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CHAPTER 1: INTRODUCTION

1.1 Background

Highway traffic congestion and stop-and-go movements are almost inevitable expe-

riences in highway traffic due to intrinsic limitations in human driving behavior and infor-

mation access (Li and Ouyang, 2011; Li et al., 2012; Jiang et al., 2015). These phenomena

are linked to a number of adverse impacts from highway traffic, including excessive fuel con-

sumption, extra safety hazards, and increased travel delay. Among a number of potential

solutions to stop-and-go traffic (e.g., variable speed limits (Lu and Shladover, 2014), ramp

metering (Hegyi et al., 2005a), merging traffic control (Spiliopoulou et al., 2009), and signal

coordination (Day et al., 2010)), the connected automated vehicle (CAV) technologies have

received increasing attention recently. These technologies are expected to improve highway

traffic efficiency, safety, and environment through sensing local environment, sharing infor-

mation, and applying appropriate control measures. Out of many benefits these technologies

can offer, two most important ones are their capabilities of increasing highway capacity and

smoothing traffic.

Due to communication and automated control technologies (e.g., platooning), CAVs

can largely improve highway traffic capacity by reducing time headways between consecutive

vehicles. With CAV platooning, a pair of CAVs are similar to two concatenated cars in a train

and thus shall have much less time headway compared with a pair of disconnected human-

driven vehicles (HVs). Therefore, we envision that highway capacity will be maximized in

the far future when all vehicles are platooned CAVs, as predicted by a number of studies on
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pure automated traffic with computer simulation (Ioannou and Chien, 1993) and analytical

models (Kanaris et al., 1997; Swaroop et al., 1994; Fernandes and Nunes, 2012; Amoozadeh

et al., 2015). Besides the consensus on pure automated traffic, it is not yet completely clear

how highway capacity is affected by CAVs in mixed traffic containing both CAVs and HVs,

which expects to last for a relatively long transitional period.

In addition to possibility of highway capacity improvement, CAV technologies can

also offer the possibilities of controlling vehicle trajectories and modifying driving behavior

(Ma et al., 2016). Therefore, with a proper control algorithm, we may be able to significantly

dampen traffic oscillations and thus reduce stop-and-go traffic. Various studies have been

conducted to utilize CAV to improve traffic smoothness on both uninterrupted freeways and

signalized arterials. Most of these studies are essentially centered on a vehicle trajectory

optimization problem. Simply speaking, this problem determines the optimal shapes for

interdependent vehicle trajectories constrained by their boundary conditions, physical limits

and safety risks. Despite the efforts taken in this area, most existing trajectory optimization

models either require quite some computational resources and sophistication in algorithm

design (Von Stryk and Bulirsch, 1992; Wei et al., 2016) or rely on a numerical algorithm

that does not ensure solution optimality and may need many iterations to converge (Zhou

et al., 2017; Ma et al., 2017).

Another important factor that impacts traffic performance measures near signalized

crossing points is to have optimal signal timing plan that could serve approaches based on

their demands. Numerous studies have been conducted to optimize signal timing plans for

traditional human-driven traffic. Recently, a number of studies are performed to design

suitable signal timing plans with CAV technologies (e.g., Goodall et al. 2013; Feng et al.

2015; Pourmehrab et al. 2017). Although, these studies provide useful tool to improve traffic

performance near signalized intersections, without implementing proper trajectory control

approaches, potential benefits may significantly be compromised.
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One well-known approach to dampen traffic oscillation is speed harmonization that

aims to reduce temporal and spatial variations of traffic speed by applying certain control

approaches (Ma et al., 2016). Traditionally, variable speed limit (VSL) and speed advi-

sory messages approaches are used to minimize traffic speed variations. While these studies

provide valuable insights into speed harmonization techniques, most of the existing studies

can only advise or enforce human drivers to adjust their speed. However, the unpredictable

nature of human behaviors may compromise or even fail these approaches. Moreover, most

of these studies rely on limited fixed traffic sensors (e.g., loop detector, Remote Traffic Mi-

crowave Sensor (RTMS), etc.) deployed on highways. Although these infrastructure units

can provide useful traffic information when there is not enough information sources, the

data received from most of these sensors are low in resolution and related to certain sets of

fixed locations. As a result, the data captured from the fixed deployed traffic sensors may

not provide effective resources for advanced speed harmonization techniques. Therefor, it

might be impossible to significantly smooth traffic speeds using the traditional speed har-

monization control strategies. Fortunately, emerging CAV technologies allow human drivers

to be replaced with robots that can precisely execute well-designed driving algorithms with

complete information from vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) com-

munications, and therefore may improve highway traffic efficiency, fuel and environmental

efficiency, and safety (Ghiasi et al., 2017; Wu et al., 2011; Chen and Du, 2017; Kamrani

et al., 2017; Azizi et al., 2018). This brings us inspiring opportunities for achieving speed

harmonization with controllable CAVs.

1.2 Contribution Statement

The contents of this dissertation are generally categorized into two scales: macroscopic

and microscopic. In the macroscopic scale, to address the lack of analytical analysis on effects

of emerging CAV technologies on highway capacity, an analytical formulation to highway
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capacity is proposed in a mixed traffic environments with CAVs. In the microscopic scale, we

aim to use CAV technologies to dampen traffic oscillations and smooth traffic. For this task,

first a simplified trajectory optimization model is proposed for a pure-automated traffic where

all vehicles are assumed to be CAVs. This concept is then extended is to a joint trajectory

and signal optimization model to simultaneously design CAV trajectories and signal timing

plan near signalized crossing points. Finally, the proposed trajectory optimization concept

is extended to a mixed traffic environment by proposing a mixed traffic speed harmonization

algorithm. This dissertation makes the following contributions to the literature.

First, this dissertation proposes an analytical stochastic formulation for highway ca-

pacity in a mixed traffic environment with CAVs. We propose a novel Markov chain model

to describe spatial headway distributions of mixed traffic along a highway segment. With

this creative modeling structure, we are able to capture complex stochastic headway with

different types of distributions (e.g., headway between two CAVs, headway of a CAV fol-

lowing an HV, headway of an HV following a CAV, and headway between two HVs) and

unify a full spectrum of CAV penetration rates and platooning intensities in a parsimonious

analytical capacity formulation. This formulation well approximates the maximum rate of

traffic that the corresponding highway can process, and we conduct both theoretical analysis

and numerical simulation to show that this approximation is very close to the ground-truth

capacity at various temporal and spatial scales. Further, to test the conventional assumption

that highway capacity always increases with CAV market penetration rate and platooning

intensity, we analyze how mixed traffic capacity changes across all possible values of these two

factors. Theoretical results reveal that only certain conditions of headway settings can justify

this assumption. Otherwise, contrary to the conventional assumption, greater CAV market

penetration rate and platooning intensity may actually compromise mixed traffic capacity

when these conditions are not satisfied, which is likely the case under certain conservative

CAV technology scenarios.
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Second, this dissertation aims to address the existing challenges found in (Zhou et al.,

2017; Ma et al., 2017) by investigating a further simplified trajectory optimization model.

This simplified model confines each trajectory to consist of no more than five quadratic

sections. Further, this simplified model assumes that all vehicles arrive at the same speed.

This is a reasonable assumption for cases when the upstream traffic is well controlled in a

similar manner. While the new model preserves the main features of the shooting heuristic

(e.g., yielding overall smooth trajectories) only with these minor simplifications, it has a

number of appealing theoretical and algorithmic properties that were not found in (Zhou

et al., 2017; Ma et al., 2017). We discover elegant theoretical relationships between a general

objective function and its associated variables and constraints. These findings enable devel-

opment of an analytical solution algorithm that efficiently solves the exact solution to this

simplified problem. This analytical exact algorithm makes a significant methodological con-

tribution to the CAV trajectory optimization literature that has mostly relied on numerical

and heuristic algorithms in the past. Numerical studies are conducted to verify the solution

efficiency and quality compared with the existing approach and illustrate applications of the

proposed model to signalized highways and non-stop intersections. Further, to examine the

intuitive conjecture that traffic smoothing leads to longer queue propagation, we investigate

a homogeneous yet representative case and find analytical conditions for this conjecture to

fail. Interestingly, we find that trajectory smoothing may not always cause longer queue

propagation but instead may mitigate queue propagation with appropriate settings.

Third, the trajectory concept is extended to a joint trajectory and signal optimization

model to simultaneously design CAV trajectories and signal timing plan near signalized cross-

ing points. Instead of solving the original complex optimization functions, this dissertation

develops a simplified optimization model based on two modifications. First, the trajectory

functions are confined into no more than five quadratic sections. Second, the highly nonlin-

ear instantaneous fuel consumption function is approximated with a very simple quadratic
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function of signal red interval. The results of a regression analysis reveal that the proposed

macroscopic fuel consumption function can approximate the true fuel consumption very ac-

curately. These two simplifications lead to an optimization model that can efficiently be

solved to the exact solution. Numerical experiments indicate that the proposed joint opti-

mization model can be applied to any signalized crossing points including intersections and

signalized work-zones.

Finally, to extend the proposed trajectory optimization concept to a mixed traffic en-

vironment, this dissertation proposes a speed harmonization algorithm that addresses mixed

traffic freeways with various CV and CAV market penetration rate. Contrary to most speed

harmonization models, the proposed algorithm uses real-time traffic sensor data as well as

the real-time information provided by CVs and CAVs for adjusting and correcting the CAV

controls. These two sets of information are integrated and used by our innovative predic-

tion algorithm to estimate the traffic downstream to each CAV. The prediction outcomes

then enable the algorithm to plan the future CAV trajectories as smooth as possible to

improve performance of a freeway traffic stream. To quantify the benefits, four most im-

portant measures of effectiveness in traffic flow analyses are considered: throughput, traffic

speed variations, fuel consumption and emission, and surrogate safety measures. Numerical

experiments are performed to evaluate the performance of the algorithm and to test the

algorithm with various parameter values. The results show that the proposed speed harmo-

nization model can produce much smoother trajectories for CAVs and their following vehicles

than the benchmark case, and thus improves the overall smoothness of the traffic stream

in different traffic conditions. We would like to note that although the proposed algorithm

considers a single-lane freeway where no lane changing and vehicle taking-over happen, the

proposed control strategy could be applied to a multi-lane highway by forming a wall of

CAVs or managed lanes where lane-changing maneuvers are restricted (Ghiasi et al., 2017;

Chen et al., 2017; Hussain et al., 2016). Overall, this speed harmonization algorithm can
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provide a methodological bridge to more advanced control strategies in future CAV mixed

traffic.

1.3 Dissertation Organization

This proposal is organized as follows. CHAPTER 2 reviews relevant literature and

explains how this dissertation can contribute to the existing literature. CHAPTER 3 de-

scribes the Markov chain model and the proposed capacity formulation for a mixed traffic

highway. Further, numerical analyses are performed to verify the analytical formulations.

CHAPTER 4 proposes the simplified trajectory optimization model, investigates its theoret-

ical properties, and proposes an exact analytical solution. Further, numerical examples are

provided to test the solution algorithm efficiency and illustrate applications of this algorithm.

CHAPTER 5 develops the trajectory and signal joint optimization problem formulation and

conducts numerical experiments to evaluate the algorithm and to test it with various param-

eter settings. Finally, CHAPTER 6 proposes the speed harmonization algorithm, followed

by the simulation analyses to evaluate its performance.
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CHAPTER 2: LITERATURE REVIEW1

This chapter provides literature review for the three research tasks. First, a review

of capacity analysis models and CAV headway studies are presented in Section 2.1. Then,

Section 2.2 presents a literature review of existing trajectory optimization models. Finally,

Section 2.4 reviews the existing speed harmonization literature.

2.1 Review of Capacity Analysis and CAV Headway Studies

Capacity analysis is an essential component of transportation studies. An accurate

capacity estimation enables transportation planners to make proper decisions to maximize

highway traffic performance. Numerous studies have been conducted to analyze highway

capacity at various conditions (e.g., geometrical, weather, etc.). Minderhoud et al. (1997)

presents a relatively comprehensive review to traditional highway capacity estimation meth-

ods. All these traditional capacity estimation models consider human-driven traffic and the

corresponding headway distributions. With the advent of new CAV technologies, vehicle

headway distributions may significantly change, and thus can directly affect highway capac-

ity. This highlights the need for a highway capacity model for a mixed traffic environment

where a portion of vehicles are CAVs and the remaining are HVs.

A number of studies conducted capacity analyses for mixed traffic, most of them rely-

ing on computer simulation (e.g., Van Arem et al., 1997; Shladover et al., 2001; Vander Werf

et al., 2002; Van Arem et al., 2006; Kesting et al., 2008, 2010; Shladover et al., 2012). There
1Portions of this chapter have been previously published in Ghiasi et al. (2017). Permission is included

in Appendix.
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are only a limited number of studies attempting building analytical models to characterize

capacity of mixed traffic. Tientrakool et al. (2011) evaluates the impact of Adaptive Cruise

Control (ACC) and Cooperative Adaptive Cruise Control (CACC) vehicles with determin-

istic headway rules on highway capacity. Levin and Boyles (2015) propose a link capacity

model as a function of automated vehicles (AV) penetration rate and deterministic headway

values. This model is extended by Levin and Boyles (2016) by considering different vehicle

classes, while headways settings are uniform across all vehicles in each class. While these

studies provide valuable quantitative results and insights into the benefits of CAVs in improv-

ing mixed traffic capacity, most of them consider deterministic time headways in a specific

technology scenario. However, in reality, time headways between consecutive vehicles are

highly stochastic. The effect of headway stochasticity on highway capacity is not captured

in studies assuming deterministic headways. Further, headway distributions in mixed traffic

highly depend on CAV technologies that are yet to be fully developed and thus may have

quite some uncertainties.

Table 2.1 provides a literature review of headway distributions in different types of

traffic, i.e., including traditional pure human-driven, mixed, and pure automated traffic.

Since there are comprehensive literature reviews available for HV headway distributions

(e.g., Minderhoud et al. (1997)), this section only presents a few representative studies with

bounded uniform distributions as quantitative benchmarks. Whereas much fewer studies

investigated headway distributions for mixed and pure CAV traffic. To complement studies

on headways distribution of HV traffic, we provide a comprehensive review on headway

distributions in mixed and pure CAV traffic for all possible vehicle pair combinations, i.e.,

between two CAVs, for a CAV following an HV, for an HV following a CAV, and between

two HVs. This information later supplies the numerical analyses in CHAPTER 3. Note

that some studies use different terms (e.g., Adaptive Cruise Control (ACC) and Cooperative
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Adaptive Cruise Control (CACC)2) for automated driving. Since all these terms refer to

automated longitudinal control of vehicles, we refer them as CAV to unify the notation in

this presentation. Basically, we see that the headway values between two HVs range from

0.7 to 2.4 seconds, those for a CAV following an HV from 0.5 to 2.6 seconds, those for an

HV following a CAV from 0.6 to 2.6 seconds, and those between two CAVs from 0.3 through

2 seconds. In these results, we observe wide variabilities within the same type of headways

and between different types of headways, and different studies may assume quite different

realizations of CAV technologies in terms of headway distributions (e.g., a conservative

technology scenario yield a CAV-to-CAV headway as long as 2 seconds whereas an aggressive

technology scenario only takes 0.3 second for the same headway). These discrepancies may

significantly affect corresponding capacity analysis outcomes. This highlights the need for an

analytical capacity modeling framework incorporating headway stochasticities for the same

type of vehicle pairs, discrepancies between different vehicle types, and different realization

scenarios of future technologies.

Existing studies also pointed out that the CAV market penetration is a critical factor

that affects the highway capacity in mixed traffic. Results from both simulation (Kesting

et al., 2008; Shladover et al., 2012; Arnaout and Arnaout, 2014; Ntousakis et al., 2015) and

analytical modeling (Levin and Boyles, 2015; van den Berg and Verhoef, 2016) show that

highway capacity increases significantly with market penetration rate. However, another

important factor that also largely affects traffic capacity yet receives less attention is the CAV

platooning intensities. CAV platooning refers to the technology that reduces the headway

between consecutive CAVs with vehicle-to-vehicle (V2V) communications and automated

control (e.g., Stevens et al. 1996; Zhao and Sun 2013; Amoozadeh et al. 2015). Even at

the same market penetration rate, different CAV platooning intensities may result in quite
2We treat headway between an ACC vehicle and a HV the same as that between a CACC vehicle and

a HV since no communication happens in either case, whereas for headways between two CAVs, we only
report results from CACC vehicles because communication is necessary.
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Table 2.1: A list of the reviewed studies proposing models for headway distributions.

Studies Headway
between
HVs

Headway
for a CAV
following an
HV

Headway
for an HV
following a
CAV

Headway
between
CAVs

Distri -
bution

Range
(sec)

Distri -
bution

Range
(sec)

Distri -
bution

Range
(sec)

Distri -
bution

Range
(sec)

Neubert et al.
(1999)

Uniform 0.8 –
1.8

Fancher et al.
(2001)

Uniform 1.0 –
2.0

VanderWerf
et al. (2001)

Uniform 1.0 –
2.0 Uniform 0.5 –

1.4

Bose and
Ioannou
(2003)

Uniform 0.7 –
2.2 Uniform 0.5 –

1.5

Nowakowski
et al. (2010)

Uniform 1.1 –
2.2 Uniform 0.6 –

1.1

Schakel et al.
(2010)

Gaussian1.2±0.15/
1.2±0.3 Gaussian1.2±0.15/

1.2±0.3

Calvert et al.
(2012)

Uniform 0.3 –
1.4

Larsson
(2012)

Uniform 1.0 –
2.6

Altay et al.
(2013)

Uniform 0.6 –
2.0 Uniform 0.6 –

2.0

Zhao and Sun
(2013)

Fixed 1.4 Fixed 0.5

Allam Ahmed
et al. (2014)

Uniform 1.3 –
2.4

Arnaout and
Bowling
(2014)

Uniform 1.0 –
1.8 Uniform 0.8 –

1.0 Uniform 1.0 –
1.8 Fixed 0.5

Shladover
et al. (2014)

Uniform 0.6 –
2.2

Gao et al.
(2015)

Uniform 0.6 –
2.6

Nikolos et al.
(2015)

Uniform 0.8 –
2.2

Roncoli et al.
(2015)

Uniform 0.5 –
2.0

Wang et al.
(2015b)

Uniform 0.5 –
2.0
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different traffic capacities. For example, if CAVs are more scattered across the highway,

there will be fewer long platoons of CAVs with reduced headways and thus the improvement

of traffic capacity becomes less salient. On the other hand, if CAVs are better clustered,

highway capacity will increase as a result of longer CAV platoons with reduced headways.

Only limited studies investigated the impact of vehicle platooning on traffic capacity in

mixed traffic with simulation and claimed that a higher platooning intensity ensures a higher

capacity (e.g., Rao and Varaiya, 1993; Zhao and Sun, 2013; Harwood and Reed, 2014). It

remains a challenge to reveal analytical insights into how both market penetration and CAV

platooning intensity jointly affect mixed traffic capacity.

2.2 Review of Trajectory Optimization Studies

Several studies have focused on trajectory optimization methods in different modes

of transportation including ground (e.g., Mensing et al., 2011; Li and Wang, 2006; Zhou

et al., 2017), rail (e.g., Lu et al., 2013; Xu et al., 2017), and air (e.g., Wickramasinghe et al.,

2012). This section focuses on reviewing CAV trajectory optimization models on two major

transportation network segments: uninterrupted freeways and signalized arterials. Various

studies have been conducted to utilize CAV to improve traffic smoothness and throughputs

on both these two segments.

Studies on the freeway side focus on guiding vehicle trajectories for minimum speed

oscillations and minimum conflicts in lane changes and merges. Van Arem et al. (2006)

investigates traffic stability and efficiency at a merge point. Ahn et al. (2013) proposed a

rolling-horizon model for an individual CAV control strategy that minimizes fuel consump-

tion and emissions at different grades. Yang and Jin (2014) studied a vehicle speed control

strategy to reduce vehicle fuel consumption and emissions. Wang et al. (2014a; 2014b)

proposed optimal control models to determine optimal accelerations of a platoon of CAVs to

minimize a variety of objective cost functions in a rolling horizon manner. Later, Wang et al.
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(2016) investigated distributed CAV acceleration control methods to mitigate formation and

propagation of moving jams.

Studies on the signalized arterial side concern the problem of coordinating and schedul-

ing vehicle trajectories to avoid conflicts at crossing points while improving traffic perfor-

mance measures. Some studies focus on scheduling of vehicles arrival and departure times

at an intersection and aim to minimize stops and delay at the intersection. Li and Wang

(2006) studied CAV scheduling and trajectory planning for a two-lane intersection, using

spanning tree and simulation techniques. Dresner and Stone (2008) investigated a similar

non-stop intersection problem and proposed a heuristic control algorithm that processes ve-

hicles as a queuing system. Lee and Park (2012) proposed a nonlinear optimization model to

optimize trajectories for CAVs approaching and passing a non-stop intersection. Zohdy and

Rakha (2014) proposed a nonlinear optimization model that integrates an embedded car-

following rule and an intersection communication protocol for non-stop intersection manage-

ment. Other studies consider how to control vehicle trajectories in compliance with existing

traffic signal timing at intersections. Trayford et al. (1984a; 1984b) proposed to use speed

advice to reduce fuel consumption for vehicles approaching an intersection. Later studies

further investigated car-following dynamics (Sanchez et al., 2006), in-vehicle traffic light as-

sistance (Iglesias et al., 2008; Wu et al., 2010), multi-intersection corridors (Mandava et al.,

2009; Guan and Frey, 2013; De Nunzio et al., 2013), scaled-up simulation (Tielert et al.,

2010), and electric vehicles (Wu et al., 2015). These studies mainly concerned control of ve-

hicle speeds but ignored acceleration detail, which however could cause significant errors in

estimating fuel consumption and emissions and practical difficulties for real vehicles to follow

these trajectories with speed jumps. To address this issue, Kamalanathsharma et al. (2013)

considered acceleration detail in optimizing an individual vehicle trajectory. Li’s team (Zhou

et al., 2017; Ma et al., 2017) proposed a parsimonious shooting heuristic to simultaneously

optimize trajectories of a stream of CAVs approaching an intersection.
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Most studies on using CAVs to smooth traffic are essentially centered on a vehicle tra-

jectory optimization problem that aims to determine the optimal shapes for interdependent

vehicle trajectories constrained by their boundary conditions, physical limits and safety risks.

However, this problem in a general form is very complex and difficult to solve due to several

computational challenges. First, each trajectory is essentially an infinite-dimensional object

since every point along it can be a variable, and thus this problem deals with an infinite num-

ber of decision variables. Second, the optimization objective often involves highly non-linear

components such as fuel consumption and emissions. Third, problem constraints can be quite

complex due to vehicle interactions (e.g., two consecutive vehicles have to maintain a safe

headway all the time) and boundary conditions (e.g., vehicles can only pass an intersection

during a green light). Directly solving this problem, even a quite simple version, requires

quite some computational resources and sophistication in algorithm design (Von Stryk and

Bulirsch, 1992; Wei et al., 2016). Instead of solving the original trajectory problem, Li’s team

(Zhou et al., 2017; Ma et al., 2017) opted to investigate a reduced problem where a trajectory

is broken into a small number of quadratic sections and only a few acceleration levels are

used to control the overall smoothness of the stream of vehicle trajectories. Although this

reduced problem may not necessarily solve the true optimal solution to the original prob-

lem, it can yield a stream of trajectories with appealing overall smoothness and performance

measures that much outperform the benchmark case without trajectory smoothing. Further,

this simplification enables discovery of elegant theoretical properties and development of an

efficient sub-gradient-based optimization algorithm for real-time applications.

Despite the breakthroughs from this previous work, there still remain a number of

fundamental challenges in CAV trajectory optimization. First, the trajectory optimization

method based on the shooting heuristic still relies on a numerical algorithm that does not

ensure solution optimality and may need many iterations to converge. Second, one may

intuitively think that since trajectory smoothing always leads to longer acceleration and
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deceleration distances for vehicles (though with milder acceleration magnitudes), it shall

always yield a longer queue propagation or spillback. However, this intuition has not been

systematically and analytically verified. Third, the previous work only focuses on a signalized

intersection and applications in other types of highway segments remain to be investigated.

These challenges are addressed in the simplified trajectory optimization model proposed in

Section 4.

2.3 Review of Signal Optimization Studies

Previous section provides a review of trajectory optimization studies. To serve suf-

ficient background information for CHAPTER 5, this section complements the trajectory

literature review with a review of signal optimization studies using CAV technologies.

Several studies have been conducted to optimize signal timing plans with CAV tech-

nologies. Goodall et al. (2013) proposed a predictive microscopic algorithm to predict ac-

cumulative delays within the communication range and determine the optimal timing plan

that yields the minimum delays. Lee (2010) presented a similar algorithm using adaptive

Kalman filter to estimate accumulative travel times. In this algorithm, the green time will

be allocated to the phase that has the largest accumulative travel time. He et al. (2012) pro-

posed a multi-modal online traffic signal control that identifies platoons and then determine

the optimal signal timing using a linear programming method. This algorithm was based

on a decentralized traffic signal coordination system and generally proposes no specific cycle

length. He et al. (2014) conducted a follow-up study, in which a mixed integer model for a

multi-modal traffic signal control optimization was proposed. Feng et al. (2015) proposed a

bi-level adaptive traffic signal control algorithm to optimize both phase sequences and phase

duration. This algorithm is one of the core algorithms of Multi-Modal Intelligent Traffic

Safety System (MMITSS) (Ahn et al., 2016).
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These studies provide useful models to optimize signal timing plans with CV, or CAV

technologies. However, most of these studies predict when vehicles arrive at the signalized

crossing point, and then coordinate the signal timing plans accordingly. As noted before,

with CAV technologies, detailed vehicle trajectory shapes could be efficiently controlled. This

brings an opportunity to join both signal and trajectory controls to further improve traffic

performance. Some recent studies have started investigating benefits of joint optimization of

trajectories and signal control. Kaths (2016) proposed a joint trajectory and signal algorithm

for an isolated intersection. however, the proposed algorithm could not be implemented in the

real-world applications due to the required heavy computational efforts. Pourmehrab et al.

(2017) proposed an iterative algorithm to optimize intersection signal timing plan and AV

trajectories. Despite these breakthroughs, these algorithms are based on heuristic solutions

that require a substantial computational efforts to converge and thus may not applicable to

future CAV traffic. Therefore, an efficient joint trajectory and signal optimization model is

yet to be discovered.

2.4 Review of Speed Harmonization Studies

Speed harmonization techniques aim to eliminate or reduce traffic oscillation by re-

ducing the variations of traffic speed. Traditionally, variable speed limit (VSL) and speed

advisory messages approaches are used to minimize traffic speed variations. Numerous stud-

ies have been conducted on VSL approaches. Many of these studies focus on VSL simulation

or optimization studies with different objective functions. Alessandri et al. (1999) develops

an optimization model to determine the appropriate variable-speed that results in the mini-

mum travel time. Due to the complex nature of this optimization problem, this model relies

on numerical solutions to obtain the solutions. Hegyi et al. (2002) proposes a network-wide

optimization problem to minimize total time spent in the network and abrupt changes in the

control signal. Later, Hegyi et al. (2005b) develops a VSL strategy to suppress shock waves.
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The objective of this model is also to minimize total travel time.Lin et al. (2004) proposes

a VSL control strategy to maximize throughput. Their results indicate that VSL can also

improve safety and emissions. Hadiuzzaman and Qiu (2013) develops an analytical model

based cell transition method (CTM) to maximize throughput. In this model, the optimal

speed limit is determined using a numerical optimization technique. On the empirical side,

a number of efforts are taken to adopt VSL approaches that were able to improve traffic

performance (e.g., Ulfarsson et al., 2005; Bertini et al., 2005, 2006; Chang et al., 2011; Weikl

et al., 2013). Eco-driving is another speed harmonization strategy that has recently attracted

research attentions and includes driving techniques to reduce fuel consumption and emissions

(e.g., Barth and Boriboonsomsin, 2009; Saboohi and Farzaneh, 2009; Mensing et al., 2011).

Despite the improvements that these approaches offer, due to the lack of sufficient

and accurate information and the unpredictable nature of human behaviors, these traditional

control approaches are not able to completely smooth traffic speeds. Fortunately, the advent

of CAV technologies enables vehicle and infrastructure units to share high-resolution infor-

mation in real-time. Further, these technologies eliminate human error and allow vehicles

to be controlled by precise and fast-responding robots. Therefore, with these technologies,

speed harmonization goals can be fully achieved. A number of studies have been conducted

to apply these technologies in speed harmonization. Ma et al. (2016) presents a relatively

comprehensive review on recent speed harmonization studies using connected, automated,

or CAV technologies. Most of these studies either focus on only sharing information with

connected systems (e.g., Talebpour et al., 2013; Yang and Jin, 2014; Lu et al., 2015) or

controlling individual CAVs (e.g., Wang et al., 2015a). Further, most existing studies either

consider pure-automated traffic or make simple simple assumptions about human behavior

(Ma et al., 2016). Thus a CAV-based speed harmonization algorithm that could be ap-

plied to whole traffic stream as one system and can be adapted based on real-time updated

information is yet to be discovered.
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CHAPTER 3: CAPACITY ANALYSIS1

This chapter aims to model mixed traffic (including both CAVs and HVs) on a one-

lane highway segment. To capture real-world stochasticity and uncertainties, we allow vehicle

types to be distributed stochastically and vehicle headways to follow random distributions

depending on the corresponding vehicle types. Yet the overall traffic pattern can be charac-

terized by two exogenous parameters that largely affect highway capacity. The first parame-

ter, denoted by P1, describes the percentage of CAVs in the mixed traffic. We would expect

that due to reduced CAV headway, traffic capacity shall grow with P1 that is predicted

to grow rapidly in the following decades (Bansal and Kockelman, 2017; Chen et al., 2016;

Lavasani et al., 2016). The second parameter, denoted by O, indicating the CAV platooning

intensity, i.e., the strength of CAV clustering in the mixed traffic. Addressing different CAV

platooning intensities is a valid concern, because different CAV technologies and highway

management strategies can significantly affect how CAV are platooned and how much the

corresponding traffic capacity is. For example, if CAVs are individual units that are not much

coordinated during operations, they could be just randomly distributed in mixed traffic with

weak platooning, and the improvement to traffic capacity is limited. Otherwise, if they

are run as fleets by coordinated and centralized operators (Fernandes and Nunes, 2012),

CAVs may form platoons with significant lengths, which expects to significantly improve

traffic capacity. Further, proper traffic management strategies (e.g., exclusive CAV lanes

and pricing) could be applied to encourage CAVs platooning. This chapter describes the

proposed analytical model that incorporates these random aspects and reveals fundamental
1This chapter has been previously published in Ghiasi et al. (2017). Permission is included in Appendix.
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impacts of market penetration rates and platooning intensities on mixed traffic capacity.

Section 3.1 presents a Markov chain model to describe a class of vehicle spatial distribu-

tions along the mixed traffic stream incorporating the whole spectra of CAV penetration

rates and platooning intensities. Section 3.2 formulates the expected capacity for the mixed

traffic characterized by this Markov chain model. Finally, Section 3.3 provides numerical

examples to verify the presented theoretical analyses and to demonstrate the accuracy of the

proposed capacity formulation.

3.1 Markov Chain Model

We consider a stream of N vehicles indexed as n ∈ N := {1,2, . . . ,N} moving along

the highway segment. Let An∈ {0,1} denote whether vehicle n is CAV or HV; i.e., An = 1

if vehicle n is a CAV and An = 0 if vehicle n is an HV. Penetration rate P1 is defined as the

expected percentage of CAVs among all vehicles, i.e.,

P1 := E

∑
n∈N

An/N

 . (3.1)

For notation convenience, we also define the corresponding percentage of HVs among all

vehicles as

P0 := E

∑
n∈N

(1−An)/N
= 1−P1.

The following analysis treats P0 and 1−P1 interchangeably, and P0 is used only for formu-

lation compactness. Note that the same P1 value could correspond to different distributions

of vehicle types or platooning intensities of CAVs. For example, when P1 = 0.5, one extreme

case is that every CAV always follows an HV (as illustrated by Fig. 3.1(a)), the other extreme

case is that the first half set of vehicles are all CAVs and the remaining vehicles are all HVs

(as illustrated by Fig. 3.1(b)), and a case in between is that CAVs are clustered somehow

but occasionally disrupted by HVs (as illustrated by Fig. 3.1(c)). It is not difficult to see

19



(a)

(b)

(c)

Figure 3.1: Illustrative examples for vehicle distributions.

that at the same P1 value, there are numerous cases corresponding to different platooning

intensities, and each of them could yield a different traffic throughput due to different head-

ways between different types of vehicles. To model such general CAV platooning intensities

for stochastic mixed traffic in a parsimonious way, we use a discrete Markov chain model to

specify types of vehicles in N sequentially from downstream to upstream as follows. In this

Markov chain, An can be interpreted as the state variable at step n, and the state space is

S := {1,0},

where 1 denotes the CAV type and 0 denotes the HV type. Let the first vehicle have a

probability of P1 to be a CAV, i.e., Pr(A1 = 1) = P1. Therefore, the initial state is

π := [P1,P0] . (3.2)

Then we define the following transition matrix:

T :=

 t11 t10

t01 t00

 , (3.3)
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where tsr denotes the probability for a type-s vehicle to be followed by a type-r vehicle,

i.e., tsr := Pr(An+1 = r | An = s) ,∀n∈N\N,s,r ∈ S. To capture general market penetration

rates and platooning intensities, tsr is formulated as a function P1 and O:

t10 (P1,O) :=


P0(1−O), O ≥ 0;

P0 +O
(
P0−min

{
1, P0
P1

})
, O < 0,

(3.4)

t11 (P1,O) := 1− t10 (P1,O) , (3.5)

t01 (P1,O) :=


P1(1−O), O ≥ 0;

P1 +O
(
P1−min

{
1, P1
P0

})
, O < 0,

(3.6)

t00 (P1,O) := 1− t01 (P1,O) . (3.7)

We denote this Markov chain by Markov(π,T ). This formulation is carefully designed

such that parameter O decreases from 1 to −1 as the platooning intensity decreases from

maximum to minimum. This can be seen from the following special cases.

• Maximum platooning intensity (O = 1): All CAVs in this case are perfectly platooned

into one group, similar to the case illustrated by Fig. 3.1(b). Thus, given that vehicle

n is a CAV, the probability that following vehicle n+1 is also a CAV converges to one.

Similarly, given that vehicle n is an HV, the probability that following vehicle n+1 is

also an HV converges to one. Thus the elements of transition matrix T in this case are

t11 (P1,1) = t00 (P1,1) = 1, t10 (P1,1) = t01 (P1,1) = 0. (3.8)

• Independent platooning (O = 0): In this case, CAVs and HVs are randomly mixed;

i.e., a vehicle’s type is independent of its preceding vehicle and is only determined by
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penetration rate P1. Thus, the elements of transition matrix T in this case are

t11 (P1,0) = t01 (P1,0) = P1, t10 (P1,0) = t00 (P1,0) = P0.

• Minimum platooning intensity (O=−1): In this case, CAVs are at the weakest possible

platooning intensity where the number of CAV platoons are maximal. Now a CAV

would follow an HV if possible at all, and vice versa; i.e., t01 and t10 are set to their

maximum values. Therefore, the elements of T in this case become

t10 (P1,−1) = min
{

1, P0
P1

}
, t11 (P1,−1) = 1− t10 (P1,−1) ,

t01 (P1,−1) = min
{

1, P1
P0

}
, t00 (P1,−1) = 1− t01 (P1,−1) .

Now we will show that this Markov chain model is consistent with P1 definition (3.1) in the

follow proposition.

Proposition 1. The Markov chain model defined by (3.2)-(3.7) yields (3.1) as the invariant

distribution probability.

Proof. To prove this proposition, we will just show Pr(An = 1) = P1,∀n∈N with induction.

When n = 1, Equation (3.2) apparently yields Pr(A1 = 1) = P1. Next, we set an induction

assumption that for n= k ∈N\N , Pr(Ak = 1) = P1. Then when n= k+1, in case of O > 0

Pr(Ak+1 = 1) = Pr(Ak = 0) t01 +Pr(Ak = 1) t11

= (1−P1) ·P1(1−O) +P1 · (1− (1−P1)(1−O))

= P1,

22



whereas in case of O < 0,

Pr(Ak+1 = 1) = Pr(Ak = 0) t01 +Pr(Ak = 1) t11

= (1−P1) ·
(
P1 +O

(
P1−min

{
1, P1
P0

}))
+

P1 ·
(
P1−O

(
1−P1−min

{
1, P0
P1

}))
= P1.

This completes the proposition.

The above proposition verifies that the proposed Markov chain model is capable

of describing stochastic mixed traffic with different CAV penetration rates and platooning

intensities.

3.2 Capacity Formulation

This section aims to formulate the expected capacity of Markov chain mixed traffic

model (3.2)-(3.7) by analyzing time headway between consecutive vehicles. Since our analysis

focuses on traffic capacity, i.e., the maximum allowed traffic throughput, each headway

investigated in this study refers to the minimum headway between the corresponding vehicles

at the design speed on the investigated road segment. Let hn denote the time headway

between vehicles n and n+1,∀n ∈N\N . We allow hn to be a random variable that follows

a positive distribution depending on vehicle types An and An+1 with a finite mean of h̄AnAn+1

and a finite variance. Assume the variations {hn} values are independent across different

vehicles. Note that as illustrated in Figure 3.2, there are four types of mean time headways:

h̄00 for an HV followed another HV, h̄01 for an HV followed a CAV, h̄10 for a CAV followed

an HV, and h̄11 for a CAV followed by another CAV. With this, the expected capacity of

the mixed traffic stream can be written as:
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Figure 3.2: Illustration of headways in mixed traffic.

c̄ := E
(

N −1∑N−1
n=1 hn

)
.

Due to the exponential number of vehicle type scenarios (a scenario here is a realization

of all vehicles types) and random headway distributions, it is difficult to directly calculate

c̄ . Instead, Section 3.2.1 proposes a closed-form analytical formula to approximate c̄ and

presents theoretical analysis to show the closeness of this approximate value to the actual

c̄ value. Next, Section 3.2.2 examines how this approximate capacity varies with CAV

penetration rates and platooning intensities against the intuition that mixed traffic capacity

increases with these two factors.

3.2.1 Approximate Capacity

We propose to estimate c̄ with an approximate capacity formulated below:

ĉ := N −1∑N−1
n=1 E(hn)

= N −1∑N−1
n=1 h̄AnAn+1

.

With the Markov chain model, Proposition 1 yields

Pr(AnAn+1 = sr) = Pstsr (P1,O) ,∀s,r ∈ S,n ∈N\N.
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Then we obtain

∑N−1
n=1 h̄AnAn+1

N −1 =
∑

s∈S,r∈S
Pstsr (P1,O) h̄sr

and approximate capacity ĉ can be reformulated into a deterministic form as:

ĉ(P1,O,h) = 1∑
s∈S,r∈S Pstsr (P1,O) h̄sr

. (3.9)

where h is the vector of expected headways, i.e., h :=
[
h̄11, h̄10, h̄01, h̄00

]
. Below we investigate

the relationship between actual expectation c̄ and approximate value ĉ(P1,O,h).

Lemma 1. f (hu) := 1∑N−1
n=1 h

u
n
is a convex function of hu := [hun ≥ 0]∀n.

Proof. Define hu1 :=
[
hu2
n ≥ 0

]
∀n
, hu2 :=

[
hu2
n ≥ 0

]
∀n

and hu3 :=[
hu3
n := 0.5hu1

n + 0.5hu2
n ≥ 0

]
∀n
. Proving function f (·) is convex is equivalent to show-

ing 0.5f(hu1) + 0.5f(hu2)≥ f(hu3). Then we obtain:

0.5f(hu1) + 0.5f(hu2)
f(hu3) =

0.5∑N−1
n=1 h

u1
n

+ 0.5∑N−1
n=1 h

u2
n

1∑N−1
n=1 h

u3
n

=

(∑N−1
n=1 h

u3
n

)2

∑N−1
n=1 h

u1
n
∑N−1
n=1 h

u2
n

=

(∑N−1
n=1 h

u3
n

)2

(∑N−1
n=1 h

u3
n

)2
−0.25

(∑N−1
n=1 h

u1
n −

∑N−1
n=1 h

u2
n

)2

≥ 1.

This completes the proof.

Theorem 1. ĉ(P1,O,h)≤ c̄ for any finite N .

Proof. Let U denote the set of all possible vehicle type scenarios, and let pu denote the

probability of scenario u ∈ U . Let Aun denote the realization of An and hun denote the
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headway between vehicles n and n+ 1 in scenario u. Then we can formulate

c̄=
∑
u∈U

puE
(

N −1∑N−1
n=1 h

u
n

)
.

Then based on Lemma 1 and Jensen’s inequality (Jensen, 1906), we have E
(

N−1∑N−1
n=1 h

u
n

)
≥

N−1∑N−1
n=1 E(hun)

= N−1∑N−1
n=1 h̄AunAun+1

. This yields

c̄≥
∑
u∈U

pu
N −1∑N−1

n=1 h̄AunAun+1

.

Based on the same argument with Jensen’s inequality, we obtain

∑
u∈U

pu
N −1∑N−1

n=1 h̄AunAun+1

≥ N −1∑N−1
n=1

∑
u∈U puh̄AunAun+1

= N −1∑N−1
n=1 E(hn)

= ĉ(P1,O,h) .

This indicates ĉ(P1,O,h)≤ c̄ and completes the proof.

The above theorem indicates that ĉ(P1,O,h) provides a lower bound to c̄ for a small

stream of vehicles, which can still serve as a conservative estimation of the real capacity.

Further, as the size of the traffic stream increases, the following analysis shows ĉ(P1,O,h) is

an accurate estimation of c̄.

We define an extended Markov chain where states are defined for consecutive vehicle

pairs instead. We call two consecutive vehicles n and n+ 1 vehicle pair n. Define (Xn :=

AnAn+1)n∈N\N as the state variable for vehicle pair n, and the corresponding state space is

SE := S2 = {(1,1) ,(1,0) ,(0,1) ,(0,0)}.

Based on Proposition 1 and Equation (3.3), for this extended Markov chain, we can obtain

the initial distribution as πE :=
[
πEsr := Pstsr (P1,O)

]
,∀s ∈ S,sr ∈ SE and the transition
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matrix as

TE :=



tE1111 tE1110 tE1101 tE1100

tE1011 tE1010 tE1001 tE1000

tE0111 tE0110 tE0101 tE0100

tE0011 tE0010 tE0001 tE0000


,

where tEsrs′r′ denotes the probability for a vehicle pair of type sr to be followed by a vehicle

pair of type s′r′, i.e.,

tEsrs′r′ : = Pr
(
Xn+1 = s′r′ |Xn = sr

)
= Pr

(
An+1An+2 = s′r′ | AnAn+1 = sr

)
,∀n ∈N\{N,N −1} , sr ∈ SE.

It is apparent that tEsrs′r′ = 0, if r 6= s′,∀s,r,s′, r′ ∈ S. For other elements of TE,

based on Proposition 1 and Equation (3.3), we obtain tEsrrr′ = trr′∀s,r,s′, r′ ∈ S. Thus we

can rewrite TE as

TE(P1,O) =



t11 t10 0 0

0 0 t01 t00

t11 t10 0 0

0 0 t01 t00


.

We denote this extended Markov chain by Markov(πE,TE) and the following lemmas in-

vestigate its basic properties.

Lemma 2. If O < 1 and 0< Ps < 1,∀s ∈ S, then πE is an invariant distribution for TE.
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Proof. Based on the definition of invariant distribution (Norris, 1998), we just need to show

πETE = πE.

πETE = [P1t11,P1t10,P0t01,P0t00] ·



t11 t10 0 0

0 0 t01 t00

t11 t10 0 0

0 0 t01 t00


=

[
P1t

2
11 +P0t01t11,P1t11t10 +P0t01t10,P1t10t01 +P0t00t01,P1t10t00 +P0t

2
00
]
.

We obtain the elements of the above vector as following:

P1t
2
11 +P0t01t11 = P1t

2
11 + (1−P1) · P1

1−P1
(1− t11) · t11 = P1t11,

P1t11t10 +P0t01t10 = P1 · (1− t10) · t10 + (1−P1) · P1
1−P1

t10 · t10 = P1t10,

P1t10t01 +P0t00t01 = (1−P0) · P0
1−P0

t01 · t01 +P0 · (1− t01) t01 = P0t01,

P1t10t00 +P0t
2
00 = (1−P0) · P0

1−P0
(1− t00) · t00 +P0t

2
00 = P0t00.

Thus πETE = πE, which completes the proof.

Lemma 3. If O < 1 and 0 < Ps < 1,∀s ∈ S, Markov(πE,TE) is irreducible and all states

in SE are positive recurrent.

Proof. If O < 1 and 0< Ps < 1, then Pstsr (P1,O)> 0,∀s,r ∈ S. Thus it is intuitive that

Pr
(
Xn+1 = s′r′ |Xn = ss′

)
= Pstsr (P1,O)> 0,∀sr,s′s ∈ SE,∀n ∈N\N.
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With this, we know

Pr
(
X3 = s′r′ |X1 = sr

)
≥ Pr

(
X3 = s′r′ |X2 = rs′

)
·Pr

(
X2 = rs′ |X1 = sr

)
> 0,

∀sr,s′r′ ∈ SE.

Thus all states in SE communicate each other, i.e., sr ↔ s′r′,∀sr,s′r′ ∈ SE. Based on

Theorem 1.2.1 in Norris (1998), Markov(πE,TE) is irreducible. Also, since all states in SE

form a finite closed class , Theorem 1.5.6 in Norris (1998) shows that all states in SE are

recurrent. Further, based on Lemma 2 and Theorem 1.7.7 in Norris (1998), all states in SE

are positive recurrent. This completes the proof.

Lemma 4. Define Nsr :=∑
n∈N\N Isr(Xn) where indicator function Isr(Xn) is 1 if Xn = sr

is true or 0 otherwise. If O < 1, then we obtain

Pr
(
Nsr
N −1 → πEsr as N →∞

)
= 1,∀sr ∈ SE.

Proof. We first investigate the cases where Markov(πE,TE) is non-recurrent, i.e., P1 = 1 or

P0 = 1 (O< 1). When P1 = 1, Equations (3.4) and (3.5) yield t11 = 1, which indicates sr= 11

is an absorbing state. This further yields πEsr = 1, which indicates that all vehicles are CAVs

or N11 = N −1. Then it is easy to obtain N11
N−1 = P1t11 = 1. Similarly, when P0 = 1, with a

similar logic, we can show that N00
N−1 = P0t00 = 1. Further, for cases where 0<Ps < 1,∀s ∈ S,

based on Lemmas 2 and 3, Markov(πE,TE) is irreducible with an invariant distribution πE

and all states in SE are positive recurrent. Based on the definition, we obtain

Isr
(
s′r′

)
=


1, if s′r′ = sr;

0, otherwise.
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Theorem 1.10.2 in Norris (1998) shows that as N →∞, 1
N−1

∑
n∈N\N Isr(Xn)→ Īsr for all

sr ∈ SE, where Īsr := ∑
s′r′∈SE

(
πEsrIsr (s′r′)

)
. Since Īsr = πEsr, and based on the definition

of Nsr, we obtain

Pr
(
Nsr
N −1 → πEsr as N →∞

)
= 1,∀sr ∈ SE.

This completes the proof.

Theorem 2. When O < 1, we obtain Pr(ĉ(P1,O,h)→ c̄ as N →∞) = 1.

Proof. First we investigate the two cases whenMarkov(πE,TE) is non-recurrent: i.e., P1 = 1

or P0 = 1. When P1 = 1, we obtain An = 1,∀n ∈ N . Then based on the definitions,

ĉ(P1,O,h) = N−1∑N−1
n=1 h̄11

= 1
h̄11

and c̄ = E
(

N−1∑N−1
n=1 hn

)
. By the assumption of the indepen-

dent distributions of vehicle headways and the strong law of large numbers, we obtain that

the probability for
(

limN→∞
N−1∑N−1
n=1 hn

= 1
h̄11

)
is one. Thus Pr(c̄= ĉ(P1,O,h) as N →∞) =

1. Similarly, we can show that when P0 = 1, Pr
(

limN→∞
N−1∑N−1
n=1 hn

= 1
h̄00

)
= 1, and thus

Pr(c̄= ĉ(P1,O,h) as N →∞) = 1.

Now we investigate other cases for 0 < Ps < 1. Since Lemma 3 indicates

Pr(Nsr→∞ as N →∞) = 1,∀sr ∈ SE, based on the law of large numbers, we obtain

c̄= E

 1∑
s∈S,r∈S

∑
n∈Nusr

hn

Nsr
· NsrN−1

→ E

 1∑
s∈S,r∈S h̄sr · NsrN−1

 as N →∞. (3.10)

Further, since Lemma 4 indicates that Pr
(
Nsr
N−1 → πEsr as N →∞

)
= 1,∀sr ∈ SE, then we

obtain

Pr
 1∑

s∈S,r∈S h̄sr · NsrN−1
→ 1∑

s∈S,r∈S h̄srπEsr
= ĉ(P1,O,h) as N →∞

= 1,
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which yields,

Pr
E

 1∑
s∈S,r∈S h̄sr · NsrN−1

→ ĉ(P1,O,h) as N →∞
= 1. (3.11)

Equations (3.10) and (3.11) indicate that Pr(ĉ(P1,O,h)→ c̄ as N →∞) = 1, which com-

pletes the proof.

Note that the above analysis for O < 1 is sufficient for practical applications where

the platooning intensity never reaches the extreme case with O = 1. Further, practical

traffic capacity analysis is usually interested in a relatively long period with a large number

of vehicles passing. Thus the above theorem reveals that it is reasonable to use ĉ(P1,O)

to estimate true capacity c̄ in engineering practices. However, for the completeness of the

analytical results, the following corollary shows the corresponding results for the extreme

case with O = 1. The proof is straightforward and thus omitted in this presentation.

Corollary 1. When O = 1, ĉ(P1,O,h) = 1
P1h̄11+P0h̄00

≤ c̄= P1
h̄11

+ P0
h̄00

.

3.2.2 CAV Penetration Rate and Platooning Intensity Effects

Previous studies have frequently taken for granted that highway capacity always in-

creases with P1 (e.g., Kesting et al., 2008; Arnaout and Arnaout, 2014; van den Berg and

Verhoef, 2016) and O (Zhao and Sun, 2013; Harwood and Reed, 2014), and some claim that

this increasing rate is higher at a greater P1 value (e.g., van den Berg and Verhoef, 2016).

To test this intuition, we investigate the effects of P1 and O changes on ĉ(P1,O,h) with the

following theorems. Define ĥ10 :=
(
h̄10 + h̄01

)
/2, α := h̄11 + h̄00−2ĥ10 and β := ĥ10− h̄00.

Theorem 3. Define φ := (ρ−1) h̄00 +(2−ρ) ĥ10− h̄11. ĉ(P1,O,h) is increasing at P1 ∈ (0,1],

if and only if φ(P1,O,h)≥ 0, where
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ρ(P1,O) :=



1
(1−O)P1+O

2
, if O ∈ [0,1] ;

1
(1+O)P1

, if O ∈ [−1,0),p ∈ (0,0.5];

1
(1+O)P1−O , if O ∈ [−1,0),p ∈ (0.5,1].

Proof. Based on Equations (3.4)-(3.7) and (3.9), ĉ(P1,O,h) can be written as

ĉ(P1,O,h) =



1
ζ1P 2

1 +η1P1+θ1
O ∈ [0,1] ;

1
ζ2P 2

1 +η2P1+θ2
, O ∈ [−1,0),P1 ∈ (0,0.5];

1
ζ3P 2

1 +η3P1+θ3
O ∈ [−1,0),P1 ∈ (0.5,1],

where ζ1 := α (1−O), ζ2 := ζ3 := α (1 +O), η1 := αO+ 2β, η2 := 2β , η3 := −2αO+ 2β,

θ1 := θ2 := h̄00 and θ3 := αO+ h̄00.

For a certain O, we obtain dĉ
dP1

(P1,O,h) as

dĉ

dP1
(P1,O,h) =



−2ζ1P1−η1

(ζ1P 2
1 +η1P1+θ1)2 , O ∈ [0,1] ;

−2ζ2P1−η2

(ζ2P 2
1 +η2P1+θ2)2 , O ∈ [−1,0),P1 ∈ (0,0.5];

−2ζ3P1−η3

(ζ3P 2
1 +η3P1+θ3)2 , O ∈ [−1,0),P1 ∈ (0.5,1].

ĉ(P1,O,h) is increasing at P1 ∈ (0,1], if and only if dĉ
dP1

(P1,O,h) ≥ 0. Since the

denominators in the above equations are positive, we just need to investigate the signs of the

numerators. Thus, dĉ
dP1

(P1,O,h) ≥ 0 is equivalent to −2ζiP1− ηi ≥ 0,∀i = {1,2,3}. Thus,
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dĉ
dP1

(P1,O,h)≥ 0 is equivalent to



−α (2(1−O)P1 +O)−2β ≥ 0, O ∈ [0,1] ;

−2α (1 +O)P1−2β ≥ 0, O ∈ [−1,0),P1 ∈ (0,0.5];

−2α ((1 +O)P1−O)−2β ≥ 0, O ∈ [−1,0),P1 ∈ (0.5,1].

Since for any P1 ∈ (0,1], when O ∈ [0,1], 2(1−O)P1 +O > 0, and when O ∈ [−1,0),

2(1 +O)P1 > 0, dĉ
dP1

(P1,O,h)≥ 0 is equivalent to



(
1

(1−O)P1+O
2
−1

)
h̄00 +

(
2− 1

(1−O)P1+O
2

)
ĥ10− h̄11 ≥ 0, O ∈ [0,1] ;(

1
(1+O)P1

−1
)
h̄00 +

(
2− 1

(1+O)P1

)
ĥ10− h̄11 ≥ 0, O ∈ [−1,0),P1 ∈ (0,0.5];(

1
(1+O)P1−O −1

)
h̄00 +

(
2− 1

(1+O)P1−O

)
ĥ10− h̄11 ≥ 0, O ∈ [−1,0),P1 ∈ (0.5,1].

Thus, dĉ
dP1

(P1,O,h)≥ 0 is equivalent to φ(P1,O,h)≥ 0. This completes the proof.

Corollary 2. When ĥ10 ≤ h̄00, φ(P1,O,h) is a decreasing function of P1, and when ĥ10 >

h̄00, φ(P1,O,h) is an increasing function of P1, ∀P1 ∈ (0,1].

Corollary 3. If ĥ10 ≤ h̄00, ĉ(P1,O,h) is an increasing function of P1, ∀P1 ∈ (0,1] if and

only if φ(P1 = 1,O,h)≥ 0,∀O,h, or equivalently


(

O
2−O

)
h̄00 +

(
2−2O
2−O

)
ĥ10− h̄11 ≥ 0, if O ∈ [0,1] ;

ĥ10 ≥ h̄11, if O ∈ [−1,0).

Otherwise if ĥ10 > h̄00, ĉ(P1,O,h) is an increasing function of P1, ∀P1 ∈ (0,1] if and only

if φ(P1 = 0,O,h) ≥ 0,∀O ∈ [0,1] ,h , or equivalently
(

2
O −1

)
h̄00 +

(
2− 2

O

)
ĥ10 − h̄11 ≥ 0.

Further, when ĥ10 > h̄00 and O ∈ [−1,0), ĉ(P1,O,h) is not an increasing function of P1,

∀P1 ∈ (0,1].
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Corollary 4. If ĥ10 ≤ h̄00, ĉ(P1,O,h) is a decreasing function of P1, ∀P1 ∈ (0,1] if and

only if φ(P1 = 0,O,h)≤ 0,∀O ∈ [0,1] ,h, or equivalently
(

2
O −1

)
h̄00 +

(
2− 2

O

)
ĥ10− h̄11 ≤ 0.

Otherwise if ĥ10 > h̄00, ĉ(P1,O,h) is a decreasing function of P1, ∀P1 ∈ (0,1] if and only if

φ(P1 = 1,O,h)≤ 0,∀O,h, or equivalently


(

O
2−O

)
h̄00 +

(
2−2O
2−O

)
ĥ10− h̄11 ≤ 0, if O ∈ [0,1] ;

ĥ10 ≤ h̄11, if O ∈ [−1,0).

Further, when ĥ10 ≤ h̄00 and O ∈ [−1,0), ĉ(P1,O,h) is not a decreasing function of P1,

∀P1 ∈ (0,1].

Corollary 5. The necessary and sufficient condition for ĉ(P1,O,h) to be an increasing

function of P1,∀P1 ∈ (0,1] is h̄11 ≤ ĥ10 ≤ h̄00.

Corollary 6. The necessary and sufficient condition for ĉ(P1,O,h) to be a decreasing func-

tion of P1,∀P1 ∈ (0,1] is h̄11 ≥ ĥ10 ≥ h̄00.

Theorem 3 and the associated corollaries indicate that contrary to the ubiquitous

assumption that higher CAV penetration rates always yield greater mixed traffic capacity,

CAV penetration may not help with capacity under certain headway settings. For example,

under conservative CAV technologies with headways as specified by Corollary 6, a higher

CAV penetration rate instead reduces highway capacity.

Next, to test the claim that the increasing rate of capacity is higher at a greater CAV

penetration rate, we investigate the necessary and sufficient conditions in which ĉ(P1,O,h)

is a convex function of P1, ∀P1 ∈ (0,1].

Theorem 4. When O ∈ [0,1], ĉ(P1,O,h) is a convex function of P1,∀P1 ∈ [0,1] if and only

if
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

(√
η2

1−4ζ1 · θ1 +η1 + 2ζ1 < 0
)
∨ (η1 > 0), if ζ1 > 0 and 4ζ1 · θ1−η2

1 < 0;

(η1 + 2ζ1 < 0)∨ (η1 > 0) , if ζ1 > 0 and 4ζ1 · θ1−η2
1 = 0;(

3η1 +
√

12ζ1 · θ1−3η2
1 + 6ζ1 < 0

)
∨
(
η1−
√
ζ1 · θ1 > 0

)
, if ζ1 > 0 and 4ζ1 · θ1−η2

1 > 0;(
η1 · θ1 <−η2

1
)
∨ (η1 > 0) , if ζ1 = 0;√

η2
1−4ζ1 · θ1 +η1 + 2ζ1 > 0, if ζ1 < 0 and 4ζ1 · θ1−η2

1 < 0;

if ζ1 < 0 and 4ζ1 · θ1− η2
1 ≥ 0, then ĉ(P1,O,h) is not a convex function of P1,∀P1 ∈

[0,1].

Proof. ĉ(P1,O,h) is a convex function of P1,∀P1 ∈ [0,1], if and only if d2ĉ
dP 2

1
(P1,O,h) > 0,

∀P1 ∈ [0,1]. For a certain O ∈ [0,1], we obtain d2ĉ
dP 2

1
(P1,O,h) as

d2ĉ

dP 2
1

(P1,O,h) = 2(2ζ1 ·P1 +η1)2(
ζ1 ·P 2

1 +η1 ·P1 + θ1
)3 −

2ζ1(
ζ1 ·P 2

1 +η1 ·P1 + θ1
)2 .

Thus we obtain that d2ĉ
dP 2

1
(P1,O,h) > 0 is equivalent to ν(P1)

δ(P1) > 0, ∀P1 ∈ [0,1] where

δ (P1) := ζ1 ·P 2
1 +η1 ·P1 +θ1 and ν (P1) := 3ζ2

1 ·P 2
1 +3ζ1 ·η1 ·P1−ζ1 ·θ1 +η2

1. Since ĉ(P1,O,h)>

0, it is necessary that δ (P1) > 0 and for convexity, we require that ν (P1) > 0,∀P1 ∈ [0,1].

We investigate each above condition separately as follows. If ζ1 > 0 and 4ζ1 · θ1− η2
1 < 0,

ν (P1) is always positive; however, δ (P1) > 0,∀P1 ∈ [0,1], if and only if −η1+
√
η2

1−4ζ1·θ1
2ζ1 < 0

or −η1−
√
η2

1−4ζ1·θ1
2ζ1 > 1. Thus,

(√
η2

1−4ζ1 · θ1 +η1 + 2ζ1 < 0
)
∨ (η1 > 0). If ζ1 > 0 and 4ζ1 ·

θ1− η2
1 = 0, δ (P1) ,ν (P1) > 0,∀P1 ∈ [0,1], if and only if −η1

2ζ1 < 0 or −η1
2ζ1 > 1. Therefore,

(η1 + 2ζ1 < 0)∨ (η1 > 0). If ζ1 > 0 and 4ζ1 · θ1− η2
1 < 0, δ (P1) is always positive; however,

ν (P1)> 0,∀P1 ∈ [0,1], if and only if −η1+
√

12ζ1·θ1−3η2
1/3

2ζ1 < 0 or −η1−
√

12ζ1·θ1−3η2
1/3

2ζ1 > 1 that is

equivalent to
(

3η1 +
√

12ζ1 · θ1−3η2
1 + 6ζ1 < 0

)
∨
(
η1−
√
ζ1 · θ1 > 0

)
. When ζ1 = 0, δ (P1) >
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0,∀P1 ∈ [0,1], if and only if −θ1η1
< 0 or −θ1η1

> 1. Thus,
(
η1 · θ1 <−η2

1
)
∨ (η1 · θ1 > 0). If ζ1 < 0

and 4ζ1 · θ1−η2
1 < 0, ν (P1) is always positive; however, δ (P1)> 0,∀P1 ∈ [0,1], if and only if

−η1+
√
η2

1−4ζ1·θ1
2ζ1 < 0 and −η1−

√
η2

1−4ζ1·θ1
2ζ1 > 1 that is equivalent to

√
η2

1−4ζ1 · θ1 +η1 +2ζ1 > 0.

Finally, If ζ1 < 0 and 4ζ1 · θ1− η2
1 ≥ 0, δ (P1) ,ν (P1) ≤ 0,∀P1 ∈ [0,1] and ĉ(P1,O,h) is not a

convex function of P1,∀P1 ∈ [0,1].

Theorem 4 states a set of additional headway settings in which highway capacity is a

convex function of CAV market penetration rate. For example, based on this theorem, for

independent platooning intensity (O= 0), if the average interfacing headway between a CAV

and an HV is equal to to the geometric mean of the expected values of headways between

two CAVs and two HVs (ĥ10 =
√
h̄00h̄11), then with the conditions in Corollary 5, highway

capacity convexly increases with CAV penetration rate. Thereafter, taking these settings

into consideration on top of the previous settings will further enhance the highway capacity.

Note that since the convexity conditions for O < 0 are so complex, these conditions are

provided only for O ≥ 0, which is sufficient for practical applications because the platooning

intensity rarely reaches worse than the random intensity with O = 0.

Now, to examine the claim that highway capacity increases with CAV platooning in-

tensity, we present the necessary and sufficient condition in which ĉ(P1,O,h) is an increasing

function of O, ∀O ∈ [−1,1].

Theorem 5. ĉ(P1,O,h) is an increasing function of O, ∀O ∈ [−1,1] if and only if h̄11 + h̄00≤

2ĥ10.

Proof. Based on equations (3.4)-(3.7) and (3.9), ĉ(P1,O,h) can be rewritten as

ĉ(P1,O,h) =



1
αP1(1−P1)O+αP 2

1 +2βP1+h̄00
O ∈ [0,1] ;

1
αP 2

1O+αP 2
1 +2βP1+h̄00

, O ∈ [−1,0),P1 ∈ [0,0.5] ;

1
α(1−P1)2O+αP 2

1 +2βP1+h̄00
O ∈ [−1,0),P1 ∈ (0.5,1].
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For a certain P1, we obtain dĉ
dO (P1,O,h) as

dĉ

dO
(P1,O,h) =



−αP1(1−P1)
(αP1(1−P1)O+αP 2

1 +2βP1+h̄00)2 O ∈ [0,1] ;

−αP 2
1

(αP 2
1O+αP 2

1 +2βP1+h̄00)2 , O ∈ [−1,0),P1 ∈ [0,0.5] ;

−α(1−P1)2

(α(1−P1)2O+αP 2
1 +2βP1+h̄00)2 O ∈ [−1,0),P1 ∈ (0.5,1].

Thus h̄11 + h̄00 ≤ 2ĥ10 is necessary and sufficient to dĉ
dO (P1,O,h) ≥ 0 which implies

that ĉ(P1,O,h) is an increasing function with of O. This completes the proof.

Theorem 5 indicates that despite the common assumption that higher CAV platooning

yield greater highway capacity, in certain CAV headway settings, a higher CAV platooning

intensity could reduce highway capacity. For example, for CAV technologies in which the

average interfacing headway between a CAV and an HV (ĥ10) is less than the average of

headways between two CAVs and two HVs ( h̄11+h̄00
2 ), CAV platooning intensity may not help

with highway capacity.

From the above analysis, we see that these conventional assumptions that have been

frequently taken for granted may not always hold in various conditions, especially under

certain conservative technology scenarios. Therefore, in order to take full advantage of

emerging CAV technologies, traffic planners and managers have to be fully aware of all

possible impacts of different technology scenarios on mixed traffic capacity and be cautious

in using these commonly accepted assumptions. These insights will be demonstrated by

numerical examples in the following section.

3.3 Numerical Analyses

This section presents numerical examples to illustrate stochastic vehicle distribution

patterns in the proposed Markov chain model. Thereafter, we verify the analytical theorems
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Table 3.1: Headway distributions for numerical analyses in the single-lane problem.

h11 h10 h01 h00
Uniform(0.6,1.1) Uniform(0.8,2.2) Uniform(0.7,1.5) Uniform(0.8,2.2)

presented in Section 3.2.1, and show the accuracy of the approximate capacity formulation.

Finally, we show the impacts of CAV penetration rate and platooning intensity changes on

mixed traffic capacity, which also verify the presented theorems in Section 3.2.2. To perform

these numerical analyses, we define a set of default headway distributions in Table 3.1. For

simplicity, the numerical studies only consider uniform distributions where Uniform(a,b)

denotes a uniform distribution with lower bound a and upper bound b and the parameter

values are extracted from the comprehensive literature review (see Table 2.1). Note that in

general the proposed methods can be applied to other general distribution patterns in the

same way.

Fig. 3.3 shows a number of simulation results to illustrate stochastic vehicle spatial

distributions for different platooning intensities. All hsr values are stochastically distributed,

∀sr ∈ SE. The maximum platooning intensity (O= 1) is illustrated in Fig. 3.3(a) and 3.3(b).

With Equation (3.8), πE = [P1,0,0,1−P1], and thus at this intensity, in each simulation sce-

nario, the first vehicle has a probability of 1−P1 to be an HV (Fig. 3.3(a)) and a probability

of P1 to be a CAV (Fig. 3.3(b)) , and all following vehicles are of the same type as the

first vehicle. Fig. 3.3(c) and 3.3(d) show examples for the independent platooning intensity

(O = 0) for P1 = 0.5 and P1 = 0.75, respectively. We see that CAVs and HVs are randomly

distributed. Note that based on Theorem 2, the CAV percentage converges to P1 as N→∞.

Fig. 3.3(e) and 3.3(f) illustrate examples for the minimum platooning intensity (O =−1) for

P1 = 0.5 and P1 = 0.75, respectively. We see that at this platooning intensity, the vehicle

spatial distribution at P1 = 0.5 yields a strict CAV-to-HV alternating pattern (Fig. 3.3(e))

that has the maximum segregation between CAVs and HVs. If P1 is not equal to 0.5, due

to the asymmetry of CAV and HV numbers, the spatial distribution does not exhibit the
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(a) Maximum platooning with HVs (O = 1)

(b) Maximum platooning with CAVs (O = 1)

(c) Independent platooning for P1 = 0.5 (O = 0)

(d) Independent platooning for P1 = 0.75 (O = 0)

(e) Minimum platooning for P1 = 0.5 (O =−1)

(f) Minimum platooning for P1 = 0.75 (O =−1)

Figure 3.3: Illustrative examples for different platooning intensities

perfect CAV-to-HV alternating pattern, but it as well yields the maximum possible segre-

gation between CAVs and HVs (Fig. 3.3(f)). These examples demonstrates the capability of

the proposed Markov chain model in describing stochastic headway distributions across the

full spectrum of platooning intensities in realistic mixed traffic.

Next, we verify the analytical theorems in Section 3.2.1 and test the accuracy of

the proposed approximate capacity model with numerical instances. We perform numerical

instances with various N values. To compare ĉ(P1,O,h) with c̄, we define a capacity error

measure as ε := ĉ−c̄
c̄ ×100 (%), and calculate it for differentN values. To approximate c̄ values

for a certain N , we run Markov(πE,TE) 1000 times, and set c̄ equal to the average of the

observed capacities. In this analysis, we set P1 = 0.5 and O = 0. Fig. 3.4 shows ε values for

different N values. The results indicate that for all N values, ε≤ 0 and thus ĉ(P1,O,h)≤ c̄,

which verifies Theorem 1. Further, we see as N increases, ε→ 0, and thus ĉ(P1,O,h)→ c̄,

which verifies Theorem 2. Actually, note that even with very low N values (e.g., around
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Figure 3.4: ε for different N values.

10), |ε| does not even exceed 1.5%, which means across all realistic N values, approximate

capacity ĉ(P1,O,h) is no more than a couple of percent from ground truth capacity c̄ that

is otherwise hard to quantify. Therefore, this test confirms that the approximate capacity is

accurate and suitable for engineering practices.

Now we test the impacts of CAV penetration rate and platooning intensity on highway

capacity. Theorem 3 provides the necessary and sufficient conditions on which ĉ(P1,O,h)

is increasing at P1,∀P1 ∈ (0,1]. The numerical results are shown in Fig. 3.5. In each

sub-figure, the upper and lower half figures show how ĉ(P1,O,h) changes with P1 and the

corresponding φ(P1,O,h), respectively. The analyses are performed for O = −0.5 and O =

0.5 as representative negative and positive O values, respectively. Fig. 3.5(a) shows the

results for the default headways defined in Table 3.1. This headway setting yields h =

[0.85,1.50,1.10,1.50], which leads to φ(P1,O,h) > 0, ∀P1 ∈ (0,1] for O ∈ {−0.5,0.5}. Then

Theorem 3 indicates that ĉ(P1,O,h) is an increasing function of P1 over P1 ∈ (0,1] for

O ∈ {−0.5,0.5}, which is consistent with the results in Fig. 3.5(a). To verify this theorem

for other CAV technology scenarios, we change h vector elements as shown in each sub-

figure. For example, in Fig. 3.5(b), we set h̄11 = 1.60 seconds while keeping the remaining

headways at their default values (i.e., h = [1.60,1.50,1.10,1.50]). The results indicate that
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ĉ(P1,O,h) changes corresponds to φ(P1,O,h) signs, i.e., if φ(P1,O,h) > 0, then ĉ(P1,O,h)

is increasing at P1, and if φ(P1,O,h) < 0, then ĉ(P1,O,h) is decreasing at P1,∀P1 ∈ (0,1].

Note that in Fig. 3.5(a)- 3.5(c), h̄00 ≥ ĥ10, and φ(P1,O,h) is a decreasing function of P1.

Thus, if φ(P1 = p) = 0 for some p ∈ (0,1], then ĉ(P1,O,h) is an increasing function over

P1 ∈ (0,p] and a decreasing function over P1 ∈ [p,1]. On the other hand, in Fig. 3.5(d)-

3.5(f), since h̄00 < ĥ10, φ(P1,O,h) is an increasing function of P1. Thus, if φ(P1 = p) = 0 for

some p ∈ (0,1], then ĉ(P1,O,h) is a decreasing function over P1 ∈ (0,p] and an increasing

function over P1 ∈ [p,1]. These numerical analyses reveal that the common assumption that

highway capacity always increases with CAV market penetration rate is not necessarily true,

but rather, it depends on CAV technologies. If CAV technologies are aggressive (e.g., as the

default parameters in Fig. 3.5(a) specifies), CAV market penetration rate helps with highway

capacity. Otherwise, capacity may decrease at some market penetration rate values, or even

always decreases at any market penetration rate (see Fig. 3.5(f)).

Next, we show how highway capacity is affected by different CAV platooning inten-

sities. Theorem 5 provides the necessary and sufficient condition on which ĉ(P1,O,h) is an

increasing function of O, ∀O ∈ [−1,1]. In addition to the presented analytical theorem, we

provide numerical examples with two cases as shown in Fig. 3.6 to test this condition. In

these examples, we set P1 = 0.5 for both cases. In the first case with the default headways,

since h̄11 + h̄00 < 2ĥ10, ĉ(P1,O,h) is an increasing function of O over O ∈ [−1,1]. In the sec-

ond case, we set h̄11 = 1.30 seconds while keeping the remaining headways at their default

values. Therefore, h̄11 + h̄00 > 2ĥ10, and ĉ is a decreasing function of O over O ∈ [−1,1].

These examples, besides the analytical theorem, show that the usual assumption that high-

way capacity always increases with CAV platooning intensity is not necessarily true; rather,

it depends on CAV technologies.
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(b) h̄11 = 1.60 s
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(c) h̄11 = 2.00 s
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(d) ĥ10 = 1.80 s

2.1

2.2

2.3

2.4

×103

ĉ
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(e) ĥ10 = 1.80 s , h̄11 = 1.60 s
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(f) ĥ10 = 1.80 s , h̄11 = 2.00 s

Figure 3.5: Numerical examples to test how ĉ(P1,O,h) changes with P1.
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Figure 3.6: Numerical examples to test how ĉ(P1,O,h) changes with O i) default headways
ii) h̄11 = 1.30 s.

3.4 Chapter Summary

This chapter proposes an analytical stochastic formulation for mixed traffic highway

capacity as a function of three critical factors: CAV penetration rate, CAV platooning

intensity, and mixed traffic headway settings. We first conduct a review of the literature on

headway distributions for mixed and pure CAV traffic (see Section 2.1), and the outcomes are

used in the numerical analyses in which we evaluate hypothetical CAV technology scenarios

with different headway distributions. We propose a Markov chain model to analytically

formulate mixed traffic capacity under stochastic and heterogeneous headway settings across

the full spectra of CAV market penetration rates and platooning intensities in mixed traffic.

Both theoretical and numerical analyses show that the proposed Markov chain model can

efficiently and accurately quantify mixed traffic capacity. Moreover, our analytical analyses

reveal that contrary to the ubiquitous assumption that higher CAV penetration rates and

platooning intensities always yield greater mixed traffic capacity, these two factors may not

always help improve highway capacity. Therefore, as CAV market penetration rate (Bansal

and Kockelman, 2017; Chen et al., 2016; Lavasani et al., 2016) and platooning intensity
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increase in the future, traffic operators have to be aware of possible impacts of different CAV

technologies on capacity.
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CHAPTER 4: TRAJECTORY OPTIMIZATION1

This chapter proposes a simplified trajectory optimization model that can address

the challenges in the existing trajectory optimization models. The proposed trajectory opti-

mization model is described as follows.

4.1 Problem Statement

4.1.1 Original Formulation

This study investigates the far-future scenario where all vehicles are controllable

CAVs. Figure 4.1 illustrates the studied problem. Consider a one-lane highway segment

starting at location 0 upstream and ending at location L downstream. A number of N

CAVs, indexed as n ∈N = {1,2, ...,N}, consecutively arrive at location 0, drive through the

segment and exit this segment at location L. This problem assumes that with advanced

information system, vehicle n’s arrival time at location 0 can be accurately estimated as t−n .

Without much loss of generality, we assume that each vehicle arrives at a maximum cruising

speed v̄ for the maximum system throughput2. This problem also assumes that the traffic

control protocol is given, and vehicle n′s departure at location L is scheduled at time t+n
1This chapter is submitted for publication: Li, X., Ghiasi, A., Xu, Z., Qu, X., 2018. A piecewise

trajectory optimization model for connected automated vehicles: exact optimization algorithm and queue
propagation analysis.

2The problem in Zhou et al. (2017) allows vehicles to arrive at different speeds, which however only
affects the initial part of the trajectories but does not change much overall trajectory patterns. Further,
when all vehicles are CAVs, arrival vehicles at this segment shall be depature vehicles from the upstream
segments, and the proposed control shall ensure that all vehicles exit from the upstream segments at speed
v̄, which is equivalent to arrival speed v̄ at this segment.
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Figure 4.1: Illustration of the constraints.

in advance3. One example is that the CAV traffic control protocol is a fixed-timing traffic

signal, and every vehicle is scheduled to depart as early as possible, which yields a fixed

departure time for each vehicle. Another example is the first-in-first-out control policy at

a non-stop intersection (or a merge point), and each vehicle’s departure time is essentially

determined by the arrival times of all vehicles that have already arrived. To achieve the

maximum system throughput, as discussed in Zhou et al. (2017), we postulate that each

vehicle departs the segment at speed v̄. We use xn(t),∀t ∈ [t−n , t+n ] to denote the trajectory

of vehicle n, i.e., the location of vehicle n at every time point t. Define trajectory vector

x = [xn]n∈N , which shall satisfy the following constraints.

• Entry boundary constraints: Vehicle n is cruising at speed v̄ at location 0 at time t−n ,

i.e.,

xn(t−n ) = 0,∀n ∈N , (4.1)

ẋn(t−n ) = v̄,∀n ∈N , (4.2)
3Note that the problem in Ma et al. (2017) does not fix a vehicle’s exit time t+n but rather lets the

optimization result determine it. Nonetheless, the numerical experiments in Ma et al. (2017) show that exit
time t+n does not change much from the theoretical minimum value in the optimal results. Thus fixing the
exit times will not much affect the generality of CAV trajectory optimization at the highway segment level.
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• Exit boundary constraints: Based on the CAV control protocol, each vehicle n shall

exit location L at cruising speed v̄ at a predetermined time t+n , i.e.,

xn(t+n ) = L,∀n ∈N , (4.3)

ẋn(t+n ) = v̄,∀n ∈N . (4.4)

• Speed constraints: Vehicle n cannot back up any time and cannot go beyond cruising

speed v̄, i.e.,

0≤ ẋn(t)≤ v̄,∀t ∈ [t−n , t+n ],n ∈N . (4.5)

• Acceleration constraints: Vehicle n’s acceleration is bounded between minimum accel-

eration (or maximum deceleration) a < 0 and maximum acceleration ā > 0, i.e.,

a≤ ẍn(t)≤ ā,∀t ∈ [t−n , t+n ],n ∈N . (4.6)

We require ẍn(t) to be a piecewise second-order differentiable function. At a joint

between two pieces, ẍn(t) is defined as the left differential.

• Safety constraints: For every two consecutive vehicles n− 1 and n, their trajectories

have to maintain certain safety headway to ensure

xn−1(t− τ)−xn(t) = s,∀t ∈ [t−n−1 + τ, t+n−1],∀n ∈N\{1}, (4.7)

where τ is the minimum time headway and s is the minimum space headway. The value

of τ depends on CAV communication and control delay, and the value of s depends on

the CAV size and the reserved safety buffer.
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Each trajectory xn is associated with an operational cost, formulated as the cost function

below

c(xn) :=
∫ t+n

t−n
e(ẋn(t), ẍn(t))dt,∀n ∈N (4.8)

where function e(ẋn(t), ẍ(t)) measures the instantaneous cost of xn at time point t. This

study considers a general class of e functions as follows,

e(ẋ, ẍ) =
P∑
p=1

Ap |ẍ|p+
Q∑
q=1

Bqẋ
q +

∞∑
r=−∞

Crẋ
rẍ, (4.9)

where power index P can be any positive integer, Q∈{1,2,3,4} and all coefficientsAp,Bq,Cr≥

0. The reason we use this function form as the optimization objective is two-fold. First, it is

a closed-form function suitable for analytical studies. More importantly, several commonly

used instantaneous vehicle performance measures can be written as special forms of this

function. For example, one special case is vehicle specific power (Frey et al., 2002), which

is approximately propositional to vehicle fuel consumption and positively correlated with

emissions, i.e.,

eVSP(ẋ, ẍ) = ξẋẍ+ψẋ+ ζẋ3. (4.10)

where ξ, ψ and ζ are positive coefficients. Another special case is squared acceleration (Smith

et al., 1978), which has been frequently used to indicate driving comfort, i.e.,

eSA(ẋ, ẍ) = ẍ2. (4.11)

With formula (4.9), vehicle cost (4.8) can be rewritten as

c(xn) =
P∑
p=1

Ap

∫ t+n

t−n
|ẍn(t)|p dt+

Q∑
q=1

Bq

∫ t+n

t−n
ẋn(t)qdt. (4.12)

48



Note that the third item is dropped because
∫ t+n
t−n
ẋn(t)rẍn(t)dt = 1

r+1 ẋn(t)r+1
∣∣∣t+n
t−n

is always

equal to zero for any r ∈ R since ẋn(t−n ) = ẋn(t+n ) = v̄. Then the system performance is

measured by the average cost per vehicle

C(x) :=
∑
n∈N

c(xn)/N.

Now the primary trajectory optimization problem can be formulated as follows,

PTO : minx C(x) (4.13)

subject to Constraints (4.1)—(4.7).

In order for problem PTO to be feasible, parameters should satisfy the following

conditions. Since vehicles shall satisfy safety constraints (4.7) , then {t−n } values shall satisfy

t−n − t−n−1 ≥ τ + s/v̄,∀n ∈N\{1}. (4.14)

Since vehicles can only exit the highway segment consequentially, safety constraints (4.7)

imply that {t+n } should satisfy a similar relationship,

t+n − t+n−1 ≥ τ + s/v̄,∀n ∈N\{1}. (4.15)

Further, since vehicles only have a limited speed v̄, the following constraints shall be satisfied

t+n − t−n ≥ L/v̄,∀n ∈N . (4.16)
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4.1.2 Simplified Model Formulation

It is difficult to solve PTO to the exact optimal due to infinite-dimensional vari-

ables, highly nonlinear objective and vehicle dependency in the constraints. By adapting the

simplification approach in Ma et al. (2017), instead of directly analyzing PTO, this study

formulates a simplified model that restricts each trajectory to consist of no more than five

quadratic segments and trajectories in each platoon (platoon will be defined in the next

paragraph) have identical acceleration and deceleration magnitudes. Although this restric-

tion may slightly sacrifice the solution optimality since it reduces the feasible region of the

trajectories, we believe that the restricted solution shall be close to the true optimum for the

following two reasons. First, since a realistic vehicle cost function (4.12) shall be optimal

with a smooth vehicle trajectory that does not frequently decelerate and accelerate, using

piecewise quadratic approximation shall not bring too much error to the optimal trajectory

shape. Second, since these vehicles closely follow each other in a platoon, they optimal trajec-

tories shall have similar acceleration and deceleration levels, and thus assuming them sharing

identical acceleration and deceleration magnitudes will not much compromise the optimality.

While it is interesting to verify this conjecture with theoretical analysis and numerical exper-

iments, it is beyond the scope of this study. This study will focus on formulating, analyzing

and testing this simplified model, and this section will present the formulation of this model.

First, we want to note that safety constraints (4.7) will not be activated for two

consecutive vehicles n and n+ 1 if vehicle n’s departure time is not much later than vehicle

n+ 1’s arrival time, i.e.,

t+n + τ + s/v̄ ≤ t−n+1 +L/v̄.

If this inequality holds, the optimization problem can be decomposed into two sub-problems,

one for vehicles up to n and the other for vehicles from n+1 on. Such decomposition can be

repeated for other vehicles satisfying this condition. Eventually, vehicles will be decomposed
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Figure 4.2: Illustration of platoon decomposition.

into a number of platoons such that only two vehicles in the same platoon can possibly

activate safety constraints (4.7). This is illustrated in Figure 4.2. Vehicle platoons can be

identified by the following platooning algorithm (PA).

• PA-0: Set platoon collection M = ∅. Set current vehicle n = 1, and initialize current

platoon vectorM= [1].

• PA-1: Check whether t+n +τ +s/v̄ > t−n+1 +L/v̄ holds. If yes, then vehicles n and n+1

belong to the same platoon, append n+1 to the end ofM. Otherwise, vehicles n and

n+ 1 shall be in different platoons, and then add M to M and start a new platoon

M= [n+ 1];

• PA-2: If n=N , addM to M and end the algorithm. Otherwise, set n= n+ 1, got to

Step PA-1.

With this, we can decompose the trajectory optimization into a set of subproblems, each for

one platoon separately. Then the following analysis only focuses on the optimization of a

generic non-trivial platoon (i.e., having two or more trajectories), for which we index vehicles

withM= {1,2, · · · ,M} without lose of generality.
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Figure 4.3: Illustration of the piece-wise quadratic form of trajectory xn (a) with a stop
section and (b) without a stop section.

The remainder of this section presents the simplified trajectory optimization model

(STO) for vehicles in M. Basically, STO restricts that each trajectory xn has at most 5

consecutive quadratic sections, as illustrated in Figure 4.3. Each section is with acceleration

−a− ∈ [a,0], 0 or a+ ∈ [0, ā] where a− and a+ are the acceleration variables that determine

the overall smoothness of the whole platoon. Let tn1 ≤ tn2 ≤ tn3 ≤ tn4 ∈
[
t−n , t

+
n

]
denote the

joint time points between these sections. The first section of xn during time interval
[
t−n , tn1

]
cruises at speed v̄. The second section during time interval (tn1, tn2] decelerates at a constant

deceleration rate of −a−. Note that the third section during time interval (tn2, tn3] exists

(i.e. tn2 < tn3) only if xn has to make a stop from time tn2 to tn3 (as illustrated in Figure

4.3(a)). Otherwise, tn2 = tn3, ẋn(t) > 0,∀t ∈ [t−n , t+n ], and this third section does not exist

(as illustrated in Figure 4.3(b)). The fourth section during time (tn3, tn4] accelerates at a

constant acceleration rate of a+. Note that these three intermediate sections form a reversed

“S-shaped” transitional part that fits trajectory xn(t) for arrival time t−n and exit time t+n .

Then the fifth section during time
(
tn4, t+n

]
cruises at speed v̄ and reaches exit location L

at exit time t+n .

Note that trajectory xn in this piecewise quadratic form is determined by three vari-

ables, i.e., initial cruising time δn1 := tn1−t-n and deceleration magnitude a− and acceleration
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magnitude a+. Given these variables, each trajectory xn can be formulated in the following

way. For mathematical convenience, define ∆n := t+n −t−n −L/v̄ (note that ∆n has to be posi-

tive or otherwise vehicle n itself is a trivial platoon), and t∆n = t+n −t−n , as illustrated in Figure

4.3. Note that t∆n is the travel time for vehicle n on this segment, and ∆n can be interpreted

as the corresponding travel delay. Instead of investigating the two acceleration variables

directly, we investigate two auxiliary variables φ := a−a+

a−+a+ and λ := a−/(a−+a+), because

these auxiliary variables much simplify the following formulations (which will be explained in

a later remark). Although the physical meanings of these two auxiliary variables are not as

intuitive, one can simply consider φ as an indication of the overall acceleration/deceleration

magnitude, and λ as a weight of deceleration magnitude. Since a− ∈ [0,−a] and a+ ∈ [0, ā],

then φ and λ shall fall in the following ranges: φ ∈
[
0, φ̄

]
where φ̄ := −aā

ā−a and λ ∈
[
φ
ā ,1 + φ

a

]
.

Note that for given values of (φ,λ) except for trivial singular points where λ = 0 or 1, the

corresponding acceleration values can be obtained uniquely as a− = φ/(1−λ) and a+ = φ/λ.

With this, we can formulate the time joints with variables {δn1} ,a−,a+ as follows,

tn1 = t-n+ δn1, (4.17)

tni = tn(i−1) + δni (φ,λ) ,∀i= 2,3,4 (4.18)

where

δn2 (φ,λ) =


√

2v̄∆n
φ (1−λ), if φ≤ v̄

2∆n
;

v̄(1−λ)
φ , otherwise,

δn3(φ) =


0, if φ≤ v̄

2∆n
;

∆n− v̄
2φ , otherwise,

and
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δn4(φ,λ) =


√

2v̄∆n
φ λ, if φ≤ v̄

2∆n
;

v̄λ
φ , otherwise.

.

Then we obtain the time duration for the transitional part as,

δ (φ,∆n) :=
4∑
i=2

δni (φ,λ) =


√

2v̄∆n
φ , if φ≤ v̄

2∆n
;

∆n+ v̄
2φ , otherwise.

Note that function δ (φ,∆n) is differentiable with respect to φ and ∆n; i.e.,

dδ (φ,∆n)
φ

= max

−
√
v̄∆n

2 φ−1.5,− v̄2φ
−2


which is negative, increasing with φ and decreasing with ∆n, and

dδ (φ,∆n)
∆n

= max
{√

v̄

2φ∆n
,1
}

which is positive and decreasing with ∆n and φ. These results also suggest that δ (φ,∆n)

decreases with φ and increases with ∆n.

Note that time duration δ (φ,∆n) is essentially determined by variable φ but indepen-

dent of λ. Thus the effects of variables φ and λ on the shape of xn are separated: φ decreases

with the duration of the transitional part, and λ affects the skewness of the transitional part

between acceleration and deceleration. This separation, which cannot be achieved by origi-

nal variables a− and a+, much facilitates the following analysis. This is the reason why we

use auxiliary variables φ and λ instead of original variables a− and a+.
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Now the corresponding acceleration function can be formulated as

ẍn(t) =



0, if t ∈
[
t−n , tn1

]
;

− φ
1−λ , if t ∈ (tn1, tn2] ;

0, if t ∈ (tn2, tn3] ;

φ
λ , if t ∈ (tn3, tn4] ;

0, if t ∈
(
tn4, t+n

]
.

(4.19)

The corresponding speed function is

ẋn(t) =



v̄, if t ∈
[
t−n , tn1

]
;

v̄− φ
1−λ (t− tn1) if t ∈ (tn1, tn2] ;

0 if t ∈ (tn2, tn3] ;

v̄+ φ
λ (t− tn4) , if t ∈ (tn3, tn4] ;

v̄, if t ∈
(
tn4, t+n

]
.

(4.20)

The corresponding location function is

xn(t) =



v̄
(
t− t−n

)
, if t ∈

[
t−n , tn1

]
;

v̄
(
t− t−n

)
−0.5 φ

1−λ (t− tn1)2 if t ∈ (tn1, tn2] ;

v̄
(
tn2− t−n

)
−0.5 φ

1−λδ
2
n2 (φ,λ) if t ∈ (tn2, tn3] ;

v̄
(
t− tn3 + tn2− t−n

)
−0.5 φ

1−λδ
2
n2 (φ,λ)−0.5φλ (t− tn4)2 , if t ∈ (tn3, tn4] ;

v̄
(
t− tn3 + tn2− t−n

)
−0.5λ φ

1−λδ
2
n2 (φ,λ)−0.5φλδ

2
n4 (φ,λ) , if t ∈

(
t4n, t

+
n

]
.

(4.21)
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With this simplification, cost function (4.12) can be rewritten into a closed-form

expression without integrals as follows,

c̄n(φ,λ) =
P∑
p=1

ApF
A
n (φ,λ,p) +

Q∑
q=1

BqF
V
n (φ,q) (4.22)

where

FAn (φ,λ,p) :=
∫ t+n

t−n
|ẍn(t)|p dt= min

(√
2v̄∆nφ, v̄

)
·
(
λ1−p+ (1−λ)1−p)φp−1 (4.23)

and

FVn (φ,q) : =
∫ t+n

t−n
ẋqn(t)dt= Lv̄q−1−

(q−1)∆nv̄
q + v̄q+1

q+1
∑q+1
i=3

 q+ 1

i


(
−
√

2∆n
v̄

)i
φi/2−1, if φ≤ v̄

2∆n
;

(
1
2 −

1
q+1

)
v̄q 1

φ , otherwise.

(4.24)

Note that after this simplification, cost function cn is only dependent on φ and λ but inde-

pendent of {δn1}.

Next, we investigate how to simplify the corresponding constraints. We denote the

five sections of xn in the following form: initial cruising section xn
(
t−n : tn1

)
, deceleration

section xn (tn1 : tn4), stopping section xn (tn2 : tn3), accelerating section xn (tn3 : tn4), and

final cruising section xn
(
tn4 : t+n

)
(where operator : separates the starting and ending time

of a trajectory section). The length of initial cruising section is simply

∣∣∣xn (t−n : tn1
)∣∣∣= v̄δn1.
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Length |xn (tn1 : tn4)| is a function φ and ∆n as follows,

|xn (tn1 : tn4)|=


v̄
(√

2v̄∆n√
φ,
−∆n

)
, if φ≤ v̄

2∆n
;

v̄2

2φ , otherwise.

Length |xn (tn4 : tn5)| is also a function of φ as follows,

|xn (tn4 : tn5)|= L− v̄

δn1 +


√

2v̄∆n√
φ
−∆n, if φ≤ v̄

2∆n
;

v̄2

2φ , otherwise.


In order for xn to satisfy constraints (4.1)-(4.6), we actually only need to impose∣∣∣xn (t−n : tn1

)∣∣∣ , |xn (tn4 : tn5)| ≥ 0, i.e.,

0≤ δn1 ≤ δ̃n1 (φ) := t∆n − δ (φ,∆n) . (4.25)

Note that in order for δ̃n1 (φ) to be no greater than 0 for all n, the value of φ should satisfy

φ≥ φ :=


maxn∈M 2v̄∆n

(L/v̄+∆n)2 , if ∆n ≤ 2L
v̄ ;

v̄2

2L , otherwise.
(4.26)

where φ can be taken as a lower bound for φ, which is tighter than 0.

Now we discuss how to select variables a−,a+,{δn1}∀n to comply with safety con-

straints (4.7). Define a shadow trajectory of xn(t) as

xsn(t) := xn(t− τ)− s.

Then safety constraints (4.7) essentially mean that xn is always below or at maximum tan-

gent to xsn−1. Note that this condition is equivalent to xn (tn1 : tn4) is always below or

at maximum tangent to xsn−1
(
t(n−1)1 + τ : t(n−1)4 + τ

)
. We investigate the critical condi-
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Figure 4.4: Illustration of ∆n(n−1).

tion when xn (tn1 : tn4) gets tangent to xsn−1(t(n−1)1 + τ : t(n−1)4 + τ), and we denote the

corresponding critical δn1 value as function δ̂n1
(
δ(n−1)1,φ

)
. For formulation convenience,

define ∆(n−1)n := t+n−1 + τ + s/v̄− t−n −L/v̄ as illustrated in Figure 4.4, which can be in-

terpreted as the potential time headway conflict between vehicles n and n− 1. Note that

∆(n−1)n ≤∆n−1 since t−n ≥ t−n−1 +τ+s/v̄, and ∆(n−1)n ≤∆n since t+n−1 +τ+s/v̄≤ t+n . Then

function δ̂n1
(
δ(n−1)1,φ

)
can be formulated as

δ̂n1
(
δ(n−1)1,φ

)
: = δ(n−1)1 + δ (φ,∆n−1) + t−n−1 + τ − t−n − δ

(
φ,∆n(n−1)

)
. (4.27)

Then safety constraints (4.7) are essentially equivalent to δn1≤ δ̂n1
(
δ(n−1)1,φ

)
,∀n∈M\{1}.

This together with Equation (4.25) yields

0≤ δn1 ≤


δ̃n1 (φ) , if n= 1;

min
{
δ̃n1 (φ) , δ̂n1

(
δ(n−1)1,φ

)}
, otherwise,

∀n ∈M. (4.28)
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Figure 4.5: Illustration of a feasible set of trajectories to Problem STO.

Now the simplified trajectory optimization model (STO) that this study investigates is for-

mulated as

STO: min
{δn1},φ,λ

C̄(φ,λ) :=
N∑
n=1

c̄n(φ,λ)/N (4.29)

where cost function c̄n is defined in (4.22), subject to (4.28) and

φ≤ φ≤ φ̄, (4.30)

and

φ

ā
≤ λ≤ 1 + φ

a
. (4.31)

Note that Model STO only has N +2 independent variables, which is a dramatic simplifica-

tion compared with PTO. Figure 4.5 illustrates a set of feasible trajectories to STO.
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4.2 Solution Approach

This section analyzes the structure of STO and aims to find an exact solution approach

to this problem. Section 4.2.1 investigates certain theoretical properties on how the variable

values affect the STO objective and the constraints. Based on these theoretical results,

Section 4.2.2 proposes an exact analytical algorithm to solve the optimal solution to STO.

4.2.1 Theoretical Properties

Note that objective function (4.29) of STO is independent of the {δn1} values. Rather,

the {δn1} values affect the feasible region of STO through constraints (4.28), (4.30) and

(4.31). Therefore, to solve STO, we can first set {δn1} to values that are the least restrictive

to the feasible region of variables φ and λ, which leads to the following proposition.

Proposition 2. For given φ and λ values, if STO has at least one feasible solution to {δn1},

then {δn1 = δ∗n1(φ)} must be feasible to STO as well, where

δ∗n1(φ) :=


δ̃n1 (φ) , if n= 1;

min
{
δ̃n1 (φ) , δ̂n1

(
δ∗(n−1)1(φ),φ

)}
, otherwise,

∀n ∈M. (4.32)

Proof. Let {δ′n1} denote an feasible solution to {δn1}. Then {δ′n1} shall satisfy constraints

(4.28) as follows

0≤ δ′n1 ≤


δ̃n1 (φ) , if n= 1;

min
{
δ̃n1 (φ) , δ̂n1

(
δ′(n−1)1,φ

)}
, otherwise;

,∀n ∈M.

Then first δ∗11(φ) = δ̃11 (φ)≥ δ′11 ≥ 0 is apparently feasible to constraints (4.28) as well. Now

we will use induction to show that δ∗n1 (φ) is feasible for n ∈M/{1}. Assume 0 ≤ δ′k1 ≤

δ∗k1 (φ) and δ∗k1 (φ) satisfies constraints (4.28), which is obviously true for k = 1. Then for
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n = k+ 1, by definition (4.32), δ∗n1 (φ) = min
{
δ̃n1 (φ) , δ̂n1

(
δ∗(n−1)1(φ),φ

)}
, which obviously

satisfies constraints (4.28). Further, by definition δ̂n1
(
δ(n−1)1(φ),φ

)
apparently increases

with the δ(n−1)1(φ) value, which indicates δ∗n1 (φ) ≥ δ′n1 ≥ 0. This completes the induction

proof.

Note that in the above proposition, {δn1 = δ∗n1(φ)} essentially means that the tran-

sitional part of each trajectory is pushed downstream all the way until either tn4 = t+n or

safety constraint (4.7) is activated. The above proposition indicates that {δn1} values can

be just fixed to {δ∗n1 (φ)} without affecting the optimal objective of STO. Further, denote

δ∗1(φ) := min
n∈M

{δ∗n1(φ)} . (4.33)

Note that {δn1 = δ∗n1(φ)} are feasible to constraints (4.28) if and only if δ∗1(φ)≥ 0.With this,

STO essentially reduces to the following restricted STO (RSTO).

RSTO: min
φ,λ

C̄(φ,λ) (4.34)

subject to (4.30), (4.31) and

δ∗1(φ)≥ 0. (4.35)

Note that RSTO further reduces this problem to one with only two variables, φ and λ, which

further simplifies the problem. The following analysis only investigates RSTO since RSTO’s

optimal solution also solves STO. Now we investigate the relationships between the cost

objective function and the decision variables φ and λ.

Lemma 5. For any p≥ 1, function FAn (φ,λ,p) increases with φ > 0.
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Proof. Based on Equation (4.23), if φ≤ v̄
2∆n

,

FAn (φ,λ,p) =
√

2v̄∆n

(
λ1−p+ (1−λ)1−p)φp−0.5,

which apparently increases with φ > 0 when p≥ 1. Otherwise, if φ > v̄
2∆n

,

FAn (φ,λ,p) = v̄
(
λ1−p+ (1−λ)1−p)φp−1,

which again increases with φ > 0 when p≥ 1. This completes the proof.

Lemma 6. For any p ≥ 1, function FAn (φ,λ,p) is symmetric with respect to λ = 0.5, de-

creasing with λ ∈ (0,0.5] and increasing with λ ∈ [0.5,1).

Proof. Equation (4.23) apparently shows that FAn (φ,λ,p) is symmetric with respect to λ=

0.5. Further,

dFAn (φ,λ,p)
dλ

= min
(√

2v̄∆nφ, v̄
)
·φp−1(q−1)

(
(1−λ)−p−λ−p

)
,

which apparently is no greater than 0 when λ ∈ (0,0.5] and no less than 0 when λ ∈ [0.5,0).

This completes the proof.

Lemma 7. For q ∈ {1,2,3,4}, function FVn (φ,q) increases with φ > 0.

Proof. This lemma trivially holds when q = 1 since FVn (φ,1) equals constant L. Then we

only investigate the cases for q = 2,3,4. Based on formulation (4.24), if φ≤ v̄
2∆n

,

dFVn (φ,q)
dφ

=− v̄q+1

(q+ 1)φ2

q+1∑
i=3

 q+ 1

i

(i/2−1)
−

√
2∆nφ

v̄

i .

Since 2∆nφ
v̄ ≤ 1 holds in this case, it is easy to verify that dFVn (φ,q)

dφ ≥ 0 for q = 2,3,4.
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Otherwise if φ > v̄
2∆n

,

dFVn (φ,q)
dφ

=
(

1
2 −

1
q+ 1

)
v̄q+1 1

φ2

which is greater than 0 for all q > 1. This completes the proof.

These lemmas lead to the following relationship between the optimization objective

and the decision variables.

Theorem 6. Objective function C̄(φ,λ) increases with φ > 0, is symmetric with respect to

λ= 0.5, decreases with λ ∈ (0,0.5] and increases with λ ∈ [0.5,1).

The proof of this theorem directly follows Lemmas 5-7. With this property, the

optimal solution to RSTO can be obtained as the following theorem states.

Theorem 7. For RSTO, the optimal solution to φ, if existing, is

φ∗ = min
φ

{
φ
∣∣∣φ≤ φ≤ φ̄, δ∗1(φ)≥ 0

}
, (4.36)

and the optimal solution to λ, if existing, is

λ∗ = min
(

max
(

0.5, φ
∗

ā

)
,1 + φ∗

a

)
. (4.37)

Proof. First, if φ∗ exists and is given, based on the relationship between C̄(φ∗,λ) and λ

stated in Theorem 7 and constraints (4.31), it is easy to see that λ∗ can be solved by

(4.37). Note that with Equation (4.37), as φ∗ decreases, φ
∗

ā shall decrease and 1 + φ∗

a shall

increase. Therefore, as φ∗ reduces, λ∗ will be always feasible, and |λ∗− 0.5| decreases as

well. Therefore, based on Theorem 7, a further decrease of φ∗will not affect the feasibility

of λ∗ while improving the objective. Therefore, Equation (4.36) holds. This completes the

proof.
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The optimal solution stated in Theorem 7 can be intuitively interpreted as to stretch

all trajectories as smooth as the transitional parts reach the upstream end of the investigated

segment (or δ∗1(φ) = 0) and the acceleration and deceleration magnitudes are maximally

balanced (or λ∗ gets as close to 0.5 as the feasibility allows). For most problem instances

with realistic settings, the optimal acceleration and deceleration shall be mild and shall not

activate their respective bounds. In this case, λ∗ is just set to 0.5, indicating the same

deceleration and acceleration magnitudes. Theorem 7 essentially further reduces RSTO into

a one dimensional search problem where we only need to find the minimal φ∈
[
φ, φ̄

]
satisfying

δ∗1(φ)≥ 0. This result can be further narrowed as follows.

Corollary 7. For RSTO, the optimal solution to φ, if existing, is

φ∗ = min
φ

{
φ
∣∣∣φ≤ φ≤ φ̄, δ∗1(φ) = 0

}
, (4.38)

Proof. Based on the definition of δ∗n1(φ) with Equations (4.25), (4.27) and (4.32), we find

that δ∗n1(φ), is continuous with φ. Then it is easy to see with Equation (4.33) that δ∗1(φ) is

continuous with φ as well. Further, we shall see that δ∗1(φ) ≤ minn∈M δ̃n1(φ) = 0. Then if

δ∗1
(
φ
)

= 0, then apparently , φ∗ = φ. Otherwise, δ∗1
(
φ
)
< 0. Then if δ∗1 (φ) < 0,∀φ ∈

[
φ, φ̄

]
,

φ∗ does not exist. Otherwise, based on the intermediate value theorem, Equations (4.36)

and (4.38) are equivalent. This completes the proof.

4.2.2 Optimization Algorithm

Theorem 7 and Corollary 7 indicate that the key to solving RSTO is finding the

minimum feasible solution to δ∗1(φ) ≥ 0 in a finite range
[
φ, φ̄

]
. Although δ∗1(φ) may not

have simple monotonicity that justifies a bisecting search algorithm, we notice that δ∗1(φ) is

essentially a piece-wise quadratic function, and thus δ∗1(φ) = 0 can be solved analytically at

each piece with the following customized algorithm.
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Figure 4.6: Illustration of lead vehicles {n̂i(φ)}, where each cross marks the time of tn4.

Define δ∆
n1 (φ) := δ̃n1 (φ) − δ̂n1

(
δ∗(n−1)1,φ

)
,∀n ∈ M, andM̂(φ) := {1} ∪{

n
∣∣∣δ∆
n1 (φ)≤ 0,n ∈M\{1}

}
. Note that δ∆

n1 (φ) ≤ 0 actually indicates tn4 = t+n

while δ∆
n1 (φ) > 0 indicates tn4 < t+n . Index elements in M̂(φ) consecutively with{

n̂1(φ)< n̂2(φ)< · · ·< n̂M̂(φ)(φ)
}
where M̂(φ) :=

∣∣∣M̂(φ)
∣∣∣. For notation convenience, define

n̂M̂(φ)+1(φ) = M + 1. Note that vehicles in M̂(φ) are essentially the trajectories where

safety constraints (4.7) are not activated for a given φ value. Then in the neighborhood

of φ, δ∗n̂i(φ)1(φ) does not depend on vehicle n̂i(φ)− 1. Rather,δ∗n1(φ) depends on vehicles

n̂i(φ), n̂i(φ) + 1, · · · ,n− 1,∀n ∈ [n̂i(φ) + 1, n̂i+1(φ)− 1]. Therefore, each vehicle in M̂(φ)

can be regarded as a lead vehicle. Specifically, we call n̂i(φ) the lead vehicle for all

n= n̂i(φ), n̂i(φ) + 1, ..., n̂i+1(φ)−1, and denote this as

n̂(n,φ) := n̂i(φ),∀n= n̂i(φ), n̂i(φ) + 1, · · · , n̂i+1(φ)−1.

Lead vehicles {n̂i(φ)} are illustrated in Figure 4.6. For a given φ > 0, M̂(φ) can be easily

identified with the following iterative algorithm (IA).

• IA-1: Set n̂1(φ) = n̂(1,φ) = 1, i= 2 and n= 2.
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• IA-2: This step verifies whether n̂(n,φ) = n̂(n−1,φ) holds. If it holds, then δ∆
n1 (φ) =

δ̂∆
n1 (φ) as defined below.

δ̂∆
n1 (φ) := t+n − (n− n̂(n−1,φ))τ − t+n−1 +

n∑
n′=n̂(n−1,φ)+1

(
δ
(
φ,∆n′(n′−1)

)
− δ (φ,∆n′)

)
(4.39)

Note that calculation of δ̂∆
n1 (φ) can be further expedited since δ̂∆

n1 (φ) = δ̂∆
(n−1)1 (φ) +

δ (φ,∆n−1)− δ
(
φ,∆n(n−1)

)
.

• IA-3: If δ̂∆
n1 (φ) > 0, the above assumption holds, and then set n̂(n,φ) = n̂(n− 1,φ).

Increase n= n+ 1 and go to Step IA-2 . Otherwise, go to the next step.

• IA-4: Set n̂(n,φ) = n and n̂i(φ) = n. If n <M , increase i= i+ 1, n= n+ 1, and go to

Step IA-2. Otherwise, go to the next step.

• IA-5: Return M̂(φ) = {n̂1(φ), n̂2(φ), · · · , n̂i(φ)}.

Note that the computational complexity of the IA algorithm is o(M). Once M̂(φ) is ob-

tained, δ̂n1
(
δ∗(n−1)1,φ

)
can be denoted as a closed form function δ̂leadn1 (n̂(n,φ∗),φ) as defined

below

δ̂leadn1 (n̂(n,φ∗),φ) : = t+n̂(n,φ∗) + (n− n̂(n,φ∗))τ − t−n − δ
(
φ,∆n(n−1)

)
(4.40)

+
n−1∑

n′=n̂(n,φ∗)+1

[
δ (φ,∆n′)− δ

(
φ,∆n′(n′−1)

)]
. (4.41)

Then based on Corollary 7, if there exists an optimal solution φ∗, it should be the minimum

value satisfying the following conditions

δ̂leadn1 (n̂(n,φ∗) ,φ∗)≥ 0,∀n ∈M\M̂(φ∗) , (4.42)
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and constraint (4.30) for the feasible range of φ.

Then the sketch of the exact solution algorithm is to first identify M̂(φ∗) and then

solve the above equations by analytically solving a set of piecewise quadratic functions. We

first analyze the property of M̂(φ).

Proposition 3. M̂(φ) = {1} as φ→∞ and M̂(φ1)⊇ M̂(φ2),∀φ1 < φ2 ∈ R+.

Proof. First as φ→∞, n̂(n,φ) has to be less than n, and thus δ∆
n1 (φ) = t+n −(n− n̂(n,φ))τ−

t+n̂(n,φ) > 0,∀n ∈M, and thus M̂(φ) = {1}. Then we only need to show as φ increases, if a

lead vehicle n leaves M̂(φ), it should not come back to M̂(φ) and become a lead vehicle

again. When vehicle n just leaves M̂(φ), then we have

δ∆
n1 (φ) = t+n − (n− n̂(n−1,φ))τ − t+n̂(n−1,φ)+

n∑
n′=n̂(n−1,φ)+1

(
δ
(
φ,∆n′(n′−1)

)
− δ (φ,∆n′)

)
≥ 0,∀n ∈M\{1}.

As φ increases, when n̂(n − 1,φ) does not change,∑n
n′=n̂(n−1,φ)+1

(
δ
(
φ,∆n′(n′−1)

)
− δ (φ,∆n′)

)
shall increase and δ∆

n1 (φ) shall remain

non-negative. If n̂(n− 1,φ) changes, it has to decrease based on the formulation of

δ∆
n̂(n−1,φ)1 (φ). Thus δ∆

n1 (φ) shall remain non-negative, too. This completes this proof.

Corollary 8. δ∆
n1 (φ) increases with φ > 0. If δ∆

n1
(
φ−
)
≤ 0 for some φ− > 0, δ∆

n1 (φ) strictly

increases with φ from φ− to some φ+ with δ∆
n1
(
φ+
)
> 0. In this case, δ∆

n1 (φ) = 0 has a

unique solution.

We omit the proof to this corollary because this property is apparent following Propo-

sition 3 and the formulation structure of δ∆
n1 (φ). The above analysis indicates that as φ in-

creases, the elements of M̂(φ) will only drop out but never grow. We can use the following
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algorithm to evaluate which index of M̂(φ) will first drop out as φ increases from a given

value φ̂.

• DROP-1: Given φ̂ and M̂(φ̂) (which could be obtained with the IA algorithm), set

i= 2.

• DROP-2: Then this algorithm checks at which φ value as φ̂ increases to, n̂i
(
φ̂
)
will

be dropped out from M̂
(
φ̂
)
, i.e., solving δ̂∆

n̂i(φ̂)1 (φ) = 0. Based on Corollary 8, since

δ̂∆
n̂i(φ̂)1

(
φ̂
)
< 0, δ̂∆

n̂i(φ̂)1 (φ) = 0 has a unique solution in [φ̂,∞). For mathematical conve-

nience, we equivalently investigate Fφ̂i
(√

φ
)

:= δ̂∆
n̂i(φ̂)1 (φ) ·φ= 0. Note that Fφ̂i

(√
φ
)

is essentially a piecewise quadratic function of
√
φ, and its joint points between con-

secutive pieces can be obtained in the following way. Define

φcrit1n := v̄

2∆n
,φcrit2n := v̄

2∆n(n−1)
,∀n. (4.43)

Then define Φcrit
i

(
φ̂
)

=
{
φ̂,∞

}
∪
{
φcrit1n ,φcrit2n

}
n=n̂i−1(φ̂),···n̂i(φ̂)−1

. Then delete all el-

ements in Φcrit
i

(
φ̂
)
less than φ̂ and then sort these elements in an ascending order. De-

note the sorted elements as Φcrit
i

(
φ̂
)

=
[
φcriti1 ,φcriti2 , · · · ,φcritiKi

]
where Ki :=

∣∣∣Φcrit
i

(
φ̂
)∣∣∣.

Now Φcrit
i

(
φ̂
)
contains all the joints between consecutive pieces of Fφ̂i

(√
φ
)
. Then we

iterate all these pieces, starting with k = 1.

• DROP-3: This step makes a guess that the solution to Fφ̂i

(√
φ
)

= 0 falls in[
φcritik ,φcriti(k+1)

]
. Based on the definition, we know when φ ∈

[
φcritik ,φcriti(k+1)

]
, Fφ̂i

(√
φ
)

is a quadratic function in the form of Aφ+B
√
φ+C = 0, and coefficients A,B,C can

be obtained in the following way. Initially, set A = t+
n̂i(φ̂)−

(
n̂i
(
φ̂
)
− n̂i−1

(
φ̂
))
τ −

t+
n̂i−1(φ̂),B = 0,C = 0. Set n= n̂i−1

(
φ̂
)

+ 1.

• DROP-4: If φcriti(k+1) ≤
v̄

2∆n
, update B = B−

√
2∆nv̄; otherwise, update C = C− v̄/2,

A = A−∆n. If φcriti(k+1) ≤
v̄

2∆n(n−1)
, update B = B+

√
2∆n(n−1)v̄; otherwise, update
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C = C+ v̄/2, A = A+ ∆n(n−1). If n < n̂i
(
φ̂
)
, update n = n+ 1 and repeat this step;

otherwise, go to the next step.

• DROP-5: Solve the roots to Aφ+B
√
φ+C = 0. There should be no more than one

solution to φ falling in
[
φcritik ,φcriti(k+1)

]
. If such a solution exists, then the guess at Step

DROP-3 is correct, and we record it as φnext
n̂i(φ̂)(φ̂) and go to the next step; otherwise,

update k = k+ 1, and go to Step DROP-3.

• DROP-6: If i < M̂
(
φ̂
)
, update i= i+1 and go to Step DROP-2. Otherwise, go to the

next step.

• DROP-7: Solve nnext
(
φ̂
)

= argminn∈M̂(φ̂)\{1}φ
next
n (φ̂). Then nnext

(
φ̂
)
will be the

first element to be dropped from M̂(φ) as φ increases from φ̂ to φnext
nnext(φ̂)(φ̂). Return

nnext
(
φ̂
)
and φnext

nnext(φ̂)
(
φ̂
)
.

Note that the computational complexity of the DROP algorithm is o(M2). The DROP

algorithm can help identify an interval
[
φ̂,φnext

nnext(φ̂)
(
φ̂
)]

where M̂(φ) can be treated as

the same M̂
(
φ̂
)
4. We call such an interval a stationary interval. With this, we will search

stationary intervals consecutively in an ascending order between φ and φ̄. In each stationary

interval, we try to find the minimum φ that satisfies conditions (4.42). This process is

described in the following piece-wise search algorithm (PSA).

• PSA-1: Initially, set φ− = φ, call the DROP algorithm to solve φ+ = φnext
nnext(φ−)

(
φ−
)
.

• PSA-2: Call the IA algorithm to solve M̂
(
φ−
)
. Then this algorithm tries to find

the region for constraints (4.42) to be feasible within
[
φ−,φ+

]
. We initially set the

candidate feasible region Rfeas =
[
φ−,φ+

]
, then we narrow it down by iteratively

4Note that strictly speaking, M̂
(
φnext
nnext(φ̂)

(
φ̂
))

compared withM̂
(
φ̂
)

has one more element,

nnext
(
φ̂
)
, but deleting nnext

(
φ̂
)
does not change the validity of all proposed equations
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checking feasible regions for all n in M\M̂
(
φ−
)
. We start the feasibility checking

from the the first index inM\M̂
(
φ−
)
, denoted by n.

• PSA-2: Initially set the feasibility region Rfeasn = ∅. Note that

∀φ ∈
[
φ−,φ+

]
, δ̂leadn1 (n̂(n,φ),φ) = δ̂leadn1

(
n̂(n,φ−),φ

)
.

Then for mathematical convenience, we define Gnφ−
(√

φ
)

:= φ · δ̂leadn1
(
n̂(n,φ−),φ

)
,

which is a piecewise quadratic function of
√
φ. Similar to Step DROP-2, we

will first identify the joints between consecutive pieces. Define Φcrit
n =

{
φ−,φ+

}
∪{

φcrit1n′ ,φcrit2n′

}
n′=n̂(n,φ−)+1,···n

and drop all elements less than φ− or greater than φ+

from Φcrit
n , where φcrit1n′ ,φcrit2n′ are defined in Equation (4.43). Then sort all elements

in Φcrit
n in an ascending order, and denote them as Φcrit

n =
[
φcritn1 ,φcritn2 , · · · ,φcritnKn

]
where Kn =

∣∣∣Φcrit
n

∣∣∣. Now Φcrit
n contains all the joints between consecutive pieces of

Gnφ−
(√

φ
)
during

[
φ−,φ+

]
in an ascending order. Then will iterate through all these

pieces, starting with k = 1.

• PSA-3: This step will find the feasible region that Gnφ−
(√

φ
)
≥0 (or

δ̂leadn1
(
n̂(n,φ−),φ

)
≥ 0) during interval

[
φcritnk ,φcritn(k+1)

]
, where Gnφ−

(√
φ
)

is a

quadratic function in the form of , where coefficients A,B,C can be obtained in the

following iterative approach. Initially, set A = t+n̂(n,φ−) +
(
n− n̂(n,φ−)

)
τ − t−n , B = 0

and C = 0, then update these coefficients according to the following pseudo code:

For n′ = n̂(n,φ−) + 1 to n−1

If φcritn(k+1) ≤
v̄

2∆n′

Update B =B+
√

2v̄∆n′ .

Else

Update A= A+ ∆n′ , C = C+ v̄/2.

For n′ = n̂(n,φ−) + 1 to n
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If φcritn(k+1) ≤
v̄

2∆n′(n′−1)

Update B =B−
√

2v̄∆n′(n′−1).

Else

Update A= A−∆n′(n′−1), C = C− v̄/2.

• PSA-4: It is easy to solve the subset Rfeasnk in
[
φcritnk ,φcritn(k+1)

]
such that

Gnφ−
(√

φ
)

= Aφ+B
√
φ+C ≥ 0 with the following pseudo code:

If A= 0

If B = 0

If C ≥ 0, return Rfeasnk =
[
φcritnk ,φcritn(k+1)

]
.

Else, return Rfeasnk = ∅.

Else if B > 0, return Rfeasnk =
[
max

{
φcritnk , C

2

B2

}
,φcritn(k+1)

]
.

Else, return Rfeasnk =
[
φcritnk ,min

{
φcritn(k+1),

C2

B2

}]
.

Else

If B2− 4AC < 0, return Rfeasnk =
[
φcritnk ,φcritn(k+1)

]
if A > 0 or return Rfeasnk = ∅

otherwise.

Solve φ1
nk =

(
−B−

√
B2−4AC
2A

)2
,φ2
nk =

(
−B+

√
B2−4AC
2A

)2
.

If A > 0, return Rfeasnk =
[
φcritnk ,φcritn(k+1)

]
∩{(

−∞,min
{
φ1
nk,φ

2
nk

}]
∪
[
max

{
φ1
nk,φ

2
nk

}
,∞

)}
.

Else, return Rfeasnk =
[
φcritnk ,φcritn(k+1)

]
∩
[
min

{
φ1
nk,φ

2
nk

}
,max

{
φ1
nk,φ

2
nk

}]
.

Then update Rfeasn = Rfeasn ∪Rfeasnk . If k + 1 < Kn, update k = k + 1 and go to

Step PSA-3 to check the next piece. Otherwise, Rfeasn is all the feasible region for

Gnφ−
(√

φ
)
≥ 0 in

[
φ−,φ+

]
, and we go to the next step.

• PSA-5: Set Rfeas =Rfeas∩Rfeasn . If n is not the last element inM\M̂
(
φ−
)
, update

n to be the next element in M\M̂
(
φ−
)
and go to Step PSA-2 to find the feasible
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region for this new vehicle. Otherwise, Rfeas is exactly the feasible region in
[
φ−,φ+

]
such that Constraints (4.42) holds, and then go to the next step.

• PSA-5: If Rfeas 6= ∅, then the optimal solution is found and return φ∗ =

min
{
φ ∈Rfeas

}
. Otherwise, if M̂

(
φ−
)

= {1}, then there is no feasible solution. Oth-

erwise,
∣∣∣M̂(

φ−
)∣∣∣> 1, and we set φ− = φ+ and go to Step PSA-2.

The PSA yields the exact optimal solution φ∗ to problem RSTO. Note that the computational

complexity of the PSA is o
(
M3

)
. This is because each vehicle n needs to check no more

than M pieces, and at each piece, it takes no more than M steps to solve the feasible region

for each Gnφ−
(√

φ
)
≥ 0,∀n ∈M\M̂

(
φ−
)
. Note that the most complex operation is just to

solve a quadratic equality. It is expected that the PSA can be very efficiently solved with

modern computers.

4.3 Numerical Examples

This section conducts numerical examples to test the solution efficiency of the pro-

posed algorithm and the application of this trajectory optimization model. Section 4.3.1

reports the solution times of the PSA for different instances and concludes that this pro-

posed algorithm has appealing computational efficiency for real-time applications. The pro-

posed trajectory optimization model can actually be applied to a general highway segment

under different control strategies. For illustration purposes, Sections 4.3.2 and 4.3.3 show its

applications for signalized segments and non-stop intersections, respectively.

4.3.1 Algorithm Performance

The computation experiments are conducted on a PC with 2.6 GHz CPU and 16 GB

RAM. The parameters are set in the following way. The vehicle arrival times are generated
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as

t−n =


0, if n= 1;

t−n−1 + (τ + s/v̄)
(
1 +

(
1
r −1

)
[(1−α) +αξn]

)
, otherwise,

(4.44)

where r ∈ (0,1] indicates traffic saturation rate, parameter α∈ [0,1] controls the dispersion of

arrival time headway (greater α indicates higher dispersion), ξn is an uniformly distributed

random number over [0,2] , and ξn values are independent across different n values. We

generate arrival times in this way so that they are feasible to Equation (4.14) and we can

control traffic volume with r and arrival randomness with α. Similarly, we set vehicle depar-

ture times as

t+n =


L/v̄+ ∆S, if n= 1;

max
{
t+n−1 + (τ + s/v̄)

(
1 +

(
1
r −1

)
[(1−α) +αξ′n]

)
, t−n +L/v̄

}
, otherwise,

where ∆S ≥ 0 is a time shift (e.g., due to a downstream bottleneck) and ξ′n again is a

uniformly and independently distributed random number over [0,2]. This formulation ensures

feasible conditions (4.15) and (4.16) hold. In the experiments, we purposefully set L to an

large value, 8000m. Although this value may not be realistic for all applications, it ensures

that each tested problem instance is feasible (i.e., there exist solutions not causing queue

spillback) even for large N values. The examples in this section set a=−3.5m/s2, ā= 2m/s2,

v̄= 16m/s (≈ 35mph), s= 7m and τ = 1.5s. To test instances of different input sizes, we vary

N between 50 and 1000. Further, we try r ∈ {0.3,0.5,0.7,0.9}, α∈ {0.5,1} and ∆S ∈ {20,50}

to create different scenarios. The solution times of all these instances are reported in Figure

4.7. We see that the solution times are less than 3 seconds for most instances and less than 10

seconds for all these instances, which are suitable for real-time engineering practices where a

few hundred vehicles would take tens of minutes to arrive. Overall, as the increase of r, α or
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Figure 4.7: Solution times for different problem instances.

∆S, the solution time in general increases. This is because when these variable increases, the

average size of a platoon shall increase and the interactions between consecutive trajectories

become stronger. Therefore, the PSA likely needs to check more pieces and thus the solution

time generally increases. For most instances, the solution time increases almost linearly with

the instance size (or the N value). For some instances with relatively large r and α, the

solution time increase exhibits a super-linear trend when N gets large. This is probably due

to the increased interactions between consecutive trajectories as mentioned above. Yet the

super-linear increasing trend looks less than that of a cubic function, and thus the actually

solution times are likely less than the theoretical cubic time complexity bound as discussed

in the end of Section 4.2.2.
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To further investigate the performance of PSA, the following analysis compares the re-

sults from PSA and those from the numerical sub-gradient algorithm (NSG) with an slightly

adapted shooting heuristic (SH)5 proposed by Ma et al. (2017). Basically, compared with

the proposed trajectory construction model (4.21), a feasible SH solution also contains piece-

wise quadratic trajectories, which however may have more than five pieces. Compared with

the analytical PSA approach, the NSG-SH approach contains more acceleration variables,

but it is numerical and may not guarantee to find the optimal solution. For the algorithm

detail, please refer to Ma et al. (2017). Figure 4.8 shows the comparison results with the

same parameter values as Figure 4.7 (d). Figures 4.8 (a) and (b) show the ratio of the PSA

solution time over the NSG-SH solution time for the VSP and SA objectives, respectively, as

N increases at different r values. We can see that for all instances, the PSA solution time is

less than 3.5% of the NSG-SH solution time. This ratio generally drops as r decreases. This

verifies that the analytical PSA algorithm is much more efficient than the numerical NSG-SH

algorithm, though the latter’s solution time is already reasonable for practical applications.

Figures 4.8 (c) and (d) show the ratio of the PSA objective value over the NSG-SH objective

value for VSP and SA, respectively. We see that for VSP, both PSA and NSG-SH have very

close objective values while most PSA objectives are slightly less than the NSG-SH objec-

tives. Whereas for SA, the PSA objectives are much better than the NSG-SH objectives:

all PSA objectives are less than 2% of their NSG-SH counterparts, and the ratio in general

further drops as r increases. These results indicate that the PSA solutions, though generated

from a more restrictive model with fewer quadratic pieces and less variables, are no worse

than those from the NSG-SH objectives. Overall, we see that compared with the previously

proposed NSG-SH approach, the PSA approach much improves the solution efficiency with-
5We made the following minor adaptations to SH to fit our problem. The backward shooting process for

each vehicle n now starts at its fixed exit time t−n instead of being regulated by signal timing. The objective
function is VSP (4.10) or SA (4.11). The speed variable v is fixed to speed limit v̄.
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Figure 4.8: Performances of PSA and NSG-SH.

out compromising the solution quality (actually the solution quality is improved for most

instances).

Next we compare the shapes of trajectories produced by PSA and NSG-SH. For clarity

of the plot, we investigate a shorter segment with less vehicles, where we set L = 300m,

N = 20, r = 0.9, α= 0.5 and ∆S = 10s and keep the remaining settings the same. Figure 4.9

compares the trajectory solutions from PSA and NSG-SH for this instance, where crosses

mark the ends of quadratic pieces. We can see that the PSA solution contains less quadratic

pieces and appears smoother compared with the NSG-SH solution. and therefore the PSA

trajectories may be easier to implement in real-time control. Whereas as N increases, a

NSG-SH trajectory could contain quite a number of quadratic pieces including repeated
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Figure 4.9: Trajectories produced by PSA and NSG-SH (the crosses separate quadratic
pieces).

deceleration-acceleration cycles, though at mild acceleration magnitudes. This would add

some control difficulty and slightly compromise driving comfort.

4.3.2 Signalized Segment

This section investigates a highway section where a fixed-timing signal controls exit

location L. Assume that the effective green starts at time 0 and has a duration of G, and

the effective red time has a duration of R. For illustration purposes, we set G=R= C/2 in

the following experiments, where C = R+G is the cycle length. The vehicle arrival times

are again generated by Equation (4.44). Further, we apply Proposition 1 in Ma et al. (2017)

to obtain exit times t+n as the earliest time when vehicle n can exit this segment, formulated

as follows

t+n =


G
(
t−n +L/v̄

)
, if n= 1;

G
(
max

{
t−n +L/v̄, t+n−1 + τ + s/v̄

})
, otherwise,
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where function

G(t) :=


t, if mod (t,R+G) ∈ [0,G) (or the light is green at time t);

dt/(R+G)e · (R+G), otherwise,

which pushes time t to the beginning of the next green phase if it is in a red phase. We

set the default parameter values as: L= 500m, C = 60s, N = 50, a=−3.5m/s2, ā= 2m/s2,

v̄ = 16m/s (≈ 35mph), s = 7m, τ = 1.5s, α = 0.5 and r = 0.4. With this, all the input

parameters are ready. The trajectory optimization approach first breaks the traffic stream

into independent platoons with the PA algorithm and then applies the PSA algorithm to

each platoon to smooth the corresponding trajectories.

Figure 4.10 shows the trajectory results in the time-space diagram for two cases. The

first case (Figure 4.10(a)), referred as the extreme acceleration (EA) case, is a feasible solution

to RSTO where the acceleration variables are set to their extreme values, i.e., a− = −a

and a+ = ā. This solution is regarded as the benchmark without optimally smoothing the

trajectories. The second case (Figure 4.10(b)), referred as the optimal trajectory case, is the

optimal trajectories (OT) obtained with the PSA algorithm. We can see that the trajectories

in the EA case have relatively sharp accelerations and decelerations, and vehicles are forced to

stop before passing this intersection. Whereas the OT result exhibits smooth trajectories and

completely eliminates stops. Therefore we expect that the OT result has better performance

compared with the benchmark EA case.

Table 4.1 compares the EA objective values with the optimal OT objective values.

Nine different instances are tested, and in each instance at most one parameter value is

changed and the remaining parameters stay at their default values. Both VSP function

(4.10) and SA function (4.11) are tested in the objective. For VSP function (4.10), we set

ξ = 5.5043, ψ = 0.2953 and ζ = 0.00338 by converting the coefficients from Frey et al. (2002)
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Figure 4.10: Signalized segment results: (a) trajectory plot for extreme accelerations (EA);
and (b) optimal trajectory (OT) plot.

to fit the metric units. Denote the EA objectives for VSP and SA with CVSP
EA and CSA

EA, re-

spectively, and denote the OT objectives for VSP and SA with CVSP
OT and CSA

OT, respectively.

The corresponding objectives are compared between EA and OT. The improvement from EA

to OT for the VSP objective is denoted by εVSP :=
(
CVSP
EA −CVSP

OT
)
/CVSP

EA , and the im-

provement for the SA objective is εSA :=
(
CSA
EA−C

SA
OT

)
/CSA

EA. We see from Table 4.1 that

for both VSP and SA objectives, the OT results yield significantly better performance than

the benchmark EA results. We see both εVSP and εSA are insensitive to vehicle number N .

Note that at the default values, the vehicle arrival rate is less than the intersection capacity,

and thus no queue remains at the end of a green phase. This indicates vehicles arriving in

different cycles shall belong to different platoons and the number of arrival vehicles does

not much affect the average platoon size. This explains why εVSP and εSA are insensitive

to N . As L increases, εVSP does not change much, which indicates that the saving of fuel

consumption from trajectory smoothing is not much affected by the segment length. But

εSA increases significantly as L increases, this is because a longer segment provides more

space for trajectory smoothing and thus shall further reduce acceleration magnitudes. We

see εVSP increases with C. This is probably because a longer signal cycle may force EA

trajectories to stop for a longer time and thus cause more fuel consumption, while the OT

trajectories may still have room to glide through without full stops. However, εSA decreases
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Table 4.1: Comparison of objective values for signalized segments.

Parameter
values

CVSP
EA CVSP

OT εVSP CSA
EA CSA

OT εSA
(kJ/ton) (kJ/ton) (m2/s4) (m2/s4)

Default 547.9 468.8 14% 63.2 7.9 88%
N = 25 549.1 473.1 14% 60.9 7.6 88%
N = 75 546.6 462.2 15% 65.9 8.4 87%
L= 250m 256.1 230.6 10% 66.6 25.5 62%
L= 750m 836.4 710.0 15% 66.8 4.2 94%
C = 30s 549.0 498.3 9% 58.3 3.9 93%
C = 90s 545.6 449.0 18% 69.1 11.8 83%
r = 0.2 552.4 477.7 14% 55.1 7.2 87%
r = 0.6 535.4 514.2 4% 89.7 49.7 45%

as C increases, which indicates a longer cycle increases the acceleration magnitudes of the

smoothed trajectories. As r goes above 0.5, both εVSP and εSA decrease dramatically. Note

when r > 0.5, the intersection capacity is less than the arrival vehicle rate, and thus more

and more vehicles will be queued over cycles. An increasing queue occupies much of the

segment space and diminishes the room for trajectory smoothing, and thus the trajectory

smoothing effect is not as salient in this case.

4.3.3 Non-stop Intersection

This section investigates a one-lane non-stop intersection where trajectories of ap-

proaching vehicles are coordinated such that they all can pass the intersection without stops

(Li and Wang, 2006; Dresner and Stone, 2008). We consider this intersection has two identi-

cal approaches of vehicles crossing at the intersection. The segment length of each approach

is identical to L, and each approach has N vehicles and their arrival times are again generated

by Equation (4.44). We rank these 2N vehicles from both approaches by their arrival times

in an ascending order, denoted as n1,n2, · · · ,n2N . Assume the exit times of vehicles from

both approaches follow a first-in-first-out (FIFO) protocol, i.e., t+n1 < t+n2 < · · · < t+n2N , and

all vehicles enter the intersection at speed v̄ so as to maximize the intersection throughput.
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Figure 4.11: Non-stop intersection results: (a) trajectory plot for extreme accelerations (EA);
and (b) optimal trajectory (OT) plot (red triangles mark the exit times of vehicles from the
other approach).

Then for every two consecutive vehicles ni−1 and ni, if they are from the same approach,

then the separation of their exit times should be no less than τ+s/v̄ due to safety constraints

(4.7). Otherwise, if ni−1 and ni are from different approaches, we assume the separation of

their exit times should be no less than a minimum switching headway hS for safe crossing.

With this FIFO protocol, vehicle exit times can be fixed as

t+ni =



0, if i= 1;

max
{
t−ni +L/v̄, t+ni−1 + τ + s/v̄

}
, if vehicles i and i−1

are from the same approach;

max
{
t−ni +L/v̄, t+ni−1 +hS

}
, if vehicles i and i−1

are from different approaches.

The default parameters are set the same as those in the previous section except for N = 30

(which is for the clearance of trajectory plots in Figure 4.11), and in addition, hS is set

to 3s. For illustration purposes, we only investigate one approach. Figure 4.11 compares

the trajectories between the benchmark EA case and the OT case. We see that the OT

trajectories are much smoother than the EA trajectories and minimize the need for stops.

81



Table 4.2: Comparison of objective values for non-stop intersections.

Changed
parameter

CVSP
EA CVSP

OT εVSP CSA
EA CSA

OT εSA
(kJ/ton) (kJ/ton) (m2/s4) (m2/s4)

Default 545.3 441.0 19% 81.0 8.5 90%
N = 15 548.3 481.5 12% 72.1 3.5 95%
N = 45 544.8 436.8 20% 83.1 13.1 84%
L= 250m 255.3 245.5 4% 81.0 57.0 30%
L= 750m 835.5 697.3 17% 81.0 4.0 95%
r = 0.2 578.8 575.9 0.5% 9.5 0.04 99.5%
r = 0.6 543.9 446.5 18% 86.1 21.1 75%

Table 4.2 compares results between the benchmark EA case and the OT case for prob-

lem instances with different parameters. The setting follows Table 4.1. For most instances,

the improvement from EA to OT is significant for both the VSP and SA objectives. We see

that as N increases, εVSP increases yet εSA decreases. Note that with the default saturation

rate, the queue grows with the vehicle number and thus more upstream trajectories in the

EA case would have higher speed variations or longer stop sections. The improvement of

these upstream queued vehicles shall dominate εVSP and εSA values as N increases. As L

grows, εVSP first increases and then decreases, which indicates there would be some inter-

mediate segment length range best for fuel consumption saving. εSA consistently increases

as L grows, which again is because a longer segment provides more room for smoother tra-

jectories. When r is very low, the improvement of VSP is not apparent because traffic is

anyway close to free flow. As r increases to a certain level at which traffic gets congested,

εVSP seems to be insensitive as r further grows. Whereas εSA increases as r drops, which

is because lower r provides more room to smooth trajectories closer to straight lines with

near-zero accelerations.
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4.4 Queuing Propagation Analysis

Intuitively, it may be easy to arrive at a conjecture that traffic smoothing would cause

vehicles queued (or slowing down) at more upstream locations, or even cause further queue

spillback. This section will investigate this conjecture by rigorously analyzing a special case

of the studied problem with homogeneous settings. We assume that the entry headway and

the exit headway between every two vehicles is the same, i.e.,

t11 = 0, t−n = (n−1)(τ + s/v̄)/r,∀n ∈M\{1}, (4.45)

t+1 = L/v̄+ ∆S, t+n = t+1 + (n−1)(τ + s/v̄)/r,∀n ∈M\{1}. (4.46)

where again parameter r ∈ (0,1] is the traffic saturation rate and ∆S ≥ 0 is the phase shift

(e.g., due to being blocked by a red light or coordination with the downstream segment).

For the conciseness of the formulations, define γ := τ + s/v̄. With this, we obtain.

∆n = ∆S,∀n ∈M,

∆n(n−1) = ∆S−γ
(1
r
−1

)
,∀n ∈M\{1}.

Note that for all vehicles inM, we have∆n(n−1) > 0. For each vehicle n, since the impact of

trajectory smoothing starts at time δ∗n1(φ), we will investigate how δ∗1(φ), which marks the

end of the trajectory-smoothing-induced queue, changes as φ varies. If the above-mentioned

conjecture is true, δ∗1(φ) shall always decrease (or the trajectories always get smoother) as φ

drops. This is to say, δ∗1(φ) increases with φ,∀φ ∈ (0,∞). The following analysis will check

whether this is true.

Define
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σ̂n(φ,∆S) = δ̂n1
(
δ∗(n−1)1(φ),φ

)
− δ∗(n−1)1(φ) = α+ δ (φ,∆n−1)− δ

(
φ,∆S

)
.

where α :=−τ
(

1
r −1

)
− s

v̄r for the conciseness of the formulation. This can be expanded as

σ̂(φ,∆S) = α+



√
2v̄
φ

(√
∆S−

√
∆S−γ

(
1
r −1

))
, if φ≤ v̄

2∆S
;

∆S+ v̄
2φ −

√
2v̄
φ

√
∆S−γ

(
1
r −1

)
, if v̄

2∆S
< φ≤ v̄

2∆S−γ( 1
r−1)

;

γ
(

1
r −1

)
, if φ > v̄

2∆S−γ( 1
r−1)

.

(4.47)

Note that σ̂n(φ,∆S) indicates the difference between δ∗(n−1)1(φ) and δ∗n1(φ) as

δ∗n1(φ)− δ∗(n−1)1(φ) =


σ̂n(φ,∆S), if σ̂n(φ,∆S)< 0;

0, otherwise.

With this formulation, we see that when r = 1, σ̂ (φ,∆n−1) = −s/v̄,∀φ, and δ∗1 = t∆n −

δ
(
φ,∆S)− (M − 1)d/v̄, which shall always increase with φ. Thus the conjecture triv-

ially holds for this case. The following analysis will investigate the non-trivial case when

r ∈ (0,1). In this case, we see that σ̂(φ,∆S) decreases with φ, limφ→0 σ̂(φ,∆S) = ∞

and σ̂(φ,∆S) = −s/v̄,∀φ ≥ v̄

2∆S−γ( 1
r−1)

. Since σ̂(φ,∆S) is apparently continuous with

φ, then there must exist an φ0 < v̄

2∆S−γ( 1
r−1)

such that σ̂(φ,∆S) > 0,∀φ ∈ (0,φ0) and

σ̂(φ,∆S) ≤ 0,∀φ > φ0. As φ increases from 0 to φ0, note that σ̂(φ,∆S) ≥ 0 and thus

δ∗1(φ) = δ∗11(φ) = L/v̄+ ∆S− δ(φ,∆S), which shall increase with φ. Then we consider two

cases:
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• Case-1: If φ0 < v̄

2∆S
. When φ ∈

[
φ0, v̄

2∆S
]
,

δ∗1(φ) = t∆n − δ
(
φ,∆S

)
+ (M −1)σ̂(φ,∆S)

= t∆n − (M −1)α+β1φ
−0.5,

where

β1 :=
(M −2)

√
2v̄∆S− (M −1)

√
2v̄
(

∆S−γ
(1
r
−1

)) . (4.48)

If β1 ≤ 0, δ∗1(φ) continues to increase with φ ∈
[
φ0, v̄

2∆S
]
. Otherwise if β1 > 0, δ∗1(φ)

decreases with φ. Next, when φ ∈
 v̄

2∆S
, v̄

2
(

∆S−γ( 1
r−1)

) ,

δ∗1(φ) = t∆n − (M −1)α+β2(φ).

where β2(φ) := (M−2)
(
∆S+ v̄

2φ

)
−(M−1)

√
2v̄
(
∆S−γ

(
1
r −1

))
φ−0.5. We can obtain

dβ2(φ)
dφ

=

−(M −2) v̄

2
√
φ

+ (M −1)

√√√√ v̄
(
∆S−γ

(
1
r −1

))
2

φ−1.5

Therefore, if β1 ≤ 0, it is easy to see that dβ2(φ)
dφ ≥ 0, and δ∗1(φ) will continue to increase

with φ. Otherwise if β1 > 0, we shall have
dβ2

(
v̄

2∆S
)

dφ > 0 and
dβ2

(
v̄

2∆S−γ( 1
r−1)

)
dφ <

0. Therefore, there exists a φE ∈
 v̄

2∆S
, v̄

2
(

∆S−γ( 1
r−1)

) such that δ∗1(φ) decreases

with φ ∈
[

v̄

2∆S
,φE

]
and increases with φ ∈

φE, v̄

2
(

∆S−γ( 1
r−1)

). Further, when φ >

v̄

2
(

∆S−γ( 1
r−1)

) ,

δ∗1(φ) = t∆n − δ
(
φ,∆S

)
− (M −1)s/v̄,
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Figure 4.12: (a) Illustration of δ∗1(φ) vs. φ when β1 > 0; (b) δ∗1(φ) vs. φ for the default
instance.

which apparently increases with φ.

• Case-2: If φ0 > v̄

2∆S
, the analysis for φ∈

φ0, v̄

2
(

∆S−γ( 1
r−1)

) is the same as that for φ∈ v̄

2∆S
, v̄

2
(

∆S−γ( 1
r−1)

) in the previous case, and the analysis for φ > v̄

2
(

∆S−γ
(

1
r−−1

))
is the same as the previous case, too.

In both cases, if β1 ≤ 0, then δ∗1(φ) increases all the way with φ, which is consistent with

the initial conjecture. However, if β1 > 0, then δ∗1(φ) first increases with φ during [0,φ0],

then decreases with φ during [φ0,φE], and finally increases with φ during [φE,∞), which is

illustrated in Figure 4.12(a). This is contradictory to the initial conjecture, such that when

φ ∈
[
φ0,φE

]
, further decreasing φ (or smoothing the trajectories) actually helps reduce the

length of the queue. This finding suggests that traffic smoothing does not always worsen

queue spillback. Instead, it may help alleviate queuing if the smoothing is done appropriately.

To illustrate this analysis result, we show some examples in the following presentation.

The default parameters are set as L= 1000m, N = 100, v̄ = 16m/s, s= 7m, τ = 1.5s, r= 0.5,

∆S = 10m. With this setting, there is only one platoon in this traffic stream (i.e., M =

N). Further, we obtain β1 = 162.9m0.5, φ0 = 0.59m/s2, φE = 0.97m/s2, δ∗1(φ0) = 49.2s and

δ∗1(φE) = 11.0s. The complete δ∗1(φ) to φ curve for this default instance is shown in Figure
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Figure 4.13: Trajectories for φ0 and φE at the default parameter values (where the dashed
yellow line marks the end of the queue).

4.12(b), which is consistent with the previous conclusion that β1 > 0 indicates that δ∗1(φ)

decreases on [φ0,φE]. This also indicates that the end of queue is at 787.4m for φ= φ0 and

at 176.7m for φ= φE. The trajectories for these two cases are shown in Figure 4.13.

Next, we vary the N value and investigate its impact on the queue length. As illus-

trated in Figure 4.14(a), β1 value increases linearly with N when there is only one platoon (or

M =N). This can be also seen from the definition of β1 in Equation (4.48). Figure 4.14(b)

plots the values of δ∗1(φ0) and δ∗1(φE) as β1 increases (e.g., as a result of the increase of N).

We see that δ∗1(φ0) remains the same across different N value for the following reasons. Note

that based on Equation (4.47) and the definition, φ0 shall remain the same at 0.59 regardless

of N or β1. Further, when φ = φ0, no shock wave propagates backwards and the effect of

traffic smoothing stays in a local area regardless of the N value. When β1 > 0 , φE shall

split from φ0, and as a result we see that δ∗1(φE) decreases as β1 increases from 0. Note that(
δ∗1(φ0)− δ∗1(φE)

)
· v̄ implies the queue distance that traffic smoothing can reduce by lowering

φ from φE to φ0, which increases with β1 (and thus N). Interestingly, this result indicates

that even without modification of macroscopic traffic characteristics, backward propagation

of stopping shock waves could be hampered by proper traffic smoothing, which only adjusts

vehicle trajectories in a local area independent of the number of incoming vehicles (as long

as the saturation rate remains the same). Further, as the number of incoming vehicles in
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Figure 4.14: Results for instances with varying N : (a) N vs. β1; and (b) β1 vs. δ∗1(φ0) and
δ∗1(φE).

a platoon increases, there actually could be more potential to reduce the queue length by

traffic smoothing.

4.5 Chapter Summary

This chapter investigates a trajectory smoothing problem for a general one-lane high-

way segment with pure CAVs and provides elegant theoretical insights and efficient algorith-

mic methods. Inspired by previous studies from Co-author Li’s research team, this problem

is simplified to one where each vehicle’s trajectory is approximated with no more than five

pieces of consecutive quadratic functions and all trajectories share identical acceleration and

deceleration rates in the same platoon. This simplified problem is shown to have elegant

theoretical properties in the objective shape and the feasible region. These properties lead

to the development of an exact solution algorithm that efficiently solves the true optimum

to this problem with only a series of analytical operations. The optimal solution can be

intuitively interpreted as stretching all trajectories as smooth as the feasibility allows. Nu-

merical examples reveal that the proposed analytical exact algorithm solves the problem

much faster with the same or better solution quality compared with its numerical predeces-

sor proposed earlier in Ma et al. (2017). They also illustrate the applications of this algorithm

88



to various CAV trajectory smoothing problems, e.g., on signalized segments and at non-stop

intersections. Further, by constructing a homogeneous special case, we analyze how traffic

smoothing affects propagation of the vehicle queue. We find that counter-intuitively, proper

traffic smoothing may reduce the queue length or confine traffic slowdown within a local area

without further propagation.
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CHAPTER 5: JOINT TRAJECTORY AND SIGNAL OPTIMIZATION

This chapter proposes a joint trajectory and signal optimization model for signalized

crossing points. The proposed optimization model is described as follows.

5.1 Problem Setting

We consider a two-way signalized conflict zone (e.g., an intersection) connecting two

directions indexed by i ∈ I := {1,2}, and let li and lC denote the length of the highway

section at each direction i,∀i ∈ I and the crossing point, respectively. For each direction

i, a longitudinal coordinate system is defined along the highway that increases toward the

intersection. A traffic signal is installed at the conflict zone with the signal timing plan of

S := {R1,R2,C}, where Ri is the effective red interval for direction i,∀i ∈ I, and C denotes

the signal cycle time. This study considers a pure-automated traffic where all vehicles are

controllable CAVs. At each direction i, a stream of CAVs moves toward the crossing point

that are indexed as n ∈ Ni := {1,2, . . . ,Ni} ,∀i ∈ I. We assume that the traffic at both

directions are homogeneous and denote the traffic arrival rate at direction i by λi,∀i ∈ I.

With the homogeneity assumption and for simplicity, problem can be investigated during

only one C, and then the obtained control outcomes can be applied to the following cycles.

Given C, Ni is calculated as Ni = bCλic ,∀i ∈ I. It is assumed that CAVs at each direction

can be controlled by a centralized controller in a control zone. Let τ denote the CAV

communication and control delay.

Let Xi := {xin (t)} be the set of CAV trajectory functions at direction i, where xin (t)

is the location of vehicle n at direction i at time t. ẋin (t) and ẍin (t) represent first and
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Figure 5.1: Problem statement.

second order differential that indicate the instantaneous speed and acceleration of vehicle n

at direction i at time t, respectively. The speed limit on this freeway section is denoted by v̄,

and the minimum and maximum accelerations for all CAVs at any time are denoted by a and

ā, respectively. Let t−in and t+in denote the arrival and departure times of vehicle n at direction

i to/from the control zone for ∀i∈ I, respectively. Note that t−in can be accurately estimated

with the advanced CAV technologies, and thus considered as predetermined in this study.

However, t+in is a variable that is determined by the signal timing plan S. It is assumed

that CAVs arrive and depart the control zone with the maximum speed of v̄. Without much

loss of generality, both crossing point are assumed to have the same saturation flow rate

of µ := 1
τ+s/v̄ . Let γi := (1/λi−1/µ) define the arrival and exit time headway difference,

for all i ∈ I, respectively. Figure 5.1 illustrates the problem setting for a two-way signalized

intersection. Note that for visualization purposes, we rotate the plot for direction 2 as shown

in this figure.
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5.2 Primary Optimization (PO)

This section presents the primary optimization problem formulation and proposes a

heuristic solution approach.

5.2.1 Model Formulation

This section formulates the PO problem. This model is formulated considering t−i1
as a reference point for each i ∈ I. With this and the homogeneity assumption, we obtain

t−in = t−i1 + n−1
λi
,∀i∈ I. Each CAV trajectory in Xi, i∈ I shall satisfy the following constraints.

• Entry boundary constraints: At each direction i, CAV n arrives location 0 at speed of

v̄ at a predetermined time t−in, i.e.,

xin
(
t−in
)

= 0,∀n ∈Ni, i ∈ I, (5.1)

ẋin
(
t−in
)

= v̄,∀n ∈Ni, i ∈ I. (5.2)

• Exit boundary constraints: At each direction i, each CAV n shall exit location li at

speed of v̄ at time t+in, i.e.,

xin
(
t+in
)

= li,∀n ∈Ni, i ∈ I, (5.3)

ẋin
(
t+in
)

= v̄,∀n ∈Ni, i ∈ I, (5.4)

t+in = t−in+ li
v̄

+ max(0,Ri− (n−1)γi) . (5.5)
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• Speed constraint: We do not allow the CAVs to back up, and they cannot go beyond

the speed limit v̄, i.e.,

ẋin (t) ∈ [0, v̄] ,∀t ∈
[
t−in, t

+
in

]
,n ∈Ni, i ∈ I. (5.6)

• Acceleration constraint: We set the CAV acceleration values bounded by a and ā, i.e.,

ẍin (t) ∈ [a, ā] ,∀t ∈
[
t−in, t

+
in

]
,n ∈Ni, i ∈ I. (5.7)

• Safety constraint: The trajectories of every two consecutive CAVs shall maintain a

certain safety headway. We require that this the distance gap between vehicle n’s

location and (n− 1)’s location a communication delay τ ago at each direction i is no

less than a jam spacing s0 at any time t ∈
[
t−in, t

+
i(n−1)

]
, i.e.,

xi(n−1) (t− τ)−xin (t)≥ s0,∀t ∈
[
t−in, t

+
i,(n−1)

]
,n ∈Ni\{1} , i ∈ I. (5.8)

Each trajectory in Xi, i ∈ I is associated to two operational costs as follows.

• Travel time delay: The travel time delay of each CAV at both directions is affected

by the signal timing plan S. We let Di (S) denote the total unit-time travel time

delay for direction i,∀i ∈ I, which can be determined by summing over the delays

of all CAVs that depart from the signal within one C period. Figure 5.2 illustrates

the calculation of Di (S). This figure plots the CAV trajectories that could pass the

signal within one C period. The gray-colored trajectories represent the non-delayed

imaginary trajectories corresponding to the real trajectories shown as blue curves. The

non-delayed trajectories are determined assuming that the signal light is always green

and thus continue with the constant speed of v̄. As a result of the signal red interval,
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Figure 5.2: An illustration to Di (S) calculation.

each trajectory is delayed and the amount of these delays are shown as double-arrows

in the inset figure. Di (S) can be determined by summing over all of these delays.

This microscopic point of view to travel time delay leads us a macroscopic measure

formulated as

Di (S) = R2
i

2C
(
1− λi

µ

) ,∀i ∈ I.

• Fuel consumption: Fuel consumption of each CAV n is a function of the instantaneous

speed and acceleration values between the arrival time t−in and the departure time t+in.

Thus this measure is affected by both the trajectory shapes, i.e., Xi at each direction i

and the signal timing plan S (S would determines t+in,∀n ∈Ni, i ∈ I). We let Fi (Xi,S)

denote the unit-time fuel consumption function for direction i,∀i ∈ I, which can be

determined by summing over the fuel consumption values of all CAVs that depart from

the signal within one C period, as formulated below

Fi (Xi,S) := 1
C

Ni∑
n=1

∫ t+in

t−in
e(ẋin (t) , ẍin (t))dt,∀i ∈ I, (5.9)
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where e(ẋin (t) , ẍin (t)) is the instantaneous cost function of xin (t) at time point t that

could implement any instantaneous fuel consumption model in the literature (e.g.,

CMEM (Barth et al., 2000), VT-micro (Ahn, 1998), MOVES (Koupal et al., 2002),

etc.).

Now, the primary trajectory optimization problem is formulated as

PO : min
Xi,S

OPO (Xi,S) :=
∑
i

(Di (S) +wFi (Xi,S)) , (5.10)

subject to Constraints (5.1)-(5.8). In Equation (5.10), w is a coefficient factor that determines

the importance of Fi (Xi,S) compared to Di (S) in the objective function.

5.3 Simplified Macroscopic Optimization (SMO)

The PO problem formulated in Sub-section 5.2.1 is hard to be solved to the exact

optimal due the infinite-dimensional variables, highly non-linear objectives and vehicle de-

pendency in the constraints. Instead, this study formulates a simplified model that modifies

the PO problem in two ways. The first adaptation that is based on the approach proposed

by Li et al. (2017) restricts each CAV trajectory to consist of no more than five quadratic

segments. According to Li et al. (2017), this simplified function reduces the feasible region of

the optimization problem and yet the obtained solutions are very close to the true optimum.

Second, instead of the highly non-linear function of the instantaneous fuel consumption in

Equation (5.9), this study proposes a simplified macroscopic fuel consumption function that

can be solved to the exact optimal. This section presents the model formulation and the

analytical solution to this problem.
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5.3.1 Model Formulation

This sub-section formulates the simplified macroscopic optimization (SMO) problem.

The signalized control allows a number of CAVs to pass the crossing point during each cycle

time C, and thus separates CAVs into several platoons. In this study, a CAVs platoon is

referred to the stream of CAVs that pass the crossing point during a cycle length C. The

following SMO model formulations are also presented for one C cycle.

5.3.1.1 Near-optimum Trajectory Construction

SMO restricts that each CAV trajectory xin (t) has at most five quadratic segments.

Let ain denote the acceleration magnitude of trajectory xin (t) that is bounded to [a, ā],

∀n ∈Ni, i ∈ I, and t1in ≤ t2in ≤ t3in ≤ t4in ∈
[
t−in, t

+
in

]
denote the joint time points between these

sections. At a joint between two pieces, xin (t) is defined as the left differential, ∀n∈Ni, i∈I.

The first segment of xin (t) during time interval
[
t−in, t

1
in

]
cruises at the constant speed of

v̄. Let δin :=
(
t1in− t−in

)
v̄,∀n ∈ Ni, i ∈ I denote the length of this segment. Note that this

segment does not necessarily exist for all trajectories. If this segment does not exist, then

we set t1in = t−in and thus δin = 0. The way to determine δin is explained later in this section

of the study. The second time interval
(
t1in, t

2
in

]
decelerates at a constant deceleration rate

of −ain. The third segment during time interval
(
t2in, t

3
in

]
exists only if xin (t) has to make a

stop. Otherwise, t3in = t2in, and this segment does not exist. The fourth segment during time

interval
(
t3in, t

4
in

]
accelerates at a constant rate of ain. Finally, the last segment during time

interval
(
t4in, t

+
in

]
cruises at speed v̄ and reaches the signal location L at exit time t+in. Figure

5.3 illustrates the trajectory function shape and its segments for a two directional signalized

intersection.

The proposed near-optimum piecewise quadratic trajectory function form is de-

termined by two variables: acceleration magnitude ain and initial cruising length δin,
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Figure 5.3: An illustration to the piecewise quadratic trajectory function form.

∀n∈Ni, i∈I. Let XNO
i be the set of the near-optimum CAV trajectory functions at direction

i. Given ain and δin, each xin (t) ∈ XNO
i is formulated as:

xin (t) =



δin, if t ∈
[
t−in, t

1
in

]
;

δin+ v̄
(
t− t1in

)
−0.5ain

(
t− t1in

)2
, if t ∈

(
t1in, t

2
in

]
;

δin+ v̄
(
t− t2in

)
−0.5ain

(
t− t2in

)2
, if t ∈

(
t2in, t

3
in

]
;

δin+ v̄
(
t2in− t1in

)
−0.5ain

(
t2in− t1in

)2
+(

v̄−ain
(
t2in− t1in

))(
t− t3in

)
+ 0.5ain

(
t− t3in

)2
, if t ∈

(
t3in, t

4
in

]
;

li− v̄
(
t+in− t

)
, if t ∈

(
t4in, t

+
in

]
;

,∀n ∈Ni, i ∈ I.

(5.11)

As noted before, infinite number of variables associated to CAV trajectories have

to be solved in the original PO problem. Now, with this simplification, the number of

variables is significantly reduced to only two for xin (t)∈XNO
i , which makes the SMO problem
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much more tractable. Next, we investigate how to determine decision variables ain and δin,

∀n ∈ Ni, i ∈ I. Let ∆in and Tin denote the length of the last cruising segment and total

duration of xin (t) ,∀n ∈ Ni, i ∈ I, respectively. For the first trajectory, we set ∆i1 = 0 and

obtain Ti1 = li/v̄+ max(0,Ri−1/λi+ 1/2µ) ,∀i ∈ I. Then the number of CAV trajectories

that are delayed during one C, denoted by Nd
i , is determined as:

Nd
i =

⌊
Ti1− li/v̄

1/λi−1/µ + 1
⌋
,∀i ∈ I.

Then, for any CAV trajectory after Nd
i , safety constraint (5.8) is not activated and thus they

move with constant maximum v̄, i.e.,

∆in = 0,∀n ∈
{
Nd
i + 1, . . . ,Ni

}
,

ain = 0,∀n ∈
{
Nd
i + 1, . . . ,Ni

}
.

Let xsin (t) define a shadow trajectory of xin (t) as:

xsin (t) := xin (t− τ)− s0,∀n ∈Ni, i ∈ I.

According to safety constraint (5.8), xin (t) should be always below or at maxi-

mum tangent to xsi(n−1) (t). Therefore, xin
(
t1in : t4in

)
is always below or at maximum

tangent to xsi(n−1)

(
t1i(n−1) + τ : t4i(n−1) + τ

)
. To set xin

(
t1in : t4in

)
as close as possible

to xsi(n−1)

(
t1i(n−1) + τ : t4i(n−1) + τ

)
and ensure the maximum throughput at the cross-

ing point, we require that xin (t) get tangent to xsi(n−1) (t) at t = t4in, for all n ∈

Ni\
{
{1}∪

{
Nd
i + 1, . . . ,Ni

}}
, i ∈ I. Therefore, we obtain

t4in− t4in′ = τ
(
n−n′

)
,∀n,n′ ∈Ni\

{
Nd
i + 1, . . . ,Ni

}
, i ∈ I, (5.12)

xin′
(
t4in′

)
−xin

(
t4in
)

= s0
(
n−n′

)
,∀n,n′ ∈Ni\

{
Nd
i + 1, . . . ,Ni

}
, i ∈ I. (5.13)
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Figure 5.4: An illustration to xsin (t) and xs,offsetin (t).

Equations (5.12)-(5.13) yield

∆in = s0 (n−1) ,∀n ∈Ni\
{
Nd
i + 1, . . . ,Ni

}
, i ∈ I. (5.14)

Let xs,offsetin (t) define an offset shadow trajectory of xin (t) as:

xs,offsetin (t) := xsin
(
t−

(
Nd
i −n

)
τ
)
−
(
Nd
i −n

)
s0,∀n ∈Ni\

{
Nd
i + 1, . . . ,Ni

}
, i ∈ I. (5.15)

According to Equations (5.12)-(5.13) and (5.15), all xs,offsetin (t) at each direction i ∈ I, get

tangent at the same point
(
ts,4i ,ps,4i

)
:=
(
t+i1−Nd

i τ, li−Nd
i s0

)
,∀i ∈ I. Figure 5.4 illustrates

xsin (t) and xs,offsetin (t).

According to safety constraint (5.8), xs,offsetin (t) should be always below or at maximum

tangent to xs,offseti(n−1) (t). To meet this constraint and at the same time set xs,offseti(n−1) (t) as close

as possible to xs,offsetin (t) for all n ∈ Ni\
{
Nd
i + 1, . . . ,Ni

}
, i ∈ I, ain and δin are found such

that ain is not an increasing function of vehicle index n. Let f0
i (n) denote the acceleration
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function assuming that δin = 0,∀n ∈Ni\
{
Nd
i + 1, . . . ,Ni

}
, i ∈ I that is determined as:

f0
i (n) :=


v̄2

li−s0(n−1) , n≤ 1 + Ti1v̄−2li
γiv̄−s0 ;

4v̄2(−γiv̄n+(Ti1+γi)v̄−li)
((−γiv̄−s0)n+(Ti1+γi)v̄+s0)2 , n > 1 + Ti1v̄−2li

γiv̄−s0 ;
,∀n ∈Ni\

{
Nd
i + 1, . . . ,Ni

}
, i ∈ I,

(5.16)

where the first and the second function pieces determine the acceleration for the tra-

jectories with and without stopping sections, respectively. Let acri := max
(
f0
i (n)

)
and

ncri := f0
i
−1 (acri ) denote the maximum acceleration and the corresponding vehicle index,

respectively. acri is calculated as:

acri = max
(

v̄2 (γiv̄− s0)
li (γiv̄+ s0)−Ti1v̄s0

,
γ2
i v̄

4

(γiv̄+ s0)(li (γiv̄+ s0)−Ti1v̄s0)

)
,∀i ∈ I. (5.17)

Then, to make ain a decreasing function of n, we set ain = acri ,∀n≤ ncri and ain = f0
i (n) ,∀n>

ncri , i.e.,

ain =


acri , n≤ ncri ;

f0
i (n) , n > ncri ;

,∀n ∈Ni\
{
Nd
i + 1, . . . ,Ni

}
, i ∈ I. (5.18)

Figure 5.5 illustrates the ain derivation.

Given ain, δin is calculated such that xs,offsetin (t) gets tangent to xs,offseti(n−1) (t) for all

n ∈Ni\
{
{1}∪

{
Nd
i + 1, . . . ,Ni

}}
, i ∈ I. Let T s,offset

in = Ti1−γi (n−1)−∆in/v̄ and ls,offsetin :=

li− s0 (n−1) denote the duration and length of xs,offsetin (t) ,∀n ∈Ni\
{
Nd
i + 1, . . . ,Ni

}
, i ∈ I.

To determine δin, first assume that no stopping section is required. Let δnsin be the obtained

δin without a stopping section. Given ai1 and Ti1, δnsi1 is determined as

δnsi1 = T s,offset
i1 v̄−

2v̄
√
−ai1

(
li−T s,offset

i1 v̄
)

ai1
,∀i ∈ I. (5.19)
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Figure 5.5: An illustration to ain derivation.

Further, for each n > 1, a local coordinate system is set at the origin of xs,offseti(n−1) (t), and find

the tangent to xs,offseti(n−1) (t). With this, δnsin is calculated as:

δnsin = T s,offset
in v̄−

2v̄
√
ain

(
T s,offset
in v̄+ s0− ls,offseti(n−1)

)
ain

,∀n ∈Ni\
{
{1}∪

{
Nd
i + 1, . . . ,Ni

}}
, i ∈ I.

(5.20)

Given δnsin , we check if any stopping section is required for xs,offsetin (t). Define vmin :=

v̄− ain
(
T s,offset
in − δnsin/v̄

)
/2,∀n ∈ Ni\

{
Nd
i + 1, . . . ,Ni

}
, i ∈ I. If vmin > 0, then no stopping

is required, and thus δin = δnsin . Otherwise, a stopping section should be added. Let δsin be

the obtained δin with a stopping section that is determined as

δsin = ls,offsetin − v̄2

ain
,∀n ∈Ni\

{
{1}∪

{
Nd
i + 1, . . . ,Ni

}}
, i ∈ I. (5.21)
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Therefore, we obtain

δin =


δnsin , if vmin > 0;

δsin, if vmin ≤ 0;
,∀n ∈Ni\

{
Nd
i + 1, . . . ,Ni

}
, i ∈ I. (5.22)

With Equations (5.11) and (5.16)-(5.22), xin (t) ∈ XNO
i are determined. This study

simplifies the objective function in the following sub-section.

5.3.1.2 Macroscopic Fuel Consumption Function

In addition to making simplifications in the CAV trajectory function shapes, this

study proposes a macroscopic fuel consumption to further simplify the PO problem. Given

XNO
i at each direction i, the fuel consumption model formulated in Equation (5.9) is a

function of S, or more specifically, the excessive delay imposed by Ri. This fuel consumption

includes two components: a minimum constant fuel consumption (assuming that Ri = 0

and CAVs move with maximum constant speed), and a marginal fuel consumption that is

impacted by the delay caused by Ri. Let Fmarginal
i (Ri) denote the marginal fuel consumption

at direction i ∈ I. The Fmarginal
i (Ri) values are plotted against different Ri values for a

specific direction i as shown in Figure 5.6. Interestingly, these scatter points could be well-

fitted with a polynomial curve, which implies that the complex fuel consumption function can

be represented with a very simple quadratic function of Ri. Let FNO
i (S) denote the simplified

fuel consumption function. With this, we obtain Fi
(
XNO
i ,S

)
≈FNO

i (S) := f (Ri)+Φ, where

Φ is the aforementioned constant fuel consumption component.

5.3.1.3 SMO Formulation

With these two simplifications and with Equations (5.2)-(5.9), PO problem (5.10) can

be reformulated as a simple function of R1 and C:
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Figure 5.6: Fmarginal
i (Ri) vs. Ri.

SMO : min
R1,C

Osimp (R1,C) : = αR2
1 +β (C)R1 +γ (C)

2Cγ1γ2λ1λ2
, (5.23)

α = 4wφ1γ1γ2λ1λ2 +γ1λ1 +γ2λ2,

β (C) =−4γ1λ1

(
wγ2λ2φ1 (C−L)− 1

2 (C+L)
)
,

γ (C) = γ1λ1 (2wγ2λ2 (φ1 (C+L) +φ2) +C+L)(C+L) ,

where φ1 = 0.0009482 and φ2 =−0.005947 are regression coefficients. Note that given R1 and

C, R2 can be determined, and thus excluded in SMO formulation and the following analyses.

Next, the analytical solution to SMO problem is presented in the following sub-section.

5.3.2 Analytical Solution

This sub-section presents the analytical solution to the SMO problem. Let Ropt
i

denote the optimal solution to Ri,∀i ∈ I. This solution algorithm first solves Ropt
1 as a
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function of C. Then, with that SMO problem (5.23) can be reformulated as a EOQ-shaped

function with the single decision variable C that could be analytically solved.

Given C and with SMO problem (5.23), unbounded optimal R1, denoted by R∗1 (C),

can be determined as:

R∗1 (C) = −β (C)
2α .

Ropt
1 (C) is basically the minimum feasible R1 value. Thus to derive Ropt

1 (C), we need to

determine the bounds to R1. Let R−1 and R+
1 denote the lower and upper bounds to R1.

Given the unsaturated traffic assumption, we obtain

R−1 = µ−λ1
µ−λ1−λ2

L,

R+
1 (C) = C+L− µ−λ2

µ−λ1−λ2
L,

where L is the signal lost time that is determined by the CAV characteristics and the conflict

zone geometric properties. Then, Ropt
1 (C) can be derived as:

Ropt
1 (C) = max

(
min

(
R∗1 (C) ,R+

1 (C)
)
,R−1

)
. (5.24)

Let Copt denote the optimal solution to C. With Equations (5.23)-(5.24), Copt and Ropt
2 can

be determined as:

Copt = argmin
(
Osimp

(
Ropt

1 (C)
))
,

Ropt
2 = Copt−Ropt

1 +L.

Finally, let Sopt :=
{
Ropt

1 ,Ropt
2 ,Copt

}
define the optimal solution to signal timing plan S.

Figure 5.7 illustrates the analytical solution to SMO problem. In this figure, C0, C1, and
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(a) Ropt
1 (C) (b) Copt

Figure 5.7: Analytical solution to SMO.

C2 are the break points in the piecewise Ropt
1 (C) function. This ends the SMO problem

formulation and analytical solution section.

5.4 Numerical Experiments

This section presents the numerical experiments to assess our model performance.

First, a numerical experiment is conducted to compare the algorithm results with benchmark

cases for a signalized intersection. Second, to show the extendability of our algorithm to the

other types of crossing points, an example is provided for a signalized work-zone. Third,

sensitivity analyses are performed on the impacts of traffic demand, length of the control

zone, length of the crossing point, and speed limit changes on the algorithm solutions. In

these experiments, we set w = 40 sec/lit, τ = 0.6 sec, and s0 = 6 m. Further, a set of default

parameters are defined for the sensitivity analyses. The default parameter values are set as:

λ1 = 2000 vph, λ2 = 1500 vph, v̄ = 20 m/sec, l1 = l2 = 500 m, µ= 3600/
(
τ + s0

v̄

)
= 4000 vph,

lC = 7 m, and L= 2.7 sec.

Figure 5.8 shows the simulation results for a signalized intersection with the default

parameter values. To evaluate the algorithm solutions, the results are compared with two
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benchmark cases. In the first case, CAV trajectories are solved with our near-optimum

trajectory construction model explained in Sub-section 5.3.1.1. However, instead of setting

Sopt, a fixed signal timing plan of S := {16.4,16.4,30} is used. Figure 5.9 shows the simula-

tion results for this case. In the second benchmark case, no control is implemented and the

CAVs trajectories are simulated with IDM car-following model. This car-following model is

formulated as

a= ā

1−
(
v

v̄

)δ
−
(
s∗

s0

)2 ,
s∗ = s0− scar + max

(
0,vT + v ·∆v

2
√
āb

)
,

where v and a are the vehicle speed and acceleration, respectively, ā snd b are the maximum

acceleration and comfortable deceleration, respectively, s∗ is the desired space gap, scar is

the vehicle length, T is the time gap, ∆v is the speed difference between the preceding and

the current vehicle, and δ is the acceleration exponent. In this example, these parameters

are set as: ā= b= 1.5 m/s2, scar = 5 m, T = 0.6 sec, δ = 4, and the other parameters are set

to their default values. The results for this case are shown in Figure 5.10.

To quantify the benefits, the results of these cases are compared using three measures:

throughput at the intersection, travel time delay per vehicle, and fuel consumption per unit

of time. These measures are denoted by Q, D̂, and F̂ , respectively. In all of the following

experiments, D̂ is determined by dividing the total delay to the total number of vehicles

that pass the crossing point during one C. Moreover, F̂ is calculated by dividing the total

fuel consumption to the total travel time of all vehicles that pass the crossing point during

one C. Table 5.1 presents the these measures as well as the signal timing plan and the value

of objective function Osimp. These results indicate that the proposed SMO problem can

significantly improve the performance measures. Note that since Osimp is formulated as a

function of signal timing plan S, both benchmark cases obtain the same Osimp value. As the
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Figure 5.8: Simulation results for a signalized intersection.
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Figure 5.9: Simulation results for a signalized intersection with a fixed S.
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Figure 5.10: Simulation results for a signalized intersection with no control.

Table 5.1: Simulation quantitative results.

R1 (sec) R2 (sec) C (sec) Q (vph) D̂ (sec) F̂
(ml/sec)

Osimp

(sec)
Trajectory
and signal
control

10.8 13.5 21.6 4000 5.0 1.8 12.41

Trajectory
control

16.4 16.4 30 3692 7.4 1.9 16.46

No control 16.4 16.4 30 3165 20.7 10.4 16.46

D̂ and F̂ values indicate, this does not mean that both cases yield the same delay and fuel

consumption. Therefore, the comparisons that based on Osimp is valid only when the same

trajectory control method is applied.

To demonstrate the extendability of our model to the other types of crossing points,

the model is applied on a signalized work-zone, and the results are shown in Figure 5.11. In

this example, lC = 250 m (the length of the work-zone section), L= 27 sec, l1 = l2 = 1500 m,

and the other parameters are set to their default values.
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(a) An illustration to signalized work-zone.

(b) Simulation results.

Figure 5.11: Simulation results for a signalized work-zone.
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Figure 5.12 shows the results of the sensitivity analysis on λi, i ∈ I. In this analysis,

λi, i∈I varies between 200 to µ= 4000 with the interval of 200 vph, and the other parameters

are set to their default values. Since the proposed model assume that the traffic is under-

saturated, the (λ1,λ2) pairs that yield saturated traffic are excluded. Thus all (λ1,λ2)

pairs satisfy λ1 +λ2 ≤ µ. Note that although the traffic is assumed to be under-saturated,

CAV technologies in pure-automated traffic shall provide significantly high highway capacity

(Ghiasi et al., 2017) and thus the proposed control strategy shall cover a broad range of traffic

conditions. The sensitivity analysis results indicate that the measures convexly increase

with λi, i ∈ I. However, even for relatively λi, i ∈ I values, the measures are bounded to

significantly low values. This implies that our model improve the traffic performance even

when the demand is very close to the capacity.

Next, we perform a sensitivity analysis on li, i ∈ I and lC values, and the results are

shown in Figure 5.13. In this analysis, it is assumed that l1 = l2 and for simplicity this

parameter value is shown as l in the figure. We let l vary from 100 m to 2000 m with the

interval of 100 m. Further, the minimum and maximum lC values are set to 7 m and 500

m and the intervals between each two consecutive values are assumed to be 25.9 m. The

results indicate that Copt, D̂, and Osimp values linearly increase with lC, but insensitive to

l. However, F̂ decreases with lC and l that is because the total traffic delay increases with

lC and l with greater rates, and thus the unit time fuel consumption decreases.

Finally, the results of the sensitivity analysis on v̄ are shown in Figure 5.14. In this

experiment, the v̄ values vary from 10 m/s to 25 m/s with the interval of 1 m/s and the other

parameters are kept to their default values. Figure 5.14(a) and Figure 5.14(b) show the F̂

values and the total fuel consumption of all vehicles that pass the intersection during one

Copt, respectively. The results indicate that F̂ increases with v̄, however, the optimum total

fuel consumption is obtained at v̄= 14 m/s. It is also found that D̂ is relatively insensitive to

v̄ and ranges around 5 sec for all v̄ values with very low variations. Overall, these numerical
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Figure 5.12: Sensitivity analysis results on λi, i= 1,2.
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Figure 5.13: Sensitivity analysis results on li, i= 1,2 and lC.

112



10 15 20 25
0.5

1

1.5

2

2.5

3

(a)

10 15 20 25
1

1.1

1.2

1.3

1.4

1.5

(b)

Figure 5.14: Sensitivity analysis results on v̄.

experiments provide insightful information about the impacts of different traffic conditions

and roadway geometries on the model outcomes.

5.5 Chapter Summary

This study proposes a joint trajectory and signal optimization problem for a signal-

ized crossing point in pure automated traffic. This study makes two simplifications that

lead to a simplified model, which can be efficiently solved to the exact solutions. First, each

vehicle’s trajectory is approximated with no more than five pieces of consecutive quadratic

segments. Therefore, the feasible region of the optimization problem is significantly reduced,

which led to the development of an exact solution algorithm. Second, this study proposes a

macroscopic near-optimum fuel consumption function that can be replaced with the highly

non-linear functions of the instantaneous fuel consumption. The proposed formulation is

presented as a simple quadratic function of signal red interval. With these two modifica-

tions in vehicle trajectory and fuel consumption functions, a simplified joint trajectory and

signal optimization model is developed that provides an exact solution algorithm that effi-

ciently solves to the true optimum. Numerical experiments are performed to evaluate the
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algorithm performance and to illustrate the applications of this algorithm on signalized in-

tersections and work-zones. Further, the numerical analyses test the algorithm on various

traffic conditions and roadway geometries.
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CHAPTER 6: SPEED HARMONIZATION1

This chapter proposes a new speed harmonization algorithm that can be applied in

mixed traffic freeways. The proposed speed harmonization model is described as follows.

6.1 Problem Setting

This section describes the real-time traffic control algorithm. The problem setting is

described below.

• Roadway geometry

We consider a section of a single-lane freeway without any inflow or outflow ramps. A

longitudinal coordinate system is defined along the freeway that increases downstream, and

the origin of the coordinate system is set somewhere upstream of a bottleneck such that the

bottleneck occurs at location lB > 0. Figure 6.1 illustrates the one-lane freeway geometry. It

is worth mentioning that although we consider a one-lane freeway for the presented algorithm,

this development can be easily extended to multi-lane freeways by scaling up the traffic

proportionally.

• Vehicles

We consider a stream of vehicles that move along the single-lane freeway. In this study, three

vehicle types are considered, i.e., HV (human-driven vehicles), CV (connected vehicles), and
1This chapter is submitted for publication: Ghiasi, A., Li, X., Ma, J., Qu, X., 2018. A mixed traffic

speed harmonization model with connected autonomous vehicles.
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CAV (connected autonomous vehicles). We assume that HVs are regular human-driven vehi-

cles with no communication or automation technologies. CVs are equipped with connected

vehicle technologies and thus can transmit their real-time status to the other connected

vehicles. However, these vehicles do not have automated technologies and thus cannot be

controlled. Finally, we assume that CAVs include both connected and autonomous vehicle

technologies, and thus can communicate with other CVs and CAVs and also are capable

of being controlled by a computer program. We assume that both CVs and CAVs are

equipped with necessary sensors (e.g., GPS devices for location and speed, accelerometers)

and thus both CVs and CAVs are capable of recording and broadcasting its real-time trajec-

tory. Further, we assume that a CAV is equipped with distance sensors, so it can measure

the real-time trajectory of its immediate preceding vehicle. We call the collection of CVs

and CAVs as probe vehicles for simplicity. We assume that N probe vehicles indexed as

n ∈N := 1,2, . . . ,N are distributed among HVs. Let Yn ∈ {1,2} denote the vehicle nth type,

i.e., Yn = 1 if vehicle n is a CV, and Yn = 2 if vehicle n is a CAV, and A := {n|Yn = 2}∀n∈N
denote the set of CAV indices. We let P1 and P2 denote the expected market penetration

rates of CVs and CAVs among all vehicles, respectively.

Let pproben (t) ∈ Pprobe
t and pCAVi (t) ∈ Pprobe

t denote the locations of probe vehicle n

(∀n ∈N ) and CAV i (∀i ∈A) at time t, respectively, and pprei (t) ∈Ppre
t denote the locations

of the vehicles immediately preceding to CAV i at time t, ∀i ∈ A. The speed limit on this

freeway section is vf, and we do not allow the vehicles to back up. Thus, the speed range for

all vehicles is [0,vf]. Moreover, the minimum and maximum accelerations for all vehicles at

any time are amin and amax, respectively.

• Traffic sensors

We deploy a number of S traffic sensors at locations ls,∀s = 1, . . . ,S to measure traffic

density and flow information. To have these traffic sensors provide relevant information

about the downstream traffic status, we deploy these traffic sensors around the bottleneck,
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Figure 6.1: Problem setting.

i.e., l1 < lB < lS (as illustrated in Figure 6.1). After every ∆T time period, the sensors

aggregate the measured traffic states and then share them with CAVs (e.g., through either

broadcasting or a centralized server).

6.2 Algorithm Design

The problem investigated in this study is a real-time control strategy to harmonize

traffic using CAVs. Basically, the information provided by the traffic sensors and the probe

vehicles (i.e., CVs and CAVs) are used to detect a downstream speed drop or oscillation and

predict its propagation to the upstream traffic. Then the trajectories of the CAVs upstream

of the bottleneck are controlled to dampen traffic oscillation propagation and smooth the

movements of the following vehicles. Ideally, the CAV trajectories shall hold the upstream

traffic to proceed smoothly and steadily in the upstream segment of the bottleneck until the

queue at the bottleneck dissipates and the traffic speed recovers (and so does the bottleneck
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capacity). The proposed algorithm consists of three main steps. In the first step, we update

the traffic flow and density collected by each traffic sensor s at the current time t, which we

denote as qs (t) and ρs (t), respectively. Since the information is updated at each decision

time point with interval ∆T , the algorithm runs iteratively at the same discrete time points

to update the trajectory control. The information provided by the traffic sensors and the

probe vehicles are then used in the second step to predict the future status of the downstream

queue. Note that we essentially only need to predict the vehicle trajectories immediately

preceding to the CAVs, denoted by rti (t′) ,∀t′ ≥ t, i ∈ A. In the third step, we plan the

future CAV trajectories, denoted by fti (t′) ,∀t′ ≥ t, i ∈ A, based on rti (t′) ,∀t′ ≥ t, i ∈ A to

harmonize the following traffic. For this, at each iteration, we control the CAVs upstream of

the bottleneck, and thus, we exclude the CAVs that already passed a downstream location

P end, where negative impacts of the bottleneck are likely recovered. We let A− denote the

set of excluded CAVs from the control strategy. Figure 6.2 shows the algorithm flowchart.

The algorithm steps are described in detail in the following paragraphs.

6.2.1 Information Update

In the first step of the algorithm, the data input from the traffic sensors and the

probe vehicles are updated. Traffic sensors located downstream will measure qs(t−) and

ρs(t−) and relay this information to the server (or each individual CAV) at a time interval

of ∆T , where t− := t−∆T/2. Note that since traffic sensors report the aggregated data

with time interval ∆T , we represent these data in the middle of time interval [t−∆T,t]

(i.e., time t− = t−∆T/2). We also update Pprobe
t , and the current speed of the CAVs (i.e.,

ṗCAVi (t), ∀i∈A) in this step. Further, we need the current location of the preceding vehicles

to all CAVs, i.e., Ppre
t . In estimating pprei (t), two scenarios are possible for each CAV i. The

first case is that the vehicle preceding to CAV i is a probe vehicle. In this scenario, the

preceding vehicle can send back the location information to the server and we have accurate
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Figure 6.2: Algorithm flowchart.
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Figure 6.3: Information update.

estimation of pprei (t). In the second case, the preceding vehicle is an HV, and thus, we need

to use the traffic sensor or the deployed distance sensor information to measure the traffic

density surrounding the probe vehicles to estimate pprei (t). The outputs of this step are the

current time traffic status that are shown in Figure 6.3.

Next, we predict the future downstream queue status using the updated information.

6.2.2 Trajectory Prediction

In the second step of the algorithm, we predict the future downstream queue status

using the traffic sensors and probe vehicles information. The outputs of this step are Tti and

vti (∀i∈A), which respectively denote the predicted time and the speed at which the vehicle

preceding to CAV i passes the fixed exit point, P end. We assume that the macroscopic

traffic evolution follows a triangular fundamental diagram which has been validated with

field data (Dervisoglu et al., 2009). With the triangular fundamental diagram, we use a

simplified version of the kinematic wave theory proposed by Newell (2002) and the LWR

model (Whitham, 1955) to make the predictions. First, we need to estimate the boundary

conditions that are explained in the following sub-section.
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6.2.2.1 Boundary Condition Estimation

In the prediction algorithm, we use vehicle numbers as the boundary information. Let

ms (t) denote the estimated vehicle number at ls at time t. In this sub-step, we first estimate

ms (t) ,∀s = 1, . . . ,S, which then can be used to estimate the numbers associated with the

probe vehicles, CAVs, and the preceding vehicles to the CAVs, denoted bymprobe
n (t) ,∀n∈N ,

mCAV
i (t) ,∀i∈A, andmpre

i (t) ,∀i∈A, respectively. For computational convenience, we allow

an estimated number to be a factional number. Note that since these continuous numbers are

relative to the first vehicle’s number at lS , we obtain mS (∆T/2) = qS (∆T/2)∆T/2. Then

ms

(
t−
)
can then be estimated in two ways: (1) using the previous and the current iteration

flow information from the same traffic sensor, mq
s

(
t−
)
(see Equation (6.1)) or (2) using the

current captured densities from the neighboring traffic sensor, mr
s

(
t−
)
(see Equation (6.2)):

mq
s

(
t−
)

=ms

(
t−−∆T

)
+
qs
(
t−−∆T

)
+ qs

(
t−
)

2 ∆T,∀s= 1, . . . ,S,∀t−≥3∆T/2. (6.1)

mr

s

(
t−
)

=ms+1
(
t−
)

+
ρs
(
t−
)

+ρs+1
(
t−
)

2 (ls+1− ls) ,∀s= 1, . . . ,S−1. (6.2)

Then, we setmS

(
t−
)

=mq
S

(
t−
)
. For all s= 1,2, . . . ,S−1, we found that the average number

of the values estimated by the two ways obtain better results, thus we use

ms

(
t−
)

=


m

r
s

(
t−
)
, if t− = ∆T/2,

mq
s(t−)+mr

s(t−)
2 , otherwise,

,∀s= 1, . . . ,S−1.

Note that for the first iteration we can only use the second way to estimate ms (∆T/2). We

use a similar approach to estimate ms (t) using the following equations:

mq
s (t) =mq

s

(
t−
)

+ ∆T
2 qs

(
t−
)
,∀s= 1, . . . ,S,
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mr

s (t) =mr

s

(
t−
)

+
ρs
(
t−
)

+ρs+1
(
t−
)

2 (ls+1− ls) ,∀s= 1, . . . ,S−1,

ms (t) = mq
s (t) +m

r
s (t)

2 ,∀s= 1, . . . ,S−1,

mS (t) =mq
S (t) .

Next, we estimate mprobe
n (t) ,∀n ∈ N , mCAV

i (t), and mpre
i (t) ,∀i ∈ A. We find the

first traffic sensor downstream of the first probe vehicle at current time t and assign the

corresponding index to s′. If no traffic sensor exists downstream of the vehicle, then we set

s′ := S. Then, mprobe
1 (t) is estimated using the number and density information correspond-

ing to traffic sensor s′ at time t, i.e.,

mprobe
1 (t) =ms′ (t) +

(
ls′−p

probe
1 (t)

)
ρs′
(
t−
)
.

To estimate mprobe
n (t) ,∀n ∈ N\{1}, we consider the location difference between each pair

of consecutive probe vehicles (n− 1 and n, ∀n ∈ N\{1}) and the density neighboring the

probe vehicle. Let dfn (t) and dpn (t) denote the spacing between probe n and its following and

preceding vehicles for all n ∈ N , respectively. Then mprobe
n (t) and mpre

n (t) are estimated as

follows.

mprobe
n (t) =mprobe

n−1 (t) +
pproben−1 (t)−pproben (t)−dfn (t)

dpn−1 (t) + 1,∀n ∈N\{1} ,

mCAV
i (t) =

{
mprobe
n (t) | pproben (t) = pCAVi (t)

}
,∀i ∈ A,

mpre
i (t) =mCAV

i (t)−1,∀i ∈ A.

Figure 6.4 illustrates the estimated boundary outputs. Next, we describe the predic-

tion algorithm using traffic sensor information as follows.
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Figure 6.4: Boundary index estimation.

6.2.2.2 Sensor-based Prediction

This sub-section presents the steps to predict the trajectories of the preceding vehicles

to the CAVs using the updated sensor information. Let rsti (t′) ,∀t′≥ t, i∈A denote the sensor-

based predictions. This sub-section includes the following sub-steps to predict rsti (t′) ,∀t′ ≥

t, i ∈ A.

• Backward wave lower-bound index prediction: In this sub-step we will find a lower-

bound index for each CAV preceding vehicle, which indicates the lowest position of

vehicle index. In other words, vehicle indices will not be lower than these points. First,

in the time-space diagram, starting from each traffic sensor point
(
t−, ls

)
, we gener-

ate a backward shockwave at speed −w. This shockwave function is ywavets (t′) := ls−

w
(
t′− t−

)
,∀t′≥t−. Second, we index each point on this shockwave to represent a vehi-

cle index that increases along the shockwave with the rate of 1⁄s0 where s0 is the traffic

jam spacing. The indexing function is mwave
ts (t′) := ms

(
t−
)

+w
(
t′− t−

)
/s0,∀t

′≥t−.

This index is a lower bound to the actual vehicle index at point (t′,ywavets (t′)). With

this, we index every point along each wave as illustrated in Figure 6.5.
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Figure 6.5: Sensor-based prediction: backward wave lower-bound index prediction.

• Trajectory reconstruction: In the previous sub-step, we found the lower-bound for the

vehicle indices along the shockwave. In this sub-step, we find the actual indices that

will not be lower than the obtained lower-bound. We first investigate how each CAV

preceding vehicle go to the first wave (i.e., setting s= 1) at current point (i.e., setting

current time t̄i = t and ȳi = pprei (t) ,∀i ∈ A). Since the vehicle’s speed cannot exceed

vf, starting from point
(
t̄i, ȳi

)
, we shoot an upper bound trajectory at speed vf for

each i∈A. We define this trajectory function as ypti (t′) := ȳi+vf
(
t′− t̄i

)
,∀t′ > t,i∈A.

We then find the intersection time between ywavets (t′) and ypti (t′), which we denote

by t̂tsi and is calculated as t̂tsi =
(
ls− ȳi+vft̄i+wt−

)
/
(
vf +w

)
,∀s = 1, . . . ,S, i ∈ A.

Let ŷtsi be the location of the intersection between ywavetsi (t′) and ypti (t′). Then, we

compare lower-bound index mwave
ts

(
t̂tsi
)
and mpre

i (t). As illustrated in Figure 6.6(a), if

mwave
ts

(
t̂tsi
)
≥mpre

i (t), then traffic from the current preceding vehicle to wave s is not

congested, and preceding vehicle i drives at vf to reach point
(
t̂tsi,y

wave
ts

(
t̂tsi
))

. Then its

future presence time on wave s, denoted by t̃tsi, is exactly identical to t̂tsi. Otherwise,

if mwave
tsi

(
t̂tsi
)
< mpre

i (t) as illustrated in Figure 6.6(b), then traffic is congested and

this preceding vehicle cannot drive at vf to reach point
(
t̂tsi,y

wave
ts

(
t̂tsi
))

. Instead, its

presence on wave s is pushed off to time t̃tsi :=mwave−1
tsi

(
mpre
i (t)

)
,∀s= 1, . . . ,S, i ∈A,
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(a) Free-flow traffic

(b) Congested traffic

Figure 6.6: Sensor-based prediction: trajectory reconstruction for (a) free-flow traffic, (b)
congested traffic.

where mwave−1
tsi (·) denote the inverse function of mwave

tsi (·). This way, we connect the

current point
(
t̄i, ȳi

)
to the wave s’s future presence point

(
t̃tsi, ỹtsi := ywavets

(
t̃tsi
))

and obtain a new trajectory section for each i ∈ A, as illustrated in Figure 6.7(a) (for

s= 1). Then we can move the current point to the new future presence point we solved

above (i.e., setting t̄i = t̃tsi and ȳi = ỹtsi,∀i ∈A) and we move the next future presence

point to the next wave (i.e., setting s := s+1) to construct the next trajectory section

by repeating the same operations. This is illustrated in Figure 6.7(b) (for s = 2) and
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(a) s= 1 (b) s= 2

(c) s= S (d) Exit state

Figure 6.7: Sensor-based prediction: an illustration of trajectory reconstruction for (a) s= 1,
(b) s= 2, (c) s= S, and (d) exit state prediction.

Figure 6.7(c) (for s=S). This way, we obtain the predicted preceding vehicle trajectory

as a piece-wise linear curve illustrated in Figure 6.7(c).

• Exit state prediction: This sub-step solves the trajectory exit time, denoted by T s
ti,

∀i ∈ A. The constructed piece-wise linear functions continue up to the last point that

may be lower than P end. Since there is no other point greater than
(
t̃tsi, ỹtsi

)
, we

simply use the last traffic sensor data to calculate the exit speed denoted by vsti, i.e.,

vsti = qS
(
t−
)
/ρS

(
t−
)
. Therefore, after

(
t̃tSi, ỹtSi

)
the trajectory continues with vsti up

to P end. With this, we obtain a piece-wise linear function for rsti (t′) ,∀t′ ≥ t, i ∈A, and

T s
ti,∀i ∈ A can be easily determined. Figure 6.7(d) illustrates exit state T s

ti.
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• Prediction smoothing: The outputs of the previous sub-step are piece-wise linear func-

tions rsti (t′) ,∀t′≥ t, i∈A that are obtained based the sensor information and boundary

conditions (Sub-sections 6.2.1 and 6.2.2.1) at current time t. Since the information up-

dates at each decision time point, the boundary conditions may change, and thus the

shapes of functions rsti (t′) ,∀t′ ≥ t, i ∈A may be altered accordingly at each time point.

Significant alterations in trajectory prediction may result in notable and unnatural

fluctuations in the CAVs control strategy decisions. To overcome this issue, we smooth

the trajectory prediction results (i.e., T s
ti and rsti (t′) ,∀t′ ≥ t, i ∈A) based on the histor-

ical sensor information. First, we smooth T s
ti,∀i ∈ A with a weighted moving average

filter. Let T̄ s
ti denote the smooth T s

ti,∀i ∈ A value that is calculated as

T̄ s
ti :=

K−1∑
k=0

ukT
s
(t−k·∆T )i

K−1∑
k=0

uk

,∀i ∈ A,

where K is the moving average filter parameter and uk is the weight coefficient at time

point k. Then, we need to make sure that T̄ s
ti results in a feasible predicted trajectory

according to the speed range. We define T s,mod
ti as the modified exit time at time t for

all i ∈ A, which is calculated as

T s,mod
ti := max

(
T̄ti, t+

(
P end− s0− rshti (t)

)
/vf
)
,∀i ∈ A.

We define δTti := T s
ti− T̄ s

ti as the time difference between T s
ti and T̄ s

ti, for all i∈A. Then,

we modify the breaking time points in piece-wise function rsti (t′) ,∀t′≥ t, i∈A according

to δTti . Let
(
t̃stsi, ỹ

s
tsi

)
,∀s ∈ {1, . . . ,S} , i ∈ A denote the breaking time-space points in

rsti (t′) ,∀t′ ≥ t, i ∈ A function. Basically, for each break time point
(
t̃stsi, ỹ

s
tsi

)
,∀s ∈
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Figure 6.8: Sensor-based trajectory: prediction smoothing.

{1, . . . ,S}, we shift t̃stsi to a new time, denoted by t̄stsi, as formulated below.

t̄st1i := max
(
t+

(
ỹst1i− rshti (t)

)
/vf, t̃st1i− δTti

(
ỹst1i− rsti (t)

P end− s0− rsti (t)

))
,

t̄stsi : = max
(
t̄st(s−1)i+

(
ỹstsi− ỹst(s−1)i

)
/vf, t̃stsi− δTti

(
ỹstsi− rsti (t)

P end− s0− rsti (t)

))
,

∀s ∈ {2, . . . ,S} , i ∈ A.

Let r̄sti (t′) ,∀t′ ≥ t, i ∈ A denote the modified trajectories that are reformulated using

the new breaking points, i.e.,
(
t̄stsi, ỹ

s
tsi

)
, s∈ {1, . . . ,S} , i∈A. Figure 6.8 illustrates the

trajectory modification procedure.

6.2.2.3 Probe-based Prediction

The previous sub-section provides the algorithm description for predicting the tra-

jectory of the vehicles immediately preceding to the CAVs using the sensor information.

However, sensor information may not be always accurate or available. In such cases, we

rely on the probe vehicle information to predict the downstream traffic. Even if the sensor
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information is available, such predictions can be further enhanced by combining the sensor-

based predictions with the probe-based ones, which is explained in the next sub-section.

This sub-section presents the procedure to predict the preceding vehicles’ trajectories using

only the real-time information provided by the probe vehicles.

Let rpti (t′) ,∀t′ ≥ t, i ∈ A denote the probe-based predictions. We group vehicles into

different clusters such that each cluster is led by a CAV. To predict the trajectory of the

preceding vehicle to each cluster, we use the information of the probe vehicles in the preceding

cluster. The following sub-step explains the derivation of the probe offset trajectories.

• Offset trajectories: Basically, we assume that traffic status propagates upstream with

wave speed w, thus we use an offset of the probe vehicle trajectories and shift them

along the backward wave in the time-space diagram. We let poffsettni (t′) ,∀t′≥t denote

the offset trajectory of each probe vehicle n (∀n ∈ N ) in cluster i (∀i ∈ A) at the

current time t. This set of trajectories is calculated using Simplified Newel’s model,

mprobe
n (t) ,∀n ∈N and mpre

i (t) ,∀i ∈ A estimated in Sub-section 6.2.2.1 as:

poffsettni

(
t′
)

: = pproben

(
t′−

(
mpre
i (t)−mprobe

n (t)
) s0
w

)
−
(
mpre
i (t)−mprobe

n (t)
)
s0,

∀t′≥t, i= min{i ∈ A | i > n,n ∈N} .

In addition to the available probe vehicle trajectories up to current time t, for each

rpti (t′) ,∀t′ ≥ t, i ∈ A, we offset the current planned downstream CAV trajectory (i.e.,

ftj (t′) ,∀t′ ≥ t, j = max{j ∈ A | j < i, i ∈ A}). The derivation of fti (t′) ,∀t′ ≥ t, i ∈ A

is explained in Sub-section 6.2.3. Let poffset,fti (t′) denote the offset trajectory of
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Figure 6.9: Probe-based prediction: an illustration to offset trajectories.

ftj (t′) ,∀t′ ≥ t, j = max{j ∈ A | j < i, i ∈ A} that is calculated as:

poffset,fti

(
t′
)

: = ftj

(
t′−

(
mpre
i (t)−mCAV

j (t)
) s0
w

)
−
(
mpre
i (t)−mCAV

j (t)
)
s0,

∀t′≥t, i ∈ A, j = max{j ∈ A | j < i, i ∈ A} .

Then, depending on the number of probe vehicles at each cluster, a number of poffsettni (t′)

and one poffset,fti (t′) are available to be used in the prediction for each rpti (t′) ,∀t′ ≥ t, i ∈

A. Figure 6.9 illustrates the offset trajectories for a cluster.

• Offset modification: In this study, we use Triangular Fundamental diagrams in mod-

eling the traffic upstream and downstream of the bottleneck, and thus, the s0 value in

the upstream segment is less than the downstream one. This results in a jump in some

sections of the offset trajectories (as shown in Figure 6.9). To overcome this issue,

we implement the LWR model to estimate a near-bottleneck traffic speed, and replace

these sections with a linear continuous segment. Let vB denote the near-bottleneck

traffic speed that is calculated as

vB := wvfQdown

wQdown +vf
(
Qup−Qdown

) ,
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(a) Triangular fundamental diagrams (b) Revised offset trajectories

Figure 6.10: Probe-based prediction: an illustration to (a) triangular fundamental diagrams
and vB derivation and (b) the revised offset trajectories.

where Qup and Qdown are the capacities of the upstream and downstream segments,

respectively. We let poffset,Bti (t′) , tBti ≤ t′ ≤ t
B
ti define this linear section function with the

slope of vB, where tBti and t
B
ti are the start and end time domain, respectively. For the

sections of the offset trajectories after lB, we just shift them in time to connect them

with poffset,Bti

(
t
B
ti

)
and denote this section by poffset,endti (t′) ,∀t′≥tBti, i∈A. Figure 6.10(a)

and Figure 6.10(b) illustrate the Triangular Fundamental diagrams with vB derivation

and revised offset trajectories poffset,Bti (t′) , tBti ≤ t′ ≤ t
B
ti and p

offset,end
ti (t′) ,∀t′≥tBti for all

i ∈ A.

The obtained offset trajectories for each vehicle cluster i ∈ A are actually a set of functions

that may overlap in some time points (as illustrated in Figure 6.10). To construct probe-

based prediction function rpti (t′) ,∀t′ ≥ t, we simply remove the overlapping section of the

second trajectory for each two consecutive offset trajectories, and connect them together to

form a continuous rpti (t′) ,∀t′ ≥ t function for each i ∈A. Next, we combine the probe-based

offset trajectories with sensor-based prediction results (i.e, r̄sti (t′) ,∀t′ ≥ t, i ∈ A) to further

improve the prediction outcomes. If for any i ∈ A, sensor-based prediction r̄sti (t′) ,∀t′ ≥ t is
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available, we simply integrate the probe-based prediction offset trajectories and the sensor-

based predictions together in the next sub-section.

6.2.2.4 Prediction Integration

This sub-section presents the algorithm to integrate r̄sti (t′) and rpti (t′) ,∀t′ ≥ t to con-

struct rti (t′) ,∀t′ ≥ t, i ∈ A. For each point in rpti (t′) ,∀i ∈ A, we can find a point at the

corresponding source probe vehicle trajectory with the same location. We define ωp
ni as

the time difference between t′ and the corresponding point at the source probe trajectory

n, and ωs
i := t′− t− (see Figure 6.11(a)). Then, for each cluster i ∈ A, we integrate r̄sti (t′)

and rpti (t′) ,∀t′ ≥ t with a weighted average proportional to the inverse of the time difference

between the predicted points and their source times as:

rti
(
t′
)

:=

(
ωp
ni

)−1
r̄sti (t′) + (ωs

i )
−1 rpti (t′)(

ωp
ni

)−1
+ (ωsi )

−1
,∀t′ ≥ t, i ∈ A.

Note that in some cases, sensor information is not available or not applicable for the predic-

tion due to the upstream CAV control strategy. Further, our experiments indicate that when

sufficient sensor information is not available, it would be better to just ignore the sensor-

based prediction results. Without much loss of generality, we assume that the distances

between all traffic sensors are equal and denote it by ∆lS. Then, based on our numerical

experiments, we define two criteria for sufficiency of the sensor information: pCAVi−1 (t)> lbS/2c

and pCAVi−1 (t)−pCAVi (t)>
(
S
2 + 1

)
∆lS,∀i ∈A\{1}. The first criterion requires that the vehi-

cles in the preceding CAV cluster (i.e., i−1) have already passed sufficient number of traffic

sensors locations. The second criterion is met only if the number of vehicles existing in the

preceding CAV cluster is large enough to cover a sufficient number of traffic sensors. For

example, for a relatively large P2 value, there may not be a large enough number of vehicles

in each CAV cluster to cover more than one or two traffic sensors. In such a case, sensor
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information may not be very reliable, and thus according to the second criterion, we ignore

the sensor information. If these criteria are met, we set simply set rti (t′) := r̄sti (t′).

For safety concerns, instead of considering the real predicted trajectory rti (t′), we

define a shadow trajectory by shifting rti(t′),∀t′ ≥ t, i ∈A rightward by τ and downward by

s0 where τ is reaction time. We denote shadow trajectory as rshti (t′) ,∀t′ ≥ t, i ∈A, which can

be obtained as rshti (t′) := rti (t′− τ)− s0,∀t′ ≥ t, i ∈ A. With this, we update the exit states

as

T end
ti : =

{
t′ ≥ t | rti

(
t′
)

= P end
}

+Hdown
i ,∀i ∈ A,

vendti := max
(
ṙshti

(
T end
ti

)
, ṗCAVi (t)

)
,

where T end
ti and vendti are the final exit states using the integrated trajectory prediction, ṙshti (t′)

denotes the derivative of rshti (t′) with respect to t′, and Hdown
i is a time gap parameter

that depends on the type of the preceding vehicle to CAV i,∀i ∈ A. Let HCV and HHV

denote the time gap for the cases where the preceding vehicle is a probe vehicle and an HV,

respectively. As such, if the preceding vehicle to CAV i is a CV or a CAV, thenHdown
i =HCV,

otherwise Hdown
i =HHV. Note that the time gap for the latter case could be lower than the

former one, i.e., HCV < HHV (Ghiasi et al., 2017). For simplicity of the shooting heuristic

algorithm (presented in Subsection 6.2.3), we do not allow the exit speed to drop below

ṗCAVi (t); otherwise, it would require a more complex shooting heuristic. This is a reasonable

assumption since as noted before, we set P end to a location where traffic speed is expected

to be recovered. Figure 6.11 illustrates the prediction integration algorithm and outputs.

6.2.3 Shooting Heuristic

With T end
ti , vendti , pCAVi (t) and ṗCAVi (t), ∀i ∈ A, we are able to plan the CAV trajec-

tories for the future that can smoothly pass P end. This step of the algorithm is called a
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(a) Integration of the sensor-based and probe-based predictions

(b) Exit state at the integrated prediction

Figure 6.11: Prediction integration.
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shooting heuristic, and its output are fti (t′) ,∀t′ ≥ t, j ∈ A. In addition to the mentioned

inputs, we also need the estimated preceding vehicle shadow trajectories rshti (t′) ,∀t′ ≥ t to

check the feasibility of the fti (t′) for all i ∈A during the shooting heuristic algorithm. This

algorithm is divided into three sub-steps that together form the shooting heuristic algorithm.

6.2.3.1 CAV Shooting Equations

In this sub-step, we formulate fti (t′) ,∀t′ ≥ t, i ∈ A. The basic idea of the shoot-

ing heuristic is to partition each future CAV trajectory into a maximum of four consecutive

parabolic sections. We call these four sections deceleration, stopping, acceleration, and cruis-

ing. We let the deceleration and acceleration sections have the same absolute acceleration

values. With this, we can analytically find the connecting points between each consecutive

sections. To prevent having a negative slope at the connecting point of the CAV trajectory,

we add a stopping section if needed. Finally, when the trajectory speed recovers to vendti , we

connect this section to the cruising section and let the CAV proceed at constant speed vendti

(with zero acceleration) up to the exit time-space point (T end
ti ,P end), ∀i∈A. In the shooting

heuristic, we first consider the case that fti (t′) has no stopping section. In this case, we

will find five variables that together form fti (t′). These variables are shown with outlines in

Figure 6.12.

To solve these five variables, we first fix tcrti . Let αi denotes the ratio of the cruising

section length to the entire shooting length, i.e., αi := P end−pcr
ti

P end−pCAV
i (t) ,∀i ∈A. With αi, we can

indirectly fix tcrti and pcrti as the follows:

tcrti = T end
ti −

αi
(
P end−pCAVi (t)

)
vendti

,∀i ∈ A, (6.3)

pcrti = P end−αi
(
P end−pCAVi (t)

)
,∀i ∈ A. (6.4)

With this, we can find the remaining decision variables {ati, tcti,pcti,vcti}i∈A as follows.
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Figure 6.12: Shooting heuristic: case 1.

ati = ṗCAVi (t) +vendti

tcrti − t
+
βti−2

(
pcrti −pCAVi (t)

)
(tcrti − t)2 , i ∈ A,

tcti = 1
2

(
t+ tcrti + ṗCAVi (t)−vendt

ati

)
, i ∈ A,

pcti =−1
2ati (t

cr
ti − t)

2 + ṗCAVi (t)(tcrti − t) +pCAVi (t) , i ∈ A,

vcti = ṗCAVi (t)−ati (tcrti − t)
2 , i ∈ A,

where

βti = 2
(

(tcrti − t)2

2

((
ṗCAVi (t)

)2
+
(
vendti

)2)
− (tcrti − t)

(
pcrti −pCAVi (t)

)(
ṗCAVi (t) +vendt

)
+

(pcrti −pCAVi (t))2
)1/2

, i ∈ A.

Calculating the decision variables concludes with the deceleration, acceleration, and

cruising (that is determined by αi,∀i ∈ A) sections. However, in general the mentioned

equations may result in a negative speed at the connecting point (i.e. vcti < 0). If that

happens, we need to switch to the second case to add a stopping section. In this case, we set

136



Figure 6.13: Shooting heuristic: case 2.

vcti = 0,∀i ∈ A and instead we solve the stopping section duration denoted by dstopti . Again,

we calculate tcrti and pcrti by fixing αi,∀i ∈A (Equations (6.3) and (6.4)). Thus the remaining

variables are
{
ati, t

c
ti,p

c
ti,d

stop
ti

}
i∈A

. These variables are in Figure 6.13 and are calculated as

ati =

(
ṗCAVi (t)

)2
+
(
vendti

)2

2(1−αi)
(
P end−pCAVi (t)

) , i ∈ A
tcti = t+ ṗCAVi (t)

ati
, i ∈ A,

pcti = pCAVi (t) +

(
ṗCAVi (t)

)2

(
ṗCAVi (t)

)2
+
(
vendti

)2

(
pcrti −pCAVi (t)

)
, i ∈ A,

dstopt = tcrti −
vendti

ati
− tcti, i ∈ A.

The mentioned two cases are applied for conditions where pCAVi (t) , i ∈A is relatively

far from P end. However, if pCAVi (t) is too close to P end, it is not efficient or even possible

to include deceleration and stopping sections. In these third cases we only need acceleration

and cruising sections. The decision variables in these cases are {ati, tcrti ,pcrti}i∈A that are

shown with outlines in Figure 6.14, and calculated as
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Figure 6.14: Shooting heuristic: case 3.

ati =

(
ṗCAVi (t)−vendti

)2

2
(
vendti

(
T end
ti − t

)
−
(
P end−pCAVi (t)

)) , i ∈ A
tcrti =

t
(
ṗCAVi (t) +vendti

)
−2T end

ti vendti + 2
(
P end−pCAVi (t)

)
ṗCAVi (t)−vendt

, i ∈ A,

pcrti = P end−vendti

(
T end
ti − tcrti

)
, i ∈ A.

Note that if vendt = ṗCAVi (t), then we simply set tcrti = t, and thus, we obtain fti (t′) =

pCAVi (t) +vendt (t′− t) , t≤ t′ ≤ T end
ti .

Finally, the fourth case belongs to the conditions where pCAVi (t) is so close to P end

and it may not be possible to merge pCAVi (t) to point (T end
ti ,P end) with vendti for some i ∈A.

In this case, we first only consider a short acceleration section that starts with the current

states and ends at P end at time T end
ti (i.e., fti

(
T end
ti

)
= P end), but not necessarily with the

speed of vendti that yields ati = 2(P end−pCAV
i (t)−ṗCAV

i (t)(T end
ti −t))

(T end
ti −t)

2 , i∈A. If ati > amax, then we do

not require fti (t′) to end at P end at time T end
ti , and set ati = min

(
amax, v

f−ṗCAV
i (t)

T end
ti −t

)
, i ∈ A.

Although this section may not end at point (T end
ti ,P end) with vendti , due to the shortness of

this section, the difference is not significant. Figure 6.15 illustrates this case.
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Figure 6.15: Shooting heuristic: case 4.

Using one of the four mentioned cases, calculation of the decision variables will result

in the piece-wise quadratic function fti (t′) ,∀t′ ≥ t, i ∈ A as follows.

• Case 1:

fti
(
t′
)

=



−ati2 (t′− t)2 + ṗCAVi (t)(t′− t) +pCAVi (t) , t≤ t′ < tcti;

ati
2 (t′− tcti)

2 +vcti (t′− tcti) +pcti, tcti ≤ t′ < tcrti ;

vendti (t′− tcrti ) +pcrti , tcrti ≤ t′ ≤ T end
ti .

• Case 2:

fti
(
t′
)

=



−ati2 (t′− t)2 + ṗCAVi (t)(t′− t) +pCAVi (t) , t≤ t′ < tcti;

pcti, tcti ≤ t′ < tcti+dstopti ;

ati
2

(
t′− tcti−d

stop
ti

)2
+pcti, tcti+dstopti ≤ t′ < tcrti ;

vendti (t′− tcrti ) +pcrti , tcrti ≤ t′ ≤ T end
ti .

• Case 3:

fti
(
t′
)

=


ati
2 (t′− t)2 + ṗCAVi (t)(t′− t) +pCAVi (t) , t≤ t′ < tcrti ;

vendti (t′− tcrti ) +pcrti , tcrti ≤ t′ ≤ T end
ti .

• Case 4: fti (t′) = ati
2 (t′− t)2 + ṗCAVi (t)(t′− t) +pCAVi (t).
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6.2.3.2 Feasibility Constraints

Once we calculate fti(t′),∀t′ ≥ t, i ∈ A, we need to check whether the planned tra-

jectories meet the feasibility constraints or not. We define two feasibility constraints as

follows.

• Kinematic constraint: We require that amin ≤ ati ≤ amax,∀i ∈A. If this criterion holds

for each i ∈ A, then we conclude that fti (t′) ,∀t′ ≥ t is kinematically feasible.

• Safety constraint: For safety, we require that fti (t′) ≤ rshti (t′) ,∀t′ ≥ t, i ∈ A. Since we

have the piece-wise functions for both fti (t′) and rshti (t′) ,∀i ∈ A, we can analytically

find the feasibility status. In order to do so, for each i ∈ A, we break the shooting

duration into a number of sub-segments such that each fti (t′) and rshti (t′) consist of only

one function equation, respectively. Therefore, we can easily calculate the feasibility

status at each sub-segment. If fti (t′)≤ rshti (t′) for all sub-segments, we conclude that

fti (t′) ,∀t′ ≥ t is feasible.

6.2.3.3 αi Solution

Given the decision variables, we formulated fti (t′) in each aforementioned case. The

first two cases, however, fix tcrti by αi,∀i∈A. In this sub-step, we finalize the shooting heuris-

tic by finding the optimal αi values that results in the smoothest CAV shooting. We found

that as αi increases, ati increases as well. Thus, we basically aim to find the minimum feasi-

ble αi values for all i ∈A. We implement the Golden Section approach to find the minimum

feasible αi,∀i ∈A. We let G= 0.618 be the Golden Section ratio. The optimization problem

is solved as follows. Let αi and ᾱi denote the lower-bound and upper bound to αi,∀i ∈ A,

respectively. ᾱi,∀i ∈A can be determined based on the amin and amax values or safely set to

the maximum value (e.g., ᾱi := 1,∀i ∈A). The value of αi should be found according to the

safety constraint. For this we first set tcrti to the tangent of fti (t′) and r̄sti (t′) ,∀t′≥t, i∈A. De-
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fine cti (t′) := r̄s
ti(t′)−pCAV

i (t)
t′−t and τ c :=

{
t′ | r̄sti (t′) = P end

}
,∀t′≥t, i∈A. If the maximum value

for the cti (t′) function occurs at P end (i.e., P
end−pCAV

i (t)
τc−t ≥ r̄s

ti(t′)−pCAV
i (t)

t′−t ,∀t′≥t), then the tan-

gent shall be at at P end, and thus tcrti := T end
ti and αi := 0, i ∈ A. Otherwise, we numerically

find the tangent between time points τ c and τ c := argmax
t<t′<τc

(cti (t′)) ,∀i ∈ A . Let gti denote

the obtained tangent time. With that, we set tcrti := gti and thus αi = P end−r̄s
ti(gti)

P end−pCAV
i (t) , i ∈ A.

For the initial iteration of the optimization problem, we set αi := αi. Then, we calculate

fti (t′) ,∀t′ ≥ t, i ∈ A, and check the feasibility constraints. If the feasibility constraints are

met for each i∈A, then the problem ends and fti (t′) is the smoothest trajectory. Otherwise,

we increase αi by αi := αi +G(ᾱi−αi), solve fti (t′), and check the feasibility. If fti (t′) is

feasible for each i ∈ A, we can set ᾱi : = αi and decrease αi by αi := αi−G(ᾱi−αi); oth-

erwise, we set αi := αi and increase αi by the same equation. We iterate this procedure for

each i ∈ A until ᾱi ≈ αi, and we set the solution as αi = ᾱi. By minimizing αi, we actually

find the minimum ati that will result in the smoothest fti (t′) ,∀t′ ≥ t, i ∈ A . With this, we

end the shooting heuristic section.

6.2.4 Damping Control

When pCAVi (t) is very close to pprei (t) for each i ∈A, the shooting heuristic algorithm

may result in unnatural fluctuations in CAV trajectories that may also affect all the following

vehicles trajectories. To avoid such perturbations, this sub-section proposes a damping

control algorithm to smooth the CAV control when pprei (t)−pCAVi (t) is less than a distance

threshold, denoted by ζdamp, for each i ∈ A at time t. Basically, if for each i ∈ A, pprei (t)−

pCAVi (t) > ζdamp, we do not apply the damping control and let CAV i follow fti (t′) ,∀t′ ∈

(t, t+ ∆T ]. Otherwise, the damping control algorithm modifies the trajectory of CAV i for

the following (t, t+ ∆T ] time period. This algorithm makes CAV i follow a combination of

fti (t′) and pprei (t′) rather than just fti (t′) ,∀t′≥t, for ∀t < t′ ≤ t+ ∆T . This combination is

based on the Full Velocity Difference (FVD) car-following model (Jiang et al., 2001) that is
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formulated as

v̇ = vdamp (·)−v
τ

−γ∆v, (6.5)

where v and v̇ are vehicle velocity and acceleration, respectively, vdamp (·) is the optimal

velocity function, ∆v is the velocity difference between the vehicle and its preceding ve-

hicle, and τ and γ are the adaptation time and velocity difference sensitivity parameters,

respectively. In the FVD model, vdamp (·) is an increasing linear function of the vehicle

gap. However, in our damping control algorithm, we define vdamp (·) as a weighted average

between the speed obtained from fti (t′) (i.e., ḟti (t′) := dfti(t′)
dt′ ) and ṗprei

(
t′− τCAV

)
as follows

vdamp
(
t′
)

: = ḟti
(
t′−∆t

)
+

max
(
0, ḟti

(
t′−∆t

)
− ṗprei

(
t′− τCAV−∆t

))
× (6.6)

pCAVi (t′−∆t)−pprei (t′−∆t)− ζdamp

ζdamp− ζterminate ,∀t′ ∈ (t, t+ ∆T ],

where ∆t is a small time increment,τCAV is the CAV communication/reaction delay, and

ζterminate is the control terminate parameter indicating that the control will be terminated if

the spacing between the CAV and its preceding vehicles falls below this parameter. Therefore,

if the damping control is applied, Equations (6.5) and (6.6) yield the CAV acceleration in

real-time for any t′ ∈ (t, t+ ∆T ]. This ends our algorithm design section.

6.3 Numerical Experiments

This section presents simulation analyses to evaluate the performance of our algo-

rithm. First, we conduct a numerical experiment to visualize the algorithm results and to

compare them with a benchmark case. Second, we perform a sensitivity analysis on the

impacts of traffic demand changes on the algorithm solutions. Finally, the effects of dif-

ferent CV and CAV market penetration rates on the algorithm outcomes are investigated.
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In all of these examples, we consider a single-lane straight freeway with 80 vehicles driving

downstream. We set coordinate 0 at the beginning of the control zone and the coordinate in-

creases downstream. We set that bottleneck location to lB = 500 m and deploy a set of traffic

sensors around lB. The default parameter values are set as: S = 6, ∆lS = 40 m (l1 = 400

m), ∆T = 2 sec, vf = 90 km/h, and P end = lS . It is also assumed that each traffic sensor

can capture the traffic information within 10 meters of its center location (i.e., 20 meters of

coverage). For all numerical experiments, HVs and CVs follow a stochastic Optimal Velocity

(OV) car-following model formulated as:

v̇ = vopt (d)−v
τ

+ ε,

vopt (d) := max
(

0,min
(
vf,
d− s0 + lv

h

))
,

where ε is a zero-mean normally-distributed random term with a standard deviation of

σ, d is the vehicle distance gap, h is the vehicle time gap at stationary conditions, lv is

the vehicle length, and the other variables and parameters are as previously defined. For

simplicity, all vehicles are assumed to have the same length of lv = 5 m and σ :=
√

2 for all

HVs and CVs (Li et al., 2018). To model different capacities for upstream and downstream

of the bottleneck, different corresponding jam spacing parameters are set in the car-following

model, i.e., s0 = 6.5 and s0 = 10 meters, respectively for upstream and downstream of the

bottleneck. The other parameters are set as τ = 0.65 s, γ = 0.6 s−1, τCAV = 0.2 s, w = 4.64

m/s, amin = −8 m/s2 (Kudarauskas, 2007), amax = 1.5 m/s2, ζdamp = 50 m, ζterminate = 10

m, HCV = 1.22 s, and HHV = 1.58 s (Ghiasi et al., 2017). Let D denote the traffic demand

entering the control zone, and set D = 1500 vehicles per hour for the following experiments.

To visualize the algorithm results, we perform a numerical example with P1 = 0.3 and

P2 = 0.2. To feed the deployed sensor with a history of traffic information, we initialize the

simulation with a platoon of 20 vehicles and assume that the first vehicle of this platoon is
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a probe vehicle. This initial vehicle platoon will serve as inputs to the prediction algorithm

downstream of first CAV cluster. After this vehicle platoon, we allow 80 vehicles to enter the

speed harmonization control zone. Thus, we consider 24 CVs and 16 CAVs (N = 40) that are

distributed with a repeated pattern (as shown in Figure 6.17(b)). We plot the trajectories

and related control information at four different time points along the simulation process

in Figure 6.16. In this figure, the initialization vehicle platoon is shown with gray curves.

Further, HVs, CVs and CAVs are shown with blue, green, and red trajectories, respectively.

We can see that due to the bottleneck at 500 meters, a queue will be formed that is consistent

with real-world observations. Further, each CAV form a vehicle cluster, in which the CAV

is followed by a number of CVs and HVs. The solid and dashed light green curves represent

rti (t′) and rshti (t′) ,∀t′ > t,i ∈A, respectively. And, the solid red curves are the implemented

CAV trajectories under the proposed control algorithm up to the next decision time point,

while the dashed red curve is the planned CAV trajectory fti (t′) ,∀t′ > t,i ∈ A that aims to

smoothly merge into the rshti
(
T end
ti

)
(the dashed green curve). Note that the CAVs only follow

these planned trajectories up to the next decision point, and then the planned trajectory

will be updated. As a result, we see that the CAVs can smartly adapt themselves along the

process. Therefore, the CAV clusters smoothly hedge against the deceleration waves and

gradually merge into the downstream traffic when the queue is about to dissipate.

To illustrate the merits of the results, we construct a benchmark example that sim-

ulates the human-driven traffic without any control. Figure 6.17(a) plots the benchmark

human-driven trajectories generated with stochastic OV car-following model and compares

it with the obtained control algorithm result shown in Figure 6.17(b).

Comparing the two sets of results, we can see that the proposed CAV trajectory

control significantly smooths not only the CAV trajectories but also the vehicles following

the them. We have quantified the benefits based on four most important measures of ef-

fectiveness: throughput, speed standard deviation (as a proxy for driving comfort), fuel
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Figure 6.16: Simulation results.
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Figure 6.17: Simulation results: comparing the human-driven benchmark traffic with the
implemented control.
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consumption, and surrogate safety measure denoted by Et, Ev, Ef, and Es respectively. We

have implemented the VT-micro model coefficients (Ahn, 1998; Ahn et al., 2002) to evalu-

ate the fuel consumption improvements. Further, we use a surrogate measure based on the

inverse time-to-collision (iTTC) measure (Balas and Balas, 2006). This measure is basically

formulated as the integral over the travel time on the road segment for all following vehicles.

Let index all the vehicles as o ∈ O := 1,2, . . . ,O. Then, Es can be formulated as

Es :=
∑

o∈O\{1}

∫ t+o

t−o

ṗo (t)− ṗo−1 (t)
po−1 (t)−po (t)dt,

where t−o , t+o are the time when vehicle o enters and exits the control zone, respectively, and

po (t), and ṗo (t) are the location and speed of vehicle o at time t, respectively. We evaluate

evaluation measures Et, Ev, Ef, and Es within the control zone, i.e., 0 to P end and Et

at P end (P end = 600 meters for the cases shown in Figure 6.17). Table 6.1 compares the

benchmark case evaluation measures values with the controlled traffic. Moreover, to test

the algorithm results with different sensor settings (i.e., S and ∆lS values), eight different

instances are tested, and in each instance one of the S or ∆lS values is changed and the

remaining parameters stay at their default values. Note that as we change either of these

values, sensor locations may change, thus we report the l1 values in Table 6.1 in addition to

the changed parameter value. We define ∆Et, ∆Ev, ∆Ef, and ∆Es as the percentage of the

Et, Ev, Ef, and Es improvements in different instances, respectively. Finally, to investigate

the effects of vf on the algorithm results, we perform numerical experiments with different vf

values and the results are shown in Table 6.2. Note that to capture the stochasticity nature

of the car-following model, we run the simulation model 10 times for each scenario in all of

the following examples and then report the average values.

The results shown in Table 6.1 indicate that our algorithm can improve the traffic

performance with various sensor settings. Further, it is found that the Et, Ev, Ef and Es
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Table 6.1: Comparison of the evaluation measures for different sensor settings.

Et ∆Et Ev ∆Ev Ef ∆Ef Es ∆Es
(vph) (%) (m/s) (%) (L) (%) (l/s) (%)

Benchmark 1425 - 8.37 - 15.26 - 12.66 -
Default 1484 4.1 3.86 53.9 14.20 7.0 10.56 16.6
S = 4 (l1 = 480 m) 1508 5.9 3.12 62.8 13.49 11.6 10.14 19.9
S = 4 (l1 = 440 m) 1514 6.3 2.94 64.9 11.42 25.2 20.10 58.8
S = 8 (l1 = 400 m) 1494 4.8 3.47 58.6 14.86 2.6 4.87 61.5
S = 8 (l1 = 360 m) 1486 4.3 3.76 55.1 14.76 3.3 5.59 55.8
S = 8 (l1 = 320 m) 1492 4.8 3.64 56.5 14.05 7.9 9.62 24.0
∆lS = 20 m
(l1 = 450 m)

1482 4.0 4.14 50.6 11.75 23.0 22.19 75.3

∆lS = 80 m
(l1 = 300 m)

1500 5.3 3.34 60.1 15.38 0.8 4.77 62.4

Table 6.2: Comparison of the evaluation measures for different vf values.

Et ∆Et Ev ∆Ev Ef ∆Ef Es ∆Es
(vph) (%) (m/s) (%) (L) (%) (l/s) (%)

vf = 70
km/h

B** 1361 - 6.75 - 13.68 - 0.37 -
C*** 1437 5.6 4.05 40.0 11.96 12.6 3.08 736.7

vf = 90
km/h*

B** 1425 - 8.37 - 15.26 - 12.66 -
C*** 1484 4.1 3.86 53.9 14.20 7.0 10.56 16.6

vf = 105
km/h

B** 1458 - 8.71 - 15.55 - 22.99 -
C*** 1511 3.6 3.37 61.3 13.03 16.2 12.88 44.0

vf = 120
km/h

B** 1487 - 7.18 - 13.51 - 33.65 -
C*** 1509 1.5 3.61 49.8 11.66 13.7 14.91 55.7

* Default case, ** Benchmark, *** Controlled
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Figure 6.18: Simulation results: random distribution.

values mainly depend on the sensor spatial distribution around lB and ∆lS rather than S.

Actually, even the same number of S value may correspond to significantly different results.

Therefore, to improve the sensor-based prediction effectiveness, it is important to locate a

sufficient number of traffic sensors both upstream and downstream of the bottleneck. Overall,

although our proposed control algorithm obtains promising improvements considering various

parameter values, to further improve the algorithm outcomes, this study provides a tool to to

find the optimal traffic sensor settings according to traffic conditions, resources, etc. Finally,

we compare the algorithm results for four vf values in Table 6.2. Overall, the results indicate

that this algorithm can improve the traffic performance at different vf values.

The above numerical experiment is performed for a repeated vehicle spatial distri-

bution pattern for CAV clusters. To demonstrate the robustness of our algorithm, we test

the algorithm with random CV and CAV distributions with the same parameter settings.

Figure 6.18 shows two examples of simulation analysis with random vehicle distributions.

Both visual and quantitative results indicate that the proposed control algorithm can pro-

vide smoother traffic, with better fuel efficiency, less crash probabilities, and more driving

comfort.

Next, we perform a sensitivity analysis on D parameter to investigate its effects on

the evaluation measures as are shown in Figure 6.19. Figures 6.19(a), 6.19(c), 6.19(e),
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and 6.19(g) plot the Et, Ev, Ef, and Es values and for both the benchmark case and the

controlled traffic with the default parameter settings, respectively. Further, Figures 6.19(b),

6.19(d), 6.19(f), and 6.19(h) show the ∆Et, ∆Ev, ∆Ef, and ∆Es values, respectively. Note

that since in unsaturated traffic with D<Qdown, simulation analysis obtains Et =D, Ev = 0

and minimum Ef and Es values for both benchmark and controlled traffic, and thus traffic

control may not be as necessary. Therefore, we only investigate the saturated traffic with

D > Qdown in this numerical experiment. Further, numerical experiments reveal that for

D > 1600 vph, traffic spills back to upstream segments of the control zone (i.e., negative

coordinates). Therefore, longer control zones are needed for greater D values. Actually, to

assure a specific improvement level, the length of the control zone shall increase with D.

However, for the sake of consistency with the default parameter settings, the control zone

is not changed in this analysis and the D > 1600 vph cases are excluded. With the default

parameter setting, we obtain Qdown = 1410 and Qup = 2169 vph. Thus in this sensitivity

analysis, we let D vary from 1440 to 1600 vph. The results indicate that the proposed

control strategy improves the evaluation measures for various D values in saturated traffic.

However, as D increases, some of the improvements decrease, which is related to the length of

the control zone, and therefore, shall be resolved with setting longer control zones. Overall,

these tests confirm that the proposed speed harmonization algorithm could yield greater

mobility, smoother traffic, more driving comfort, more fuel efficiency, and less crash risks in

most common traffic conditions.

Finally, we perform numerical experiments to investigate the result of our algorithm

under different P1 and P2 values. Figure 6.20 shows the ∆Et, ∆Ev, ∆Ef, and ∆Es values

for the P1 and P2 spectra. We let P1 and P2 vary between 0 to 0.9 and 0.1 to 1 with an

interval of 0.1, respectively. In this experiment, we randomly distribute CVs and CAVs and

run the simulation 20 times for each for each (P1,P2) pair. Then, we set ∆Et, ∆Ev, ∆Ef,

and ∆Es to the average of the obtained values for each (P1,P2) pair. As it is shown in this
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Figure 6.19: Sensitivity analyses on the D values.
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Figure 6.20: Sensitivity analyses on the P1 and P2 values.

figure, ∆Et, ∆Ev, ∆Ef, and ∆Es generally increase with P1 and P2, which implies that our

control strategy can improve the performance of the future mixed traffic highway. Further,

the results indicate that the ∆Ev and ∆Ef values are more sensitive to P2 than the P1

values. That is due to the fact that CAVs play more effective role in our control strategy

than CVs. This is not the case for ∆Es as CAVs tend to merge the downstream clusters with

shorter time gaps. However, this shall not create any safety concern because these vehicles

are designed to safely operate with shorter headways (Ghiasi et al., 2017).
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6.4 Chapter Summary

This chapter develops a traffic control strategy based on an innovative speed harmo-

nization concept using CAV technologies. The proposed algorithm is applicable to a mixed

traffic freeway with HVs, CVs, and CAVs. Basically, this algorithm controls the CAVs up-

stream of the bottleneck to effectively hedge against the backward shockwaves and smooth

the traffic. This algorithm includes four main steps: information update, trajectory predic-

tion, shooting heuristic, and damping control. The aforementioned steps of the algorithm

are updated at every decision time point (i.e., ∆T ). As a result, the proposed speed harmo-

nization algorithm is modified using the new information that is received from the deployed

traffic sensors and/or the downstream probe vehicle at the first step of algorithm. In the

second step, we propose a prediction framework to predict the trajectories of the immediate

preceding vehicles to the CAVs. The outputs of this step are the times (i.e., T end
ti ) and the

corresponding speeds (i.e., vendti ) at which the preceding vehicles pass a predefined target

zone (i.e., P end), in which the negative impacts of the bottleneck are recovered. Considering

the two second step outputs as the inputs of the third step, the shooting heuristic efficiently

plans the future CAV trajectories. Based on the outputs of the first two steps of the algo-

rithm at every time increment, we construct the functions of the future CAV trajectories.

These piece-wise quadratic functions allow us to prevent any speed jump in CAV trajectories.

Moreover, we consider physical limits as well as the safety constraints in constructing the

CAV trajectory function. Further, to avoid any sudden CAV speed variation when CAVs are

within a distance threshold to the preceding vehicle, CAV speed profiles are dampened with

the proposed damping control algorithm.

Numerical experiments are conducted to illustrate the performance of the algorithm

and to test it with various parameters and traffic conditions. The numerical experiment re-

sults indicate that presented speed harmonization algorithm is capable of not only smoothing
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CAV movements but also harmonizing the following human-driven traffic. To quantify the

benefits, four of the most important objective functions in traffic flow analyses are considered:

throughput, speed variations, fuel consumption, and surrogate safety measure. The quanti-

tative results show improvements in all four measures for most of the test cases compared

with the benchmark case.
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CHAPTER 7: CONCLUSION

Traffic congestion and stop-and-go maneuvers are inevitable experiences that play

massive role in human’s daily lives. Most of these issues are linked to the limitations in

human behaviors. First, due to the limitations in human’s reaction time, every consecutive

pair of vehicles have to be spaced by a relatively long distance. As a result, the maximum

possible capacity of a highway is limited to a relatively low value. Second, human-driven

traffic is usually accompanied with frequent deceleration and acceleration cycles that are

known as traffic oscillation or stop-and-go traffic. These issues impose adverse impacts on our

society’s prosperity and sustainability. Emerging connected and automated vehicle (CAV)

technologies can potentially solve or at least reduce these problems through sensing the local

environment, sharing information, and applying appropriate control measures. To realize the

potential benefits of CAV technologies, this dissertation provides insightful methodological

and managerial tools in microscopic and macroscopic traffic scales.

In the macroscopic scale, this dissertation investigates how distributed CAVs can

impact mixed traffic highway capacity. CHAPTER 3 develops an analytical stochastic for-

mulation to mixed traffic highway capacity based on a Markov-chain model. This model

describes the vehicle spatial and headway distributions along a highway segment as a func-

tion of three critical factors: CAV penetration rate, CAV platooning intensity, and mixed

traffic headway settings. The results of the analytical and numerical analyses reveal that

the proposed Markov chain model can estimate the ground-truth mixed traffic highway ca-

pacity very accurately. Moreover, it is found that contrary to the ubiquitous assumption

that higher CAV penetration rates and platooning intensities always help improve highway
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capacity, these two factors may not always yield greater mixed traffic capacity. This find-

ing warns the traffic operators to be aware of possible impacts of different CAV technology

settings on highway capacity.

In the microscopic scale, this dissertation aims to use CAV technologies to dampen

traffic oscillations and smooth traffic. CHAPTER 4 presents a simplified trajectory optimiza-

tion model for a pure-automated traffic environment where all vehicles are assumed to be

CAVs. In this problem, each CAV’s trajectory is approximated with no more than five pieces

of consecutive quadratic functions with identical trajectories acceleration and deceleration

rates in the same platoon. The elegant theoretical properties in the objective shape and the

feasible region lead to an exact solution algorithm that efficiently solves the true optimum

to the proposed problem. This efficiency achievement is demonstrated with a number of

numerical experiments on signalized segments and at non-stop intersections. The numerical

analyses also reveal that the proposed simplified trajectory optimization problem reduces

the queue length or confine traffic slowdown within a local area without further propagation.

The trajectory optimization concept is extended to a joint trajectory and signal op-

timization model in CHAPTER 5 to simultaneously design CAV trajectories and signal

timing plan near signalized crossing points. In this problem, each CAV’s trajectory is ap-

proximated with no more than five consecutive quadratic segment pieces. Moreover, instead

of applying the original highly non-linear functions of the instantaneous fuel consumption,

this chapter proposes a macroscopic near-optimum fuel consumption function that describes

fuel consumption as a simple quadratic relationship with signal red interval. With these two

modifications, the formulated simplified joint trajectory and signal optimization model can

be analytically solved to the exact solution. Numerical experiments are conducted to evalu-

ate the algorithm performance and to illustrate the applications of this model on signalized

intersections and work-zones. Finally, this model is tested on various traffic conditions and

roadway geometries.
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CHAPTER 6 extends the trajectory optimization concept to a mixed traffic environ-

ment by proposing a CAV-based mixed traffic speed harmonization algorithm. This model

effectively hedges against the backward shockwaves and smooth the traffic by controlling the

CAVs upstream of the bottleneck. The proposed algorithm could be applied in real-time traf-

fic management by iteratively predicting the downstream traffic and updating the upstream

CAV controls in real-time. We use two information sources to estimate the downstream

traffic: the real-time traffic sensor data and the information provided by the downstream

connected vehicles (CVs) and CAVs. With this prediction, this study constructs the future

piece-wise quadratic CAV trajectory functions considering safety and kinematic constraints.

Finally, to avoid any sudden jump in CAV speed profiles, their movements may be dampened

with the proposed damping control algorithm. The numerical experiment results reveal that

the proposed speed harmonization algorithm is capable of not only smoothing CAV trajec-

tories but also the following human-driven traffic.

This dissertation can be extended in a number of directions. Regarding the proposed

capacity analysis model, it is interesting to investigate how lane changing maneuvers impact

highway capacity in mixed traffic. Moreover, it is possible to analytically quantify the traffic

flow rate across the full spectrum of traffic densities in both undersaturated and congested

conditions for mixed traffic. In the simplified trajectory optimization problem, although we

conjecture that the optimal solution to the simplified problem is likely near-optimum to the

primary optimization problem, rigorous optimization models need to be built to quantify the

optimality of the simplified solution. Further, some minor restrictions (e.g., identical speeds

at the entrance and the exit of the highway segment) can be relaxed in future studies to

suit more flexible problem settings. In the proposed joint trajectory and signal optimization

problem, it is assumed that the traffic arrival pattern is homogeneous. Therefore, investi-

gating the dynamic heterogeneous traffic can be a potential future study direction. Further,

it will be worth extending this problem into multi-directional signalized crossing points.
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Finally, the proposed CAV-based speed harmonization algorithm also considers the homo-

geneous traffic arrival pattern, thus it will be worth investigating a dynamic heterogeneous

traffic in the future. Moreover, real world data can be incorporated to this model framework

when detailed trajectory data are available for a long span of freeway around a bottleneck.

Further, the presented approach framework is developed for one-lane freeway, which can be

extended to multi-lane conditions, e.g., thorough forming a wall of synchronized CAVs across

all lanes or effective management of lane changes.
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