different solutions to eliminate ISI in a high 

speed transmission system and explains various equalizers concepts. In Chapter 5, the 

various equalizer models and topologies are investigated, developed, and compared for 

practice signal integrity applications. Finally, Chapter 6 summarizes the proposed 

passive equalizers and their corresponding circuit layouts to be implemented in the 

proposed design. The last chapter briefs the conclusions as well future work. 
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Chapter 2  

Transmission Line Concepts 

One of the major differences between the transmission line and the conventional 

electric circuit theories is that lump circuit components are used in the circuit theory 

with a low frequency approximation while in the transmission line theory the 

dimensions of the circuit components are comparable to the guided wavelength of 

operation frequency. In general, when the dimensions of a circuit component are much 

shorter than the guided wavelength of its associated circuit devices, it is appropriate to 

use electric circuit theory to estimate the effect on the device. In practice, the maximum 

size of a device by accurately using the circuit “lumped element” model is one twentieth 

of the guided wavelength; otherwise, if a component size is comparable to the guided 

wavelength, it is named as “distributed element” because the amplitude and phase are 

variable at different locations on the component. 

As the operation frequency of communication becomes higher, the guided 

wavelength is conversely getting shorter. Therefore, at high frequencies, it is inaccurate 

to accomplish a circuit design by using the lumped element concept. Instead, 
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it is an inevitable choice to use distributed elements to design any high frequency 

communication circuits. 

2.1 Fundamental Transmission Line Concepts 

Micro-strip line is a quasi-static TEM structure, whose filed distribution is shown 

in Figure 2.1 where the current flows through its transmission trace.  

 

Figure 2.1 Field distribution for a microstrip line 

 

Figure 2.2 Transmission Line 
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As seen in Figure 2.2, two wires represent the schematic circuit of the 

transmission line, and one differential segment of this transmission line can be modeled 

as lumped elements. From Kirchhoff’s voltage law (KVL) and current law (KCL), and by 

setting  the segment length Δz, approaching zero, namely Δz→0, we derive following 

transmission line equation pair: 

( )
( )

( )
t

tzi
LtzRi

z

tz

∂

∂
−−=

∂

∂ ,
,

,υ

 
(2-1) 

( )
( )

( )
t

tz
LtzG

z

tzi

∂

∂
−−=

∂

∂ ,
,

, υ
υ

 
(2-2) 

The above equations are also called “telegrapher equations” historically. In the 

phasor domain, the time independent +,-.is assumed, and the above time domain 

equations can be simplified as 

Decoupling the above transmission line combine equations yields the voltage 

and current wave equations: 

( )
( ) 02

2

2

=− zV
dz

zVd
γ
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( ) 02

2

2
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( )( )CjGLjRj ωωβαγ ++=+=
[1] 

(2-7) 
 

where  γ is the propagation constant, which is a function of transmission line parameter 

R, L, G, C, as well as function of the operation frequency. The standard solution solutions 

for the voltage and current waves are derived as follows: 

( ) zz eVeVzV γγ −−+
+= 00  

(2-8) 
 

( ) zz eIeIzI γγ −−+ += 00  

(2-9) 
 

 

where both the voltage and current waves are composed of two signals propagating in 

opposite directions, 
ze γ−

represents a wave propagating in the +z direction, and 
zeγ

represents another wave propagating  in the  -z direction. The characteristic impedance 

67is defined as the as the ratio between the positive traveling voltage and current, 

namely,  
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2.2 Conductor DC Loss 

Transmission lines are made from metal traces and dielectric substrates. Since a 

trace and ground metals are not a perfect electric conductor, and the metal traces’ 

conductivity is finite, the corresponding trace resistance at DC as well as low frequency 

can be approximately evaluated using a DC model. The effective cross sectional area on 

which the current can flow through determines the metal trace DC loss. As seen in 

Figure 2.4, the DC current uniformly distributes along the cross section area of the 

microstrip line.  

 

Figure 2.3 Geometry of microstrip line 
 

  

Figure 2.4 Cross-sectional view for a microstrip line 

The DC resistance loss for a microstrip line as shown in Figure 2.4 can be 

evaluated as  

Ground 

W 

t 
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9:; < ρLA < >?@A  Ω (2-11) 

where ρ is the resistivity constant of the trace, W,t, and L are the width, thickness, and 

length of the metal trace considered in the figure. Sometimes, a DC loss along the trace 

could be ignored, if a good conductor trace is used at high frequencies.  

2.3 Conductor AC Loss (Skin effect) 

If a system bus system at a low frequency, it only needs to consider DC. However, 

when operation frequency is high, the AC resistance has to be evaluated in terms of high 

frequency characteristics of transmission lines. Precisely, the AC resistance is estimated 

by using the effective cross section dimensions determined by conductor skin depth δ 

[2]seen in Figure 2.5, which is quantitatively given as follows   

δ < D2>EF < D >GHF I  (2-12) 
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Figure 2.5 Skin effect[2] 
 

 

Figure 2.6  Insertion loss for a microstrip  35 inch line with AC loss; where pink line is 

for lossless line, red for including the conductor loss, and blue for including conductor 

and dielectric loss. 

 

At a low frequency, dc resistance and ac resistance are similar, that’s because 

the skin depth is much deeper than the height of conducting trace t. As long as the skin 

depth δ  is smaller than the thickness of the wire t, then the skin depth replaces the 

thickness of the trace. Thus, we can arrive the approximated AC loss [2]as follows:. 

Ground 

W 

t 
63% 
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9NO < >@P ΩI (2-13) 

As a result, in signal integrity engineering practice, the approximation of total 

resistance can be combined with 9NO and 9QO as give as 

 
9.R.NS T U9NOV W 9QOV  (2-14) 

The skin effect for a metal trace occurs at high frequencies, in which the current 

flows close to the surface of the conductor. Herein, it is assumed that the surface of 

conductor is smooth in the current DC and AC analysis. In fact, the surface of conductor 

is rough, which is particularly significant when the frequency is 10 GHz or higher. If a 

signal operates at a higher frequency, the skin effect and roughness of conductor can 

not be ignored.  The roughness can result in extra resistance at a higher frequency, in 

other words, we should account for additional amount of the resistance when the ac 

resistance is analyzed.  

2.4 Dielectric Loss 

At low frequencies, dielectric loss can be ignored in most PCB designs, because 

the dominant distortion comes from conductors. However, as increment of operation 

frequency, the assumption is no longer suitable. The dielectric loss at high frequencies 

becomes much important, which can significantly affect performance of a 

communication system..  
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Considering the influence of dielectric loss, the permittivity becomes a complex 

as seen below 

ε < εY Z jε" (2-15) 

where the imaginary part of the permittivity represents dielectric loss while its real part 

remains relatively stable as that at low frequencies. The equivalent conductivity of a 

lossy dielectric [2]  material is given as 

 
1ρ < 2πHε" (2-16) 

where ρ is the effective resistivity of dielectric substrate and H is the operation 

frequency. In the communication engineering, the “loss tangent” is define as a 

parameter to characterize the lossy level of the medium, which is given as 

tan|PQ| < 12>H_ < _"_` (2-17) 
In a transmission line model, the RLGC parameters are frequently used to 

characterize this transmission line, and in particular, the shunt resistance G[2] is mainly 

derived from the substrate features, which is given as  

G < _"_Y (2GHabb) (c) (2-18) 
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Chapter 3  

Introduction to Jitter 

3.1 Introduction 

The previous chapter has discussed the effect on the physical layer of high speed 

interconnect circuits. This chapter starts with a typical digital communication system 

model as shown in Figure 3.1, which consists of a transmitter, a receiver, and a 

transmission line medium as the signal propagation channel. 

Figure 3.1 Communication system block diagram 
Noise is an unwanted input added to desirable signals in the communication 

system. Jitter is a signal noise generated as a perturbation added to signals. Noise is the 

amplitude addition to digital signals, while jitter represents the time deviation of digital 

 Receiver Transmitter Medium 
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signals.  Moreover, it usually can be predicted from a deterministic model by a statistical 

approach. 

There are different sources that can result in jitters in a communication system, 

such as temperature, spatial distribution of current flow, or flick noise. 

 
Table 3-1 Equation of noise[3] 

d(A) < d7(A) W ∆d(A) 
∆A(A) < ∆v

fgd7(A)gA h < ∆Ai  

A small signal with noise(∆d(A)) added The perturbation of noise (Jitter) 

As shown in Table 3-1, a noise(∆d(A)) is added to signal (d7(A)), and 

correspondingly, the small signal Jitter (∆A(A)) is introduced. The phenomenon is 

explained in Figure 3.2.  



 

Figure 3.2 The signal with noise added in time domain with small signal perturbation

Figure 
All of the jitters are classified as summarized in 

be classified by two different kind

former is continually added to

signal propagation characteristics, while the

Deterministic Jitter

(DJ)

Data Dependent Jitter

(DDJ)

Inter-Symbol 
Interference

(ISI)

Duty Cycle 
Distortion

(DCD)
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The signal with noise added in time domain with small signal perturbation

 

Figure 3.3 Jitter classification[3] 
are classified as summarized in Figure 3.3. In general,

different kinds of noise: deterministic jitter and random 

added to signal waveforms and it can be predicted analyti

signal propagation characteristics, while the random jitter is hard to predict and 

Jitter

Deterministic Jitter

(DJ)

Periodic Jitter

(PJ)

Bounded 
Uncorrelated 

Jitter(BUJ)

Random Jitter

(RJ)

Gaussian Jitter

(GJ)

 

The signal with noise added in time domain with small signal perturbation[3] 

 

In general, jitter can 

and random one. The 

analytically by 

hard to predict and is 

Random Jitter

(RJ)

Multiple 
Gaussian Jitter

(MGJ)
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naturally generated from the random system sources. The equalizer can restore the 

distorted signals from the transmission channels, which are deteriorated by Inter-

symbol interference (ISI). Usually, the convolution calculations of  the power density 

functions of signals can be used for estimating the total jitter effects as summarized in 

Table 3-2. It shows the convolution relation among the power density functions (PDF, or 

f ), where the different subscripts indicate the different jitter source of PDF. For example, 

the deterministic Jitter can be calculated by data dependent jitters, periodic jitter, and 

bonded uncorrelated jitter through convolution operation. The BUJ is caused by 

crosstalk. The other portion of jitter is random jitter which is combined with random 

gaussian jitter and multi-gaussian jitter. The total jitter is the product of deterministic 

jitter and random jitter. 

Table 3-2 Evaluation of jitters from statistic method 

Deterministic jitter H:k < H::k l Hmk l Hnok  

Radom jitter Hpk < Hpqk l Hprk 

Total jitter Hsk < H:k l Hpk < H::k l Hmk l Hnok l Hpqk l Hprk 

3.2 Determinist Jitter 

 

Figure 3.4 Square signal transform[3] 
 

h(t)  
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Deterministic Jitters are controllable and predictable deviations of signals at a 

receiver end, such as Inter-symbol interference (ISI) or duty cycle distortion (DCD).  

3.2.1 Inter-Symbol Interference (ISI) 

 

Figure 3.5 ISI effect by multipath communication 
 

The concept of inter-symbol interference (ISI) can be illustrated by that in 

wireless communications. In a wireless communication system, multipath propagation[4] 

is a big issue in telecommunication as displayed in Figure 3.5. If transmission power is 

large enough to transmit communication signals, the receiver can easily receive these 

signals from a multi-path system. However, they are not recognizable because the time 

delays of signals from a multipath signal propagation channels, which is the ISI 

phenomenon in wireless communications. In a multi-transmission line system, signals 

received at one of the receiver ends are the superposition of the transmitted signals and 

crosstalk signals from the adjacent propagation channels. 



  

18 

 

Figure 3.6 Impedance match 

 

Figure 3.7 Impedance mismatch 

Figure 3.6 and Figure 3.7 show two propagation channels to transmit, a series digital 

signal “000001010011100101110111” which input to a system with 5 GHz data rate. There are 

two different channels considered: one is ideal channel without loss, and the other is a lossy 

channel.  
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Figure 3.8 Waveform of ideal transmission line at 5GHz 

 

Figure 3.9 Eye diagram of ideal transmission line at 5GHz 

For the ideal channel, as seen in Figure 3.8 and Figure 3.9, the generated eye diagram 

is very clean with high good quality. While for the lossy propagation channel, as displayed in 

Figure 3.10 and Figure 3.11, the transmitted signals encounter signal delays, the received 
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signals display signals display with jitters at the signals’ rise and fall edges, and the eye diagram 

of the signals shows a serious jitter phenomenon for distorted signals with a small eye opening.  

 

 

Figure 3.10 Received waveform of real transmission line at 5GHz 

 

Figure 3.11 Eye diagram of real transmission line at 5Ghz 
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Chapter 4  

Equalizer Fundamentals 

High frequency loss for transmission line is determined by its associated attenuation 

constant. In general, the transmission line is characterized as a low pass filter, which can 

be seen as constructed by RLGC parameters. Consequently, compensation for high 

frequency attenuation of the transmission is a key technique used in equalizer circuits. 

The common practice is either, to amplify high frequency oscillated wave or to reduce 

the signal magnitude at low frequencies wave, in order to compensate and balance the 

high frequency loss, which is usually referred as “equalization” by using these two 

compensations. Most commonly equalization devices can be sorted as: active and 

passive equalizers, dependent on the passive and active components used in building up 

equalizers. 

4.1 Active Equalizers 

An active equalizer[5] usually consists of a passive equalizer and an amplifier, 

where the passive equalizer is designed for compensating and balancing high frequency 
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signals while the amplifier is used for enhancing signal levels in the whole frequency 

band. The disadvantages of active equalizers are to add more active and passive circuit 

components, increase circuitry costs, and require large circuit dimensions, which are not 

interest of this thesis.  

4.2 Passive Equalizers 

The frequency characteristics of a transmission line behave like a low pass filter. 

When the transmission channel is connected to an equalizer,  an equalizer compensates 

the propagation channel for high frequency loss that are resulted from conductor and 

dielectric losses, in order to make the frequency response flat in the frequency range of 

interest. In the frequency domain, it is expected that the decreasing rate of the output 

signal frequency response through a transmission line is comparable to that of 

increasing for the compensation equalizer circuits. As seen in Figure 4.1, the 

multiplication of the transmission line frequency response and that of the equalizer 

shows relatively level performance. As a consequence of such frequency characteristics 

of the system, in the time domain, the output waveforms of the system is good replica 

of its input waveforms with differences in terms of time shifts and amplitude 

decrements. In general, high pass filter performance can be realized by RC, RL or RLC 

passive components.[6, 7] 
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4.2.1 Equalization Concept 

The scattering parameters are frequently used in RF, microwave, and signal 

integrity for characterizing a two-port network frequency response. Herein, the known 

transmission line coefficient, uVb is defined as the system transfer function  vsw(H). If 

vsw(H) and vxy(H) represent the transfer function for the transmission line and 

equalizer, respectively, vORz{(H) is the overall transfer function after plugging the 

compensated circuit into the system. These three transfer functions[6] are related as 

given as follows:   

 
vxy(H) < vORz{(H)vsw(H)  (4-1) 

 

 

vsw(H) vxy(H) vORz{(H) 

Lossy Channel Ideal Equalizer Compensated channel 

Figure 4.1 Transfer function relation for a lossy media connected to a equalizer 
Mathematically, the overall transfer function vORz{(H) is the multiplication of 

the transfer functions vsw(H) and vxy(H) in the frequency domain, although its time 

domain version is the convolution of the corresponding time domain impulse functions. 
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The demonstration is simulated by a 35inch lossy channel at 5 GHz and a RLC 

equalizer circuit. Figure 4.2 and Figure 4.3 represent the S21 of lossy channel and 

equalizer, respectively, and Figure 4.4 shows the S21 of the channel compensated by the 

equalizer. Figure 4.2 through Figure 4.4 are summarized in Figure 4.5. 

 

Figure 4.2 S21 of lossy channel 
 

Figure 4.3 S21 of equalizer 

 

Figure 4.4 S21 of equalized channel 
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4.3 Post-Emphasis: 

 

Figure 4.6 Post-emphasis block diagram 
Figure 4.6 shows the block diagram for a post-emphasis signal extracting system, 

where the signals are compensated after losing high frequency signals in the 

transmission section.[3]  

 

Figure 4.5 Comparison of S21  
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4.4 Pre-Emphasis: 

Figure 4.7 Pre-Emphasis block diagram 
If a boost circuit designed at the transmitter part is placed at the beginning of 

the transmission line to pre-compensate the magnitude of a signal, this technique 

equalizes the signal for a lossy channel. As displayed in Figure 4.7, this equalization 

technique is called “pre-emphasis. Sometimes it is also called “de-emphasis.”[5]

 

s m
i

ss
i

o
n

 

Input signal Output signal Equalizer 

Transmitter 

  

Receiver Channel 



  

27 

Chapter 5  

PCIe Bus system and eye diagram 

5.1 PCI Express 

PCI (Peripheral Component Interconnect) express, also named as PCI-E, or officially as 

PCIe, is one of high-speed serial bus standards on the computer motherboard. It is 

designed to replace older bus such as AGP (Accelerated Graphics Port), and PCI bus 

standards. Intel leads this standard to the third generation (PCIe 3.0) of bus systems. 

PCIe 3.0 is compatible to previous generation, and it provides better transmitting speed 

and higher power supply after raising the configuration to 3.3 V/3 A + 12 V/5.5A. 

 Table 5-1 PCIe Version[15] 
Ver. 

Bus 

bandwidth 

Unidirectional Single 

channel bandwidth 

Bidirectional16 channel 

bandwidth 

Transfer 

rate 

1.0 2Gb/s 250MB/s 8GB/s 2.5GT/s 

1.0a 2Gb/s 250MB/s 8GB/s 2.5GT/s 

1.1 2Gb/s 250MB/s 8GB/s 2.5GT/s 

2.0 4Gb/s 500MB/s 16GB/s 5.0GT/s 

2.1 4Gb/s 500MB/s 16GB/s 5.0GT/s 

3.0 8Gb/s 1GB/s 32GB/s 8.0GT/s 

4.0 16Gb/s 2GB/s 64GB/s 16.0GT/s 
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 The characteristics of different version PCIe bus systems are summarized in Error! 

Reference source not found.Table 5-1, where the PCIe bandwidths are calculated in the 

following way: 

The PCIe serial bus bandwidth (MB/s) is equal to the serial bus clock frequency 

(MHZ) multiplying the serial bus bit width (bit/8=B), multiplying the number of lane, 

multiplying the encode method, and multiplying the cycle per clock. 

For example, PCIe 1.0 X1 bandwidth = 2500×1/8×1×8/10×1×2=500 MB/s 

5.2 Eye diagram 

Eye diagram is a powerful time domain analysis tool for digital signals, which 

looks like a human eye. It can show digital signal errors in time and power, respectively, 

because it is hard to quantify the digital errors in the real world, such as jitter, due to 

their rapid change in timing bit positions and amplitudes. 
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Figure 5.1 Jitter and noise 

 

When the jitter error increases, the eye opening becomes smaller. There are two 

definitions of the white space as plotted in Figure 5.1: one is the eye width and the 

other one is the eye height.[8] 

 

Figure 5.2 Eye height and eye width 

 

The width of this white space is defined as the eye width, which shows how the 

unit interval data transits. The eye height is named as the height of this white space, 

Noise 

Jitter 

Eye Height 

Eye 
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which implies the VIH and VIL level of a digital signal receiver. These definitions provide 

the fundamental information to judge digital signals and to build up better digital data 

transition and quality. 

  

000 001 010 

 

111 011 110 

  

101 100 Final result 

Figure 5.3 Conformation of eye diagram 

 

The high frequency circuit design usually uses “eye diagram” and “jitter” to 

evaluate received digital signals. Figure 5.3 shows the different transitions of three bits 
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and these are the basic structures of the eye diagram data bit combinations. The bit 

patterns shown above, all the possibility of transition of data “0” and “1” and digital 

signals overlaps for a long period of time. 

The reliability and accuracy of digital communication is based on the quality of 

digital signals, which can be clearly represented in an eye diagram. 

5.3  PRBS 

PRBS is an abbreviation for the Pseudo Random Binary Sequence, which is a 

“fake” random binary sequence. PRBS contains random binary signals “0” and “1”, and it 

is derived from a linear feedback shift register (LFSR) that connects with a multiple shift 

register.  

The main idea of LFSR is a shift of the serial digital binary signals based on the 

first data set. 
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5.3.1 LFSR 

 

Figure 5.4 27-1 PRBS generator 
LFSR is the real logical circuit for the PRBS generator, and its structure is built in  

shift registers and XOR gates as seen in Figure 5.4. Figure 5.5 shows a PRBS generator 

built in ADS system, which is frequently used in this research 

 

Figure 5.5 PRBS generator in ADS[14] 
5.4  Digital signal analysis 

Digital signals can be classified as pulse, step, and trapezoidal signals, and the 

trapezoidal signal pulse is frequently used as an input signal in most cases. The spectrum 

amplitude of trapezoidal signal is expressed as below: 

 a7 < d �� (5-1) 
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a� < d �� sin ��E7�2 ��E7�2
sin ��E7��2 ��E7��2 e���-�(����)V  (5-2) 

 
The spectrum distribution is shown as Figure 5.6. The spectrum decays 20dB/dec 

after the frequency is 
1

πτ
, and it decades 40dB/dec after the frequency is 

b���. 

 

 
Figure 5.6 Envelope of trapezoidal signal spectrum[9] 
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Chapter 6    

Passive Equalizer Topology Analysis 

6.1 RLC equalizer analysis 

 

Figure 6.1 Schematic diagram of a lossy channel 
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Figure 6.2 Simulation setup in ADS 
The equalizer analysis system is set up as shown in Figure 6.1 and Figure 6.2, and  

PCIe Gen2 standard is used in the simulation model as briefly summarized in Table 6-1. 

Table 6-1 Standard for the PCIe Gen2.0 channel[10] 

TX(800 mv, 5Gbps) RX 

Unit Interval 200ps±300ppm 

 

Eye Width 0.4 UI=80ps 

Jitter 0.6 UI=120ps 

Eye Height 120 mv 

Rise time  50ps 

Fall time 50ps 

 

200ps±300ppm 

50ps 50ps 

120mv 
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In simulation, the amplitude of input signal is set to be 800 mV, and total 

number of digital signals is a 28 Z 1 PRBS data set in 5Gps transmission rate. Moreover, 

in order to make the digital signals readable by receivers, the unit intervals of signals are 

limited to be 200ps±300ppm, the eye width of 0.4 UI (unit interval) is required, and the 

eye height of 120mv is needed. 

The channel is built up with the microstrip line structure, and the substrate is FR4. 

 

Figure 6.3 Schematic diagram of the transmission line 
  Table 6-2 Parameters of transmission line[11] 

_� 4.4 

F� 1 

conductivity 5.8e7 

tanD 0.02 

Height of substrate 5 mil 

Thickness of transmission line 2 mil 

Width of transmission line 8 mil 
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Figure 6.4 S11 of transmission Line 
 

Figure 6.5 S21 of transmission Line 
 

An important characteristic for a propagation channel is S21, which determines 

the propagation and attenuation of the channel. It can also help us to understand 

matching level between a bus transmission line and a load. The cutoff frequency is 

b��(1.59GHz) because the 20 dB decay occur after 
b��. 

 

 

Figure 6.6 Schematic diagram of simulation 
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6.1.1 RC equalization circuit 

 

Figure 6.7 Shunt RC circuit 
First, a simple RC[12] equalization circuit is studied, where the shunt RC circuit is 

applied as equalizer to cancel ISI. By tuning the values of the capacitance and resistance, 

a better matching can be achieved in order to meet the eye height of the standard. 

Table 6-3 Data set of RC circuit 

Eye height (mv) 105 142 173 198 216 

Eye width(ps) 136 154 158 168 164 

R(Ω) 50 50 50 50 50 

L(nH) 1 2 3 4 5 

 

It is found that the desirable eye height can be achieved by increasing the 

capacitance when R is fixed at 50 Ω. Meanwhile, it is also found that reflection increases 

as capacitance increment as shown in Figure 6.8 and Figure 6.9. As a result, the eye 

opening becomes improved when the capacitance increases from 1 pF to 5 pF.  
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Figure 6.8 S11 of RC equalizer(C<1pF) 
 

Figure 6.9  S11 of RC equalizer(C<5pF    

 

Figure 6.10  S21 of RC equalizer(C<1pF) 
 

Figure 6.11  S21 of RC equalizer(C<5pF)    

 

Figure 6.12 Eye diagram of RC 
equalizer(C<1pF)  

 

Figure 6.13 Eye diagram of RC 
equalizer(C<5pF)   
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6.1.2 RL equalization circuit 

 

 

Figure 6.14 Series RL circuit 
A RL equalizer circuit[11] is shown in Figure 6.14, where assume R3 is mainly 

used for matching the connected transmission line. And the series connected 

inductance is for compensation of high frequency loss. The parameters of the RL circuit 

are summarized in Table 6-4. 

 

 

Table 6-4 Data set of RL circuit 
Eye height (mv) 101 140 157 160 158 

Eye width(ps) 155 171 181 176 174 

R(Ω) 50 50 50 50 50 

L(nH) 5 10 15 20 25 
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Figure 6.15 S11 of RL equalizer(L<5nH)   Figure 6.16 S11 of RL equalizer(L<25nH)    

 

Figure 6.17 S21 of RL equalizer(L<5nH) Figure 6.18 S21 of RL equalizer(L<25nH)  

 

Figure 6.19 Eye diagram of RL 
equalizer(L<5nH) 

 

Figure 6.20  Eye diagram of RL 
equalizer(L<25nH) 
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It is found that as increasing inductance, the reflection can be reduced less after 

extensive simulation experiments. However, it still not meets the standard of eye height. 

An equalizer is designed with combination of shunt RC and series RL circuits, as seen 

Figure 6.21 and Figure 6.22, as  a new topology as displayed Figure 6.23, to improve eye 

diagram. 

 

 

Figure 6.21 RC circuit 
 

Figure 6.22 RL circuit 
 

Figure 6.23 RLC circuit 
The T network[1] circuit shown in Figure 6.24 is often used to determine the 

transfer function of equalizer system, and equation (6-1) is the transfer function of T 

network represented in the ABCD matrix. 

 

Figure 6.24 T network 
 

6b 6V 

6�
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�d �a �� <
��
��1 W 6b6� 6b W 6V W 6b6V6�16� 1 W 6V6� ��

�� (6-1 ) 

 

 

Figure 6.25 Z1 and Z3 
Table 6-5 S11 and S21 of RLC Design 

 

 S11 S21 

Maxim 
9b(�7 W ��) Z �7V

2�7�� W 9b(�7 W ��) W �7V 
2�7��2�7�� W 9b(�7 W ��) W �7V 

Agilent 
2�b�� W �bV Z �7V

2�7�� W 2�b�7 W 2�b�� W �bV W �7V 
2�7��2�7�� W 2�b�7 W 2�b�� W �bV W �7V 

This 

design 

�b(�7 W ��) Z �7V
2�7�� W �b(�7 W ��) W �7V 

2�7��2�7�� W �b(�7 W ��) W �7V 

 

 

It is noted that the first design idea is referenced to a Maxim similar topology[13], 

the second one is comparable Agilent’s circuit[6], and the third topology is purely 
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combination of RC and RL equalization circuits. After optimization tests, the derived 

parameters summarized as shown in Table 6-6. 

Table 6-6 Parameter of equalizer designs 
 R1(Ohm) R2(Ohm) R3(Ohm) C1(pF) L1(nH) 

Maxim 70  450 6  

Agilent 18 18 55 6 18 

This Design 23  55 7 18 

 

 

 
 

Figure 6.26 Maxim equalizer circuit with the topology and S21. 
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Figure 6.27 Agilent equalizer circuit with the topology and S21. 

 
 

Figure 6.28 This design’s topology and S21. 
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Level 0 0.044 

Level 1 0.406 

Eye height 0.241 

Eye width 1.86E-10 

 

 

 

Figure 6.29 Maxim (eye diagram and S11) 

 

Level 0 0.014 

Level 1 0.352 

Eye height 0.245 

Eye width 1.83E-10 
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Figure 6.30 Agilent (eye diagram and S11) 

 

Level 0 0.041 

Level 1 0.393 

Eye height 0.243 

Eye width 1.90E-10 
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Figure 6.31 This design (eye diagram and S11) 

 

As seen fromTable 6-6, the introduce of inductance to the equalizers makes the 

resistance values become smaller and easily applicable in the circuits.  It is also found 

that the added inductance reduces the reflection from the terminal interconnects. The 

proposed design in the research provides less reflection without adding resistance R2. 

6.2 Length tolerence estimation 

In this section, the cross section configuration of the transmission lines remain  

the same parameters as those discussed previously the lossy propagation channel is 

integrated with a shunt RC and a series RL as a compensation circuit as seen Figure 6.32. 

 
Figure 6.32 Block diagram of simulation model 

In the simulation tests with different lengths of transmission lines, it is found 

that even with the longest length of the transmission line up to 50 inches digital signals 

are still readable for the equalized systems.   
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Figure 6.33 S21 and eye diagram of 25 inch 

  

Figure 6.34 S21 and eye diagram of 30 inch 

  

Figure 6.35 S21 and eye diagram of 35 inch 
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Figure 6.36 S21 and eye diagram of 40 inch 

  

Figure 6.37 S21 and eye diagram of 45 inch 

 

Figure 6.38 S21 and eye diagram of 50 inch 
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Figure 6.39 S21 and eye diagram of 55 inch 
From the eye digram for different lengths of transmission lines, it is easily seen 

that  logger lengths of the transmission lines can distort the signals are hard to recognize 

received digital signal. Figure 6.33 presents the 25 inch channel showing a better quality 

of the eye diagram, which apparently shows that a shorter media present less loss and 

the associated digital signals are readable with using the equalizer. When the lossy 

channel length increase more signal loss and time delay of data signals are observed, by 

comparing the S21 curves from Figure 6.33 through Figure 6.39. 

Furthermore, from the table on the left of  Figure 6.33 to Figure 6.38, it is seen 

that the total S21 for each case becomes skewer from the top to the bottom because the 

equalizer cannot  provide the function of equalization for the system. The blue line is 

the limit where the eye is closed, and the red is away from the blue line which means 

the distortion increase by the distance of interconnects. 

Table 6-7 Simulation result of different distance 

 Eye Height Eye Width Eye Level 0 Eye Level 1 
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25 inch 0.342 1.91e-10 0.005 0.417 

30 inch 0.285 1.93e-10 0.024 0.404 

35 inch 0.243 1.90e-10 0.041 0.393 

40 inch 0.212 1.83e-10 0.056 0.386 

45 inch 0.170 1.65e-10 0.070 0.378 

50 inch 0.138 1.46e-10 0.084 0.372 

55 inch 0.096 1.40e-10 0.100 0.367 

 

 

6.3 Equalizer’s pre-emphasis 

The same topology as given Figure 6.28 and same parameters summarized in 

Table 6-6 are used to investigate the pre-emphasis and post-emphasis techniques. 

 Figure 6.40 PRBS input signal 
 

Post-emphasis 
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In the post emphasis, an equalizer is placed after the propagation channel as 

displayed in Figure 6.41. 

 

Figure 6.41 Post-emphasis 

 

Figure 6.42 Eye diagram of input port of 
the channel(Eye probe 1) 

 

Figure 6.43  Eye diagram of output port 
of the channel(Eye probe 2) 

The previous topology circuits primarily use the post-emphasis technique to 

improve the signal and correct the eye in order to acquire the best performance of  the 

system. The same qaualizer can locate before the transmission channel in the system as 

Figure 6.44, which is called as the de-emphasis or pre-emphasis. 
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Pre-emphasis 

Figure 6.44 Block diagram of Pre-emphasis 

Figure 6.45  Eye diagram of input port of 
the channel (Eye probe 1) 

Figure 6.46  Eye diagram of output port 
of the channel (Eye probe 2) 

 

As seen Figure 6.45, signals are to input the equalizer first and the corresponding 

eye diagram is boosted in high frequency. The max value is 0.757v and the min value is -

0.326v. 1.083v is the summation of these two values. By comparing the PRBS generator, 
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0.283 mv is the difference from generator. Moreover, the signal increased 0.283mv 

(35.3%) from the original signals. 

 

Figure 6.47 S21 for Post-emphasis system 
 

Figure 6.48 S21 for Pre-emphasis system 
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Chapter 7   

Conclusion 

In this thesis, the various RC equalization schematic topology circuits are analyzed and 

compared for signal integrity applications. The proposed RC equalizer reaches the 

expected eye height and width, and it is found that the signal levels with the RC 

equalizer are reduced due to addition of signal reflection at the receiver end. It is also 

found that the RL equalization circuit provides clear eye opening but the improvement is 

not significant. The combination of RC and RL equalizers exhibits a better eye diagram 

along a lossy transmission channel while remaining less signal terminal reflection. It has 

to be mentioned that the inductance added to the design can effectively decrease the 

reflection, but it increases the dimensions of PCB design.  

The proposed equalizer design not only gets the less reflection from the device, 

but also reduces the number of components. For a more complicated or lengthy trace, it 

needs adding amplifiers to achieve higher data rates and improve signal integrity. 
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