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ABSTRACT 

 This dissertation presents findings from three separate investigations, a laboratory study 

and two field studies that evaluated the durability of the Fiber Reinforced Polymer (FRP)-concrete 

bond. The laboratory study explored the role of porosity on CFRP-concrete bond following 

immersion in warm water. Two disparate field studies measured residual bond after 20 years 

outdoor exposure of FRP repairs of full-size masonry walls and after 12 years for partially 

submerged piles supporting the Friendship Trail Bridge, Tampa Bay. 

 The ACI 440 code requires the same surface preparation for all externally bonded FRP 

concrete repairs. This disregards the role of porosity that is a function of the water / cementitious 

(w/c) ratio. Concretes with high w/c ratios are low strength concretes, have large voids and a more 

elaborate capillary pore network compared to low w/c, high strength concretes. Epoxies will 

therefore penetrate deeper into high porosity concretes. As a result, the performance of low 

strength, high porosity concrete under moisture exposure can be anticipated to be superior. The 

laboratory study was intended to determine whether this hypothesis was correct or not. 

 Three different concrete mixes with water / cementitious ratios of 0.73, 0.44 and 0.25 

representing high, medium and low porosities were used for the study. The corresponding target 

compressive strengths were 2,500 psi, 5,000 psi and 7,500 psi respectively. A total of eighteen, 9 

in. x 9 in. x 2.5 in. thick slabs, three for each concrete porosity were tested. Slabs were allowed to 

cure for over 90 days before surfaces were lightly sand blasted to provide the required concrete 

surface profile (CSP 3). Specimens were then pre-conditioned in an oven for 48 hours to ensure 

uniform drying. 



xii 

 Concrete porosity was characterized using mercury porosimetry, SEM, 3D surface 

scanning and images obtained using a portable microscope. Two commercially available CFRP 

materials were bonded to the oven-dried prepared slab surfaces and the epoxy allowed to cure at 

room temperature for 4 weeks. Twelve FRP bonded slabs were completely submerged in potable 

water at 30 oC (86 oF) as part of the aging program. The six remaining slabs were used for 

establishing baseline bond values through destructive pull-off tests. The twelve exposed slabs were 

similarly tested following 15 weeks of exposure.   

 Results showed minimal degradation in the high porosity, low strength concrete but over 

20% reduction in the low porosity, higher strength concrete. Analysis of the failure plane indicated 

that the lower porosity of the high strength concrete had limited the depth to which the epoxy could 

penetrate. This was confirmed from magnified images of the bond line taken using a microscope 

and from a careful assessment of the failure mode. Findings also suggest that the CSP 3 surface 

profile (light sand blasting) may be adequate for lower strength concrete but not so for higher 

strength concrete. For applications where FRP concrete repairs of higher strength concrete are 

permanently or intermittently exposed to moisture, alternative surface preparation may be needed 

to allow epoxy to penetrate deeper into the concrete substrate. The viscosity of the resin hitherto 

not considered may be a critical parameter. 

 In 1995, two full-scale concrete masonry walls were repaired using three horizontally 

aligned 20 in. (508 mm) wide uni-directional carbon fiber sheets using different commercially 

available epoxies. Twenty years later the CFRP-CMU bond was determined through selective pull-

off tests that were preceded by detailed non-destructive evaluation. Results showed that despite 

superficial damage to the top epoxy coating and debonding along masonry joints, the residual 

CFRP-CMU bond was largely unaffected by prolonged exposure to Florida’s harsh environment.  
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 Therein, 99% of samples exhibited in cohesive failure of the CMU or mortar. Pull-off 

strength was poorer at mortar joints but because the CFRP was well bonded to the masonry surface, 

its impact on structural performance of the repair was expected to be minimal. Overall, the repairs 

proved to be durable with both epoxy systems performing well. 

 The Friendship Trail Bridge linking St. Petersburg to Tampa FL was demolished in 2016. 

This was the site of three disparate demonstration projects in which 13 corroding reinforced 

concrete piles were repaired using fiber reinforced polymer (FRP) in 2003-04, 2006, and 2008. 

The repairs were undertaken using combinations of carbon and glass fiber, pre-preg and wet layup, 

epoxy and polyurethane resin, and were installed using either shrink wrap or pressure bagging. 

Residual FRP-concrete bond was evaluated after up to 12 years of exposure through 120 pull-off 

tests conducted on 10 representative repaired piles. Results showed a wide variation in the 

measured pull-off strength depending on the type of resin, the number of FRP layers, the prevailing 

conditions at the time the epoxy was mixed and the method of installation. Epoxy-based systems 

were found to be sensitive to ambient conditions at installation. Pressure bagging improved 

performance. The highest residual bond was recorded in pressure bagged piles repaired in 2008. 

The findings suggest that in marine environments epoxy-based systems installed using pressure 

bagging can lead to durable repairs.
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 CHAPTER 1: OVERVIEW 

 This dissertation presents findings from three separate investigations, a laboratory study 

and two field assessments evaluating the durability of FRP-concrete bond. The laboratory studies 

were conducted to understand how durability could be improved in the future while the field 

studies focused on determining the performance of past repairs. Thus, the two studies linked the 

past to the future.  

 Durability of FRP-concrete bond is critically important. It has been, and continues to be, 

the subject of worldwide research studies. Much has been learned and critical environments 

identified that are summarized in state-of-the-art reviews, e.g. (Myers, 2007), (Dolan, et al., 2009), 

(Sen, 2015). These studies evaluated residual bond following exposure to various environments 

for different combinations of FRP materials and concrete strengths.  

 An important parameter that appears to have been overlooked is the role of concrete 

porosity on long term durability. Porosity is a measure of the extent and size of the network of 

voids present in concrete. The volume of capillary pores present in hydrated concrete is 

proportional to the water / cementitious (w/c) ratio of the concrete mix, e.g. (Mehta and Monteiro, 

1993). The epoxy resin may therefore be expected to penetrate deeper into low strength concrete 

because of its high porosity compared to high strength, low porosity concrete where penetration 

will be commensurately shallower. Because permeability is lower in higher strength concrete, it 

will take moisture longer to reach the bond line. But since epoxy can seal larger voids in lower 

strength concrete there is a possibility that degradation will occur sooner in high strength concretes. 
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 The laboratory study was set up to explore this hypothesis and is described in Chapters 2 

to 8 in this dissertation. 

 The University of South Florida (USF) has been a pioneer in the application of externally 

bonded FRP used for masonry settlement repair and for repairing corrosion damage in piles. The 

use of FRP to repair settlement damage was completed in 1995. Twenty years represents an 

important mile stone especially since the expected life of a repair is not stated in any specifications. 

Thus, 2015 was an opportune time to obtain information on FRP-concrete bond. This was 

evaluated through both non-destructive and destructive testing. The entire manuscript, Al Azzawi 

et al. 2018 that is awaiting publication in ACI Structural Journal is included as Chapter 9.  

 The Friendship Trail Bridge has been the site of three disparate studies in which corroding 

piles were repaired between 2003 to 2008. When a decision was made to demolish this bridge in 

2015, Mr. Nils Olsson, Senior Bridge, Hillsborough County Public Works Department, 

approached USF to conduct studies prior to its demolition. Their offer of assistance and 

arrangements with the demolition contractor made it possible to complete 80% of the investigation 

by the time the bridge was demolished in April 2016. The accepted manuscript, Al Azzawi et al. 

2018, awaiting publication in ASCE’s Journal of Composites for Construction is included as 

Chapter 10. 

 To avoid clutter, additional data are included separately in Appendix A. 
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 CHAPTER 2: FRP-CONCRETE BOND-LABORATORY STUDY 

 The performance of fiber reinforced polymers (FRP) used in structural repair and 

rehabilitation hinges on the integrity of its bond with concrete. Building codes, e.g. ACI 318-14 

have long recognized that better bond is achieved when surfaces are roughened since it 

significantly increases the contact area between the two bonding surfaces. The required roughening 

for bonding FRP is defined in ACI 440.2R-17, 6.4.2.1 which states that the “concrete surface 

should be prepared to a surface profile not less than CSP 3, as defined by ICRI 310.2R”. This 

profile illustrated in Figure 2.1 is achieved by light sand blasting.   

 

Figure 2.1 Concrete surface profiles.  

Reprinted from NCHRP 609, Attachment C. 

Permission to use from National Academy of Sciences 
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 NCHRP 609 study on construction specifications published in 2008 reported bond results 

from flexure tests on 26 beam specimens and 10 double shear bond specimens. The target 28-day 

concrete compressive strength was 5,000 psi. Three different concrete sets and profiles, CSP 1, 

CSP 2-3 and CSP 6-9 were evaluated. Based on the results, the study concluded that even the 

“smoothest concrete surface profile …CSP 1 …appeared to provide adequate surface roughness”.  

 Surface profile contributes to bond through mechanical interlock and is commonly 

considered to provide most of the adhesion with minor contribution from chemical bond. The 

insensitivity in the NCHRP results suggest that hitherto unrecognized factors may have played an 

important role. Foremost among these is the porosity of concrete’s microstructure. Since concrete 

uses more water than is needed for hydration, any additional water results in the formation of a 

network of interconnected voids following evaporation. The extent of the network depends on the 

amount of water used and on the air content.  

 

Figure 2.2 Pore diameter, w/c vs penetration volume. 

Adapted from Concrete (3rd Edition) p.33 by Mehta and Monteiro, 2006, McGraw-Hill  
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Figure 2.3 Pore diameter, w/c vs penetration volume. 

Adapted from Concrete (3rd  Edition) p.33 by Mehta and Monteiro, 2006, McGraw-Hill 

 The maximum average pore size diameter and the distribution of the pores over the bonding 

surface controls the amount of epoxy that can penetrate into the concrete. Figure 2.2 taken from 

Mehta and Monteiro 1993 shows the relationship between pore diameter, penetration volume and 

the water / cementitious ratio. Inspection of Figure 2.2 shows that larger pore diameters and higher 

penetration volumes are associated with lower strength concrete and vice versa. Figure 2.3 shows 

the relationship of porosity with age for a w/c ratio of 0.7. The dependence diminishes after 90 

days; note that the difference in pore diameters between 90 days and 1 year is much smaller 

compared to that between 28 days and 1 year. In this study, porosity measurements were made 

after 90 days. 
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 According to (Mindess, et al., 2003), the water cement ratio for 5,000 psi air entrained 

concrete is 0.4. For this ratio, the penetration volume is around 0.1 cc/g. The corresponding 

maximum pore size is 1,000Å but the average is closer to 200Å. For this combination, penetration 

of the epoxy into the concrete pores is not necessarily optimal. This suggests that the optimal 

surface profile needs to be tailored to reflect concrete porosity.  

 Numerous studies have evaluated the role of concrete strength and bond, e.g. (Chajes, et 

al., 1996), (De Lorenzis, et al., 2001) but their focus was on unexposed specimens. Since epoxies 

can absorb moisture, water can penetrate into the concrete and react chemically to degrade it. To 

date, the effect of porosity on long term FRP-concrete durability under moisture exposure has not 

been systematically evaluated. 

2.1 Objectives 

 The primary goal of the investigation is to understand the relationship between concrete 

strength, porosity and submerged exposure in potable water. It focuses on specimens whose 

surface profiles conform to CSP 3 as required by ACI 440.2R-17.  

 The study can potentially provide new information on the appropriateness of using the 

same surface profile regardless of concrete strengths or porosity. Since testing will yield results 

for dry conditions it could provide actionable information on surface preparation needed for both 

indoor and outdoor applications. This could potentially lead to reduced costs if less intensive 

surface preparation were found to be necessary.
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  CHAPTER 3: TEST PROGRAM 

 Beginning in the late 1990’s several laboratory studies were conducted primarily to identify 

the optimal surface profile for bonding FRP to concrete. These evaluated the effect of variation in 

bond due to changes in concrete strength and surface preparation techniques that considered water 

jetting, sand blasting, shot blasting, manual grinding and air chisels. The resulting profiles were 

mapped optically, e.g. using laser profilometry; bond improvement was established from 

destructive testing. This typically included lap shear, flexure and pull-off tests, (Chajes, et al., 

1996) (Yoshizawa, et al., 1996), (Miller, 1999), (Momber, 1999), (De Lorenzis, et al., 2001), 

(Maerz, et al., 2001), (Shen, 2002). 

 The concrete strengths evaluated in the above research studies varied from 2,000 psi to 

over 8,000 psi, (Jeffries, 2004). Though this spans strengths of interest, because the research focus 

was on surface profile, porosity was not on the radar. The concern at the time was more on the 

consequences of damage to the microstructure arising from the different techniques used in surface 

preparation. These and other studies led to the eventual adoption of ICRI’s CSP 3 (Figure 2.1) in 

ACI’s first technical guide published in 2002, ACI 440.2R-02 that became the industry-wide 

standard. This meant that CSP 3 was used regardless of the concrete strength. 

 Thanks to advances in concrete technology the average compressive strength of concrete 

has increased, (Detwiler, et al., 2009). This has profound implications on the future use of FRP 

and the long term durability of the FRP-concrete bond since higher strength concretes have lower 

porosity that may require alternative surface preparation techniques to be effective in all 

environments. 
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 Due to the inverse relationship between strength and porosity, long term FRP-concrete 

bond characteristics may be expected to differ. This is because the penetration of epoxy into 

concrete will be smaller in higher strength concretes due to the absence of larger diameter pores 

and a reduced network of interconnected voids, (Mehta, et al., 2006). This will not impact bond 

under dry conditions because of the much higher tensile strength of epoxy. However, under wet 

exposure, water will be able to diffuse through to the epoxy and react chemically leading to 

irreversible damage to epoxy and accompanying bond degradation after relatively short exposure, 

e.g. (Büyüköztürk, et al., 2010) reported a 60% reduction in bond after only 8 weeks immersion in 

23 °C (73 °F) water.  

 Since porosity is not being considered, potential corrective measures for making repairs 

more durable are being overlooked. In the most comprehensive 2009 NCHRP durability study, the 

performance of over 1,600 specimens bonded to concrete using five different epoxies was 

evaluated. In contrast, concrete was limited to relatively high strength concrete with compressive 

strengths ranging from 6,700 to 10,500 psi.  Given the expected role of porosity, these findings 

may need to be re-visited.  

 The starting point in this research project was the hypothesis that durability of FRP bond 

in highly porous concrete would differ from that in less porous concrete. The materials evaluated, 

exposure considered and its evaluation focused such that these differences would be noticeable 

from the results. If this were demonstrated the way forward will be clearer.   

3.1 Compressive Strength 

 The relationship between porosity and water cementitious ratio provided the basis for 

selecting target concrete strengths. Lower strength concretes have higher water / cementitious 

ratios. To provide context, three different concrete strengths were evaluated in the study. Though 
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researchers have evaluated concrete with a targeted strength of 2,000 psi, (Shen, 2002), this fell 

below the 2,500 psi minimum strength specified in ACI 318-14, Table 19.2.1.1. An upper target 

limit for strength was taken as 10,000 psi following the 2009 NCHRP study. An intermediate target 

strength of 5,000 psi was chosen to allow interpolation. These targets were later revised based on 

actual strengths achieved (see Chapter 4).  

3.2 CFRP System 

 Three commercially available systems were originally selected. However, since this was a 

proof of concept study, only the two most widely used systems were utilized in the eventual testing. 

Since epoxies had to be compatible with the CFRP material, epoxies associated with the respective 

systems were used. 

3.3  Destructive Testing 

 Pull-off testing provides the simplest and most direct method for comparing changes in the 

failure mode arising from exposure. Given that epoxy has a higher tensile strength, all failures 

were expected to be cohesive failures in concrete. The depth of the concrete still bonded to the 

dolly would allow the depth of epoxy penetration in the substrates of the different concretes to be 

estimated. It was anticipated that changes would be the least for low strength, high porosity 

concrete but more noticeable in the higher strength, low porosity concrete. 

3.4 Durability Exposure 

 The NCHRP 2009 durability study identified complete immersion in heated water as the 

most aggressive environment for FRP-concrete bond.  They reported that after 8 weeks immersion 

in 30oC water, bond reductions from flexure tests were more than 35%. This study adopted a 30oC 

water temperature since it is also representative of conditions in Tampa Bay where several pile 

repairs were conducted (see Chapter 10). The exposure period was kept at 15 weeks, that was 
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higher than the 8 week period in the MIT study (Büyüköztürk, et al., 2010). However, provisions 

were made for a greater period of exposure in case results proved inconclusive. 

3.5 Moisture Absorption 

 The relationship between bond degradation and moisture absorption is critically important. 

In the study, this was determined from gravimetric testing and is described in Chapter 7. 

3.6 Specimen Dimension 

 Flat specimens such as slabs are the simplest for conducting pull-off tests. The dimensions 

selected were 9 in. x 9 in. x 2.5 in. These were based on the following (1) ease of fitting slabs into 

the oven used for drying, (2) sufficient edge distance is provided for isolating side diffusion effects 

as this experiment was designed to have one dimensional flow, (3) widths reflected repair 

dimensions used in practice, (4) allowance for 13 possible pull-off locations, and (5) slab depth 

was comparable to the concrete cover for exterior members and was sufficient to prevent the 

specimen breaking during testing. 

 The number of slab specimens was dictated by the test matrix summarized in Table 3.1 

through Table 3.3 and shown schematically in Figure 3.1. 

 
Figure 3.1 Test matrix 
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 The goals of the study were to evaluate bond degradation arising from exposure and to 

quantify bond recovery upon drying. Three series of tests were planned, one for each concrete 

porosity and FRP system. The epoxy systems used are identified by the letters A and B in Figure 

3.1. The three different concrete grades are identified as 15, 35 and 50 that approximately 

correspond to compressive strengths measured in MPa. Although 18 concrete slabs were required, 

two additional slabs were cast for each concrete strength as “spares”. A total of 24 slabs were 

therefore cast. 

 The three test series were: control, wet and dry. Control (6 slabs) denote specimens that 

were tested before exposure to provide a baseline value. Wet (6 slabs) represents specimen that 

were submerged in warm water at 30oC (86°F) for approximately 15 weeks. Dry (6 slabs) 

represents bond recovery specimens. These were allowed to dry at room temperature following 

removed from water until there was minimal change in weight (0.05%). In each series, six points 

were tested that exceeded the minimum set of 5 in ASTM D7522. A total of 108 tests were 

conducted.  

Table 3.1 Control specimens 

Specimen Epoxy 

A15_control A 

A35_ control A 

A50_ control A 

B15_ control B 

B35_ control B 

B50_ control B 
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Table 3.2 Wet specimens tested directly after the specimens removed from water 

Specimen Epoxy 

A15_wet A 

A35_wet A 

A50_wet A 

B15_wet B 

B35_wet B 

B50_wet B 

 

Table 3.3 Dry specimens tested after 4 weeks of drying in room temperature. 

Specimen Epoxy 

A15_dry A 

A35_ dry A 

A50_ dry A 

B15_ dry B 

B35_ dry B 

B50_ dry B 
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 CHAPTER 4: SPECIMENS FABRICATION 

4.1 Formwork 

 A total of 24 forms were built using 7 ft long 2 x 3 wood studs. Each form was fabricated 

using four 10.5 in. length pieces joined with eight 3.5 in. screws, two on each side to create inner 

dimensions of 9 in. x 9 in. x 2.5 in. as shown in Figure 4.1. The forms were placed on a 1/8 in. 

thick laminate wood sheet that served as the bottom but more importantly replicated common 

concrete surface textures. 

  

 
Figure 4.1 Specimens formwork 
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4.2 Materials 

 A total of twenty four 9 in. x 9 in. 2.5 in. slabs and sixty six  4 in. x 8 in. concrete cylinders 

were cast at Titan America in Riverview, FL. Tables 4.1 to 4.3 provide details on the three mix 

designs used. Tickets issued by Titan for these mixes are included in Appendix A.  Slab specimens 

were cured by intermittent ponding of water on the exposed surface for 7 days. Cylinders were 

cured in immersion tanks for 28 days. The compressive strength for each of the three concrete 

porosities was determined at 28 days in accordance with ASTM C39, using a Forney Testing 

Machine. The measured strengths were 4,400 psi (Group 15), 4,206 psi (Group 35) and 7,040 psi 

(Group 50) as compared to the target strengths of 2,500, 5,000 and 10,000 psi. The values for 

Groups 35 and 50 were each lower compared to target strengths while the Group 15 strength 

(higher porosity) was unacceptably high. Group 15 slabs and 15 (4 in. x 8 in.) cylinders specimens 

were therefore re-cast when facilities became available 62 days later. The measured compressive 

strength was 2,325 psi, somewhat below the 2,500 psi target values.  Details in Table 4.4. 

  

  
Figure 4.2 Casting, curing and testing concrete 
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4.3 Concrete Mixes (Weight Ratio) 

Table 4.1 Group A (batched quantity =0.06 cubic yard) 

Cement 1 

Cemex Sand (16-078) 3.651709 

cemex #57 (87-089)-coarse agg. 4.389744 

water/cement (actual weights used) 0.530244 

Admixtures  

Master set 961R 20.81 ml 

Master air AE90 5.34 ml 

 

Table 4.2 Group B (batched quantity =1 cubic yard) 

Cement 1 

Cemex Sand (16-078) 2.15873 

cemex #57 (87-089)-coarse agg. 2.761905 

water/cement (actual weights used) 0.408968 

Admixtures  

 MasterPozzolith 700N 20 oz. 

 

Table 4.3 Group C (batched quantity =1 cubic yard) 

Cement 1 

Cemex Sand (16-078) 1.145455 

cemex #57 (87-089)-coarse agg. 1.327273 

water/cement (actual weights used) 0.208157 

Admixtures  

MasterSet R 961 22 oz. 

Master Glenium 7920 32 oz. 
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4.4 Compression Test Result- 4 in. x 8 in. Cylinders 

Table 4.4 Compression test results 

Group 25 strength results 

specimen ID Max. Load (lb.) Fracture Type Compressive Strength (psi) 

25-A 29600 5 2356 

25-B 29765 5 2369 

25-C 32960 5 2624 

Avg. after 5% reduction 2325 

Group 35 strength results 

specimen ID Max. Load (lb.) Fracture Type Compressive Strength (psi) 

35-A 56995 5 4515 

35-B 51430 5 4054 

35-C 60110 5 4714 

Avg. after 5% reduction 4,206 

Group 50 strength results 

specimen ID Max. Load (lb.) Fracture Type Compressive Strength (psi) 

50-A 97010 5 7609 

50-B 91600 5 7220 

50-C 93235 5 7404 

Avg. after 5% reduction 7,040  
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4.5 FRP and Epoxy Specifications 

Two commercially available CFRP systems A and B were used. Both were unidirectional 

carbon fiber systems with their custom made two component epoxies. Manufacturer’s 

specifications for both systems are summarized in Table 4.5. 

 

Table 4.5 FRP and epoxy specifications 

System A FRP 

Tensile Strength 550 ksi (3,793 MPa) 

Tensile Modulus 34 msi (234.5 GPa) 

Elongation at Break 1.5% 

Areal Weight 18 osy (611 gsm) 

Density 0.065 lbs./in^3 (1.8 g/cc) 

Nominal Fiber Thickness 0.0135 in. (0.34 mm) 

Fiber Direction Undirectional 

System A epoxy 

Tensile Strength (ASTM D-638) 8,000 psi (55 MPa) 

Tensile Modulus (ASTM D-638) 2.5 x 105 psi (1,724 MPa) 

Elongation @ Break (ASTM D-638) 3% 

Flexural Strength (ASTM D-790) 11,500 psi (79 MPa) 

Glass Transition Temperature +127 °F (53 °C) 

Coefficient of Thermal Expansion 6.0 x 10−5 per °C 

Flexural Modulus (ASTM D-790) 5 x 105 psi (3,450 MPa) 

Cured Laminate Properties (design value) 

Tensile Strength (ASTM D3039) 160.9 ksi (1,110 MPa) 

Tensile Modulus (Ef) (ASTM D3039) 10.39 msi (71.7 GPa) 

Tensile % Elongation (ASTM D3039) 1.45% 

Nominal laminate thickness 0.04 in. (1.0 mm) 
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Table 4.5 (Continued) 

Stiffness (Ef*A) per unit width (ASTM D3039) 6.4 kips/in./ply 

System B FRP 

Tensile Strength 580,000 psi (4.0 GPa) 

Tensile Modulus 33.4 x 106 psi (230 GPa) 

Ultimate Elongation 1.7% 

Density 0.063 lbs./in.3 (1.74 g/cm3) 

Minimum weight per sq. yd. 19 oz. (644 g/m2) 

System B Epoxy Material Properties 

Tensile Strength (ASTM D638) 10,500 psi (72.4 MPa) 

Tensile Modulus (ASTM D638) 461,000 psi (3.18 GPa) 

Elongation Percent (ASTM D638) 5.0% 

Flexural Strength (ASTM D790) 17,900 psi (123.4 MPa) 

Flexural Modulus (ASTM D790) 452,000 psi (3.12 GPa) 

 Tg (ASTM D4065) 180° F (82o C) 

Composite Gross Laminate Properties – Design value 

Ultimate Tensile Strength in 

Primary Fiber Direction (ASTM D3039) 

121,000 psi (834 MPa) 

(4.8 kip/in. width) 

Elongation at Break (ASTM D3039) 0.85% 

Tensile Modulus (ASTM D3039) 11.9 x 106 psi (82 GPa) 

Flexural Strength (ASTM D790) 15,200 psi (104.8 MPa) 

Flexural Modulus (ASTM D790) 384,200 psi (2.65 GPa) 

Longitudinal Compressive Strength (ASTM D3410) 42,500 psi (293 MPa) 

Longitudinal Compressive Modulus (ASTM D3410) 9.5 x 106 psi (65.5 GPa) 

Nominal Laminate Thickness 0.04 in. (1.0mm) 

Longitudinal Coefficient of Thermal Expansion 3.6 ppm./°F 

Transverse Coefficient of Thermal Expansion 20.3 ppm./°F 
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4.6 Surface Preparation 

The concrete surface to which FRP was to be bonded was prepared to achieve a minimum 

Concrete Surface Profile 3 (CSP3) as stipulated in ACI-440.2R-17. Light sandblasting was utilized 

to prepare the surface. That is also approved by the International Concrete Repair Institute (ICRI). 

Surface preparation requires removal of dust, small particles and the creation of a specific surface 

roughness that enhances mechanical interlock in the FRP-concrete bond plane. 

 Samples were sandblasted in the laboratory as shown in Figure 4.3 The spray nozzle was 

kept approximately at the same distance from the samples (2.5-3) inches to ensure all samples were 

subject to the same pressure. A sweeping motion followed when the sand blasting was carried out. 

Subsequently, compressed air was used to clean the surface and remove any small particles.  

 
Figure 4.3 Slabs in sandblaster 

 

4.7 Specimen Drying 

 To ensure all specimens had the same moisture content before exposure, all specimens 

were oven dried for 48 hours at 230 °F as recommended in ASTM C642 for drying concrete. 
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Figure 4.4 Drying specimens in oven 

4.8 Repair with FRP 

 Following surface preparation, the two FRP systems were bonded to the concrete slabs in 

accordance with manufacturer’s specifications. A total of 18 slabs were repaired, six for each 

group. Three of the six slabs were repaired with system A and three with system B. The bottom 

face of the slabs were used for the repair as it simulated conventional beam and slab repair surfaces 

where the aggregate settles more due to gravity and laitance is absent.  

 The FRP fabric was cut to 9 in. x 9 in. size. Epoxy components (parts 1 and 2) were mixed 

for each system (A and B) using an electrical drill with mixing attachment in accordance with the 

specifications. Epoxy was applied as a primer layer to the prepared concrete surface. The FRP 

material was then impregnated and applied to the primed concrete surface. Epoxy mixing and FRP 

application took place in laboratory conditions where the ambient temperature was maintained 

around 73° F. The repaired slabs were left to cure for four weeks at room temperature inside the 

laboratory.
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 CHAPTER 5: SURFACE CHARACTERIZATION 

5.1 Mercury Intrusion Porosimetry 

 Considering the difference in concrete strengths, pore sizes and their distribution should 

differ (Figure 2.2). Surface voids and porosity affect mechanical bond, composite action, moisture 

penetration and long term durability. To determine concrete porosity, mercury intrusion 

porosmetry (MIP) tests were conducted on samples with the three differing compressive strengths.  

 The MIP test is used to measure capillary pore size and its distribution ranging from10 nm-

10000 nm. Capillary pores form an interconnected network of pores (Sidney Mindess, 2003). The 

samples tested were obtained from 4 in. x 8 in. cylinders that were cut into 0.83 in. slices using a 

MK-5005S concrete saw as shown in Figure 5.1. A cylindrical sample 0.83 in. high with a radius 

of 0.45 in. was extracted. It was dried in an oven for 48 hours at 230° F prior to testing. A 

POREMASTER Automatic Pore Size Analyzer model pm-60-19 (Figure 5.2) from Quantachrome 

Instruments was used to perform the MIP test. Mercury was pressurized into each sample at a 

maximum pressure of up to 60,000 psi. The volume of intruded mercury is calculated by deducting 

the volume of mercury when the machine compartment is unoccupied from the volume of the 

intruded mercury when machine compartment is loaded with the sample. The intruded volume is 

then divided by the sample mass to obtain the pore volume (Delagrave, et al., 1979). Results 

showed that as the concrete strength decreased, that is, as the w/c ratio increased, the mercury 

intrusion volume increased. These results were consistent with findings reported by (Cho, 2012).  
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 Group A (2,325 psi) had the highest pore ratio with an intruded mercury volume of 0.1085 

cm3/g, followed by Group B (4,206 psi) with 0.0922 cm3/g. Group C (7,040  psi) had the lowest 

pore ratio of 0.0731 cm3/g. The test also reported the threshold pore diameter that represented the 

maximum pore size that the mercury can penetrate (Aligizaki, 2005). The higher the threshold 

diameter, the larger the pore size. Machine software converted the applied pressure into pore 

diameter (Winslow, et al., 1970). As anticipated, Group A had the largest pore size followed by 

Group B and Group C as shown in Table 5.1 and Figure 5.3.  

   
Figure 5.1 (a) Cut concrete cylinders (b) sample dimension 

 
Figure 5.2 Mercury intrusion testing machine 
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Table 5.1 Mercury intrusion results 

Sample Total intruded volume (cm3/g) Threshold pore diameter (nm) 

A 0.1085 10000 

B 0.0922 200 

C 0.0731 150 

 

 
Figure 5.3 Cumulative intrusion curve from intrusion test 

5.2 Scanning Electron Microscope 

 This study focused on capillary pores where the epoxy can penetrate and create mechanical 

interlock. Surface voids for the three concrete strengths were compared using a Scanning Electron 

Microscope (SEM). This can differentiate the dissimilarity in void size and distribution for 

different concrete strengths. SEM produces electron beams that interact with the specimen by 

penetrating the specimens or backscatter to create signals that are analyzed and converted into 

images by the SEM machine (Hong Zhao, 1990). SEM is able to capture pores as little as 0.2 µm 

(Attari, et al., 2016).  Images were taken for samples that represented the three concrete strengths. 
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Cylindrical specimens 0.83 in. high with a radius of 0.45 in. were used for the SEM imaging (see 

Figure 5.1). Samples were placed in an oven for 48 hours at 230° F prior to testing. The dried 

samples were then loaded into the SEM machine for imaging. Results showed that void diameters 

and their distribution were higher for Group A but less distinct for Groups B and C as shown in 

Figure 5.5. The difference in void sizes and distribution can be attributed to the higher 

water/cementitious ratios in the low strength concrete (Group A) compared to Group B and C that 

have higher strength and lower water/cementitious ratios. These results are consistent with the 

findings from the MIP test. 

 
Figure 5.4 Scanning electron microscope machine 
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Group A (2,325 psi) 

 
Group B (4,206 psi) 

Figure 5.5 Scanning electron micrograph (90x) 
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Group C (7,040 psi) 

Figure 5.5 (Continued) 

5.3 Bond Surface 3D Scan 

 Bond surfaces for the three strengths were scanned using Artec Eva 3D scanner to identify 

dissimilarities on the bonding surfaces. Artec Eva 3D is a structured-light handheld scanning 

device that projects light on the scanned surface and analyzes the distortion to produce images of 

the surface. Their specifications are shown in Table 5.2.   

 Three slabs, one for each strength, were scanned at the Digital Heritage & Humanities 

Collections (DHHC) facilities at the University of South Florida library. The scanned files were 

converted to 3-d coordinate data points that were then processed in AUTOCAD to obtain the 

surface void volume. The void volume for Group A was 0.090 in3, that for Group B was 0.055 in3 

and for Group C it was 0.061 in3. These results agree with the MIP test data that showed Group A 

had higher porosity.  
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Figure 5.6 CSP3 ICRI technical guideline No 310-2 

  
Figure 5.7 Group 15: (left) 3D scan, (right) microscopic photo 60x 

  
Figure 5.8 Group 35: (left) 3D scan, (right) microscopic photo 60x 

  
Figure 5.9 Group 50: (left) 3D scan, (right) microscopic photo at 60x 
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Table 5.2 Artec eva 3d scanner specifications 

3D resolution, up to 0.5 mm 

3D point accuracy, up to 0.1 mm 

3D accuracy over distance, up to 0.03% over 100 cm 

Colors 24 bpp 

Texture resolution 1.3 mp 

Scanning technology structured light 

Structured light source flash bulb (no laser) 

Working distance 0.4 – 1 m 

Linear field of view, HxW @ closest range 214 × 148 mm 

Linear field of view, HxW @ furthest range 536 × 371 mm 

Angular field of view, HхW 30 × 21° 

Video frame rate, up to 16 fps 

Exposure time 0.0002 sec. 

Data acquisition speed, up to 2 mln points / sec. 
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Figure 5.10 Artec eva 3D scanner 
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5.4 Total Void Content  

The total void was calculated using constituents of the mix following Neville 2005. This is 

summarized in Table 5.3. The values confirm that Group A had the highest total void of 17.1% vs 

11.4% for Group C. 

Table 5.3 Void content 
Porosity calculations following Properties of Concrete by Neville, 5th edition, page 280 

 Group 15 Group 35 Group 50 

Total void content 17.1% 14.7% 11.4% 

Step 1-Weight ratio 

 

Cement 

Fine aggregate 

Coarse aggregate 

w/c 

Air 

 

 

 

1 

3.5 

4.3 

0.73 

0.03 

 

 

 

 

1 

2.15 

2.7 

0.44 

0.03 

 

 

 

1 

1.14 

1.32 

0.25 

0.03 

Step 2-Specific Gravity 

 

Cement 

Fine aggregate 

Coarse aggregate 

 

 

 

3.15 

2.66 

2.46 

 

 

 

3.15 

2.66 

2.46 

 

 

 

3.15 

2.66 

2.46 

 

Step 3-Volum ratio  

 

Cement 

Fine aggregate 

Coarse aggregate 

w/c 

 

 

 

7.3 

31.7 

41.2 

16.8 

 

 

 

11.4 

29.2 

40.4 

16 

 

 

 

19.98 

27.12 

33.9 

15.9 

 

Step 4 -Hydrated cement% 

 

Assume 70% have hydrated 

after 7 days 

=0.7*Cement volume from 

step 2 

 

 

 

0.7*7.3=5.13 

 

 

0.7*11.4=7.99 

 

 

0.7*11.4=14 

Step 5 –Volume of Combined 

water 

 

= 0.23* hydrated cementx3.15 

(cement specific gravity) 

(page 26) 

 

 

 

0.23*5.13*3.15=3.71 

 

 

0.23*7.99*3.15=5.79 

 

 

0.23*14*3.15=10.14 
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Table 5.3 -continued 
Step 6 –Volume of solid 

products 

 

Volume of solid products 

(cement + water) reduced by 

0.254 of combined water 

volume 

=volume of hydrated 

cement(from step 4)+(1-

0.254)x volume of combined 

water (from step 5) 

 

 

 

5.13+ (1-

0.254)*3.71=7.9 

 

 

7.99+ (1-

0.254)*5.8=12.3 

 

 

14+ (1-

0.254)*10.1=21.5 

Step 7 –Volume of gel pores 

Wg 

 

Gel porosity is 28% (page 26) 

means 

 

Wg/(volume of solid products-

step 6+ Wg)=0.28 

 

Solve for Wg 

 

 

 

3.07 

 

 

4.79 

 

 

 

8.3 

 

Step 8 –Volume of Hydrated 

cement paste including gel 

pores 

 

volume of solid products of 

hydration (step 6) + volume of 

gel pores (step 7) 

 

 

10.98108 

 

 

17.1104 

 

 

29.9487 

Step 9 –Volume of dry cement 

which has hydrated and of 

mixing water 

 

Step 4 + water volume from 

step 3 

 

 

21.9682 

 

 

24.0504 

 

 

29.9783 

 

Step 10 –Volume of capillary 

pores 

 

Step 9 – step 8 

 

 

10.987 

 

 

6.939 

 

 

0.0295 

Step 11 –Total voids content 

 

Volume of capillary pores + 

volume of gel pores + air 

content 

 

 

17.1 

 

 

14.7 

 

 

11.4 
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 CHAPTER 6: EXPOSURE AND TESTING 

6.1  Specimen Coating 

 Before immersion in heated water, the five exposed surfaces of the FRP repaired slabs were 

sealed with a water proof coating to ensure water could only diffuse through the FRP.  A Behr 

Basement & Masonry Waterproofer system was used. Two waterproofing layers were applied and 

the coating allowed to cure for 14 days. This exceeded the 7 days recommended by the 

manufacturer. Figure 6.1 shows the coated slabs. 

  
Figure 6.1 Coated specimens 

6.2 Exposure  

 Specimens were immersed in water at 30 °C (86 °F) for 15 weeks (106 days). Specimens 

were kept in temperature controlled chambers with automatic water heaters as shown in Figure 

6.2. The temperature selected replicated conditions for FRP repairs completed in the Tampa Bay 

area (Chapter 10). Specimens were positioned with the FRP facing up and a 16 in. head of water 

was on top of the specimens as shown in Figure 6.2. 
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Figure 6.2 Chamber setup 

 
Figure 6.3 Chamber covered with plastic sheet to maintain temperature 

6.3 Chamber Setup and Temperature Monitoring 

 Six plastic containers were used to hold the slabs during exposure. Each was filled with 34 

gallons of tap water. A 300W water heater (Uniclife HT-2300) with a heating capacity of up to 80 

gallons was attached to each container to maintain the temperature at 86°F (30oC). The heater was 

suspended from a rubber cable using a zip tie. Thermocouple type T wires were connected to a 

data logger (CAMPBELL SCIENTIFIC CR1000) and placed inside to record the water 

temperature every 15 minutes. The average room temperature was 73°F (22.7oC) which was also 

recorded using the data logger. The average water temperature was 84° F (28.9oC). During 

exposure a drop in temperature was recorded between days 90 and 100 as outside temperatures 

dropped in Tampa that led to a drop in the room temperature. This is shown in Figure 6.5. 
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Figure 6.4 Data logger 

 
Figure 6.5 Recorded water temperature 
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6.4 Specimen Series  

 The specimens were split into three series namely: control, wet and dry. Controls denoted 

the uncoated samples that were tested before moisture exposure and after being oven dried to 

obtain the initial bond value. Wet represents samples that were immersed in water for 106 days at 

86° F (30 oC). Testing procedure was initiated directly after the specimens were taken out of the 

water. Dry samples were those left to dry following removal from exposure until there was no 

noticeable change in weight. 

6.5 Testing 

 A total of 108 points were tested for bond strength. Bond was tested by direct tension (pull-

off) in accordance with ASTM D7522-12. Six points, (1-6) in Figure 6.7 were tested for each slab. 

A template was used to ensure all slabs were tested at identical locations and to optimize the 

number of points within the available test area. The template was fabricated from a 1 mm 

aluminum sheet that was cut using a CNC burn table connected to Hypertherm Powermax 65. The 

dolly surface was roughened by a sandblaster and steel brush then cleaned with compressed air. 

Dollies were attached to scored locations using 3M Scotch-Weld DP-420 epoxy adhesive. Samples 

were left to cure for 48 hours before testing. Alignments were checked using a spirit level before 

the pull-off tests were conducted.  

 An Elcometer 106 adhesion tester with a 1.25 in. diameter dolly was used. The FRP surface 

was scored using a 1.25 in. diameter diamond core drill bit to an approximate depth of 0.25 in. into 

the concrete cover. Test locations were roughened using steel brush attached to a drill to enhance 

dolly-FRP bond then cleaned with compressed air. 
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Figure 6.6 Template fabrications 

 
Figure 6.7 Template dimensions 
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 CHAPTER 7: GRAVIMETRIC TESTING 

 Moisture is the primary factor responsible for degradation of the FRP-concrete bond 

(Hamilton, 2009) (Karbhari, 2009) (Benzarti, 2010) (Büyüköztürk, 2010) (Hamilton, 2012). 

Moisture diffusing through to the FRP bond line influences bond strength in two ways: First, it 

weakens the cross-linked chain and Van der Waals forces between the polymer itself,  i.e. between 

monomers (resins) and co-monomers (hardeners) to cause permanent damage, e.g. cracking and 

changes to physical properties, e.g. glass transition temperature; Second, by weakening the 

hydrogen bond between the polymers and concrete at the bonding plane (Büyüköztürk, 2010) 

(Jean-Pierra Pascault, 2010). Diffused moisture can be chemically bonded to epoxy or remain as 

free water after reaching equilibrium. Thus, it is important to quantify the moisture absorbed. 

  The gravimetric method is widely used to quantify moisture absorption in concrete, epoxy 

and the laminate. In this method, a specimen is weighed before and after exposure. The difference 

in weight provides moisture absorption. Hamilton 2009 used the gravimetric method to determine 

moisture absorption in concrete slices 4 in. x 4 in. x 1 in. with compressive strength varying from 

7-10 ksi. His results showed that concrete immersed in 30oC for 60 days absorbed up to 3.2% water 

by weight. The corresponding weight gain in the epoxy specimens was up to 2.9%. In 2010 

(Denvid Lau, 2010) utilized the gravimetric method to determine moisture absorption for repaired 

concrete beams (4 in. x 1.5 in. x 1.5 in. blocks and 8 in. x 8 in. x 4 in sandwich specimens fabricated 

from beams) having a concrete strength of 5,800 psi. The concrete had been oven dried for 3 days 

at 122 °F. Specimen moisture uptake after 10 weeks of exposure at 23 °C and 50 °C was up to 5%.
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 Tests on neat epoxy (Jelinski, 1985) recorded up to 5 % weight gain for 2 mm x 2 mm x 2 

mm epoxy cube specimens immersed at room temperature water for one week. The water content 

was determined by gravimetric testing.   

 In this study, 12 specimens were oven dried prior to FRP application. Six of these were 

part of the exposure study and are referred to as “wet”. Six others were part of a study that 

attempted to determine the extent of bond recovery following removal from exposure and were 

permitted to dry under ambient conditions. These are referred to as “dry” specimens. An A&D 

HP-12K electric weighing scale with a maximum capacity of approximately 26 lb. was used to 

weigh the specimens. 

 For the wet slabs, weights were recorded before and after exposure while for the dry slabs, 

weights were recorded before exposure and at periodic intervals until the weight change reduced 

below 0.05%. Moisture uptake values were 5.2%, 4.9% and 4.3% for Groups 15, 35 and 50, 

respectively after 15 weeks immersion. Measurements are summarized in Table 7.1 and results 

plotted in Figure 7.1. 

 

Figure 7.1 Moisture uptake 
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Table 7.1 Specimen weights before and after moisture exposure 

 dry weight (lb) wet weight (lb) Uptake % 

A-15-wet 15.27 16.07 5.28 

B-15-wet 15.65 16.46 5.19 

A-15-dry 15.88 16.73 5.34 

B-15-dry 15.44 16.22 5.04 

Average uptake % 5.21 

A-35-wet 15.78 16.53 4.79 

B-35-wet 16.09 16.90 5.01 

A-35-dry 16.30 17.09 4.88 

B-35-dry 16.50 17.32 4.96 

Average uptake % 4.91 

A-50-wet 16.83 17.53 4.17 

B-50-wet 16.95 17.66 4.15 

A-50-dry 16.41 17.12 4.33 

B-50-dry 17.53 18.31 4.45 

Average uptake % 4.27 
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 CHAPTER 8: RESULTS AND DISCUSSION 

8.1 Introduction 

 The underlying premise of the research study was that porosity was critically important for 

ensuring the integrity of the FRP-concrete bond. The test program was designed to allow direct 

comparison of the performance of identical specimens with significantly differing porosities 

following identical exposure. Degradation was quantified through destructive pull-off tests 

conducted at identical locations. Subsequent investigations comparing failure modes, the condition 

of the failure plane of tested samples and the location of the epoxy bond line were undertaken to 

validate or deny the correctness of the original hypothesis.  

 Results from the destructive testing are summarized in Section 8.2. A comparison of the 

failure modes appears in Section 8.3. This section also contains information on the failure surface 

and includes images taken with a microscope to compare the depth of penetration of the epoxy in 

the concrete substrate with differing porosities. The main conclusions and recommendations are 

summarized in Section 8.4. 

8.2 Pull-off Results 

 Three series of tests were conducted on controls, exposed specimens, and specimens that 

were dried following exposure and re-tested. Specimens are identified by a letter (signifying the 

epoxy type A or B) followed by a number (signifying approximate concrete strength in MPa as 15, 

35, 50). Because of the inverse relationship between porosity and strength, the highest porosity 

specimens are A15 and B15; the corresponding lowest porosity specimens are A50 and B50. 
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 The same relative locations identified as P1 to P6 in Figure 8.1 were tested in all cases. To 

minimize edge effects, points were offset by an inch from the corresponding edge as shown. These 

locations are referenced in the results summarized in Table 8.1 through Table 8.3 and in subsequent 

figures. 

 
Figure 8.1 Location of test points 

8.3 Controls 

 Baseline values for pull-off bond were first established. These were obtained from tests 

conducted prior to exposure but after the FRP had been bonded to the concrete surface and the 

epoxy allowed to cure for 4 weeks. For the two epoxy systems A and B, three concrete porosities 

(identified by the numerals 15, 35, 50), and six test locations P1 to P6 were tested making a total 

of 36 tests for the series. Because of the size of the slab, equipment used to score the FRP surface 

for attaching the dollies dictated the positions that were available for testing.  

 Test results are summarized in Table 8.1. Since all failures were cohesive, that is, they 

failed in the concrete, pull-off values reflect concrete’s tensile strength. The table also shows 

calculated means and standard deviation values. The variation in average values was small. 

Individual results can show larger variation if the aggregate were engaged, Mostfa et al. 2018.    
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Table 8.1 Pull-off result summary for controls- all failures were cohesive 

High Porosity Concrete Control Group 15 

Point 

Epoxy A Epoxy B 

psi MPa psi MPa 

P1 225 1.55 266 1.84 

P2 246 1.7 246 1.70 

P3 246 1.7 287 1.98 

P4 287 1.97 246 1.70 

P5 266 1.8 266 1.84 

P6 246 1.7 246 1.70 

Mean (psi) 253 260 

Standard 

deviation (psi) 

21 17 

Intermediate Porosity Concrete Control Group 35 

Point 

Epoxy A Epoxy B 

psi MPa psi MPa 

P1 225 1.55 287 1.98 

P2 369 2.54 369 2.54 

P3 328 2.26 266 1.84 

P4 225 1.55 266 1.84 

P5 307 2.12 266 1.84 

P6 328 2.26 307 2.12 
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Table 8.1 (Continued) 

Mean (psi) 297 294 

Standard 

deviation (psi) 

59 40 

Low Porosity Concrete Control Group 50 

Point Epoxy A Epoxy B 

 psi MPa psi MPa 

P1 328 2.26 369 2.54 

P2 348 2.40 389 2.68 

P3 369 2.54 348 2.40 

P4 410 2.83 410 2.83 

P5 389 2.68 348 2.40 

P6 410 2.83 410 2.83 

Mean (psi) 376 379 

Standard 

deviation (psi) 

33 28 

 

 For the concrete with the highest porosity, Group 15 (2,325 psi), the average pull-off value 

was 253 psi for epoxy A and 260 psi for epoxy For the intermediate porosity concrete, Group 35 

(4,206 psi), the average pull-off strength was 297 psi for epoxy A and 294 psi for epoxy B. For the 

lowest porosity concrete, Group 50 (7,040 psi), the corresponding pull-off values were 376 psi for 

epoxy A and 379 psi for epoxy B.  

 The disparity in test values reflect the relationship between concrete’s compressive and 

tensile strength reported as 5√f’c (psi) in ACI 318-14, Eq. 14.5.2.1a for plain concrete in flexure. 
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 The corresponding coefficients calculated using the average test values in Table 8.1 are 

5.33 (Group 15), 4.56 (Group 35) and 4.49 (Group 50). 

8.4 Wet Series 

 The specimens tested in this series were also part of a gravimetric study geared towards 

measuring moisture absorption at the bond line. To ensure moisture could only enter through the 

FRP, all other concrete surfaces at the sides and the bottom were sealed using a water proof coat. 

Details are included in Section 6.1. 

 The water temperature was selected as 30oC (86°F), comparable to the average Tampa Bay 

water temperature. More importantly, previous studies such as those at MIT and in the NCHRP 

study had indicated that bond degraded in as little as 8 weeks under this exposure. Specimens were 

submerged for 15 weeks but there were provisions for additional exposure should results prove 

inconclusive.   

 Test results are summarized in Table 8.2. Since the failure mode changed because of the 

exposure, information on the failure mode is provided in the table. The codes G, E and F used 

correspond to ASTM D7522 definition of the failure mode and are identified in Figure 8.2. 

Table 8.2 Pull-off result summary after immersion for 15 weeks 

High Porosity Group 15 – Wet 

Point 

Epoxy A 

Mode 

Epoxy B 

Mode 

psi MPa psi MPa 

P1 205 1.41 F 246 1.70 G 

P2 287 1.98 G 266 1.84 G 

P3 266 1.84 G 246 1.70 G 

P4 246 1.70 G 246 1.70 G 
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Table 8.2 (Continued) 

P5 225 1.55 G 307 2.12 G 

P6 246 1.70 G 266 1.84 G 

Mean (psi) 246 263 

Standard 

deviation (psi) 

29 24 

Intermediate Porosity Group 35- Wet 

Point 

Epoxy A 

Mode 

Epoxy B 

Mode 

psi MPa psi MPa 

P1 266 1.84 F 246 1.70 F 

P2 307 2.12 G 266 1.84 F 

P3 246 1.70 F 266 1.84 F 

P4 225 1.55 E 307 2.12 F 

P5 225 1.55 F 287 1.98 F 

P6 307 2.12 G 225 1.55 E 

Mean (psi) 263 266 

Standard 

deviation (psi) 

38 29 

Low Porosity Group 50-Wet 

Point Epoxy A Mode Epoxy B Mode 

 psi MPa  psi MPa  

P1 369 2.54 G 307 2.12 F 

P2 225 1.55 E 266 1.84 F 
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Table 8.2 (Continued) 

P3 266 1.84 F 328 2.26 F 

P4 225 1.55 E 225 1.55 F 

P5 410 2.83 G 225 1.55 F 

P6 348 2.40 G 307 2.12 F 

Mean (psi) 307 277 

Standard 

deviation (psi) 

79 44 

 G=Substrate, E=Bond plane, F=Mixed Mode (ASTM D7522) 

 Excepting for the high porosity Group 15 that showed minimal reduction in average bond 

strength, the reduction in bond varied with porosity as anticipated. The reduction in the average 

pull-off bond was only 1% for the high porosity, low strength concrete (Group 15 – 254 psi vs 256 

psi for controls). It was higher for the intermediate porosity concrete where the average reduction 

was 11% (Group 35 - 264 psi compared to 295 psi). The greatest reduction was in the low porosity, 

high strength Group 50 specimens. Here bond reduction was 23% dropping from an average value 

of 377 psi to 292 psi. 

 The failure mode changed from cohesive failure in the high porosity group to mixed 

cohesive adhesive failures to adhesive failures. Information on the failure modes is included in 

Table 8.1 and Figure 8.2. A detailed discussion on the failure mode is presented in Section 8.3. 

 Comparison of the relative performance of two epoxies indicated that Epoxy A was better 

for the low porosity concrete (high strength concrete) whereas epoxy B performed better for the 

low and intermediate porosity concretes (low to medium strength concrete). This finding was 

consistent with those reported previously in the literature, (Sen, 2015). Results in Table 8.1 and 

Table 8.2 are shown as bar plots in Figure 8.3 and Figure 8.4. 
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Figure 8.2 Failure mode after moisture exposure. 

Failure Mode: G (Concrete Substrate failure), E (FRP/concrete interface), F (mixed mode G and 

mode E) 
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Figure 8.3 Overview of results for epoxy A. 

(x̅= sample mean, s=sample standard deviation) 
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Figure 8.4 Overview of results for epoxy B. 

(x̅= sample mean, s=sample standard deviation) exhibited 
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8.5 Dry Series  

 To obtain a measure of bond recovery, exposed specimens were left to dry and their weight 

measured periodically until the change in weight fell below 0.05%. As before, six slabs, two for 

each porosity were tested. The same six locations in Figure 8.1 were tested for the three concrete 

strengths and the two epoxies. Results are summarized in Table 8.3. A comparison of the results 

from the wet and re-dry tests is shown graphically as bar plots in Figure 8.5 and Figure 8.6.  

 Regain was lower in the low porosity specimens followed by that in the concrete with the 

highest porosity. The greatest gain was in the specimens with intermediate porosity. For the high 

porosity specimens the average re-gain was 4% (Group 15 (2,325 psi) average was 266 psi 

compared to wet series average of 255 psi). For the intermediate porosity specimens the regain 

was 10% (Group 35 (4,206 psi) average was 292 psi compared to the wet series average of 264 

psi). For the low porosity specimens the regain was just 2% (Group 50 (7,040 psi) average was 

299 psi compared to the wet series average of 292 psi.  

 For the high porosity concrete (Group 15), the low percent regain is not surprising since 

the failure mode was unaffected by exposure. The epoxy strength continued to exceed that of the 

concrete resulting in cohesive failure. The intermediate porosity concrete (Group 35) recorded the 

highest strength regain with a mixed failure mode. Unlike the high porosity concrete where the 

epoxy sealed the capillary network, its lower porosity permitted water to evaporate and improve 

mechanical interlock bond as was observed in the NCHRP study, Dolan et al. 2009. Nonetheless, 

the epoxy had degraded sufficiently so that its strength was comparable to concrete’s tensile 

strength that led to a mixed mode failure. The lowest regain was observed for Group 50 (2%) 

where the epoxy experienced irreversible damage. Limited re-gain was possibly due to improved 

mechanical interlock. An overview of all the results is shown in Figure 8.7 to Figure 8.8. 
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Table 8.3 Pull-off result summary after re-dry 

High Porosity Group 15- Re-Dry Results 

Point 

Epoxy A 

Mode 

Epoxy B 

Mode 

psi MPa psi MPa 

P1 328 2.26 G 225 1.55 F 

P2 246 1.70 G 246 1.70 F 

P3 225 1.55 G 287 1.98 G 

P4 266 1.84 G 328 2.26 G 

P5 205 1.41 G 246 1.70 G 

P6 266 1.84 G 328 2.26 G 

Mean (psi) 256 277 

Standard 

deviation (psi) 

42 44 

Intermediate Porosity Group 35- Re-Dry Results 

Point 

Epoxy A 

Mode 

Epoxy B 

Mode 

psi MPa psi MPa 

P1 410 2.83 G 246 1.70 F 

P2 246 1.70 E 287 1.98 F 

P3 287 1.98 F 369 2.54 G 

P4 328 2.26 G 348 2.40 G 

P5 225 1.55 E 246 1.70 F 

P6 266 1.84 F 246 1.70 E 

Mean (psi) 294 290 
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Table 8.3-Continued 

Standard 

deviation (psi) 

67 56 

Low Porosity Group 35- Re-Dry Results 

Point 

Epoxy A 

Mode 

Epoxy B 

Mode 

psi MPa psi MPa 

P1 287 1.98 E 389 2.68 F 

P2 266 1.84 E 246 1.70 F 

P3 328 2.26 F 246 1.70 F 

P4 266 1.84 E 307 2.12 F 

P5 348 2.40 F 328 2.26 F 

P6 287 1.98 F 287 1.98 F 

Mean (psi) 297 301 

Standard 

deviation (psi) 

34 54 

  G=Substrate, E=Bond plane, F=Mixed Mode (ASTM D7522) 
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Figure 8.5 Overview of strength regain results for epoxy A. 

(x̅= sample mean, s=sample standard deviation) 
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Figure 8.6 Overview of strength regain results for epoxy B. 

(x̅= sample mean, s=sample standard deviation)  
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Strength with time-Group 15 

 
Strength with time-Group 35 

Figure 8.7 Overview of results from control, wet and dried tests 
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Strength with time-Group 50 

Figure 8.7 (Continued) 

 
Figure 8.8 Role of epoxy in degradation 
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8.6 Failure Mode Comparison 

 The results from the pull-off tests showed markedly greater degradation in the low porosity 

concrete compared to the high porosity concrete. This section presents findings from investigations 

that compared the failure mode for the different porosities and results of the measurement of the 

approximate depth of penetration of epoxy into the various concrete substrates. They are based on 

an analysis of photographic images taken using a digital camera and a portable microscope. In this 

section, selection of these images are presented. The rest may be found in Appendix A.   

8.7 Concrete Bonded to Dolly 

 The depth of concrete bonded to the dolly is an indirect measure of the porosity of the 

concrete. For concretes with low porosity, epoxy can be expected to penetrate deeper into the 

substrate. Therefore, an examination of the failure plane could show traces of epoxy, evidence of 

open pores and pores that were filled with epoxy. In high porosity concrete, epoxy was unlikely to 

be present in the failure plane and pores would not as visible. 

 Figure 8.9 and Figure 8.10 compare the depth of concrete attached to the dolly from tests 

conducted on controls and wet specimens. In these plots, failure in high porosity (low strength 

concrete) is compared to that of intermediate (Figure 8.9) and low porosity concrete (Figure 8.10). 

In each set of these photos, the average depth from the three points shown is provided.  

 Inspection of Figure 8.9 - Figure 8.10 shows that the depth of concrete attached to the dolly 

was considerably greater for the high porosity concrete from both dry and wet tests. The distinction 

between the medium and low porosity concrete was evident. Interestingly, the reduction in the 

depth between dry and wet states was similar in all cases (about 6 mm). The results suggest that 

epoxy penetrated deeper into the substrate in high porosity concrete.
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Figure 8.9 Role of epoxy in degradation 

15-Dry 16mm 

15-Wet 10mm 

35-Dry 10 mm 

35-Wet 4 mm 
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Figure 8.10 Role of epoxy in degradation 

 

 

15-Dry 16mm 

15-Wet 10mm 

50-Dry 9 mm 

50-Wet 3 mm 
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8.8 Failure Plane 

 The failure plane of the tested specimens were photographed to find evidence of epoxy 

penetration into the substrate. Figure 8.11 compares the failure planes from low, medium and high 

porosity concretes taken from dry specimens. Inspection of Figure 8.11 shows evidence of epoxy 

and voids only in the high porosity concrete even at a considerably deeper depth (16 mm vs 10 

mm for the lower porosity concrete).  

 The greater depth of penetration of the epoxy meant that water could not extend below the 

bond line for the high porosity concrete. Given epoxy’s greater tensile strength, bond was not 

affected after 15 weeks of exposure. However, degradation could be expected if the immersion 

period were longer. 

   
Low Porosity -Dark circled area shows epoxy penetration, More pores visible 

   
Medium Porosity – some pores visible but no epoxy 

Figure 8.11 Dolly plan-view from control specimens 
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Low Porosity – similar to medium porosity 

Figure 8.11 (Continued) 

8.9 Epoxy Penetration Depth 

 Magnified photographic images of the bond line can provide compelling evidence of the 

role of porosity that may also help to explain why the NCHRP study did not find much difference 

in the performance of surfaces prepared to a CSP 1 and CSP 3 profile, NCHRP. 

 The location of the bond line cannot be obtained by saw cutting because the grinding action 

of the saw spews out dust that can form a coating on the cut surface. It was discovered that this 

problem could be overcome by breaking open the specimen. This revealed locations where it was 

possible to take magnified images using a microscope.  

 The magnification used to obtain the images was approximately 60x (a third of the scale). 

Prior measurement of the thickness of the FRP using a digital caliper had indicated that its 

thickness was approximately 1.5 mm. Using this value as a reference, the images were processed 

using AUTOCAD to introduce a local scale that could be used for comparison.  

 A total of nine images were taken – three of these corresponding to high, medium and low 

porosity are shown in Figure 8.12. Each picture is accompanied by its own local scale. The FRP 

material is clearly visible at the top. 

.
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Figure 8.12 Relative depth of epoxy penetration 

High  

Medium  

Low 
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 Inspection of Figure 8.12 shows the variability of the epoxy penetration depth that is a 

reflection of the network of voids present in the concrete. The depth of penetration of the epoxy is 

significantly greater for the high porosity concrete. The top photo also shows locations where the 

epoxy filled the voids. 

8.10 Conclusions 

 This chapter provides evidence that helps to improve our understanding on the role 

concrete porosity on FRP-concrete bond. The tests clearly demonstrate that FRP durability in a 

wet environment is strongly influenced by porosity. High porosity, low strength concrete 

performed significantly better than the low porosity high strength concrete. 

 In the study, the bonding surfaces were prepared by sand blasting to achieve a target CSP 

3 finish though complete conformity with this target is difficult to prove as was pointed out in the 

NCHRP 609 study. Nonetheless, since all specimens were identically prepared in the same manner 

by the same individual there was consistency in the surface preparation. The study suggests that 

the long term performance of the FRP-concrete bond could be improved if the epoxy could be 

made to penetrate deeper. Such preparation will be needed only for applications where FRP-bond 

was subjected to intermittent immersion in water. 

8.11 Future Work 

 The immediate need is to conduct a systematic investigation of practical surface 

preparation techniques and epoxy viscosities that can ensure deeper penetration of the epoxy in 

higher strength concretes. The technique selected should minimize micro-cracking damage since 

this can reduce the effectiveness of the FRP-concrete bond. 
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 CHAPTER 9: CFRP-CMU BOND IN OUTDOOR EXPOSURE 

9.1 Note to Reader 

 This chapter has been accepted for publication in ACI, Structural Journal and is reproduced 

with permission from the publisher ACI. 

9.2 Abstract  

 Two full-scale concrete masonry walls were repaired with three horizontally aligned 20 in. 

(508 mm) wide uni-directional carbon fiber sheets using different commercially available epoxies. 

Twenty years later the CFRP-CMU bond was determined through selective pull-off tests that were 

preceded by detailed non-destructive evaluation. Results showed that despite superficial damage 

to the top epoxy coating and debonding along masonry joints, the residual CFRP-CMU bond was 

largely unaffected by prolonged exposure to Florida’s harsh environment. Therein, over 90% of 

the failures were in the concrete substrate. Though bond was poorer at mortar joints because the 

CFRP was well bonded to the masonry surface, its impact on structural performance of the repair 

was expected to be minimal. Overall, the repairs proved to be durable with both epoxy systems 

performing well.   

9.3 Introduction 

 The application of FRP for masonry repair is recent compared to concrete. As a result, 

there are no durability studies on the performance of its bond comparable to that available for 

reinforced concrete, e.g. (Dolan, et al., 2009) (Sen, 2015). This study provides the first data set on 

the performance of CFRP-CMU repairs exposed for over 20 years to Florida’s aggressive 

environment. Since its original installation, no protective UV coating was applied to the CFRP 
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 material. Thus, the results provide a measure of the likely performance of neglected repairs 

without external intervention over an extended period of time. 

9.4 Background 

 Concrete masonry units (CMU) are widely used in residential construction particularly in 

the southeastern United States where walls constitute the most common structural element. In low 

seismic regions such as Florida or Texas, walls are designed and detailed to withstand bending 

moments and shear force due to hurricane force winds. Experience has shown that walls can also 

sustain settlement damage when supported by soils containing decaying organic material such as 

tree limbs or roots that lie buried below the foundation. Settlement manifests itself in characteristic 

stair-step cracking along mortar joints as shown in Figure 9.1.   

 
Figure 9.1 Characteristic stair-step cracking in CMU wall. 
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Figure 9.2 Walls labeled 2 and 3 were repaired using CFRP and tested 

 To explore the feasibility of carbon fiber repair, the University of South Florida created a 

test setup simulating foundation settlement. Four full-size 20 ft. (6.1 m) long, 8 ft.  (2.43m) high 

and 8 in. thick (203 mm) concrete masonry walls were constructed, Figure 9.2. The free ends of 

the walls were supported on screw jacks that could be adjusted to induce settlement. An overhead 

structural frame was used to apply simulated roof loads, Hartley et al.,13.  

 The walls were built using 1900 psi (13 MPa) concrete masonry blocks and 1800 psi (12.4 

MPa) type S mortar. Vertical reinforcement varied to reflect changing code provisions and 

construction practice in Florida over the past 40 years, (Mullins, et al., 2000). Reinforced cells 

were grouted using code specified 2500 psi (17 MPa) grout. Since owners of local masonry 

contracting companies built the walls, construction reflected the very best practice. 
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Two of the weakest walls, identified here as Walls 2 and 3 represented design and construction 

practice prior to Hurricane Andrew when requirements for vertical reinforcement were lax. Mortar 

joints separating courses were laid in running bond in which vertical joints do not line up. This 

contrasts with laboratory investigations8 in which the verticals joint line up (stacked bond). The 

weakest wall (Wall 3) was only reinforced at its ends whereas the second weakest wall (Wall 2) 

had two additional intermediate vertical bars located 8 ft. (2.43 m) from each end Figure 9.3. Thus 

both walls would be classified as unreinforced in code parlance because the reinforcement spacing 

exceeded six times the wall thickness. Simulated settlement and roof loading resulted in tell-tale 

in-plane stair-step cracking in both walls, (Hartley, et al., 1996). The damaged walls were repaired 

using unidirectional carbon fiber sheets and re-tested under the same load setup. The results 

showed that the CFRP repair was effective. At the end of the testing, loads were removed and the 

walls left exposed to the elements. 

 
Figure 9.3 Wall 2 reinforcement details and test set up for settlement simulation 
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9.5 Objectives  

 The primary goal of the study was to quantify CFRP-CMU bond through destructive pull-

off testing. Because of the age of the repair, extreme care was exercised to ensure only limited 

portions of the two 100 sq. ft. (9.3 sq. m) CFRP bonded surfaces were used in the testing. The 

untested area was earmarked for future tests that could be conducted in five to ten years. Since the 

walls were evaluated non-destructively, the extent to which the NDT technology was able to 

predict regions of good or bad bond became an important secondary objective. 

 In the 20 years following the original repair the walls were left unattended. No maintenance 

was carried out nor was coating applied to the CFRP surface to protect against solar radiation. 

Thus, the results provide a worst-case scenario for assessing CFRP bond performance under 

exposure to a very aggressive environment. 

9.6 Research Significance 

 Long term performance data on new materials are critically important for advancing the 

state of knowledge and fine tuning industry practice. This study provides the first quantitative data 

set on the durability of CFRP-CMU bond after over 20 years exposure to hot, humid conditions. 

This will make it possible to calibrate available models8. Most results, such as the durability of 

mortar joints laid out in running bond, are new. Spatial temperature data comparing ambient to 

CFRP / CMU surface temperature are also new and can impact specifications addressing hot 

weather installation. Findings from non-destructive testing provide useful insights on its 

effectiveness in evaluating and inspecting CFRP-repaired elements.  

9.7 Governing Codes 

 No FRP codes were in existence at the time the repair was carried out in 1995. ACI 

published its first FRP guide in 2002 and its first code, ACI 440.2R-08, in 2008. The first FRP- 
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Masonry code was issued in 2010, ACI 440.7R-10. The relevant code for masonry design and 

construction at the time the walls were built was ACI 530-92.  

 ACI 440.2R-08, specifies (provision 1.3.4) “FRP systems should not be used when the 

concrete substrate has a compressive strength f’c less than 2500 psi (17 MPa)”. Additionally, it 

requires tensile strength to be at least 200 psi (1.4 MPa) to ensure concrete had sufficient strength 

to allow force transfer to the FRP.  

 ACI 440.7R-10 recognizes the lower strength of concrete masonry but does not stipulate 

minimum strengths. Instead, requirements are qualitative, e.g. provision 6.2.5 states that “Tension 

adhesion tests should exhibit failure of the masonry substrate” while 11.2.1 states that “the weak 

link in the masonry/FRP interface is the masonry. The quality and tensile strength of the substrate 

will limit the overall effectiveness of the bonded FRP system”. 

9.8 Details 

 Masonry walls are characterized by a network of mortar joints that constitute well-defined 

planes of weakness. Horizontal joints are classified as “bed” joints and vertical joints as “head” 

joints. Joints where bed and head joints intersect are referred to here as intersecting joints. They 

are illustrated in Figure 9.4. 

 Tensile resistance of a mortar joint depends on the direction of the load. In weak axis 

bending, that is, bending under wind loads perpendicular to the wall face, the allowable tensile 

stress normal to the bed joints in hollow units for type S mortar was 25 psi (0.17 MPa); it was 50 

psi (0.34 MPa) for tension parallel to the bed joint, ACI 530-92,4. These values were permitted to 

be increased by 33% for load combinations involving wind.  
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Figure 9.4 Mortar joint definition 

9.8.1 CFRP Repair Details  

 A single layer uni-directional carbon fiber sheeting (FTS-C1-120) was used for the CFRP 

repair. Two commercially available epoxies were used as adhesives; these were from Henkel and 

Tonen. Material properties of the carbon fiber and the epoxies as reported by the manufacturer are 

summarized in Table 9.1, (Hartley, 1995). 

 The carbon fibers were oriented horizontally since the intent was to provide shear 

strengthening under in-plane settlement forces. Three 20 ft. (6.1 m) long strips each 20 in (50.8 
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cm) wide were placed side-by-side to repair each wall. Thus the CFRP bonded area was 20 ft. x 5 

ft. (6.1 m x 1.5 m) leaving a 20 ft x 3 ft. (6.1m x 0.9 m) height of unrepaired wall below. Finite 

element modeling suggested that strengthening would have been equally effective if the repair 

width were narrower than 5 ft (1.5m), (Engebretson, et al., 1996). 

Table 9.1 Material properties of CFRP and epoxy 

CFRP- FTS-C1-20 Tonen Co. Japan 

Fiber thickness  

 

0.00433 in 

(0.1099 mm) 

Fiber modulus 33,000,000 psi 

(220 GPa) 

Tensile strength 2183.9 lb/in 

(382 kN/m) 

Layers 1 

Resin-wall 2: Henekel Co. of Kankakee, IL 

Primer 13-283/13-284 

Resin 13-285/13-286 

Resin Tension 8.1 ksi 

 (55 MPa) 

Resin-wall 2:Tonen Primer and Resin 

Primer FP-NS 

Resin FR-E3P 

Resin Tension 6.8 ksi 

(46 MPa) 

Finish Layer: Resin paint 

 

 The mortar joints were not flush with the concrete surface in either wall Figure 9.4. This 

unevenness of the repair surface was allowed to remain. In the repair, wall surfaces were cleaned 

and a wetting coat of epoxy applied with a roller. With the resin still wet, precut Tow Sheet pieces 

20 ft x 20 in. wide (6.1 m x 508 mm) were positioned onto the wet surface, pressed in place and a 

second coating of resin applied. Full impregnation was achieved by working the resin into the 

sheet Figure 9.5. 
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9.9 Selection of Locations for Pull-off Testing 

 To provide a rational basis for selecting locations for destructive testing, the two CFRP 

repaired walls were carefully evaluated using non-destructive methods. Initially simple methods 

such as visual inspection, touch and tap tests were used. These were subsequently complemented 

by thermal imaging7 in which both passive and active systems were used. In passive methods, no 

external heat is applied prior to thermal imaging. In active methods, the surface is heated and an 

image showing heat diffusion/dissipation taken immediately thereafter. Regions where bond was 

poor were identified as “hot spots” indicating that because of voids, entrapped air, or de-bonding, 

heat could not be conducted away from the CFRP material.  

 Preliminary non-destructive assessments were first made by (Ross, 2013). Destructive tests 

were however deferred until later when more elaborate non-destructive evaluations were 

completed. Predictions of bond degredations from the latter effort were used to establish locations 

for the destructive pull-off tests.  

9.10 Environmental Exposure 

 Data from the nearest weather station showed that the maximum ambient temperature over 

the period 1995 to 2016 was 99F (37.2C) and the minimum, 25F (-3.9C), NOAA GHCN 2016. 

(Ross, 2013) Reported that the average annual rainfall was 34 in. (0.86 m) and the average annual 

humidity 87%. 

 To assess the validity of the weather station data, (Ross, 2013) used 25 thermocouples to 

monitor ambient temperature and the spatial variation in surface temperature in CFRP and 

masonry. Initially only one face of the wall was instrumented; later both faces were instrumented 

but it was found that there was little difference in temperature between the two surfaces. 
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Figure 9.5 CFRP installation on epoxy wetted surface 

 Sixteen thermocouples were attached to the CFRP surface, eight to the masonry. The last 

thermocouple #25 was used to monitor ambient conditions. According to the equipment, 

temperature measurements were accurate to 0.06% of the recorded value. This corresponds to 

±0.04F at 60F (±0.02F at 15.6C) and ±0.06F at 100F (±0.03C at 37.7C). Temperature was recorded 

at 15 minute intervals over two separate time frames in April and August 2012. Comparisons of 

temperature data taken at the site with that from the weather station were found in close agreement.  

9.10.1 Spatial Variation in Wall Temperature 

  The surface temperature of CFRP and concrete masonry were expected to differ from the 

ambient temperature because of their differing emissivity. Temperature readings recorded using 

thermocouples are displayed in Figure 9.6. 
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 This shows the variation in maximum, minimum and mean temperature over one week 

from March 31 to April 7, 2012. Thermocouples #1-16 identify locations on the CFRP surface and 

#17-24 the locations on the bare masonry. Thermocouple #25 recorded ambient conditions and its 

data are presented outside the wall outline in Figure 9.6. 

 Inspection of Figure 9.6 shows that the maximum CFRP temperature could be more than 

10F (5.5C) higher than The ambient temperature (compare ambient thermocouple reading with 

that of thermocouple #8). Temperature readings were generally higher for CFRP and temperatures 

typically increased from left to right. This difference was a measure of the amount of sunlight 

falling on the CFRP. Thus, spatial distribution of damage caused by differing solar radiation 

exposure was recognized to be an important variable.  

 Figure 9.6 shows an infrared thermograph superimposed over a perspective sketch of Wall 

2 which shows the temperature variation caused by solar heating (blue cold; white hot). The filled 

cells at mid-day (12:00pm) when the image was taken lagged the diurnal warming trends due to 

the increased grout mass.  Also the cooler soil to the left provided a thermal sink which again 

slowed the diurnal effects. 

 
 (a).Summary temperature data for wall 2 north side – 3/31/12 to 4/7/12 

Figure 9.6 Temperature data and infrared image. 
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 (b) - Infrared image of Wall 2 showing warmer temperatures near the sun-exposed corner 

Figure 9.6 (Continued) 

9.11 Test Program 

 The assessment of the long term performance of the CFRP-CMU bond necessitated: (1) 

the non-destructive evaluation of the two strengthened walls, (2) destructive pull-off testing to 

establish the baseline strength of concrete masonry and its mortar joints (bed, head, intersecting), 

and (3) destructive pull-off testing to characterize CFRP-CMU bond over masonry surface and 

across mortar joints. Locations selected for destructive testing were based on findings from the 

non-destructive evaluation.   

9.11.1 Non-Destructive Evaluation 

 As noted, the repaired portions of the walls were readily accessible and preliminary non-

destructive evaluation consisted of visual inspection, tap and tactile tests, complemented by 

thermal imaging. The intent was to identify potentially problematic regions for destructive testing. 

Filled cells 

Repaired region (upper 5ft) 

Footing on cooler soil 
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 For visual inspection, The CFRP surfaces on the two walls were examined to identify 

changes in color, cracking, debonding, voids or any unusual signs that signified degradation. This 

involved a side-by-side photographic comparison from their initial state using images taken at the 

time of the original CFRP installation (Figure 9.5). A portable microscope was used to obtain 

magnified images of problem areas.  

 Discoloration of the CFRP was noticeable though there was minimal deterioration at the 

mortar joints. Sunlight was believed to be the likely cause of the discoloration. Close-up photos of 

these regions at 60 and 160 magnifications provided conclusive evidence of a disintegrating top 

epoxy coating that revealed the underlying carbon fiber (Figure 9.7). These locations correlated 

well with the spatial temperature variation shown in Figure 9.6 As a result, the destructive pull-off 

tests were targeted for shaded and sunny regions on the CFRP surface to allow quantification of 

the difference, if any, in residual bond.  
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Figure 9.7 Comparison of images for wall 2 and wall 3.  

At installation and after exposure 

 Tap tests were conducted using a small hammer. A hollow sound identified de-bonded 

regions. Some de-bonding was detected along the mortar joint. Surface irregularities were also 

noticed and voids could be detected by depressing the surface by hand. Thermal imaging: Active 

Infrared Thermography (AIT) methods employ heat to identify de-bonded locations. In general a 

heat source is used to apply heat to a surface. Changes in the measured surface temperature indicate 

changes in diffusion/conduction rates and identify possible regions of concern. Passive Infrared 

Thermography (PIT) uses the same basic principles but instead the naturally occurring changes in 

surface temperature from diurnal temperature changes provide the heat energy source. While 

Wall 3-August 1995 

Wall 2-August 1995 Wall 2-June 2016 

Wall 3-June 2016 



 

78 

Figure 9.6 (taken with a FLIR model Tau 320 camera) shows some faint warmer stripes that 

coincided with the presence of mortar joints, PIT is highly affected by the time of day or the past 

air temperature changes and is therefore less controllable / reliable. Figure 9.9 shows the passive 

thermograph at 8:00am where no issues where identified.  

  
Figure 9.8 Microscope photos. 

(top) sun exposure (disintegrating coating) and shade (coating intact) 

 

 AIT was performed immediately following PIT using the step heating method where a 350 

watt lamp was placed within 2-3 in. (5-7.5 cm) from the wall surface and two infrared cameras 

Sun (60x magnification)                             Sun (160x magnification)   

Shade (60x magnification)                        Shade (160x magnification) 
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were used to capture the thermal images: FLIR model Tau 320 and Seek compact thermal imager. 

Hot spots were detected along some mortar joints as shown in Figure 9.9. This correlated well with 

the tap test findings and indicated the presence of voids. 

 

Figure 9.9 (a) Passive thermal image, left (b) active thermal image, right 

9.11.2 Destructive Testing 

 To quantify bond, pull-off tests were conducted on the block surface and also across bed, 

head and intersecting joints in both the exposed CMU and the CFRP strengthened wall areas. All 

testing was conducted in accordance with ASTM D 7522 using a 1.25 in. (3.17 cm) circular dolly. 

Fast setting epoxy (3M Scotch-Weld DP-420) was used and bonded dollies were kept in place 

using duct tape. A total of 119 pull-off tests were conducted, 21 were on the bare CMU wall and 

98 on the CFRP strengthened regions. 

 

9.12 CMU Wall 

 A summary of the results of the 21 pull-off tests is given in Table 9.2. Individual results 

are plotted in Figure 9.10. There is variation in the values depending on whether aggregates were 

Bed joint 

   Head joint 
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engaged or not. Values were higher when aggregates were part of the substrate that stuck to the 

dolly. This increased contribution of exposed aggregates is recognized in ACI 503.5R-92. Failure 

modes are collectively discussed later after all results have been presented. 

Table 9.2 Results of pull-off tests on CMU wall face and mortar joints 

Description Face Bed Joints Head Joints Intersecting 

# of Tests 6 5 5 5 

psi 234 167 107 115 

MPa 1.6 1.15 0.7 0.8 

 

9.12.1 CMU Wall Face 

 The average pull-off strength from the six tests on the wall face was 234 psi (1.61 MPa) 

even though the unit strength of the masonry block was 1900 psi (13 MPa). This average exceeded 

the 200 psi (1.37 MPa) minimum tensile strength requirement for 2500 psi (17 MPa) concrete 

specified in ACI 440.2R-08. 
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Figure 9.10 CMU surface pull-off strength 

9.12.2 CMU Mortar Joints 

 Individual results and average values from the pull-off tests on mortar joints are shown in 

Figure 9.11. The average strength was highest for bed joints, 167 psi (1.15 MPa) and lowest for 

head joints, 107 psi (0.7 MPa). Intersecting joint values were in-between, 115 psi (0.8 MPa). Since 

a mortar joint is only 3/8 in. (0.95 cm) wide and the dolly diameter 1.25 in. (31.7 mm) diameter, 

the dolly was partially adhered to the surrounding block surfaces. Therefore the results do not 

purely reflect tensile strength of the mortar joint. Nonetheless, the distinctly higher value for bed 

joints compared to head joints suggest that the weight of the blocks supported by the bed joint may 

have contributed to its increased strength. 
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Figure 9.11 Pull-off strength at mortar joints in CMU wall 

9.13 CFRP Strengthened Wall 

 A total of 98 pull-off tests were conducted to assess the CFRP-CMU bond of the two walls. 

The intent was to conduct an identical number of tests in each wall. However, because of 

unforeseen factors, e.g. incorrect dolly installation, the number of tests differed. A total of 54 tests 

were conducted on Wall 2 and 44 on Wall 3.  

 A general layout of the locations of the dollies is shown in Figure 9.12. An overview of all 

the results is summarized in Table 9.3 through Table 9.6. Individual results from the five series of 

tests on the wall face (center and corner of the CMUs), bed joints, head joints and intersecting 

joints are plotted in Figure 9.13 through Figure 9.17.  

 Since CFRP surfaces became less protected over part of the repair through the loss of the 

top resin coating Figure 9.8, tests were further sub-divided between regions that had greater 
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exposure to sun and those that did not (shade). Of the 54 tests conducted on Wall 2, 24 were in the 

shade and 30 in the sun. The corresponding numbers for Wall 3 were 18 (shade) and 26 (sun) for 

the 44 tests. These include tests conducted at the center of the blocks, at the corners and across the 

bed, head, and intersecting joints.  

 
Figure 9.12 Dolly layout out in wall 3 (tonen). 

On CFRP surface, over bed, head and intersecting joints 
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Table 9.3 Summary of CFRP/CMU results at face (42) 

Description 
Wall 2 

Henkel 

Wall 3 

Tonen 

 
# of 

tests 
psi MPa 

 # of 

tests 
psi MPa 

Shade- center 5 226 1.6  5 179 1.2 

Shade- corner 6 215 1.5  5 175 1.2 

Average 11 220 1.52 10 177 1.22 

Substrate Failure 

 

20 18 

90.9% 90% 

Shade average psi  

(MPa) 

199  

(1.37) 

Sun-center 6 152 1  5 151 1 

Sun-corner 5 171 1.2  5 147 1 

Average 11 161 1.11 10 149 1.03 

Sun average psi 

 (MPa) 

155 

 (1.07) 

Overall average psi  

(MPa) 

177 vs 234 (CMU) 

                               (1.2)    (1.6) 
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Table 9.4 Summary of CFRP/CMU results at bed joints (18) 

Description 
Wall 2 

Henkel 

Wall 3 

Tonen 

 
# of 

tests 
psi MPa 

# of 

tests 
psi MPa 

Shade 2 179 1.5 - - - 

Sun 8 138 0.95 8 165 0.95 

Average 10 146 1 8 165 0.95 

Overall average psi 

 (MPa) 

154 vs 167 (CMU) 

                   (1.1)   (1.15) 

 

Table 9.5 Summary of CFRP/CMU results at head joints (22) 

Description 
Wall 2 

Henkel 

Wall 3 

Tonen 

 # of tests psi MPa # of tests psi MPa 

Shade  6 139 0.95 5 131 0.9 

Sun  7 113 0.8 4 136 0.9 

Average  13 125 0.9 9 133 0.92 

Overall average psi 

(MPa) 

129 vs 107 (CMU) 

                                       (0.9)   (0.7) 

 

Table 9.6 Summary of CFRP/CMU results at intersecting joints (16) 

Description 
Wall 2 

Henkel 

Wall 3 

Tonen 

 # of tests psi MPa # of tests psi MPa 

Shade 5 91 0.63 3 99 0.7 

Sun  4 97 0.67 4 102 0.7 

Average  9 94 0.65 7 101 0.7 

Overall average psi 

(MPa) 

97 vs 115 CMU 

                                         (0.7)   (0.8)   

 

9.13.1 Results for CFRP-CMU Surface 

 To assess whether the location of a pull-off test on a concrete block had any influence, tests 

were conducted at the middle of blocks and near corners in close proximity but not touching the 

mortar joints. A total of 22 tests were carried out on Wall 2 and 20 tests on Wall 3 (Table 9.3). 
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Half of the tests were conducted at shaded locations and half at sunny locations. The results of the 

tests are summarized in Figure 9.13 (center) and Figure 9.14 (corner). Over 90% (38/42) were 

cohesive failures in the concrete substrate addressed later; the performance of both epoxies was 

comparable. 

 Inspection of Figure 9.13  Figure 9.14 shows that pull-off values were generally higher in 

the shaded region (shown in black) in both walls. (Table 9.3) provides average values. For Wall 2 

they were 220 psi (1.52 MPa) in the shade and 161 psi (1.11MPa) in the sun. The corresponding 

values for Wall 3 were 177 psi (1.22 MPa) in the shade and 149 psi (1.03 MPa) in the sun. The 

marked difference in the pull-off strength between shaded and sunny locations reflects the effect 

of damage caused by the sun that led to a disintegration of the protective epoxy coating (Figure 

9.8). 

 
Figure 9.13 Pull-off strength at CFRP-CMU face-center 
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Figure 9.14 Pull-off strength at CFRP-CMU face-corner 

9.13.2 CFRP-CMU Mortar Joints 

 A total of 56 tests (32 in Wall 2 and 24 in Wall 3) were conducted at bed, head and 

intersecting joint locations in the CFRP strengthened walls Table 9.4 through Table 9.6. The 

largest number of tests was conducted across head joints (22) followed by bed joints (18). 

Typically, low values correspond to the measured strength at debond locations. 

9.13.3 CFRP-CMU Bed Joints 

 Figure 9.15 shows the results for tests across bed joint locations in Walls 2 and 3. The 

majority of the tests were conducted at sunny locations based on the findings of the non-destructive 

evaluation. Average values for shaded and sunny regions are shown in the same plot. The overall 

average value from all 18 tests for CFRP was 154 psi (1.1 MPa), somewhat smaller than the 167 

psi (1.15MPa) value for CMU (Table 9.4). 
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Figure 9.15 Pull-off strength at CFRP-CMU bed-joints 

9.13.4 CFRP-CMU Head Joints 

 Figure 9.16 shows a plot of the results for head joint locations in Walls 2 and 3. An overall 

summary of the results is presented in Table 9.5. The average pull-off values from 22 tests was 

129 psi (0.9MPa). This was higher than the 107 psi (0.7MPa) value for masonry but lower than 

that for the bed joints (154 psi (1.1MPa) in Table 9.4. The results for shaded and sunny locations 

were mixed. It may be seen from Figure 9.16 that values were lower at sunny locations in Wall 2 

(113 psi (0.8 MPa) vs 139 psi (1 MPa in the shade) but higher for Wall 3 (136 psi (0.93 MPa) in 

sun vs 131 psi (0.89 MPa) in the shade). The values were considerably higher than the average 

107 psi (0.74 MPa) recorded for the masonry wall Table 9.2. 
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Figure 9.16 Pull-off strength at CFRP-CMU head-joints 

9.13.5 CFRP-CMU Intersecting Joints 

 Figure 9.17 plots the individual results for tests conducted at the intersecting joint locations 

for the CFRP strengthened Walls 2 and 3. Table 9.6 provides a summary of the results. The pull-

off strength of intersecting joints was lower than that for the bed and head joints. The overall 

average pull-off value from 16 tests was 97 psi (0.7 MPa) a little lower than the 115 psi (0.8 MPa) 

CMU value. As for head joints, there was no marked difference in bond values in the shade and in 

the sun.  

9.13.6 Comparison of Failure Modes  

 Figure 9.18 provides side-by-side images of the failure modes in the bare masonry and 

CFRP from the four different locations that were tested (i.e. wall surface and bed, head and 

intersecting joints). For each series, two representative photographs corresponding to high and low 
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bond values are shown. As noted earlier Table 9.3, failure modes on the CMU surface were pre-

dominantly cohesive. Of 42 tests, 38 failed in the concrete substrate.  

 
Figure 9.17 Pull-off strength at CFRP-CMU intersecting-joints 

 Inspection of Figure 9.18 shows that the CFRP bond values at mortar joints were 

comparable to those on the block face of the masonry. This was most likely because the mortar 

joints were not flush with the wall (Figure 9.4) and therefore the bond values provided a measure 

of the area that was in contact with wall face, e.g. for a 1.25 in. (3.18 cm) dolly with a 3/8 in (9.5 

mm) bed joint at its center, the area in contact is approximately 60% of the dolly area. In contrast, 

the contact area for CFRP was the entire dolly area. Low values at CFRP joints indicated that they 

were measured at debond locations. Variability reflected the geometric positioning of the joint 

relative to the dolly.  
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CMU CFRP 

High Low High Low 

Surface 

    
Values higher when aggregates were engaged in the failure plane 

Bed Joint 

    
CMU bed joint values comparable to those at wall face. CFRP values lower when debonded 

Head Joint 

    

Head joint values lower than bed joints for both CMU and CFRP 

Intersecting Joint 

    
Values least at intersecting joints 

Figure 9.18 Comparison of CMU and CFRP failure modes 

 

277 psi 158 psi 198 psi 119 psi 

119 psi 79 psi 39 psi 159 psi 

238 psi 158 psi 79 psi 238 psi 

100 psi 59 psi 79 psi 169 psi 
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9.14 Discussion 

 Non-destructive evaluation played a critical role in defining the scope of the destructive 

testing. Visual inspection showed that the top resin coating had disintegrated more in areas having 

prolonged exposure to sunlight Figure 9.8. Thermocouple readings provided information on the 

spatial variation in temperature across the CFRP region Figure 9.6. This indicated that the 

temperature on the surface of the carbon repair could be more than 10F (5.5C) higher than the 

ambient temperature. The spatial distribution of the destructive tests Figure 9.12 was influenced 

by this finding. Despite the loss of the top coat, the CFRP material remained well bonded to the 

masonry. The average bond value from 42 tests was 177 psi (1.2 MPa, Table 9.3).  

 Unlike concrete, masonry is characterized by well-defined planes of weakness along 

horizontal and vertical mortar joints. Since these joints were not flush with the block surface, 

(Figure 9.4), the expectation was that these locations would yield lower bond values. This was 

largely borne out by the test results (Table 9.2 and Table 9.4 through Table 9.6).  

 The results showed that bond values were consistently higher in tests conducted across the 

bed joints compared to those across head and intersecting joints. The consolidating effect of the 

weight of wall above the bed joint may have contributed to a higher strength. 

 To assess the impact of poorer bond across the mortar joint it is instructive to calculate the 

development length of CFRP, ACI 440.7R-10,. Using material properties provided by the 

manufacturer ( (Hartley, 1995), the development length of the CFRP is: 

                                              (1) 

where, 

ld  = development length 

Ef = FRP modulus of elasticity  
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tf = FRP thickness 

f’m = masonry compressive strength   

 The development length is 4.36 in. (110.7 mm) and is small compared to the 8 in. (200 

mm) half-block width. Since mortar joints are only 3/8 in (9.5 mm) wide, the lower bond strength 

will not affect load transfer as long as the CFRP material remains bonded to the concrete block 

face. This was found to be the case from testing (Figure 9.13 and Figure 9.14).  

 ACI 440.2R-08 requires the minimum compressive strength of concrete to be 2500 psi 

(17.2 MPa). This corresponds to the minimum strength permitted in structural applications in ACI 

318. Since structural masonry applications require the use of type S mortar, the same principle 

could also be used to set a corresponding lower limit in masonry for consistency. Similarly, the 

ACI code sets a limit of 200 psi (1.37 MPa) for minimum tensile strength of concrete to ensure 

that loads could be transferred to the FRP. Given the well-defined planes of weakness such a 

requirement would be meaningless for masonry. Nonetheless, in tests, the 1900 psi (13.1 MPa) 

concrete masonry was found to have an average direct tensile strength of 234 psi (1.61 MPa) (Table 

9.2, Figure 9.10 and Figure 9.11), higher than the 200 psi (1.37 MPa) ACI minimum.  

 The relatively high residual bond (177 psi (1.2 MPa in Table 9.3) after 20 years exposure 

to an aggressive environment is not surprising. Water is primarily responsible for bond 

degradation, (Dolan, et al., 2009), and its accumulation at the bond line results in degradation in 

the material properties of the epoxy and its interface with concrete. In vertical elements such as 

walls, water cannot collect but drains over the CFRP surface even though there were air gaps along 

the bond line. On the other hand, it was sunlight that led to degradation and measures should be 

and normally would be taken to periodically apply a protective coating to minimize damage from 

UV radiation. 
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9.15 Limitations 

 The intent of the original study was to explore the feasibility of CFRP to repair settlement 

damage and no attempt was made to establish a baseline bond strength. This was both good and 

bad: it provided unaltered wall specimens for this durability assessment, but did not provide exact 

quantification of the actual degradation in bond over time (values would be marginally lower and 

would reflect the lower concrete strength after 28 days versus after 20 years). However, 90% of 

the pull-off failure modes were cohesive where the masonry strength, not CFRP bond controlled 

(Table 9.3). Moreover, the CFRP material was not under load since the applied settlement and the 

vertical roof loads were removed after the testing was completed. Nonetheless, the results are very 

encouraging given that both epoxies performed equally well in an extreme environment for over 

20 years. 

9.16 Conclusions 

 This study provides findings on the performance of CFRP-CMU bond after 20 years 

exposure to an aggressive sub-tropical environment. Given the uniqueness of the test site 

considerable attention was paid to non-destructive evaluation prior to destructive testing. Detailed 

investigation by (Ross, 2013) was followed by additional studies conducted more recently. In these 

investigations, visual inspection and tap tests were complemented by active and passive thermal 

imaging coupled with microscopic investigation of the CFRP surface. Based on the findings, the 

following conclusions may be drawn: 

1. Active thermal imaging accurately identified poor bond along the mortar joints (Figure 

9.9), that was confirmed by pull-off testing. Visual inspection augmented by the use of a 

portable microscope was able to identify damage caused by disintegration of the top epoxy 

coat Figure 9.8.  
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2. The average pull-off tensile strength of the 1900 psi CMU block was 234 psi (1.61 MPa), 

Table 9.2. This suggests that the 200 psi (1.37 MPa) ACI requirement for sound substrate 

may also be valid for concrete masonry.  But given the lower tensile strength of mortar 

joints such a limit may not be as meaningful. 

3. Thermocouple data showed that ambient temperatures were lower than those on the 

masonry and CFRP surface. Since spatial wall temperature distribution was non-uniform 

Figure 9.6, destructive tests were conducted at shaded and sunny regions. Results showed 

that bond values were lower in sunnier regions on the wall face (Figure 9.13 and Figure 

9.14). This effect was less pronounced at mortar joint locations (Table 9.4 through Table 

9.6, Figure 9.15 through Figure 9.17).  

4. The CFRP-CMU pull-off strength was generally lower at mortar joint locations (Figure 

9.15 through Figure 9.17, Table 9.4 through Table 9.6). The exception was bed joints, 

where bond values were high (Figure 9.15). This may be because of the beneficial effect 

of the wall weight on mortar strength. Head joints (Figure 9.16) had a lower strength than 

bed joints. Intersecting joints were the weakest (Figure 9.17). Lower mortar joint strength 

is not expected to affect load transfer because of the good bond between CFRP and 

masonry face (Figure 9.13 and Figure 9.14) and the relatively small development length 

compared to the block width. 

5. The performance of the two commercially available epoxy systems (Table 9.1) used in the 

repair was comparable (Table 9.3).  However, the surface condition Figure 9.8 highlighted 

the importance of the periodic application of coatings on CFRP-repaired surfaces to protect 

them against the effect of solar radiation. 
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 After over 20 years exposure to Florida’s environment, the residual CFRP-CMU bond for 

the masonry face (Table 9.3) exceeded 150 psi (1.2 MPa). As water cannot accumulate in voids 

along mortar joints in vertical walls, moisture-induced strength reduction was minimal. Therefore, 

the findings may not be directly transferable to repairs on horizontal elements such as beams or 

slabs. 
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 CHAPTER 10: FRP-CONCRETE BOND IN TIDAL WATERS 

10.1 Note to Reader 

 This chapter has been accepted for publication in ASCE, Journal of Composites for 

Construction and is reproduced with permission from the publisher ASCE. 

10.2 Abstract  

 The Friendship Trail Bridge linking St. Petersburg to Tampa FL was demolished in 2016. 

This was the site of thirteen FRP repairs of corroding reinforced concrete piles undertaken in three 

separate demonstration studies completed in 2003-04, 2006, and 2008. The repairs used carbon or 

glass fiber, wet layup or prepreg, and epoxy or polyurethane resins. Installation was by shrink wrap 

in the initial series and by pressure bagging in the next two. Residual FRP-concrete bond was 

evaluated in 2015-16 through 120 pull-off tests conducted on ten representative repaired piles. 

Results showed wide variation in the measured pull-off strength depending on the resin type, the 

number of FRP layers, the prevailing conditions at the time the epoxy was mixed and how it was 

placed. Ambient conditions at installation influenced bond in epoxy-based systems.  The highest 

residual bond was recorded in epoxy-based repair on piles that were installed by pressure bagging 

in 2008.  

10.3 Introduction 

 Corrosion of piles driven in tidal waters is a common problem in southeastern United States 

particularly in Florida with its long coastline and sub-tropical climate. Historically, repairs were 

conducted using conventional pile jackets but because they proved unsatisfactory. 
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 Only “Lifejackets” incorporating cathodic protection are permitted nowadays. (Leng, 

2000). Though effective, Lifejackets are a costly option, (Sen, et al., 2011) 

 Cost considerations made Florida more open to exploring alternate systems such as fiber-

reinforced polymers (FRP) for corrosion repair of piles. To ensure rapid technology transfer, field 

applications were an integral part of the research. Three such demonstration projects were 

undertaken on corroding piles supporting the Friendship Trail Bridge, (Mullins, et al., 2004) 

(Mullins, et al., 2006) (Mullins, et al., 2007) (Sen, et al., 2007). 

 Its unexpected demolition provided a unique opportunity to evaluate in-situ FRP-concrete 

bond. In the initial phase, non-destructive evaluations were carried out. Subsequently, a total of 

120 pull-off tests were conducted in 26 site visits spread over four months. This paper presents 

findings from the destructive pull-off tests. 

10.4 Site Details 

 The 4.2 km (2.6 mile), 274 span Friendship Trail Bridge was completed in 1956 to connect 

Hillsborough and Pinellas counties. Following construction of a new bridge in 1997, it ceased to 

carry vehicular traffic and was used by pedestrians and cyclists. Tampa Bay’s sub-tropical marine 

environment is very aggressive and provided an ideal site for evaluating the performance of FRP 

used for corrosion repair. The piles selected included unwrapped controls and FRP repaired piles 

in bents 99-101 and 103-104 on the Hillsborough side of the bridge.  Individual piles are labeled 

A to F from north to south in Figure 10.1a. The test pile layout is shown in Figure 10.1b and details 

summarized in Table 10.1. 
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(a) Friendship Trail Bridge- view of pile bents evaluated during demolition 

  
Figure 10.1 View of pile bents and piles layout 

 

(b) Piles layout 
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 A total of 13 piles - 11 glass and 2 carbon were repaired. The number of FRP layers used 

ranged from 2 to 6. The first repairs were carried out on piles supporting bents 100-101 in 2003-

04. The second in 2006 used a pressure bagging system addressed later.  The final repairs were 

completed in 2008 on piles supporting bents 103-104. These incorporated a sacrificial cathodic 

protection (CP) system within the FRP wrap. 

 Eleven piles were instrumented to monitor corrosion performance; six utilized an 

innovative pressure bagging system to enhance bond. Seven were repaired with polyurethane-

based systems while the remainder utilized epoxy. The polyurethane resins are water-activated and 

pre-impregnated into the fibers. These were delivered to the site in hermetically-sealed pouches 

and installed over a surface primer. The epoxies were a Bisphenol-A resin combined with a 

proprietary curing amine and were applied to the concrete substrates. The primer for the 

polyurethane systems was also used as the UV coating.  

Table 10.1 Repair summary 
Bent Pile a 

Year of 

Installation 

Wrap 

Layout b 

Product 

Type 

Fiber 

Material 

Matrix 

Material 

Bond 

Enhancement 

Instrumentation 

(Pile Face) 

100 

100A 2003 1+2 Prepreg Carbon Polyurethane - East 

100B 2003 1+2 Prepreg Carbon Polyurethane -  

100C 2003 2+4 Prepreg Glass Polyurethane -  

100D 2003 2+4 Prepreg Glass Polyurethane - East 

101 

101A 2004 2+4 
Two-

part 
Glass Epoxy  East 

101B 2006 1+1 Prepreg Glass Polyurethane Pressure bag East 

101C 2006 1+1 
Two-

part 
Glass Epoxy Pressure bag East 

101D 2004 2+4 
Two-

part 
Glass Epoxy  East 

103 

103A 2008 1+1 
Two-

part 
Glass Epoxy Pressure bag West 

103C 2008 1+1 
Two-

part 
Glass Epoxy Pressure bag West 

104 

104A 2008 4+0 Prepreg Glass Polyurethane Pressure bag West 

104B 2008 0+2 Prepreg Glass Polyurethane  West 

104C 2008 1+1 
Two-

part 
Glass Epoxy Pressure bag West 

a A – D designations denote pile position along pier from north to south. 
b Indicates wrap layers in longitudinal + transverse directions. 

Note: Piles 99A, 103D, 104D were controls. 
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10.5 Relevant Studies 

 The durability of FRP-concrete bond has been the focus of numerous laboratory and field 

investigations. Details on the performance of epoxy-based systems may be found in state-of-the-

art reviews, e.g. (Myers, 2007) (Dolan, et al., 2009) (Sen, 2015) (Hamilton, et al., 2017). Fewer 

studies are available for polyurethane systems, e.g.  (Bailey, et al., 2013). 

 Laboratory studies evaluate degradation in carefully prepared specimens. Specimens are 

usually prepared on flat rather than vertical surfaces so that gravity effects during cure are 

discounted. Environments are controlled, e.g. (Karbhari, 2009) reported a 26-61% reduction in 

pull-off strength after 24 month exposure to salt water solution at 22.8°C (73°F); (Dolan, et al., 

2009) measured a 19-40% reduction after a 12 month exposure to salt water solution at 50°C 

(122°F). Since field installation and ambient conditions differ from that in laboratories it is not 

surprising that the failure modes in laboratory and field specimens differ as was observed by (Tatar, 

et al., 2016). This disparity can be expected to be greater for polyurethane resins that release carbon 

dioxide during cure. In laboratory studies, researchers applied rollers for ten minutes to prevent 

voids caused by gases trapped within the bond layer, (Haber, et al., 2012). This is not an option in 

field repair of partially submerged piles where void volume is significantly greater, (Walker, 

2007). 

 Field data for marine applications are scarce. (Long, et al., 2012) evaluated a FRP-

strengthened quay wall in Dunkerque Port, France installed using both prepreg and wet layup 

CFRP. After eight months, average residual bond from 40 pull-off tests varied between 1.86 and 

2.74 MPa (269 and 397 psi). Other available studies in marine settings only utilize pull-off testing 

to verify installation and conduct long-term evaluations using non-destructive methods. 
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 Excepting for studies conducted by the authors, e.g. (Sen, et al., 2007), field studies 

incorporating destructive evaluations are only for FRP applied to dry surfaces under dry 

conditions. Their findings are not applicable for this study where specialist resins designed for 

application on wet surfaces were used. Nonetheless, limited comparisons are presented to provide 

a measure of the variability in FRP field test data for columns.   

10.6 Background 

10.6.1 Chloride Content 

 Pull-off tests are conducted on the pile surface and therefore the chloride content at this 

location can impact results. Chloride measurements in the 75 mm (3 in.) concrete cover were 

undertaken for nine test piles Table 10.2. Chloride content was highest nearer the surface (0-25 

mm or 0-1 in. layer) and closest to the pile cap. Their magnitude more than exceeded the 0.59-1.19 

kg/cu. m (1-2 lb/cy) chloride threshold for concrete surrounding reinforcement (50-75 mm or 2-3 

in.) indicating that the passive layer that protects steel in concrete was destroyed (Mindess, et al., 

2003). These values were consistent with corrosion potential measurements that indicated a 95% 

probability of corrosion, (Mullins, et al., 2004) (Mullins, et al., 2006) (Sen, et al., 2010). 

Table 10.2 Chloride profile in concrete cover 

Pile 

Location from 

underside of pile cap 

0-25 mm 

0-1 in. 

25-50 mm 

1-2 in. 

50-75 mm 

2-3 in. 

mm in. kg/cu. m lb/cy kg/cu. m lb/cy kg/cu. m lb/cy 

99A 75 3 10.96 18.58 5.17 8.77 1.22 2.07 

99A 533 21 8.70 14.74 4.56 7.73 2.62 4.44 

103A 125 5 3.44 5.83 2.08 3.52 0.94 1.96 

103B 125 5 4.57 7.74 2.78 4.71 1.42 2.4 

103C 125 5 3.61 6.12 1.90 3.22 1.06 1.8 

103D 125 5 3.16 5.35 2.55 4.32 1.71 2.89 

104A 125 5 7.23 12.25 2.87 4.86 2.08 3.52 

104B 125 5 6.00 10.18 2.70 4.57 1.64 2.78 

104C 125 5 7.35 12.46 4.30 7.29 2.92 4.95 

104D 125 5 5.72 9.69 4.01 6.79 3.60 6.10 
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10.6.2 Instrumentation and Cathodic Protection 

 Eleven wrapped piles were instrumented to monitor the efficacy of FRP corrosion repairs, 

(Suh, et al., 2008). (Aguilar, et al., 2010). Instrumentation varied; in the initial study, two 

embedded rebar probes were used to measure corrosion current, (Mullins, et al., 2004) Piles 

repaired in 2008 incorporated a sacrificial cathodic protection system within the FRP repair, 

(Aguilar, et al., 2009), (Sen, et al., 2010). This system was designed to provide 30 years of 

protection. It required eight embedded zinc anodes and a submerged bulk zinc anode. The 

performance of this system was monitored using two silver-silver chloride reference electrodes 

that measured the anodic current drawn from the embedded and submerged anodes.  

 Installation of instrumentation required holes to be drilled and grooves to be cut on the pile 

surface for the required wiring and junction boxes that were located on the accessible east and west 

faces. These were also the two faces where all destructive and non-destructive testing was carried 

out. The implication of disturbance to the bonding surface is addressed later.  

10.6.3 FRP Wrap Design 

 The FRP wrap was designed to fully recover an assumed steel cross-section loss of 20% 

while simultaneously limiting transverse expansion caused by the formation of corrosion products.  

The epoxy system used unidirectional fibers in all repairs. Bidirectional fibers were used by the 

prepreg system in the transverse direction in 2003 and in both longitudinal and transverse 

directions in 2008. FRP properties used in the calculations are summarized in Table 10.3and Table 

10.4, (Mullins, et al., 2004) (Mullins, et al., 2007), (Aguilar, et al., 2009). More layers were 

required for the lower strength of fibers used in the prepreg system Table 10.1.  
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Table 10.3 Properties of prepreg system 

Fibers Type 
Tensile Strength Tensile Modulus Load / ply 

(MPa) (ksi) (GPa) (ksi) (kN/m) (lb/in.) 

Glass 

 

Unidirectional 

 
586 85 35.8 5,200 420.3 2,400 

Bidirectional 

 
324 47 20.6 3,000 210.2 1,200 

Carbon 

Unidirectional 

 
827 120 75.8 11,000 595.4 3,400 

Bidirectional 

 
586 85 22.1 3,200 420.3 2,400 

 

Table 10.4 Properties of epoxy-based system 

Property 
Value 

SI USCS 

Tensile strength 0.58 kN/mm 3.3 k/in. 

Tensile modulus 20.89 GPa 3030 ksi 

Ultimate elongation 2.2% 2.2 % 

Laminate thickness 1.27 mm 0.05 in. 

Dry fiber thickness 0.36 mm 0.014 in. 

10.6.4 Pressure Bagging 

 In-situ bond measurement of piles repaired in 2003-04, showed that conventional 

installation practice of using shrink wrap during curing (Figure 10.2) led to significant bond 

variability, (Sen, et al., 2007). Laboratory studies indicated this variability could be lowered by 

using pressure or vacuum bagging to reduce voids while the epoxy cured, (Winters, et al., 2008), 

(Aguilar, et al., 2009). Pressure bagging involves the use of a pressurized cuff which surrounds 

and restrains the FRP wrap during curing. This configuration was found in a previous study to be 

a more effective tool for enhancing bond in piles than vacuum bagging since an airtight envelope 

is not required around the FRP. The effect of pressure on voids was also numerically modeled by 

(Grunenfelder, et al., 2010). In essence, uniform pressure increased interfacial frictional resistance 

in repairs of vertical elements that prevented the resin-saturated fabric from slipping. All USF pile 

repairs conducted after 2004 were pressure bagged. 
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Figure 10.2 Shrink wrap (left); pressure bag (right) 

10.7 Exposure  

 Since the wraps were installed at different times, ambient conditions differed. 

Temperatures varied from 12 °C (54 °F) to 30 °C (86 °F) and humidity from 69% to 83%. Heat 

indices ranged from 22 °C (72 °F) to 34 °C (94 °F). Where available the heat index, the combined 

effect of air temperature and humidity, is included in Table 10.5 the temperature range for all the 

piles is identical since both maximum and minimum temperatures were recorded the same year in 

2010.  

Table 10.5 Pile installation and service ambient conditions 

Installation 

Date 
Piles 

 
Conditions at Installation  

 
 

Temperatur

e, °C a 

Temperature, 

°F a 

Rel. 

Humidity

, % a 

Heat 

Index

, °C 

Heat 

Index, 

°F 

Temp. 

Range, 

°C 

(°F) b 

10/30/2003 100A 25 77  69 28 82  

-4-37 

(25-

98) 

10/30/2003 100B 25 77  69 28 82 

10/30/2003 100C 25 77  69 28 82  

10/30/2003 100D 25 77  69 28 82 

s2/27/2004 101A 12 54  83 - -  
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Table 10.5 (Continued) 

2/27/2004 101D 12 54 83 - - 

 
9/26/2006 101B 29 85  65 34 94  

9/26/2006 101C 30 86 63 34 94  

7/30/2008 104B 28c 83c 71c 22 72  

12/17/2008 104A 23 74  76 - - 

 
12/17/2008 104C 22 72 81 - - 

12/18/2008 103A 24 75 71 - - 

12/18/2008 103C 24 75 71 - - 

a Indicates conditions at installation; b From installation date to April 2016 ; c Average 

for the day; Maximum relative humidity for all ranges was 100%; Temperature data from 

weather underground website (reference provided) 

 

10.8 Objectives    

 The goal of the research project was to obtain new information on the FRP-concrete bond 

by evaluating residual FRP-concrete bond following exposure of up to 12 years. All testing was 

conducted at the accessible east and west faces of the wrap in dry and splash zones Figure 10.3. 

Since field inspectors evaluate bond through visual inspection and tap tests, all wrapped piles were 

similarly evaluated prior to destructive testing. The intent was to assess the reliability of such 

inspection methods. Given the diversity of the repairs in terms of systems, number of layers, 

adhesives, installation methods and ambient condition, the investigation sought to obtain answers 

to key questions. These include the role of surf and ambient conditions during installation, the 

relative performance of the epoxy and polyurethane adhesives, the effectiveness of pressure 

bagging, and the overall performance of repairs after over 7, 9 and 12 years of exposure. 
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Figure 10.3 Definition of dry, splash and submerged zones 

10.9 Bond Evaluation Program 

 Field testing was initiated after the contract for the demolition of the bridge had been 

awarded. As a result, there was a constant race against time to complete testing before the bridge 

was demolished. Unfortunately, conditions were not always favorable when the research team was 

ready and able. Despite 26 site visits, not all testing could be completed in time. Additional testing 

was therefore required after the bridge had been demolished and the test piles carefully moved on-

shore. These are referred to as “land” tests.  

10.9.1 Non-Destructive Evaluation 

 Non-destructive evaluation comprising acoustic sounding, visual inspection, and thermal 

imaging were completed in seven site visits. The role of this evaluation was to identify locations 

that were deemed to have either an apparent good (intact) or poor (debonded or delaminated) bond 
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for follow-up confirmation by destructive testing. In this paper, only selected results from visual 

inspection are discussed. 

 Marine growth over the FRP wrap was first removed with a hand scraper and each surface 

of the wrap photographed to identify occurrences of discoloration, debonding, peeling, and rust 

stains.  

 Cracking of the protective UV coating was observed in all piles. Junction boxes housing 

wiring for cathodic protection and instrumentation installed close to the underside of the pile caps 

and were found to be intact. The boxes at piles 100D and 101C were observed to have expelled 

corrosion residue downward and onto adjacent wrap material.  

 Figure 10.4 shows photos of three pressure bagged piles 101B, 101C, 103C and one non-

pressure bagged pile 104B taken as part of the visual inspection study. The photo suggests that the 

residual bond would be higher for the pressure bagged piles installed in 2006 (101B, C) and 2008 

(103C). In contrast, the only non-pressure bagged pile, 104B, installed in 2008 showed clear signs 

of distress in which patches of FRP material had already delaminated. It exhibited low interlaminar 

bond strength as strips could be easily detached from the pile face by hand. This repair used glass 

and a proprietary polyurethane resin and was not installed by the USF research team.  

10.9.2 Destructive Evaluation 

 Pull-off testing was conducted in accordance with ASTM D7522, ASTM 2009. An 

Elcometer 106 adhesion tester with 31.7 mm (1.25 in.) diameter dollies was used. Locations for 

pull-off testing in the dry and splash zones (Figure 10.3) were, by default, randomized along areas 

where both well-bonded and delaminated/debonded states were indicated by NDE. However, 

constraints such as surface waviness, marine growth, dolly spacing, candidate locations relative to 
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the water surface / boat, and the use of a drilling rig limited the available areas for scoring. Tests 

were restricted to east and west pile face locations at heights accessible from a boat. 

    

Figure 10.4 Photos of FRP repairs in piles.  

(left to right) 101 B, 101C, 103C and 104B 

 The FRP surface was scored using a 31.7 mm (1.25 in.) diameter diamond core drill bit to 

an approximate depth of 6.35 mm (0.25 in.) into the concrete cover. The drill was attached to a 

custom-built leveling fixture Figure 10.5, which was temporarily attached to the pile. This 

configuration had been utilized in previous studies and allowed for vertical face drilling while 

ensuring levelness and uniformity of the scoring process, even in moderately choppy waters. The 

scored areas were then sanded with medium-grit sand paper and cleaned with acetone. Dollies 

were adhered to the prepared surfaces with 3M Scotch-Weld DP-420 epoxy adhesive, which has 

a maximum tensile strength of approximately 15.5 MPa (2,250 psi). The dollies were then taped 

to the surrounding wrap to prevent slippage during setting and allowed to cure for a minimum of 

24 hrs Figure 10.6. Logistics led to their positioning along a circular arc. After the dollies were 

installed, a spirit level was used to verify that they were at right angles to the bonding surface 

(Figure 10.6 right) before testing. 
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Figure 10.5 FRP scoring for dolly attachment  

  
Figure 10.6 Taped dollies and check for correct alignment (right) 

 During scoring, several locations revealed delaminated conditions in which only 1-2 of the 

inner layers remained well-bonded to the substrate. To test these locations, dollies had to be re-

designed and fabricated with the neck extended by 6.35 mm (0.25 in.) Figure 10.7. This provided 

sufficient height for the tester to properly engage the dolly head. 
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Figure 10.7 Dolly configurations  

10.10   Pull-off Testing Results 

 A total of 16 piles – three controls and 13 wrapped (Figure 10.1b) – were available for 

testing. Of these, one control and 10 wrapped piles were tested to obtain representative results. 

Given logistic constraints, the test goal to obtain a minimum of five data points within the dry and 

splash zones was ambitious. As noted, because of the demolition schedule, not all the planned tests 

could be completed on site. Of the 120 tests, 76 were conducted on site and the remaining 44 

conducted on land within two weeks of removal of the pile. These latter tests were carried out on 

sections of seven extracted piles (100A, 101A, 101B, 101C, 103A, 104A, 104B) that had been 

carefully removed by the contractor and moved offshore.  

10.10.1  Overview 

 Table 10.6 is an overview of the results. It contains information on the pile, resin system, 

installation method, whether the test was carried out on site or on land, numbers of tests in the dry 

and splash zones (Figure 10.3), occurrence of inter-layer failure, and average bond values for 
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interlayer and interface failures. Of the 120 tests, 33 were on the piles wrapped in 2003-04, 40 on 

the piles wrapped in 2006 with the remaining 47 tests on piles wrapped in 2008.  A required bond 

value will first be introduced to offer baseline comparisons with test results. The validity of the 

land site tests is then evaluated followed by a detailed description of the results summarized in 

Table 10.6. 

10.10.2  Required Bond 

 ACI 440.2R-08 specifies a minimum 1.4 MPa (200 psi) bond. This was primarily set to 

ensure that the concrete material had sufficient strength to be repaired. However, the required bond 

for load transfer is lower because it must comply with fire resistance and debonding strain limits. 

In this study, FRP was required to make up for an assumed 20% steel cross-section loss. The 

following is based on measurements provided in Figure 10.3: 

 For a 508 mm x 508 mm (20 in x 20 in) concrete pile with a 75 mm (3 in.) cover reinforced 

by eight #8 bars uniformly distributed along its perimeter (3 per face), the tensile capacity required 

by the FRP can be approximated as 20% of the tensile force, T, in the outer steel. Using n as the 

number of bars, Ab as the cross-sectional area per bar, and fy as the steel yield strength:  

FSteel = 20%(T) = 20%(nAbfy)       (1) 

FSteel = 0.2(3 bars)(509.68 mm2 bar⁄ )(2.87 MPa) = 126.5 kN (28.44 kips)  

 Since the effective depth for FRP is greater than that of the tensile steel, the tensile strength, 

FFRP, required to generate the equivalent lost flexural capacity in the rebars, assuming a lever arm 

of 508 mm (20 in.), is approximated by: 

FFRP ≈ FSteel (
d

dFRP
)         (2) 

FFRP ≈ 126.5 kN (
431.8 mm

508 mm
) = 107.5 kN (24.1 kips)  
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 Dividing the force by the pile face width of 50.8 cm (20 in.) yields the force per unit width, 

FFRP
̅̅ ̅̅ ̅̅ , of 2.12 kN cm⁄  (1.21 kips in⁄ . ). This requirement is satisfied by all installed systems. 

Assuming maximum metal loss is at 91.4 cm (3 ft) below the underside of the pile cap and using 

half of a 1.83 m (72 in.) longitudinal strip length, lbond, the required bond can then be determined 

as:  

Req′d Bond =
FFRP̅̅ ̅̅ ̅̅ ̅

lbond
         (3) 

Req′d Bond =
2.12 kN/cm

(183 cm 2⁄ )
= 0.23 MPa (33 psi)   

 Values will be higher if the maximum steel loss occurred nearer to the pile cap because the 

available length is smaller. However, corrosion potential measurements suggested that corrosion 

was unlikely within 457 to 610 mm (1.5 to 2 ft.) of the pile cap, (Mullins, et al., 2004) (Mullins, 

et al., 2007) (Aguilar, et al., 2009). 
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Table 10.6 Breakdown of pull-off tests.  

Repair Year Pile Installation 

Site Test Land Tests 

Total Data  

Points  
Total Interlayer 

failures 

Pull-off test value 

MPa (psi), 

interlayer failure  

Pull-off test values MPa (psi) 

(interlayer failure values 

excluded) 

Dry Splash Dry Splash Dry Splash Dry Splash Average Min. Max. 
Mean, 

Dry 

Mean, 

Splash 

Concrete 

 
99A  - - 4 6 4 6 - - - 

1.1 

(159) 

2.6 

(377) 

2.25 

(327) 

1.63 

(236) 

2003 

 

100A  4 1 1 (p5) b 
4 (p2-

p5) 
5 5 

2 

(p3, 

p5) 

1 (p2) 
0.32  

(46) 
0 

0.27 

(40) 

0.01 

(13) 

0.1 

 (20) 

100C  4 1 - - 4 1 
1 

(p2) 
1 (p1) 

0.14  

(20) 

0.27 

(40) 

0.82 

(119) 

0.6 

(93) 

0.27 

 (40) 

100D  3 4 - - 3 4 

2 

(p1-

p2) 

3 (p1-

p3) 

0.05  

(8) 

0.27 

(40) 

0.82 

(119) 

0.8 

(119) 

0.27  

(40) 

101A  6 - - 
5 (p1-

p5) 
6 5 - - - 0 

1.78 

(258) 

0.6 

(87) 

0.44  

(64) 

2006 

101B PB a 4 12 1 (p5) 
5 (p13-

p17) 
5 17 - 

5 (p1, 

p2, p4, 

p10, 

p13) 

0.22  

(32) 
0 

0.55 

(79) 

0.14 

(20) 

0.1 

(20) 

101C PB  8 5 
5 (p9-

p13) 
- 13 5 

1 

(p1) 
- 0 0 

1.23 

(179) 

0.1 

(20) 

0.3  

(44) 

2008 

103A PB  4 3 - 
5 (p4-

p8) 
4 8 - - - 

0.21 

(31) 

1.47 

(213) 

1.32 

(191) 

0.56 

 (82) 

103C PB  1 4 
4 (p1-

p4) 

2 (p1-

p2) 
5 6 - - - 

0.55 

(79) 

2.46 

(357) 

1.23 

(179) 

1.14 

(165) 

104A PB  4 3 
5 (p5-

p9) 

5 (p4-

p8) 
9 8 

4 

(p1-

p3, 

p7) 

- 
0.82 

(119) 
0 

1.37 

(198) 

0.71 

(103) 

0.69 

(100) 

104B  5 - - 2 5 2 - 2 
0.41 

(60) 
0 0 0 0 

  
Total 

(FRP) 
43 33 16 28 59 61 9 12      

  Total  43 33 20 34 63 67        

Piles 100A to 100D, 101B, 104A, 104B used polyurethane; all others used epoxy 
a PB = Pressure bagging 
b Identities data point for a given pile referenced in Figure 10.9 through Figure 10.11 
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10.10.3  Validity of Land Site Results 

 All land site tests were carried out within two weeks of the extraction of the pile from 

water. It was possible that unknown factors may have influenced the behavior of the wrap systems 

during extraction, transport, and temporary storage that cannot be determined by a side-by-side 

comparison of site and land data sets.  

 If the on-land sample set were affected by unforeseen factors, the effects would present as 

statistical metrics which differ from those for the in-situ data. From this perspective the population 

means for the two data sets would need to be equal (μland = μsite) for the on-land data to be used 

in the study. A t-test can provide a quantitative confidence level as to whether the difference 

between sample means is due to chance or not, (Walpole, et al., 2012). 

 Selecting the type of t-test is conditional on the number of data sets, sample size, inter-

dependence, the possibility that a t-statistic could be found within one or both ends of a 

standardized t-distribution (one- or two-tail), and on an optional assumption that population 

variances for both sets are equal. Since the site / land comparison involves two independent data 

sets with differing sample sizes and without assuming the population variances are equal, the test 

of choice was Welch’s two-tailed t-test. This test method is a variation of the popular student’s t-

test which is effective when working with sets of unequal variances and sample sizes. Here, the 

null hypothesis, H0, is that the population means are equal.  

 Well-bonded data points – locations where bond exceeded the 0.23 MPa (33 psi) 

requirement – were used for each t-test with the exception of the sets for piles 100A, 101B, and 

104B, which will be discussed. These data points represent the actual performance and degradation 

behavior of the bonded systems, which are in contrast to poor results – those not exceeding the 

bond transfer requirement - that may stem from a number of other influences (workmanship, 
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installation conditions, etc.). Before running the test, a normalization check was run for each data 

set to ensure robustness and applicability of the method, Ahad and Yahaya 2014. A confidence 

interval of 95% (α = 0.05) was used for the tests. This interval states that there is a 95% chance 

that if the t-statistic lies between the negative and positive t-critical values, the population means 

of the two data sets are equal.  

Table 10.7 Summary of two-sample t-tests, assuming unequal variances 

Pile 
Data Points (n) Negative t-Critical 

(Two-Tail) 
t-Statistic 

Positive t-Critical 

(Two-Tail) 

Result of 

Hypothesis Test In-Situ On Land 

100A 1 3    Error a 

101A 3 3 -3.182 1.834 3.182 Do not reject H0 

101B 1 6    Error 

101C 3 2 -4.303 1.000 4.303 Do not reject H0 

103A 6 5 -2.365 2.051 2.365 Do not reject H0 

104A 7 9 -2.145 -0.026 2.145 Do not reject H0 

104B 0 0    Error 
a Indicates an insufficient amount of well-bonded data points available for analysis  

 

 The results of the t-test for each pile, executed using MS Excel are summarized in Table 

10.7 It shows that the criterion is met for all applicable test piles excepting piles 100A, 101B, and 

104B. For these three piles (all prepreg polyurethane), insufficient well-bonded data points were 

available and the difference between sample means could not be tested. However, since four of the 

seven queried test piles indicated that no factors significantly influenced the data points when the 

piles were extracted, it is assumed that the remaining piles were similarly unaffected.  

10.10.4  Concrete (Figure 10.8) 

 A total of ten tests were carried on the control pile (99A) – four in the dry region and six 

in the splash zone. The measured salt concentration in the cover for this pile is given in Table 10.2.  

The average pull-off strength reported in Figure 10.8 was 28% lower in the splash zone compared 

to that in the dry region. The cyclic effect of tidal cycles may have led to a degradation in concrete 
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properties in the splash. According to ACI 318-14 section 14.5.2.1, the tensile strength of plain 

concrete can be taken as 5√f′c. This translates to a concrete compressive strength of 29.5 MPa 

(4,290 psi) for the dry region and 15.4 MPa (2,237 psi) for the splash zone.  This is consistent with 

the specified concrete strength for the piles of 27.6 MPa (4,000 psi).  

 

 Figure 10.8 Pull-off values for concrete (pile 99A) 

10.10.5  Piles Repaired 2003-04 (Figure 10.9) 

 No piles belonging to this series were pressure bagged.  Three of the four piles were 

wrapped using polyurethane resin and one an epoxy resin that had been specially formulated for 

underwater applications (Pile 101A).  A total of 33 tests were conducted in this series. While some 

bond values were high in both dry (1.7 MPa (258 psi) in 101A) and splash (0.9 MPa (129 psi) in 

101A) zones, there were also twelve locations where bond was zero (8 in polyurethane, 4 in the 

epoxy).  
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 Five of the eight zero values in the polyurethane system were a subset of ten interlayer 

failures – all in the polyurethane resin system. The average residual bond for these failures ranged 

from 0.05 (8) to 0.3 (46) MPa (psi) Table 10.6.  

 Since interlayer failures do not reflect FRP bond with the concrete substrate, they are 

excluded in the calculation of average residual values included in Figure 10.9. The interlayer 

failures suggest insufficient resin had been applied in the prepreg system.  

  

Figure 10.9 Pull-off test results for repairs conducted in 2003-04 

10.10.6  Piles Repaired 2006 (Figure 10.10) 

 Both piles – one epoxy and one polyurethane - repaired in this series were pressure bagged. 

Visual inspection (Figure 10.4) had suggested a high relative residual bond in these piles.  A total 

of 40 tests were conducted – 22 for the polyurethane and 18 for the epoxy. There were 19 zero 



 

119 

bond values (12 for polyurethane and 7 for epoxy) and 6 interlayer failures (5 for polyurethane 

and 1 for epoxy). As before, interlayer failures are not included in the average values given in 

Figure 10.10. The highest residual bond was 0.41 MPa (60 psi) (101B – polyurethane) in the dry 

zone and 1.2 MPa (179 psi) in the splash zone (101C - epoxy).   

 Whereas limited improvement was expected for the polyurethane resin because it released 

carbon dioxide during the curing process, the epoxy resin was expected to deliver superior results. 

The reason for the poor outcome became evident from the failure mode that showed that not 

enough epoxy had been applied (discussed later).  The results indicate that visual inspection is not 

a reliable method for identifying poor bond locations.  

  

Figure 10.10 Pull-off test results for repairs conducted in 2006 

10.10.7  Piles Repaired 2008 (Figure 10.11) 

A total of five piles were repaired in this series. Four were pressure bagged, three using 

epoxy resin, and one using polyurethane. A fifth pile was not pressure bagged. This was installed 

by a sponsor and used a polyurethane resin. Thus, it was possible to make direct comparison of 

the performance of pressure bagged and non-pressure bagged piles.  

A total of 47 tests were conducted, 24 for the polyurethane (104A, B) and 23 for the epoxy 

(103A, 103C). Results summarized in Figure 10.11 showed that the performance of the pressure 
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bagged piles was superior compared to the non-pressure bagged pile (104B). The average residual 

bond for epoxy (103A, 103C) was higher in the dry zone (1.3 MPa (191 psi), 1.2 MPa (179 psi)) 

vs 0.7 MPa (103 psi) for polyurethane (104A) and comparable in the splash zone (0.5 MPa (82 

psi)), 1.1 MPa (165 psi) vs 0.7 MPa (100 psi) for polyurethane. Even though pressure bagging was 

used, there were four interlayer failures in the polyurethane system (excluded in the calculated 

average value included in Figure 10.11). However, the average residual bond (Table 10.6) for these 

failures was relatively high (0.8 MPa (119 psi)).  

The performance of the non-pressure bagged pile 104B was distinctly poorer. The average 

bond was zero from five points in the dry zone but higher (0.4 MPa (60 psi)) in the splash zone 

where both failures were interlayer. As discussed, the latter tests were conducted on land and the 

mean value did not satisfy statistical criterion (see Table 10.7).   

 

Figure 10.11 Pull-off test results for piles repaired in 2008 
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10.10.8  Failure Mode 

 The failure modes observed in the 120 tests were cohesive, mixed mode, adhesive and 

inter-layer failures. Cohesive failure in the substrate concrete during pull-off testing corresponds 

to Mode G in ASTM D7522 (ASTM 2009). Within the recorded data set, one specimen (0.85% of 

total points) exhibited a Mode G failure. A total of 13 specimens (10.7% of total points) exhibited 

Mode F, which is a mixed mode condition. The remaining 107 specimens exhibited Mode B 

(cohesive in laminate) or Mode E (adhesive at bond plane) failure modes. Figure 10.12 illustrates 

the failure modes encountered during testing.  

 
 Figure 10.12 Representative failure modes 

10.11 Discussion 

 Results of pull-off tests summarized in Table 10.6 and Figure 10.9 through Figure 10.11 

showed wide variation. Bond values ranged from zero (37 occurrences – 26 with the polyurethane 

resin) to a high of 2.5 MPa (357 psi). Among piles pressure bagged in 2006 there were 19 locations 



 

122 

where the measured bond was zero, 12 for polyurethane resin and 7 for epoxy. For a similar 

installation in 2008 there was just a single instance of zero bond (polyurethane - 104A).  The 

observed variability is common in field testing and has been reported by other researchers, e.g. 

(Banthia, et al., 2010), (Myers, et al., 2011).  

 (Banthia, et al., 2010) conducted tests on corrosion repair of columns after 13 years of 

exposure. Since FRP was applied to a vertical surface and tests conducted after 9 and 13 years 

comparisons are more appropriate. The variation in bond ranged from 0.12 MPa (17 psi) to 4.95 

MPa (718 psi). The higher value reflects the higher compressive strength of concrete used in the 

columns but the lower value is comparable to those obtained in this study. Though maximum and 

minimum values may be deemed to be similar if adjustments are made for compressive strength, 

reported mean values of 0.83 (120 psi) to 3.54 MPa (513 psi) were higher. This reflects the better 

control that can be exercised in land installations and on dry surfaces compared to marine 

environment.  

10.11.1 Cause of Poor Bond 

 Research has proven that water intrusion is the most likely reason for poor bond in epoxy- 

based systems, e.g. (Judd, 1977), (Myers, 2007), (Dolan, et al., 2009) (Sen, 2015). The extent to 

which water can diffuse to the bond line or between FRP layers is a function of surface preparation, 

workmanship and the type of resin. Since the same surface preparation and the same resin was 

used in all the applications their effect can be discounted. The highest strengths were in piles 

pressure bagged in 2008 where the bonding surface was heavily scarred to install sacrificial anodes 

and reference electrodes (see Figure 10.13).  

 FRP installations in marine environments are recognized to be problematic. (Walker, 2007) 

reported that voids of 5-8% are the norm for such applications adding that they can be even higher. 
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Voids provide a direct pathway for moisture to reach the concrete substrate or accumulate between 

FRP layers.  

   
Figure 10.13 Instrumented face for hybrid FRP-CP  

Pressure bagged repair (2008) 

The extent to which moisture can be transported or absorbed in voids depends on the degree 

of cure of the epoxy. If epoxy does not fully cure moisture absorption is increased because the 

unused polyamide hardener provides additional sites for hydrogen bonding by water molecules, 

(Sharp, 2015).  Ambient temperature at the time the two-part epoxy is mixed controls pot life and 

therefore the time available for on-site fabric saturation.  

 Figure 10.14 shows three photos providing evidence of water intrusion at the bond line and 

incomplete fabric saturation. They were taken from different piles. The first picture (Figure 

10.14a) shows moisture in the bond plane; the second, water stored between two layers being 

drained during scoring (pile 101A repaired in 2004). The accumulation of water between 

layers led to marine growth and voids between layers (Figure 10.14b).  Figure 10.14c shows 

incomplete fabric saturation in specimen 101C that was pressure bagged in 2006. There was no 
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similar evidence for piles 103A, 103C that used the same epoxy and were also pressure bagged in 

2008.  

10.11.2 Performance of Epoxy System 

 Epoxy repairs were carried out in 2004, 2006 and 2008. Results (Figure 10.9 and Figure 

10.10) were comparatively poorer in 2004 (installed when conditions were cool) and 2006 (when 

conditions were hot) and likewise improved in 2008 (Figure 10.11) when conditions were 

moderate (see Table 10.5). Thus, the performance mirrored ambient condition at the time the two 

parts of the epoxy were mixed.   

 Cool conditions under which the epoxy was mixed for pile 101A inevitably delayed curing 

thereby allowing moisture to diffuse and accumulate between layers over time (Figure 10.14a). 

Conditions were hot and humid when pile 101C was pressure bagged. Illig (2016) reported the pot 

life to be as little as 10-15 minutes for repairs conducted on the nearby Sunshine Skyway Bridge 

in 2007. This was also the experience of USF researchers. Using ice to extend pot life (as used in 

the Sunshine Skyway repair) was not a viable option. The limited time available led to incomplete 

saturation of the FRP material (Figure 10.14c). Conditions were more favorable in 2008 when the 

ambient temperature was 75F (24C). There was sufficient time to saturate the fabric and place it 

on the pile. Measured residual bond was notably higher for piles 103A, 103C (Figure 10.11).   

 



 

125 

  

(a) Moisture in bond plane and between FRP layers 

    

(b) Marine growth between FRP layers and voids between FRP layers  

 

(c) Fiber not fully impregnated by epoxy; second and third photos are at the same location 

and show the dolly and the concrete surface to which it was bonded. Arrows point to 

locations with no epoxy. Dark regions point to regions with trace of epoxy. 

Figure 10.14 Reasons for poor bond 
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10.11.3 Performance of Polyurethane Resin 

 The polyurethane resin requires water for curing and is therefore not as sensitive to ambient 

conditions. Since this resin system used lower strength fibers it required a greater number of FRP 

layers ranging from 2 in pressure bagged pile (101B) and 6 in non-pressure bagged piles 100C, 

100D (Table 10.1).   

 During curing carbon dioxide is released that can lead to the creation of voids at the 

concrete interface and leave air pockets between layers if the gas is not permitted to escape. Not 

surprisingly, the zero bond values and interlayer failures were common for this resin system. There 

were a total of 26 tests that recorded zero bond (Figure 10.9 through Figure 10.11) and 21instances 

of inter-layer failure combining both zero and non-zero values (Table 10.6). This also suggests 

that the fabric may not have been adequately saturated in the factory.  

 Table 10.8 Pull-off test results by resin type 

Year Pile 

Total data points Pull-off test results a 

Dry Splash 
Min. Max. 

Mean, 

Dry 

Mean, 

Splash 

MPa psi MPa psi MPa Psi MPa psi 

Polyurethane 

2003 

100A 5 5 0 0 0.4 60 0.2 24 0.2 28 

100C 4 1 0 0 0.8 119 0.47 69 0.3 40 

100D 3 4 0 0 0.8 119 0.4 53 0.01 10 

2006 101Ba 5 17 0 0 0.5 79 0.1 20 0.15 23 

2008 
104Aa 9 8 0 0 1.4 198 0.8 110 0.7 100 

104B 5 2 0 0 0.4 60 0 0 0.4 60 

Total 31 37         

Epoxy 

2004 101A 7 5 0 0 1.8 258 0.6 87 0.44 64 

2006 101Ca 13 
5 

 
0 0 1.2 179 0.1 18 0.3 44 

2008 
103Aa 4 8 0.2 31 1.5 213 1.3 191 0.56 82 

103Ca 5 6 0.5 79 2.5 357 1.2 179 1.13 165 

Total 29 24         
a PB = pressure bagging 
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 Table 10.8 compares the maximum, minimum and mean values for the dry and splash 

zones for the two resin systems. A total of 68 tests were conducted for the polyurethane resin; 53 

tests were conducted for the epoxy resin since there were fewer specimens. Inspection of this table 

indicates that the epoxy resin outperformed polyurethane. 

10.11.4 Pressure vs Non-Pressure Bagged Piles 

 The performance of both piles pressure bagged in 2006 was worse than expected (Figure 

10.10). For epoxy this was attributed to hot ambient conditions as discussed. For polyurethane it 

was likely due to pressure creating voids by trapping gases and preventing their escape during 

cure. 

 Figure 10.11 shows that pressure bagging led to a significantly higher residual bond 

compared to the non-pressure bagged pile 104B. This was possibly because of a change in the 

application technique based on laboratory findings, (Sen, et al., 2010). Instead of applying an initial 

primer coating to the concrete surface as recommended, the resin was applied to the already 

saturated prepreg material that was then placed on the bare concrete surface. This reduced the 

incidence of air bubbles and improved bond. However, there was one case where the measured 

bond was zero (Figure 10.11). 

10.11.5 Change In Bond: 2005 vs 2016 Results 

Pull-off tests were conducted in 2005 on three piles 100A, 100C (both prepreg) and 101A 

(epoxy), (Sen, et al., 2007). None were pressure bagged. Two of the piles, 100C and 101A were 

re-tested in 2016, and therefore it was possible to assess changes in bond over this eleven year 

time period. In the 2005 tests, bond was measured at four locations in each pile, two in the dry 

zone and two in the splash zone. Bond values reported in (Sen, et al., 2007) included inter-layer 

failure values that are excluded in Table 10.6. Though the target was 5 tests per zone for the 2016 
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tests, this was only met for pile 101A, not 100C. For the latter pile, five tests were carried with 

only one in the splash zone. The spatial distribution showing the location of the tests for piles 100C 

and 101A is mapped in Figure 10.15.  

All failures in 100C (prepreg) in 2005 were inter-layer. In 2016, two of the five failures 

were inter-layer for the same pile. In contrast, failures in the epoxy pile 101A were adhesive, mixed 

mode or cohesive in both 2005 and 2016. 

 

Figure 10.15 Spatial location of pull-off tests in 2005 and 2016 

Figure 10.16 plots values of the residual bond for the two piles tested. This shows averages 

that include and exclude inter-layer failures for the 2016 tests. Since the tests were not conducted 

at the same locations there are differences in the measured values. Values were higher in the 2016 

tests that were conducted closer to the rounded edges because of increased confinement. Because 

of the disparate failure modes, comparisons show increases in the dry zone in both piles. In 
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contrast, values in the splash zone were higher in 2005. The results portray the random variation 

in bond strength in non-pressure bagged piles. No underlying trend can be discerned. 

 

Figure 10.16 Results for piles tested in 2005 and 2016 

10.12 Conclusions 

 This study presents results from a field evaluation in which the FRP-concrete bond was 

measured for two disparate FRP systems. One was a prepreg using polyurethane resin and the 

other a wet layup using specially formulated epoxy intended for application on wet surfaces. Of 

13 piles that were repaired (Figure 10.1), 10 were tested. A total of 120 pull-off data points were 

collected in the dry and splash zones (Figure 10.3). Based on the foregoing results and discussion, 

the following conclusions can be made: 

 Findings from visual inspection can be misleading (Figure 10.4). 
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 Bond was poor in epoxy-based systems when the two part resin was mixed in 

unfavorable conditions (Table 10.5). This reduced pot life or increased cure time and 

adversely impacted performance (Figure 10.9,Figure 10.10 and Figure 10.14). It is 

recommended to cool resins before mixing. 

 Epoxy-based systems outperformed polyurethane-based systems in both the dry and 

splash zones (Table 10.8).  

 Pressure bagged piles repaired in 2008 performed best for both resin systems (Figure 

10.11).  

 Epoxy-based, pressure bagged installations are comparably durable even when mixed in-

situ and applied to wet surfaces in a marine environment.  

 Findings from destructive evaluation are based on studies conducted at the project site and 

do not necessarily apply to other installations. However, considerations of site evaluation logistics, 

the qualitative improvement in strength offered by pressure bagging, and the dangers of applying 

FRP during hot weather may be applicable to other projects.   

 

 



 

131 

REFERENCES 

ACI (American Concrete Institute). (1992). "Building code requirements for masonry structures" 

ACI 530-92/ASCE5-92/TMS 402-92, Farmington Hill, MI. 

 

ACI (American Concrete Institute). (2002). "Design and Construction of Externally Bonded FRP 

Systems for Strengthening Concrete Structures". ACI 440.2R-02, Farmington Hills, MI.  

 

ACI (American Concrete Institute). (2003). "Guide for the selection of polymer adhesives with 

concrete". (Reapproved 1997, 2003), ACI 503.5R-92, Farmington Hill, MI. 

 

ACI (American Concrete Institute). (2008). "Guide for the design and construction of externally 

bonded FRP systems for strengthening concrete structures." ACI 440.2R-08, Farmington 

Hills, MI. 

 

ACI (American Concrete Institute). (2010). "Guide for the design and construction of externally 

bonded fiber-reinforced polymer systems for strengthening unreinforced masonry 

structures", ACI 440.7R-10, Farmington Hills, MI. 

 

ACI (American Concrete Institute). (2014). "Building Code Requirements for Structural 

Concrete." ACI 318-14 , Farmington Hills, MI. 

 

ACI (American Concrete Institute). (2017). "Guide for the Design and Construction of Externally 

Bonded FRP Systems for Strengthening Concrete Structures" ACI 440.2R-17, Farmington 

Hills, MI.  

 

Aguilar, J., Winters, D., R., S., Mullins, G., & Stokes, M. (2010). Improvement in FRP-Concrete 

bond by external pressure. Transportation Research Record 2131, 145-154. 

 

Aguilar, J., Winters, D., Sen, R., Mullins, G., & Stokes, M. (2009). Innovative underwater pile 

repair incorporating cathodic protection. University of South Florida. Tampa, FL: Final 

report Hillsborough County. 

 

Aguilar, J., Winters, D., Sen. R., M. G., & Stokes, M. (2010). FRP-CP system for pile repair in 

tidal waters. Transportation Research Record 2150, 111-118 

 

Ahad, N. A., and Yahaya, S. S. S. (2014). Sensitivity analysis of Welch’s t-test. In AIP Conference 

Proceedings, Vol. 1605, No. 1, pp. 888-893, AIP. 

 

 

.



 

132 

Al Azzawi, M., Hopkins, P., Mullins, G., & Sen, R. (2018). FRP-Concrete bond after 12 year 

exposure in tidal waters. ASCE Journal of composites for construction. Accepted for 

publication. 

 

Al Azzawi, M., Hopkins, P., Ross, J., M. G., & Sen, R. (2018). CFRP-CMU bond after 20 years 

outdoor exposure. ACI structural journal. Accepted for publication. 

 

Aligizaki, K. K. (2005). Pore structure of cement-based materials testing, interpretation and 

requirements. CRC Press, Boca Raton, FL. 

 

ASTM (American Society for Testing and Materials). (2009). “Standard test method for pull-off 

strength for FRP bonded to concrete substrate.” ASTM D7522/D7522M-09, West 

Conshohocken, PA. 

 

ASTM D7522-12 Standard test method for pull-off strength for FRP laminate systems bonded to 

concrete substrate, ASTM International, West Conshohocken, PA. 

 

ASTM C642-13 standard Test Method for Density, Absorption, and Voids in hardened concrete, 

STM International, West Conshohocken, PA. 

 

Attari, A., McNally, C., Richardson, & G., M. (2016). A combined SEM-Calorimetric approach 

for assessing hydration and porosity development in GGBS concrete. Cement and concrete 

composites, 68, 46-56. 

 

Au, C., & Büyüköztürk, O. (2005). Peel and shear fracture characterization of debonding in FRP 

plated concrete affected by moisture. ASCE- Journal of composites for construction, 10(1). 

 

Bailey, D. M., Hock, V. F., Noyce, P. A., & Restly, M. (2013). Polymer composite wrapping and 

cathodic protection system for reinforced concrete piles in marine applications (No. 

ERDC/CERL-TR-13-6). Engineer research and development center-construction 

engineering lab.  

 

Balaras, C., & Agiriou, A. (2002). Infrared thermography for building diagnostics. Energy and 

buildings, 34(2), 171-183. 

 

Banthia, N., Abdolrahimzadeh, A., Demers, M., Mufti, A. A., & Sheikh, S. A. (2010). Durability 

of FRP-concrete bond in FRP-strengthened bridges. Concrete International, 32, 45-51. 

 

Blackburn, B. P., Tatar, J., Douglas, E. P., & Hamilton, H. R. (2015). Effects of hygrothermal 

conditioning on epoxy adhesives used in FRP composites. Construction and building 

materials, 96, 679-689. 

 

Carloni, C., & Subramaniam, K. (2012). FRP-Masonary debonding numerical and experimental 

study of the role of mortar joints. Journal of composites for construction, 16(5), 581-589. 

 



 

133 

Chajes, M., Finch, J. W., Januszka, T. F., & Thomson, T. A. (1996). Bond and force transfer of 

composite material plates bonded to concrete. 98, 256-264. 

 

Cho, S.-W. (2012). Using mercury intrusion porosimetry to study the interfacial properties of 

cement-based materials. Journal of marine science and technology, 20, 269-273. 

 

Choi, S., Gartner, A. L., Etten, Van, N., Hamilton, H. R., & Douglas, E. P. (2011). Durability of 

concrete beams externally reinforced with CFRP composites exposed to various 

environments. Journal of composites for construction, 16(1). 

 

Cromwell, J., Harries, K., & Shahrooz, B. (2011). Environmental durability of externally bonded 

FRP materials intended for repair of concrete structures. Construction and building 

materials, 25, 2528-2539. 

 

De Lorenzis, L., Miller, B., & Nanni, A. (2001). Bond of Fiber-Reinforced Polymer laminates to 

concrete. ACI materials journal, 98, 256-264. 

 

Delagrave, A., Bigas, J., OIlivier, J., Marchand, J., & Pigeon, M. (1979). Influence of the 

interfacial zone on the chloride diffusivity of mortars. Advanced cement based material, 5, 

86-92. 

 

Detwiler, R. J., Thomas, W., Stangebye, T., & Urahn, M. (2009). Variability of 4x8 cylinder tests, 

Vol., 31, No. 5, 2009, pp. 43-47. 

 

Dolan, C., Tanner, J., Mukai, D., Hamilton, H., & Douglas, E. (2009). Research report for 

evaluating the durability of bonded CFRP repair/strengthening of concrete beams: 

technical data and discussion supporting the draft final report of NCHRP project. 12-73. 

 

Engebretson, D., Sen, R., Mullins, G., & Hartley, A. (1996). Strengthening concrete block walls 

with carbon fiber. Materials for the new millennium, Proceedings of the materials 

engineering conference volume 2, ASCE, 2, 1592-1600. 

 

Global historical climatology network. (2016, 10 11). Retrieved from National centers for 

environmental information: https://www.ncdc.noaa.gov/cdo-web/search 

 

Grunenfelder, L., & Nutt, S. (2010). Void formation in composite prepregs - effect of dissolved 

moisture Composites Science and Technology. Composites science and technology, 70, 

2304-2309. 

 

Haber, Z., Mackie, K., & Zhao, L. (2012). Mechanical and environmental loading of concrete 

beams strengthened with epoxy and polyurethane matrix carbon fiber laminates. 

Construction and building materials, 26, 604-612. 

 

Hamilton, H. R., Brown, J., Tatar, J., Lisek, M., & Brenkus, N. R. (2017). Durability evaluation 

of florida’s Fiber-Reinforced Polymer (FRP) composite reinforcement for concrete 

structures. Final report for FDOT contract No. BVD31-977-01. 

https://www.ncdc.noaa.gov/cdo-web/search


 

134 

Hartley, A. (1995). Strengthening of concrete masonary walls using CFRP. MSCE thesis, 

University of South Florida, Tampa, FL. 

 

Hartley, A., Mullins, G., & Sen, R. (1996). Repair of concrete masonry block walls using carbon 

fiber. Advanced composite materials in bridges and structures (Editor M. El-Badry), 

Canadian society of civil engineers, 795-802. 

 

Hong Zhao, D. D. (1990). Quantitative backscattered electron analysis techniques for cement -

based materials. Lawrence, Kansas: The University of Kansas. 

 

Illig, G. (2016). Concrete repair, strengthening and protection. University of South Florida, Guest 

lecture, April, Tampa, FL. 

 

Jean-Pierra Pascault, R. J. (2010). Epoxy polymers new materials and innovations. Wiley-VCH. 

Strauss GmbH, Mörlenbach, Germany. 

 

Jelinski, L. W. (1985). Nature of the water-epoxy interaction. Macromolecules, 18 (6), pp 1091–

1095. 

 

Jovan Tatar, S. H. (2015). Bond durability factor for externally bonded CFRP systems in concrete 

structures. ASCE, Journal of composites for construction 20 (1), 04015027. 

 

Judd, N. (1977). Absorption of water into carbon fibre composites. The British Polymer Journal, 

9(1), 36-40. 

 

Karbhari, V. M., & Ghosh, K. (2009). Comparative durability evaluation of ambient temperature 

cured externally bonded CFRP and GFRP composite systems for repair of bridges. 

Composites part A: Applied science and manufacturing, 40(9), 1353-1363. 

 

Lau, D., & Büyüköztürk, O. (2010). Fracture characterization of concrete/epoxy interface affected 

by moisture. Mechanics of materials, 42(12), 1031-1042. 

 

Leng, D. (2000). Zinc mesh cathodic protection systems. Materials performance, 39, 28-33. 

 

Li, L., & Sagüés, A. (2004). Chloride Corrosion Threshold of Reinforcing Steel in Alkaline 

Solutions—Effect of Specimen Size. Corrosion the journal of science and engineering, 60, 

195. 

 

Long, M., C., D., Kesteloot, S., Bigourdan, B., Le Gac, P., & Szulc, J. (2012). Durability of CFRP-

Concrete bonding in a marine environment. European conference on composite materials, 

1-8. 

 

Lucas F.M. da Silva, A. O. (2011). Handbook of Adhesion Technology. Springer-Verlag, Berlin 

Heidelberg. 

 



 

135 

Maerz, H., Chepur, P., Myers, J., & Linz, J. (2001). Concrete roughness measurement using laser 

profilometry for fiber reinforced polymer sheet application. Transportation research board, 

132-139. 

 

Mehta, P. K., & Monteiro, P. J. (1993). Concrete microstructure, properties and materials.Prentice 

Hall, Englewood Cliffs, NJ. 

 

Mehta, P. K., & Monteiro, P. J. (2006). Concrete microstructure, properties and materials. 

McGraw-Hill. NY, NY. 

 

Miller, B. (1999). Bond between carbon fiber reinforced polymer sheets and concrete. University 

of Missouri-Rolla, Department of civil engineering, University of Missouri-Rolla. 

 

Mindess, S., Y. J., & Darwin, D. (2003). Concrete. Prentice Hall, Englewood Cliffs, NJ. 

 

Mirmiran, A., Shahawy, M., Nanni, A., Karbhari, V., Yalim, B., & Kalayci, A. S. (2008). NCHRP 

report 609-Recommended construction specifications and process control manual for 

repair and retrofit of concrete structures using FRP composites. Washington, D.C: National 

Cooperative Highway Research Program. 

 

Momber, W. (1999). Surface preperation of concrete-the German experience. Conference of new 

application of water jet technology, 207-217. Isniomaki, Japan. 

 

Mullins, G., Hartley, A., Engebretson, D., & Sen, R. (2000). Settlement repair of lightly reinforced 

concrete block walls using CFRP. Innovative systems for seismic repair and rehabilitation 

of structures. Proceedings of the second conference on seismic repair and rehabilitation of 

structures (SRRS2) Edited by Ayman Mosallam. Technomic publishing company, 171-

180. 

 

Mullins, G., Sen, R., Suh, K., & Winters, D. (2004). Underwater FRP pile wrap of the Friendship 

Trails Bridge. Final Report submitted to Hillsborough County Tampa, FL. 

 

Mullins, G., Sen, R., Suh, K., & Winters, D. (2006). A demonstration of underwater FRP repair. 

Concrete international. 

 

Mullins, G., Sen, R., Winters, D., & Schrader, A. (2007). Innovative pile repair. Final Report 

submitted to Hillsborough County, FL. 

 

Myers, J. (2007). Durability of external fiber-reinforced polymer strengthening systems. 

Durability of composites for civil structural applications (editor V.M.Karbhari), Woodhead 

Publishing Limited, Cambridge, UK, 247-283. 

 

Myers, J., & Muncy, N. (2011). Bond behavior of externally bonded fiber reinforced polymer 

laminates subjected to in-situ service loading and environmental conditioning. CDCC-11, 

durability and sustainability of fibre reinforced polymer (FRP) composites for construction 

and rehabilitation, Québec City, Québec, Canada. 



 

136 

Neville, A. (2011). Properties of concrete. Pearson, Edinburgh Gate, Harlow, England 

 

Quan Yang, G. X. (2007). Hygrothermal ageing of an epoxy adhesive used in FRP strengthening 

of concrete. Journal of applied polymer science, Vol. 107, Issue 4, 2607-2617. 

 

Ross, J. (2013). Evaluating CFRP-masonry bond using thermal imaging. MSCE Thesis, University 

of South Florida, Department of civil and environmental engineering, Tampa, FL. 

 

Sen, R. (2015). Developments in the durability of FRP-concrete bond. Construction and building 

Materials, 78, 112-125. 

 

Sen, R., & Mullins, G. (2007). Application of FRP composites for underwater piles repair. Comp. 

Part B: Eng., 38, 751-758. 

 

Sen, R., & Mullins, G. (2010). Underwater FRP repair of corroding piles incorporating cathodic 

protection. Final report NCHRP-IDEA. 

 

Sen, R., Mullins, G., & Shahawy, M. (2008). FRP repair and strengthening of structurally deficient 

piles. Journal of transportation research board, 221-230. 

 

Sen, R., Mullins, G., Aguilar, J., & Winters, D. (2011). Advances in corrosion repair of piles using 

FRP. ACI SP-275-30, ACI, Farmington Hills, MI. 

 

Sharp, N. (2015). Effects of moisture on the properties of epoxies and carbon-epoxy composite 

laminates. Ph.D dissertation, Purdue University West Lafayette, Indiana. 

 

Shen, X. (2002). Effect of surface roughness and putty thickness on the bond performance of FRP 

laminates. University of Missouri-Rolla, Department of civil engineering, Rolla, Missouri. 

 

Suh, K., Sen, R., Mullins, G., & Winters, D. (2008). Corrosion monitoring of FRP repaired piles 

in tidal waters. ACI SP-252, 137-156. 

 

Tatar, J., & Hamilton, H. (2016). Comparison of laboratory and field environmental conditioning 

on FRP-concrete bond durability. Construction and building materials, 122, 525-536. 

 

Tuakta, C., & Büyüköztürk, O. (2011). Conceptual model for prediction of FRP-concrete bond 

strength under moisture cycles. ASC, Journal of composites for construction, 15(5), 743-

56. 

 

Walker, L. (2007). Aerospace grade composite technology for infrastructure Paper 17B, 2007, 

Cobrae conference,University of Stuttgart, Stuttgart, Germany. 

 

Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (2012). Probability & statistics for engineers 

& scientists (9 ed.). Boston: Pearson education. 

 



 

137 

Winslow, D. N., & Diamond, S. (1970). A mercury porosimetry study of the porosity in portland 

cement. Journal of Materials, 5, 564-585. 

 

Winters, D., Mullins, G., Sen, R., Schrader, A., & Stokes, M. (2008). Bond enhancement for FRP 

pile repair in tidal waters. Journal of composites for construction, 10.1061/(ASCE) 1090-

0268, 334-343. 

 

Yoshizawa, H., Myojo, T., Okoshi, M., Mizukoshi, M., & Kliger, H. (1996). Effect of sheet 

bonding condition on concrete members having externally bonded carbon fiber sheet. 

Fourth materials engineering conference. Washington, D.C.: ASCE annual convention. 

 

Zhenyu Ouyang, B. W. (2008). Modeling of moisture diffusion in FRP strengthened concrete 

specimens. ASCE, Journal of composites for construction, Vol. 12, 4, 425-434.  

 

Zhou, A., Büyük€oztürk, O., & Lau, D. (2017). Debonding of concrete-epoxy interface under the 

coupled effect of moisture and sustained load. Cement and concrete composites, 80, 287-

297  

(2017, 4 14). Retrieved from Weather underground: 

https://www.wunderground.com/history/airport/KSPG/2008/12/18/DailyHistory.html?req

_city=&req_state=&req_statename=&reqdb.zip=&reqdb.magic=&reqdb.wmo 

(2017, 5 16). Retrieved from Campbell scientific: 

http://www.campbellsci.com/cr1000#specifications 



 

138 

 APPENDIX A: PHOTOS AND CALCULATIONS 

 
Figure A.1 Group 15 mix design 
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Figure A.2 Group 35 mix design 

 

Figure A.3 Group 50 mix design 
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Figure A.4 Failure mode A15-Control 
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Figure A.5 Failure mode B15-control 
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Figure A.6 Failure mode A15-wet 
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Figure A.7 Failure mode B15-wet 
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Figure A.8 Failure mode A15-dry 
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Figure A.9 Failure mode B15-dry 
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Figure A.10 Failure mode A35-control 
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Figure A.11 Failure mode B35-control 
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Figure A.12 Failure mode A35-wet 
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Figure A.13 Failure mode B35-wet 
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Figure A.14 Failure mode A35-dry 
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Figure A.15 Failure mode B35-dry 
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Figure A.16 Failure mode B50-control 
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Figure A.17 Failure mode B50-control 
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Figure A.18 Failure mode A50-wet 
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Figure A.19 Failure mode B50-wet 
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Figure A.20 Failure mode A50-dry 
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Figure A.21 Failure mode B50-dry 
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Figure A.22 Group 15 bond line images 
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Figure A.23 Group 35 bond line images 
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Figure A.24 Group 50 bond line images 
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