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THE ACQUISITION OF PROCEDURAL SKILLS: AN ANALYSIS OF THE 
WORKED-EXAMPLE EFFECT USING ANIMATED DEMONSTRATIONS 

 
David Lewis 

ABSTRACT 

While many educators suggest active, rather than passive learning, this is not 

always the best solution, especially when learners are novices. Sweller and Cooper found 

learners who passively studied worked examples were significantly more efficient than 

those who actively solved problems (Cooper & Sweller, 1987; Sweller & Cooper, 1985) 

later described as the “worked-example effect” (Sweller & Chandler, 1991). 

The current study tested the claims of Lewis (2005) who suggested animated 

demonstrations act as worked examples. It compared the performance of groups of pre-

service teachers who: studied animated demonstrations (demo); studied animated 

demonstrations and practiced procedures (demo+practice & demo2+practice), or 

practiced procedures (practice). 

Two MANOVAs were used to compare group performance. During week one, it 

was hypothesized that the demonstration learners would out-perform those in the practice 

condition given performance time and accuracy. It was found that there was a significant 

difference between groups, Wilks’ Λ=0.68, F (2, 68) = 6.83, p <0.0001, η2=0.32. Post hoc 

comparisons with Scheffé’s test (p<0.025) revealed that the demonstration groups 

(demo+practice and demo2+practice groups) assembled the problem, in significantly less 

time than the practice group, which is positive evidence for the worked-example effect 



 xiii

(Sweller & Chandler, 1991) given animated demonstrations. During week two, a similar 

MANOVA revealed no differences between groups.  

While this study considered learner performance from a human computer 

interaction (HCI) perspective, it also considered learners from a cognitive load 

perspective, by measuring relative condition efficiency (Paas & van Merriënboer, 1993). 

In addition, it developed a new measure called performance efficiency. During week one, 

the demonstration conditions were found to be significantly different F (2, 68) = 3.69,  

p =0.03, given relative condition efficiency. This is positive evidence of the variability 

effect. However in post hoc comparisons these instructional conditions were not found to 

differ. Performance efficiency was found to be significantly different, during week one, F 

(2, 68) = 12.95, p<0.0001, and post hoc comparisons with Scheffé’s test (p<0.05) 

revealed the demonstration learners were significantly more efficient, than the practice 

learners. During week two, groups were not significantly different, so once learners had 

practiced procedures, they performed equally well. 
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CHAPTER ONE - INTRODUCTION 

Should we require an unprepared, novice learner to practice a procedure? Some 

educators would answer this question “No.” Their reasoning is that they should prepare 

that learner, by first demonstrating the procedure. However, demonstration requires 

passive learning. So given this reasoning, some educators would answer the question 

“yes,” because they feel procedure-based learning requires active involvement. 

Many well-known educators have questioned passive learning, and instead 

suggest an active construction of knowledge (Bruner, 1961; Dewey, 1916/1997; 

Jonassen, 1991; Wittrock, 1974). Even though this philosophy has a rich literature, there 

is a wealth of empirical evidence to suggest otherwise. A series of empirical studies over 

the past twenty years have shown that active problem solving during early schema 

acquisition is a less effective instructional strategy, than allowing learners to learn by 

studying worked examples (Paas & van Merriënboer, 1993; Sweller, 1988; Sweller, 

2006; Tuovinen & Sweller, 1999). 

Could discovery learning, a decades-old instructional strategy, be ill-advised? Or 

is there another explanation? These questions and others are the focus of this study, for 

the dissertation considers these two instructional strategies, to question the timing of 

practice during early schema acquisition. 
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Statement of the Problem 

Sweller and Cooper reported that those learners who passively studied worked 

examples during early schema acquisition, significantly out-performed their peers, who 

had learned the same procedures through active problem solving (Cooper & Sweller, 

1987; Sweller & Cooper, 1985). Sweller and Chandler (1991) described this phenomenon 

as the “worked-example effect.” This effect has been replicated by many researchers 

under a variety of circumstances (Carroll, 1994; Paas & van Merriënboer, 1994; Quilici 

& Mayer, 1996; Zhu & Simon, 1987). Specifically, they described this effect by saying a 

“decreased solution time was accompanied by a decrease in the number of mathematical 

errors” (Sweller & Cooper, 1985, p.59), thus this study considers these variables but 

describes them as performance time and accuracy. 

To test the worked-example effect, this dissertation considers the performance of 

those who study an animated demonstration, a form of animated worked example (Lewis, 

2005). Instructional designers may develop animated worked examples by recording 

computer-based procedures. These animated demonstrations may be designed to make 

efficient use of both visual and verbal modalities. This allows for multimedia learning 

(Mayer, 2001).  

However, Palmiter (1991) found evidence of a delayed performance decrement 

given animated demonstrations, later described as Palmiter’s animation deficit (Lipps, 

Trafton, & Gray, 1998). Tuovinen and Sweller (1999), also proposed retention may be an 

issue given worked examples, and asked future researchers to consider the durability of 

learning given worked example based instruction. Although cognitive load researchers 

have repeatedly found worked examples to be effective, few (if any) have studied 
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animated demonstrations, or the worked-example effect given this presentation form, so 

this dissertation accepts this responsibility. 

Purpose 

The purpose of this dissertation is to assess animated demonstrations from both 

human computer interaction (HCI) and cognitive load perspectives, to (1) consider the 

worked example and variability effects using animated demonstrations (Paas & van 

Merriënboer, 1994; Sweller & Chandler, 1991); and (2) determine if demonstration 

learners exhibit a delayed performance decrement, Palmiter’s animation deficit (Lipps et 

al., 1998; Palmiter, 1991). 

To study cognitive load, researchers typically combine measures of performance 

and perceived mental effort, to assess the relative efficiency of instructional materials 

(Paas & van Merriënboer, 1993; Paas, Tuovinen, Tabbers, & Van Gerven, 2003). This 

study considered animated demonstrations given relative condition efficiency (Paas and 

van Merriënboer, 1993) but also developed a new metric for measuring learner 

performance, called performance efficiency. In order to compare these results with those 

of Tuovinen and Sweller (1999), the dissertation considered pre-service teachers. 

Rationale 

Before the 1990s, Educational researchers were often interested in comparing the 

effects of media on learning, but this usually led them to find no significant differences, 

also known as “the no significant difference phenomenon” (Russell, 1999). Eventually a 

famous set of articles discussed this phenomenon, which later came to be called, the 

Clark-Kozma debate (Clark, 1983; Clark, 1994; Kozma, 1991; Kozma, 1994).  
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While the Clark-Kozma debate did not find an immediate resolution, eventually, 

educational psychologist, Richard Mayer wrote an important article entitled Multimedia 

learning: Are We Asking the Right Questions? (Mayer, 1997). In this article, Mayer 

concludes that: “Instructional development is too often based on what computers can do, 

rather than on a research theory of how students learn with technology" (Mayer, 1997 

p.17). In doing so, Mayer (1997) repeatedly referred to Sweller’s work and the learners 

limited working memory load, to develop a cognitive theory of verbal and visual 

knowledge construction.  

Mayer’s theory later came to be called “A cognitive theory of multimedia 

learning” (Mayer & Moreno, 1998) or simply “Multimedia learning” (Mayer, 1997; 

Mayer, 2001). Therefore this dissertation considers both cognitive load theory and 

multimedia learning, to contrast several instructional strategies, rather than the effects of 

media on learning. 

Instructional Strategies and the Research Questions 

The literature review (Chapter two) found Tuovinen and Sweller had some 

reservations about worked examples and retention (Tuovinen & Sweller, 1999). They 

implied that retention may not be as durable with worked examples. They also asked 

future researchers to consider retention with worked examples over time. Therefore this 

dissertation contrasts two main instructional strategies, discovery problem solving versus 

animated demonstrations (Bruner, 1961).  

In addition, Palmiter (1993) proposed a mimicry model of learning with animated 

demonstrations. However, a review of the psychological literature, found that memories 
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must be reconstructed and are not simply played back (Loftus, 1975; Loftus & Hoffman, 

1989). 

Palmiter’s model for procedural learning from animated demonstrations will be 

tested, by introducing a group of learners to a mimicry condition in which they encounter 

an identical animated demonstration to the problem being solved. A week later these 

same individuals were required to complete a different problem scenario and their 

performance was contrasted with those that learned from a different animated 

demonstration, as well as those who learn through discovery problem solving. 

Finally learners may also encounter an animated demonstration, but then not 

practice the learned procedures until sometime later. Therefore a final instructional 

strategy was considered, one where learners are taught with an animated demonstration, 

but then were not allowed to practice until one week after initial instruction. 

Thus, in order to study the instructional effectiveness of these instructional 

conditions, the following research questions were analyzed: 

Question 1: Is there a significant difference among the instructional strategies, 

relative to performance time? 

Question 2: Is there a significant difference among the instructional strategies, 

relative to accuracy? 

Question 3: Is there a significant difference among the instructional strategies, 

relative to “relative condition efficiency?” 

Question 4: Is there a significant difference among the instructional strategies, 

relative to “performance efficiency?” 
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Researchers who study learning via animation, typically only gather data through 

pencil and paper tests, and therefore usually only assess conceptual or declarative 

knowledge. Observation is a more practical method to assess procedural learning. In 

addition, systematic observation offers a higher degree of certainty and replicability than 

other less-structured methods (Bakeman & Gottman, 1986; Knupfer & McLellan, 1996). 

Observation is the fundamental basis of science, but is often the most under-used and 

under-valued means of data collection, given human performance (Pershing, Warren, & 

Rowe, 2006). Thus, this project studies procedure-based learning with animated 

demonstrations, with observation as the primary means of data collection. In order to 

accomplish this goal, the study utilized the screen capture technologies of HCI research, 

to monitor learner behavior and assess procedure-based learning.  

However, observational measures alone are seldom recommended (Gall, Borg, & 

Gall, 1996; Pershing, Warren, & Rowe, 2006). So in addition, “relative condition 

efficiency” (Paas & van Merriënboer, 1993), and “performance efficiency” were also 

documented. Procedures for data collection are outlined in Chapter 3. 

Limitations 

According to Kirschner, Sweller, and Clark (2006), “Learning, in turn, is defined 

as a change in long-term memory” (Kirschner, Sweller, & Clark, 2006, p.75). These 

authors were able to make this statement because of recent advances in the cognitive 

sciences, specifically in brain imaging technologies, which have mapped the regions of 

the brain necessary for learning (Anderson, Albert, & Fincham, 2005). Even though this 

is the case, it is still difficult to directly measure changes in long-term memory. Thus 

current technologies limit educational researchers to only indirectly measuring learning, 
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by observing behavior. Unfortunately, because learners may stumble across the problem 

solving operators required to solve a problem, it will not be known if the learner has 

actually learned how to perform the procedure, only that they have performed the 

procedure. 

The methodology of this study may be described as “computer-supported data 

collection,” which is the most accurate way to record learner actions (Knupfer & 

McLellan, 1996). Unfortunately not all user actions may be described using the recording 

technologies employed in this study. For instance, although mouse clicks (or 

“mousedown” events) are recorded, a “mouseup” event is not recorded. This is 

unfortunate, because researchers must decide when the learner ends some procedures. 

Given this basic limitation of the recording technology, researchers must define some 

learner actions themselves, allowing for some measurement error. 

Delimitations 

Delimitations describe the populations to which a study’s results may be 

generalized (Locke, Spirduso, & Silverman, 2000). The participants in this study were 

pre-service teachers taking a required, lower level, educational technology course at a 

large southeastern university. This diverse group of individuals is fairly representative of 

college-aged adults, although the sample studied contained more females than males. 

This study measured learner performance given computer-based instruction. 

Specifically, it only measured on-screen interaction, a limited form of human-computer 

interaction. Also, it primarily measured the behavior of novices during learning. 

Therefore the results of this study may only be generalized to adult learners, specifically 

novices, engaged in human-computer interaction. 
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Terminology 

This project brings together the research of several fields of study, thus there is a 

broad array of terms used in this document. If necessary, please consult Table 1 for the 

definition of common terms.  

Table 1 

Terminology 

Term or acronym  Definition 
animated demonstration  A narrated animation depicting procedural tasks 

 
cognitive load  The load placed on working memory. Sweller, Van 

Merriënboer, and Paas (1998) describe three types of 
cognitive load – intrinsic, extraneous and germane 
cognitive load. 

cognitive load theory  John Sweller has synthesized several theories 
(working memory, schema acquisition, and 
instructional design theory) to derive his own theory 
of human performance given the information 
processing requirements of instructional materials 
(Sweller, 1988). Sweller and others have used this 
theory to predict and document a number of important 
learning effects associated with the complexity of 
instructional materials (e.g. the Worked-example 
effect, Completion problem effect, Split-attention 
effect, Modality effect, Redundancy effect, Variability 
effect, and the Element interactivity effect). 

completion problem effect  Paas (1992) found that those learners who study and 
use partially worked-out examples (completion 
problems), performed significantly better (took less 
time with less effort), than their peers who used 
traditional problem solving strategies. 

declarative learning  Declarative learning is concerned with the learning of 
language-based information (e.g. facts and events) 
(Squire & Zola, 1996). 

discovery learning  A type of learning that became popular in the 1960s. 
Proponents suggest that when one discovers 
information for oneself, he or she is more likely to 
remember it (Bruner, 1961). 

element interactivity  According to Sweller, instructional content is 
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composed of component parts or “elements” (Sweller 
& Chandler, 1994). Elements may be said to “interact” 
if there is a relationship between them, thus raising the 
complexity of the instruction. The total number of 
elements is not as important as the number of 
interactions between these elements. 

expertise reversal effect  As learners become more competent, the worked-
example and other cognitive load effects disappear 
(Kalyuga, Chandler, & Sweller, 1998); this has been 
termed the “expertise reversal effect” (Kalyuga, Ayres, 
Chandler, & Sweller, 2003). 

extraneous cognitive load  Extraneous cognitive load is that load not inherent 
within the activity (Chandler & Sweller, 1991; 
Chandler & Sweller, 1992), but is load that may be 
controlled by the instructional designer as they 
structure and present instructional materials (Pollock, 
Chandler, & Sweller, 2002). 

functional magnetic 
resonance imaging (fMRI) 

 This brain imaging technique allows researchers to 
better understand the cognitive functions of the brain. 
For instance, learning theorists Anderson, Albert, and 
Fincham (2005) have used this technique to better 
understand what areas of the brain are used during 
problem solving. 
 

germane cognitive load  Germane (or Relevant) cognitive load is load directed 
toward schema construction (Sweller, Van 
Merriënboer, & Paas, 1998). 

HCI 
(human-computer 
interaction) 

 Human computer interaction includes the reciprocal 
events related to the behavior of humans and 
computers (also known as human-computer 
interaction, or in instructional settings as learner 
interaction) (Wagner, 1994; Moore, 1989). 

intrinsic cognitive load  Intrinsic cognitive load is the inherent level of 
difficulty or complexity associated with an 
instructional activity (Chandler & Sweller, 1991; 
Chandler & Sweller, 1992). 

job aid  This is a text-based list of instructions (Rossett & 
Gautier-Downes, 1991). 

learning efficiency   The combination of perceived mental effort ratings 
during training, and subsequent test performance 
scores (Paas, Tuovinen, Tabbers & Van Gerven, 
2003). 

marker  A small flag placed on the Morae Manger timeline. It 
represents a researcher designated event or action. For 
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instance, it may represent the end of a user action. 
modality effect  This effect suggests learners have superior 

performance given multimedia (dual modality - visual 
and verbal) based instructional materials (Moreno & 
Mayer, 1999; Mousavi, Low, & Sweller, 1995; Mayer, 
2001; Penney, 1989).  

procedural learning  This is skills-based learning (e.g. learning how to use a 
computer program) (Squire & Zola, 1996). When one 
is learning “how to” do something, they are engaged in 
procedural learning. 

problem-solving operator  This is “an action that transforms one state into 
another state.” (e.g. in a maze, the operators are going 
from one location to another) (Anderson, 1993, p.36) 

relative condition efficiency  Relative condition efficiency is “the observed relation 
between mental effort and performance in a particular 
condition in relation to a hypothetical baseline 
condition in which each unit of invested mental effort 
equals one unit of performance” (Paas & van 
Merrienboer, 1993, p. 739). 

schema  Schema describes “…a structure which allows 
problem solvers to recognize a problem state as 
belonging to a particular category of problem states 
that normally require particular moves.” (Sweller, 
1988, p. 259). 

segment  A section of video within the Morae video file that has 
been designated by a researcher. It begins with an “in 
point” and ends with an “end point.” 

split-attention effect  Chandler and Sweller (1992) found that this learning 
effect is evident, when learners are required to split 
their attention between different source of information 
(e.g., text and diagrams). 

variability effect  Paas and van Merriënboer (1994) found that learners 
who studied high-variability examples performed 
better than those who learned through problem 
solving. 

worked example  “A worked example is a step-by-step demonstration of 
how to perform a task or how to solve a problem” 
(Clark, Nguyen, & Sweller, 2006a, p. 190) 

worked-example effect  Sweller and Cooper found learners who studied 
worked examples performed significantly better than 
learners who actively solved problems (Cooper & 
Sweller, 1987; Sweller & Cooper, 1985). 
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This concludes Chapter one, the introduction. This chapter has outlined the 

purpose of this study and posed the research questions. This dissertation compares two 

instructional strategies, given both an HCI and cognitive load perspective. In addition, the 

study’s methodology was briefly described. Finally, this chapter described the limitations 

of the methodology (behavior analysis) and the tools of data collection. In conclusion, it 

should be stated that Chapter one was just a brief introduction to the study. 

Chapter two is an extensive literature review which describes cognitive load 

theory, as it relates to the design of instructional materials. Chapter three describes the 

methodology of the study. Chapter four describes the results, and finally Chapter four 

concludes the dissertation, by discussing the significance of the results, and relates them 

to the field of Instructional Technology.
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CHAPTER TWO – LITERATURE REVIEW 

This dissertation argues that animated demonstrations act as worked examples by 

reducing extraneous cognitive load, to promote increased learner performance during 

early schema acquisition. This chapter lays a foundation for the argument. To support this 

argument the chapter reviews: learning theories (schema and cognitive load theories); 

instructional design methodologies (including problem solving, worked examples, and 

discovery learning); and discusses animation as an instructional strategy. 

Learning and Memory 

Learning and memory are closely related. Cognitive load theory is where they 

meet instructional design. Each of these topics will be discussed at length in this review. 

To ensure a comprehensive review of cognitive load theory, the theory is explained in the 

context of human memory and learning. This section describes the development of the 

theoretical framework underlying cognitive load theory, what Sweller (2003) terms the 

“human cognitive architecture.” 

The Human Cognitive Architecture 

Sweller (2003) refers to “the human cognitive architecture” as the theoretical 

structures within human memory. In particular, he relies heavily on the Atkinson and 

Shiffrin model (Atkinson & Shiffrin, 1968). This section of the chapter also discusses the 

Baddeley and Hitch model (Baddeley & Hitch, 1974), and the section closes by 

discussing these models as they relate to cognitive load theory. 
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Short-Term Memory 

Until the 1950s, memory was considered to be a single unitary system (Baddeley, 

2006), but a multistage model of memory was considered as early as 1890, when William 

James proposed “primary” and “secondary” memory in his classic text The Principles of 

Psychology (James, 1890). However, Psychology steered away from memory theory, to 

concentrate on behavioral theories until the late 1950s, when George Miller noted that we 

have a limited ability to process information (Miller, 1956). 

Miller found that humans are only able to retain seven plus or minus two 

“chunks” of information (Miller, 1956). The importance of this observation was that short 

term memory had a limited capacity. Peterson and Peterson (1959) later found that in 

addition to limited capacity, short term memory has a limited duration. That is, they 

found that we can only recall information over brief intervals of time (less than 30 

seconds). 

Even though our memory is limited, Miller proposed that we have ways around 

our limitations. He found that we are able to recode, or reorganize information into 

“chunks” to better recall that information later (Miller, 1956). This idea of chunking will 

be discussed in great detail, later in this chapter. 

The Atkinson and Shiffrin Model 

Even though James had proposed a multistage memory model, in the 1960s some 

researchers were opposed to dividing memory and argued for a unified theory of memory 

(Melton, 1963; Postman, 1963). It was within this context that Atkinson and Shiffrin 

(1968) described a three-component memory model, which included a sensory register, a 

short-term store, and a long-term store (See Figure 1). This model has been generally 
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well received, and is the basis for the memory models taught in many psychology 

textbooks (e.g. Sternberg, 2002). 

External Input

Sensory Register

visual

Short-Term Store

Long Term Store

visual

Auditory
Verbal

Linguistic
(A.V.L.)

A.V.L. etc. ……. Temporal

Lost from SR
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Interference and 
Loss of Strength 

in LTS

External Input

Sensory Register

visual

Short-Term Store

Long Term Store

visual

Auditory
Verbal

Linguistic
(A.V.L.)
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Loss of Strength 

in LTS

 
Figure 1. Atkinson and Shiffrin model 

Note: Adapted from “Human memory: a proposed system and its control processes,” by Atkinson, R.C. & 
Shiffrin, R.M. (1968), In K.W. Spence (Ed.), The psychology of learning and motivation: Advances in 
research and theory, Vol. 2 (pp. 89–195). New York: Academic Press. p.93 

The Atkinson and Shiffrin model describes some components of human memory 

as being permanent or impermanent. The permanent components are described as “built 

in,” or innate to the system, whereas impermanent components are learned processes. An 

example permanent component is the “a-v-l short-term store,” which processes auditory-

verbal-linguistic information. 
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Atkinson and Shiffrin (1968) also proposed impermanent processes that work as 

“control processes.” They describe these “control processes” as “any schemes, coding 

techniques or mnemonics that could be used to remember information” (Atkinson & 

Shiffrin, 1968, p. 106). These are learned strategies for manipulating information and 

may be unlimited in number. Mnemonics are an example learned strategy (or 

impermanent component), which allows one to manipulate information within memory.  

From a learning perspective, the most important contribution of the Atkinson and 

Shiffrin model is its description of the processes within, and between each of the stores. 

Atkinson and Shiffrin (1968) use a computer analogy to describe these processes and 

how they are associated with each of the information stores. They suggest humans are 

able to encode information, transform it, and later retrieve that information.  

To explain the model’s processes, Atkinson and Shiffrin discussed an example, 

the complicated processes involved in reading. This example is important because it 

shows the system at work. During reading, humans “transform” or recode information, 

the visual information we receive from our eyes, into verbal information (the meaning of 

the text). This happens in the short-term store. Because of our ability to store information, 

we are also able to “encode” that short-term verbal information (the meaning of the text) 

within the “long-term store.” Later, we are able to recall and remember that text, “to 

retrieve” it from long term memory. Thus, “retrieval processes” allow us to remember 

what we have read for later use. 

Working Memory 

In the 1970s, the term “short-term store” was replaced with “working memory,” 

which was popularized by Baddeley and Hitch (1974). However, Atkinson and Shiffrin 
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had already used this term, “working memory” (Atkinson and Shiffrin, 1968, p.92) to 

describe their “short-term store.” Baddeley and Hitch (1974) capitalized on this idea to 

produce their own model, but they concentrated specifically on working memory (See 

Figure 2). They divide working memory into three subcomponents: the phonological loop 

(or “articulatory loop”), the visual-spatial sketchpad, and the central executive. 

Central 
Executive

phonological
loop

visuo-spatial
sketch pad

Central 
Executive

phonological
loop

visuo-spatial
sketch pad

 
Figure 2. The Baddeley and Hitch working memory model.  

Note. Adapted from “The episodic buffer: a new component of working memory?” by A. Baddeley, 2000, 
Trends in Cognitive Sciences. 4 p.418 

Recent Working Memory Research 

The Baddeley and Hitch model is often cited, and during the 1990’s, researchers 

were even able to find neurological evidence to support this model, using both functional 

magnetic resonance imaging (fMRI) or positron emission tomography (PET). 

Researchers were able to use these technologies to find the neural correlates of Baddeley 

and Hitch’s visual-spatial sketchpad (Jonides, Smith, Koeppe, Awh, Minoshima, & 

Mintun, 1993), articulatory loop (Paulesu, Frith, & Frackowiak, 1993), and the central 

executive (D’Esposito, Detre, Alsop, Shin, Atlas, & Grossman, 1995; D’Esposito, 

Aguirre, Zarahn, Ballard, Shin, & Lease, 1998). 

Even though the Baddeley and Hitch working memory model has been well 

accepted, it is not without its critics. Since its early inception, the central executive has 

received much attention and criticism. Even though Baddeley and Hitch (1974) gave the 
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central executive high importance in their model, they suggested there was little evidence 

for this subcomponent of working memory. They included it because Atkinson and 

Shiffrin (1971) had promoted the idea that a central executive-like entity must coordinate 

the subroutines of working memory (Baddeley & Hitch, 1974). 

Critics of the Baddeley and Hitch model suggest that the central executive is a 

‘homunculus’ — which exists in name only (Parkin, 1998). Parkin (1998) has the most 

relevant argument, because he suggests there is no specific brain region that plays the 

role of a central executive. In its place he says, “What emerges instead is a pattern of 

extensive heterogeneity with different executive tasks associated with different neural 

substrates” (Parkin, 1999, p.518). As an analogy, one might say there is no specific organ 

that is responsible for digestion. If you point to the stomach, someone else could easily 

ask “What about the small intestine?” 

Certainly no one is discrediting the idea that the brain or working memory has a 

central executive function, but Parkin advises us that it is an oversimplification, to 

conclude there is a specific region in the brain which is responsible for control or 

consciousness. Sweller (2003) agrees with Atkinson and Shiffrin that there is a central 

executive function within working memory, but as Atkinson and Shiffrin propose this 

function is carried out by learned control processes (schemas). 

The point of this discussion is that while there is plenty of debate about the exact 

nature of the processes within working memory, most psychologists are not debating if 

working memory exists (Miyake & Shah, 1999) and, it is considered to be modal as 

Baddeley and Hitch proposed (Sweller, 2002). However, exactly how working memory 
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works is still under a great deal of scrutiny (Miyake & Shah, 1999), and this will 

probably be the case for many decades. 

Sweller and most cognitive load theorists refer to the Atkinson and Shiffrin model 

to describe how memory works (Sweller, 2003). Perhaps this is because this model is 

open-ended. Even in the 1960s, Atkinson and Shiffrin understood that plenty of research 

still needed to be conducted before the specifics of memory models could be worked out. 

Although the neurological work of the past twenty to thirty years has been promising, it 

seems we still need much work in this area; all the more reason for cognitive load theory. 

Long-term Memory and Learning 

Long-term memory is a very important component of Sweller’s “human cognitive 

architecture.” Cognitive load theory in turn, relies heavily on long term memory and 

schema theory, as a means of explaining the differences between experts and novices. 

Therefore this section discusses the literature pertaining to human expertise and schema 

theory. 

Human Expertise 

Since short-term or “working” memory had been clarified by the 1960s, cognitive 

theorists began to focus on long-term memory or how novices become experts. Even 

though expertise research had begun earlier, it became much more prominent after Chase 

and Simon published a series of studies on chess expertise. 

Chase and Simon (1973a, 1973b) were able to determine that chess masters were 

not mentally different from novices, but that experts had recorded a vast wealth of 

experiences in long-term memory. To do so, they replicated a series of studies generated 

30 years earlier by De Groot (De Groot, 1965). Through experimentation Chase and 
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Simon were able to ascertain that an expert’s memory of chess piece positions is only 

limited to game scenarios, not for random piece placement. Thus it is this ability to 

perceive familiar patterns which sets a master apart from a novice. 

Simon and Gilmartin (1973) calculated an expert must have thousands of stored 

chess patterns in their long-term memories. Chase and Simon (1973a) described these 

patterns or memory structures as “chunks.” Miller (1956) was the first to use this term in 

this context, but Chase and Simon elaborated on it to further their theories. A chunk 

describes an amount of information being manipulated in short-term memory. Here is 

how they describe a chunk in relation to short-term memory: 

Specifically, if a chess master can remember the location of 20 or more pieces on 

the board, but has space for only about five chunks in short-term memory, then 

each chunk must be composed of four or five pieces, organized in a single 

relational structure. (Chase & Simon, 1973a, p.56) 

In short, experts have the ability to manipulate more information in a shorter 

period of time, because they recognize relational structures (patterns) in their domain of 

expertise. Eventually, the term “chunk” was replaced by another that had already been 

well established in the literature─ schema. Schema theory is perhaps the most important 

component of cognitive load theory. Its origins and implications are discussed in the next 

few sections. 

Schema Theory 

Schema theory is often credited to Sir Frederic Bartlett (1932, 1958). Even though 

this is the case, Rumelhart (1980) cautions us that Immanuel Kant proposed a schema 

theory in 1787, and that Kant’s theory more closely resembles modern theory than 
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Bartlett’s schema theory. Regardless of its origins, it should be stated that schema theory 

is supposed to account for all human knowledge, and because of this ambitious goal, this 

literature has become a complex theoretical framework.  

In the 1970s, authors described schema theory in many different ways. Some 

described schemas as being similar to theories (Rummelhart & Norman, 1978) or 

procedures (Rumelhart, 1980), while others suggested they have much in common with 

conceptual knowledge (Bobrow & Norman, 1975; Rumelhart & Ortony, 1977). Price and 

Driscoll (1997) present a more modern view, and suggest “Each schema is made up of 

related concepts, involving both declarative and procedural knowledge” (Price & 

Driscoll, 1997, p.476). In short, schemas are data structures within long-term memory 

like Chase and Simon’s chess piece patterns, which are related to concepts or patterns of 

behavior (Rumelhart, 1980). 

Schemas as Problem Categories 

In the mid 1970s, Simon continued his work with schema theory by studying 

learners as they solved algebra problems (Hinsley, Hayes, & Simon, 1976). Simon and 

his associates reasoned that if learners used schemas to understand and interpret verbal 

information, they may also use them to categorize problems. Through several 

experiments, they found that indeed humans tended to categorize problems during 

problem solving, and more importantly, use their memory of problem categories to solve 

problems. 

Chi, Feltovich, and Glaser (1981) built on Simon’s work to relate schema theory 

to expertise and problem solving. While studying physicists, they found that physics 
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experts gather information to categorize problems, and once a problem is categorized, the 

expert uses a set of schema-specific production rules to solve that problem. 

Sweller (1988) uses a similar definition to describe problem schemas and 

describes them in terms of problem representations or problem states. “These cognitive 

structures will be called schemas where a schema is defined as a structure which allows 

problem solvers to recognize a problem state as belonging to a particular category of 

problem states that normally require particular moves” (Sweller, 1988, p. 259). In this 

article, Sweller was referring to procedures and procedure-based learning. Before 

discussing cognitive load theory, this review will complete its discussion of expertise, but 

continue with a focus on procedure-based learning. 

Automation and Procedural Learning 

Authors from a cognitive perspective make a distinction between many types of 

learning and memory. Memory maybe considered in relation to how long things can be 

remembered (short-term and long-term memory) but cognitive psychologists also discuss 

memory in relation to what is remembered. For instance, Squire (1993) describes two 

types of learning and memory (procedural and declarative). Declarative learning is 

concerned with the learning of language-based information (e.g. facts and events), while 

procedural learning is skills-based learning (e.g. learning how to use a computer 

program) (Squire & Zola, 1996). This distinction is based upon studies involving the 

learning capabilities of brain injured patients, primates, and normal humans (Squire, 

1986; Scoville & Milner, 1957). 

Nearly thirty years ago, scientists studying amnesia patients published the 

following in the journal Science: “Amnesia seems to spare information that is based on 
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rules or procedures, as contrasted with information that is data-based or declarative – 

‘knowing how’ rather than ‘knowing that’” (Cohen & Squire, 1980, p.207).  

In the 1990s, neuroscientists used brain imaging techniques to find that procedural 

learning is associated with the striatum (caudate nucleus and putamen) (Poldrack & 

Gabrieli, 2001; Squire & Zola, 1996), and that declarative learning, relies on the medial 

temporal lobe (Bear, Connor, & Paradiso, 2001; Grafton, Mazziotta, Presty, Friston, 

Frackowiak, & Phelpsis, 1992; Squire, 1992; Thompson & Kim, 1996). While brain 

anatomy and physiology may, or may not, seem relevant to educators, it is important to 

realize that because these two types of learning occur in different areas of the brain, they 

must have very different properties. As the next section will show, learning how to use 

software (the focus of this study) is the acquisition of procedural knowledge. 

Procedural Knowledge Acquisition 

Anderson’s ACT framework is perhaps the best explanation of procedural skill 

acquisition (Anderson, 1993, 2005). This framework has changed over the past thirty 

years, since its original conception in the 1970s (Anderson, 1976, 1983, 1993, 2005). But 

the underlying basis for this framework, the separation of declarative and production 

memory, has remained in the model throughout its long history (Anderson, 1976; 

Anderson, 1983). Even though this is the case, Anderson and Lebiere (1998) were able to 

back-up this early claim, with the neurological evidence already discussed in this chapter. 

Figure 3 is useful to make an explanation of the dual nature of human memory. 
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Figure 3. The ACT* model  

Note: Adapted from “The architecture of cognition,” by J. R. Anderson, 1983, p.19 

 

The ACT framework involves a series of processes which have multiple 

implications for human learning. Anderson describes several processes (encoding, 

retrieval, execution, matching, and storage) (the arrows in Figure 3). The “encoding” and 

“retrieval processes” of Anderson’s model has some similarities with the Atkinson and 

Shiffrin model, but Anderson’s model offers an extension of those processes. 

Certainly “storage processes” manipulate records in long-term memory, but on 

the other end of the spectrum, “execution processes” (the performance) must interact with 

the outside world. More importantly, Anderson (1983) proposes a “matching process,” in 

which data about productions in working memory must correspond with data in 

production memory. 
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According to Anderson’s framework the steps of a learned procedure are 

interpreted in production memory and organized into procedure-specific production rules 

(Anderson, 1983). So as a learner practices the steps of a procedure, they consider each 

step in the process, to develop a series of rules for the procedure (the schema). In order to 

learn schema based production rules, Anderson suggests learners mentally rehearse 

procedures, and it is even common to observe learners in this phase verbally rehearsing 

the steps of a procedure. Thus according to Anderson (1983) production rules require 

declarative if/then statements like the following: 

IF the goal is move the cursor, 

THEN move the mouse. 

According to Anderson a grouping of production rules is called a production 

(Anderson, 1983). Productions are similar to what a behaviorist would have called a 

stimulus-response pair (Anderson, 1976), but from a cognitive perspective, because this 

process requires decision making and memory. 

Learning by Example 

Anderson’s ACT* framework (Anderson, 1983) makes no allowances for 

example-based learning, and claims that all knowledge is recorded via declarative 

production rules. However, Pirolli and Anderson (1985) considered example-based 

processing, and their article became the first study within the ACT framework, to 

demonstrate the importance of examples in procedure-based learning.  

Later, Anderson and Finchman (1994) altered their declarative-only origin of skill 

acquisition, to include learning by example. They describe this example-based processing 

as learning by analogy. That is, learners map the steps of an example to the current 
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problem. In this way they can solve that problem, by mapping the procedural steps of the 

analogous example, to the problem at hand. 

Anderson, Finchman, and Douglas (1997) describe examples as the only 

experience a novice has with the new problem category. Novices tend to draw upon these 

examples, as they would a reference book. As they practice and experience similar 

problems novices extract a declarative representation (abstract production rules), and 

switch from example-based processing to rule-based processing, in order to simplify 

problem solving (Anderson et al., 1997). So schema acquisition may develop during 

practice, by forming declarative rule-based statements (production rules) as Anderson 

(1976) describes, but they may also initially develop from example-based processing 

(Anderson & Finchman, 1994). 

Three years later, Anderson, Finchman and Douglas (1997) complete this 

transition, to describe a complete version of the framework with four overlapping stages 

of skill acquisition: (a) an analogy stage, when learners refer to specific examples;  

(b) later learners begin to describe abstract rules; (c) then production rules and  

(d) retrieval of examples, that match the target problem. 

Eventually, as learners continue to practice, their arduous actions may become 

automated, and converted into the fluid movements of an expert (Schneider & Shiffrin, 

1977; Schunn & Anderson, 2001). So Anderson’s stages of skill acquisition are very 

important, for they provide a descriptive model of how every learner progresses from 

being a novice, to becoming an expert. But more importantly it includes an explanation of 

how learners may learn by example. 
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Relating the Types of Memory to Learning 

Before describing cognitive load theory, it is important to state that cognitive load 

theorists do not believe human intellect and intelligence is the result of one’s ability to 

manipulate material in working memory (Sweller et al., 1998). Quite the contrary, 

Sweller and his associates believe human intellect comes from one’s ability to relate 

experience (long term memory) to the problems at hand (Sweller et al., 1998). They even 

describe long term memory as the seat of human intelligence and state “From this view, 

human intellectual prowess comes from this stored knowledge, not from an ability to 

engage in long, complex chains of reasoning in working memory” (Sweller et al. 1998, 

p254).  

According to Sweller (1993) all long term memories (1) are processed, and 

constrained by our limited working memories; (2) originate in working memory, during 

learning; (3) and finally are consolidated into chunks (or production rules) that are 

eventually automated. Therefore since “long-term memory is immeasurably large” 

(Sweller, 1993, p.1), cognitive load theory concentrates on “the weakest link” of the 

human cognitive architecture – working memory. 

A Brief Introduction to Cognitive Load Theory 

Cognitive load theory had a theoretical precedence in the educational and 

psychological literature, well before Sweller’s 1988 article (e.g. Beatty, 1977; Marsh, 

1978). Even Baddeley and Hitch (1974) questioned “concurrent memory load,” but 

Sweller’s cognitive load theory was the first to consider working memory, as it related to 

learning and the design of instruction. 
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Sweller’s cognitive load theory is in agreement with Anderson’s ACT framework, 

and Sweller and his associates often cite Anderson’s work as evidence of the theory 

(Kirschner, Sweller, & Clark, 2006; Sweller, 1988; Sweller, van Merriënboer, Paas, 

1998). However, cognitive load theory extends Anderson’s work, to concentrate on initial 

schema acquisition.  

In essence, cognitive load theory proposes that since working memory is limited, 

learners may be bombarded by information and, if the complexity of their instructional 

materials is not properly managed, this will result in a cognitive overload. This cognitive 

overload impairs schema acquisition, later resulting in a lower performance (Sweller, 

1988). 

When instructional designers develop materials they intentionally choose different 

means of presenting information. Instructional strategies may vary depending on the 

content, but they range from organizational strategies, sequencing, cues, feedback, 

orienting or question techniques, but, may also include different types of media (Fleming 

& Levie, 1993). These instructional strategies have a variety of effects on learning, 

depending on the media and strategies being used to present instruction (Mousavi, Low, 

& Sweller, 1995; Sweller & Chandler, 1991; Sweller & Cooper, 1985). A fundamental 

claim of cognitive load theory is that these strategies are likely to be random in their 

effectiveness, unless they consider the underlying cognitive architecture of the learner 

during instruction (Clark, Nguyen, & Swelller, 2006b). 

Schema acquisition is the ultimate goal of cognitive load theory. Recall that 

Anderson’s ACT framework found initial schema acquisition occurs by the development 

of schema-based production rules, but these production rules may be developed by one of 



 28

two methods (Anderson et al., 1997), either by developing these rules during practice or 

by studying examples. As we will see later in this chapter, the second method (studying 

examples) is the most cognitively efficient method of instruction (Cooper and Sweller, 

1987; Paas & van Merriënboer, 1993; Sweller & Cooper, 1985). This realization became 

one of the central tenets of cognitive load theory. 

Later in the process, once learners have acquired a schema, those patterns of 

behavior (schemas) may be practiced to promote skill automation (Kalyuga, Ayres, 

Chandler, and Sweller, 2003; Shiffrin & Schneider, 1977). As discussed earlier expertise 

occurs much later in the process, and is when a learner automates complex cognitive 

skills, usually via problem solving. Thus it should be clearly stated, this study 

concentrates on initial schema acquisition, but for this to be a comprehensive discussion 

of the literature, this section first considers cognitive load theory at all stages of learning, 

then in later sections, returns to the topic of this dissertation, learning during initial 

schema acquisition. 

Types of Cognitive Load 

Now that this discussion has described cognitive load theory, it needs to continue 

by considering the different types of cognitive load. Cognitive load theorists distinguish 

between three types of load: intrinsic, extraneous and germane cognitive load. Sweller 

and his associates clearly defined intrinsic cognitive load this way “Intrinsic load is the 

mental work imposed by the complexity of the content” (Clark, Nguyen, & Swelller, 

2006a, p. 9). 

When Sweller (1993) first described intrinsic cognitive load he said “Intrinsic 

cognitive load is imposed by the basic characteristics of the information rather than by 
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instructional design” (Sweller, 1993, p.6). Later Sweller and his associates described two 

additional types of load that instructional designers may control, as they structure the 

manner in which instruction is presented (Sweller, van Merriënboer, & Paas, 1998). 

These two additional types of load are associated with the presentation of instructional 

materials, extraneous cognitive load (Chandler & Sweller, 1991; Chandler & Sweller, 

1992), and germane cognitive load (Sweller, van Merriënboer, & Paas, 1998). 

Sweller and his associates describe “extraneous cognitive load” as that load not 

inherent within the instruction, but is the load which is imposed by the instructional 

designer as they structure and present information (Chandler & Sweller, 1991; Chandler 

& Sweller, 1992). Sweller provides a good example of extraneous cognitive load when he 

describes how a designer might present a square to a learner (Clark, Nguyen, & Swelller, 

2006b). As he describes, an instructional designer may present a square as a visual, and 

learners would probably understand this graphic representation in a fraction of a second. 

However the same instructional designer might choose to present a square in verbal form 

(e.g. one side is vertical to the others at a 90 degree angle, while the next is at a 90 degree 

angle to the first, etc.). Each of these two forms of instruction present the same material, 

but the graphic has less extraneous cognitive load associated with it and is much more 

cognitively efficient. While this is a simple example, other examples are less 

straightforward, but could have quite different outcomes depending on the learning 

environment. 

Recall that intrinsic cognitive load is due to the complexity of the material, as 

contrasted with the way an instructional designer presents that material (extraneous 

cognitive load). Extraneous cognitive load is a concern when intrinsic cognitive load is 
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high (Paas, Renkl, & Sweller, 2003; Paas, Tuovinen, Tabbers, and Van Gerven, 2003). 

This is because intrinsic and extraneous load are additive (See Figure 4). When intrinsic 

load (complexity of the material) is low, the learner will probably have less trouble 

grasping the underlying content (Paas, Renkl, & Sweller, 2003), but instructional 

designers should always strive to limit extraneous cognitive load. 

Finally the third type of cognitive load is germane (or relevant) load. This final 

type of cognitive load is that remaining free capacity in working memory, which may be 

redirected from extraneous load toward schema acquisition (Sweller et al., 1998). This 

will be discussed at length later in this chapter. Next this discussion turns its attention 

toward the source of intrinsic cognitive load. 

 
Figure 4. Cognitive load over time 

Note: Adapted from “Cognitive Load Measurement as a Means to Advance Cognitive Load Theory,” by F. 
Paas, J.E. Tuovinen, H. Tabbers, and P. W. M. Van Gerven, 2003, Educational Psychologist, 38, p. 65 
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Element Interactivity 

Certainly the amount of information a learner must process over a period of time 

is important, but the most important factor given instruction is the complexity of that 

information (Pollock, Chandler, & Sweller, 2002). According to Sweller and Chandler 

(1994), instructional content is composed of component parts or “elements;” and these 

elements may be said to “interact” if there is a relationship between them, raising the 

complexity of the instruction. Sweller and Chandler (1994) describe this phenomenon as 

“element interactivity.” Van Merriënboer and Sweller (2005) describe element 

interactivity concisely, when they mention “Working memory must inevitably be limited 

in capacity when dealing with novel, unorganized information because as the number of 

elements that needs to be organized increases linearly, the number of possible 

combinations increases exponentially” (van Merriënboer & Sweller, 2005, p.149). 

Even though, Sweller and Chandler (1994) described the intrinsic structure of 

information as “unalterable,” Sweller and his associates later argued that even when the 

cognitive load of instruction is very high, instructional designers may artificially reduce 

the intrinsic load of instruction, by dividing a lesson into smaller pieces, reducing the 

intrinsic load of the overall lesson. Sweller describes these smaller pieces as 

“subschemas” (Clark, Nguyen, & Sweller, 2006b). This method of dividing the 

presentation of material was first developed by Pollock, Chandler, and Sweller (2002). 

However, this method of dividing a lesson into subschemas promotes learning at 

the expense of understanding, but as Sweller explains, they were never able to understand 

the full schema anyway (Clark, Nguyen, & Sweller, 2006b). Thus Pollock, Chandler, and 

Sweller (2002) found that, if learners process the individual elements of instruction 
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serially, rather than simultaneously, that they were able to process that instruction, to 

recombine these individual subschemas, and eventually understand the whole problem. 

It should be noted these researchers were not the first to suggest breaking 

instructional materials into component parts. Gagné recognized this phenomenon in the 

1960s, when he described learning hierarchies (Gagné & Paradise, 1961; Gagné, 1968). 

However, it is important to realize that Sweller and his associates not only recommended 

this method of instruction, but were also explained why Gagné’s learning hierarchies are 

an effective means of presenting instruction. 

Designing Instruction 

Instructional design researchers study the practical uses of learning theory so that 

these theories may be used to develop instructional strategies that promote efficient, 

effective learning (Molenda, Reigeluth & Nelson, 2003). Several researchers have 

devised presentation strategies that help learners to abstract a problem schema. This next 

section of the literature review describes cognitive load theory as it relates to presentation 

strategies, problem structure, problem format, and the use of multimedia. 

Problem Solving and Cognitive Load 

While problem solving skills are highly valued, many problems are complex 

cognitive tasks that may be difficult for a novice to complete, even when they have the 

prerequisite skills (Sweller, 1988; van Merriënboer, 1997). Complex cognitive tasks 

require learners to mentally reorganize what they already know, to restructure a problem, 

in order to accomplish the overall task (van Merriënboer, 1997). This mental 

reorganization may impose a high cognitive load on the learner (Sweller, 1988), but this 
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load may be manipulated by an instructional designer, during the design of instruction, to 

allow the intended learner to grasp the underlying schema (Sweller, 1993). 

Means-ends Analysis and the Actions of an Expert 

Problem solving has been studied for many decades, Newel and Simon studied 

problem solving as early as the mid 1950s (Newell, Shaw, & Simon, 1958a). Much of 

cognitive science and schema theory developed out of their work. Both Newel and 

Simon, and Sweller suggest that novices usually attempt to solve problems, by using an 

iterative process called “means-ends analysis.” 

During means-ends analysis, a learner works backwards from the problem goal, 

by applying problem solving operators, to achieve a sub-goal of the problem; once this 

sub-goal has been reached the learner then reassesses the problem, and will continue to 

apply other problem solving operators until the problem goal is reached (Larkin et al., 

1980). Chi et al. (1981) found that experts work somewhat differently, in that they begin 

by first categorizing a problem, based upon the deep structure of the problem, to work 

forward toward a problem solution. 

Ward and Sweller (1990) describe the use of a means-ends strategy this way: “A 

heavy cognitive load is imposed because of the need to simultaneously consider and 

make decisions about the current problem state, the goal state, differences between states, 

and problem solving operators that can be used to reduce such differences” (Ward & 

Sweller, 1990, p.3).  

Sweller proposes that during the earliest stages of schema acquisition, the actual 

performance of a procedure may be detrimental to learning, because it adds an additional 

working memory load to the instruction, in what may be an already complex learning 
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environment (Sweller, 1988). Sweller suggests this is because during early schema 

acquisition, learners who interact with content are engaging in problem-solving search, a 

non-schema forming activity (Sweller, 1988). 

Unfortunately, some learners are required to solve problems when they are not 

aware of the underlying problem schema. If a learner is required to solve problems, 

before they understand the problem schema, they may become distracted with irrelevant 

aspects of a problem, spending their time searching for a problem solution, but still may 

not be engaged in learning (schema acquisition) (Sweller et al., 1998). 

For example, in the case of photo editing (the domain of this dissertation), a 

novice edits a document using the software interface (using problem solving operators) 

until they produce the desired product (problem goal). But when novices are learning 

how to use graphic design tools for the first time, they usually have some difficulty and 

will make mistakes. The actions of an expert graphic artist are much more rapid and 

precise, because they work forward with a plan in mind. So even though a novice may 

have a problem goal in mind, and may know how to use the tools, they may not be fully 

aware of how to produce that problem goal. Sweller and his associates developed 

cognitive load theory as a means of explain this behavior. In doing so they discovered 

several effects that working memory or cognitive load had on memory. Examples of 

these learning effects are the worked-example effect (Cooper & Sweller, 1987; Sweller & 

Cooper, 1985), Completion problem effect (van Merriënboer & de Croock, 1992), Split-

attention effect (Chandler & Sweller, 1992), the modality effect (Mayer, 2001; Mousavi, 

Low, & Sweller, 1995; Penney, 1989), and the variability effect (Paas & van 

Merriënboer, 1994). Each of these learning effects will be discussed in this section 
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beginning with the worked-example effect, but before describing this effect it is 

important to first define a worked example. 

What is a “Worked Example”? 

Defining the term “worked example” may seem somewhat difficult, because the 

underlying root term, example, could be applied to almost anything. However, Atkinson 

and his colleagues provide a reasonable definition when they describe “worked 

examples” in terms of problems or procedures. They describe worked examples by 

saying they “typically include a problem statement and a procedure for solving the 

problem” (Atkinson et al., 2000, p. 181). Sweller and his associates also provide a 

definition; Clark, Nguyen, and Sweller, describe a worked example more in terms of a 

procedure, “A worked example is a step-by-step demonstration of how to perform a task 

or how to solve a problem” (Clark, Nguyen, & Sweller, 2006a, p. 190). So, to synthesize 

these two definitions, a worked example is the presentation of a procedural problem and 

the steps required to solve the problem. Another way to think of the term worked 

example is to describe it as a “solved problem.”  

Figure 5 is the epitome of a worked example. The box below the diagram it 

explains the problem statement and also lists the steps toward solution. In other words it 

is a solved problem.  
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Figure 5. The epitome of a worked example 

Many people think of their mathematics textbooks when they consider problems 

and worked examples, but as we all know, not all “problems” are math problems. 

Therefore researchers have studied the instructional effectiveness of worked examples in 

a variety of domains [e.g. music, chess, athletics (Atkinson, Derry, Renkl, & Wortham, 

2000); physics, mathematics, or programming (Gerjets, Scheiter, and Catrambone, 2004); 

concept mapping (Hilbert & Renkl, 2007); statistics (Paas, 1992)] and more recently have 

even begun to considered ill-structured domains like art and design education (Rourke 

and Sweller, in press). 

Types of Worked Examples 

Researchers have begun describing several types of worked examples and 

portraying them in a variety of media. Two groups of researchers in particular (Gerjets, 

Scheiter, & Catrambone, 2004; van Gog, Paas, & van Merriënboer, 2004) have 

developed a simple nomenclature to describe worked examples. 

Van Gog, Paas, and van Merriënboer (2004) described two types of worked 

examples, process-oriented or product-oriented worked examples. By process-oriented 
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worked examples they mean those problems that provide a problem solution with some 

additional information. Specifically they included strategic and principle-based 

information to several solved problems. They compared the learner performance of those 

using these process-oriented worked examples to those who received worked examples 

with no additional information, which they termed “product-oriented worked examples.” 

They found that those using the process-oriented worked examples had increased mental 

effort during training, but no difference in transfer performance. They later replicated 

these findings in another study (van Gog, Paas, & van Merriënboer, 2006). Therefore it 

seems in these studies, that adding strategic or principle-based information only 

complicated the problems with no performance gains. 

Gerjets, Scheiter, and Catrambone (2004) also described two more types of 

worked examples, which they describe as either “molar” or “modular” worked examples. 

These terms come to use from the physical sciences and represents the “grain size” of the 

example. Gerjets et al (2004) define molar worked examples as those which focus on 

problem categories and their solutions (Gerjets, Scheiter, & Catrambone, 2004, p.33) 

whereas a modular worked examples “are broken down into smaller meaningful solution 

elements that can be conveyed separately” (Gerjets, Scheiter, & Catrambone, 2004, p.33). 

After five experiments they concluded that the processing of modular examples is 

associated with a lower degree of intrinsic cognitive load. This is line with the element 

interactivity effect (Pollock, Chandler & Sweller, 2002).  

Modular worked examples are useful when the content is so complicated that the 

intrinsic load imposed is more than the novice can handle. That is the overall schema 

must be broken down into its subcomponents [described as “subschemas” (Clark, 
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Nguyen, & Sweller, 2006b)]. However schema decomposition comes at a cost, if the 

material cannot be processed or presented as a whole, learners will not understand how 

the individual pieces are connected (Clark, Nguyen, & Sweller, 2006a). After this type of 

instruction, follow-up instruction is needed to allow learners to put the pieces together 

back together. 

Thus researchers have begun to develop a nomenclature for different types of 

worked examples. This nomenclature is currently based upon the type of information 

provided within the worked example (either process or product oriented), or the “grain 

size” of the example (either molar or modular) (Gerjets, Scheiter, & Catrambone, 2004; 

van Gog, Paas, & van Merriënboer, 2006). Finally, worked examples may be classified 

based upon the media in which they are presented (discussed in later sections). Before 

considering media this discussion will first consider the cognitive load learning effects, 

beginning with the most documented of these effects, the worked-example effect 

(Sweller, 2006). 

The Worked Examples Effect 

In the mid 1980s, Sweller and Cooper compared learners who studied worked 

examples to those learning by traditional problem solving. In a series of five experiments, 

Sweller and Cooper (1985) measured the performance of high school learners as they 

learned algebra problems. They found that those students who studied worked examples 

took less time to process the instructional materials, and subsequently took less time to 

solve problems. In addition, learners also had a decrease in mathematical errors. This 

phenomenon has subsequently been described as “the worked-example effect” (Sweller 

& Chandler, 1991; Sweller et al., 1998).  
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Later Cooper and Sweller (1987) replicated their earlier findings, but also found 

evidence that those learners who used worked examples, spent less time solving transfer 

problems, and made significantly fewer errors on transfer problems. 

In 1988, Sweller developed cognitive load theory to explain learner behaviors 

during early schema acquisition. Specifically, he used cognitive load theory to explain the 

worked-example effect. He had earlier proposed that learners, who solved problems by 

means-ends analysis, would have a higher working memory load, as compared with those 

who were prevented from using a means-ends strategy (Owen and Sweller, 1985). 

Sweller and Cooper (1985) were perhaps the first to use worked examples to limit means-

ends analysis, during schema acquisition. Cooper and Sweller (1987) reported that this 

instructional strategy was designed to limit problem solving search, and developed to 

alleviate the cognitive load imposed on a novice. Cooper and Sweller found that by 

removing problem solving search, learners were more efficient, and made fewer problem 

solving errors. 

Sweller (1988) proposed that solving problems while attempting to learn the 

underlying problem schema amounted to a dual task problem. He describes it this way: 

If, as suggested above, problem solving search via means-ends analysis and 

schema acquisition are independent tasks, then they may be considered as 

primary and secondary tasks respectively, within a dual task paradigm. Under 

these circumstances, if a strategy such as means-ends analysis is used to 

accomplish the primary task (attain the problem goal), then because the strategy 

imposes a heavy cognitive load, fewer resources may be available for the 

secondary task (Sweller, 1988, p. 277). 
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So, not only did Sweller (1988) provide a theory for describing why problem 

solving may be detrimental during early schema acquisition, but he also provided a 

mechanism for why it is less efficient. As he describes it, learners who study worked 

examples are not burdened with problem solving search. Those that must solve problems 

during learning must search for sub-goals toward the eventual goal of problem 

completion, and these two activities constitute a dual task scenario raising the learner’s 

cognitive load. Thus, problem solving search is not necessary for schema acquisition and 

may even prevent learning (Sweller, 1988). 

Finally, it should also be stated that while Sweller and Cooper (1985) initially 

considered learners who studied, multiple worked examples. Scheiter, Gerjets, and Schuh 

(2004) later found that multiple worked examples are not necessary, and may even 

increase the time required for learners to process the underlying schema. So learners may 

demonstrate the worked-example effect even after viewing a single example. 

When are Worked Examples Warranted? 

Several authors have found that learners actually prefer to learn from examples, 

rather than learning from other forms of instruction (Chi, Bassok, Lewis, Reimann, & 

Glaser, 1989; Lefevre & Dixon 1986; Pirolli & Anderson, 1985; van Lehn, 1996), but 

while worked-examples may be preferred, and have been found to be useful for novices, 

these learners must eventually practice a procedure to attain expertise (Schneider & 

Shiffrin, 1977).  

As learners gain expertise, some researchers have suggested fading worked 

examples (Renkl, Atkinson, & Maier, 2000; Renkl, Atkinson, Maier, & Staley, 2002) to 

replace problems with partially-completed problems (van Merriënboer & de Croock, 
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1992) and eventually provide practice with whole problems to facilitate skill automation 

(Kalyuga, Ayres, Chandler, and Sweller, 2003). 

Kalyuga et al. (2001) found worked examples actually hindered more advanced 

learners. Thus it was proposed that once a skill had been acquired, the worked examples 

became redundant to even overload the working memory of experts (Kalyuga et al., 

2001). This was later termed the “expertise reversal effect” (Kalyuga, Ayres, Chandler & 

Sweller, 2003).  

As learners become more competent, the worked-example and other cognitive 

load effects disappear (Kalyuga, Chandler & Sweller, 1998). Recall that Anderson’s ACT 

framework proposes that, learners learn production rules later in the learning process and 

no longer need examples (Anderson, Finchman & Douglas, 1997), so a reduction in 

cognitive load is expected. Cognitive load theorists predict a gradual reduction of the 

effects of cognitive load, because once an expert automates their skills, the load imposed 

by a problem dissipates, and worked examples become unnecessary (Kalyuga, Chandler, 

& Sweller, 1998). 

Recall that Chandler and Sweller (1991) suggest that extraneous cognitive load is 

due to the format of the instruction. In other words, presentation strategies can cause 

learners to perform poorly. Sweller and his associates have found a series of cognitive 

load effects due to the presentation techniques employed. The next few sections introduce 

these learning effects (the problem completion effect, the variability effect, the split 

attention effect, and the modality effect). What is important to realize while reading this 

discussion, is that all of these learning effects may be applied to worked examples, but 
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like any instruction, if mismanaged worked examples can even overload a learner (Ward 

& Sweller, 1990). 

The Problem Completion Effect 

Van Merriënboer (1990) followed up on Sweller’s early worked example studies, 

to describe another useful instructional strategy. Usually cognitive load is reduced by 

presenting worked examples as instruction, along with problems for the learner to 

practice (Sweller, 2003). However, van Merriënboer (1990) considered an intermediate, 

“problem completion” strategy. He compared two groups of high schools students, 

learners who generated their own computer code (problem solving), versus those who 

completed computer programs – problem completion (the use of partially worked 

examples). Learners using the problem completion strategy studied the worked-out 

portion of the problem, to abstract that component of the problem schema, and then later 

complete the problem. Van Merriënboer concluded that learners using the problem 

completion strategy, had a superior performance, because they had a higher percentage of 

correctly coded program lines, and also the quality of their programs was higher (van 

Merriënboer, 1990). 

Van Merriënboer and de Croock (1992) later replicated Van Merriënboer’s earlier 

findings, but this time with undergraduates. This study involved learners enrolled in an 

introductory software programming course. They gave one group of learners a library of 

partially completed computer programs, and then measured their performance versus 

another group who had to write their programs. Van Merriënboer and de Croock found 

that “problem completers” were more successful on both program construction tests, and 

multiple choice tests. This finding was later replicated by Paas (1992), but he also found 



 43

that problem completers are better able to transfer their learning to new situations. This 

was subsequently described as the “problem-completion effect” (Paas, 1992). 

The Variability Effect 

Paas and van Merriënboer later turned their attention to worked examples, they 

were among the first to describe another cognitive load learning effect, “the variability 

effect” (Paas & van Merriënboer, 1994). Paas and van Merriënboer (1994) wanted to see 

how much of an effect the context of the example would have on learning. Clark, 

Nguyen, and Sweller (2006a) later described these problems as “varied context 

examples” (Clark et al., 2006a, p. 222). Cooper and Sweller (1987) had already shown 

that learners who studied worked examples could subsequently solve similar and transfer 

problems, more easily than those who learned through problem solving.  

Paas and van Merriënboer (1994) found significant results when they compared 

groups of learners who either studied high or low variability worked examples, versus 

those who solved high or low variability problems. Specifically they found those learners 

who studied high variability worked examples invested less time and mental effort during 

practice, and also had better transfer. This was later termed the “variability effect” 

(Sweller, van Merriënboer & Paas, 1998). Specifically they describe variability as:  

…different variants of the task over problem situations, or under conditions that 

increase variability along other task dimensions, such as the manner in which the 

task is presented, the saliency of defining characteristics, the context in which the 

task is performed, the familiarity of the task, and so forth (Sweller, van 

Merrienboer & Paas, 1998, p.287).  
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So problem variants, in which the context of the worked example is changed, 

from example to example, or to different problems solved, are important. This cognitive 

load learning effect is useful, for it shows learners are able to focus on the underlying 

structure, to abstract a problem schema, even though the surface features have changed 

(Van Merriënboer, Schuurman, de Croock, & Paas, 2002). 

However, Paas and van Merriënboer (1994) reported that the high variability 

conditions had higher levels of perceived mental effort, but these learners achieve greater 

transfer performance. This initially caused some controversy, and was termed the 

“transfer paradox,” for it seemed to contradict cognitive load theory, because typically an 

increase in cognitive load causes poorer performance (Sweller et al., 1998). Yet, 

increasing cognitive load is not necessarily a bad idea, because these learners focused 

their free remaining working memory capacity, toward schema related material, 

promoting germane cognitive load (Sweller et al., 1998). So, even though the overall load 

was higher given problem variants, their increased cognitive load was directed toward 

schema acquisition. 

Thus, Sweller et al., (1998) began to refocus the cognitive load literature, from 

only concentrating on decreasing extraneous cognitive load, to now redirecting the 

learners’ attention from irrelevant material (extraneous load), to germane or relevant 

materials, promoting germane load. 

Split Attention 

Tarmizi and Sweller (1988) noticed that the worked-example effect did not work 

for all worked examples. They compared the learner performance of those using 

traditional diagrams versus those who used integrated diagrams (like those in Figure 6). 
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Figure 6. Split-attention diagrams  

Note: Adapted from “Some cognitive processes and their consequences for the organisation and 
presentation of information,” by Sweller, J., 1993, Australian journal of psychology. 45(1) p 4-5. 

They found learners who used integrated diagrams were better able to process 

information (Tarmizi & Sweller, 1988, Ward & Sweller, 1990). More specifically, if text 

(a visual form of instruction) is simultaneously presented to the learner with a diagram 

(also visual instruction), there is a potential for cognitive overload. This phenomenon was 

described as the “split-attention effect” (Sweller & Chandler, 1991; Chandler & Sweller, 

1992). 

Sweller suggests that while structuring materials, instructional designers must be 

careful how they direct the learner’s attention within instruction (Ward & Sweller, 1990). 

Even worked examples may become ineffective, if they raise a learner’s cognitive load to 

overload levels (Ward & Sweller, 1990). 
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The split-attention effect is not just limited to geometry. Sweller and Chandler 

(1991) found that this effect extends to a variety of other disciplines and is simply a 

limitation of human information processing. Since information may be encoded both as 

text (visually) and narration (auditorily), split-attention is a potential problem that exists 

within animated demonstrations, as they would within any type of worked example. 

Therefore instructional designers should probably remove text from animated 

demonstrations to limit this split attention effect. The split-attention effect is an important 

example of how presentation techniques can alter learning. However, this learning effect 

is limited to single modality instruction. 

In the 1990s, several researchers began to study multimodal instruction. This was 

probably inevitable given the ubiquity of the personal computer and the CDROM. Many 

of these studies began to consider cognitive load and began to progress from comparing 

print based visual only conditions, to consider combinations of audio, text and animation. 

The next section describes this literature as it relates to cognitive load theory. 

Cognitive Load and Multimodal Instruction 

Recall that Baddeley and Hitch subdivided working memory into two separate 

visual and auditory subsystems (Baddeley & Hitch, 1974; Baddeley, 1986). This basic 

plan was also proposed a few years earlier by Paivio (1971) as the dual coding 

hypothesis, and then later as dual coding theory (Paivio, 1978). 

Clark and Paivio (1991) later proposed that the dual nature of working memory is 

important for those designing instruction. Soon after this proposal, several researchers 

found empirical evidence that justified this idea. In a series of articles, these researchers 

found that learners working with multimedia consistently out-performed those learning 
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with single (or mono) media materials (Jeung, Chandler, & Sweller, 1997; Mayer & 

Anderson, 1991; Mayer & Moreno, 1998; Mousavi, Low, & Sweller, 1995).  

Sweller and his associates described it this way “A mixed, audio-visual mode of 

instruction resulted in superior learning than instructional materials delivered in a purely 

visual mode” (Jeung, Chandler, Sweller, 1997, p.331). This has since been described as 

“the modality effect” (Moreno & Mayer, 1999; Penney, 1989) or the Modality principle 

(Mayer, 2001) and has been one of the most important findings in Instructional design 

research. 

Mousavi, Low and Sweller (1995) were perhaps the first to provide an 

explanation for the modality effect. This is because they considered dual-modality 

presentations from a cognitive load perspective. They found that under high load 

conditions, if an instructional designer moves the instructional message from a visual 

mode (text) to an auditory mode (narration), learner performance increases. They 

reasoned that when a lesson is structured so that it uses both modalities, learners are able 

to use both working memory subsystems simultaneously, to reduce their overall cognitive 

load by distributing that load to these independent subsystems. Specifically, they propose 

learner performance is improved because multimodal instruction increases the learners’ 

“effective working memory capacity” (Mousavi et al., 1995, p319). 

Animation 

A number of articles have been published that describe the instructional 

effectiveness of animation as a presentation technique. This section introduces this 

discussion and then turns to the animated demonstration literature. 
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Instructional Uses of Animation 

Several reviews of the literature have been made concerning instructional 

animation. Amongst the first was Rieber’s (1990) review. At that point, few if any, 

empirical investigations had considered animation within instructional materials. Later, 

he updated this review to include the literature of the 1990s (Rieber, 2000). 

Rieber’s first review concluded that before 1970, it was often thought that 

graphics did not aid learning, and could even distract learners. However, following this 

date, evidence began to mount in favor of the use of visuals to support learners. The 

studies he reviewed had mixed results, but he was able to draw some conclusions and 

provide several useful guidelines concerning the use of animation in instructional 

materials (Rieber, 1990). 

Rieber proposed two important guidelines concerning the use of animation. First, 

like all graphics, if an instructional designer intends to include animated instruction, there 

must be “a need for ‘external visualization’” (Rieber, 2000, p. 162). This guideline came 

from static graphics research, but animation and static graphics do have their differences. 

Specifically, Rieber (2000) suggested the use of animation when the learning requires 

changes in object motion or trajectory, or both. He proposed learning will be greater if 

both motion and trajectory changes are a part of the instructional materials – be it for 

procedure, concept, or principle-based learning.  

Hegarty, Kriz, and Cate (2003) advise readers that narrated animations have the 

ability to convey more information which is not easily conveyed with static graphics. 

Hegarty et al (2003) mention that critics may argue that this additional information is a 

confounding factor, when comparing animation to static graphics, or that this 
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contribution to learning is not a result of the animation. This is probably the case as much 

of the instructional message is in the verbal channel, and the verbal message directs the 

learner’s attention to specific areas within the scene during the animation (Hegarty et al., 

2003).  

Animated Instruction that Matches the Task 

Rieber (1990) proposed yet another important guideline, that animation should 

only be included, when the attributes of the animations match the task. Rieber and 

Parmley (1992, 1995) developed animated instructional materials to teach learners the 

basic principles of Newtonian physics (specifically the laws of motion). They used 

interactive animation (or simulation) to teach learners how to control a simulated space 

shuttle, given structured and unstructured lessons. Their structured lessons allowed 

learners increasing levels of control; that is, new “subskills” were taught during 

successive levels of instruction. They compared this “structured” tutorial to unstructured 

activity (discovery-based learning) with full control from the beginning, and found no 

significant differences in learner performance given their instructional conditions. 

Even though Rieber and Parmley’s tutorial was in part procedure-based, it also 

had a conceptual or principle-based component. Sometimes, in complex domains like 

physics, it is difficult to separate the two. In this case, however, Rieber and Parmley 

(1992) measured outcome measures that were primarily principle-based, while their 

instruction was primarily procedure-based. It is understandable that Rieber and Parmley 

wanted to teach learners physics principles given simulation, but perhaps they should 

have chosen another medium or another type of animation. Like many researchers, they 

compared groups of learners, given their performance on a multiple choice test (in a 
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pretest/posttest design). This use of animation was innovative, but procedure-based 

learning requires observational data collection. 

Animated demonstration is a form of animated instruction that has a main 

purpose, to teach learners how to perform procedures. This form of instruction may be 

used to teach learners other types of learning (e.g. concepts), but this could be a misuse of 

the medium. This study will endeavor to use this form of instruction properly and to use 

observational data to measure learner performance. 

This discussion implies an important distinction for this dissertation project. 

Certainly animation may primarily be used to teach learners procedures (animated 

demonstrations). However, animation can also be used to teach learners conceptual 

material (animated explanation). 

Animated Explanation and Animated Demonstration 

It is thought that animated demonstrations act as animated worked-examples 

(Lewis, 2005). Sweller and his colleagues even define worked examples as a form of 

demonstration when they describe them this way: “A worked example is a step-by-step 

demonstration of how to perform a task or how to solve a problem” (Clark, Nguyen, 

Sweller, 2006a, p. 190). While this is the case, little to no cognitive load research has 

been conducted using animated demonstration. 

Some would quickly dismiss this statement to begin describing the work of 

Richard Mayer, for Mayer and his colleagues have been quite prolific over the last 

decade. Mayer and his colleagues have indeed used animation extensively in their 

instructional conditions and are well known for their contributions to the modality effect. 
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However, the instructional materials used in this literature are more aptly described as 

animated explanation rather than animated demonstration. 

Mayer describes his work well when he explains that his experiments ask 

questions about scientific explanation: “By ‘explanation’ we mean a description of a 

causal system containing parts that interact in a coherent way, such as a description of 

how a pump works or how the human respiratory system works” (Mayer & Sims, 1994, 

p.389). Clark and Mayer (2003) even describe these as “two different e-learning goals” 

that teach learners to “inform and perform “(p.17). The argument then, in their terms 

becomes: learning “how to do” something (perform), is taught via animated 

demonstration, as opposed to teaching a learner about something (inform), which is 

taught via animated explanation. 

Given Anderson’s well respected ACT framework, it is likely to expect that these 

two forms of learning are dramatically different. Thus this study argues that animated 

explanations and demonstrations are different because of the type of learning that occurs, 

declarative versus procedural learning (Squire, 1992).  

Interestingly enough, Mayer’s studies with animated explanations only found 

significant differences between instructional conditions given transfer. Other researchers 

(e.g. Cooper & Sweller, 1987) have found significant differences in other important 

outcome variables, such as completion times and the number of errors. 

Animated demonstration represents a more cognitively demanding form of 

learning from animation. This is because by its very nature, demonstration assumes the 

eventual action of the learner. Rather than just encoding information which describes a 

system, the learner is encoding rules based upon a sequence of actions which they will 
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have to perform. Performance is when the true cognitive load of the situation is highest, 

for it is then that the learner will have to recall the actions taught during the animation (if, 

then rules), but it is then that they will also apply those rules, in sequence, to produce the 

goal of the instruction. 

 Given this heightened cognitive load, learners need well-constructed instructional 

materials that reduce the extraneous cognitive load imposed by the learning environment. 

This distinction leads this discussion to the animated demonstration literature, which is of 

primary importance to this literature review. 

Animated Demonstration 

The animated demonstration literature extends back to the early 1990s (e.g. 

Palmiter & Elkerton, 1991a). So this literature was written before much of the modality 

or cognitive load literature existed. Thus this section will first review some of this 

literature, but also concentrate on placing this form of instruction in context with more 

recent instructional design literature. Specifically, it considers animated demonstrations 

given the modality and split-attention effects. 

The animated demonstration literature is at times complex and contradictory 

(please note Appendix A). This is because an animated demonstration may be produced 

with or without audio, and it may or may not include text annotations. There are studies 

comparing animated demonstrations using each of these types of media and combinations 

of these media. 

Animated Demonstrations in the Early 1990s 

During the early 1990s, the “World Wide Web” was in its infancy, and most 

animated instruction was presented with personal computers, via CDROM. In addition, 
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many investigators used a Macintosh hypertext environment called HyperCard. It was in 

this context that Waterson and O’Malley (1993) conducted a study comparing various 

forms of animated instruction.  

This is a good example of an early 1990s animated demonstration study, because 

at that time, researchers were very interested in comparing “media effects.” Recall this 

was the height of the famous Clark-Kozma debates (Clark, 1983; Clark, 1994; Kozma, 

1991; Kozma, 1994; Jonassen, Campbell, & Davidson, 1994). While this was the case in 

the early 1990s, in the past decade, researchers have begun to consider learning from a 

different perspective, “learner-centered rather than media-centered” (Jonassen, Campbell, 

& Davidson, 1994, p. 31). Cognitive load theory considers learning from a learner-

centered perspective, as it focuses on the learners’ concurrent memory load. Today, 

Waterson and O’Malley’s results may be reinterpreted, given this learner-centered 

perspective, to consider the split-attention and modality effects. 

Waterson and O’Malley (1993) evaluated the effectiveness of several forms of 

animated demonstrations (given a set of six discrete tasks). Their instructional conditions 

included animation with text, animation only (no text or narration), and a combination 

group (animated demonstration with text and narration). Participants were taught a 

Macintosh graphing application called Cricket Graph (via HyperCard). They measured 

performance time given three instructional conditions, with three types of tasks (identical, 

similar, or different tasks from those that learners had initially learned).  

The data revealed a significant main effect with respect to group. The 

combination text-narration group outperformed the text-only, and no-narration groups 

(See Figure 7, a graph of the performance times of their participants). 
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Waterson and O’Malley’s data also revealed a significant interaction between 

type of instruction, and task group, as the combination group completed tasks sooner than 

the other groups. They also found a trend in the data which suggested learners using the 

text-only instruction, were slower than either of the other groups (animation only and 

animation with text and narration). 

 

 
Figure 7. Performance time by task group  

Note. Adapted from “Using animated demonstrations in multimedia applications: Some suggestions based 
upon experimental evidence,” by P. Waterson & C. E. O’Malley, 1993, In the Proceedings of the Fifth 
International Conference on Human-Computer Interaction, 2 p. 546 

The data revealed a significant main effect with respect to group, since the 

combination text-narration group outperformed the text-only, and no-narration groups 

(See Figure 7). 
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Waterson and O’Malley’s data also revealed a significant interaction between 

type of instruction, and task group, as the combination group completed tasks sooner than 

the other groups. They also found a trend in the data which suggested learners using the 

text-only instruction, were slower than either of the other groups (animation only and 

animation with text and narration). 

The instructional conditions in the Waterson and O’Malley studied show some 

interesting cognitive load effects. The fact that the slowest performance times were from 

the text-based animated demonstration group, is evidence that the split-attention effect 

can negatively affect learner performance, given animated demonstration. It is also 

interesting that the combination group had decreased performance times. This is evidence 

for the modality effect. The fact that the combination group had a text redundancy for the 

narrated message may be little reason for concern, since this group out-performed the 

other groups. However, it is possible that learner performance may still be increased by 

removing this redundancy. Interestingly enough, these learners may have ignored this 

redundancy to have benefited from the modality effect. 

Even though Waterson and O’Malley conducted a series of repeated measures 

ANOVAs, demonstrating that animated demonstrations show some promise, the study 

unfortunately only had 30 participants (10 per condition). This perhaps is sufficient for a 

pilot study to test the instruments, but the results of this study are somewhat suspect due 

to a lack of power. Although the Waterson and O’Malley study is interesting from a 

cognitive load perspective, another study should be considered. 
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Palmiter’s Animation Deficit 

Palmiter’s dissertation project is perhaps the most cited animated demonstration 

study (Palmiter, 1991). In a series of experiments, Palmiter compares the learner 

performance of those who study animated demonstrations with those who use text-based 

instruction. She used a repeated measures design to study learners as they performed a set 

of discrete HyperCard tasks. Her study measured four dependent variables – performance 

time, accuracy, retention and transfer during a training session, an initial test, and a 

delayed test (Palmiter, 1991). 

Palmiter (1991) found several significant session x media interactions. These 

results are quite interesting, for she found that during the training session learners who 

studied animated demonstrations sped skill acquisition, and performed tasks in less time 

and more accurately than their peers using text-based instruction (Palmiter, Elkerton, & 

Baggett, 1991). These results are similar to those by Sweller and Cooper (1985) who 

demonstrated that studying worked examples requires “considerably less time to process 

than conventional problems, but that subsequent problems similar to the initial ones also 

were solved more rapidly”(p.59). 

However, Palmiter (1991) noted that, one week later, learners using animated 

demonstrations took longer to perform tasks, as compared with learners using text-based 

instruction. She reported that their skill acquisition may have been quicker during the 

initial training session, but their retention was lacking one week later. This phenomenon, 

later described as an “animation deficit” (Lipps, et al., 1998) could not be replicated by 

either Waterson and O’Malley (1993) or Lipps et al. (1998). 
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Palmiter et al. (1991) also measures transfer. She measured performance time 

while performing tasks similar to those trained (e.g. Copy Button vs. Copy Field). She 

found that demonstration groups took significantly less time than the text only groups 

during the “immediate test session.” This again is very similar to the results by Cooper 

and Sweller (1987) who wrote: “The results indicated that subjects whose training 

included a heavy emphasis on worked examples or an extended acquisition period were 

better able to solve both similar and transfer problems than were those subjects trained 

with conventional problems” (Cooper & Sweller, 1987, p 347). However, again, Palmiter 

(1991) notes a significant increase in performance time for the demonstration groups, 

between the training and delay sessions. 

Palmiter (1993) developed a “Model for Procedural Acquisition for Animated 

Demonstration: the Mimicry Model” (Palmiter, 1993, p.77). She used the following to 

describe this model “During initial training, demonstration users seemed to make a 

recording of what they saw and they play back a 'tape' of the recorded procedure during 

initial training.” (Palmiter, 1993, p.77). This is in direct contrast with how Sweller and 

his associates describe how learners abstract information from instructional materials. 

“Information is not remembered in the way a tape recorder might be considered to 

'remember' material, in a form identical to its presentation form. Because we must 

restructure or construct a representation of material presented to us...” (Sweller & 

Chandler, 1991, p.357). So from a cognitive perspective, animated demonstrations are not 

expected to be played back in memory. Since the 1970s, it has generally been accepted in 

the psychological literature, that memories must be reconstructed and are not simply 

played back (e.g. Loftus, 1975; Loftus & Hoffman, 1989). 
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Since Palmiter’s early study, many researchers have evaluated animated 

demonstrations as a presentation form (Cornett, 1993; Harrison, 1995; Reimann & 

Neubert, 2000). However, these researchers do not describe animated demonstrations as 

animated worked examples, nor do they describe a phenomenon similar to Palmiter’s 

animation deficit. Quite the opposite, they found learners using narrated demonstrations 

were faster and more accurate than those using text-based instruction (Cornett, 1993; 

Harrison, 1995). 

Worked Examples and the Design of Animated Demonstrations  

From a novice perspective, many cognitive tasks are complicated. Experts may 

have a sense of a problem solution, and design animated demonstrations as a series of 

discrete tasks as in Palmiter’s study (Palmiter, 1991), but this only teaches the step in the 

process, not when to use those steps. For a learner to solve authentic problems they must 

know when and how to use the steps toward solution. 

Teaching learners how to solve complex problems via discrete steps is useful, if it 

is in the context of an authentic problem. This can be accomplished via a narrated 

demonstration of a problem solution. In this way the instructor is able to communicate 

the problem steps (and when to use them), limiting the cognitive load of the learner 

because the learner simply has to watch the demonstration. Later, once a learner 

understands a problem schema, they can be allowed to perform or practice the problem 

steps. This is the sequence of instruction when teaching learners with worked examples, 

and is an instructional sequence which elicits the worked-example effect (Cooper & 

Sweller, 1987; Sweller & Cooper, 1985), but the literature has yet to show this effect for 

animated demonstrations. 
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Atkinson et al. (2000) proposed worked examples “typically include a problem 

statement and a procedure for solving the problem” (Atkinson et al., 2000, p. 181). Lewis 

(2005) proposed similarly designed animated demonstrations should act as worked 

examples “Animated demonstrations clearly fall under this category as they describe a 

problem and its solution in a series of steps. Because animated demonstrations are goal 

directed and procedure-based they act as animated worked examples” (Lewis, 2005, 

p.371).  

Several important guidelines should be considered at this point. First animated 

demonstrations should (1) include a problem statement and the procedure for solving the 

problem; (2) provide a learner with a verbal commentary directing the learner’s attention 

during the animation; and (3) describe the procedural steps in the context of a realistic 

problem. So given these guidelines are followed one may expect to find the worked-

example effect given animated demonstrations. 

Conclusions about Animated Instruction 

Rieber (1990) suggests the use of animation in instruction is relatively new, and 

has only been made available given computer-based instruction. Rieber (2000) suggested 

it has often been used in a gratuitous manner and is only useful under a certain range of 

conditions. In his terms, animated instruction must “pass the test for a need for ‘external 

visualization’” (Rieber, 2000, p. 162). In addition, Rieber (1990) also suggests animation 

should be included only when the attributes of the animations match the task. 

Early animated demonstration researchers were interested in “media effects”. For 

instance, Waterson and O’Malley (1993) studied how learners learned given text, 

animation and narration, and even provided evidence of the modality effect (Mayer, 
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2001; Penney, 1989). Since these early animated demonstration studies were first 

published, researchers have begun to follow Mayer’s advice to be concerned with the 

cognitive processing within the learner, rather than the effect of the media (Mayer, 1997). 

The most notable finding from the animated demonstrations literature is the 

potential for an “animation deficit” (Lipps et al., 1998; Palmiter, 1991). Lipps et al (1998) 

describes Palmiter’s animation deficit as a short term performance gain by learners using 

animated demonstrations (during early skill acquisition), but a significant loss in long 

term performance.  

Palmiter found that learners using animated demonstrations would acquire skills 

in significantly less time during the acquisition phase. But one week later, these same 

learners had difficulty retaining those skills, and took significantly longer to reproduce 

the same performance (Palmiter, 1993). However, there is reason to question this 

“animation deficit,” as other researchers could not replicate these findings (Lipps et al., 

1998; Waterson & O’Malley, 1993). In addition, Palmiter (1993) described a mimicry 

model which is in direct contrast to the writings of Sweller and Chandler (1991). This 

mimicry model will also be considered and questioned as part of the instructional 

conditions. 

Finally, none of these studies compared learner performance with discovery 

learning. Only Rieber and Parmley (1992, 1995) compared the learner performance of 

those using an animated condition to those using a discovery learning condition, but their 

study uses simulations (dynamic animation) rather than animated demonstrations. This 

instructional strategy, “discovery learning,” became very popular in the 1960s, and 

sparked the discovery learning movement. The next section considers this instructional 
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strategy in two ways: as an alternative to studying animated worked examples, but also 

from a learning perspective. 

Discovery Learning 

Jerome Bruner initiated the discovery learning movement with his 1961 article 

“The Act of Discovery.” Bruner wrote extensively about discovery, perhaps as an 

alternative to what was then, the latest advancement in educational technology, direct 

instruction (Skinner, 1958). Bruner’s article proposed that learners should be allowed to 

discover new rules and underlying principles, rather than be required to memorize 

material. He contrasted discovery-based instruction his “hypothetical mode” (Bruner, 

1961, p.23), with teacher-led instruction which he described as the “expository mode” 

(Bruner, 1961, p.23). Bruner’s “expository mode” was not just a general category for 

describing Skinner’s teaching machines or behavior modification, for it is a much broader 

classification of instructional strategies. Bruner described the expository mode when he 

says “the decisions concerning the mode and pace and style of exposition are principally 

determined by the teacher” (Bruner, 1961, p.23). In contrast Bruner (1961) clearly 

describes discovery learning as: 

It is, if you will, a necessary condition for learning the variety of techniques of 

problem solving, of transforming information for better use, indeed for learning 

how to go about the very task of learning. Practice in discovering for oneself 

teaches one to acquire information in a way that makes that information more 

readily viable in problem solving (Bruner, 1961, p.26). 

Bruner’s article may have described discovery learning, and set off the discovery 

learning movement, but this was not a new philosophy. This movement had much earlier 
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origins, and originated in the works of early 20th century educators like John Dewey, 

William Heard Kilpatrick, and Maria Montessori. Although the ideas of these earlier 

educators are reiterated here by Bruner, unfortunately like many proponents of this 

philosophy, he did not define “discovery learning.” 

What is Discovery Learning? 

Klahar and Nigam (2004) report that, for almost 100 years authors of this 

literature have had a consistent problem defining discovery learning. In the 1960s, 

several well known authors convened in an important volume edited by Shulman and 

Keiserler, to discuss discovery learning from a critical perspective. In this volume several 

well known authors provided conflicting definitions, like the following: “…learning by 

discovery is defined usually as teaching an association, a concept, or rule which involves 

‘discovery’ of the association, concept, or rule” (Glaser, 1966, p.14). This somewhat 

circular definition gives some indication that “learning by discovery” or “discovery 

learning” is an instructional strategy. While this may be the case, many others suggest 

discovery learning is accomplished by autonomous learners (e.g. Gagné, 1966). 

Glaser (1966) continues by contrasting discovery learning with traditional 

instruction to suggest that one of the most important characteristics of discovery learning 

is that it makes use of induction during the process of learning. However, Wittrock 

(1966) explains induction is not a prerequisite for discovery learning. He proposes that it 

is equally possible for a learner to (1) begin with a higher order generalization to discover 

specific conclusions, as it is (2) to discover generalizations or rules from specific 

examples; or, in his words, “Induction has no exclusive identity with discovery learning” 

(Wittrock, 1966, p43). 
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It is important to define discovery learning for this review to remain 

unambiguous. Thus, this review makes a somewhat complicated definition of discovery 

learning. Discovery learning is defined as an instructional technique in which the 

instructor provides an environment for learning, to be accomplished by autonomous or 

semi-autonomous learners. On some level then “discovery learning” is a bit of a 

misnomer, since this form of “learning” is really an instructional technique, and described 

as such by several very prominent researchers (Gagne, 1966; Glaser, 1966; Taba, 1963). 

While it is difficult to define discovery learning, the discovery learning movement 

became the philosophy of many American educators, and has often been heralded as a 

means of teaching inquiry-based learning. According to Mayer (2004), since the 1960s 

the arguments for and against discovery learning have waxed and waned, and are still 

with us today, as constructivism. This review provides the arguments both for and against 

discovery or expository instruction, and as it turns out there is no simple answer, for 

neither is the perfect solution, under all conditions. 

Proponents of Discovery Learning 

One of the earliest proponents of discovery learning was well-known curriculum 

theorist Hilda Taba. Taba built on Bruner’s foundation to provide a rationale for 

discovery learning by stating: 

Several proponents of this method argue that a premature verbalization of the 

generalization or the rule deprives the individual of the essential learning, namely, 

the reorganization of his own cognitive structure, and puts the student in the 

position of absorbing the generalization without necessarily understanding what it 

stands for or how to work it (Taba, 1963, p.312). 
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Taba’s criticism is valid. Understanding is a very important part of learning. This 

is the central argument of the proponents of discovery learning. Unfortunately 

understanding is not easily measured, thus this argument has led to the controversy that 

exists between those for and against discovery learning. 

Even today, mathematics educators are battling in the so called “Math Wars” 

(Schoenfeld, 2004). Mathematics educators, particularly in the 1990s, struggled with 

standards-based curriculum reform, to find ways of teaching learners how to use 

mathematics effectively. Schoenfeld (2004) explains that in 1989 the National Council of 

Teachers of Mathematics (NCTM) published a series of standards with the intent of 

providing mathematics education reform. These reformers described their underlying 

philosophy by saying: “This constructive, active view of the learning process must be 

reflected in the way much of mathematics is taught” (NCTM, 1989, p. 10). These 

educators took a constructivist perspective and felt very strongly that it was not simply 

enough to teach learners how to perform a mathematical procedure, but that they must 

understand the procedures and principles underlying the problems they were solving. 

Critics of Discovery Learning 

Ausubel (1963) was perhaps one of the most outspoken critics of Bruner’s 

instructional technique. He devoted a sizable portion of his early cognitive textbooks to 

this instructional strategy (Ausubel, 1963, 1968). Ausubel proposed there is a time and 

place for discovery learning, but that it is a highly inefficient means of conveying large 

amounts of information. He contends that learners must learn vast amounts of 

information in their lifetimes, more than they could ever discover on their own, and after 
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a great deal of discussion concludes that discovery learning “is as unfeasible as it is 

unnecessary” (Ausubel, 1963, p.151).  

Ausubel was among the first to relate cognitive psychology to instruction, and is 

well known for developing advanced organizers (Ausubel, 1960). Nevertheless Driscoll 

(2000) proposes that his main contribution to learning was his development of the theory 

of meaningful verbal learning (Ausubel, 1963). According to Ausubel, “meaningful 

learning” takes place when the learner chooses to relate new information to prior 

knowledge, as opposed to rote learning, which is simply memorization (Ausubel, 1963; 

Novak & Godwin, 1984). 

Ausubel’s development of the theory of meaningful learning was in part, a 

response to programmed instruction or behaviorism, which tends to promote rote 

performance over deeper levels of understanding (Ausubel & Fitzgerald, 1961). 

However, Ausubel advises us that both expository and discovery teaching techniques can 

promote rote learning, and expresses that there is widespread confusion given expository 

learning: 

This confusion is partly responsible for the wide spread but unwarranted twin 

beliefs that reception learning is invariably rote and that discovery learning is 

inherently and necessarily meaningful. Both assumptions, of course, are related to 

the longstanding doctrine that the only knowledge one really possesses and 

understands is knowledge one discovers by oneself. Actually each distinction 

constitutes an entirely independent dimension of learning (Ausubel, 1963, p 18). 

Ausubel is quite clear on his position of discovery learning and suggests those 

supporting discovery learning “confuse the reception-discovery dimension of the learning 
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process with the rote-meaningful dimension” (Ausubel, 1963, p 18). So Ausubel 

proposed both expository and discovery instruction promotes rote or meaningful learning. 

Novak and Godwin (1978) provide a graphic illustration explaining Ausubel’s 

ideas (See Figure 8). In this graphic Novak and Godwin (1984) elaborated on the work of 

Bruner and Ausubel, to present Ausubel’s ideas as two continuums, the expository-

discovery dimension, and the meaningful-rote dimension. 

 

Figure 8. Typical forms of learning 

Note: Adapted from “Learning how to learn,” by Novak, J. D., & Gowin, D. B., 1984, New York, NY: 
Cambridge University Press. p. 8 

This illustration shows that neither form of instruction is as Ausubel explained 

purely rote or purely meaningful. Neither discovery nor expository instruction is a 

panacea, each has its advantages and disadvantages. However, Ausubel was not the only 

well-known critic of discovery learning. 
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Guidance During Problem Solving 

In his classic text, The Conditions of Learning, Gagné (1965) states “The 

discovery method is liable to gross misinterpretation in practical learning situations” 

(Gagné, 1965, p.165) and explains that proponents of this technique argue for using a 

minimal amount of instruction, and unfortunately fall into the trap of providing problems 

“without perquisite knowledge of principles and without guidance” (Gagné, 1965, p.165).  

Gagné (1966) described discovery as being different given associative, concept, 

or principle learning. In addition, Gagné (1966) was one of the first to consider discovery 

during problem solving. He states that it involves “(1) a process of search, and (2) a 

process of selection, each of which takes place within the learner’s nervous system” 

(Gagné, 1966, p. 136). 

While developing cognitive load theory, Sweller also considered problem solving 

search, and suggests that if a learner is required to solve problems, while learning, they 

may spend many hours searching for a problem solution and still not be engaged in 

schema acquisition (Kirschner, Sweller, & Clark, 2006; Sweller, 1988). In other words, 

even though these learners may be actively searching for a problem solution, they may 

not be learning (Sweller, 1988). 

Gagné (1965) describes eight forms of learning, of which problem solving is the 

most complex. Like many authors he says learners may discover principles or problem 

solutions, but recommends that instructors provide guidance during problem solving. 

However, at some point, we must teach learners to teach themselves. Problem solving of 

course, requires the learner to solve problems on their own. This dichotomy of self-
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guidance and instructor guidance is probably the most important reason for this 

controversy.  

Cognitive load researchers are not against teaching learners to teach themselves, 

however they are concerned with how one introduces novices to problems and problem 

solving. Their somewhat counterintuitive solution is to introduce learners to problem 

solving, by first providing a demonstration or worked examples. Later, as learners 

develop their skills they suggest allowing learners to practice.  

Given the expertise reversal effect (Kalyuga, Ayres, Chandler, & Sweller, 2003), 

direct instruction is only useful during the earliest stages of learning, during early schema 

acquisition. Therefore cognitive load theorists suggest fading worked examples, to allow 

more advanced learners time to practice and automate their skills during problem solving 

(Renkl, Atkinson, & Maier, 2000; Renkl, Atkinson, Maier, & Staley, 2002). Thus, it is 

not practice or discovery that cognitive load researchers are against. It is the timing of 

that practice which is under scrutiny. 

Discovery Learning and Constructivism 

Discovery learning has morphed and changed over the decades since Bruner’s 

article. Mayer (2004) suggests it is still with us in the writings and practices of 

constructivism. During the 1990s, many American educators adopted a constructivist 

epistemology toward teaching and learning. This epistemology suggests the active 

construction of knowledge (Dewey, 1916; Duffy & Cunningham, 1996; Wittrock, 1974).  

Constructivism is primarily a philosophical position, but has implications for 

instructional design. It suggests we perceive information from the environment, and that 

our mental models of the environment help us to construct our own unique version of 
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reality (Jonassen, 1991). This relativist epistemology extends into a philosophy of 

instructional design. 

Jonassen (1991) suggests instructional designers should focus less on “prescribing 

a single best sequence of learning (p.12)” and allow learners to negotiate their own 

learning. Thus, many constructivists design what they describe as “ill-structured 

learning” environments, because they feel the learner will construct his or her own 

interpretation of that environment, and must be allowed to do so. 

Jonassen (2002) has updated constructivism to describe “learning as activity.” He 

and his colleagues are now attempting to integrate activity theory and Ecological 

Psychology into a constructivist philosophy of learning. In terms of instructional design 

recommendations, this “learning as activity” mantra becomes “learning by doing.” 

Strong Criticism of “Learning by doing” 

“Learning by doing” has been a popular approach toward the design of 

instruction, but many educational psychologists and instructional design researchers have 

begun to question the efficacy of this approach. 

Mayer (2004) describes constructivist instructional design recommendations, as 

relying on “the constructivist teaching fallacy” (Mayer, 2004, p.15). Specifically, he 

explains that many constructivists prescribe active learning techniques, which require 

learners to be behaviorally active. Rather than being behaviorally active, he suggests 

learners be cognitively active. Mayer puts it best when he says “Activity may help 

promote meaningful learning, but instead of behavioral activity per se (e.g., hands-on 

activity, discussion, and free exploration), the kind of activity that really promotes 

meaningful learning is cognitive activity (e.g., selecting, organizing, and integrating 
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knowledge)” (Mayer, 2004, p.17). While this article stops short of condemning pure 

discovery or constructivism, he concludes “The research in this brief review shows that 

the formula constructivism = hands-on activity is a formula for educational disaster” 

(Mayer, 2004, p. 17). 

Kirschner, Sweller, and Clark (2006) followed Mayer, by being critical of 

constructivist teaching techniques. However they took it a step further, and in a bold 

move, argued that constructivist, discovery, problem-based, experiential, and inquiry 

based teaching have been a failure. They describe these instructional design prescriptions 

as “unguided” or “minimally guided” instruction; echoing Gagné’s earlier argument (that 

discovery learning does not provide guidance) (Gagné, 1965).  

So there is strong criticism of constructivism and discovery learning from those 

who promote cognitive load theory. However, as Paas, Renkl, & Sweller (2004) warn, 

this epistemology has a strong following in American education, but “despite a long 

history, evidence for the effectiveness of discovery learning from controlled studies is 

very sparse” (Paas, Renkl, & Sweller, 2004, p. 6). 

Kirschner, Sweller, and Clark’s criticisms have not gone unheard, and shortly 

after publishing this paper, several members of the constructivist community responded 

(e.g. Hmelo-Silver, Duncan, & Chinn, 2007). Hmelo-Silver et al.’s main argument is that 

problem-based and inquiry learning are not “minimally guided” because these forms of 

instruction are “scaffolded inquiry.”  

The Nature of the Debate 

It seems the real problem, given this debate, is more one of scale and a failure to 

communicate. When debating the nature of learning, researchers must be specific about 
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which learners, and what one means by “learning.” As Gagné (1965) described there are 

many types of learning. In addition, recall that earlier in this chapter neurological 

researchers found that procedural and declarative learning are even processed by different 

portions of the brain (Squire & Zola, 1996). Finally, as this literature review has shown 

learner expertise is a continuum, extending from novices with little to no prior 

experience, to those with decades of experience. 

Given the entire breadth and depth of “learning,” it is quite possible that both 

groups of researchers (the critics and proponents of discovery learning) maybe correct for 

different audiences. Discovery during problem solving may very well be important for 

more experienced learners, but detrimental for novices. The next section considers 

audience as a factor in this debate, to ponder scaffolding and guidance in ill-structured 

learning problems and learning environments. 

The Appropriate Environment for the Audience 

In 1993, Jonassen, Mayes, & McAleese used the term constructivist learning 

environments (CLEs). They describe these environments as being for more advanced 

learners, and they expected more structured approaches for novices (Jonassen, et al., 

1993). However, they state:  

We believe that constructivistic learning environments may be used during the 

latter stages of knowledge acquisition and that they represent rich and meaningful 

environments for initial knowledge learners. However constructivistic 

environments are more reliably and consistently applied to support the advanced 

knowledge acquisition phase. (Jonassen, Mayes, & McAleese, 1993, p.232) 
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In addition to the above discussion, Jonassen et al. (1993) presented a continuum 

(See Figure 9) which suggests ill-structured domains should mainly be used during the 

later stages of the learning process.  

Figure 8 even proposes that more structured learning domains, like skill-based or 

procedure-based learning, are appropriately handled by well-structured instruction. This 

is an important point because this article shows that some of the most outspoken 

advocates for constructivism believe constructivist learning environments have their 

limitations. However an important distinction should be made at this point. While it is 

important to consider constructivist learning activities in the later stages of learning, most 

instruction is developed for novices. 

 
Figure 9. Structured and ill-structured domains 

Note. Adapted from “A manifesto for a constructivist approach to uses of technology in higher education,” 
by D. Jonassen, T. Mayes, & R. McAleese, R., 1993, In T.M. Duffy, J. Lowyck, & D.H. Jonassen (Eds.), 
Designing environments for constructive learning. p. 232 
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Several years later, Jonassen suggested that instructional designers should develop 

well-structured environments for novices, and specifically refers these designers to 

Sweller’s work with worked examples (Jonassen, 1997). 

The primary purpose of instruction is to provide learners with a means of learning 

new material. Guided instruction means providing learners with the underlying schema 

which amounts to well-structured information (instruction), but providing learners with 

less information, usually always means providing them with less guidance. 

Kirschner, Sweller, and Clark, state “Most learners of all ages know how to 

construct knowledge when given adequate information and there is no evidence that 

presenting them with partial information enhances their ability to construct a 

representation more than giving them full information” (Kirschner, Sweller, & Clark, 

2006).  

While educators cannot teach a learner everything they need to know, providing 

novice learners with less, in an effort to allow them to discover it on their own, is 

probably irresponsible. It’s very important that instructors live up to their responsibility, 

to provide learners with the guidance and instruction that they need during early schema 

acquisition. 

Merrill’s Task Centered Strategy 

Veteran researcher David Merrill synthesized the literature concerning expository 

and discovery-based instruction, to produce what he describes as a “task centered 

strategy” (Merrill, 2007) (See Figure 10). This instructional design model considers the 

needs of novices and those with more expertise. It begins with well-structured problems 

and ends with ill-structured learning environments to suit the needs of all learners.  
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Figure 10. Merrill's Task-Centered Instructional Strategy 

Note: Adapted from “Levels of instructional strategy,” by Merrill. D.M., 2006, Educational Technology 
46(4) p.8  

Merrill’s “Task-centered Instructional Strategy” is an instructional design model, 

which is the culmination of years of work, and a practical synthesis of many different 

learning theories (Merrill, 2007). It begins with a demonstration or worked example and 

through a series of problems, adds complexity to simplified tasks by adding components 

of authentic problems. This design strategy guides learners to eventually lead them to 

solve complex tasks, on their own, without coaching. It suggests demonstrations and 

worked examples early in the process and later as the learner gains expertise, coaching 

and guidance is faded, to allow the learner to discover how to use previously learned 

concepts and principles, to solve authentic problems. 

As Merrill and many others have explained, novices need to be guided during the 

earliest stages of learning. This is the underlying idea of this dissertation, that instructors 
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and instructional materials must guide learners, during early schema acquisition. Later, 

after learners acquire the underlying schemas and become more experienced, then they 

may be allowed to discover and practice authentic problems, as suggested by Anderson’s 

ACT-R framework (Anderson, 1993). It is then that discovery learning techniques may 

be useful and only then, that they should be taught with ill-structured learning 

environments (Jonassen, Mayes, & McAleese, 1993). 

Even though the view of many educators is to support active learning or 

discovery-based problem solving, this review has shown that this view is not justified by 

the literature, and not in the best interest of novices. However, good empirical studies 

have never lost favor with educational researchers, so before closing this discussion of 

discovery learning, it would be prudent to review the Tuovinen and Sweller (1999) 

article. This article is important, because it actually compares learners who studied 

worked examples with those using discovery-practice, during early schema acquisition. 

Worked Examples versus Discovery Learning 

Sweller (1988) proposed that discovering a problem solution constitutes a dual-

task, requiring the learner to search for a problem solution, while trying to learn the 

underlying problem schema. Studying worked examples is a way to eliminate the second 

task (problem solving search) because studying worked examples only demonstrates the 

problem schema (Sweller et al., 1998). 

Tuovinen and Sweller (1999) compared the performance of those learners who 

were given worked examples and those who discovered problem solutions by solving 

problems on their own. In addition, Tuovinen and Sweller also compared the 
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performance of those with and without experience. This experiment was carried out over 

three consecutive weeks.  

During the first week, learners were asked to fill out and initial survey and then 

were introduced to FileMaker Pro (a Macintosh database program) via a series of 

HyperCard stacks (a series of printed electronic slides). During week two, learners were 

randomly assigned into groups: an exploration group and a worked examples group. The 

exploration group was given the following text-based instructions:  

Try out the functions in each of the lessons in situations you create-yourself, 

saving your files on the floppy disk provided. You may use any of the databases 

on the floppy disk if you wish. You will be asked to solve problems similar to the 

one shown in the lessons, in the test on this work. So direct your exploration 

towards gaining adequate mastery of the program to deal with such questions. 

(Tuovinen & Sweller, 1999, p.337) 

The worked example group was asked to read through a worked example that 

consisted of “a problem statement related to calculation or field construction or use and 

then an annotated step-by-step example of the way the problem could be solved with 

computer-screen views seen by the operator working to obtain the solution” (Tuovinen & 

Sweller, 1999, p.337). These learners were subsequently asked to practice what they had 

learned on a similar problem.  

During the third week, all learners were tested with a paper-based test composed 

of items similar to those taught in their lessons. Each learner was provided with a series 

of questions and required to create database files based on those questions. Test scores 

were analyzed with a 2x2 ANOVA (higher or lower levels of experience) X (worked-
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example or exploration group). As expected, the results showed a significant main effect 

with respect to levels of experience, with those with prior experience performing 

significantly better than those with less experience. Although the main effect for groups 

was not significant, there was a significant interaction between these variables (See 

Figure 11). When they compared the mean test scores for those without experience, they 

found participants in the worked examples group performed significantly better than 

those in the exploration group (discovery practice). Thus, they confirmed the worked-

example effect. As expected, they found means scores for the groups with prior 

experience were not significantly different, but that worked examples were not as 

beneficial for learners in this group (further evidence of the expertise reversal effect).  

 
Figure 11. Mean test performance 

Note. Adapted from “A Comparison of Cognitive Load Associated With Discovery Learning and Worked 
Examples,” by J.E. Tuovinen & J. Sweller, 1999, Journal of Educational Psychology. 91(2) p.338 
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While these results are positive for cognitive load theorists, this was just one of 

many studies, comparing learners who studied worked examples versus those who solved 

problems. Many, studies have confirmed these results, showing overwhelming evidence 

in favor of worked examples, as opposed to problem solving (Carroll, 1994; Paas, 1992; 

Paas & van Merriënboer, 1994; Quilici & Mayer, 1996; Sweller, 1988, Zhu & Simon, 

1987). On the other hand, according to Paas, Renkl, and Sweller (2004), there is 

comparatively little evidence, demonstrating the efficacy of discovery learning during 

initial skill acquisition. 

Tuovinen and Sweller (1999) while confident of their results closed their article 

with one caveat: 

It can, of course, be argued that exploration practice may be superior to worked 

examples, even for novices, if measures other than those of the present 

experiment are used. For example, exploration may favor long-term retention. 

Although this question must remain open until tested, it should be noted that in 

the present case, students with no previous database experience who learned by 

exploration, achieved such low test scores that minimal knowledge was available 

for long-term retention. (Tuovinen & Sweller, 1999, p.340) 

This assertion, that long-term retention may favor exploration is an important 

point. It is eerily familiar, given the discussion of the animated demonstration literature, 

for it echoes Palmiter’s concerns of an animation deficit (Lipps et al., 1998; Palmiter, 

1991; Palmiter et al. 1993).  
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Thus this dissertation intends to measure learner performance, a week after initial 

instruction. Given this is the case the next order of business is to discuss how that might 

be accomplished. 

How Has Cognitive Load Been Measured? 

Our technology is just beginning to be able to peer inside the working brain to 

measure changes in brain function, thus it has been very difficult to measure cognitive 

load. However, humans have been very imaginative and developed physiological, 

computational, and self report estimates of cognitive load. This section describes the 

various cognitive load measures developed to date, but begins by describing the 

predecessors of these measures. 

Human Factors and Cognitive Load Research 

The measurement of cognitive load has several origins. It may be linked to 

cognitive psychology, or physiology, but perhaps cognitive load research has its closest 

ties to ergonomic or human factors (the parent field of human computer interaction, 

HCI). Consequently, some of the earliest cognitive load articles were published in the 

journal Human Factors (e.g. Paas & van Merriënboer, 1993). The field of human factors 

studies how people interact with their environment, and more recently has begun to 

concentrate on the computer interface (Bailey, 1996). 

Usability Engineering (or simply Usability) became an important theme in HCI 

research. Even though researchers of the 1980s considered usability as a 

multidimensional construct (e.g. Bethke, Dean, Kaiser, Ort, & Pessin, 1981), they mainly 

described it in terms of “ease of use” or user satisfaction. Later in the 1990s, researchers 

began to consider other attributes of usability. Nielsen (1993) defines usability by 
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describing five subcomponents (learnability, efficiency, memorability, errors, and 

satisfaction).  

Soloway, Guzdial, and Hay (1994) called for Norman’s “user-centered” design 

philosophy to be more “learner-centered.” Nielsen’s (1993) definition of learnability 

“How easy is it for users to accomplish basic tasks” is truly a subjective measure of 

“perceived usability,” rather than a more objective comparison. To his defense, Nielsen 

(1993) was merely trying to describe a set of heuristic guidelines to help software 

programmers begin to think about usability. Nielsen (2001) even suggests that we should 

consider the user’s opinions and suggestions only after watching them actually work with 

the software. 

What is needed is a new way of producing design guidelines for software 

programmers and instructional designers. We need an objective method of evaluating 

software products based upon Soloway’s learner-centered design philosophy (Soloway et 

al., 1994). Cognitive task analysis has fulfilled this role to date and studies cognitive 

tasks, but is it able to improve human performance? This may be possible, if we evaluate 

the instructional strategies that are the most efficient and effective,  

Paul Merrill proposed instructional designers should use an information 

processing approach to task analysis, as they design procedure-based instruction (Merrill, 

1971; Merrill 1976; Merrill, 1980). So given Merrill’s cognitive perspective, researchers 

could influence human performance, by objectively comparing learner performance of 

complex cognitive tasks, and using these observations, improve the instructional 

strategies used to present these tasks.  
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Cognitive task analysis requires an objective approach to instructional design 

research, and in doing so, can refine instructional materials to produce effective efficient 

instruction. This then is the basis of an objective instructional science. 

Instructional science has evolved over the past several decades and as it evolved 

so did its methods of inquiry. Cognitive load measures are a recent development of 

instructional science and human factors research. However, before these measures were 

developed, there were several predecessors that led the way. 

Predecessors of Cognitive Load Measurements 

NASA (the National Aeronautics and Space Administration), has tested human 

endurance and the limitations of human ability for several decades. So it should not be 

surprising that NASA researchers developed several important measures of “mental 

workload.” One in particular, the NASA-TLX (task load index) (Hart & Staveland, 1988) 

is used to measure the load a person endures, during a task performance.  

Hart and Staveland (1988) described their task-load index as being 

multidimensional, for it combines six subscales (mental demand, physical demand, 

temporal demand, performance, effort, and frustration level). They used this index in 

several studies to determine load conditions during several experimental tasks including 

simple cognitive tasks, manual control tasks, complex laboratory tasks, supervisory 

control tasks, and aircraft simulation. 

Prinzel, Pope, Freeman, Scerbo and Mikulka, (2001) also reported using the 

NASA-TLX with Electroencephalogram (EEG) and Event-Related Potentials (ERPs) to 

build “adaptive automation technology.” These computer-based systems automatically 

adapt to the limited capacities of human operators, when the operator is under high load 
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conditions. Prinzel et al (2001) stated that their intention was to build adaptive systems 

that automate less critical tasks, to efficiently reduce an operator’s workload. Their hope 

is to develop systems that limit disasters, like the challenger space shuttle and three-mile 

island accidents. 

The NASA-TLX is just one example of several workload measures that have been 

developed. Other authors have developed similar measures, the Cooper-Harper Scale 

(Cooper & Harper, 1969) and the SWAT, Subjective Assessment Technique (Reid & 

Nygren, 1988). In all of the above assessments mental load was considered to be a 

multidimensional construct. The multidimensional nature of mental workload will be 

described further in later sections. 

Before continuing, it should be noted there are two main differences between 

these measures and those used during cognitive load research, the audience and 

conditions. Cognitive load researchers typically only measure the performance of novices 

during learning, where the above measures were much more general and developed for 

other audiences and circumstances. 

Objectivity and Cognitive Load 

Brünken, Plass, and Leutner (2003) discuss the measurement of cognitive load in 

some detail, and even develop a classification scheme to describe cognitive load 

assessments. They classify cognitive load measurements along two basic dimensions: 

objectivity and causal relation. In their classification scheme, assessments along the 

causal relation dimension can be described as either direct or indirect, while those in the 

objectivity dimension are either objective or subjective (See Table 2). 
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Table 2 

Methods for measuring cognitive load 

 Causal Relationship 
Objectivity Indirect Direct 

Subjective Self-reported invested mental 

effort 

Self-reported stress level 

Self-reported difficulty of 

materials 

Objective Physiological measures 

Behavioral measures 

Learning outcome measures 

Brain activity measures 

(e.g., fMRI) 

Dual-task performance 

Note. Adapted from “Direct measurement of cognitive load in multimedia learning,” by R. Brünken, J. L. 
Plass, & D. Leutner, 2003, Educational Psychologist, 38(1), p.55 

All of the measures employed by cognitive load researchers have their advantages 

and disadvantages (Brünken et al., 2003). Tuovinen and Paas (2004) revealed that most 

studies measuring cognitive load, typically make use of self-reported mental effort ratings 

developed in the early 1990s. Nevertheless, Brünken, Plass, and Luetner (2003) state:  

Although this technique, which is frequently used in current cognitive load 

research (See Paas, Tuovinen, Tabbers, &Van Gerven, 2003), appears to be able 

to assess the subjective perception of invested effort reliably, it remains unclear 

how this mental effort relates to actual cognitive load (Brünken, Plass, & Luetner, 

2003, p.56). 

While learners may be able to self report their own levels of cognitive load, this 

measure is not objective. On the other hand, functional magnetic resonance imaging 

(fMRI) provides more direct objective cognitive load measurements, but this method is 

expensive and difficult for educational researchers to use with large populations. Even 
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though this is the case, brain imaging studies are being used to study learners during 

computer-based problem solving (e.g. Anderson, Albert, & Fincham, 2005). 

Given the constraints of this study, it is not possible to use fMRI. Instead, this 

project used indirect objective methods, specifically behavioral observation, as well as 

indirect subjective measures like those proposed by Paas and van Merriënboer (1993). 

However, before explaining these methods, it is necessary to explain the reasoning and 

derivation of these methodologies. 

The Efficiency Perspective of Cognitive Load 

Paas and van Merriënboer (1993) base their methodology on an “efficiency 

perspective” of cognitive load, a slightly different view from Sweller’s element 

interactivity perspective. However, Sweller, van Merriënboer, and Paas (1998) 

synthesized these views a decade ago and most cognitive load studies since the mid 

1990s have used this perspective (Tuovinen & Paas, 2004). 

This “efficiency perspective” of cognitive load, dates back before Sweller’s 

seminal article describing cognitive load theory (Sweller, 1988), since Ahern and Beatty 

previously published an article in the journal Science (Ahern & Beatty, 1979). Their 

article studied the human eye during cognitive processing. By this stage, it had already 

been determined that the pupil dilates during increased cognitive activity (Janisse, 1977). 

In addition, it was known that pupil dilation varied based on the momentary cognitive 

demands of task performance (Beatty, 1977). Ahern and Beatty (1979) took this idea a 

step further; to hypothesize that higher ability learners should have more efficient 

cognitive structures (better formed schemata) and that their pupil dilation would reflect 

this more efficient cognitive processing. They tested this hypothesis and found evidence 
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which supported their case. So, they were able to provide physiological data (further 

evidence) that greater expertise resulted in higher mental efficiency. Recall that Chase 

and Simon (1973a) had found that chess experts have the ability to manipulate more 

information, in a shorter period of time, because they recognize patterns. Thus an expert 

does not have a larger memory capacity; they are just more efficient with their limited 

capacity, because they have well formed schemata.  

Ahern and Beatty (1979) also found physiological evidence of task automation. 

Specifically, they state that the “pupillary response during information processing might 

reflect the effects of prior practice at cognitive tasks” (Ahern & Beatty, 1979, p. 1291). 

Thus their results support those of Schneider & Shiffrin (1977), who first proposed the 

idea that experience or practice promotes the automation of learned skills. In Ahern and 

Beatty’s words “the effect of further practice is to make access to the items more 

automatic and thereby to decrease the processing load associated with item retrieval” 

(Ahern & Beatty, 1979, p. 1291). 

Ahern and Beatty’s “processing load” is of course, what Sweller later described as 

cognitive load (Sweller, 1988). Thus a learner with more expertise has a reduced 

cognitive load, because they have acquired schemata, which better describes task 

performance. So a learner with more experience does not have an increased cognitive 

capacity, but they are more efficient with their limited working memory. This is what 

Paas & van Merriënboer (1993) later described as the efficiency perspective of cognitive 

load. So according to Paas and van Merriënboer’s efficiency perspective, learners are 

more efficient during an instructional condition, if their performance is greater than 

expected, and their invested mental effort is lower than expected (Paas & van 
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Merriënboer, 1993). Paas and van Merriënboer (1993) developed this perspective to 

produce a hybrid objective/subjective cognitive efficiency construct (E). 

E is for Efficiency 

Paas drew upon the field of human factors to develop the efficiency view of 

cognitive load. In a 1992 article, he states “Cognitive load is a multidimensional concept” 

(Paas, 1992 p.429) but also says “the intensity of effort is considered to be an index of 

cognitive load” (Paas, 1992, p. 429). Paas and van Merriënboer (1993) further developed 

this, to derive a multidimensional construct which they called “relative condition 

efficiency (E)” (Paas & van Merriënboer, 1993, p.737). Constructs (or latent variables) 

are not directly observable (Schumaker & Lomax, 2004), but allow researchers to study 

less tangible concepts, like cognitive load. Schumaker and Lomax (2004) describe latent 

variables as being inferred from two or more measured indicator variables. Paas and van 

Merriënboer’s relative condition efficiency (E) construct (Equation 1) is composed of 

standardized mental effort ratings and performance scores. 

  
2

|| rtMentalEffoZePerformancZ
E

−
=      (1) 

This formula has recently been revised to remove the absolute value symbols to 

be mathematically equivalent and somewhat simpler, as in Equation 2 (Clark, Nguyen, & 

Sweller, 2006a; Paas, Tuovinen, Tabbers, & van Gerven, 2003; Tuovinen & Paas, 2004). 

Relative condition efficiency 
2

rtMentalEffoZePerformancZ −
=   (2) 

Paas and van Merriënboer (1993) derived their construct (Equation 1) from the 

point-line distance formula (See Equation 3): 
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The point-line distance formula is a geometric formula, for finding the 

perpendicular distance between a point and a line (Weisstein, 2008). Paas and van 

Merriënboer used this formula, to combine two sets of z-scores, in order to graph the 

resulting equation.  

In the case of relative condition efficiency (E), the point is a standardized, group 

mean score, for an instructional condition, given two variables (mental effort and 

performance). These two variables are plotted relative to one another on a two 

dimensional graph, with mental effort on the x axis and performance on the y axis (See 

Figure 12). The denominator of equation, 2  rotates the combined scores 45 degrees 

from either axis to form the efficiency, E=0 line.  

Figure 13 is a generalized efficiency graph. Scores above the E=0 base line, in the 

upper left hand corner of the graph, are expected to have a greater relative condition 

efficiency, because they have a better performance with decreased mental effort. Paas and 

van Merriënboer’s study is a good example to explain the use of this metric.  

Paas and van Merriënboer compared conventional problem solving, worked 

examples, and completion problems. To compare group mean scores, they conducted a 

one-way ANOVA and revealed a significant difference between groups, F (2, 42) = 

24.76, p < 0.001. They found in post hoc comparisons (a Fischer’s test), that the 

conventional problem solving condition (E=-1.15) was significantly less efficient than the 

other conditions (worked example and problem completion groups), which were not 

significantly different.  
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                               Figure 12. A graph of relative condition efficiency. 

Note. Adapted from “The efficiency of instructional conditions: An approach to combine mental effort and 
performance measures,” by F.G.W.C. Paas and J.J.G. van Merriënboer, 1993, Human factors, 35(4), p.741 

 
                                      Figure 13. Generalized efficiency graph 

Note: Adapted from “Cognitive Load Measurement as a Means to Advance Cognitive Load Theory,” by 
Paas, F., Tuovinen, J.E., Tabbers, H. & Van Gerven, P. W. M., 2003, Educational Psychologist, 38(1) p.68 
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Paas and van Merriënboer (1993) were explicit and suggested that these combined 

mental effort/performance-based cognitive load measurements should be qualified with 

performance data. Therefore, even though the worked example and problem completion 

group scores did not differ significantly, the mean performance scores for these groups 

were: M = 78.57 for the worked example group, M = 67.22 for the problem completion 

group, and finally M = 51.60 for the conventional discovery problem-solving group. 

Finally it should be stated that relative condition efficiency (E) assumes a linear 

relationship between perceived mental effort and performance (Paas & Merrienboer, 

1993). 

Variations on a Theme 

Ten years after the original relative condition efficiency article, Paas, Tuovinen, 

Tabbers, and Van Gerven (2003) reported that researchers had required learners to 

provide mental effort ratings at different times.  

It seems Paas and Van Merriënboer (1993) had used mental effort estimates from 

the test phase, while Sweller and his associates used mental effort estimates from the 

learning phase (See Table 3).  

To clarify matters, Paas et al (2003) suggested dividing these into two separate 

efficiency metrics and that researchers use the terms “relative condition efficiency” (Paas 

& van Merriënboer, 1993, p.739) and “learning efficiency” (Paas et al., 2003, p.69). 
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Table 3 

Relative condition efficiency and learning efficiency 

Relative condition efficiency 
 Learning 

phase 
Test 

phase 
Performance score  X 
Mental effort estimate  X 

Learning efficiency 
 Learning 

phase 
Test 

phase 
Performance score  X 
Mental effort estimate X  
 
Note. Adapted from “A Multidimensional Approach to the Mental Efficiency of Instructional Conditions” 
by F. Paas, 2007, retrieved June 5, 2007 from 
http://www.ou.nl/Docs/Expertise/OTEC/Projecten/onderzoeksvoorstellen%20PDF/Paasproject34%5B1%5
D.pdf 

Tindall-Ford, Chandler, and Sweller (1997) were perhaps the first to measure 

what came to be called “Learning efficiency.” That is they conducted their mental effort 

ratings after the learning phase, but before the test phase. As Table 4 shows many 

cognitive load researchers followed their lead and also measured what came to be called 

“learning efficiency.” 

Tuovinen and Paas (2004) explained that each of these metrics signifies different 

aspects of the learning-testing process. Paas et al (2003) suggests “relative condition 

efficiency” is mostly concerned with mental effort expended during a test performance, 

and may be more related to transfer.  

The main benefit of this metric is that it helps instructional designer researchers 

measure the relative efficiency of instructional conditions (Tuovinen & Paas, 2004). On 

the other hand learning efficiency is concerned with the mental effort expended during 

training. 
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Table 4 

The timing of mental effort ratings 

Studies Learning 
phase 

Test 
 phase 

Paas and Van Merriënboer (1993)   ME, P 

Marcus, Cooper and Sweller (1996)   ME, P 

Tindall-Ford, Chandler, and Sweller (1997)  ME P 

Yeung, Jin, and Sweller (1997)   ME, P 

Kalyuga, Chandler, and Sweller (1998)  ME P 

Kalyuga, Chandler, and Sweller (1999)  ME P 

Yeung (1999)   ME, P 

Tuovinen and Sweller (1999) ME P 

Kalyuga, Chandler, and Sweller (2000)  ME P 

Camp, Paas, Rikers, and Van Merriënboer (2001)   ME, P 

Kalyuga, Chandler, and Sweller (2001)  ME P 

Kalyuga, Chandler, Tuovinen, and Sweller (2001)  ME P 

Pollock, Chandler, and Sweller (2002)  ME P 

Van Gerven, Paas, Van Merriënboer, and Schmidt (2002)  ME P 

Van Merriënboer, Schuurman, De Croock, and Paas (2002)  ME P 

 
Note: adapted from “Exploring multidimensional approaches to the efficiency of instructional conditions” 
by Tuovinen, J. E. & Paas, F. G. W. C., 2004, Instructional Science 32(1-2) p. 136 

 

3 Dimensional Approaches 

Tuovinen and Paas (2004) defend the original metric because they say it is 

important to measure the relative importance of mental effort during a test or 

performance: 

It is quite feasible for two people to receive the same performance scores, while 

one of them needs to work laboriously through a very effortful process to arrive at 
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the same number of correct answers, whereas the other person reaches the same 

answers with a minimum of effort (Tuovinen & Paas, 2004, p.140). 

Thus, Tuovinen and Paas began to consider new metrics that would consider both 

the test phase and the learning phase, simultaneously. In their search for this new metric, 

Tuovinen and Paas (2004) created some new terminology. They refer to both relative 

condition efficiency and learning efficiency as 2 dimensional (2D) measures because they 

include one mental effort measure and one performance measure.  

Tuovinen and Paas (2004) also developed a 3D (or 3 dimensional measure) by 

combining the factors of the 2D measures; to do so, they factored in learning effort (EL), 

test effort (ET), and performance (P) in the following formula:  

   3D Efficiency =
3

-P L TEE −
    (4) 

Like 2D efficiency metrics, this 3D measure is also graphed, but in three 

dimensional space. Tuovinen and Paas (2004) claim this combines the best features of 

both metrics.  

However, Salden, Paas, Broers, and van Merriënboer (2004) produced yet another 

3D metric that makes use of total training time. To do so, Salden et al (2004) combined 

performance (P), mental effort (ME) and total training time (TT) in the following 

formula: 

   Training Efficiency = 
3

TT - ME - P     (5) 

This metric makes more sense because it factors in time. Certainly cognitive load 

is concerned with the amount of time involved during training. This metric can also be 

graphed in three dimensional space with performance, mental effort and time on the three 
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axes. In addition, other studies since Tuovinen and Paas’ article have begun to use 4D 

metrics which include motivation (Nadolski, Kirschner & van Merriënboer, 2005). 

However 3D & 4D metrics will not be used in this study.  

Performance Efficiency 

Consider equation 6. Is mental effort a necessity for an efficiency metric? Also, 

recall that Brünken, Plass, and Leutner (2003) categorized cognitive load measures based 

upon direct and indirect, or by subjective and objective methods. As they categorized 

these measures, they explained that they were uncertain how perceived mental effort is 

related to cognitive load. Even though it can be argued that perceived mental effort is an 

indicator of cognitive load, performance time is more objective, and a better indicator of 

the efficiency of a learner’s performance. 

This study intends to derive a new formula based completely on the objective 

measures of performance time (PT) and performance (P), but does not include a 

subjective mental effort rating. This will be described as “performance efficiency” (PE) 

(See Equation 6): 

 Performance efficiency = 
2

eTimePerformancZePerformancZ −
  (6) 

As with many of the other efficiency formulas, performance time and 

performance are standardized with Z-scores as in Paas and van Merriënboer’s 1993 

article. Performance efficiency may also be represented in abbreviated form like the other 

efficiency metrics, with P representing the Z-score of performance and PT representing 

the Z-score of performance time (See Equation 7). 

   Performance Efficiency
2
PT-P  =     (7) 
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Finally, this metric is also graphed, and the denominator 2  is derived in the 

same way, from the point-line distance formula. These values are also plotted on a two 

dimensional biplot, but with performance time on the X axis, and contrasted with 

performance, on the Y axis (this is discussed in more detail in later chapters). 

While this new metric does not represent mental effort or mental efficiency, it is 

an objective efficiency measure. Also like relative condition efficiency, performance 

efficiency may be used to compare instructional conditions, to describe a group’s 

performance and relate the performance of groups to one another.  

Before the Paas and van Merriënboer (1993) article, performance measures were 

used exclusively. Performance efficiency provides a simple objective way to express 

group performance versus time. Like relative condition efficiency, performance 

efficiency allows one to compare group performance from a graphical perspective. 

However, it should be stated that like relative condition efficiency, performance 

efficiency also assumes a linear relationship between its two factors, in this case, between 

performance and performance time. This relationship (or slope of the E=0 line), may vary 

depending on problem complexity and the environment in which problems are solved. 

In summary, there is little doubt that Paas and van Merriënboer’s efficiency 

metric has had a dramatic effect on the cognitive load literature. It has helped researchers 

produce an estimate of cognitive load. The current study uses the relative condition 

efficiency metric described by Paas and van Merriënboer (1993), but also intends to 

implement a similar measure, performance efficiency (See Equation 6 or 7). 
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Rationale 

In short, there are two broad instructional strategies compared in this dissertation. 

Like Tuovinen and Sweller (1999), this dissertation compares Bruner’s two modes of 

instruction, animated worked examples (the expository mode) with discovery learning 

(the hypothetical mode). However, the literature review has revealed four main areas of 

inquiry which should also be considered in this study. 

The first area of inquiry revolves around Tuovinen and Sweller’s closing remarks; 

they had some reservations about worked examples and retention (Tuovinen & Sweller, 

1999). They asked future researchers to consider retention, and implied that retention 

may not be as durable with worked examples, as it is with discovery problem solving. 

Given these reservations, there may be a case for Palmiter’s animation deficit, and it 

could be a legitimate concern given animated demonstrations. So, in terms of the 

animated demonstration literature, would those who studied animated demonstrations 

have a performance decrement a week later (Palmiter’s animation deficit)? 

Secondly, the literature review found the worked-example effect was apparent by 

those who had studied solved problems (Cooper & Sweller, 1987; Sweller & Cooper, 

1985; Sweller & Chandler, 1991). Lewis (2005) proposed animated demonstrations are a 

similar presentation form. Therefore will learners using this form of instruction also have 

and an increased performance over their problem solving peers (the worked-example 

effect)?  

Third, Paas and van Merriënboer (1994) found that learners, who studied varied-

context worked examples, outperformed those that solved problems, and described this as 

the variability effect (Paas & van Merriënboer, 1994). Given the claims of Lewis (2005) 
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that animated demonstrations act as worked examples, will the variability effect also be 

apparent given animated demonstrations?  

Finally, a fourth area of inquiry is the methodologies used by cognitive load 

researchers. It seems some members of the cognitive load community have questioned 

the relationship of mental effort ratings and cognitive load (Brünken et al., 2003). 

Brünken et al. (2003) also compared cognitive load measures on two dimensions, 

objectivity and causal relation. Since no one measure was found to be advantageous, it 

was decided that the best way to understand this relationship was to triangulate multiple 

measures, because it is currently necessary to use a combination of both objective and 

subjective measures. To help qualify the subjective nature of mental effort ratings, a new 

measure, performance efficiency was developed. Therefore this study intends to test 

performance efficiency, in order to help qualify the results of cognitive load research. 

Given the methodologies of cognitive load research, it will be necessary to 

measure several variables: perceived mental effort, performance time and accuracy. 

These variables may be addressed on their own, or in combination via constructs like 

relative condition efficiency or performance efficiency.  

Therefore in order to address each of the areas of inquiry proposed above, the 

following research questions are presented: 

Question 1: Is there a significant difference among the instructional strategies, 

relative to performance time? 

Question 2: Is there a significant difference among the instructional strategies, 

relative to accuracy? 
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Question 3: Is there a significant difference among the instructional strategies, 

relative to “relative condition efficiency?” 

Question 4: Is there a significant difference among the instructional strategies, 

relative to “performance efficiency?” 

Operational Definitions 

Several of the dependent variables in the above research questions are self 

evident, but Palmiter’s animation deficit and the cognitive load learning effects must be 

described as a combination of these variables. Therefore this section provides explicit 

operational definitions. 

Palmiter’s Animation Deficit 

Lipps, Trafton and Gray (1998) described Palmiter’s animation deficit as “poorer 

retention despite faster learning following animation training” (Lipps et al., 1998, p. 1). 

In terms of this study and its dependent variables, an operational definition of Palmiter’s 

animation deficit, would be a significant increase in performance time with a 

simultaneous decrease in accuracy, in a delayed performance, one week after initial 

instruction (given animated demonstrations as an instructional strategy). 

The Worked-example Effect 

The worked-example effect is often defined as an improvement in learner 

performance given worked examples. Sweller and Cooper’s early studies were the first to 

describe this effect (Cooper & Sweller, 1987; Sweller & Cooper, 1985). They described 

this effect by saying a “decreased solution time was accompanied by a decrease in the 

number of mathematical errors” (Sweller & Cooper, 1985, p.59). The dependent 
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variables here are solution time and “a reduction of errors”, or in terms of this study and 

the animated demonstration literature, performance time and accuracy (Palmiter, 1991).  

Therefore, for the purposes of this dissertation, the worked-example effect will be 

operationally defined as a significant reduction in performance time and a simultaneous 

significant increase in accuracy. 

The Variability Effect 

Paas and van Merriënboer (1994) found the variability effect. They had studied 

the learner performance of those who had studied “varied context” worked examples. 

These researchers had developed relative condition efficiency (RCE) and compared the 

learner performance of learners under a variety of conditions. This dissertation will also 

use RCE to consider the variability effect.  

RCE includes a performance variable and a perceived mental effort rating. In the 

current study, performance is represented by accuracy. Thus to measure RCE, it was 

necessary to measure perceived mental effort. In keeping with Paas and van Merriënboer 

(1994), this study will define the variability effect, as a significant increase in relative 

condition efficiency, for a high variability instructional condition relative to other 

conditions (as described in Equation 8). 

Relative condition efficiency 
2

rtMentalEffoZAccuracyZ −
=   (8) 

This leads us to the methodology of the dissertation (Chapter three).
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CHAPTER THREE - METHODS 

This chapter outlines the methodology employed during the study. The chapter is 

broken into several sections to clarify concepts, methods, and instruments. It begins with 

a section which identifies the participants. This is followed by sections discussing the 

research design, the materials, dependent variables, constructs, analysis, reliability, and 

finally the chapter concludes with a section devoted to the pilot study. 

Participants 

The participants of this study were pre-service teachers. These learners were 

undergraduates enrolled in an introductory instructional technology course at a large 

southeastern university. This audience was chosen because it was expected that they 

would be primarily novices with the procedures presented, although some variability was 

expected in the population. 

An a priori power analysis for a four group MANOVA produced a sample size of 

n=115 participants. This number of participants is necessary to arrive at a power of 0.80, 

with a small effect size η2= 0.125, given α =0.05 (α=0.05 is used throughout this study, 

unless stated otherwise) (Stevens, 2002). 

Research Design 

This section provides a brief overview of the design of the study; each of these 

ideas is described in detail in later sections. The literature review suggested contrasting 

instructional strategies. Since the study compares the performance of learners in four 
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independent groups, this is known as a “between groups” design (Gall, Borg, & Gall, 

1996; Mook, 2001).Therefore the design of this study was experimental because it 

randomly assigned learners to one of four instructional conditions.  

Worked-example based instruction typically involves both an example and some 

level of practice (Sweller, 2006). So combinations of these strategies were analyzed, in 

order to study animated demonstrations. Since Palmiter felt learners who used animated 

demonstrations mimicked the instruction (Palmiter, 1991), two conditions were 

compared, one using an identical problem (the mimic condition) and one using a different 

problem than that demonstrated. Also, a demonstration-only group (demo) was included 

to contrast learning under this limited set of circumstances. Finally, since one of the goals 

of this dissertation was to contrast discovery practice with animated demonstration, as in 

the Tuovinen and Sweller study (Tuovinen & Sweller, 1999), a fourth practice only 

condition was included. Consequently, this study compared a total of four instructional 

conditions: 

1. “demo” - animated demonstration only; 

2. “demo+practice” - an animated demonstration, plus practice with the 

demonstrated task; 

3. “demo2+practice” - a second animated demonstration, plus practice with a 

task (different from that demonstrated); 

4. “practice” – discovery-based, practice  

(each instructional conditions is discussed in detail, later in this chapter). 

Data analysis required a series of univariate and multivariate statistical 

procedures. Two separate multivariate analysis of variance (MANOVA) tests were 
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conducted, because there were multiple outcome variables (performance time and 

accuracy) over two sessions. In addition, two efficiency constructs (relative condition 

efficiency and performance efficiency) were analyzed.  

Performance data were gathered during two separate phases, to test the retention 

of procedural learning and a potential animation deficit (Lipps et al., 1998; Palmiter, 

1991). Therefore, learner retention was assessed during a more immediate performance, 

during an acquisition phase (week 1), and then longer-term retention was assessed a 

week later, during the retention phase (week 2). The purpose of the acquisition phase was 

to introduce learners to the subject matter, and contrast immediate performance. The 

purpose of the retention phase was to contrast learner performance given the instructional 

conditions, one week after initial instruction. 

Materials 

This section of the dissertation describes the materials and overall sequence of 

events during the study. Subsequent sections describe each instrument in detail. Learners 

interacted with all instruments and instructional materials via IBM compatible computers, 

using Windows XP (service pack 2) and Internet Explorer 6.0. These computers had 

2GHz AMD (Advanced Micro Devices) Athlon 2400 processors, with 480 MB of RAM. 

Computers were arranged in a classroom setting. Before learners entered the 

environment, TechSmith Morae Recorder (screen capture software) was executed and 

allowed to record individual learners once they interacted with the computer. In addition, 

a completed project was projected on a screen at the front of the classroom. 



 102

A Synopsis of the Acquisition Phase 

This section briefly outlines the sequence of events and instruments used during 

the acquisition phase (See Figure 15 for a flowchart). The recording process, instruments, 

instructional conditions, and variables are all discussed in later sections of the chapter. 

Before learners entered the learning environment computers were prepared, specifically 

Morae Recorder was allowed to record learner interaction on all computers. 

The acquisition phase began when all learners were presented with an initial web-

based survey, survey 1. Following this demographic survey, they were presented with a 

brief overview, which introduced the subject matter. After viewing the overview, a 

JavaScript randomly assigned learners to one of four instructional conditions. Learners in 

the demo+practice, demo2+ practice, and practice conditions were asked to assemble the 

Mr. Potato head document (See Figure 14). Rather than interacting with this document, 

learners from the demo condition were asked to continue. Finally, the acquisition phase 

concluded by asking all learners to complete a post treatment survey Week 1 survey #2. 

Figure 14. Week one - the “Mr. Potato head” problem 
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Figure 15. The materials and processes used during the acquisition phase 

 

Facilitator turns on Morae recorder 

Learners enter test environment 

Facilitator reads a carefully prepared script 

Learners open and answer “survey 1” 

Learners watch overview 

Learners are randomly assigned into a group 

Learner opens and attempts Mr. Potato head document 

Learner leaves test environment 

Facilitator turns off Morae Recorder 

Facilitator saves learner file to flash drive 

Condition 1 
Learner watches 

demo 

Condition 3 
Learner watches 

demo2 

Condition 2 
Learner watches 

demo  

Condition 4 
Learner instructed 

to continue 

Learner opens and completes Week 1 survey #2 
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A Synopsis of the Retention Phase 

During week two, the retention phase, all learners were presented with the 

different performance problem (the picnic problem) (See Figure 16). Once they had 

attempted the performance problem, a post-performance survey was administered. The 

next few sections describe each of the instruments. 

Figure 16. Retention phase - the Picnic problem 

Pretreatment Survey (survey 1) 

It was important to gather various forms of demographic data. Therefore a 

pretreatment survey (Survey 1) (See Figure 17) was developed. Survey 1 was a web-

based survey developed with Microsoft FrontPage 2003 (Microsoft, 2003a). Once 

learners filled out the survey, the act of survey submission automatically forwarded the 

learner to the introductory overview. 
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Figure 17. Pretreatment Survey (Survey 1) 
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Certainly Survey 1 allowed for the collection of basic demographic data, but in 

addition, it was used to screen second language learners. Several authors who have 

studied the cognitive load of second language learners (Grace, 1998; Krashen, 1982; 

Plass & Jones, 2005), proposed these learners may be under an additional load, because 

of the need to translate instruction into their native language. For optimal learning these 

authors suggest instruction should be translated into their native language. Since the 

language of all instruction was in English, those who answered no, to the fourth question 

“Is English your first language?” were allowed to participate, but their results were 

removed from the dataset. 

Introductory Overview 

Paas (1992) and Tuovinen and Sweller (1999) provided their learners with an 

introductory overview. This gave learners some context for the instructional conditions. 

The introductory overview used in this study was a short narrated web-based presentation 

(~ 2 minutes) developed with TechSmith Camtasia 4.0 (TechSmith, 2006). It provided 

learners with an introduction to graphic design and digital image editing. In addition to 

describing the field of graphic design, this narrated frame-based (non-animated) 

presentation, presented all learners with screenshots of Adobe Photoshop Elements 2.0 

(Adobe Systems, 2002). 

Once the overview concluded, a JavaScript randomly divided learners into four 

instructional conditions, by forwarding them to a new web page. The practice condition 

web page suggested learners raise their hand to get assistance from the facilitator (who 

opened the Mr. Potato head document for them). The facilitator also opened the Mr. 
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Potato head document for members of groups 2 and 3, once they had completed the 

remaining components of their instructional conditions. 

Instructional Conditions 

The four experimental groups make use of two animated demonstrations and 

practice (See Figure 18). The two animated demonstrations were developed with 

Techsmith Camtasia Studio 4.0 (Techsmith, 2006). The four instructional conditions 

were: 

• Demo (Condition 1) – The instructional condition is a brief animated 

demonstration that shows the learner how to put together a Mr. Potato head 

document with Adobe Photoshop Elements. This condition only demonstrates a 

series of Photoshop procedures. Learners in this condition did not practice the 

demonstrated procedures. 

• Demo + practice (Condition 2) – Learners in this condition viewed the same 

demonstration as those in condition 1, but also used Adobe Photoshop Elements 

2.0, to put together the Mr. Potato head problem (the problem demonstrated). 

• Demo 2+ practice (Condition 3) - Learners in this condition watch a different 

animated demonstration, which demonstrates the same underlying skills as demo 

1, but puts together a photo collage rather than Mr. Potato head. After watching 

this collage demonstration, learners were asked to work with the Mr. Potato head 

problem. 

• Practice (Condition 4) – Learners in this condition received no additional 

instruction other than the overview, but were asked to put together the Mr. Potato 

head problem. 
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Overview 

 
Condition one 
“demo only” 

Condition two 
“demo + practice” 

Condition three 
“demo 2 + practice” 

Condition four 
“practice only” 

Animated demonstration #1 Animated demonstration #1 Animated demonstration #2 No animated demonstration  

No practice Practice with 
Mr. Potato head 

Practice with  
Mr. Potato head 

Practice with  
Mr. Potato head 

Figure 18. Instructional conditions 

 

The initial problem scenario, the Mr. Potato head document, is an assembly task 

that requires assembly within Adobe Photoshop Elements 2.0 (Adobe Systems, 2002). 

The performance objectives of the Mr. Potato head learning activity required learners to 

select, move, rotate, and flip Photoshop layers to produce the Mr. Potato head product. 
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Figure 19. Post-treatment survey (Week 1 survey #2) 

Once learners had finished the post-treatment survey they were thanked for their 

participation, asked not to discuss their instruction with others, and finally not to use 

Adobe Photoshop Elements 2.0 before the next session. 

The Retention Phase (the Picnic Problem) 

One of the goals of this project was to understand how well learners would 

remember and be able to apply what they had learned from animated demonstrations. So 

one week after initial instruction (week two) learners put together another Adobe 
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Photoshop Elements document that required learners to recall what they had learned one 

week prior.  

The picnic problem (See Figure 16) is a construction task that requires learners to 

put together two stick figures within a scene. This picnic problem is somewhat more 

complicated than the week one practice problem (the Mr. Potato head document) because 

it is composed of multiple disassembled figures within a scene, along with several other 

objects (a picnic basket, picnic table, an umbrella, and birds) but it still only used the 

skills acquired in the Mr. Potato head problem. 

The picnic problem requires the same skills as the Mr. Potato head problem, but 

their newly learned skills must be used to reconstruct a more complex graphic. To 

complete the picnic problem learners only needed to select, move, rotate, and flip 

Photoshop layers. 

Post-Performance Survey (week 2 survey) 

It was also necessary to obtain mental effort ratings during the retention phase 

(week two) to provide evidence for research question three. So following their 

performance with the picnic problem, learners filled out the “week 2 survey” (See Figure 

20). This survey was similar to the post-treatment survey because it also included a 

mental effort question. This question is identical to the one used in the Paas and van 

Merriënboer (1993) study, and the post treatment survey used during the previous week 

(See Figure 19). 

The “week 2 survey” had a question aimed at determining if the student had used 

Adobe Photoshop Elements (or Adobe Photoshop) in the week since the initial 
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instruction. Results from the learners who answered yes (had used Adobe Photoshop 

Elements between sessions) were removed from the dataset. 

 

Figure 20. Week 2 survey 

The Dependent Variables and Constructs 

Dependent Variables 

Gagné (1964) describes two general categories of dependent variables which are 

often associated with problem-solving studies. He suggests most researchers are 

concerned with (1) “the rate of attainment of some criterion performance” and (2) “the 

degree of correctness of this performance” (Gagné, 1964, p.295).  

Gagné’s “rate of attainment” is easily measured as performance time in seconds. 

“Performance time” was recorded and measured with TechSmith Morae 1.01 
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(TechSmith, 2004). Recording and measurement procedures are described in later 

sections. 

Gagné’s second category, “the degree of correctness” is not as easily defined. 

Gagné (1964) mentions single problem solutions are usually measured as either pass or 

fail. In other words, either the learner correctly solves the problem (attains the problem 

goal) or not. While problem completion is an important part of any problem solving 

study, this pass/fail measurement oversimplifies the learner’s attempt during complex 

cognitive tasks. Gagné mentions one may score a learner’s performance as “partially 

correct” (Gagné, 1964, p.299) in which case, a partial solution suggests some learning 

has occurred. This dependent variable will be described as accuracy in keeping with 

Palmiter’s (1991) nomenclature. 

Even though Gagné is very well respected in the instructional design community, 

perhaps it would be prudent to consult the cognitive load literature too. As it turns out 

Cognitive load theorists are in complete agreement with Gagné and have also found these 

variables important. Sweller et al (1998) describe three major categories of mental effort 

measurement techniques (subjective techniques, physiological techniques, and task- & 

performance-based techniques). As they discuss performance based techniques they 

describe the variables of the current study when they say: 

These techniques use objective task characteristics (e.g., number of elements that 

need to be considered such as the number of if-then conditions in a propositional 

reasoning task) and performance levels (e.g., differential learning times, errors) to 

obtain information on mental effort. (Sweller, van Merriënboer, & Paas, 1998, p. 

267). 
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Sweller’s variable differential learning times and errors, are comparable to 

Gagné’s dependent variables of “rate of attainment” and “the degree of correctness.” As 

stated above, in this study these dependent variables will be referred to as performance 

time and accuracy, and are the object of research questions one and two.  

As discussed earlier, both of questions one and two will be analyzed with a 

MANOVA because there are multiple outcome variables that differ between groups. 

Detailed measurement procedures for these variables are described in later sections. 

Relative Condition Efficiency 

The reader may recall from the literature review that relative condition efficiency 

(RCE) is a construct which was described by Paas and van Merriënboer (1993). Relative 

condition efficiency combines performance scores and measures mental effort gathered 

during the test phase (See Table 5 and Equation 9). 

 

 Relative condition efficiency = 
2

|| rtMentalEffoZePerformancZ −
  (9) 

 

Table 5 

Relative condition efficiency (RCE) 

 Learning 
phase 

Test 
phase 

Performance score  X 
Mental effort rating  X 
Note. Adapted from “A Multidimensional Approach to the Mental Efficiency of Instructional Conditions,” 
by F. Paas, 2007, retrieved June 5, 2007 from 
http://www.ou.nl/Docs/Expertise/OTEC/Projecten/onderzoeksvoorstellen%20PDF/Paasproject34%5B1%5
D.pdf 
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The relative condition efficiency formula has recently been revised to remove the 

absolute value symbols (Paas, Tuovinen, Tabbers, & van Gerven, 2003). 

 Relative condition efficiency = 
2

rtMentalEffoZePerformancZ −
  (10) 

 

Table 6 is a worked example of a relative condition efficiency problem. In this 

example two instructional conditions are being compared (Conditions 1 & 2). To 

compare conditions, researchers first gather their raw data, in this case test scores. Each 

individual test score is standardized, that is it is converted to a z-score. 

Next, a researcher must consider the group’s mental effort ratings (answers to 

survey questions). Each individual’s mental effort rating is then standardized. A group 

average Z-score is then calculated for each condition. This average Z-score is then used 

in the relative condition efficiency formula (See Table 6). 

The E score, Relative condition efficiency is calculated by adding together the 

group mean test score to the group mean mental effort score. The E score for that group is 

subsequently plotted on a graph, with the group mean mental effort score on the X-axis 

and the group mean performance score on the Y-axis (See Figure 21).  

Recall that E is the perpendicular distance from the group mean score, to the E=0 

line (note right angles are shown in blue). Finally group Z-scores are compared in an 

ANOVA. 
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Table 6 

RCE Example 

Condition 1 Test score Z-Score Mental effort Z-Score 

Student A 70 0.36 2.3 -1.25 
Student B 80 1.30 3.4 -0.22 
Student C 75 0.81 2.9 -0.68 
Average  
Z-score  0.82  - 0.72 

Plot Values: Performance =0.82 and Mental Effort =-0.72 
Condition 2     
Student D 64 -0.18 4.3 0.63 
Student E 52 -1.26 3.6 -0.02 
Student F 55 -0.99 5.3 1.5 
Average  
Z-score  - 0.81  0.70 

Plot Values: Performance =-0.81 and Mental Effort =0.70 
Grand Mean 66  3.63  
Std dev 11.08  1.06  

       Condition 1    Condition 2 

 E 09.1
2

72.082.0
=

−−
=       E 07.1

2
70.081.0

−=
−−

=  

Note: Adapted from Efficiency in learning: evidence-based guidelines to manage cognitive load, by R.C. 
Clark, F. Nguyen, and J. Sweller, 2006a, San Francisco: Pfeiffer. p 335 

 
                                                    Figure 21. RCE example graph 

Note: Adapted from Efficiency in learning: evidence-based guidelines to manage cognitive load, by R.C. 
Clark, F. Nguyen, and J. Sweller, 2006a, San Francisco: Pfeiffer. p 335 



 116

Performance Efficiency (PE) 

“Performance efficiency” (See Equations 9 & 10) is a slightly modified version of 

the relative condition efficiency metric shown above, but rather than using a subjective 

mental effort rating, this measure uses performance time. This altered construct only 

relies on objective measures. Performance efficiency in this study is: 

 Performance efficiency = 
2

eTimePerformancZAccuracyZ −
  (11) 

While this dissertation used a single performance problem, and the performance 

score was the accuracy score, this technique may be generalized to other studies, to use 

other performance scores (e.g., the total number of problems correct) as in the Paas and 

van Merriënboer (1993) study. A generalized formula for performance efficiency is: 

 Performance efficiency = 
2

eTimePerformancZePerformancZ −
  (12) 

Detailed procedures for the subcomponents of this construct are described in the 

data analysis section. 

Procedure 

This section outlines the data collection procedures. In particular, it discusses 

preparation of the learning environment, the acquisition and retention phases and 

concludes with a brief discussion of the software recording procedures. 

Preparation of the Learning Environment 

A facilitator worked with university technical support, to ensure several programs 

were installed on the computers used during this study. This study required the following 

software to be installed or available on each learner’s station: a web browser (in this case 
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Internet Explorer 6.0) (Microsoft, 1995-2004), the Adobe Flash player (version 7.0) 

(Adobe, 1996-2007), Adobe Photoshop Elements 2.0 (Adobe Systems, 1990-2002), and 

TechSmith Morae Recorder (Techsmith, 2004). 

Prior to data collection, the facilitator prepared the environment. To do so, the 

facilitator first confirmed that all necessary software had been installed. Next, a folder 

containing several items was placed on the desktops of all computers. This folder 

contained the Photoshop document for that session and .url files (desktop short-cuts to 

survey 1 and the day’s final survey). Following this, Photoshop was launched and pallet 

locations were reset. A set of earphones was plugged into each system and the volume 

levels were checked on all computers. A labeled note card was placed at each station. 

These note cards were labeled with the date and computer number. Finally, just before 

learners entered the room the facilitator went to each computer station to start Morae 

Recorder (the recording software). 

Software Recording Procedures 

TechSmith Morae, a usability program, was used as the primary tool for data 

collection (TechSmith, 2004). This usability software is composed of two components, 

Morae Recorder and Morae Manager. 

Morae Recorder acts like a video camera to record a learner’s interaction with a 

computer, and produces a proprietary movie file. This coded movie file is a visual record 

of a learner’s onscreen actions, but, in addition, Morae Recorder encodes a database of all 

user actions (mouse clicks, keyboard entries, & window events) into the file. This 

software was installed on lab computers, and turned on before a learners sat down to 

interact with the computer. Morae was hidden from the learner, making it a non-reactive 
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measure (Campbell, 1957), allowing for the observation of learner behavior, while not 

being intrusive, or changing the nature of the behavior. 

Finally, the data provided by the software recording provided evidence for the 

research questions, and was gathered during two separate phases (the acquisition phase 

and retention phase). 

Acquisition Phase (Week One) 

Once learners enter the environment, it was explained that they were being asked 

to volunteer to participate in a research study. They were asked to sit at an appropriate 

computer (one with earphones). Only those stations with the required software had 

earphones plugged in. Participants were asked to move if they sat at an inappropriate 

station. Once learners were all seated, they were handed the Institutional research board 

(IRB) documentation and asked to read and sign it. In addition, learners were asked to 

print their name on the note card placed at their station. 

Once this paperwork was signed, learners were instructed to put their earphones 

on. These provided learners with an individualized learning experience (free from audio 

distractions). Participants wore earphones to insure that they did not hear instruction or 

audio feedback from other computers. 

Once the above conditions were met, the acquisition phase began. This began 

with a scripted introduction. This facilitator explained to the learners that: 

• they were taking part in a research study; 

• this study was conducted during two sessions (the acquisition and retention 

phases); 
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• at some point during the project they would be required to use the computer to 

work through a problem scenario; 

• they could not be helped, that they would have to figure out the problem on their 

own; 

• and finally that all on-screen behavior was being recorded. 

Next all learners were told to open a folder on the desktop of their computers and 

to double-click on the “start” icon, a short cut which led them to survey 1. Once learners 

answered all questions and submitted the survey, they were forwarded to the introductory 

overview. A JavaScript randomly assigned each learner to an instructional condition 

(which may have included an initial assessment, the Mr. Potato head document). After 

taking part in the instructional condition, all learners concluded activities by completing 

the post-treatment survey. As learners left the room they were thanked for their 

participation. 

Once all learners had left, the facilitator went to each computer station to save the 

recordings for later analysis. These recordings were saved according to the computer 

number and section number [e.g. “001-17.rdg” for section 001 station 17 — .rdg is the 

Morae, 3-letter file extension]. In addition, it was confirmed that the note cards 

information at each computer, matched the recording file name. Finally, it was important 

to ensure all week one files were deleted. 

Retention Phase (Week Two) 

The retention phase was conducted one week after initial instruction. Additional 

data concerning the dependent variables were collected during this delayed assessment. 

The learning environment was prepared in a similar manner, as during the previous week, 
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however, a week two folder was distributed. This folder included the picnic problem and 

a desktop short-cut to the post-performance survey (week 2 survey). In addition, Adobe 

Photoshop Elements pallets were reset, and Morae Recorder was also turned on before 

learners entered the test environment. Finally learners were let into the environment. 

During this second meeting with learners, it was reiterated that they were 

participating in a research project, that they were being recorded, and should complete 

the picnic problem and post-performance survey before leaving. Once the survey was 

completed, they were asked to leave and thanked for their participation. Recordings were 

saved as files, in a similar manner as during the acquisition phase, but kept in a separate 

folder (labeled week two). 

Analysis 

This section is structured around the four research questions. Each question is first 

stated, then introduced in terms of the variables measured, followed by a hypothesis, an 

expectation, and then finally the analysis procedures are explained. Because of the 

multivariate nature of questions one and two, these will be discussed together; whereas, 

questions three and four are discussed separately. 

Questions One & Two 

Question one: Is there a significant difference among the instructional strategies, 

relative to performance time? 

Question two: Is there a significant difference among the instructional strategies, 

relative to accuracy? 
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Measurement of Performance Time. 

Earlier in this chapter it was explained that TechSmith Morae (screen capture 

software) was installed on the learner’s computer station, and then allowed to record a 

learner’s interaction, with the computer. This software was also used to analyze this 

interaction to measure both performance time and accuracy. TechSmith Morae has a 

second component (Morae Manager) which allows a researcher to analyze the recorded 

movie files, and document learner interaction days or months later. 

Learner interaction was coded, by labeling actions with a series of markers (small 

flags on the video timeline). The performance time began when the learner first opened 

the document and was coded with a researcher defined marker (in point). The 

performance ended when a learner completed the greatest number of subtasks required to 

solve the problem (out point). This produces what Morae Manager describes as a 

segment. The duration of a segment is the performance time. Morae displays the duration 

of these segments in seconds. This duration was logged in an Excel spreadsheet for later 

analysis. 

The in point was operationally defined as the point on the timeline when the 

learner first had the ability to move the cursor (when the cursor changes from an 

hourglass to an arrow). This position on the timeline was labeled as the “in point” — the 

beginning of the performance (and performance time). 

The end of the performance, the out point is a bit more complicated. To find an 

out point, a researcher must watch the video. Only the time toward correct assembly was 

counted toward an individual performance time. Therefore, the out point — the end of the 

performance time, was operationally defined as the point at which the greatest number of 
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pieces within the problem were in proper alignment. In practice, accuracy and 

performance time were measured simultaneously. 

Measurement of Accuracy. 

A researcher viewed the recorded video files of each learner’s on-screen action, 

and scored learner interaction using a rubric specifically developed for the problem. Thus 

two separate accuracy rubrics were developed for use in the study, one for accuracy given 

the Mr. Potato head problem during the acquisition phase (See Table 7), and a separate 

rubric for the picnic problem during the retention phase (See Table 8). Both rubrics were 

based on the problem solving operators required to solve the problem. 

Table 7 

The Mr. Potato head accuracy rubric 

flip layer rotate move item 
*** *** ***  Right arm 
*** *** ***  left shoe 
*** ***   nose 
*** *** ***  body 
***  ***  teeth 
***  ***  hat 
*** *** ***  left arm 
*** *** ***  right ear 
*** *** ***  left ear 

 *** ***  right shoe 
***    moustache 
***  ***  eyes 

0 0 0 0 0 
 

These rubrics are examples of behavior analysis data forms. Behavioral analysis 

data forms are generally organized into a tabular format (Hinde, 1973; Lehner, 1996). For 

ease of use Microsoft Excel 2003 spreadsheets (Microsoft, 2003b) were developed for 

each learner performance, and stored separately as a file. 
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Three instructional conditions (the demo+practice, demo2+practice, and practice 

groups) reassembled the Mr. Potato head problem during the acquisition phase. To 

document their performance, accuracy was measured with the rubric shown in table 7. 

During week two, the retention phase, all learners reassembled the picnic problem. This 

performance was also documented with the rubric shown in table 8.  

The rubrics used during this study were based on the same underlying point 

structure. Each learner was granted 1 point for correctly moving a layer, and 1 point for 

correctly rotating a layer within the scene. In addition, since the main objective of the 

instructional conditions was for learners to learn how to manipulate Photoshop layers, 2 

points were granted for raising or lowering a layer correctly (relative to other layers), and 

an additional 2 points were granted for flipping a layer horizontally. The cells within each 

rubric with “***”, received no points. Because each rubric was a spreadsheet columns 

were totaled and them summed with an excel formula to produce a final accuracy score. 

To receive credit for an object, it must be visible, in the correct location, correct 

rotation, and correct layer. However partial credit was given. For example, if the learner 

had only moved the table to the correct location within the picnic problem, they were 

given one point for correct piece placement, but they would receive no credit for rotation, 

unless the table was rotated correctly. If the table was generally in the correct location 

credit was given. However, researcher judgment was involved and this was not an exact 

science, as all learners were not held to a strict centimeter by centimeter standard. So for 

instance, given picnic table placement, learners were given credit if they had placed the 

table on the left side of the screen in the lower quadrant of the screen. They were also 

given credit if they rotated the table correctly. 
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Table 8 

Picnic problem accuracy rubric 

flip layer rotate move item 
 ***   umbrella 
 ***   tshirt 

*** ***   head 
*** *** ***  right leg 
*** ***   head 2 
*** ***   purple shirt 
***    hat 
*** *** ***  s left leg 
*** *** ***  bent right leg 
*** *** ***  left leg 
***    green shorts 
*** *** ***  arm 2 
***    pink shorts 
*** *** ***  left arm 
*** ***   body 
*** ***   picnic basket 
*** *** ***  arm 
*** ***   right arm 
*** ***   torso 
*** ***   table 
*** ***   bird3 
*** *** ***  bird2 
*** ***   bird1 

0 0 0 0 0 
 

In table 8, the learner was given credit for the umbrella if they moved the 

umbrella in to the correct location and rotated it relative to the picnic table. Finally, 

learners were given credit if they flip the umbrella so that the pattern was like that of the 

model.  

Many learners continued to interact with the software interface, long after they 

had “most correctly assembled the scene,” usually in an attempt to complete subtasks that 

they did not know how to complete. Since a video file was used to document learner 

interaction, it was possible to detect if a learner disassembled pieces of the scene before 

the end of the video. Thus, if a learner correctly assembled the scene, and then moved 
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pieces, the point on the timeline, when they had most correctly assembled the problem 

was deemed to be the end of the performance. 

Question One & Two: Hypotheses 
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Ho = There is not a significant difference in performance given the instructional 

strategy. 
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Ha = There is a significant difference in performance given different instructional 

strategies. 

Questions One & Two: Expectation. 

Sweller and Cooper (1985) found that learners who studied worked examples 

took significantly less time to solve problems (performance time) with fewer errors 

(accuracy). This “worked-example effect” is the main precedence for the current project. 

While Tarmizi and Sweller (1988) reported that there are some circumstances when 

worked example-based instruction is not as effective as solving problems, it was assumed 

that this was not the case given the current project. 

Given Sweller and Cooper’s initial findings (Sweller & Cooper, 1985), it was 

expected that learners who studied animated demonstrations [animated worked examples, 

according to Lewis (2005)] would take less time to solve problems (performance time) 
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with fewer errors (accuracy), than learners who learned through discovery problem 

solving. 

However, since this dissertation studied two separate performances, the Mr. 

Potato head problem, during the acquisition phase, and the Picnic problem, during the 

retention phase, the expectations for these outcomes could differ. 

Given Sweller and Cooper’s results (Sweller & Cooper, 1985), it was expected 

that during both the initial assessment and the delayed assessment, that learners in the 

animated demonstration conditions would out perform their peers in the practice 

condition. Given the multiple outcome variables involved in this assertion, research 

questions one and two were answered with a MANOVA (See Equations 13 & 14). The 

results of all research questions are discussed in detail, in Chapter four. 

Question Three 

Question 3: Is there a significant difference among the instructional strategies, 

relative to “relative condition efficiency?” 

Relative Condition Efficiency 

Paas and van Merriënboer (1993) described the original efficiency metric. 

“Relative condition efficiency” is a metric for measuring the relative efficiency of 

instructional conditions. This construct is based upon a combination of performance 

scores (accuracy in the current study) and mental effort ratings (See Table 9). 

Learners produced mental effort ratings by filling out a survey question (a 9-point 

mental effort rating) following their performance, with the picnic problem. This survey 

question is identical to the one use in the Paas and van Merriënboer (1993) study. Paas 
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and van Merriënboer used test scores from a statistics test (originally reported in Paas, 

1992) with the percentage correct as their “raw score” (p.429).  

Table 9 

Relative condition efficiency 

 Learning 
phase 

Test 
phase 

Performance score  X 
Mental effort rating  X 
Note. Adapted from “A Multidimensional Approach to the Mental Efficiency of Instructional Conditions,” 
by F. Paas, 2007, retrieved June 5, 2007 from 
http://www.ou.nl/Docs/Expertise/OTEC/Projecten/onderzoeksvoorstellen%20PDF/Paasproject34%5B1%5
D.pdf 

 

Since this dissertation used two performance problems (one in each phase), two 

measures of relative efficiency were calculated (RCE1 & RCE2). In each case, the raw 

performance score for that phase was obtained from an accuracy rubric. Mental effort 

ratings and accuracy scores were standardized, to produce performance and mental effort 

z-scores for each individual. Once a list of Z-scores was developed, group E scores were 

computed from the relative efficiency formula (See Equation 15). Next, each group score 

was graphed. Finally, an ANOVA of the Z-scores was used to determine if they were 

significantly different. 

Relative condition efficiency
 2

rtMentalEffoZePerformancZ −
=

 
 (15) 

Question Three: Hypotheses. 

   Ho = μ1RCE = μ2RCE = μ3RCE = μ4RCE     (16) 

Ho = There is not a significant difference in relative condition efficiency (RCE) 

given different instructional strategies. 
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   Ha =μ1RCE ≠ μ2RCE ≠ μ3RCE ≠ μ4RCE    (17) 

Ha = There is a significant difference in relative condition efficiency (RCE) given 

different instructional strategies. 

Question Three: Expectation. 

Paas and van Merriënboer (1993) studied a similar set of instructional conditions 

and found that learners, who studied worked examples, significantly out-performed those 

who solved problems. Given this precedence with relative condition efficiency, it was 

expected that those learners who studied animated demonstrations would out-perform 

those who solved problems. 

Question Four 

Question 4: Is there a significant difference among the instructional strategies, 

relative to “performance efficiency?” 

Performance Efficiency 

Performance efficiency is a new construct which was developed during this study. 

This metric is a variant of the methodology first proposed by Paas and van Merriënboer 

(1993) in that it uses z-scores, and graphs its results in much the same manner, but it only 

relies on objective measures. Like relative condition efficiency, one begins by 

standardizing performance time and performance scores (accuracy in this study). Like 

relative condition efficiency, performance efficiency scores can then be analyzed with the 

following formula: 

 Performance Efficiency
2

eTimePerformancZePerformancZ −
=    (18) 
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Next this metric is graphed as in the Paas and van Merriënboer (1993) article. In 

addition, a one-way ANOVA is used to compare groups, and may be followed by post 

hoc comparisons to determine significant differences. 

Question Four: Hypotheses. 

   Ho = μ1PE = μ2PE = μ3PE = μ4PE    (19) 

Ho = There is not a significant difference in performance efficiency given the 

type of instruction. 

   Ha =μ1PE ≠ μ2PE ≠ μ3PE ≠ μ4PE    (20) 

Ha = There is a significant difference in performance efficiency given different 

instructional conditions. 

Question Four: Expectation. 

Because this is the first use of this metric, there is no precedence for this type of 

study. However, Tuovinen and Paas (2004) calculated a similar metric, their 3D 

efficiency metric, and found no significant differences between learners who studied 

worked examples, versus learners who learned through discovery-practice. Given this 

precedence, it is expected that there will be no significant differences in performance 

efficiency between the instructional conditions of the present study. 

Reliability 

Summer and Fall Participants 

Because the power analysis suggested a sample size of 115 participants, it was 

necessary to collect data across two semesters, given the size of the classes. 

Unfortunately several months passed between semesters and since learners were sampled 
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over the summer and fall semesters and from two different classrooms data from these 

groups may differ. Thus, it was necessary to see if these potential differences influenced 

the dataset. A MANOVA was used to see if these groups differed significantly with 

respect to performance time and accuracy. 

Inter-observer Reliability 

Observational data has its advantages and disadvantages. While it may be a more 

direct method of observing behavior, with less conceptual interference from tests or 

questionnaires, this type of data has its own issues, like coding errors and observer drift 

(Knupfer & McLellan, 1996; Talpin & Reid, 1973). So this study checked the reliability 

of the data by using inter-observer reliability estimates. 

Cohen (1960) developed a scale for observational agreement, and describes it as: 

    
e

e

π
ππ

−
−

=Κ
1

0
     (21) 

Kappa (K) has two subcomponents, π0 is the proportion of rater pairs exhibiting 

agreement, and πe is the proportion expected to exhibit agreement by chance alone 

(Cantor, 1996). Given the above one would expect a kappa K=1, if the raters were in 

perfect agreement. However, this is rarely the case, so agreement must be rated given a 

range of varying strengths of agreement. Please see table 10, a table describing the 

strength of agreement given Cohen’s Kappa based on table provided by Landis and Koch 

(1977). 

These estimates were made for a randomly selected group of participant data files 

(n=20). Finally, inter-observer reliability estimates were only conducted on measures of 

performance time and accuracy given the delayed assessment in the retention phase. 
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Table 10 

Strength of agreement 

Kappa Statistic Strength of agreement 
< 0.00 

0.00-0.20 
0.21-0.40 
0.41-0.60 
0.61-0.80 
0.81-1.00 

Poor 
Slight 
Fair 

Moderate 
Substantial 

Almost Perfect 
Note. Adapted from “The measurement of observer agreement for categorical data.” by J.R. Landis, and 
G.G. Koch, 1977, Biometrics, 33 (1), 159-174. 

 

Pilot Studies 

Fall 2006 

An initial pilot study was conducted in December 2006. The purpose of this study 

was to confirm that the data collection procedures were feasible. To accomplish this goal, 

TechSmith Morae Recorder (the recording software) was installed on a set of lab 

computers. Then during a single class meeting, recordings of learner interaction were 

performed while learners interacted with a nascent form of the Mr. Potato head 

document. 

Spring 2007 

Another pilot study was conducted during the spring of 2007. This pilot study was 

conducted over two consecutive weeks to test all procedures and revised versions of the 

instructional materials. The purpose of this pilot was to test the follow-up procedures 

over a two week period. 

During the spring pilot, 3x5 note cards were numbered and placed at each 

computer station. Once learners entered the test environment, they were asked to write 

their name on the note card to indicate their presence during week 1. During week 2, 
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these same cards were placed at the same computer stations, in order to track learners 

between sessions. It was found that note cards may be used to describe the context of 

each computer station, regardless of learner presence. So, for instance, if a learner was 

not present the following week, this was noted. 
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CHAPTER FOUR - RESULTS 

The purpose of this chapter is to present the results of the dissertation. The 

chapter considers data preparation, preparatory data analysis, reliability analysis, results 

of the research questions, and then concludes with the limitations of these results. 

Data Preparation 

Data were collected with a series of web-based surveys and recordings made with 

TechSmith Morae 1.01 (TechSmith, 2004). The data were logged within a set of Excel 

spreadsheets (Microsoft, 2003b). Some minor calculations were made within these 

spreadsheets, but for the most part, statistical calculations were made with SAS 9.1.3 

Service Pack 2 for Windows (SAS, 2002-2003). In addition, data were analyzed and 

represented graphically using bivariate plots prepared with a series of SAS macro 

programs (%MULTNORM) (SAS, 2007b), (ELLIPSES) (Friendly, 2007b), (OUTLIER) 

(Friendly, 2007c), (CQPLOT) (Friendly, 2007d). 

Sample Preparation 

As with any study, it was necessary to process the data before statistical analysis 

could be conducted. Appendix B describes the decision rules for sample preparation, but 

a summary is provided here. In short, even though a total of 215 students participated in 

this study, not all learners followed the instructions or completed both phases of the 

study. Participants were removed from the dataset because of various reasons: 25 did not 

return the second week and were lost due to attrition, 25 learners were removed because 
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they did not complete the surveys required by the study or did not follow instructions, 13 

used Adobe Photoshop Elements (or Adobe Photoshop) between sessions, 13 learners 

had technical difficulties, 9 were removed because they were second language learners 

(discussed in Chapter three), and finally 8 learners were removed because they used the 

Adobe Photoshop help system or “surfed” the web looking for help. This provided a 

sample size of n=122. As described in Chapter two, this sample size is sufficient to arrive 

at a power of 0.80, with a small effect size η2= 0.125, given α =0.05. 

Sample 

A sample size of n=122 learners followed the instructions, completed all surveys, 

and attempted the required performances. Table 11 describes this sample according to the 

demographic variables gathered with survey 1. 

Table 11 

Sample by instructional condition 

Group n Gender Level Age 
M  Female Male Fresh Soph Junior Senior 

demo 33 23 10 5 14 11 3 19.97 
demo+practice 29 23 6 4 12 12 1 20.48 
demo2+practice 36 29 7 1 19 15 1 21.78 

practice 24 18 6 4 15 4 1 19.75 
total 122 93 29 14 60 42 6  

 

Preparatory Data Analysis 

Fidell and Tabachnick (2003) describe preparatory data analysis as being 

“conducted before a main analysis to assess the fit between the data and the assumptions 

of that main analysis” (Fidell & Tabachnick, 2003, p. 115). As an important first step to 

any analysis, this section of the chapter assesses the fit of the dataset to the assumptions 
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of a multivariate analysis of variance (MANOVA). Specifically, it considers the fit of a 

pooled data set solution to the assumptions of a MANOVA. 

A Pooled-semester Solution for Data Analysis 

An a priori power analysis suggested a sample size of n = 115 participants, in 

order to detect a small effect size. A sample size of this magnitude required data to be 

collected across two semesters (the summer and fall semesters of 2007). Therefore it was 

important to question if this pooled dataset would affect statistical tests. To answer this 

question, an analysis was conducted to determine if a pooled-semester dataset was a 

viable solution for analysis. 

The reader may recall that the demo group did not assemble the week one 

problem (the Mr. Potato head problem). Therefore the week two performance (the picnic 

problem) was chosen to compare semester subgroups, because it was the only 

performance in which all participants were involved. Thus a MANOVA of dependent 

variables, week two performance time (PT2) and week two accuracy (AC2), was used to 

compare semester subgroups. 

A MANOVA makes several assumptions (assumptions of independence, 

normality and homoscedasticity) (Stevens, 2002; Tabachnick & Fidell, 2001). Stevens 

(2002), provides a general procedure for assessing each of these assumptions. The 

assumptions for this MANOVA are discussed in detail in Appendix B. In short, the 

independence assumption was met (Glass & Hopkins, 1984). The normality assumption 

was violated, since the %MULTNORM macro program revealed non-normality. This 

violation was primarily due to a series of multivariate outliers, so potential outliers were 

removed and transformations were implemented to test the “homoscedasticity” 
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assumption. Box’s M test (Box, 1954) was performed and X2 (3, N=88) =4.50, p=0.21, 

φ=0.23, therefore the variance-covariance matrices were not found to be significantly 

different, so there was no evidence that the homoscedasticity assumption was violated. 

Therefore a MANOVA was conducted. 

A MANOVA was used to compare the two semester subgroups (the summer and 

fall subgroups). The MANOVA indicated that there was not a significant difference 

between the two semester subsets, since Wilks’ Λ =0.95, F (2, 95) = 2.47, p = 0.09, 

η2=0.05.  

Given the MANOVA did not find significant differences between the two 

semester subgroups, the use of a pooled data set was found to be a viable solution for 

analysis. For a detailed account of this analysis, consider Appendix C, Table 12, and 

Figures 22. 

Table 12 

Comparison of summer and fall semesters 

 Summer semester  Fall semester  
n 
Transformed accuracy (TAC2) 
M 
SD 

28 
 

6.56 
0.24 

60 
 

6.53 
0.23 

Transformed performance time (TPT2) 
M 
SD 

 
31.54 
3.56 

 
33.54 
4.52 

 

Reliability Analysis 

An analysis of inter-observer agreement was performed to assess the consistency 

of the researcher’s assessments. A single researcher analyzed the data for this study. A 
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later analysis by the same researcher was used to judge the consistency of assessments. 

Performance time and accuracy measurements were compared given 20 learner data files 

from the week two performance. The 20 learner data files were chosen at random using a 

random number generator in Microsoft Excel (Microsoft, 2003b). Cohen’s κ was used to 

compare inter-observer agreement, and resulted in accuracy (AC2), κ = 0.29 (fair 

agreement) and performance time (PT2), κ = 0.47 (moderate agreement). 

 

 

Figure 22. Week two Z-by-Z semester comparison 
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Results 

Next the chapter turns its attention to the results of the research questions. The 

overall structure of this section is based upon these questions, but recall that there were 

two phases of the overall experiment during which there were two performances (Note 

Table 13). Table 13 explains the terminology and time table for this chapter.  

Table 13 

Research question by phase matrix 

Phase Question 1 Question 2 Question 3 Question 4 

Acquisition Phase 

(Week one) 

Acquisition Phase 

MANOVA 

Relative Condition 

Efficiency (RCE1) 

Performance 

Efficiency (PE1) 

Retention Phase 

(Week two) 

Retention Phase  

MANOVA 

Relative Condition 

Efficiency (RCE2) 

Performance 

Efficiency (PE2) 

 

Questions one and two were evaluated with two separate MANOVAs, one for 

each phase or week, of the experiment. Thus the week one analysis became the 

acquisition phase MANOVA and week two the retention phase MANOVA. In addition, 

questions three and four were also analyzed over two weeks, so relative condition 

efficiency was described as RCE1 and RCE2. The same naming convention was used for 

performance efficiency (PE1 & PE2). 

Questions One & Two 

Questions one and two considered multiple outcome variables (performance time 

and accuracy) so they were analyzed as a MANOVA, therefore the results of these two 

questions are discussed together. 
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The Acquisition Phase MANOVA 

Research questions one and two investigated group differences given the two 

dependent variables, performance time and accuracy, for the four instructional conditions 

(demo, demo+practice, demo2+practice, and practice). The purpose of the acquisition 

phase (week one) was to introduce all learners to the subject matter, but recall that the 

design of this experiment required the demo group (n=23) to refrain from practicing 

during this phase, so they did not assemble the Mr. Potato head problem during week 

one. Therefore only three groups of learners (demo+practice, demo2+practice, and 

practice) had a performance during week one (See Figure 23). 

In addition, during preparatory data analysis, a series of individuals had to be 

removed from the data set because these observations were potential multivariate outliers. 

After these outliers were removed from the initial sample of N=122 participants, the total 

number of practicing learners in the acquisition phase was reduced (n = 69). This number 

represents both the outliers removed from the overall data set and a loss of the demo 

group learners, who did not practice during the acquisition phase. Thus the group 

composition of practicing learners in the acquisition phase was demo+practice group 

 (n =21), demo2+practice group (n = 31), and practice group (n = 17) (See Figure 23). 

Assumptions of the MANOVA 

A MANOVA makes several assumptions (assumptions of independence, 

normality and homoscedasticity) (Stevens, 2002; Tabachnick & Fidell, 2001). This 

analysis is discussed in detail in Appendix C; however a brief presentation of this 

analysis is described in this section of the chapter.  
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Figure 23. Flowchart of the reduction process 

According to Glass and Hopkins (1984) this data met the independence 

assumption. However, the %MULTNORM macro revealed that the data was non-normal, 

violating the normality assumption. Analysis of the data set with the OUTLIER macro 

(Friendly, 2007b) revealed multivariate outliers, but these outliers were retained in order 

to maintain power. Tabachnick and Fidell (2001) recommend that researchers who retain 

outliers transform their data, therefore transformations were performed. Next Box’s M 

test (Box, 1954) was performed, and since X2(6, N = 69) = 7.97, p=0.24, φ=0.34 the 

groups were found to be homogeneous, suggesting there was no evidence the 
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homoscedasticity assumption was violated. Thus even though multivariate outliers were 

retained, it was reasonable to proceed with the MANOVA. 

The Acquisition Phase MANOVA 

The acquisition phase MANOVA found there was a significant difference 

between groups, because Wilks’ Λ = 0.68, F (2, 68) =6.83, p <0.0001, η2=0.32 (See 

Figures 24 & 25). The F tests for performance time and accuracy were also statistically 

significant, as F (2, 68) = 3.19, p=0.0478 for accuracy (AC1), and F (2, 68) =7.84 

p=0.0009 for performance time (PT1).  

Table 14 details the acquisition phase dependent variables, by group. Post hoc 

comparisons with Scheffé’s test (p<0.025) revealed that learners of both the 

demo+practice and demo2+practice groups assembled the Mr. Potato head problem, in 

significantly less time than the practice group. However, no significant differences 

between groups were found given accuracy (AC1) with Scheffé’s test (p<0.025). 

 

Table 14 

Acquisition phase dependent variables by group 

 demo demo+practice demo2+practice practice 
n 
Transformed 
Performance time 
(TPT1) 
M 
SD 

 
 
 
 

NA 
NA 

21 
 
 
 

19.66 
6.35 

31 
 
 
 

22.40 
6.28 

17 
 
 
 

28.62 
9.01 

 
Transformed 
Accuracy (TAC1) 
M 
SD 

 
 
 

NA 
NA 

 
 
 

0.56 
0.79 

 
 
 

0.99 
1.99 

 
 
 

1.44 
1.13 
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Figure 26 is a graphic representation of this dataset. Group colors are 

demo+practice=red, demo2+practice=green, practice=black. This bivariate plot of the 

acquisition phase dataset includes transformed performance time and accuracy scores, 

and is shown by group. Since accuracy was transformed with a TAC1=log (25-AC1) 

transformation, the most accurate performances are at the bottom of the graph. This also 

applies to Figures 24 through 25.  

In addition, given Figure 26 there seems to be a ceiling effect. Notice how the 

transformed accuracy scores are all near the bottom of the graph. The consequences of 

this ceiling effect are fully described in Chapter five.  

Finally, Tabachnick and Fidell (2001) mention two other important aspects of a 

MANOVA, the effect size, and correlation between the dependent variables. The effects 

size for this MANOVA was η2=0.32, therefore this combination of variables accounts for 

32%, a reasonable proportion of the total variance (Tabachnick & Fidell, 2001).  

Finally these performance time and accuracy were negatively correlated since  

r (67) =-0.13, p = 0.29. This was expected since performance time increases as accuracy 

decreases. 
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Figure 24. Acquisition phase transformed performance time (retaining outliers) 

 

Figure 25. Acquisition phase transformed accuracy (retaining outliers) 
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Figure 26. Solution two: retaining potential outliers  

The Retention Phase MANOVA 

The reader may recall that the week two performance was described as the 

retention phase. This week two performance was analyzed with a MANOVA to 

determine group differences a week after initial instruction. 

Earlier in this chapter during the preparatory data analysis section, a MANOVA 

of the week two dataset was considered, but this MANOVA compared the performance 

of the two semester subsets (used semester as the grouping variable). On the other hand, 

the purpose of the retention phase MANOVA was to analyze group differences one week 
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after initial instruction. Therefore further discussion of this dataset must be considered 

(with group as the grouping variable), because research questions one and two require an 

analysis of this dataset to determine the differences in group performance given the four 

different instructional conditions. 

Unlike learners in the acquisition phase, all groups of learners in the retention 

phase assemble the problem scenario (the picnic problem). Also recall that during 

preparatory data analysis 34 multivariate outliers were removed from the initial sample. 

Therefore this same group composition must be retained, so the group composition of the 

retention phase was demo (n = 19), demo+practice (n = 21), demo2+practice (n = 31), 

and practice (n = 17), for an overall n = 88. 

The Retention Phase Assumptions 

As with all forms of analysis in this chapter, the assumptions of the test were 

analyzed first. A detailed analysis of the retention phase MANOVA is described in 

Appendix D. 

According to Glass and Hopkins (1984) learners in this sample met the 

independence assumption, but the %MULTNORM macro program (SAS, 2007b) 

revealed non-normality. These outliers were removed and transformations were 

implemented. Later, Box’s M test was conducted and it found the variance-covariance 

matrices were homogeneous, since X2(9, N = 88) = 4.43, p=0.88, φ=0.22. This finding 

showed that there was no evidence that the transformed dataset violated the 

homoscedasticity assumption, thus it was reasonable to consider a retention phase 

MANOVA. 
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The Retention Phase MANOVA 

The overall goal of the retention phase MANOVA was to determine if group 

differences existed a week after initial instruction. It was hypothesized that learners in the 

demonstration conditions would out-perform those in the practice condition. However, 

the results of the MANOVA found that there was not a significant difference given 

learner performance one week after initial instruction, since Wilks’ Λ =0.96, F (3, 87) 

=0.64, p =0.70, η2=0.04. Table 15 lists the group means for each of the dependent 

variables transformed performance time (TPT2) and transformed accuracy (TAC2). 

Tabachnick and Fidell (2001) suggest researchers consider two other important 

aspects of a MANOVA, the effect size and correlation between the dependent variables. 

The effects size for this MANOVA was η2=0.04, therefore this combination of variables 

accounts for only 4% of the total variance (Tabachnick & Fidell, 2001). As for the 

correlation between the dependent variables, r (120) =-0.14, p = 0.12. Finally, 

Tabachnick and Fidell (2001) explain that it is better to have uncorrelated dependent 

variables, because this way, they measure separate aspects of the independent variables. 

Table 15 

Transformed performance time (TPT2) and accuracy (TAC2) by group 

 demo demo+practice demo2+practice practice 
n 
Transformed performance time 
(TPT2) 
M 
SD 

19 
 
 

34.10 
3.78 

21 
 
 

31.92 
4.93 

31 
 
 

33.29 
4.57 

17 
 
 

 32.09 
3.44 

Transformed accuracy 
(TAC2) 
M 
SD 

 
 

6.55 
0.26 

 
 

6.55 
0.25 

 
 

6.54 
0.22 

 
 

6.50 
0.21  
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Research Question Three 

Research question three was concerned with relative condition efficiency (RCE) 

(See Equation 22) (Paas and van Merriënboer, 1993). Relative condition efficiency is a 

construct, a combination of observable measurements (Kerlinger, 1986) in this case a 

performance measure and a mental effort rating. 

 Relative condition efficiency 
2

rtMentalEffoZePerformancZ −
=   (22) 

Week One Relative Condition Efficiency (RCE1) 

The reader may recall that Paas and van Merriënboer (1994) found significant 

results when they compared groups of learners who studied either high or low variability 

worked examples, versus those who solved high or low variability problems. Specifically, 

they found that those learners who studied varied context examples invested less time and 

mental effort during practice (the variability effect). This study examines this effect using 

animated demonstrations.  

To consider Relative condition efficiency (RCE) accuracy scores (AC1) were 

measured with a rubric (See Table 7). In addition acquisition phase mental effort ratings 

(AME) were measured following the construction of the Mr. Potato head problem. 

Mental effort was measured with the first question on the post treatment survey (week 1 

survey 2): “I invested:” with nine possible responses, from “very, very low mental effort” 

to “very, very high mental effort.” This is the question Paas and van Merriënboer (1993) 

used in their study. Given Paas and van Merriënboer results, it was hypothesized that 

learners in the animated demonstration conditions (demo+practice and demo2+practice) 

would out-perform learners in the practice condition.  



 148

During the acquisition phase, standardized week one accuracy scores (AC1) were 

combined with standardized acquisition phase mental effort ratings (AME) to provide 

week one relative condition efficiency (RCE1) (See Equation 23). In addition, relative 

condition efficiency was analyzed for the retention phase. This provided week two 

relative condition efficiency (RCE2), a combination of standardized retention phase 

mental effort ratings (RME) and standardized week two accuracy scores (AC2) (See 

Equation 24).: 

    RCE1
2

1 AMEZACZ −
=     (23) 

    RCE2 
2

2 RMEZACZ −
=     (24) 

The general procedure for analyzing relative condition efficiency (Paas & van 

Merriënboer, 1993) was used to compare group scores. Group relative condition 

efficiency scores z-scores were compared with an ANOVA. The performances of three 

groups were compared, group composition was demo+practice group (n=21), 

demo2+practice group (n=31), and practice group (n=17). The assumptions of this 

ANOVA were analyzed. An analysis of these assumptions is presented in Appendix E. 

According to Glass and Hopkins (1984) learners in this data set met the 

independence assumption, but a Kolmogorov-Smirnov test revealed non-normality. 

Transformations were implemented. Later a Levene’s test compared the transformed 

means to find they were not significantly different, F (2, 68) =2.26, p=0.11. This finding 

showed that there was no evidence that the transformed dataset violated the 

homoscedasticity assumption, thus it was reasonable to consider an ANOVA. The 
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ANOVA was conducted and it revealed that there were significant differences between 

groups since F (2, 68) = 3.69, p=0.03 (See Figure 27 & Table 16). Even though these 

groups were significantly different, post hoc comparisons with Scheffé’s test (p<0.05) 

found no significant differences between groups. Table 16 lists group means for RCE1. 

 
Figure 27. Week one relative condition efficiency (RCE1) 

 

Table 16 

Week one relative condition efficiency (RCE1) by group 

 demo demo+practice demo2+practice practice 
n 
Relative condition efficiency 
(RCE1) 
M 
SD 

NA 
 
 

NA 
NA 

21 
 
 

0.50 
0.63 

31 
 
 

-0.16 
1.11 

17 
 
 

-0.32 
1.25 
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Week Two Relative Condition Efficiency (RCE2) 

During week 2 (the retention phase), relative condition efficiency was analyzed 

by combining accuracy scores (AC2) with retention phase mental effort ratings (RME) 

(See Equation 23). Accuracy scores (AC2) were measured with a rubric (See Table 8). 

This rubric measured the learner’s performance given the picnic problem. Retention 

mental effort ratings (RME) were also measured following the week two performance. 

Group relative condition efficiency scores z-scores for the retention phase (RCE2) were 

compared with an ANOVA. A detail analysis of these assumptions of this ANOVA is 

presented in Appendix E. 

According to Glass and Hopkins (1984) learners in this data set met the 

independence assumption, and a Kolmogorov-Smirnov test revealed a normal 

distribution. Later a Levene’s test compared the means to find they were not significantly 

different, F (3, 87) =0.56, p=0.64. This finding showed that there was no evidence that 

the data set violated the homoscedasticity assumption, thus it was reasonable to consider 

an ANOVA. 

It was hypothesized that learners in the animated demonstration conditions would 

out-perform learners in the practice condition. Group z-scores were tested with an 

ANOVA and revealed that there were no significant differences between groups as  

F (3, 87) = 0.38, p=0.77 (See Figure 28 & Table 17). Relative condition efficiency is a 

combination of week two accuracy (AC2) and retention mental effort. Tables 18 and 19 

provide the data for these two components of relative condition efficiency. 
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Table 17 

Week two relative condition efficiency (RCE2) by group 

 demo demo+practice demo2+practice practice 
n 
 
RCE2 
M 
SD 

19 
 
 

-0.14 
0.81 

21 
 
 

0.17 
0.95 

31 
 
 

0.00 
0.92 

17 
 
 

-0.05 
1.10 

 

 

 
                        Figure 28. Week two relative condition efficiency (RCE2) 
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Table 18 

Retention accuracy (AC2) by group 

 demo demo+practice demo2+practice practice 
n 
Performance time (PT2)  
M 
SD 

19 
 

0.08 
1.14 

21 
 

0.05 
1.09 

31 
 

0.02 
0.93 

17 
 

-0.17 
0.92 

 

Table 19. 

Retention mental effort by group 

 demo demo+practice demo2+practice practice 
n 
Retention mental effort 
(RME) 
M 
SD 

19 
 
 

0.28 
0.84 

21 
 
 

-0.19 
1.10 

31 
 
 

0.01 
1.01 

17 
 
 

-0.10 
1.03 

 

Finally, an ANOVA was conducted to compare retention mental effort ratings 

(RME). The results of this ANOVA indicated that there were no significant differences 

between groups as F (3, 87) = 0.38, p=0.77. 

Research Question Four 

This question dealt with performance efficiency, a new metric developed in this 

study. As described in the literature review, there has been some discussion in the 

cognitive load literature concerning the objective/subjective nature of cognitive load 

measurements (Brünken, Plass, & Leutner, 2003). Performance efficiency was developed 

to help researchers objectively compare and contrast their measurements. For this reason, 

performance efficiency (See Equation 25) only includes objective measures, a 

performance score and performance time. 
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The reader may recall that Chapter three included a discussion of problem solving 

dependent variables. Gagné (1964) reported that researchers are primarily concerned with 

performance time and the degree of correctness (accuracy). Gagné’s proposal was the 

impetus for the subcomponents of performance efficiency.  

Since these two dependent variables are the most commonly gathered problem 

solving variables, it made sense to develop a metric based upon the needs of these 

researchers. 

 Performance efficiency 
2

eTimePerformancZePerformancZ −
=   (25) 

The process of calculating performance efficiency is very similar to that of 

relative condition efficiency. However, the subcomponents of performance efficiency are 

somewhat different, because it only includes an objective performance measure (accuracy 

in the current study) and performance time. Equation 25 is a generalized formula for 

performance efficiency which may be used in any study. 

Acquisition Phase Performance Efficiency (PE1) 

Week one performance efficiency (PE1) was calculated by standardizing 

performance scores, in this case, week one accuracy (AC1) and performance time (PT1). 

Group z-scores were then analyzed with the formula in Equation 26, and graphed as in 

Figure 29. Next an ANOVA is used to compare group performance efficiency scores. 

This may be followed by post hoc comparisons to determine significant differences. 

   PE1 
2

PT1ZAC1Z −
=     (26) 

Before conducting the ANOVA, the assumptions of that ANAOVA were 

analyzed. A detailed analysis of these assumptions is presented in Appendix F. However 
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a brief explanation is made here. According to Glass and Hopkins (1984) learners in this 

data set met the independence assumption, and a Kolmogorov-Smirnov test revealed non-

normality. The distribution was subsequently transformed. Later, a Levene’s test 

compared the means to find they were not significantly different, F (3, 87) =0.03, p=0.97. 

This finding showed that there was no evidence that the data set violated the 

homoscedasticity assumption, thus it was reasonable to consider an ANOVA. 

Since no precedence for this metric exists, it was hypothesized that a finding of no 

significant difference would be found for these conditions. This expectation was not 

found to be the case, since the ANOVA for performance efficiency (PE1) revealed 

significant differences among group means, as F (2, 68) = 13.95, p<0.0001 (See Table 20 

and Figure 29).  

Post hoc comparisons with Scheffé’s test (p<0.05), revealed significant 

differences between all groups, and the demonstration groups (demo+practice and 

demo2+practice) had more efficient performances, than the practice group. The 

demonstration groups were not found to be significantly different from one another. 

Table 20 

Week one performance efficiency (PE2) by group 

 demo demo+practice demo2+practice practice 
n 
Performance efficiency 
(PE1) 
M 
SD 

NA 
 
 

NA 
NA 

21 
 
 

0.55 
0.61 

31 
 
 

0.04 
0.77 

17 
 
 

-0.75 
0.99 
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                       Figure 29. Week one performance efficiency (PE1) 

Retention Phase Performance Efficiency (PE2) 

Week two performance efficiency (PE2) was also calculated in a similar manner 

as the acquisition phase. Week two accuracy scores (AC2) and performance times (PT2) 

were standardized (See Equation 27), and graphed (See Figure 30). As in the acquisition 

phase an ANOVA of the group means was performed. 

    PE2 
2

PT2ZAC2Z −
=     (27) 

Before conducting the ANOVA, the assumptions of that ANAOVA were 

analyzed. A detailed analysis of these assumptions is presented in Appendix F. However 

a brief explanation is made here. According to Glass and Hopkins (1984) learners in this 

data set met the independence assumption, and a Kolmogorov-Smirnov test found a 
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normal distribution. A Levene’s test compared the means to analyze the variance-

covariance matrices. They were not significantly different, as F=0.56 (3, 87), p=0.64. 

This finding showed that there was no evidence that the data set violated the 

homoscedasticity assumption, thus it was reasonable to consider an ANOVA. 

Since no precedence for this metric exists, it was hypothesized that group means 

would not differ a week after initial instruction. This expectation was found to be the 

case, since an ANOVA for performance efficiency (PE2) revealed no significant 

differences in group means, because F (3, 87) = 0.42, p=0.74 (See Table 21 & Figure 30).  

 

 
                        Figure 30. Retention phase performance efficiency (PE2) 
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Table 21 

Week two performance efficiency (PE2) by group 

 demo demo+practice demo2+practice practice 
n 
Performance efficiency 
(PE2) 
M 
SD 

19 
 
 

-0.13 
0.95 

21 
 
 

0.18 
1.05 

31 
 
 

-0.06 
0.97 

17 
 
 

0.03 
0.76 

 

Limitations of these Results 

The results of any study are limited by various types of error. In some cases error 

is unavoidable and the general linear model (Y=µ + α + ε), even assumes that there will 

be some error (ε) within any ANOVA or MANOVA (Keppel, 1991; Stevens, 2002). 

However, it is the responsibility of the researcher to minimize error. Mitchell and Jolley 

(2004) have proposed three sources of error (participant errors, observer errors, and 

administration errors). In addition to these sources of errors, there are two main types of 

measurement error, systematic and random errors (Mitchell & Jolley, 2004; Pedhazur & 

Schmelkin, 1991). This section discusses these errors in relation to this dissertation. 

Observer & Administration Errors 

A systematic observer error is one in which the observer repeatedly makes errors, 

because of instrumentation or bias (Pedhazur & Schmelkin, 1991). One important 

criticism of the current study is that the primary researcher served as the only rater. This 

situation allows for a type of systematic error called observer bias. However, Mitchell 

and Jolley (2004) explain that observer bias may be avoided, if the researcher is “blind to 

the conditions” that is, they are unaware of which condition that they are rating. This was 

the case in this dissertation, since files were blindly rated and then later categorized. 
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While multiple raters may have strengthened the results of this study, this did not occur. 

A potential solution for this issue is for future researchers to replicate the study with 

multiple raters. 

It is important to realize that although systematic errors may provide consistent 

results, these results may be consistently incorrect, and thus systematic errors reduce the 

validity of the measurement (Pedhazur & Schmelkin, 1991) therefore it is important to 

reduce systematic error.  

One way researchers may reduce systematic observer errors is to refine their 

instrumentation (Pedhazur & Schmelkin, 1991). For instance, the rubrics used to produce 

the accuracy variable in this study could be improved. Future researchers could refine the 

scoring of accuracy to perform a GOMS level of analysis. GOMS is an acronym (Goals, 

Operators, Methods, and Selection rules). Card, Moran, and Newell (1983) developed 

this process of analyzing computer interaction. A GOMS level analysis or another more 

modern HCI/usability analysis could further define learner actions, to categorize and 

represent learner actions more precisely. So for instance, rather than simply stating that 

an action was completed, these actions could be thoroughly defined and each problem 

solving operator could be scored individually. 

An important criticism of this study is that it had a number of outliers (See Table 

22). As with any study that has outliers, the results are less generalizable because the 

outliers were removed. These outliers may be a result of measurement errors, execution 

faults, or intrinsic variability (Barnett, 1978). See Appendix B for a detailed analysis of 

how and why these outliers were removed. 
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Table 22  

Multivariate outliers 

Obs ID Group PT2 AC2 DSQ prob 
1 45 2 1700 48 6.065 0.0482 
2 23 1 1811 41 6.088 0.04764 
3 61 3 576 48 6.535 0.03811 
4 40 2 571 48 6.6 0.03689 
5 25 1 1694 38 6.874 0.03216 
6 27 1 629 36 6.901 0.03173 
7 15 1 781 35 7.246 0.02671 
8 29 1 1852 48 8.154 0.01696 
9 72 3 979 34 8.303 0.01574 

10 20 1 1187 34 8.553 0.01389 
11 98 4 1983 46 8.957 0.01135 
12 12 1 2017 42 9.371 0.00923 
13 46 2 1406 34 9.854 0.00725 
14 43 2 1206 33 10.635 0.00491 
15 110 4 788 33 10.846 0.00441 
16 96 4 2275 40 16.613 0.00025 
17 118 4 582 31 16.784 0.00023 
18 97 4 827 30 17.742 0.00014 
19 111 4 1518 31 17.793 0.00014 
20 91 3 1225 30 18.04 0.00012 
21 2 1 1715 30 23.236 9E-06 
22 28 1 1330 28 24.692 4E-06 
23 13 1 2316 34 26.665 2E-06 
24 48 2 2625 39 28.251 1E-06 
25 39 2 2682 41 28.395 1E-06 
26 62 3 1531 25 37.43 0 
27 19 1 1036 20 55.317 0 
28 53 2 869 18 65.183 0 
29 36 2 1223 18 66.467 0 
30 22 1 152 16 81.725 0 
31 18 1 608 13 94.623 0 
32 104 4 2101 14 105.327 0 
33 122 3 242 4 162.198 0 
34 123 1 242 0 196.277 0 
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Outliers were removed from the initial sample during preparatory data analysis. 

The group composition of the outliers is demo =14, demo+practice=8, 

demo2+practice=5, and finally practice=7. The number of outliers in this study is 

troubling, because this lead to an unequal reduction from groups.  

These extreme cases should be studied further. Why were there more demo 

learners who were removed from the final analysis? Were their scores extreme because 

they performed well, or poorly? Why were there fewer demo2+practice learners 

removed? Did the demo2+practice group feel more confident than other groups? Did the 

practice learners quit, because they felt unprepared? Without further study or testimonial 

from these learners, this is all speculation. Perhaps future studies will consider learner 

motivation. This then brings us to the next source of error, learner error. 

Learner Errors 

Mitchell and Jolley (2004) also describe participants or learners as a potential 

source of error. According to these authors, learner error can be either systematic or 

random. The fact learners were told that they must “figure out the problem scenario on 

their own” may have frustrated, or even motivated some learners. In addition, learners 

may attempt to figure out the hypothesis of the study. Either of these situations could 

create participant bias (Mitchell & Jolley, 2004). A potential solution to limit participant 

bias, is to inform all participants that their responses will be anonymous (Mitchell & 

Jolley 2004). In an effort to limit participant bias, learners in this study were told their 

responses would be anonymous. 

Mitchell and Jolley (2004) also describe participants as having random error 

during a study, so learner behavior may be variable. However it is important to realize 
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that learner errors are actually a field of study, because learner errors are a part of the 

learning process (Nielsen, 1993; Reason, 1990). This will be discussed in more detail in 

Chapter five. 

Summary of the Results 

Although the results of this study are quite interesting, a detailed discussion of 

these findings will not be made until chapter five. The purpose of this section is merely to 

summarize the results of the study and to provide some closure for Chapter four. The 

section is structured according to the research questions, but also considers the results 

according to the phases of the study. 

Table 23 summarizes the results of the study. Significant results are marked by 

one or more asterisks, a single asterisk (*) represents significant results, while multiple 

asterisks represent highly significant results (***). Non significant results are represented 

by an abbreviation (NS). 

Table 23 

Results by phase matrix 

Phase Question 1 Question 2 Question 3 Question 4 

Acquisition Phase 

(Week one) 

Acquisition Phase 

MANOVA 

*** 

Relative Condition 

Efficiency (RCE1) 

* 

Performance 

Efficiency (PE1) 

*** 

Retention Phase 

(Week two) 

Retention Phase  

MANOVA 

(NS) 

Relative Condition 

Efficiency (RCE2) 

(NS) 

Performance 

Efficiency (PE2) 

(NS) 
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Research Questions One and Two 

Research questions one and two considered performance time and accuracy. 

There were two phases of the study, the acquisition phase and retention phase, and two 

performances. During the acquisition phase (week one) the demo group did not assemble 

the Mr. Potato head problem. However, the other three groups worked with this problem, 

the demo+practice, demo2+practice, and practice conditions. So an acquisition phase 

MANOVA of performance time and accuracy, was used to compare group performances.  

During the acquisition phase, it was hypothesized that learners in the animated 

demonstration conditions (demo+practice and demo2+practice) would out-perform 

learners in the practice condition. It was found that there was a significant difference 

between the groups, since Wilks’ Λ=0.68, F (2, 68) = 6.83, p <0.0001, η2=0.32. Post hoc 

comparisons with Scheffé’s test (p<0.05) revealed that learners of both the 

demo+practice and demo2+practice groups assembled the acquisition phase problem, in 

significantly less time than the practice group. The retention phase MANOVA found no 

differences between groups a week after initial instruction.  

Research Questions Three and Four 

Research questions three and four dealt with the two efficiency constructs 

(relative condition efficiency and performance efficiency). The results for these metrics 

varied given condition. During the acquisition phase, significant differences between 

conditions were revealed given week one relative condition efficiency (RCE1) since 

 F (2, 68) = 3.69, p=0.03. However, post hoc comparisons with Scheffé’s test (p<0.05) 

found no significant differences between groups. 
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Also during the acquisition phase, performance efficiency (PE1) was found to be 

significantly different, because F (2, 68) = 13.95, p<0.0001. In addition, significant 

differences were also revealed during post hoc comparisons, with Scheffé’s test (p<0.05), 

given week one performance efficiency (PE1). This analysis revealed significant 

differences during the acquisition phase. More specifically, it revealed that the 

demonstration groups (demo+practice and demo2+practice) had more efficient 

performances, than the practice group. 

During the retention phase (week two) the four instructional conditions (demo, 

demo+practice, demo2+practice, and practice) were not found to differ, given the 

efficiency metrics (performance efficiency or relative condition efficiency), or their 

subcomponents. A complete discussion of each of these measures is made in Chapter 

five. 
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CHAPTER FIVE - DISCUSSION 

The purpose of this chapter is to discuss the results of this study. This chapter will 

systematically consider all of the results, but more importantly discusses these results in 

the context of instructional design theory. It first considers the results according to each 

research question, then offers a discussion describing the implications of the results, and 

concludes by considering future research. 

Before discussing the results of the study, it is important to recall the purpose of 

this dissertation. As stated in Chapter one, the purpose of this dissertation has been to 

assess initial skill acquisition, using animated demonstrations and practice. The two main 

goals of the dissertation were to: (1) consider the worked example and variability effects 

using animated demonstrations (Paas & van Merriënboer, 1994; Sweller & Chandler, 

1991); and (2) determine if learners would exhibit a delayed performance decrement, 

known as Palmiter’s animation deficit (Palmiter, 1993; Lipps et al., 1998). To address 

these goals, four research questions were developed, in order to consider skill acquisition 

from an HCI and cognitive load perspective. The results of these questions will be 

discussed and the implications of this research are considered. 

Research Questions One and Two 

Research questions one and two were developed to determine if learners using 

animated demonstrations would exhibit the worked-example effect. The results of these 

questions will be reviewed and discussed in relation to this effect and cognitive load 
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theory. In addition, these questions were used to test the durability of worked example 

based instruction. Since there were multiple outcome variables (performance time and 

accuracy), multivariate statistics were necessary. Also since there were two 

performances, two MANOVAs were conducted, one for the acquisition phase (week one) 

and one for the retention phase (week two). Each phase will be discussed separately. 

The Acquisition Phase MANOVA 

From an instructional perspective, the purpose of the acquisition phase was to 

introduce learners to the subject matter, but in terms of the overall study, the main 

purpose of this phase was to gather performance data. During the acquisition phase, only 

three groups assembled the problem scenario (the Mr. Potato head problem). The demo 

group, n=23, were asked to refrain from practicing during week one, in order to measure 

retention during week two (the retention phase). Once outliers were removed, the number 

of practicing learners during week one was n=69. 

The Results in Terms of the Worked-example Effect 

Sweller and Cooper reported that those learners who studied worked examples 

during early schema acquisition, significantly out-performed their peers, who had learned 

the same procedures through active problem solving (Cooper & Sweller, 1987; Sweller & 

Cooper, 1985). They described this effect by saying a “decreased solution time was 

accompanied by a decrease in the number of mathematical errors” (Sweller & Cooper, 

1985, p.59). Therefore this study put forth the hypothesis that the demonstration learners 

(demo+practice & demo2+practice) would outperform their peers who learned through 

problem solving. It was proposed the animated demonstrations would act as worked 

examples to promote skill acquisition, resulting in improved learner performance. The 
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acquisition phase MANOVA found that this expectation was the case, because there was 

a significant difference between groups, given both performance time and accuracy, since 

Wilks’ Λ=0.68, F (2, 68) = 6.83, p<0.0001, η2=0.32. Performance time and accuracy 

were also both found to be statistically significant given α=0.05, since F (2, 68) = 3.19, 

p=0.048 for accuracy (AC1), and F (2, 68) = 7.84, p=0.0009 for performance time (PT1) 

(See Table 24). This is the result predicted by the worked-example effect. 

Table 24 

Acquisition phase dependent variables 

 demo demo+practice demo2+practice practice 
n 
Transformed 
Performance time 
(TPT1) 
M 
SD 

 
 
 
 

NA 
NA 

21 
 
 
 

19.66 
6.35 

31 
 
 
 

22.40 
6.28 

17 
 
 
 

28.62 
9.01 

Transformed 
Accuracy (TAC1) 
M 
SD 

 
NA 
NA 

 
0.56 
0.79 

 
0.99 
1.99 

 
1.44 
1.13 

 
However, it should be clearly stated that although the acquisition phase 

MANOVA found significant differences between groups, post hoc comparisons with 

Scheffé’s test (p<0.025) found group differences for accuracy (TAC1) were not 

significantly different. Nevertheless, significant group differences for performance time 

(TPT1) were revealed in post hoc comparisons with Scheffé’s test (p<0.025). More 

specifically, post hoc comparisons found the demonstration groups (demo+practice & 

demo2+practice) assembled the Mr. Potato head problem, in significantly less time than 

the practice groups.  
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The worked-example effect has been described by many authors (Sweller, 2006), 

but has rarely been defined in terms of performance variables, like those in this study. 

According to Rourke and Sweller, “The worked-example effect occurs when learners 

presented worked examples to study, during a learning phase, solve test problems more 

effectively, than learners presented the equivalent problems to solve during the learning 

phase” (Rourke and Sweller, in press, p.1). This somewhat vague definition makes 

mention of the learning phase, but does not define the effect in terms of performance 

variables.  

So while this study can claim that it has found positive evidence that the animated 

demonstration learners solved problems more effectively, than their peers who learned 

through problem solving, this dissertation will not claim that these learners demonstrated 

the worked-example effect. It intends to hold this effect to a more stringent operational 

definition, in which learners must have both a decreased performance time and an 

increased accuracy, in a manner similar to that described by Sweller and Cooper (1985). 

While this study came very close to finding a worked-example effect given the 

instructional conditions, again accuracy was not found to be significantly different in post 

hoc comparisons with Scheffé’s test (p<0.025). 

Why was Accuracy Not Significantly Different? 

Since accuracy did not differ during the acquisition phase (week one), it cannot be 

stated that learners exhibited the worked-example effect. This result is contrary to the 

expectations of this research. After reviewing the accuracy results of the acquisition 

phase (See Figure 31) one can see evidence of a ceiling effect during week one. In this 

figure, the accuracy scores of the demonstration groups (demo+practice and 
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demo2+practice) are clumped near the bottom of the graph (signifying more accurate 

performances).  

The reader may recall that scores were transformed to reduce the influence of 

outliers and make the skewed data more suitable for Box’s M test. Even though 

transformations altered the distribution of the variable (to help Box’s M test resolve 

homoscedasticity) it did not change the fact that these scores were originally very high 

(creating a ceiling effect) (Alliger, Ranges, & Alexander, 1988; Lord, 1955). 

The expectation of an ANOVA or MANOVA, is that group scores exhibit a 

normal distribution, but in some settings, groups may score very high on some scales 

(Lord, 1955). Gall, Borg, and Gall (1996) state “A ceiling effect occurs when the range of 

difficulty of the test items is limited, and therefore scores at the higher end of the possible 

score continuum are artificially restricted” (Gall, Borg, & Gall, 1996, p.533). 

 
Figure 31. Acquisition phase transformed accuracy (retaining outliers) 
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Essentially, a ceiling effect tends to restrict variability, making it difficult to 

determine group differences (Alliger, Ranges, & Alexander, 1988). Since an analysis of 

variance is dependent upon some variability in the sample, this result is contrary to a 

MANOVA’s assumption of normality. 

While the Mr. Potato head problem may have been somewhat simple, it was 

developed to teach learners the required skills, and simple enough to allow at least some 

learners to complete the task. Had the Mr. Potato head problem been more difficult, 

differences in variability may have been easier to detect, but making training more 

difficult, to make research easier is not ethical.  

In addition to being the subject of this research, the Mr. Potato head problem had 

another important role, to teach novice learners how to use Adobe Photoshop Elements. It 

is important to remember that the purpose of the acquisition phase was that novices be 

allowed to practice their new skills, and learn how to use this software. Finally, good 

instructional design ensures that learners learn. 

The Retention Phase MANOVA 

Background 

As Tuovinen and Sweller (1999) concluded their article, they remarked that 

“…exploration may favor long-term retention. Although this question must remain open 

until tested…” (Tuovinen & Sweller, 1999, p. 340). Thus the purpose of the retention 

phase MANOVA was to test this idea. For this reason, it analyzed group differences one 

week after initial instruction. This retention interval was also chosen in order to consider 

the results in relation to Palmiter’s animated demonstration study (Palmiter, 1991). Each 

of these researchers had reservations concerning the durability of learning given worked 
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examples. Palmiter considered learning by animated demonstration as mimicking the 

demonstrated procedures. In addition she noted decreased performance. Here is how she 

explained her results: 

These demonstration users were not as proficient at remembering the procedures 

they had learned during training when tested at the 7-day delay session. It 

appeared that they simply mimicked the tasks that they had seen during training 

and had not encoded them so that they could remember the tasks later for faster 

performance… The demonstration users on the other hand, had difficulty 

transferring the knowledge to a new situation. They spent more than double the 

time spent in training (a significant increase) to perform the similar task a week 

later. (Palmiter, 1993, p.74). 

This quote is based on Palmiter’s dissertation study (Palmiter, 1991). She studied 

three groups of learners those that practiced after having studied text-based job aids, 

animated demonstration, and hybrid animated demonstrations with text. Palmiter’s results 

are in direct contrast with the cognitive load literature, which suggests learning via this 

form of animated worked example.  

Given the worked-example effect, it would be expected that Palmiter’s 

demonstration learners would at least do as well as their peers, who studied text-based 

job aids. Also, including text-based instruction with animation has the potential to 

produce the split-attention effect (Chandler & Sweller, 1992; Moreno & Mayer, 1999a; 

Sweller & Chandler, 1991; Tarmizi & Sweller, 1988; Ward & Sweller, 1990). So given 

the split-attention effect, Palmiter’s demonstration learners should be expected to do 

better than those that studied hybrid animated demonstrations, which included text-based 
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instructions. Her findings did not support this hypothesis, since both groups had similar 

results. In addition it may be expected that animated demonstration learners would do 

better than their peers who used text based instruction, since this presentation form is 

more concrete than the abstract text-based instruction. Thus the current study is in part, a 

replication (using Palmiter’s dependent variables), but it also takes into account the 

learners’ cognitive load. 

Results of the Retention Phase 

Given Sweller and Cooper’s initial findings (Sweller & Cooper, 1985), it was 

expected that during the retention phase, those who learned with animated 

demonstrations would take less time to solve problems (performance time) with fewer 

errors (accuracy), as compared with learners who learned through problem solving 

(practice). These expectations were not met, since the week two results found that there 

was not a significant difference between groups, since Wilks’ Λ =0.96, F (3, 87) =0.64,  

p =0.70, η2=0.04. Table 25 lists the group means for each of the dependent variables, 

transformed performance time (TPT2) and transformed accuracy (TAC2). 

Table 25 

Retention phase MANOVA by group 

 demo demo+practice demo2+practice practice 
n 
Transformed perf time (TPT2) 
M 
SD 

19 
 

34.10 
3.78 

21 
 

31.92 
4.93 

31 
 

33.29 
4.57 

17 
 

 32.09 
3.44 

Transformed accuracy 
(TAC2) 
M 
SD 

 
 

6.55 
0.26 

 
 

6.55 
0.25 

 
 

6.54 
0.22 

 
 

6.50 
0.21  
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The Results is Terms of Palmiter’s Animation Deficit 

Lipps et al. (1998) described Palmiter’s animation deficit as a short term 

performance gain by learners using animated demonstrations (during early skill 

acquisition), but a significant loss in long term retention. Specifically, Palmiter describe 

the phenomenon this way: “the demonstration groups became significantly slower 

between the training and delay test session...accuracy between sessions decreased 

significantly for the demonstration groups and increased significantly for the text-only 

group” (Palmiter & Elkerton, 1991b, p. 260). 

The findings of the current study do not support this animation deficit. They are 

more like those of Waterson and O’Malley (1992) or Lipps et al. (1998), who both found 

no evidence of Palmiter’s animation deficit. It should be noted that Waterson and 

O’Malley (1992) added narration to their animated demonstrations. In each case these 

researchers found no evidence of an animation deficit. Further research concerning an 

animation deficit is suggested, and more evidence should be collected before this claim 

can be either further refuted, or justified. Yet given the results of this study, it seems this 

retention deficit, is not a concern, even given retention intervals as long as a week. So, 

there is no evidence for the idea proposed by Tuovinen and Sweller (1999) who 

suggested that “…exploration may favor long-term retention” (p. 340). 

Finally, during week two all three demonstration conditions, competed equally 

well with the practice condition (See Table 25). This finding is somewhat surprising, for 

it also includes the demo group, who had not practice during week one, and in the end 

were not statistically different from the other groups. Therefore, it seems an animated 

demonstration alone, was sufficient for schema acquisition. 
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Why Are These Results Different From Palmiter’s? 

There are several reasons why the results of this study are different from those by 

Palmiter. First and foremost, Palmiter’s instructional conditions were not like those in the 

present study. Palmiter chose to study students who learned individual discrete tasks. Her 

articles describe these tasks (e.g. copy button or copy field), but describes them as being 

in isolation, and not in the context of an overall problem. Whereas the current study 

studied learners in situ, that is, learner performance was studied given an authentic 

context, as they used their skills as a part of a larger project. This was necessary to gather 

data concerning the learner’s cognitive load during problem solving, but also to measure 

learning in an ecologically valid manner. 

The animated demonstrations presented in this study were just over ten minutes 

long, whereas Palmiter describes the tasks in her animated demonstrations as “deleting a 

field with only three procedural steps to more complex tasks such as creating a 

hierarchical pop-up button with 12 steps” (Palmiter & Elkerton, 1991b, p. 259). These 

HyperCard tasks take far less time to complete than the tasks of this study. 

In her defense, Palmiter’s study was implemented 17 years before this study. The 

technology at her disposal was considerably limited. It is little wonder that she did not 

study web-based narrated animated demonstrations. Web-based, animated 

demonstrations could not have been developed in 1991. The web as we know it did not 

exist then. The World Wide Web, as it was known then, did not support graphics, let 

alone animation or audio. 

The importance of adding narration to an animated demonstration should not be 

underestimated. It promotes what Mayer (2001) describes as multimedia learning. 
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Narration provided the demonstration learners with a verbal narrative and could direct the 

learner’s attention during the presentation, while Palmiter’s narrative was only presented 

during the text-only condition. Palmiter may be correct that only providing learners with 

an animation produces mimicry of the animated demonstration, what Ausubel described 

as rote learning (Ausubel, 1963). 

Self-explanation of non-narrated animated demonstrations may not be sufficient 

to produce meaningful learning. The addition of narration creates a meaningful learning 

environment for novices, because the instructor provides guidance, and an explanation of 

the procedures being demonstrated. Instructor explanation may produce the guidance 

necessary for schema acquisition, whereas Palmiter’s non-narrated animated 

demonstrations could only produce rote learning. 

Therefore, given all of these differences, it is not unexpected that the findings in 

this study are quite different from those of Palmiter’s. The findings of this study are 

certainly not the last word given retention and animated demonstration, but given these 

results, the evidence does not support Palmiter’s (1993) mimicry model. 

Just “Too Easy” 

Critics of this study may suggest the reason for a finding of no significant 

differences during the retention phase, was that the performance problem was “just too 

easy.” Before coming to this conclusion, please consider Figure 32. These results were 

for a single problem, in which partial credit was given. If one were to take a more 

conservative approach, to only consider those learners who actually solved the problem, 

they would find that 58% of the demo learners solved the problem, 44% of the 

demo2+practice group, and 38% of the practice group solved the problem with no errors. 
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In addition, the purpose of the retention phase problem was (1) to assess retention 

in all groups; and (2) allow learners additional practice at a level appropriate for the 

audience. The intended audience for this assessment was a group of novices, those who 

likely only had the prior week’s introduction to Adobe Photoshop Elements 2.0. From a 

learner’s perspective, the retention phase problem (the picnic problem) was neither too 

easy, nor too hard. As evidence for this claim, consider the retention phase mental effort 

ratings (RME), N= 122, suggested that it was neither too easy nor too hard, since  

M= 5.00, SD=1.56, (5.0 is “neither low nor high mental effort”). Thus, this group as a 

whole felt it was neither too easy nor too hard, quite the contrary, they found it to be “just 

right” (See Figure 32). 

 
Figure 32. Retention mental effort histogram 

After reviewing Figure 32, one can see that even though the overall group mean 

for the retention mental effort (RME) rating, was M = 5.00, suggesting learners invested 
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“neither low nor high mental effort,” but the group distribution was negatively skewed, 

Kolmogorov-Smirnov D (3, 87) =  0.16, p< 0.01. This is evidence that the retention phase 

problem (the picnic problem) was not “too easy.” Finally, as this histogram shows the 

greatest number of individuals chose a six out of nine, which means they felt they 

invested “rather high mental effort” while solving this problem. 

Research Questions Three and Four 

Research questions three and four were developed to consider animated 

demonstrations from a cognitive load perspective. This was accomplished by analyzing 

animated demonstrations with two efficiency metrics (relative condition efficiency and 

performance efficiency). 

Research Question Three - Relative Condition Efficiency 

Research question three was concerned with the relative condition efficiency 

(RCE) of the instructional conditions. This metric was developed as an approach to 

compare instructional conditions given mental effort and performance measures (Paas & 

van Merriënboer, 1993). 

In many ways the current study was modeled after a study by Tuovinen and 

Sweller (1999), which used relative condition efficiency to compare the learner 

performance of those who learned via worked examples or discovery problem solving. 

They found that novice learners who studied worked examples scored significantly 

higher on pencil and paper tests, than their peers who learned through discovery problem 

solving. 

The current study compared similar conditions to those used in the Tuovinen and 

Sweller study, but used animated demonstrations. The expectation was that the animated 
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demonstration conditions would out perform their problem solving peers. The week one 

results were consistent with Tuovinen and Sweller’s results, since there was a significant 

difference between groups scores, F (2, 68) = 3.93, p = 0.03 (See Table 26 & Figure 33). 

However, post hoc comparisons with Scheffé’s test (p<0.05) revealed no significant 

differences. 

Table 26 

Week one relative condition efficiency by group 

 demo demo+practice demo2+practice practice 
n 
RCE1 
M 
SD 

NA 
 

NA 
NA 

21 
 

0.50 
0.63 

31 
 

-0.16 
1.11 

17 
 

-0.32 
1.25 

 

 

                         Figure 33. Week one relative condition efficiency (RCE1) 

The week two results found that there was no difference between group scores, 

since an ANOVA revealed an F (3, 87) = 0.38, p = 0.77 (  See Table 27 & Figure 34). 
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                        Figure 34. Week two relative condition efficiency (RCE2) 

Table 27 

Week two relative condition efficiency (RCE2) by group 

 demo demo+practice demo2+practice practice 
n 
 
RCE2 
M 
SD 

19 
 
 

-0.14 
0.81 

21 
 
 

0.17 
0.95 

31 
 
 

0.00 
0.92 

17 
 
 

-0.05 
1.10 

 

 

The Results in Terms of Variability Effect 

Paas and van Merriënboer (1994) compared high and low variability instructional 

conditions. They found that learners gained most from varied context examples. 

Specifically, they invested less time and mental effort, which they later described as the 

“variability effect” (Sweller, van Merriënboer, & Paas, 1998). 
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The development of the second animated demonstration (demo2) was an attempt 

to determine if varying the context of animated demonstrations would induce the 

variability effect. The inclusion of a second animated demonstration (the photo collage 

demonstration) produced a “varied context example” as described by Clark, Nguyen, and 

Sweller (2006a), and in turn generated the demo2+practice group.  

As predicted by the variability effect or cognitive load theory, those who studied a 

varied context demonstration before practice (demo2+practice), significantly out-

performed those who learned through problem solving (the practice condition). This is an 

important finding, because it shows animated demonstrations are useful as authentic 

instruction, and may significantly improve learner performance. It extends the use of 

animated demonstrations from only being used in a similar context, to different problem 

scenarios, in which the learner must focus on the underlying problem structure, to grasp 

the problem schema. 

These results do not support Palmiter’s mimicry model (Palmiter, 1993), for it 

shows learners who study varied context animated demonstrations are able to learn an 

underlying problem schema, to later reconstruct that schema from memory. Therefore, 

those who study animated demonstrations do not mimic the actions of the instructor, for 

they are interpreting the new problem, in terms of the problem solving operators, and are 

using a problem schema to solve the problem.  

As stated above the week one results are positive evidence of the variability effect 

given animated demonstrations, and although significant differences were found at the 

p=0.03 level, group differences could not be detected in post hoc comparisons with 

Scheffé’s test (p<0.05). Therefore, it should not be stated that the subjects in this 
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dissertation exhibited the variability effect. It seems the accuracy ceiling effect, has again 

caused some difficulties, this time accuracy (AC1) made it difficult for the RCE1 

ANOVA to detect group variability. 

Research Question Four - Performance efficiency 

Research question four considered performance efficiency (PE), a new metric 

developed during this study. Performance efficiency is a construct which is a 

combination of Z-scores, in this case performance time (PT2) and accuracy (AC2). 

Performance efficiency was calculated in both the acquisition and retention phases. 

There was no precedence for this metric, so it was hypothesized that a result of no 

significant differences would be found. The week one performance efficiency metric was 

calculated, but significant differences were found since F (2, 68) = 12.95, p<0.0001. Post 

hoc comparisons with Scheffé’s test (p<0.05) found that both the demo+practice and 

demo2+practice conditions had significantly more efficient performances than the 

practice condition (See Table 28 & Figure 35). 

Table 28 

Week one performance efficiency (PE1) by group 

 demo demo+practice demo2+practice practice 
n 
Relative condition efficiency 
(PE2) 
M 
SD 

NA 
 
 

NA 
NA 

21 
 
 

0.55 
0.61 

31 
 
 

0.04 
0.77 

17 
 
 

-0.75 
0.99 
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                            Figure 35. Week one performance efficiency (PE1) 

Like the other efficiency metrics, performance efficiency (PE) is read from the 

diagonal line in the center of the graph, where E=0. Because less time is more efficient 

and a greater accuracy score is worth more points, conditions in the upper left quadrant of 

the graph (above the E=0 line) are the most efficient, with greater quantities of E 

indicating a greater performance efficiency. E in this case is from performance efficiency, 

and is the perpendicular distance from E=0 to the group mean score. 

Performance efficiency was also measured during week two (PE2) the retention 

phase. The expectation was that there would be no significant differences between 

groups. This expectation was found to be the case, during the retention phase, since an 
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ANOVA for performance efficiency revealed no significant differences between group 

means, because F (3, 87) = 0.42, p=0.74 (See Figure 36 & Table 29). 

 
                                       Figure 36. Performance efficiency (PE2) 

Table 29 

Performance efficiency by group 

 demo demo+practice demo2+practice practice 
n 
Performance efficiency 
(PE) 
M 
SD 

19 
 
 

-0.13 
0.95 

21 
 
 

0.18 
1.05 

31 
 
 

-0.06 
0.97 

17 
 
 

0.03 
0.76 

 

The reason this metric was developed was because there has been some 

discussion concerning the subjectivity of cognitive load measurements (e.g., Brünken, 

Plass, & Luetner, 2003). So this metric was devised to bridge these hybrid 
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subjective/objective measures with a metric that was completely based on objective 

performance measures. 

The reason cognitive load measures like relative condition efficiency are so 

useful, is that they allow a researcher to contrast two or more instructional conditions on 

two scales simultaneously. Performance efficiency allows one to graph performance, in 

this case accuracy, versus performance time. It is useful to contrast performance 

efficiency (PE1) (See Figure 35) to relative condition efficiency (RCE1) (See Figure 33) 

to see the relative contributions of each variable.  

Finally performance efficiency is very generalizable, for it is conceivable that any 

performance measure could be contrasted with its performance time, to be graph and 

analyzed, in this manner. Therefore, this measure may be used outside of the cognitive 

load literature. 

Why Were the Worked Example or Variability Effects Not Evident? 

Even though animated demonstrations act as animated worked examples (Lewis, 

2005), it is quite possible that they may not exhibit the worked example or variability 

effects. As discussed in Chapter two, Sweller and his associates have encountered this 

phenomenon with other worked examples (Tarmizi & Sweller, 1989; Ward & Sweller, 

1990). Both of these studies found that if learners using worked examples had to integrate 

multiple sources of information, the worked examples would be no more effective than 

problem solving, and in some cases, may even be less effective. 

Ward and Sweller (1990) proposed that in these cases, when learners were 

required to integrate multiple sources of information that learners may become 

overloaded and subsequently not exhibit the worked-example effect.  
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In the current study, demonstration learners significantly outperformed their 

problem solving peers, but their performance did not meet the operational definition of 

the worked example or variability effect. If one were to speculate why demonstration 

learners did not meet these effects, it could be stated that these animated demonstrations 

were somewhat lengthy, over 10 minutes. This has a potential for overload, and may have 

decreased the ability of the animated demonstrations to communicate its message. 

However, learner performance was not significantly different a week later, so, although 

these animated demonstrations did not technically exhibit the worked example or 

variability effects, this presentation form was not detrimental to learning. Quite the 

contrary, during the acquisition phase, learners using this form of instruction significantly 

outperformed their peers given performance efficiency and performance time. 

The Implications of this Study 

The context of this dissertation study 

Computers have become very important in our knowledge worker society 

(Cortada, 1998). Lewis (2005) describes animated demonstration as a presentation form 

that is generalizable to all computer-based procedures. So an efficient method of 

instruction that applies to all computer-based procedures is very valuable. In the past few 

years, animated demonstrations have become increasingly common, and now are used by 

both education and industry.  

Well-known companies, like Bank of America, Amazon.com and Microsoft, are 

all using animated demonstrations as a way to teach clients how to use their online 

services. Microsoft has even begun to incorporate “demos” (animated demonstrations) 

into its Office® products, as training and support. They also offer this training through a 
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separate website called the “Office Demo Showcase” (Microsoft, 2007). Finally, 

organizational training groups like Element K are also beginning to offer animated 

demonstrations as an “online training service.” 

Even though these well-known companies are developing materials, educators 

debate if we should use these forms of instruction. The argument against animated 

demonstrations, are that they are a passive form of instruction. 

Implications for Instructional Designers 

If enough evidence-based literature begins to guide the actions of instructional 

designers, we will begin to produce efficient effective instruction. Unfortunately, the 

current literature is rarely based on empirical evidence. Mayer (2004) describes this 

literature as often about the “fuzzy and unproductive world of educational ideology” 

(p.18). When considering initial skill acquisition, educators all too often immediately 

employ discovery learning or what Mayer (2004) describes as the “constructivist teaching 

fallacy” (p.15) or “learning by doing” (p. 17). As this dissertation has shown, this 

“learning by doing” philosophy dates back to the 1960s and the discovery learning 

movement. It was then that Bruner (1961) proposed two approaches toward instruction.  

One view, the expository approach, is that learners should be guided during early 

instruction. The alternative perspective was that learners should be allowed to discover 

problem solutions on their own (discovery learning). In short, Bruner (1961) says 

“Practice in discovering for oneself teaches one to acquire information in a way that 

makes that information more readily viable in problem solving. So goes the hypothesis” 

(Bruner, 1961, p.26). 
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This hypothesis was tested in this dissertation, and this study, like many other 

worked example studies (e.g. Tuovinen and Sweller, 1999), has found that those learners 

who studied worked examples (the expository mode) performed significantly better than 

their peers who learned through discovery problem solving (the hypothetical mode).  

Klahr and Nigam (2004) describe why this is the case, when they propose those 

learning “in discovery situations are more likely than those receiving direct instruction to 

encounter inconsistent or misleading feedback, to make encoding errors and causal 

misattributions, and to experience inadequate practice and elaboration” (Klahr & Nigam, 

2004, p.661). According to Kirschner, Sweller, and Clark (2006) those using direct 

methods of instruction are better able to acquire a problem schema. However, with 

enough practice, it may be possible that those learning through discovery learning may 

eventually “catch up,” but at what cost? Sweller would suggest these learners may be 

overloaded, and could even encounter enough extraneous cognitive load that they would 

be unable to solve problems, perhaps never to learn the desired procedure, simply 

because of the instructional strategies employed. 

In the current study, it was found that learners using direct methods of instruction 

had improved performance during early schema acquisition. So why should we allow 

learners to encounter misleading feedback? Or as Sweller (1988) describes it, spend their 

time in problem solving search without truly learning? The learner’s time is important. 

Why should educators through their inaction, allow learners to wander, perhaps 

aimlessly, in an attempt to solve problems?  

It is much more ethical for educators to take action, and guide learners. As this 

and many other studies have shown, strong guidance through direct instruction has a clear 
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advantage for leading novices to a better understanding of the problems they are trying to 

solve (Kirschner, Sweller, & Clark, 2006).  

While educators are entitled to their own opinions, the empirical evidence, now 

including the results of this study, shows animated demonstrations promote improved 

learner performance and are the most efficient means of teaching procedural skills. This 

time savings should be used to allow novices to simply learn more, and be more 

productive. Therefore, it is the recommendation of this study that instructional designers 

use this effective and evidence-based instructional strategy, to provide learners with an 

efficient means of accomplishing procedure-based learning. 

Implications for Researchers 

As the previous section described, the results of this study are important to 

instructional designers, but this study has some important implications for educational 

researchers. This is because recordings are not just an efficient means of conveying 

content to learners, but also a practical tool to allow researchers to review, categorize and 

analyze learner behavior. 

Recall that Nielsen (1993) defined usability in terms of five attributes 

(learnability, efficiency, memorability, errors, & satisfaction). Given this dissertation, one 

can see how these attributes are related to instructional design given e-learning 

environments, cognitive load theory, and the methodology of this study. Thus this 

methodology was successful, because it showed that using software to record learner on-

screen action is an effective means of evaluating e-learning environments, from a 

usability, or learnability perspective. 
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An important implication of this study is that it demonstrated a new approach to 

instructional design research, for it provided a means of evaluating learning as it occurs. 

By recording learner on screen actions, it was possible to document how novices behave 

and react when tasked with an unfamiliar learning environment. Recordings documented 

learner errors, the problem solving operators they employed, and the problems that they 

solved.  

Researchers of course, are human and therefore they too, are constrained by 

working memory. This methodology decreases the cognitive load of the researcher 

(researcher cognitive load), by freeing them from the constraints of time. Therefore 

researchers do not have to record behaviors as they occur, because this methodology 

allows them to document learner actions weeks or months after the actual behavior. So 

perhaps the most important benefit of this methodology is that it allows researchers to 

document multiple outcome variables that may occur simultaneously.  

Finally, the most important implication of this research is that this methodology 

may be generalized to any e-learning environment. Recordings of learner on-screen 

actions allow educational researchers to review learner behavior repeatedly if necessary, 

to document multiple aspects of that behavior (Martin & Bateson, 1993). This allows 

researchers to easily collect several variables that may be occurring simultaneously. 

Conclusions 

The importance of this study’s results should not be underestimated. The results 

of this study are further evidence of the worked-example effect, but now given animated 

demonstrations. Since animated demonstrations are increasingly being used, these results 
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provide further support for their use. Therefore this study has established that animated 

demonstrations are indeed an effective and efficient form of instruction. 

Clark (1994) described this idea well, during the Clark-Kozma debates, when he 

said “The designer can and must choose the less expensive and most cognitively efficient 

way to represent and deliver instruction” (Clark, 1994, p.22). Clark (2001) drew attention 

to cognitive load research and suggested that it was a promising area. Cognitive load 

research ensures that learners are able to learn, and in the most efficient manner possible. 

In this study learners were given the opportunity to learn in a variety of ways. 

Some would hold that experience is the best teacher, but this position diminishes the role 

of the instructor. Instructors have purpose in any learning environment, they provide 

guidance and support.  

However, in an e-learning environment that role may be reduced because of an 

inability to communicate with “anytime anywhere” learners, but animated demonstrations 

allow researchers to overcome the obstacle of time and place because it allows the 

instructor’s guidance to be there “just in time” for that “e-learner.” 

It’s important to note, that although this dissertation used media and made several 

comparisons, it did not compare different forms of media, it compared different 

instructional strategies, given a learner-centric view (Jonassen, Campbell, & Davidson, 

1994; Mayer, 1997). So unlike previous animated demonstration researchers (e.g. 

Palmiter, 1991; Waterson & O’Malley, 1993) this study compared different instructional 

strategies. In doing so, it found direct instructional strategies are more effective and 

efficient. 
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This dissertation was successful on several levels. In short this study: 

• found positive evidence of both the worked example and variability effects 

given animated demonstrations;  

• demonstrated the durability of worked example based instruction;  

• found recording learner on-screen actions is a practical means of 

documenting the learnability of several instructional strategies; 

• investigated the utility of a new metric called “performance efficiency,” 

and used this metric to objectively compare several instructional 

conditions, to analyzed the relative efficiency of learner performance; 

• and finally, found further evidence that Palmiter’s animation deficit is not 

a concern given narrated animated demonstrations. 

This study is not the final word given animated demonstrations and cognitive 

load. Thus, as with many research projects, this dissertation generated more questions 

than it answered, and therefore recommends future research. 

Future Research 

This section discusses some of these unanswered questions, and poses them in a 

form that future researchers may find useful. 

The Length of an Animated Demonstration 

Sweller (1994) proposed that element interactivity is a source of intrinsic 

cognitive load. Certainly animated demonstrations have element interactivity, or an 

inherent complexity associated with them. As this study showed, learners who are 

exposed to animated demonstrations were no different from those who practiced, one 

week after initial instruction. It was proposed that the reason these conditions did not 
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exhibit the worked-example effect, was because these demonstrations were somewhat 

lengthy. Would this be the case if the length of the instruction were different? 

Pollock et al. (2002) proposed the element interactivity effect. In doing so, they 

provided evidence that it is not the amount of information that matters, but the number of 

interacting elements within the instruction. However, as the length of the instruction 

increases, the probability of interacting elements also increases. Therefore there is a 

potential for a longer animated demonstration to become less useful. 

Given this is the case, what is a good guideline for the length of an animated 

demonstration? Should they be 2-5 minutes or should they be as long as 10-20 minutes? 

Does learner performance deteriorate as a function of the length of the animated 

demonstration? These are all good questions for future researchers. 

Length of the Retention Interval 

While this study found retention was no less durable given animated 

demonstrations, it did so with a fairly short retention interval. One week may not be long 

enough to find any differences. Future researchers should consider similar work with 

longer retention intervals. 

How would learner performance be affected given animated demonstration and 

longer retention intervals? Would the demo group be as productive given a two week 

interval? Are Tuovinen and Sweller’s concerns founded given three to four weeks? 

In a related line of reasoning, Lewis (2005) proposed learners could explore a 

series of animated demonstrations (a demobank) to learn computer-based procedures. 

The issue here is that learners do not know how to accomplish their tasks nor do they 
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know the underlying moves associated with a task, therefore will providing a series of 

animated demonstrations impair or improve learning? 

Learner Errors 

Earlier in this chapter, the methodology of this study was described as taking a 

learnability perspective. This methodology allows an educational researcher to analyze 

why a learner makes errors. A variety of different types of learner errors could be 

detected when viewing recordings of learner on-screen action. These errors were related 

to the various aspects of the problems presented.  

Some learners clearly had not learned, or had forgotten how to rotate objects 

within a scene a week after initial instruction. In this case, a learner’s final product would 

have each piece of the problem placed correctly, but not rotated correctly. In addition, 

many learners had difficulty remembering how to flip layers in the scene. This was 

perhaps the most common error. Finally learners often had difficulty relocating layers 

relative to one another.  

In each of these cases, learners had difficulties with the underlying skills of the 

presentation. This is as opposed to the situation during week one, when a majority of 

learners succeeded. Again this was not associated with any one instructional condition 

and was something that occurred in all conditions. Recall that the groups were not 

significantly different a week after instruction.  

Note the columns of the rubric in Table 30. The columns in this problem are 

identical to the columns in week one. 



 193

Table 30 

Picnic problem accuracy rubric 

flip layer rotate move item 
 ***   umbrella 
 ***   tshirt 

*** ***   head 
*** *** ***  right leg 
*** ***   head 2 
*** ***   purple shirt 
***    hat 
*** *** ***  s left leg 
*** *** ***  bent right leg 
*** *** ***  left leg 
***    green shorts 
*** *** ***  arm 2 
***    pink shorts 
*** *** ***  left arm 
*** ***   body 
*** ***   picnic basket 
*** *** ***  arm 
*** ***   right arm 
*** ***   torso 
*** ***   table 
*** ***   bird3 
*** *** ***  bird2 
*** ***   bird1 

0 0 0 0 0 
 

These were the underlying skills of the lesson, and perhaps is the best way to 

categorize learner errors. Remedial work with additional demonstrations or feedback, 

could help to alleviate these learner errors. Future researcher should refine the 

methodologies of this study, to consider more refined methods of categorizing learner 

error. It is hoped that future researchers will use techniques like those employed in this 

study, to evaluate instructional materials, or take this learnability perspective toward 

instructional materials, to make them more “learnable.”  

This learnability perspective acts as an extension to cognitive load theory, for it 

allows cognitive load researchers, to objectively document learner errors. It also allows 



 194

researchers to analyze instructional design strategies, to consider how these strategies 

affect the performance of complex cognitive tasks. Since these methods are 

generalizable, this objective approach toward instructional design research may be used 

by any educational researcher, to evaluate and refine procedural instruction, to produce 

more efficient and effective instructional materials.  

Are There Other Useful Metrics? 

Instructional science is still evolving, and cognitive load theory is just one aspect 

of this growing field. One of the goals of this dissertation was to synthesize cognitive 

load theory with human computer interaction (HCI) research. Performance efficiency is a 

tangible result of this synthesis. Its application to instructional design research was 

expected, but this metric also has applications in other related fields, perhaps as a 

research tool in human factor’s research.  

Now the question becomes: Are there other useful metrics like performance 

efficiency? Perhaps cognitive load measurements could measure performance over time, 

and allow researchers to develop “learning rate” metrics. Figure 37 is a graphic 

illustration showing how this hypothetical “learning rate” metric, may look if it compared 

two instructional strategies over time. Perhaps someday instructional designers will be 

able to improve the rate at which learners learn, in other words improve “the learning 

curve,” to produce an expert level performance quicker. 
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Figure 37. A hypothetical learning rate metric 

Finally, future researchers will probably study learner performance and cognitive 

load, given more objective methods, perhaps in a HCI context. No matter how 

Instructional Science continues to grow and evolve, it’s important that we attempt to 

answer useful, practical questions about learning and instruction.
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APPENDIX A: ANIMATED DEMONSTRATION STUDIES 

Authors (# subjects) Instructional conditions 
Test session variables 

Results 

Palmiter & Elkerton 
(1991) 
(N=48) 
Subject matter: 
HyperCard 
12 procedures 

-Text only, 
-Animated demonstration,  
-Animated demonstration 
    w/text 
Immediate test, 
& delayed test 
(1 week later) 
Performance time, 
accuracy, 
retention, 
& transfer 

Speed (Performance time): a significant session x media interaction  
F (2, 42) =7.06, p<0.003 with both demonstration groups completing 
tasks in significantly less time than text group at the initial test. 
Accuracy: There was a significant session x media interaction  
F (2, 42), p < 0.001 with the demonstration groups completing 
significantly more correct trials than the text group at the initial test. 
Retention: There was no significant difference between the groups in 
performance time a week later. 
Transfer: The demonstration groups completed similar task in less time 
during the initial session than the text group. A significant Session x 
Media interaction F (2, 42) = 3.64, p < 0.04 was found. A significant 
increase in time for the demonstration groups between sessions. 

Waterson & O’Malley 
(1993) 
(N=30)  
Subject matter: 
Cricket Graph 
6 procedures 

-Text only, 
-Animated demonstration, 
- Combination group  
(Narrated demonstration) 
Performance time, task type 
(identical, similar, different) 

Performance time: 
The combination group completed tasks in significantly less time than text 
group given identical tasks F (2, 54) =14.08, p<0.01, and similar tasks  
F (2, 54) = 9.85, p<0.01, but not significantly different given different 
tasks (p=0.07) 

Lipps, Trafton, & Gray 
(1998) 
(N=64) 
Subject matter: 
Microsoft Excel 
(12 procedure) 

-Text only, immediate test 
-Animated demonstration, no 
immediate test, 
All delayed test (1 week 
later) 
Accuracy, Performance time  

Accuracy: F (1, 60) = 9.56, p < .005, MSE =0.01, the demonstration group 
significantly more accurately at the than text group acquisition session  
Performance time: F (1, 60) =15.88, p <.001, MSE = 0.13 the animation 
group performed tasks in significantly less than time than the text group  
(but not at delayed test) 
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APPENDIX B: THE POOLED-SEMESTER SOLUTION 

An a priori power analysis suggested a sample size of n = 115 subjects, in order 

to detect a small effect size. A sample size of this magnitude required data to be collected 

across two semesters (the summer and fall semesters of 2007). Therefore it was important 

to question if this pooled dataset would affect statistical tests. To answer this question, an 

analysis was conducted to determine if a pooled-semester dataset was a viable solution 

for data collection. 

The reader may recall that the demo group did not assemble the week one 

problem (the Mr. Potato head problem). Therefore the week two performance (the picnic 

problem) was chosen to compare semester subgroups, because it was the only 

performance in which all participants were involved. Thus a MANOVA of week two 

dependent variables, performance time (PT2) and accuracy (AC2), was used to compare 

semester subgroups. 

A MANOVA makes several assumptions (assumptions of independence, 

normality and homoscedasticity) (Tabachnick & Fidell, 2001; Stevens, 2002). According 

to Stevens (2002), each of these assumptions should be considered before proceeding 

with a MANOVA, and Stevens provides a general procedure for assessing each of these 

assumptions. The next few subsections are arranged according to Stevens’ general 

procedure. Finally, this section concludes with an assessment of the pooled-semester 

solution for data analysis. 

Independence Assumption - Are the Observations Independent? 

The first step in Steven’s general procedure is concerned with the independence 

assumption (Stevens, 2002). Specifically, it questions if the observations are independent 
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of one another? Stevens (2002) lists this assumption first and emphasizes that violations 

of this assumption are serious. 

According to Glass and Hopkins (1984) “Whenever the treatment is individually 

administered, observations are independent. But where treatments involve interaction 

among persons, such as discussion method or group counseling, the observations may 

influence each other (p.353).” In this study, the treatments were individually 

administered, so according to Glass and Hopkins, it may be said that this assumption has 

been met, since learners were required to work alone during each performance. 

The Normality Assumption 

As with ANOVA, normality is an important consideration, but given multiple 

outcome variables multivariate normality must be assumed. Stevens (2002) stated “a 

statistical test for multivariate normality is still not available on SAS” (p.263). However, 

it has been several years since Stevens’ published this text and now a SAS macro 

program, the %MULTNORM macro program is available from the SAS website (SAS, 

2007b).  

The %MULTNORM macro allows researchers to test for multivariate and 

univariate normality (SAS, 2007b). It provides a Shapiro Wilk’s test (Shapiro & Wilk, 

1965) for each of the variables. Shapiro and Wilk developed the W statistic to test for 

univariate normality. However, SAS (2007b) provides this statistic to help researchers to 

make decisions about multivariate normality. If the Shapiro Wilk’s test rejects univariate 

normality, this is a good indication that the sample may not be multivariate normal. 

Stevens (2002) also makes this point as he describes his general procedure for checking 

the assumptions of a MANOVA. Finally the Shapiro Wilk’s test rejects univariate 



 

APPENDIX B (CONTINUED) 

 216

normality, when the null hypothesis is rejected (when the p-value of W is found to be less 

than 0.05). 

In addition, to the Shapiro Wilk’s test, the %MULTNORM macro provides two 

multivariate statistics, Mardia skewness β1p and Mardia kurtosis β2p. These statistics are 

based on several articles by Mardia (Mardia, 1970; Mardia 1975). When considering 

skewness or kurtosis, if the null hypothesis, is rejected (in this case at the p=0.05 level), 

then this suggests that the data set is multivariate non-normal (Keselman, 2005). 

This %MULTNORM macro and its associated tests were implemented for both 

week two accuracy (AC2) and week two performance time (PT2) given performance on 

the picnic problem. Again this problem was chosen because all participants were 

involved. The %MULTNORM macro program revealed non-normality (violating the 

normality assumption) when the Shapiro-Wilks’ W= 0.76, p<0.0001 for accuracy (AC2), 

and for performance time (PT2) the Shapiro-Wilks’ was W = 0.95, p=0.0015. Mardia 

skewness was found to be β1p= 146.5, p<0.0001 and Mardia kurtosis was β2p=12.01, 

p<0.0001. Violations of the normality assumption have effects on power and type I error 

(Stevens, 2002). However, Stevens (2002) describes a MANOVA as being robust to 

violations of the normality assumption, with respect to type I error. Stevens also 

discusses skewness and kurtosis in relation to this assumption. He explains that 

multivariate skewness has negligible effects on power, but Olson (1974) found 

platykurtosis has a substantial effect on power.  

The level of platykurtosis in this sample is cause for concern, for it attenuates 

power (Stevens, 2002), but there may be a good reason for the platykurtosis and non-
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normality in this dataset. Both platykurtosis and normality are affected by multivariate 

outliers (Tabachnick & Fidell, 2001). 

Are there Multivariate Outliers? 

Outliers are individual observations that differ dramatically from the rest of the 

observations (Glass & Hopkins, 1996). Multivariate outliers differ from the rest of the 

observations on two or more scales (Stevens, 2002). Figure 38 is a graphic representation 

of the week two dataset. This figure was generated with a SAS macro (ELLIPSES) 

(Friendly, 2007b).  

 
Figure 38. A bivariate plot of the week two performance time and accuracy Z-Scores 

Week two accuracy (AC2) and performance time (PT2) Z-scores are compared in 

this plot, 0 (red) = “Summer,” and 1 (black) = “Fall.” The ellipses represent a single 
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standard deviation (σ=1) from the mean of each group. Group means (the center point 

within the ellipses) are labeled with cross marks. Figure 38 allows the reader to see that 

some values are more extreme, relative to those that are more normal. Notice how several 

points lie far outside the ellipses. Some of these points (the extreme ones) are probably 

multivariate outliers. 

Potential Multivariate Outliers 

Graphics like those in Figure 38 are useful for visualizing the overall data set, but 

more can be done to analyze the data for outliers. The OUTLIER macro (Friendly, 

2007c) was used to analyze the week two data set to detect multivariate outliers given the 

two semesters sub-groups. The OUTLIER macro uses “multivariate trimming,” a 

procedure first described by Gnanadesikan and Kettenring (1972). Multivariate trimming 

trims potential multivariate outliers in a series of iterative passes. The OUTLIER macro 

made seven passes to trim potential outliers. To arrive at a correct number of passes, the 

researcher chooses a relatively low number, and then that number is increased by one, 

until no new outliers are found (Friendly, 2007c). 

Table 31 lists the potential outliers. The OUTLIER macro isolated these 

observations because the probability of their squared Mahalanobis distances, D2 (DSQ) 

was less than 0.05 (Friendly, 1991). Researchers may remove outliers from a sample, but 

if these observations are deemed to be a part of the population, the researcher may retain 

those values (Tabachnick and Fidell, 2001). However, if the researcher chooses to retain 

outliers, Tabachnick and Fidell advise them to reduce the impact of the outliers, by 

transforming the dataset.  
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Table 31 

Potential multivariate outliers 

Obs ID Group PT2 AC2 DSQ prob 
1 45 2 1700 48 6.065 0.0482 
2 23 1 1811 41 6.088 0.04764 
3 61 3 576 48 6.535 0.03811 
4 40 2 571 48 6.6 0.03689 
5 25 1 1694 38 6.874 0.03216 
6 27 1 629 36 6.901 0.03173 
7 15 1 781 35 7.246 0.02671 
8 29 1 1852 48 8.154 0.01696 
9 72 3 979 34 8.303 0.01574 

10 20 1 1187 34 8.553 0.01389 
11 98 4 1983 46 8.957 0.01135 
12 12 1 2017 42 9.371 0.00923 
13 46 2 1406 34 9.854 0.00725 
14 43 2 1206 33 10.635 0.00491 
15 110 4 788 33 10.846 0.00441 
16 96 4 2275 40 16.613 0.00025 
17 118 4 582 31 16.784 0.00023 
18 97 4 827 30 17.742 0.00014 
19 111 4 1518 31 17.793 0.00014 
20 91 3 1225 30 18.04 0.00012 
21 2 1 1715 30 23.236 9E-06 
22 28 1 1330 28 24.692 4E-06 
23 13 1 2316 34 26.665 2E-06 
24 48 2 2625 39 28.251 1E-06 
25 39 2 2682 41 28.395 1E-06 
26 62 3 1531 25 37.43 0 
27 19 1 1036 20 55.317 0 
28 53 2 869 18 65.183 0 
29 36 2 1223 18 66.467 0 
30 22 1 152 16 81.725 0 
31 18 1 608 13 94.623 0 
32 104 4 2101 14 105.327 0 
33 122 3 242 4 162.198 0 
34 123 1 242 0 196.277 0 
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Stevens’ (2002) procedure allows for outliers to be retained in the dataset, but he 

advises researchers to consider transforming the dataset in order to protect Box’s M test 

(the next step in the process). 

Transformations 

Transformations were performed (See Figure 39). Compare the upper and lower 

panels. As this figure shows performance time was positively skewed, and accuracy was 

negatively skewed. The reader may recall that Mardia skewness was found to be 

 β1p= 97.65, p<.0001 and Mardia kurtosis was β2p=9.00, p<.0001. 

Stevens (2002) advises researchers to transform positively skewed data, by using 

an x = x  transformation, in this case TPT2 = 2PT  (where TPT2=transformed week 

two performance time, and PT2= performance during week two).  

Rummel (1970) gave several data transformations for negatively skewed data 

(like the accuracy data). Rummel’s suggestion of adding a constant (c) to the log of the 

variable, x =log (x+c), was found to be the best solution. So, Rummel’s transformation 

became TAC2 = log (50-AC2), where, TAC2 = the transformed week two accuracy score 

during week two and AC2 = the accuracy score. Again these transformations were made 

in order to protect Box’s M test from non-normality. 
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Figure 39. Week two histograms demonstrating the effects of transformations 

Normality Following Transformation 

The %MULTNORM macro program was run once again following 

transformations. Although transformations made a difference this macro again revealed 

non-normality when the Shapiro-Wilks’ W= 0.95, p=0.0012 for accuracy (AC2), and for 

performance time (PT2) the Shapiro-Wilks’ was W = 0.98, p=0.42. Mardia skewness was 

found to be β1p= 21.11, p=0.0003 and Mardia kurtosis was β2p=3.22, p=0.0013. Even 

though this macro revealed the normality assumption had been violated, a MANOVA is 

robust to violations of this assumption (Stevens, 2002). So this analysis continued to 

investigate the assumptions of the MANOVA, to consider this dataset with Box’s M test. 
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The Homoscedasticity Assumption - Are the Matrices Homogeneous? 

Box’s M test is used to test the assumption of “homoscedasticity” (Box, 1954) 

and is a generalized version of Bartlett’s test (Bartlett, 1937). When Box’s M test is 

significant or heterogeneous, the group variance-covariance matrices differ (e.g. Σ 1≠ Σ 2) 

violating the homoscedasticity assumption. So for a sample to meet the homoscedasticity 

assumption, the variance-covariance matrices should not be significantly different  

(e.g. Σ1= Σ 2). 

Box’s M test was performed, and it was found that the variance-covariance 

matrices were significantly different or heterogeneous, as X2(3, N=122) =8.31, p=0.04, 

φ=0.26. As a result, this overall dataset failed to meet the homoscedasticity assumption 

even after transforming the data. This leaves the analysis with little choice but to remove 

the outliers (listed in Table 31) from the dataset. This decision was not made lightly. The 

homoscedasticity assumption is a necessary requirement of a MANOVA. Therefore a 

dataset without the multivariate outliers in Table 32 is used for the remainder of the 

study. 

Removal of the Outliers 

The OUTLIER macro (Friendly, 2007c) was again used to identify multivariate 

outliers. Next the output from this macro was used in a SAS data step, to actually remove 

them from the dataset. The new dataset, n=88, included 28 observations from the summer 

semester, and 60 from the fall semester. The group composition of these outliers is demo 

=14, demo+practice=8, demo2+practice=5, and finally practice=7. This was somewhat 

troubling as it made for an unequal reduction in groups. 
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Table 32  

Multivariate outliers 

Obs ID Group PT2 AC2 DSQ prob 
1 45 2 1700 48 6.065 0.0482 
2 23 1 1811 41 6.088 0.04764 
3 61 3 576 48 6.535 0.03811 
4 40 2 571 48 6.6 0.03689 
5 25 1 1694 38 6.874 0.03216 
6 27 1 629 36 6.901 0.03173 
7 15 1 781 35 7.246 0.02671 
8 29 1 1852 48 8.154 0.01696 
9 72 3 979 34 8.303 0.01574 

10 20 1 1187 34 8.553 0.01389 
11 98 4 1983 46 8.957 0.01135 
12 12 1 2017 42 9.371 0.00923 
13 46 2 1406 34 9.854 0.00725 
14 43 2 1206 33 10.635 0.00491 
15 110 4 788 33 10.846 0.00441 
16 96 4 2275 40 16.613 0.00025 
17 118 4 582 31 16.784 0.00023 
18 97 4 827 30 17.742 0.00014 
19 111 4 1518 31 17.793 0.00014 
20 91 3 1225 30 18.04 0.00012 
21 2 1 1715 30 23.236 9E-06 
22 28 1 1330 28 24.692 4E-06 
23 13 1 2316 34 26.665 2E-06 
24 48 2 2625 39 28.251 1E-06 
25 39 2 2682 41 28.395 1E-06 
26 62 3 1531 25 37.43 0 
27 19 1 1036 20 55.317 0 
28 53 2 869 18 65.183 0 
29 36 2 1223 18 66.467 0 
30 22 1 152 16 81.725 0 
31 18 1 608 13 94.623 0 
32 104 4 2101 14 105.327 0 
33 122 3 242 4 162.198 0 
34 123 1 242 0 196.277 0 
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In addition to providing a table of potential outliers, the OUTLIER macro 

calculates Mahalanobis distances (Di) for each item in the dataset, then plots them as a 

squared distance (DSQ) relative to the χ2 Quantile (SAS, 2007a) (See Figure 40). Outliers 

in this plot are substantially above the blue line (Friendly, 1991). 

However a chi square plot is also subject to the effects of outliers (Friendly, 

1991). The dotted blue line (the expected value of the χ2 Quantile) is not level. This is 

because this line is being influenced by the outliers in the upper right-hand corner of the 

plot (Friendly, 1991). Friendly was aware of this scenario and designed the OUTLIER 

macro to use “multivariate trimming.” 

 

Figure 40. Potential multivariate outliers 

The OUTLIER macro trims potential multivariate outliers in a series of iterative 

passes (7 passes in the current study) (Friendly, 1991). Thus these values were trimmed 
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from the data set using a SAS data step, to produce a similar plot, free from the effects of 

outliers. Figure 41 is a plot of this dataset, with these values trimmed from the dataset, 

however the data are represented as a detrended quantile-quantile or QQ plot, (prepared 

using Friendly’s cqplot macro, Friendly, 2007e). Notice how all values now lie within the 

confidence bands (the dotted red lines). 

 

Figure 41. Detrended QQ plot, the dataset after outlier removal 

After outliers were removed, the %MULTNORM macro was revisited. This was 

to test for the normality of the dataset without outliers, and this new dataset revealed a 

different set of results. The macro revealed non-normality for week two accuracy (AC2) 

because there was a Shapiro-Wilks’ W= 0.94, p=0.0005, but week two performance time 

(PT2) was normal since the Shapiro-Wilks’ was W = 0.96, p=0.07. However, skewness 
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and kurtosis were much closer to normality, since Mardia skewness was β1p= 2.05, 

p=0.72 and Mardia kurtosis was β2p=-1.99, p=0.0467 (See Figure 42).  

Earlier it was discussed that Olson (1974) found that kurtosis does have an effect 

on power, and given that this is the case, transformations were implemented. The 

distribution of accuracy in Figure 42 is positively skewed without the outliers.  

           Figure 42. Week two histograms demonstrating the effects of transformations  

So given this new dataset both variables required an x = x  transformation, in 

this case TPT2 = 2PT  (where PT2= performance during week two, & 

TPT2=transformed week two performance time) and TAC2 = 2AC  (where AC2= 
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accuracy during week two, & TAC2=transformed week two accuracy). This new outlier 

free dataset has a somewhat different distribution.  

 Normality Following Transformation 

The %MULTNORM macro program was run once again following 

transformations. This macro again revealed univariate non-normality (violating the 

normality assumption) because the Shapiro-Wilks’ W= 0.94, p=0.0005 for transformed 

accuracy (TAC2), but for transformed performance time (TPT2) the Shapiro-Wilks’ was 

normal because W = 0.97, p=0.23. In addition, Mardia skewness was found to be normal 

β1p= 0.86, p=0.93 and Mardia kurtosis was also found to be normal β2p=-1.90, p=0.06. 

Even though this macro revealed univariate non-normality, or that the assumption had 

been violated, a MANOVA is robust to violations of the normality assumption (Stevens, 

2002). So this analysis continued to assess the assumptions of this MANOVA, to 

consider this dataset with Box’s M test. 

The Homoscedasticity Assumption 

Following transformations, Box’s M test was performed with this dataset (without 

the multivariate outliers), and it was found that the variance-covariance matrices were not 

significantly different, or were homogeneous, since X2(3, N=88) =4.50, p=0.21, φ=0.23. 

Since they were found to be homogenous, there is no evidence that the homoscedasticity 

assumption has been violated given this dataset, so it is reasonable to consider a 

MANOVA. 
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The Decision to Use a MANOVA 

In summary, this analysis has shown the sample was non-normal, but departures 

from normality have a limited effect on Type I error (Stevens, 2002, Mardia, 1971). 

Mardia kurtosis was originally found to be β2p=12.01, p<.0001. However, this was 

mainly due to a group of multivariate outliers, which were subsequently removed from 

the initial dataset, to produce an outlier free dataset n=88. Box’s M test was conducted 

with the outlier free dataset and it was found that the variance-covariance matrices were 

not significantly different, or homogeneous as X2(3, N=88) =4.50, p=0.21, φ=0.23. 

Therefore it was reasonable to continue with a MANOVA of the pooled semester dataset 

especially given MANOVA is robust to departures from normality (Stevens, 2002). 
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APPENDIX C: THE ACQUISTION PHASE MANOVA 

This MANOVA was analyzed according to Stevens’ general procedure for 

assessing the assumptions of a MANOVA (Stevens, 2002). Therefore the next few 

sections several questions will address the assumptions of the acquisition phase (week 

one) MANOVA.  

Are the Observations Independent? 

When considering a MANOVA, one must first consider the independence 

assumption (Stevens, 2002). Earlier it was stated that each learner was required to work 

alone and scores were measured separately, thus according to Glass and Hopkins (1984) 

this sample met the independence assumption. 

Is the Acquisition Phase Dataset from a Normal Population? 

The next step in Steven’s general procedure is to address the normality 

assumption (Stevens, 2002). Therefore the %MULTNORM macro was implemented and 

revealed that the acquisition phase dataset was non-normal (violating the normality 

assumption). Multivariate non-normality was revealed when the macro revealed a 

Shapiro-Wilks’ W= 0.62, p<0.0001 for accuracy (AC1), and for performance time (PT1) 

the Shapiro-Wilks’ was W = 0.88, p<0.0001. Mardia skewness was found to be  

β1p= 66.70, p<0.0001 and Mardia kurtosis was β2p=3.79, p<0.0001.  

Analysis of the dataset with the OUTLIER macro (Friendly, 2007b) revealed an 

additional 20 potential multivariate outliers in the acquisition phase dataset (See Table 

33). Stevens (2002) provides several reasons for finding outliers, he suggests it may be 

due to recording or entry errors, or an instrumentation error. Stevens also states “If, 

however, none of these appears to be the case, then one should not drop the outlier, but 
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perhaps report two analyses (one including the outlier and the other excluding it)” 

(Stevens, 2002, p.17). 

Given Stevens’ suggestion, and the fact that there were a series of potential 

outliers in the acquisition dataset, this study will present both prospective solutions: 

solution one (remove the potential outliers), and solution two (retain the outliers). Both 

solutions are summarized in the next few sections, and then this section concludes with 

arguments for solution two, retaining outliers. The next section considers solution one, 

removing outliers. 

Solution one: Removing outliers 

Acquisition phase outliers were removed by first using the OUTLIER macro to 

identify potential multivariate outliers, those with p<0.05 (See Table 33). Next a SAS 

data step used the output from the OUTLIER macro, to remove these values, leaving 49 

week one learners. The group composition following outlier removal was demo+practice 

n=19, demo2+practice n=23, practice n=7. 

Solution one normality. 

Once the acquisition phase outliers were removed, the normality assumption 

needed to be tested with the dataset. Normality was tested with the %MULTNORM 

macro. Multivariate non-normality was revealed when Mardia kurtosis was found to be 

β2p=-2.33, p=0.02 and Mardia skewness was found to be β1p= 2.41, p=0.66. This macro 

also revealed a Shapiro-Wilks’ W= 0.63, p<0.0001 for accuracy (AC1), and for 

performance time (PT1) the Shapiro-Wilks’ was W = 0.95, p=0.04.  
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Table 33 

Potential acquisition phase outliers 

Observation ID group AC1 PT1 DSQ probability 
1 69 3 24 1088 6.568 0.037474 
2 102 4 24 1146 7.793 0.020309 
3 37 2 21 1203 11.76 0.002795 
4 105 4 22 1755 26.471 0.000002 
5 112 4 24 1788 29.103 0 
6 106 4 22 2107 43.231 0 
7 99 4 13 1059 108.762 0 
8 101 4 12 993 130.059 0 
9 79 3 11 401 156.189 0 
10 119 4 11 168 160.342 0 
11 92 3 9 598 209.017 0 
12 120 4 9 467 210.438 0 
13 84 3 6 1155 306.232 0 
14 113 4 4 368 386.521 0 
15 93 3 4 325 387.432 0 
16 78 3 4 246 389.273 0 
17 33 2 4 137 392.167 0 
18 77 3 1 57 525.092 0 
19 95 3 1 51 525.294 0 
20 107 4 0 698 557.854 0 
 

Solution one transformations. 

Since this dataset is not normal, data transformations were performed (Stevens, 

2002) (See Figure 43). Because performance time was positively skewed an x = x  

transformation was used, in this case TPT1 = 1PT . Also since accuracy was negatively 

skewed an x =log (x+C) transformation was used, so given accuracy this transformation 

became TAC1 = log (25-AC1). 
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             Figure 43. Week 1 histograms demonstrating the effects of transformations  

Normality following transformation. 

The %MULTNORM macro program was run once again following 

transformations and revealed univariate non-normality (violating the normality 

assumption) because the Shapiro-Wilks’ W= 0.63, p<0.0001 for transformed accuracy 

(TAC2), although transformed performance time (TPT2) exhibited normality as Shapiro-

Wilks’ W = 0.96, p=0.22. Mardia skewness was found to be normal β1p= 1.06, p=0.90 

but Mardia kurtosis was also found to be non-normal β2p=-2.53, p=0.01. Even though the 

normality assumption had been violated, a MANOVA is robust to violations of the 
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normality assumption (Stevens, 2002). So this analysis continued to assess the 

assumptions of this MANOVA, to consider this dataset with Box’s M test. 

Solution one’s Box’s M Test. 

Once transformations were completed, it was then possible to test this dataset 

with Box’s M test. When Box’s M test was implemented it was found that the variance-

covariance matrices were not significantly different since X2(6, N=48) =1.43, p=0.96, 

φ=0.17. Given this was the case there was no evidence that the homoscedasticity 

assumption was violated. 

The solution one MANOVA. 

Since this dataset met the assumption of homoscedasticity, a MANOVA was 

conducted. This MANOVA indicated that there was a significant difference between the 

groups, since Wilks’ Λ =0.76, F (2, 48) = 3.28, p = 0.01, η2=0.24. Post hoc comparisons 

with Scheffé’s test (p<0.025) found the demo+practice group produced the Mr. Potato 

head problem in significantly less time than either the demo2+practice or practice groups, 

but it found no significant differences between groups given accuracy (See Table 34, 

Figures 44, 45, & 46). 
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Table 34 

Descriptive data for the solution one dataset 

 demo demo+practice demo2+practice practice 
n 
Accuracy (AC1) 
M 
SD 

NA 
 

NA 
NA 

19 
 

0.38 
0.52 

23 
 

0.42 
0.54 

7 
 

0.78 
0.54 

Performance time (PT1) 
M 
SD 

 
NA 
NA 

 
19.29 
5.35 

 
23.24 
4.23 

 
25.47 
4.60 

 
 

 
                                              Figure 44. Solution one by group 
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Figure 45. Transformed acquisition phase performance time TPT1 (without outliers) 

 
               Figure 46. Transformed acquisition phase accuracy AC1 (without outliers) 
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Recall that earlier in this section, it was suggested that because there were 

potential outliers, that there were two potential solutions, one was to remove the outliers 

and proceed with the analysis (solution one above). The second solution was to retain the 

outliers in an effort to preserve power. 

Solution Two: Tansforming the Dataset 

This section is based upon the solution two (retaining outliers) and considers the 

analysis with outliers included in the dataset. Given outliers are retained Tabachnick and 

Fidell (2001) recommended researchers minimize the influence of outliers by 

transforming the data. Stevens (2002) advises researchers to transform positively skewed 

data (like the performance time dataset) by using an x= x  transformation. So the 

transformation for performance time was TPT1 = 1PT , where TPT1 = transformed 

performance time (week one) and PT1 = performance time (week 1). Figure 33 shows 

histograms of the solution two transformed dataset.  

Negatively skewed data, like the accuracy dataset may use a constant in the 

transformation, for an x = log (x+C) transformation (Rummel, 1970). In this case the 

transformation was TAC1 = log (25-AC1).  

Figure 47 shows that the acquisition phase performance time (PT1) and accuracy 

(AC1) scores have some level of skewness and kurtosis. Kurtosis is especially evident in 

the accuracy data. Skewness and kurtosis was reduced when transformations were 

applied (compare the upper and lower panels). These transformations were implemented, 

to protect Box’s M test from the influences of non-normality. 
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Figure 47. Solution two acquisition phase performance time and accuracy histograms 

 

Normality following transformation. 

The %MULTNORM macro program was run once again following 

transformations and revealed univariate non-normality since the Shapiro-Wilks’ W= 0.76, 

p<0.0001 for transformed accuracy (TAC2), although transformed performance time 

(TPT2) exhibited normality as Shapiro-Wilks’ W = 0.97, p=0.31. Mardia skewness was 

also found to be non-normal β1p= 17.01, p=0.002, but Mardia kurtosis was found to be 

normal β2p=0.07, p=0.94. Even though the normality assumption had been violated, a 

MANOVA is robust to violations of the normality assumption (Stevens, 2002). So the 
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analysis continued to assess the assumptions of this MANOVA, to consider this dataset 

with Box’s M test. 

Solution two homoscedasticity. 

Box’s M test was performed, given the dataset which retained outliers. This test 

made use of the transformed dataset. It was found that the variance-covariance matrices 

were not significantly different, or homogeneous, X2(6, N=69) = 7.97, p=0.24, φ=0.34. 

So there was no evidence that this dataset violated the homoscedasticity assumption, 

suggesting it was reasonable to consider a MANOVA. 

The solution two MANOVA. 

Like the solution one MANOVA, the solution two MANOVA (retaining the 

outliers) found that there was a significant difference between the group centroids, since 

Wilks’ Λ=0.68, F (2, 68) =6.83, p <0.0001, η2=0.32 (See Figures 48 & 49). The F tests 

for performance time and accuracy were statistically significant, as the F (2, 68) = 3.19, 

p=0.0478 for accuracy (AC1) and F (2, 68) =7.84 p=0.0009 for performance time (PT1). 

Table 35 details the acquisition phase dependent variables, by group. However, unlike the 

results in solution one, if the outliers were retained (solution two) this produced a 

different set of results, because post hoc comparisons with Scheffé’s test (p<0.025) 

revealed that learners of both the demo+practice and demo2+practice groups assembled 

the Mr. Potato head problem, in significantly less time than the practice group. Even 

though this was the case, no significant difference between groups were found given 

accuracy (AC1) with Scheffé’s test (p<0.025). 
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Table 35 

Solution two results for the acquisition phase dependent variables 

 demo demo+practice demo2+practice practice 
n 
Transformed 
Performance time 
(TPT1) 
M 
SD 

 
 
 
 

NA 
NA 

21 
 
 
 

19.66 
6.35 

31 
 
 
 

22.40 
6.28 

17 
 
 
 

28.62 
9.01 

 
Transformed 
Accuracy (TAC1) 
M 
SD 

 
NA 
NA 

 
0.56 
0.79 

 
0.99 
1.99 

 
1.44 
1.13 

 

The acquisition phase MANOVA. 

Figure 51 is a graphic representation of the solution two dataset (retaining 

outliers). Group colors are demo+practice=red, demo2+practice=green, practice=black. 

This bivariate plot of the acquisition phase dataset includes transformed performance 

time and accuracy scores, and is shown by group. Since accuracy was transformed with 

the TAC1=log (25-AC1) transformation, the most accurate performances are at the 

bottom of the graph. This same rule applies to Figures 48 through 51. These figures are 

the same dataset with, and without potential outliers.  

There are several arguments against solution. First, consider Table 36, these 

individual would have to be removed if solution one were chosen. It should be noted that 

half of the outliers in this table, are from the practice group. Secondly, even though both 

solutions one and two were statistically viable, given the assumptions of a MANOVA, 

these values may be transformed. 
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Table 36 

Potential acquisition phase outliers (solution one) 

Observation ID group AC1 PT1 DSQ probability 
1 69 3 24 1088 6.568 0.037474 
2 102 4 24 1146 7.793 0.020309 
3 37 2 21 1203 11.76 0.002795 
4 105 4 22 1755 26.471 0.000002 
5 112 4 24 1788 29.103 0 
6 106 4 22 2107 43.231 0 
7 99 4 13 1059 108.762 0 
8 101 4 12 993 130.059 0 
9 79 3 11 401 156.189 0 

10 119 4 11 168 160.342 0 
11 92 3 9 598 209.017 0 
12 120 4 9 467 210.438 0 
13 84 3 6 1155 306.232 0 
14 113 4 4 368 386.521 0 
15 93 3 4 325 387.432 0 
16 78 3 4 246 389.273 0 
17 33 2 4 137 392.167 0 
18 77 3 1 57 525.092 0 
19 95 3 1 51 525.294 0 
20 107 4 0 698 557.854 0 
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          Figure 48. Acquisition phase transformed performance time (retaining outliers) 

 

     Figure 49. Acquisition phase transformed accuracy (retaining outliers) 
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                                 Figure 50. Solution one: without potential outliers 

 
                              Figure 51. Solution two: retaining potential outliers   
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Third and perhaps the most important argument against solution one, is that the 

effect size for solution two was η2=0.32, as opposed to η2=0.24 for solution one, therefore 

the total proportion of variance for solution two is greater (Tabachnick & Fidell, 2001). 

So, reducing the number of observations ultimately decreases the power of solution one. 

So given each of these arguments, and even though solution one is statistically viable 

(given the assumptions of a MANOVA), solution two is the best fit given the dataset. 

Therefore solution two will be, the solution of choice, and hereafter described as the 

results of the acquisition phase MANOVA. 
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APPENDIX D: THE RENTENTION PHASE MANOVA 

As with all MANOVAs in this chapter the retention phase MANOVA was 

analyzed according to Stevens’ general procedure for assessing the assumptions of a 

MANOVA (Stevens, 2002). This procedure begins with the independence assumption. 

Since learners were required to individually assemble the picnic problem, according to 

Glass and Hopkins (1984) learners in this sample met the independence assumption. 

The Retention Phase Normality Assumption 

The %MULTNORM macro program (SAS, 2007b) revealed non-normality given 

the retention phase data (See Figure 38). This non-normality was revealed when the 

Shapiro-Wilks’ W= 0.94, p=0.0005 for accuracy (AC2), and for performance time (PT2) 

the Shapiro-Wilks’ was W = 0.96, p=0.07. Mardia skewness was found to be β1p= 2.05, 

p=0.73 and Mardia kurtosis was β2p=-1.99, p=0.05. 

Since the %MULTNORM macro revealed non-normality, the OUTLIER macro 

(Friendly, 2007c) was used to test for multivariate outliers. As discussed earlier this 

OUTLIER macro revealed a total of 34 potential multivariate outliers in the week two 

dataset (See Table 22). Output from this macro was used to remove these outliers from 

the dataset. 
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                                    Figure 52. Retention phase Z-scores by group 

Data Transformations 

Once the 34 potential outliers were removed from the week two dataset, it was 

found that the resulting dataset was somewhat skewed (See Figure 39). Given this was 

the case the dependent variables (performance time and accuracy) were transformed. 

Because both performance time (PT2) and accuracy (AC2) were positively skewed an  

x = x  transformation was implemented with both variables. These transformations were 

implemented, to protect Box’s M test from the influences of non-normality. 
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         Figure 53. Week two histograms demonstrating the effects of transformations  

 

Are the Variance-covariance Matrices Homogeneous? 

Once the week two variables, performance time and accuracy, were transformed, 

Box’s M test was conducted to test for the assumption of homogeneity of the variance-

covariance matrices. It was found that the matrices were not significantly different, or 

homogeneous, since X2(9, N=88) = 4.43, p=0.88, φ=0.22. This finding shows that there is 

no evidence that the transformed dataset violates the homoscedasticity assumption. Given 

this is the case it is reasonable to consider a MANOVA. 
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Retention Phase Results 

The overall goal of the retention phase MANOVA was to determine if group 

differences existed a week after initial instruction. It was hypothesized that learners in the 

animated demonstration conditions would out-perform learners in the practice condition. 

However, the results of the MANOVA found that there was not a significant difference 

between the group centroids, as Wilks’ Λ =0.96, F (3, 87) =0.64, p =0.70, η2=0.04  

(See Figures 54 & 55). Table 37 lists the group means for each of the dependent variables 

transformed performance time (TPT2) and transformed accuracy (TAC2). 

Table 37 

Transformed performance time (TPT2) and accuracy (TAC2) by group 

 demo demo+practice demo2+practice practice 
n 
Transformed performance time 
(TPT2) 
M 
SD 

19 
 
 

34.10 
3.78 

21 
 
 

31.92 
4.93 

31 
 
 

33.29 
4.57 

17 
 
 

 32.09 
3.44 

Transformed accuracy 
(TAC2) 
M 
SD 

 
 

6.55 
0.26 

 
 

6.55 
0.25 

 
 

6.54 
0.22 

 
 

6.50 
0.21  

 



 

APPENDIX D (CONTINUED) 

 248

 
                  Figure 54. Transformed performance time (TPT2) without outliers 

 
                         Figure 55. Transformed Accuracy (TAC2) without outliers 
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APPENDIX E: RELATIVE CONDITION EFFICIENCY 

Relative condition efficiency was calculated for both week one (RCE1) and week 

two (RCE2). During each of these calculations an ANOVA was used to contrast group 

differences. This Appendix describes the assumptions of each of these ANOVAs. 

Week One Relative Condition Efficiency (RCE1) 

As with any analysis of variance, one must first consider the independence 

assumption (Stevens, 2002). In the current study each learner was required to work alone 

and their scores were measured separately, so according to Glass and Hopkins (1984) the 

sample met the independence assumption. 

Next researchers must consider the normality assumption. In order to assess the 

normality of RCE1, a Kolmogorov-Smirnov test was implemented and it revealed non-

normality for RCE1, as D (2, 68) =0.15, p=0.01. 

Given non-normality was found, transformations were implemented. Rummel 

(1970) provides a series of approaches toward variable transformations. Several of his 

approaches were tried, where transformed week one relative condition efficiency 

(TRCE1) involved a constant, TRCE1= (4-RCE1)1/2. 

Following variable transformations, a Levene’s test compared the transformed 

means to find they were not significantly different, F (2, 68) =2.26, p=0.11. This finding 

showed that there was no evidence that the transformed dataset violated the 

homoscedasticity assumption, thus it was reasonable to consider an ANOVA. 

Week Two Relative Condition Efficiency (RCE2) 

Week two Relative Condition Efficiency (RCE2) also required an ANOVA, so 

the assumptions of an ANOVA were considered first. 
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First among these assumptions is the independence assumption (Stevens, 2002). 

Recall that learners were required to work alone and scores were measured separately, so 

again according to Glass and Hopkins (1984) this sample can be said to meet the 

independence assumption. 

The next assumption to be considered for the RCE2 ANOVA is the normality 

assumption. A Kolmogorov-Smirnov test for RCE2 revealed a marginally normal 

distribution D=0.09 (3, 87), p = 0.054. Therefore transformations were not necessary for 

this variable. 

Finally Levene’s test compared the means to find that they were not significantly 

different, F (3, 87) = 0.56, p = 0.64. This finding showed that there was no evidence that 

the data set violated the homoscedasticity assumption, thus it was reasonable to consider 

the RCE2 ANOVA. 
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APPENDIX F: PERFORMANCE EFFICIENCY 

Performance efficiency was calculated for both the week one (PE1) and week two 

(PE2). During each of these calculations an ANOVA was used to contrast group 

differences. This Appendix describes the assumptions of each of these ANOVAs. 

Week One Performance Efficiency (PE1) 

Stevens (2002) advises researchers to consider the assumptions of an ANOVA, 

prior to running the analysis, therefore the assumptions of the PE1 ANOVA were 

considered. First was the independence assumption. According to Glass and Hopkins 

(1984) learners in this data set met this assumption because they were required to work 

alone and scores were measured separately. Next the normality assumption was 

considered, and a Kolmogorov-Smirnov test revealed non-normality D (2, 68) =0.15, 

p=0.01 (See Figure 56). The green line represents the sample, versus normality, the red 

line. 

 

                                     Figure 56. Week one performance efficiency 
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Given PE1 was negatively skewed, the distribution was subsequently 

transformed. Both Tabachnick and Fidell (2001) and Rummel (1970) provide several 

approaches to variable transformation. Many of these approaches were considered and 

since the distribution was negatively skewed, it was suggested that using a constant and 

reflecting the variable should be used in this case. In addition, because the distribution 

was somewhat leptokurtic (See Figure 56), a ratio, or one over 1/X transformation was 

used in the transformation, providing a transformation of TPE1=1/ (4-PE1) where TPE1 

is transformed variable, transformed week one performance efficiency. 

Following this transformation, Levene’s test was used to compare group means 

and found that these means were not significantly different, since F (2, 68) =0.03, 

p=0.97. This finding provided no evidence that the data set had violated the 

homoscedasticity assumption. Therefore it was reasonable to consider the PE1 ANOVA. 

Week Two Performance Efficiency (PE2) 

There are three major assumptions of an ANOVA which need to be considered 

before analyzing the PE2 ANOVA, these are the independence, normality, and 

homogeneity of variance assumptions (Stevens, 2002).  

According to Glass and Hopkins (1984), the independence assumption requires 

that observations within groups be independent or not influence one another. Specifically 

they say “Whenever the treatment is individually administered, observations are 

independent (Glass and Hopkins, 1984, p353).” So according to this definition, this data 

set met the independence assumption. This is because treatments were administered to 

individual learners and observations were made independently of one another.  
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The second assumption to be considered for the PE2 ANOVA, is the normality 

assumption. To test the normality assumption a Kolmogorov-Smirnov test was 

implemented and found a normal distribution since D (3, 87) =0.05, p=0.15. So given this 

normal distribution, no variable transformations were necessary. 

Finally the third assumption, the homogeneity of variances assumption was also 

considered for the PE2 ANOVA. To do so a “proc univariate” procedure was run, using 

SAS and the Levene’s test was used to compare the means. They were not significantly 

different, since F (3, 87) =0.56 p=0.64. This no significant difference finding showed that 

there was no evidence that the data set violated the homoscedasticity assumption, thus it 

was reasonable to consider an ANOVA for PE2. 
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