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ABSTRACT 

Rapid and unplanned urbanization has ushered in a variety of public health challenges, including 

exposure to traffic pollution and greater dependence on automobiles.  Moreover, vulnerable population 

groups often bear the brunt of negative outcomes and are subject to disproportionate exposure and health 

effects.  This makes it imperative for urban transportation engineers, land use planners, and public health 

professionals to work synergistically to understand both the relationship between urban design and 

population exposure to traffic pollution, and its social distribution.  Researchers have started to pay close 

attention to this connection, mainly by conducting observational studies on the relationship between 

transportation, urban form, and air quality.  However, research on this topic is still nascent.  Further, most 

studies do not predict exposures under alternative urban design scenarios.  Hence, to understand the 

relationship between urban design and population exposures, there is a need to build and apply integrated 

modeling tools that can predict exposures under alternative urban design scenarios. 

Within this context, the overarching goal of this dissertation is to understand how the 

transportation infrastructure of cities can be designed for improved urban air quality and mitigation of 

population exposure to traffic pollution.  The study area is Hillsborough County, Florida, a sprawling 

region with limited transit availability and a diverse population along with a mix of urban, suburban, and 

rural areas.  The rank of the county for sprawl and congestion metrics (i.e., yearly delay and travel time 

index) fall in the mid-range in comparison with other US urban regions.  Thus, the study area may be 

representative of other US urban regions with medium sprawl and above-average congestion levels.  

Oxides of nitrogen (NOx), a surrogate for traffic pollution, is the focus pollutant.  The Health Effects 

Institute’s report on traffic-related air pollution identifies NOx as a potential surrogate due to its relative 

ease of measurement and the abundance of epidemiologic studies that characterize exposures to NOx. 
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Because exposures are dependent on the spatial and temporal distributions of both people and 

pollution, this study first sought to understand the importance of activity and travel patterns of individuals 

for exposure estimation.  To estimate exposures, the 2009 National Household Travel Survey (NHTS) 

data containing daily individual activity records, ArcGIS-estimated shortest-time travel route profiles, and 

the annual-average diurnal cycle of NOx derived from hourly CALPUFF dispersion model results from 

2002, were combined.  Two exposure measures were estimated: activity-based exposure that considers 

the daily activity and travel patterns of individuals, and residence-based exposure that considers only the 

pollutant concentrations at the residences.  Exposure estimation without inclusion of activity and travel 

patterns was found to slightly underestimate activity-based exposures on average.  Additionally, 

disproportionately-high exposures were found for blacks, Hispanics, below poverty groups, urban 

residents, and people whose daily travel time is greater than one hour.  Finally, urbanicity and travel time 

variables were found to be the strongest predictors of daily exposure. 

Following this, a modeling framework was developed to predict population exposure by 

integrating activity-based travel demand modeling (DaySim), dynamic traffic assignment simulation 

(MATSim), mobile-source emission estimation (EPA MOVES), and pollutant dispersion modeling 

(R-LINE).  This modeling framework was used to predict daily population and subgroup exposures by 

estimating the high-resolution spatial and temporal distributions of both pollution and individual activities 

for the year 2010.  Persistent exposure inequalities were found at the population-level; blacks, Hispanics, 

active age groups (19-65 years), below-poverty and middle-income groups, urban residents, and 

individuals with daily travel times above one hour had higher estimated exposures than the population 

mean.  These inequalities for blacks, Hispanics, and below-poverty non-white groups worsened at higher 

exposure levels.  Use of low-resolution activity and pollution data as opposed to high-resolution data led 

to underestimation of exposures (by 10% on average). 

Finally, the integrated modeling framework was employed to understand the relationship between 

urban transportation and land use design, air quality, and population exposure.  Three scenarios that are 

based on a combination of diesel-bus transit services and residential distribution were simulated.  
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Specifically, the low-transit scenario used the 2040 base residential distribution and the 2010 bus services.  

The enhanced-transit scenario applied the 2040 bus services proposed for the county instead.  The 

compact-growth scenario added an increase of residential density to this latter scenario.  Specifically, 

about 37% of total households were redistributed from locations with low accessibility to jobs and transit 

to locations near employment and bus stops.  Results indicate slight higher non-car travel mode shares in 

the enhanced-transit and compact-growth scenarios compared to the low-transit scenario (with a 7.1% 

increase for walking, 0.2% for bicycle, and 1.8% for transit for the compact-growth scenario versus the 

low-transit scenario).  The enhanced-transit scenario resulted in slightly lower daily total travel distances 

and times compared with the low-transit scenario, but daily total emissions and winter mean 

concentration of NOx were higher, i.e., the increase in bus transit services did not induce sufficient shifts 

in travel mode to overcome the concomitant increase in diesel-bus emissions.  The compact-growth 

scenario resulted in lower daily total travel distance (9%) and travel time (2.1%) and daily total emissions 

of NOx (11%) and its winter mean concentration (9%), compared with both the low-transit and enhanced-

transit scenarios.  Although the compact-growth scenario improved the air quality of the region on 

average, daily population mean exposure was higher compared with both the low-transit (29%) and 

enhanced-transit scenarios (25%).  This is largely due to the redistribution of population to urban core 

locations that had higher pollutant levels.  Overall, neither the bus-transit improvements nor residential 

compaction strategies alone were sufficient to mitigate population exposures.  Combining them with 

transit that services both origins and destinations, uses clean fuel technologies, and separates major 

roadways from dense residential pockets may be needed for greater exposure reductions.  

Overall, this dissertation has implications for population exposure to traffic pollution and public 

health through transportation and land use interventions.  Results presented here may be applicable to 

other study regions that have similar composite sprawl scores as the Tampa Bay area.  Future studies 

should exploit spatially-and temporally-resolved data on human activities and travel, vehicular activities, 

and air quality for better characterization of population exposure.  Engineers and planners should pay 

greater attention to integrated land use and transport planning; lone, disjointed, and ill-planned design 
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interventions may exacerbate population exposure to air pollution.  The integrated modeling framework 

presented here may be applied in a wide variety of urban contexts to further explore the nexus between 

travel demand, air quality, and exposures.  However, before such an exercise is undertaken, a preliminary 

analysis should be conducted to assess the transferability of the framework.  Policies that could be studied 

include mixed land use design, urban compaction with controlled sociodemographic distributions (to 

assess exposure inequality), and inclusion of additional types of transit and fuel technologies.
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Urbanization refers to the increase in size, density, and heterogeneity of cities and is frequently 

associated with factors including population mobility, segregation, and industrialization (Vlahov & Galea, 

2002).  Rapid urbanization is a common feature across the globe today (Alig et al., 2004; Soubbotina, 

2004).  The global urban population has been on the rise since 1950; it exceeded the global rural 

population for the first time in 2007, and the world population has predominantly remained urban since 

then.  Additionally, it is projected that two-thirds (approximately 66%) of the world population will be 

urban by 2050 (United Nations et al., 2015).  This level of rapid urbanization poses a serious challenge 

for sustainable development (Cohen, 2006). 

Although urbanization is associated with several positive outcomes, including economic growth, 

poverty reduction, and improved access to infrastructure and services, it also has ushered in an array of 

concerns.  Evidence from around the world suggests that changes in land use and urbanization adversely 

impact human lifestyle and health (Galea & Vlahov, 2005; Moore et al., 2003; Popkin, 1999), 

environment (Burak et al., 2004; Seto et al., 2010), and climate (Kalnay & Cai, 2003).  It could be argued 

that the impact of urbanization on human health assumes special significance due to the complex linkages 

between them.  Rapid and unplanned urbanization is associated with several health concerns, including 

cardiovascular diseases (Yusuf et al., 2001), diabetes (Hu, 2011), and cancer (World Cancer Research 

Fund & American Institute for Cancer Research, 2007).  It should not be surprising that these health 

outcomes culminate from multiple pathways associated with urbanization, including air pollution, 

physical inactivity, access to transport and healthy food, and non-communicable diseases (Giles-Corti et 

al., 2016; World Health Organization, 2010). 
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One of the major problems of rapid and inadequately planned urbanization is ambient urban air 

pollution.  The World Health Organization (WHO) has estimated that ambient air pollution (in both urban 

and rural areas) is linked to 3.7 million deaths globally, making it the largest environmental health risk 

(World Health Organization, 2014).  Within the context of the United States, combustion-related 

emissions were linked to approximately 200,000 premature deaths (Caiazzo et al., 2013).  Urban air 

pollution also has been associated with a variety of environmental and health concerns, including but not 

limited to acid deposition, asthma, and cardiovascular and cardiopulmonary diseases (Gauderman et al., 

2000; HEI Panel on the Health Effects of Traffic-Related Air Pollution, 2010).  In addition to its impact 

on health, urban air pollution also has significant economic costs, at 2–5% of a nation’s gross domestic 

product (United Nations Environment Programme, 2003).  In the US, urban air pollution is responsible 

for nearly three-quarters of the gross annual damages resulting from air pollution (Muller & Mendelsohn, 

2007). Finally, on a positive note, even modest decreases in air pollution levels were associated with 

significant cost savings (Deschenes et al., 2012; Grabow et al., 2012).  Recognizing these complex 

linkages between air pollution and urbanization, a few studies argue that urban development policies that 

seek to abate urban air pollution levels hold the key for mitigating the associated human health, 

environmental, and economic costs. 

Whereas urban air pollution is an amalgamation from various sources, pollution from the 

transportation sector contributes significantly towards it (US Environmental Protection Agency, 1994).  

The US Environmental Protection Agency (US EPA) estimated that the transportation sector accounted 

for about 26% of total US greenhouse gas (GHG) emissions for 2014 (US Environmental Protection 

Agency, 2016).  Several studies linked exposure to traffic-related pollution with exacerbation of asthma, 

onset of childhood asthma, non-asthma respiratory symptoms, impaired lung function, total and 

cardiovascular mortality, and cardiovascular morbidity (HEI Panel on the Health Effects of Traffic-

Related Air Pollution, 2010).  Further, inequalities in exposure to traffic-related pollution also were 

documented (HEI Panel on the Health Effects of Traffic-Related Air Pollution, 2010; Yu & Stuart, 2013).  
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Considering the broader health- and equity-related impacts, it is necessary to investigate the factors that 

are linked with transport emissions. 

Urban form is suspected to be a factor that determines the air quality of a region.  The low-

density urban form, pursued during the early and mid-20th century, resulted in increased spatial 

segregation between communities, increased automobile dependence, sedentary lifestyle, incompetent 

public transit, and negative health impacts (Camagni et al., 2002; Frank & Engelke, 2001; Frank & 

Engelke, 2005).  Additionally, the prevalence of health and environmental inequalities associated with air 

pollution has been well documented across the world (Deguen & Zmirou-Navier, 2010; Samet & White, 

2004; Stuart & Zeager, 2011).  Although past research efforts identified correlations between factors 

including race, socioeconomic status, and urbanicity and health-related inequalities, the pathways through 

which these inequalities manifest are not very clear.  To this end, researchers proposed a few strategies, 

including restriction of the outward expansion of cities, increase of residential density, development of 

mixed-use neighborhoods, and investment in transit services to curb the use of personal vehicles, as a way 

to design cities that improve public health and reduce environmental concerns; these strategies are 

collectively referred to as “smart growth” (Burchell et al., 2000; Downs, 2005).  

The impact of the aforementioned smart growth approaches on curbing air pollution, population 

exposure, and inequalities are unclear.  A few researchers studied the effects of compact urban forms on 

traffic-related emissions and found that emissions were generally lower in compact urban forms 

compared to sprawling forms (Hankey & Marshall, 2010; Makido et al., 2012; Stone et al., 2007).  Other 

studies found a lower number of ozone exceedances (Stone, 2008), lower PM2.5 levels across most of the 

urban region except for urban centers (Hixson et al., 2009) and lower particulate and ozone levels (De 

Ridder et al., 2008b) in compact urban forms.  Despite these improvements in the air quality, several 

studies observed an increase in population-weighted exposures to traffic-related pollution in compact and 

high-density urban forms (Clark et al., 2011; Hixson et al., 2009).  Thus, it is entirely reasonable to ask, 

what makes growth strategies “smart” and how can we design cities to simultaneously improve the air 

quality while reducing the population exposure and the inequalities?  
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No investigation of the impact of smart growth policies (as currently defined) on air quality 

would be complete without considering the transportation and land use piece of the smart growth puzzle.  

Transportation infrastructure plays a crucial role in shaping the urban form of a region and constitutes one 

of the vital design concepts for sustainable urban forms (Jabareen, 2006).  Previous literature clearly 

identifies the connection between land use and transportation (Cervero & Gorham, 1995), albeit there is 

some disagreement with regard to the strength and direction of this connection (Crane, 2000; Giuliano, 

1995; Handy, 2005).  Preliminary investigations show that use of alternate fuels, advanced vehicle 

technologies, and promotion of public transit systems could lead to the realization of sustainable urban 

forms (Chen & Whalley, 2012; Harford, 2006).  However, a comprehensive understanding of the 

attributes of transportation infrastructure that advance urban sustainability has not yet been attained.  

Thus, it is extremely important to investigate the linkages between urban form, transportation 

infrastructure and land use, air pollution, and the social distribution of exposures.  This study attempts to 

add to the body of literature on sustainable urban design policies that may help achieve health and 

environmental equity through exploring alternate urban transportation infrastructure and land use design 

scenarios. 

1.2 Research Goal, Specific Aims, and Scientific Questions 

The overarching goal of this research was to understand and predict the impact of urban 

transportation infrastructure and land use design on human exposure to traffic-related pollutants with a 

focus on impacts on social inequality.  To this end, the specific aims addressed here are outlined and 

discussed below. 

Aim 1 of this dissertation was to understand the impacts of spatiotemporally-resolved activity and 

travel patterns on estimated exposures to traffic-related air pollution in the Tampa area.  The specific 

science questions that were addressed include: 

• How are population activities distributed spatiotemporally in the study domain? 

• How are exposures distributed among population groups in the study domain? 

• What is the strength and direction of disparities between groups? 
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• Does urban form influence the strength of exposures and their social distribution? 

• How much does the representation of spatiotemporal activity locations impact exposure 

estimates? 

• Are the errors associated with exposure estimation different for different population 

subgroups? 

I hypothesize that consideration of activity and travel patterns leads to significantly different 

exposure estimates, as opposed to residence-based exposure estimates. 

Aim 2 of this dissertation was to develop a modeling system that integrates activity-based travel-

demand simulation, mobile source emissions estimation, and pollutant dispersion simulation for the study 

of impacts of urban transportation infrastructure on human exposures to air pollution.  A few science 

questions that were addressed during this model development include: 

• How does the spatiotemporal distribution of activities, emissions, and exposures change 

when the sample is scaled to the full population using the modeling framework? 

• Are the results from the modeling framework and the earlier sample-based analysis 

consistent with one another? 

• How much do the exposures and their social distribution vary between sample-based and 

full population studies? 

• Does the use of a highly spatiotemporally-resolved framework as opposed to the low 

resolution frameworks used in earlier studies warrant improved population and group-

wise exposure estimates? 

I hypothesize that a population-level analysis will reveal distinct exposure patterns that are not 

apparent in a sample-based analysis. 

Aim 3 of this study was to understand and predict impacts of transit-oriented compact-growth 

design scenarios on patterns of exposure to select traffic-related air pollutants in the Tampa area.  The 

modeling framework developed under Aim 2 was used to investigate the following science questions: 
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• How may population activities, traffic-related pollution, and population exposure be 

distributed spatiotemporally in the study domain under different urban transportation and 

land use design scenarios? 

• What may be the individual contribution of urban transportation and land use design on 

urban air quality and population exposure? 

I hypothesize that transit-oriented compact urban forms will lower population exposure compared 

to a sprawling urban form with limited transit services. 

Thus, this work seeks to improve the current understanding on the nexus between transportation 

infrastructure and land use design, emissions, air quality, and exposures to urban air pollution. 

1.3 Organization of this Dissertation 

This dissertation is organized as follows.  Chapter 2 presents the current state of science on the 

impact of smart growth policies on air quality and exposures to traffic-pollution, specifically focusing on 

studies that investigate the impact of transit-oriented compact-growth scenarios on air quality and 

exposures.  Additionally, air pollution exposure methodologies are reviewed, as are tools that can forecast 

air quality under alternate urban growth scenarios. 

Chapter 3 focuses on the impact of activities and travel on exposures to traffic-related pollution 

and their social distribution.  Data from the 2009 National Household Travel Survey (NHTS) were used 

to generate activity and travel patterns of individuals, which were used in conjunction with spatiotemporal 

estimates of 2002 NOx concentrations to characterize the population and group-wise exposures and their 

social distribution in the Tampa region. 

Chapter 4 focuses on the development of the modeling framework that combines activity-based 

travel demand simulation, dynamic traffic assignment, mobile source emission estimation, and dispersion 

simulation to estimate the spatiotemporal distributions of the human activities, regional air quality, and 

exposures to traffic-pollution.  This system was applied to Tampa to estimate the full population and 

group-wise exposures.  Additionally, the system also was used to understand the need for high-resolution 

population activity and air pollution data for exposure estimation. 
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Chapter 5 presents the application of the modeling framework developed under Chapter 4 to 

estimate the spatiotemporal distributions of the regional air quality and exposures to traffic-pollution 

under alternate urban design scenarios.  Three scenarios—low-transit, enhanced-transit, and compact-

growth—were simulated for 2040 to predict the impact of compaction strategies and additional bus transit 

on activity and travel patterns of individuals, urban air quality, and population exposure. 

Finally, Chapter 6 provides a synthesis of this research and recommendations for future work. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Anthropogenic air pollution is predominantly driven by the combustion process, which generates 

a variety of pollutants (World Health Organization, 2004)  and significantly impacts human health and the 

environment.  The 2014 World Health Organization factsheet on household and ambient air pollution 

estimates that seven million worldwide premature deaths are attributable to air pollution, making it the 

largest environmental health risk (World Health Organization, 2014).  Thus, in the short term, combustion 

emissions may pose a great risk to the human health and well-being; even in the longer term, combustion-

related emissions are forecast to greatly affect sea-level rise, thus significantly altering current world 

geography and displacing wide sections of civilization (Winkelmann et al., 2015).  In view of these 

current estimates and long-term forecasts, mitigation of combustion-related emissions assumes great 

importance. 

Energy use in the commercial, industrial, residential, and transportation sectors accounts for a 

majority of anthropogenic emissions.  Within these sectors, transportation often accounts for a substantive 

portion of the emissions, as shown in Figure 2.1.  The primary emissions from motor vehicles are 

collectively termed “traffic-related air pollution” (HEI Panel on the Health Effects of Traffic-Related Air 

Pollution, 2010).  Exposure to traffic-related air pollution has been associated with a wide spectrum of 

negative health outcomes and health inequalities (Apelberg et al., 2005; HEI Panel on the Health Effects 

of Traffic-Related Air Pollution, 2010).  As such, accurate characterizations of exposure to traffic-related 

pollution are needed to understand its impact on human health and the corresponding social inequalities. 
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Figure 2.1 Pollutant emissions by source category.  (Source: US Environmental Protection Agency, 2016) 

Whereas accurately estimating exposures to traffic-related pollution is important, it is also equally 

important to identify and understand the factors that are linked with this pollution.  An emerging area of 

research suggests that urban form including the transportation infrastructure within it, may perhaps be one 

of the important factors that influence the air quality, personal exposure levels, and population health 

(Giles-Corti et al., 2016; Hankey & Marshall, 2010; Stevenson et al., 2016; Stone et al., 2007).  However, 

there is a considerable debate on the effectiveness of urban forms that encapsulate “smart growth” 

features in realizing sustainability goals (Dieleman et al., 1999; Echenique et al., 2012; Gordon & 

Richardson, 1997; Neuman, 2005).  Thus, there is a need to gather further evidence in this area using 

tools that can robustly forecast the impact of alternate urban design scenarios on human activity and travel 

patterns, pollutant emissions, concentrations, and personal exposure to them. 

The remainder of this chapter reviews the current state of literature on linkages between urban 

transportation and land use design, air quality, and exposure to traffic-related pollution and its social 

distribution.  The health impacts of exposure to traffic-related pollution are reviewed first.  The literature 

pertaining to the social distribution of the exposures and the resulting inequalities is reviewed next, 



10 
 

followed by a review of the literature that seeks to understand the relationship between urban design, air 

quality, and population exposure.  Finally, the methodological aspects pertaining to the estimation of 

population exposure to traffic-related pollution is presented with a focus on choosing the appropriate tools 

for this research. 

2.2 Health Impacts of Exposure to Traffic-Related Air Pollution 

Exposure to combustion-related air pollution is associated with mortality and a host of negative 

health outcomes.  Specifically, the Harvard Six Cities study showed that high levels of fine and sulfate 

particles were strongly associated with mortality (Dockery  et al., 1993).  Following this, Pope III et al. 

(2002) found associations between particulate and sulfate pollution and all-cause, lung cancer, and 

cardiopulmonary mortality.  More recently, combustion emissions of PM2.5 and ozone were estimated to 

be associated with about 210,000 premature deaths per year in the US (Caiazzo et al., 2013); of these, 

transportation-related PM2.5 and ozone emissions were estimated to account for approximately 53,000 and 

5,000 premature deaths, respectively.  

Recognizing the significant contribution of transport emissions toward air pollution, the Health 

Effects Institute (HEI) commissioned a special panel to review the literature and understand the 

associations between traffic-related air pollution and negative health outcomes.  Traffic-related air 

pollution comprises a complex mix of primary pollutants emitted from motor vehicles.  It should be noted 

that secondary pollutants such as ozone that originate from the primary pollutants are not considered 

traffic-related pollutants.  Some important traffic-related pollutants include carbon dioxide (CO2), carbon 

monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM), and mobile source 

air toxics (MSATs) including benzene, formaldehyde, acetaldehyde, 1,3-butadiene, and lead (HEI Panel 

on the Health Effects of Traffic-Related Air Pollution, 2010).  Since it is extremely difficult to measure 

all the components of this traffic-pollutant mix, surrogate pollutants are usually selected to approximate 

the impact of exposure to traffic pollutants (HEI Panel on the Health Effects of Traffic-Related Air 

Pollution, 2010; Oglesby et al., 2000).  The HEI report identifies pollutants including CO, nitrogen 

dioxide (NO2), and benzene as potential surrogates for exposure to traffic-related air pollution, although 
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they caution that none of these pollutants meet the criteria for an ideal surrogate.  In this study, NOx was 

chosen as the surrogate for traffic-related exposure for a few reasons.  First, NOx consists of both directly 

emitted NO and secondary nitrogen dioxide, a criteria pollutant regulated by the US EPA.  NO2 is also 

measured by the US EPA near-road monitoring network due to the influence of traffic-related air 

pollution.  Additionally, ambient NO2 concentrations, in conjunction with surrogates of traffic (i.e., traffic 

volumes or distance to roadways), provide a good characterization of traffic-related pollution at the local 

scale.  Finally, several previous studies focusing on exposure to traffic-related pollution used NOx as a 

surrogate pollutant (Beevers et al., 2013; Gurram et al., 2015; Kim et al., 2004; Raaschou-Nielsen et al., 

1997; Yu & Stuart, 2013), providing for good comparisons for this study. 

The HEI panel concluded that individuals living within a range of 300–500 meters from a major 

roadway are the most affected due to traffic emissions.  Given the substantial proportion of population 

that live near roadways in the United States, exposure to traffic-related pollution is a likely public health 

concern and deserves attention (HEI Panel on the Health Effects of Traffic-Related Air Pollution, 2010).  

The panel also concluded that sufficient evidence exists to infer a causal association between exposure to 

traffic-related pollution and exacerbation of asthma.  Additionally, they found suggestive evidence to 

infer causal association between exposure to traffic-related pollution and onset of asthma, non-asthma 

respiratory symptoms, reduced lung function, total and cardiovascular mortality, and cardiovascular 

morbidity (HEI Panel on the Health Effects of Traffic-Related Air Pollution, 2010).  Thus, exposure to 

traffic-related air pollution can be categorized as a public health concern, and further studies are needed to 

characterize the disaggregate, group-wise, and population-level exposures to traffic-pollution. 

2.3 Exposure Inequalities 

Several studies suggested that exposure levels for different types of pollutants may vary 

depending on the socio-economic makeup of the population subgroups (Chakraborty, 2009; Marshall, 

2008; Samet & White, 2004; Stuart & Zeager, 2011; Yu & Stuart, 2013).  For example, Marshall (2008) 

suggested that certain sections of population residing near an industry might get exposed to higher levels 

of primary pollutants emitted from the industry when compared to the subgroups residing farther away.  
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Alternatively, the groups living farther away from the industry might get exposed to higher levels of 

secondary pollutants, formed due to the chemical reactions between primary pollutants from the industrial 

source and pollutants from other sources, when compared to the groups residing near the industrial 

source.  These differences in exposure to air pollutants within different population demographics is called 

environmental inequality (Anderton et al., 1994) and lack of environmental justice (US EPA Office of 

Minority Health, 2003).  Environmental justice has been defined by the US EPA as the fair treatment and 

meaningful involvement of all people regardless of race, color, national origin, culture, or income with 

respect to the development, implementation, and enforcement of environmental laws, regulations, and 

policies (US EPA Office of Minority Health, 2003).  

Past studies tried to identify and understand the underlying patterns corresponding to the social 

distribution of exposures and inequalities (Deguen & Zmirou-Navier, 2010; Marshall, 2008).  Deguen and 

Zmirou-Navier (2010) conducted a literature review on studies pertaining to social inequalities in health 

risks related to ambient air quality in Europe and concluded that subgroups that belong to lower socio-

economic status were subject to greater harmful health effects despite not always being exposed to higher 

pollutant levels.  This could mainly be attributed to inferior medical treatment, limited access to good 

food, micronutrient deficiencies, and concurrent illnesses (Deguen & Zmirou-Navier, 2010; Romieu et 

al., 2004).  Marshall (2008) used spatially- and temporally-resolved and microenvironment-adjusted 

ambient air pollutant concentrations to study the pollutant exposure patterns among different population 

subgroups in California’s south coast air basin.  The study concluded that non-white and low-income 

groups were subject to high primary pollutant exposures when compared to white and high-income 

groups.  Conversely, for ozone, white and high-income groups were exposed to higher concentrations 

when compared to non-white and low-income groups.  Similarly, people living in high-density regions 

were subject to high primary pollutant and low secondary pollutant exposures, whereas people living in 

low-density regions were exposed to low primary pollutant and high secondary pollutant concentrations.  

Hajat et al. (2015) conducted a global review of literature on socioeconomic disparities in exposure to air 

pollution that specifically synthesized 22 North American studies and found a broadly consistent pattern 
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of higher concentrations of criteria pollutants in lower-socioeconomic status (SES) individuals and 

communities; a few exceptions in which higher-SES communities were exposed to higher concentrations 

were observed in New York City, Toronto, and Montreal (Hajat et al., 2015).  

A few exposure-related socio-demographic inequality studies were conducted in the Tampa Bay 

region (Chakraborty, 2009; Stuart et al., 2009; Stuart & Zeager, 2011; Yu & Stuart, 2013).  Chakraborty 

(2009) investigated the environmental inequalities in the region for socio-economically and 

transportation-disadvantaged groups and concluded that minority groups such as African Americans, 

Hispanics, and those living below poverty levels were subject to disproportionate cancer risks and 

respiratory hazards.  Further, the study identified that the individuals from households with no vehicles 

were subject to disproportionately higher health risks.  Stuart et al. (2009) studied the social distribution 

of neighborhood-scale air pollution and identified that blacks, Hispanics, and people living in poverty 

were disproportionately closer to sources of air pollution yet farther from air quality monitoring sites than 

whites and non-poverty groups, respectively.  For the same study region, Stuart and Zeager (2011) studied 

ambient NO2 levels and traffic levels near elementary schools and found higher NO2 and traffic levels 

near schools with predominant enrollments of black, Hispanic, and economically-disadvantaged children 

compared to schools with predominant enrollments of white, Asian, or Pacific Islander children.  Yu and 

Stuart (2013) conducted a modeling study in the Tampa Bay area to characterize the spatiotemporal 

distributions of NOx and the exposure inequalities and found that blacks, Hispanics, and lower-income 

subgroups were subject to greater exposures than the county average.  Additionally, they found that this 

disproportionality of exposures increased with increasing levels of annual average exposures, i.e., the 

proportion of minorities and low-income groups at greater annual average exposures were higher 

compared to their proportion at a lower annual average exposure.  Finally, Yu and Stuart (2016) expanded 

their earlier study by considering additional primary and secondary pollutants and found that exposure 

inequalities and inequality indices (for blacks, Hispanics, and low-income subgroups) were persistent 

when considering primary pollutants.  However, the inequality indices for exposure to secondary 
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pollutants displayed complex trends and exhibited reverse disproportionality (i.e., minorities and lower-

income subgroups) at the highest concentration levels.  

A limitation for most of the studies in the Tampa region and the US in general was the non-

inclusion of the activity and travel patterns of individuals for exposure estimation.  Setton et al. (2011) 

suggested that non-inclusion of individual activity and travel patterns for exposure estimation results in 

biased exposure estimates.  Thus, studies that explicitly consider individual spatiotemporal locations are 

warranted to understand the true strength and direction of exposure inequalities.  Further, many studies 

focused explicitly on the associations between inequalities and sociodemographic variables including 

socioeconomic status, race, and income.  However, it is also important to understand how inequalities are 

related with social identity variables including age, urban/rural status (Miao et al., 2015), and time spent 

in travel and out-of-home activities.  Finally, it would be of interest to understand the social distribution 

of exposures to traffic-related pollution, in addition to including pollution from point and area sources, 

given the public health concerns of traffic-related pollution (HEI Panel on the Health Effects of Traffic-

Related Air Pollution, 2010).  Within this context, the current study explores the social distribution of 

exposures to traffic-related pollution by focusing on demographic, urbanicity, and travel-related variables 

including race/ethnicity, income, age, residential status (urban/rural), and daily travel time.  Thus, this 

study can add to the body of literature on environmental inequalities by focusing specifically on exposure 

to traffic-related pollution. 

2.4 Interactions of Urban Form and Air Pollution Exposures 

“Urban form is defined as a composite of characteristics related to land use patterns, 

transportation system, and urban design” (Handy, 1996; Jabareen, 2006).  Over the past few decades, 

much focus has been placed on identifying and defining sustainable urban forms due to the potential 

impact of urban design on human physical and mental well-being (Jackson, 2003).  Jabareen (2006) 

identified seven significant and recurring themes for sustainable urban form—compactness, sustainable 

transport, density, mixed land uses, diversity, passive solar design, and greening.  Transport is 

inextricably linked with the urban morphology of a region and plays a crucial role in shaping the urban 
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form; at the same time, transport is also presented as one of the most important issues that connect 

environmental debates and urban form (Burton et al., 2003).  The following sections provide an overview 

of the interactions between urban form, transport, air quality, exposures, and human health. 

2.4.1 Interactions between Urban Form and Transport 

Urban form and transport characteristics are invariably linked with one another.  However, these 

linkages appear to propagate through various features of the urban form and built environment.  Cervero 

and Kockelman (1997) found that built environment influences the travel demand along three dimensions 

i.e., “three Ds”—density, diversity, and design.  Specifically, using a variety of data sources including 

travel surveys, the US Census, land use records, and field surveys, they found that urban forms that are 

dense, diverse, and pedestrian-oriented would reduce trip rates and encourage non-auto travel.  However, 

they also concluded that the effect of built environment dimensions on transport is marginal, although not 

inconsequential (Cervero & Kockelman, 1997).  Similarly, a review of the interactions between built 

environment and travel by Ewing and Cervero (2001) found that vehicle miles traveled (VMT) or vehicle 

hours traveled were a function of regional accessibility more than local accessibility; thus, dense and 

mixed-use developments that are not well connected to other dense and mixed-use neighborhoods may 

offer only modest regional travel benefits (Ewing & Cervero, 2001).  They also found that land use 

patterns may have a greater impact on mode choice, and, hence, transit usage is dependent on local 

densities and mixed-land use.  However, a more recent and updated systematic meta-analysis by the same 

authors showed that the relationships between built environment and travel variables are inelastic; 

however, interestingly, they proposed that the effect of a combination of built environment variables on 

travel could be significant (Ewing & Cervero, 2010).  Further, they expanded the “three Ds” originally 

coined by Cervero and Kockelman (1997) to “six Ds” by proposing that destination accessibility, distance 

to transit, and demand management may be used as measures of built environment.  

In a study that seeks to understand the impact of urban expansion patterns on social and 

environmental costs, Camagni et al. (2002) used the disaggregated travel time and mode information for 

commuters from 1991 census data for Milan, Italy, and socio-economic variables including population 
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density, ratio of jobs to resident population, and four types of urban morphology variables to categorize 

urban form.  They used regression modeling to find associations between measures of transit efficiency 

including competitiveness of transit (ratio of average travel time by private transport and average travel 

time by public transport) and transit mode shares, and urban form and built environment variables.  Using 

this analysis, they found that urban settlements of compact structure lead to greater competitiveness and 

use of public transport and lower demand for mobility.  In a similar type of study, that tried to understand 

the impact of built environment on non-work travel, Rajamani et al. (2003) combined travel survey data 

for the Portland (Oregon) metro area with mode-specific travel cost and travel time data to create an 

accessibility index.  They combined all these data sources with the urban land use data for the study 

region to create urban form measures.  Using a multinomial logit model, they found that mixed-use urban 

forms promote walking behavior for non-work activities.  

Stone et al. (2007) used a population reassignment technique, that resulted in higher share of 

urban and suburban population as opposed to rural population, to simulate the impact of compact growth 

on travel and transport emissions.  They found that an average increase in population density by 14% 

results in 6% lower median VMT.  More recently, Hankey and Marshall (2010) used the Monte Carlo 

approach to simulate the impact of six different low- and high-sprawl scenarios along with three different 

vehicle and fuel technology scenarios, ranging from business-as-usual to a “green fleet” comprising both 

fuel-efficient and electric vehicles, on the vehicle-kilometers traveled for the urban regions in the US.  

They reported that greenhouse gas (GHG) mitigation strategies that do not consider urban form will not 

be effective, as they lead to increase in VMT; on a related note, they also state that focusing purely on 

compact urban forms without consideration to fuel technology improvements may lead to higher 

emissions.  Thus, overall, a few elements of built environment and urban form impact the transport 

choices and travel characteristics of urban residents. 

2.4.2 Interactions between Urban Form and Air Quality 

Since urban form impacts travel characteristics, it also could potentially influence transport-

related emissions and concentrations.  Specifically, Lyons et al. (2003) used the vehicle kilometers 
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traveled (VKT) from a few urban centers across the world as a surrogate for vehicular emissions and 

found that cities that restricted outward growth/sprawl have lower transport emissions, including CO and 

NOx.  In a study investigating the interactions between land use and health, Frank et al. (2006b) reported 

that an increase in walkability index, which incorporated land use mix, street connectivity, net residential 

density, and retail floor area ratios, reduced the VMT and emissions of NOx and volatile organic 

compounds (VOCs).  Following this, using a population reassignment technique, Stone et al. (2007) 

simulated emissions in compact urban forms and found higher elasticities between population density and 

vehicular emissions.  Specifically, they found that median drop in pollutant emissions for the compact 

scenario as opposed to the business-as-usual scenario is 6%, 5.6%, 5.6%, 5.2% for PM2.5, NOx, CO, and 

VOCs, respectively.  

Following this, Stone (2008) attempted to quantify the associations between urban form measures 

and air quality by studying the urban form and air quality characteristics of 45 large US metropolitan 

regions; urban form measures that were considered include centeredness, connectivity, population 

density, land use, and sprawl index.  The study found that, of all the urban form measures of interest, 

population density is the only measure strongly correlated with the emissions of ozone precursors i.e., 

NOx and VOCs; however, the study also reported a much stronger correlation between most urban form 

measures and annual ozone exceedances.  Specifically, centeredness, connectivity, population density, 

and sprawl index were found to be significantly associated with annual ozone exceedances (Stone, 2008).  

Marshall et al. (2009) investigated the association between walkability, which provides a measure of 

mixed-use neighborhood and the connectivity between destinations, and estimated concentrations of 

ozone and nitric oxide for 49,702 postal codes in Vancouver, British Columbia, and found that urban 

centers were generally representative of high walkability and high nitric oxide concentrations but low 

ozone concentrations.  Additionally, they found that locations near the urban centers (but not at the urban 

centers) had reasonably high walkability but lower pollutant levels.  In a similar multi-location study, 

Schweitzer and Zhou (2010) used air quality monitoring data from 80 metropolitan regions to understand 

the relation between ozone concentrations and urban form.  Using the Smart Growth America (SGA) 



18 
 

index scores developed by Ewing et al. (2002) to characterize the urban form, they found evidence for 

significantly lower ozone concentrations in compact regions but could not find associations between 

regional compactness and fine particulate concentrations. 

Bereitschaft and Debbage (2013) used the urban sprawl indices developed by El-Nasser and 

Overberg (2001), Ewing et al. (2002), Lopez and Hynes (2003), and Sutton (2003), along with urban form 

variables and meteorological variables to measure the degree of association between urban form/sprawl 

and ambient non-point source emissions or/and concentrations of O3, VOCs, NOx, PM2.5, and CO2.  The 

two most important composite measures of urban form are urban continuity and shape complexity.  Urban 

continuity refers to the physical continuity and connectedness of land patches across the urban form or 

landscape (Bereitschaft & Debbage, 2013; McGarigal et al., 2002), and shape complexity describes the 

shape and provides a measure of the irregularity or “raggedness” of the land patches (Bereitschaft & 

Debbage, 2013; Huang et al., 2007).  They found that a 1 standard deviation increase in urban continuity 

led to a 9% reduction in annual VOC emissions; conversely, a 1 standard deviation increase in shape 

complexity led to 8.7% and 12.4% increases in NOx and PM2.5 emissions, respectively.  The study also 

found that higher urban sprawl levels were significantly associated with high concentrations of O3 and 

PM2.5; additionally, residential density was found to be a good predictor of O3 and PM2.5 concentrations 

(Bereitschaft & Debbage, 2013). 

Recently, Yu and Stuart (2017) investigated the impact of compact growth and electric vehicles 

on future air quality and exposure levels for a seven-county region including the Tampa Bay area.  They 

found that the regional emissions under a compact growth scenario were lower compared to a sprawl 

growth scenario, although this effect was more pronounced for NOx as opposed to benzene and butadiene.  

Additionally, they found that the spatial distribution of the difference in concentrations between the 

compact and sprawl growth scenarios varied by pollutant type.  NOx concentrations (both annual average 

and maximum one-hour concentration) in the compact scenario were lower than that of the sprawl 

scenario.  However, benzene and butadiene concentrations under the compact growth scenario were 



19 
 

higher than those of the sprawl growth scenario for a substantial portion of Hillsborough County; this is 

due to the increase in the population and land development density under the compact scenario. 

2.4.3 Interactions between Urban Form, Exposures, and Human Health 

Patterns of urban forms that increase dependence on motorized travel may have a direct negative 

implication on human health through increased pollutant exposures (Frank & Engelke, 2001; Frumkin, 

2002).  Within the context of Europe, De Ridder et al. (2008b) simulated the impacts of sprawl on air 

quality and found that sprawl leads to higher concentrations of traffic pollutants and exposures.  They 

allocated 12% of their urban population to the green periphery and found that this population reallocation 

resulted in a higher traffic volume (17% increase), higher concentrations of ozone and particulate matter 

(approximately 4% increase), and a 0.5% increase in domain-average exposure (De Ridder et al., 2008b).  

In the US, Clark et al. (2011) used a linear regression approach to identify the relationship 

between urban form and population-weighted pollutant concentrations for ozone, PM2.5, and other criteria 

pollutants.  The urban form variables in the study included population centrality, road density, jobs-

housing imbalance, and city shape (a measure of circularity).  They found that urban form was associated 

with air quality to the same degree as climatic factors and that population centrality was associated with 

lower population-weighted ozone, PM2.5, and aggregate pollutant levels; transit supply was associated 

with lower population-weighted PM2.5 concentrations.  This establishes the importance of urban form for 

air quality considerations.  In contrast, they found that population density is associated with higher 

population-weighted PM2.5 concentrations and aggregate pollutant levels (Clark et al., 2011).  Similar to 

this study, Hixson et al. (2009) simulated population-weighted PM2.5 concentrations for the San Joaquin 

Valley under sprawl and compact urban forms and found that exposures to primary PM components 

including elemental carbon and organic carbon was increased by 10–15% and reduced by 11–19% for the 

high-density and low-density scenarios, respectively.  Additionally, they reported a reverse in trend (low 

exposures in high-density development and high exposures in low-density development) for secondary 

PM components including nitrate and ammonium ion.  In Tampa Bay, Yu and Stuart (2017) found that 

compact growth results in lower population-weighted NOx exposure concentration than the sprawl 
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scenario; however, exposure concentrations for benzene and butadiene under a compact scenario were 

found to be higher compared to a sprawl scenario.  

Previously, Woodcock et al. (2009) compared the projections of health benefits for the business-

as-usual scenario for 2030 with four alternate urban transport scenarios based on both the individual and 

combined effects of lower-carbon-emission vehicles and increased active travel for London, UK, and 

Delhi, India.  They found that the scenario that used a combination of low-emission vehicles and 

increased active travel led to the highest health benefits despite an increase in the disease burden from 

road traffic injuries as a result of more active travel.  It should be noted that the benefits from the 

increased active-travel-only scenario significantly outweigh those of the low-carbon-emission-vehicles-

only scenario.  Continuing a similar line of inquiry, Stevenson et al. (2016) used a health impact 

assessment framework to investigate the impact of mode change due to alternate land use policies on 

population health, using six different cities that fall on the spectrum of upper-income to lower-middle-

income and highly-motorized to rapidly-motorizing as their testbeds.  A compact cities model was applied 

to each of the six cities by increasing the residential density, reducing the distance to transit, and 

increasing the land use diversity.  They found that the compact scenario resulted in overall health gains 

(420–826 disability-adjusted life-years) by shifting individuals to active modes of travel and reducing 

transport-related particulate matter emissions for all the cities despite a small increase in road trauma 

incidents for pedestrians and bicyclists. 

In summary, most of the literature focusing on the relationship between urban form and transport 

suggested that compact urban forms led to a reduction in VMT and an increase in active and non-auto 

mode of travel.  Additionally, studies found evidence for lower traffic-related emissions and 

concentrations in compact urban forms.  Despite these improvements in air quality, several studies found 

that population exposure to traffic-related air pollution increased in compact urban forms.  However, a 

recent macro-level study by Stevenson et al. (2016) found overall health gains due to compact and transit-

oriented urban forms.  Although these studies provide valuable information toward understanding the 

relationship between urban form, travel, air quality, and exposures, further studies on this topic are 
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necessary.  First, the research trying to understand the relationship between urban form and population 

exposure is still budding; as a result, further research efforts are needed on this topic.  Second, many 

studies on this topic used observed data from air quality monitors and existing urban morphologies to 

understand the linkages between urban design and population exposure.  These studies generally may be 

incapable of answering what-if urban-policy questions; hence, there is a need for studies that use 

modeling techniques to simulate alternate urban morphologies and estimate their impact on population 

exposure.  Finally, although a few studies used modeling techniques to understand the relationship 

between urban form and population exposure, they are either macroscopic in nature or used non-

behavioral and coarser modeling techniques.  Given this, my disertation focused on using a highly-

spatiotemporally-resolved modeling framework to estimate population exposure under alternate urban 

forms. 

2.5 Characterization of Individual Exposure to Traffic-Related Pollution 

The characterization of individual exposure to traffic-related pollution has two essential 

components—the characterization of the spatiotemporal distributions of pollutant concentrations and 

activity and travel patterns of individuals.  In this section, the methodological aspects of characterizing 

pollutant concentrations is presented, followed by discussion on the current state of knowledge on the 

characterization of activity and travel patterns.  Finally, combining the information provided in the first 

two sections, methodological details of exposure characterization are addressed. 

2.5.1 Characterization of Spatiotemporal Distributions of Pollutant Concentrations 

2.5.1.1 Ambient Air Sampling 

Direct sampling or measurement of pollutants is perhaps the “gold standard” in accurately 

characterizing the spatiotemporal distributions of pollutant concentrations.  The samplers that are used for 

direct measurement can be broadly categorized as active and passive samplers (International Agency for 

Research on Cancer, 2016), and the choice of measurement or sampling device would normally depend 

on the type of the pollutant and the parameters of the research study. 
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Previously, studies conducted a wide variety of sampling campaigns to obtain the spatiotemporal 

distributions pollutant concentrations.  For example, Stuart and Zeager (2011) used Ogawa passive 

samplers to measure ambient NO2 concentrations near 75 randomly-selected elementary schools in 

Tampa.  Similarly, to estimate human exposures, other studies measured the micro-environmental 

concentrations, i.e., concentrations within a small area such as a bedroom, a kitchen, or an office using a 

variety of active and Palmes passive sampler tubes (Kornartit et al., 2010; Lai et al., 2004; Rotko et al., 

2001). 

Although direct measurement results in highly-accurate characterization of spatiotemporal 

distributions of concentration, the measurement campaigns entail higher costs.  Additionally, 

notwithstanding the high temporal resolution, the spatial resolution of the measured concentrations can be 

limited owing to the discrete placement of the samplers.  Finally, although these approaches help in 

understanding the existing air quality trends within an urban area, they are rather limited in addressing the 

implications of new regulatory policies or pollution sources on air quality (Vallero, 2008).  Thus, these 

methods are ill-equipped to answer the implications of “what-if” scenarios on air quality.  As a result, 

instead of direct measurement, several studies have taken the alternate route of modeling pollutant 

concentrations. 

2.5.1.2 Ambient Air Modeling 

A wide variety of models were employed in the past to estimate the spatiotemporal distributions 

of pollutant concentrations (Brugge et al., 2007; Burke et al., 2001; Jerrett et al., 2005).  Air pollution 

models can be broadly categorized into two types—models that try to characterize atmospheric 

concentrations by performing statistical analysis of data or by simulating the fundamental physical and 

chemical interactions within a system (Seinfeld & Pandis, 1998).  Since this study aimed to understand 

and predict the impact of urban form on transportation emissions and exposures, it focused on models that 

simulate the dispersion and transport of pollutants. 

Atmospheric chemical transport models estimate pollutant concentrations at particular times and 

locations (receptors) using pollutant emission inventories and meteorological data.  As mentioned, these 
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models simulate pollutant concentrations by explicitly accounting for the physical and chemical 

interactions within the system.  Although different solution approaches are used, these models are 

generally based on the fundamental principle of conservation of the mass of species in a control volume 

of solution and are generally represented by equation 2.1. 

�𝑟𝑟𝑟𝑟 𝑜𝑜 𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑜𝑎
𝑜𝑜 𝑎𝑟𝑚𝑚 𝑜𝑜 𝐴 �+ � 𝑎𝑟𝑟 𝑟𝑟𝑟𝑟 𝑜𝑜 𝑜𝑎𝑟𝑜𝑎𝑜𝑜 𝑜𝑜

𝑎𝑟𝑚𝑚 𝑜𝑜 𝐴 𝑜𝑟𝑜𝑎 𝑣𝑜𝑎𝑎𝑎𝑟� = �𝑟𝑟𝑟𝑟 𝑜𝑜 𝑔𝑟𝑎𝑟𝑟𝑟𝑟𝑎𝑜𝑎𝑔 𝑜𝑜 
𝑎𝑟𝑚𝑚 𝑜𝑜 𝐴 𝑏𝑏 𝑟𝑟𝑟𝑎𝑟𝑎𝑜𝑎 �    2.1 

A common expression of this balance at an infinitesimal point is given by the advective-

dispersion expression shown in equation 2.2 (Ramaswami et al., 2005). 
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      2.2 

Many models, using a variety of approaches, were developed to operationalize the solution of this 

mass balance.  Some commonly-used models in the US include CMAQ, CAMx, and HySplit. 

2.5.1.3 Gaussian Formulation 

One category of solution approach with a long history of being used for pollutant concentration 

estimation is the Gaussian approach.  Gaussian models assume that the pollutant mass spreads in the 

horizontal and vertical directions following a Gaussian or normal distribution.  Additionally, many of 

these models, called Gaussian plume models, are based on analytical solution of the steady-state 

advective-dispersion equation.  The plume equation estimates the mean concentration from a continuous 

point source of pollution (assuming reflection at surface) as shown in equation 2.3.  

𝐶(𝑥,𝑏, 𝑧) = 𝑞
2𝜋𝑠𝜎𝑦𝜎𝑧

𝑟𝑥𝑒 �− 𝑦2

2𝜎𝑦2
� �𝑟𝑥𝑒 �− (𝑧−ℎ)2

2𝜎𝑧2
� + 𝑟𝑥𝑒 �− (𝑧+ℎ)2

2𝜎𝑧2
��   2.3 

where, 

C is the pollutant concentration (µ/L3) 

x, y, and z represent the downwind, crosswind, and vertical position, respectively, of the receptor 

away from the source base location 

q is the emission rate of the pollutant (M/t) 

u is the horizontal wind speed in the downwind direction (L/t) 
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σy describes the cross wind dispersion in length (L) 

σz describes the vertical dispersion in length (L) 

h is the effective height of release (L) 

Changes in concentration in time (e.g., each hour) are estimated from this equation due to 

changes in the parameters (q, u, σy, σz, h) with time.  Examples of Gaussian plume models include 

AERMOD, CALINE, and R-LINE.  R-LINE is used for air pollution modeling in most of this 

dissertation.  A related approach that relaxes the steady-state assumption and accounts better for rapidly-

varying changes in parameters uses a Gaussian puff solution; CALPUFF (California Puff) is an example.  

Results from air pollution modeling using CALPUFF are used for the analysis in Chapter 3. 

2.5.2 Characterization of Spatiotemporal Distributions of Individual Activity and Travel Patterns 

Human activity patterns (or activity and travel patterns) refer to the activity distributions of 

individuals within a certain period of time.  Activity and travel patterns describe the movement of 

individuals in a geographic area by predominantly collecting information related to the activity locations, 

time and duration of activities, travel mode, travel times and distances, and travel routes between the 

fixed-activity locations.  Characterization of activity and travel patterns is important from an exposure 

estimation perspective because the physical location of the activity, the time and duration of the activity, 

and the travel path between activity locations influence the personal exposure to pollutants.  A variety of 

sample-based approaches use computer-assisted telephone interview, travel surveys or diaries, Global 

Positioning System (GPS) loggers, and home sensors to collect the spatiotemporal distributions of activity 

and travel patterns of individuals. 

2.5.2.1 Sample-Based Activity and Travel Surveys 

Several studies used a travel survey or diary format to obtain the spatiotemporal distributions of 

individual activity and travel patterns.  Axhausen et al. (2002) conducted a six-week travel diary-based 

survey to observe the daily activity and travel routines of individuals in two German cities.  The survey 

collected trip-level information including day of trip, start and arrival times, trip purpose, travel modes, 

trip destination, and activity and travel costs for 319 individuals from 139 households.  To characterize 
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the daily personal travel patterns of individuals across the nation, the 2009 national household travel 

survey (NHTS) was conducted using a computer-assisted telephone interview instrument (Santos et al., 

2011).  The 2009 NHTS collected household and person-level demographic information and trip-level 

information including origin and destination location and time, length, mode of travel, and purpose for 

approximately 125,000 households. 

Recent studies used advances in sensor-based technologies to record the activity and travel 

patterns of individuals.  Specifically, in a study aimed at testing the feasibility of GPS technology to track 

individuals, Wiehe et al. (2008) used GPS-enabled cell phones to collect the activity and travel patterns of 

15 adolescent women for one week.  Although they found that user error and technical issues could affect 

the reliability of the activity and travel data, the authors argue that GPS technology provides a feasible 

way for collecting activity and travel data that can be used to identify health-risk behaviors (Wiehe et al., 

2008).  Similarly, Abdulazim et al. (2013) developed an Android application to collect the location data 

for individuals and land use data to estimate the travel mode based on the motion pattern as indicated by 

the cell phone’s sensors.  Such advanced applications can assist in collecting activity and travel 

information for a large section of the population in an economically feasible way. 

Some of the advantages of using travel diary information are availability of larger sample sizes, 

detailed representation of spatial and temporal locations of individuals, and wide availability of such data 

resources including the NHTS, Consolidated Human Activity Database, and California Activity Pattern 

Surveys.  Although the sample sizes from the travel diaries are considered to be fairly large, they typically 

are not more than 1% of the population.  However, larger samples may be required to capture the intra-

urban spatial variations in the activity patterns necessary for the estimation of population exposures.  As 

mentioned, the sensor-based technologies could potentially solve the issue of low sample sizes owing to 

their ability to collect large samples at relatively low expense; however, these technologies are still 

budding and the gathered sensor data is primitive and heterogeneous, leading to difficulty in assimilating 

activity data from various sources (Chen et al., 2012).  In addition, survey or sensor-based data cannot be 

used directly to forecast the activity and travel patterns under alternative policy scenarios.  For example, 
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the raw survey data collected in a specific year may not give an indication of the activity and travel 

patterns of individuals in a future year where a transit-oriented compact growth policy may be 

implemented.  In such alternate policy scenarios, predictive models can be used to simulate the activity 

and travel patterns of the population.  It should be noted that survey data are still invaluable because the 

predictive models will be built based on the survey data.  

2.5.2.2 Modeling the Activity and Travel Patterns of Individuals 

In the transportation field, travel demand models were used for several decades by the research 

community, metropolitan planning agencies, and consulting firms to forecast the aggregate travel patterns 

of metropolitan residents under alternative policy and investment scenarios.  Traditionally, the travel 

demand of an urban area has been modeled using a four-step or trip-based travel demand model.  The 

fundamental unit of analysis in the trip-based travel models is an individual person trip (Castiglione et al., 

2015).  The modeling paradigm of a trip-based model consists of four steps—trip generation, trip 

distribution, mode choice, and network assignment.  Trip generation estimates the number of trips 

produced from and attracted to each zone in an urban context.  Trip productions and attractions are 

generally modeled using a linear regression approach and can be modeled at a disaggregate level for 

every household and usually are a function of the characteristics of the households, land use, and 

transportation system.  Trip attractions are modeled at the zonal-level and are normally a function of the 

zonal characteristics.  The general formulations for the trip production for a household h in zone i (Phi) 

and all the households in zone i (Pi) are presented in equations 2.4 and 2.5, respectively. 

𝑃ℎ𝑎 = 𝛽0 + ∑ 𝛽𝑎𝑥𝑎𝑘
𝑎=1           2.4 

Here, x1, x2, … xk are the factors affecting trip generation, and 𝛽0, 𝛽 1, … 𝛽k are the estimated 

parameters that capture the effect of an independent variable on the trip production rate.  To obtain the 

trip productions at the zonal level, the disaggregate trip productions for all the households in the zone 

need to be summed up.  

𝑃𝑎 = ∑ 𝑃ℎ𝑎𝑁
ℎ=1            2.5 
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Here, N is the total number of households in the zone i.  The trip attractions for the zone i (Ai) are 

estimated using an equation similar to 2.4, the only difference being the use of zonal-level characteristics 

including retail employment, commercial employment, gross floor area of retail activity. 

Following the estimation of number of trip productions and attractions for each zone, the trips are 

allocated between the origin and destination zones using a gravity model shown in equation 2.6. 

𝑇𝑎𝑖 = 𝑃𝑎 �
𝐴𝑗𝐹𝑖𝑗

∑ 𝐴𝑘𝐹𝑖𝑘𝑘
�         2.6 

Here, Tij is the total number of trips between production zone i and attraction zone j.  Pi is total 

number of trips produced in zone i.  Aj is the total number of trips attracted to zone j.  Fij is called the 

friction factor and captures the travel impedance, generally in the form of travel time or cost, between 

zones i and j. 

Following the trip distribution, trips between different zones are allocated to one of the available 

travel modes in the mode choice step.  Mode choice typically relies on the use of utility functions to 

estimate the travel mode shares; the utility of a mode alternative is dependent on the characteristics of the 

travel mode and the individual making the choice.  A more detailed discussion of the utility-based models 

is provided under the activity-based travel demand model section below.  Once the utility (U) for a travel 

mode (k) is calculated, the travel share for that mode (i.e., the proportion of travelers using mode k) is 

obtained using a multinomial model structure as shown in equation 2.7 where x represents all the 

available modes. 

𝑃𝑟(𝑘) = 𝑎𝑈𝑘
∑ 𝑎𝑈𝑥𝑥

           2.7 

Finally, the network assignment step allocates the trips to the traffic network and determines their 

travel path.  The traffic assignment step is generally performed in multiple iterations by assigning trips to 

roadway links that form the shortest time-path and shifting them to non-congested links when the original 

roadway links to which they are assigned becomes congested.  The process is repeated over multiple 

iterations until equilibrium is achieved between the travel demand and the supply within a tolerance. 
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Although trip generation models provide valuable information in terms of the current and future 

travel demand needs of a region, they are rather limited in their sensitivity towards proposed policy 

changes.  This is because trip-based models consider each trip to be independent of the other (Castiglione 

et al., 2015; Pinjari & Bhat, 2011).  However, in reality, many trips are interrelated.  For example, in a 

household with two working adults who work at different locations and only one car, the individuals 

might have to coordinate their commute; it is easily conceivable that the travel patterns of this household 

will be different to that of another similar household with two available cars.  Thus, clearly, factors 

including work location choice, mode choice, and mode availability influence the interrelations between 

trips, but the trip-based models ignore them.  Trip-based models also suffer from aggregation bias 

(Castiglione et al., 2015; Pinjari & Bhat, 2011).  These models characterize the travel behavior at an 

aggregate level by using broad socio-demographic categories and assuming that households belonging to 

similar categories behave similarly.  For example, the trip generation rate for all households with two 

working adults and one child living in the same zone is considered to be the same.  Thus, there is no way 

to account for the impacts of socio-demographic characteristics of individuals on the travel demand.  

Finally, trip-based models do not explicitly account for the temporal dimension of activities.  Time is 

simply treated as the “cost” of making the trip without actual consideration for how participation in 

activities and travel takes away from the daily allocated time budget (Pinjari & Bhat, 2011).  Thus, since 

these models are insensitive to time-of-day and scheduling choices, they are incapable of simulating the 

impacts of policies with time-of-day attributes. 

Considering these limitations in the trip-based models, the travel demand field has moved 

towards the “behaviorally-oriented activity-based approaches for modeling passenger travel demand” 

(Pinjari & Bhat, 2011).  These new streams of activity-based travel demand models try to characterize the 

travel using behaviorally-realistic paradigms.  Whereas the trip-based models focus on trips without 

recognizing the need for those trips and travel, the activity-based approach views travel as a derived 

demand resulting from individual needs to participate in activities (Bowman & Ben-Akiva, 2001; Pinjari 

& Bhat, 2011).  More specifically, instead of estimating independent trips, the activity-based models 
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focus on individual decisions to participate in activities and the scheduling and location of those activities 

along with the modeling of travel mode choices (Kitamura et al., 1997).  As a result, activity-based 

models estimate chains of trips, also known as tours, as part of characterizing individual daily activity 

patterns (Castiglione et al., 2015).  Thus, activity-based travel demand models are more sensitive to 

policy changes that affect the choice behavior of individuals which in turn affects their travel behavior. 

Activity-based travel demand models allow for the estimation of activity and travel patterns at a 

disaggregate level.  Specifically, they can be used to simulate the daily activity and travel patterns for 

each and every representative individual in the population of interest.  The estimated individual-level 

activity and travel patterns include information on the types of daily undertaken activities, the spatial 

locations and timing of these activities, and the timing, mode, and routes of travel to these activities 

(Bradley & Bowman, 2006; Pinjari et al., 2006; Pinjari et al., 2008). 

Activity-based travel demand approaches can be broadly categorized into two types—utility 

maximization-based and rule-based computational process systems.  Utility maximization-based models 

operate under the philosophy that individuals choose only those activity and travel choices that maximize 

their utility.  Here, utility can be thought of as a satisfaction derived from participation in activities.  

These systems use a suite of utility maximization-based discrete choice structures including multinomial 

logit and nested logit models, as well as other econometric structures including hazard-based duration 

models and ordered response models, to simulate individual-level activity and travel choices.  For 

example, the travel mode choice module in an activity-based modeling framework may first estimate the 

utility of the choice alternative and then employ the multinomial logit structure (as shown in equations 2.7 

and 2.8) to estimate the mode choice for an individual.  Prime examples of utility maximization-based 

models include the Comprehensive Econometric Microsimulator for Activity-Travel Patterns (CEMDAP) 

(Pinjari et al., 2008) and DaySim (Bradley et al., 2010).  In contrast, the rule-based computational process 

models use context-dependent and adaptive choice heuristics to estimate the activity and travel choices of 

individuals (Arentze & Timmermans, 2004; Pinjari & Bhat, 2011).  In other words, instead of assuming 

that individuals always seek to maximize their utility, these models use an exhaustive set of if-then 
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condition-action rules to build daily activity and travel schedules for individuals.  These condition-action 

rules generally are based on the observed activity and travel behavioral choices from travel surveys.  

Examples of rule-based computation process models include A Learning-BAsed TRansportation Oriented 

Simulation System (ALBATROSS) (Arentze & Timmermans, 2004) and Travel Activity Scheduler for 

Household Agents (TASHA) (Miller & Roorda, 2003).  Since this study uses a utility maximization-

based travel demand model, further details on these model systems are presented in the next section. 

2.5.2.3 Utility Maximization-Based Travel Demand Models 

Utility maximization-based travel model systems are based on the economic theories of consumer 

choice, which suggests that individuals choose the activity and travel choices that maximize their utility.  

The utility function for each choice alternative is dependent on the characteristics of the individual, choice 

alternative, and the interaction between them as shown in equation 2.8 (Koppelman & Bhat, 2006). 

Vt,i =V(St)+V(Xi)+V(St,Xi)          2.8 

where,  

Vt,I  is the utility of alternative i for individual t 

V(St) is the portion of utility associated with characteristics of individual t 

(Xi) is the portion of utility of alternative i associated with the attributes of alternative i 

V(St,Xi) is the portion of the utility which results from interactions between the attributes of 

alternative i and the characteristics of individual t. 

The general form of utility is linear and is represented using equation 2.9, where St,1, St,2…. are 

the characteristics of the trip maker and X1, .... ,Xr are the attributes of the choice alternatives.  a1, a2, …ar are 

the parameters (or weights) defining the utility function. 

Vt,i = a1St,1 +a2 St,2+ … + arXr          2.9 

Thus, according to the theory of utility-maximization an individual t chooses the alternative i over 

a set of all other alternatives j if Vt,i≥Vt,j ∀ j.  This gives rise to a deterministic system of equations that 

one may solve simultaneously to determine the activity and travel choices of individuals.  However, 

errors pertaining to incomplete or unavailable information may result in individuals choosing an 
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alternative with lower utility value.  These unobserved factors are incorporated into the utility function as 

an error (or unobserved) term and the utility definition is updated as shown in equation 2.10 (Koppelman 

& Bhat, 2006).  This gives rise to a probabilistic model. 

Uit =Vit+εit           2.10 

where, 

 Uit is the true utility of the alternative i to the decision maker t 

Vit is the deterministic or observable portion of the utility estimated by the analyst 

εit is the error or the portion of the utility unknown to the analyst. 

Assumptions regarding the distribution of the error term results in different types of model 

structure.  Generally, the errors are assumed to be identically and independently distributed, and follow an 

extreme-value (gumbel) distribution across the choice alternatives and individuals.  This results in a 

multionomial logit model structure where the probability of choosing an alternative i is given as shown in 

equation 2.11. 

𝑃𝑟(𝑎) = 𝑎𝑉𝑖

∑ 𝑎𝑉𝑗𝑗
           2.11 

The multionomial logit structure fails when there is a significant correlation among the choice 

alternatives (since the model assumes that alternatives are independent).  In such a case, the alternatives 

are arranged into nests as shown in Figure 2.2 with similar alternatives placed into one nest.  For example, 

the transit options including bus and light rail may be placed under a single nest since they share the 

attributes of public transit. 



32 
 

 
Figure 2.2 Nested mode choice model structure 

In the nested logit structure, the probability of choosing an alternative i (under nest n) is 

conditional upon first choosing the nth nest from a total of m nests and then choosing the ith alternative 

under the nth nest as given by equations 2.12 and 2.13 (Bowman & Ben-Akiva, 2001; Castiglione et al., 

2015; Koppelman & Bhat, 2006).  Here θn is a dispersion term that accounts for the correlation within a 

nest. 

𝑒𝑟(𝑎) = 𝑒𝑟(𝑎|𝑎) ∗ 𝑒𝑟(𝑎)          2.12 

 

         2.13 

 

Although there are certainly other types of econometric modeling structures in use in activity-

based travel demand modeling systems, the multinomial logit and nested logit models are perhaps the 

most widely used.  Using these econometric model structures, the activity-based travel demand models 

estimate the daily activity and travel behavior of individuals given their demographics, urban land use 

characteristics, and highway and transit characteristics. 

2.5.3 Characterization of Individual Exposures to Traffic-Related Pollution 

Individual daily exposures to pollutants are dependent on the magnitude of pollutant 

concentrations, duration of exposure, and the frequency of exposure (Klepeis et al., 2001; Setton et al., 

2011); thus, spatiotemporal characterizations of pollutant concentrations and activity and travel patterns 
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of individuals are important.  Epidemiologic studies focusing on exposures to traffic-related pollution 

used two broad categories of surrogates—measured or modeled concentrations of surrogate pollutant and 

direct measures of traffic including proximity or distance to the roadway and roadway traffic volumes 

(HEI Panel on the Health Effects of Traffic-Related Air Pollution, 2010; Jerrett et al., 2005).  

Exposure estimation based on proximity measures, or volumes, are by far the easiest to 

implement.  However, they do not robustly account for factors including fuel type and vehicle mix 

(Gertler, 2005), and meteorology and terrain (Baklanov et al., 2007; Rijnders et al., 2001) that impact 

pollutant concentrations and, hence, exposures.  As such, studies tried to estimate personal exposures to 

traffic pollution using a variety of measurement and modeling approaches. 

Traditionally, air pollution exposure analysis has been simplistic with regard to the consideration 

of human activity patterns for exposure estimation.  An individual’s exposure often is estimated by 

considering the pollutant concentration at the individual’s residential location, also called residence-based 

exposure, or at a fixed monitoring station (Cortese & Spengler, 1976; Huang & Batterman, 2000).  These 

methods could lead to biased exposure estimates owing to the disregard of spatiotemporal concentrations 

near the individuals’ non-residential activity locations.  Realizing this limitation, studies were undertaken 

to characterize individual daily time use and diurnal activity patterns (Health Canada, 2010; Klepeis et al., 

2001; National Exposure Research Laboratory et al., 2000).  Among these, the National Human Activity 

Pattern Survey (NHAPS) (see Klepeis et al. (2001) is a widely-used source of data for pollutant exposure 

analysis in the US (Burke et al., 2001; Dong et al., 2004).  NHAPS used a 24-hour activity diary to collect 

information pertaining to individual activity participation (type, timing and the duration of activity) and 

the microenvironment location type (kitchen, bedroom, office, grocery store, etc.) for the activities over 

one day.  Whereas the detailed information collected by NHAPS and similar surveys is of immense value, 

the small sample size and the lack of detailed geographic coordinates for the activity locations pose an 

obstacle for exposure characterization.  Some additional concerns include issues of representativeness of 

the activity data for intra-urban exposure applications and temporal validity of activity patterns especially 

for exposure forecasting purposes. 
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Recognizing these limitations, a few studies tried to conduct personal monitoring campaigns to 

accurately estimate exposures to traffic pollution.  For example, to characterize individual exposure to 

NO2, Kousa et al. (2001) and Kornartit et al. (2010) used Palmes tubes.  Similarly, Good et al. (2016) 

used backpack-based measuring instruments to obtain spatiotemporal distributions of activity and travel 

patterns of individuals and personal exposures to a variety of pollutants.  These personal monitor-based 

exposure measurement campaigns are, by far, the most accurate methods to estimate the personal 

exposures; however, large-scale deployment of personal monitors may not be feasible due to the high 

expenses involved (HEI Panel on the Health Effects of Traffic-Related Air Pollution, 2010; Jerrett et al., 

2005).  A few studies also measured the micro-environmental concentrations (for example, bedroom, 

kitchen, or office) in an effort to characterize personal exposures (Kornartit et al., 2010; Lai et al., 2004; 

Rotko et al., 2001).  In these studies, the microenvironments where individuals typically spend a large 

portion of their day were chosen for measurement.  However, this method offers limited spatial variability 

and may only be pertinent to the microenvironments under study.  Further, this method also can be cost 

prohibitive similar to the personal-monitoring approach (HEI Panel on the Health Effects of Traffic-

Related Air Pollution, 2010). 

To overcome these limitations, a few studies pioneered the use of activity and travel patterns 

obtained from travel surveys in conjunction with modeled pollutant concentrations to estimate personal 

exposures (Kornartit et al., 2010; Marshall et al., 2006).  Marshall et al. (2006) used an activity and travel 

survey data of about 25,000 individuals in southern California to compute the pollutant exposures.  

Although these travel survey-based studies have a fairly large sample size, the spatial variability of the 

activity and travel patterns of this sample may not be representative of the population.  Additionally, this 

sample-based approach cannot be realistically used to estimate exposures under a hypothetical policy 

scenario. 

Thus, to overcome all of the earlier-mentioned issues, a few recent studies chose the alternate 

route of modeling both pollutant concentrations and activity and travel patterns of individuals to estimate 

personal exposures for the entire population.  Hatzopoulou and Miller (2010) used an activity-based travel 
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demand model (TASHA) in conjunction with a mobile source emissions estimation model (MOBILE 

6.2C) and dispersion model (CALPUFF) to estimate personal exposures to NOx for the Greater Toronto 

area’s population.  Similarly, Beckx et al. (2009a)), (Beckx et al., 2009c), and Beckx et al. (2009d) used 

the activity-based model ALBATROSS in combination with the emissions model MIMOSA and pollutant 

dispersion model AURORA to estimate personal exposures to NO2 in the Netherlands.  Recently, 

Vallamsundar et al. (2016) used a similar paradigm within the context of the US to estimate the 

population exposure of Maricopa County, Arizona, to PM2.5.  Although these studies certainly laid the 

groundwork and provided advances for population exposure estimation methodologies using activity-

based modeling, their spatial resolution is generally coarse.  This is of specific interest when dealing with 

pollutants such as NOx that display a high spatial variability at the urban scale.  However, more 

importantly, previous research efforts did not fully exploit the features of activity-based models to 

simulate the activity and travel patterns and the resulting population exposure under alternate urban 

design scenarios.  Given this, my dissertation focused on creating a modeling framework that combines 

an activity-based travel demand model with emissions estimation and dispersion models to forecast high 

resolution activity and travel data and population exposure under alternative urban design scenarios. 

2.6 Conclusion 

In view of the previous discussion, a clear gap in knowledge exists with regard to the overarching 

question “how can we design cities so that population exposures and exposure inequalities can be 

mitigated?”  First, although several studies showed the prevalence of exposure inequalities by ethnicity 

and socioeconomic status, very few studies look at the associations between other social and urbanicity 

variables of interest.  Second, it would be of specific interest to understand if the exposure inequalities 

would persist when considering only traffic-related pollution.  Third, although a few studies investigated 

the relationships between urban form and air quality, few to none have considered the interactions 

between them using micro-simulation models that specifically model activity and travel patterns of 

individuals.  This is of particular interest because whereas some studies showed larger influence of urban 

form on exposures to traffic-pollution, many showed marginal effects.  A primary reason for this could be 
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the non-availability of tools that can realistically predict changes in human activity and travel behavior as 

a function of changes to the built environment.  Fourth, past research efforts that used activity-based 

travel demand modeling have not fully exploited them to simulate the activity and travel patterns of 

individuals under different transportation and land use design scenarios.  Considering these limitations, 

this study aimed to understand the relationship between urban design features, human activity and travel 

patterns, air quality, and population exposure using highly spatiotemporally-resolved activity-based travel 

demand modeling and air pollution emission and dispersion modeling.  
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CHAPTER 3: IMPACTS OF TRAVEL ACTIVITY AND URBANICITY ON EXPOSURES TO 

AMBIENT OXIDES OF NITROGEN AND ON EXPOSURE DISPARITIES 

3.1 Note to Reader 

This chapter was published in Air Quality, Atmosphere & Health.  (Gurram, S., Stuart, A.L. & 

Pinjari, A.R. Air Qual Atmos Health (2015) 8: 97.  https://doi.org/10.1007/s11869-014-0275-6).  The 

article is available online at http://link.springer.com/article/10.1007/s11869-014-0275-6.  Permission is 

included in Appendix A. 

3.2 Introduction 

Estimation of human exposures to air pollution is important to researchers and practitioners in the 

fields of air quality management, environmental epidemiology, and urban design.  Exposure estimation 

requires characterization of pollutant concentrations when and where a person or group spends time (Ott, 

1982).  Although personal monitoring has long been used to determine exposures in the field of air 

pollution epidemiology (Dockery & Spengler, 1981), it is time- and cost-intensive, resulting in small 

sample sizes that may be limited for representing a general population (Jerrett et al., 2005; Pekkanen & 

Pearce, 2001).  Hence, methods of estimating exposures for a large group of people are needed for 

population-level risk assessment and policy decisions.  

For large-sample studies, exposures to air pollutants often have been estimated using residence 

address to represent the location of exposure.  Concentrations measured at fixed monitoring sites or 

concentration surrogates (such as nearby traffic counts) are used to derive exposures at the residence 

locations (Huang & Batterman, 2000; Meng et al., 2007; von Klot et al., 2009).  Although this is a 

relatively simple and generalizable approach that can be applied in the context of available data, it is 

recognized that human activity patterns may be particularly important for explaining exposure variation 

(Klepeis et al., 2001; National Center for Environmental Assessment et al., 2011; Ott et al., 1986).  
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Hence, exposure error and misclassification are concerns, with potential outcomes of inaccurate health 

and environmental impact assessments and policy interventions (Huang & Batterman, 2000; 

Krzyzanowski, 1997; Özkaynak, 1986; Sheppard et al., 2012; Thomas et al., 1993; Zeger et al., 2000).  

As a result, studies have investigated the use of more refined estimates of population location and 

concentration to represent personal exposures through methods that characterize or apply patterns of 

human activity (e.g., from time activity diaries) and microenvironment concentrations (Dons et al., 2011b; 

Kornartit et al., 2010; Lai et al., 2004).  These methods often improve the estimate of group-level and 

personal exposures, but remain substantially limited in the characterization of spatiotemporal variations in 

concentrations and activities.  A few recent case studies have used detailed activity and travel patterns 

derived from travel surveys or activity-based models coupled with air pollution modeling to estimate air 

quality exposures or health impacts (Dons et al., 2014; Gariazzo et al., 2011; Hankey et al., 2012; 

Hatzopoulou & Miller, 2010), including analysis of exposure error (Dhondt et al., 2012; Setton et al., 

2011), exposure inequality (Marshall, 2008; Marshall et al., 2006), impacts of travel (Beckx et al., 2009b; 

de Nazelle et al., 2013; Zhang & Batterman, 2013), urban form (Stone et al., 2007), and transportation 

policies (Dhondt et al., 2013).  Nonetheless, the literature remains sparse, and additional case studies 

applying and improving these methods are needed.  Additionally, limited literature exists on the social 

distribution of exposure error. 

This study is part of an ongoing project that aims to enhance the current understanding on 

exposures to traffic-related air pollution, specifically on the social distribution of exposure and impacts of 

urban design (Evans & Stuart, 2011; Fridh & Stuart, 2014; Stuart et al., 2009; Stuart & Zeager, 2011; Yu 

& Stuart, 2013).  This study investigates impacts of activities and urban design factors on exposures and 

exposure disparities and estimates the error introduced by use of residence-location-only versus detailed 

spatiotemporal activity on exposure estimates.  Our methods combine information from an available 

travel survey, estimated travel routes, and concentration data from air pollution modeling results.  The 

following questions were addressed through this work: How are population activities distributed 

spatiotemporally in the study domain?  How are exposures distributed among population groups in the 
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study domain?  What is the strength and direction of disparities between groups?  Does urban form 

influence the strength of exposures and their social distribution?  Which factors are most influential?  Are 

findings robust to uncertainties in exposure estimation associated with the representation of exposure 

location?  How much does the representation of spatiotemporal activity location impact exposure 

estimates?  Are the errors associated with exposure estimation different for different population 

subgroups?  Methods and findings on these questions are detailed below. 

3.3 Methods 

3.3.1 Study Area and Pollutant Focus 

Hillsborough County, Florida, shown in Figure 3.1, is the area of study.  It contains a diverse mix 

of air pollutant emission sources, including an extensive highway network.  Further, it has undergone 

considerable urban sprawl during the past few decades; in 2000, Smart Growth America ranked it as the 

22nd most sprawled metropolitan area of 83 with populations over a half million (Ewing et al., 2002).  In 

2012, the Texas Transportation Institute (TTI) ranked Tampa-St.  Petersburg as 30th for congestion 

(yearly delay per commuter) (Schrank et al., 2012), with automobiles as the primary mode of personal 

transportation.  Regarding measured air quality, ozone levels in the area exceed the National Ambient Air 

Quality Standard (NAAQS) a few times most years, with particle levels close to the 24-hour standard; the 

American Lung Association grades Hillsborough County’s air quality as “F” for ozone and “C” for 

particulate matter (American Lung Association, 2011).  Further, the county is interesting for social 

equality reasons, as its population is relatively diverse and somewhat residentially-segregated (Stuart et 

al., 2009). 
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Figure 3.1 Study area of Hillsborough County, Florida.  Inset shows location of study area within state of 
Florida. 

The pollutant focus herein is oxides of nitrogen (NOx), which is the sum of nitrogen monoxide 

(NO) and nitrogen dioxide (NO2,, a US criteria air pollutant with an established standard level).  

Although, levels of NO2 measured by regulatory networks rarely exceed the national standard, NOx is a 

precursor to both ozone and fine particles.  Further, it is a common urban pollutant that has been 

associated with respiratory responses for susceptible individuals, particularly children, even at levels 

below the National Ambient Air Quality Standard (US Environmental Protection Agency, 2008).  Studies 

have linked the exposure to oxides of nitrogen with cardiovascular and respiratory mortality (Faustini et 

al., 2014), gestational diabetes and preeclampsia (Malmqvist et al., 2013), diabetes mellitus and 

hypertension (Coogan et al., 2012), and incidence of asthma (Anderson et al., 2013).  NOx is also a 

recognized surrogate in health outcomes analyses for the complex mix of traffic pollution (HEI Panel on 

the Health Effects of Traffic-Related Air Pollution, 2010). 
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3.3.2 Estimation of Spatiotemporal Human Activity and Travel Patterns 

Human activity and travel patterns representing the study area were estimated using data from the 

National Household Travel Survey (NHTS), a periodic survey that characterizes the daily travel behavior 

of Americans (Federal Highway Administration, 2009).  Data are collected on all out-of-home trips taken 

over approximately a 24-hour period for individuals sampled by the survey.  The data collected include 

the purpose of each trip (work, shopping, recreation, etc.), trip start and end times, travel times, travel 

distances for each trip, and the geo-coded locations of activities.  Socio-demographic characteristics 

(including age, race/ethnicity, household income, household size, and neighborhood urbanicity) of those 

surveyed are also collected.  Here, we used data from the 2009 survey to characterize spatiotemporal 

locations of daily activity and travel in Hillsborough County. 

The national household travel survey sample for Hillsborough County includes daily activity 

records for 1582 persons from 804 households.  Prior to use, we filtered the sample to exclude daily 

activity records that were inconsistent or had missing information.  We also excluded records that 

contained travel outside of the county boundaries (beyond which detailed NOx concentrations were not 

available).  For a few records, it was necessary to pare the data to exactly 24-hours (beginning at 12:00 

am).  The resulting sample consisted of 1224 daily activity records, including 239 with no travel away 

from the residence location on the survey day.  

To estimate the locations of daily activities in time and space for the county sample, we first 

extracted data from each individual 24-hour activity record (a person-day).  Specifically, we extracted the 

geocoded residence location (latitude, longitude), origin and destination locations for each trip, trip start 

times, and dwell times (time spent at the activity location) using SPSS (version 20.0, IBM Corp. Armonk, 

NY).  Since the national household travel survey does not record information on travel path, we estimated 

the route of travel for each trip.  Specifically, we used the Network Analyst tool in ArcGIS (version 10.0, 

ESRI, Redlands, CA) to select the shortest time path between each trip's origin and destination, based on 

roadway link times and a network shape file (NAVTEQ, 2010).  Travel times for each link were 

calculated using link lengths and link free flow speeds provided with the network data.  Spatial location 
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coordinates (latitude, longitude) along each trip path were extracted at a discrete interval of 100 meters of 

path length using the ET GeoWizards tool (version10.2, ET Spatial Techniques, Faerie Glen, South 

Africa).  The temporal location coordinate (time of day) for each discrete spatial location was estimated 

by adjusting the time on each link by the ratio of the total trip time from the survey data to that from the 

link time estimate.  We then combined the trip path location data to create a highly-resolved sequential 

spatiotemporal record of estimated activity location for each person-day in the filtered county sample. 

3.3.3 Estimation of Diurnal Pollutant Concentrations at Activity Locations 

To estimate pollutant exposures for the study sample, we used ambient NOx results from our 

previous dynamic CALPUFF air pollution dispersion modeling for the study area.  Details of the 

modeling methods, results, and evaluation are provided in Yu and Stuart (2013).  In essence, 

concentrations were estimated using detailed emissions, including link-level roadway emissions, and 

meteorological data for 8760 hours (all hours of 2002) for the study area.  The results provide estimated 

concentrations on a receptor grid with 1 km spatial resolution for Hillsborough County.  For matching 

with the daily activity and travel records here, we estimated the diurnal cycle of the spatial distribution of 

NOx concentration from the model results by averaging the hourly modeled concentration results at each 

receptor over each hour of the day. 

3.3.4 Estimation of Daily Exposure Concentration and Exposure Error 

One goal of this work was to investigate the impact of activity and travel patterns on exposure 

estimates.  To do this, we calculated and compared daily exposure concentrations for each person-day 

using two methods.  Both methods estimate the time-weighted exposure concentration, C = (1/T) ∫ c dt, 

where c is the instantaneous pollutant concentration at an exposure location, dt is the instantaneous time 

interval of exposure, and T is the total exposure averaging period, which equals ∫ dt (24 hours for the 

person-day records here).  

The first method uses only the residence location to estimate daily exposure concentration for 

each person-day.  We call this the residence-based exposure concentration (CR); it represents conventional 

exposure concentration estimation using only residence address information.  Since the spatial location of 
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exposure does not change with this approach, the discretized exposure concentration during each person-

day varies in time only, not in space.  Using the ArcGIS intersect tool, we extracted concentrations from 

the 24 dispersion modeling concentration maps (each representing one hour of the day with 1 km spatial 

resolution), resulting in ambient concentrations (cτ) for each hour of the day (Δtτ, equal to 1 hour) at each 

residence location.  We then numerically integrated these data using time weighting in SPSS to estimate 

the daily residence-based exposure CR = (∑cτ Δtτ) / T for each person-day in the study sample.  

Second, we estimated daily exposure concentrations by matching the spatiotemporal locations in 

each person-day activity-travel record with modeled concentration at those locations; we call this the 

activity-based exposure concentration estimate (CA).  Specifically, we extracted concentrations from the 

modeled data for each discrete location along each person-day activity-travel path.  This results in 

ambient pollutant concentration (cσ) and time spent (Δtσ) for each discretized spatiotemporal activity-

travel path location, σ = (latitude, longitude, time).  Note that concentration for the same hour of day 

changes due to movement in space.  The daily activity-based exposure concentration was then 

numerically estimated as CA = (∑cσ Δtσ) / T for each person-day in the study sample.  For explanatory 

analyses, we also estimated exposures, EA = ∑cσ Δtσ, for sub-daily periods.  

To compare the two measures of exposure concentration, we calculated the relative percent 

difference between the activity-based and residence-based exposure concentration as (CA-CR)/ CA for each 

person-day in the sample.  We call this the exposure error, as it estimates the error associated with using 

residence location only to calculate exposure.  Frequency distributions for the study sample of daily 

exposure concentration (estimated using both methods) and of exposure error were compared to describe 

differences.  A paired-sample t-test was used to quantify the significance of differences in the means for 

each sample distribution.  Finally, we calculated bias factors to quantify the potential bias in relative risk 
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estimates (based on simple linear models) due to use of the residence-based exposure estimate, following 

the method outlined by Setton et al. (2011). 

3.3.5 Analysis of Exposure Distributions and Inequality 

A second goal was to characterize disparities between groups in activity-based exposure 

concentration and in potential exposure error, including identification of factors impacting both.  To do 

this, we first categorized daily exposure concentrations and exposure errors by population subgroup.  We 

focused on subgroup types representing characteristics that have previously been found to experience 

exposure disparities or air pollution susceptibility.  Specifically, the person-day exposure concentration 

estimates were categorized by age (5–18, 19–45, 46–65, and older than 65 years), race/ethnicity (Asian, 

white, Hispanic, black), and household income/poverty (below poverty, above poverty to below $75,000, 

above $75,000).  Age less than 5 could not be considered, as no survey data are available for this 

category.  To define the poverty threshold, we used the 2009 federal poverty guidelines that are based on 

household size (Department of Health and Human Services, 2009).  The above $75,000 threshold was 

chosen to capture approximately the highest third of the income distribution in the study area.  After 

categorization, group frequency distribution summary statistics (e.g., mean, percentiles) were calculated 

and compared.  To measure the significance of differences between groups of the same type, we used 

95% confidence intervals around each mean and performed one-way ANOVA, followed by post-hoc 

Games-Howell testing (Hayes, 2005).  A similar analysis was performed for differences in exposure 

errors between groups. 

To investigate impacts of urban design, travel, and activity factors on exposure and exposure 

disparities, we performed a few additional analyses.  As a proxy for urban design, we first categorized 

exposure concentrations by the urbanicity of the residence location (urban, suburban, second city, rural), 

as provided with the survey data (Claritas, Inc. [2004] provides urbanicity category definitions; we use 

the term rural for the town and country category, to avoid confusion with the proper name – Town ‘N’ 

Country – of a region in the study area.  See Figure 3.1).  Next, we categorized exposure concentrations 

by daily personal travel time.  A preliminary analysis of the time spent at different activity location types 
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shows that mean daily personal travel time is 62 minutes (see Table 3.1); thus, we formulated three daily 

travel time categories, i.e., no travel, daily travel less than 1 hour, and daily travel greater than 1 hour to 

understand the distribution of exposures by daily personal travel time.  Distributions of activity-based 

exposure (concentration x time) were also compared between different activity location types to explore 

the contribution of activity-location type to exposures.  Specifically, activity location types were divided 

into three categories—at-residence, non-residential, and in-travel.  Exposures were also compared against 

daily travel time.  Similar analyses were performed for exposure error.  Finally, we performed a 

multivariate linear regression analysis to assess the impact of urban design and activity factors on 

exposure concentration.  Specifically, we used a hierarchical stepwise approach, in which the 

sociodemographic predictors (gender, age, racioethnicity), followed by the income categories, were 

introduced first, to control for their impacts on exposure concentration.  The urbanicity categories, 

followed by the activity time variable, were entered subsequently.  All predictor variables were 

introduced into the model as categorical binary variables (e.g., male/female, black/non-black), except the 

time variable, which was introduced as a continuous variable.  A 95% confidence (p < 0.05) statistical 

significance criteria for each predictor variable was used to discard or retain variables at each modeling 

step.  All statistical analyses were performed in SPSS. 

3.4 Results and Discussion 

3.4.1 Distributions of Human Activity in the Tampa Area 

Table 3.1 provides a summary of the average temporal distributions of activity types observed by 

the 2009 national household travel survey for the filtered study sample in Hillsborough County.  Time 

activity data are also provided from two well-known historical human activity surveys used for exposure 

analysis, the National Human Activity Pattern Survey (NHAPS) (Klepeis et al., 2001) and the Canadian 

Human Activity Pattern Survey (CHAPS) (Leech et al., 2002).  As in the historical surveys, residents in 

the study sample spent the majority of their time at home (about 80%), although the percentage of time 

spent at home is about 13% higher here.  The order (from highest to lowest percentage of time spent) of 

activity location types is also the same here as in the NHAPS and CHAPS.  However, the quantitative 
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distribution of time is somewhat different; the population sampled here spent more time on average at 

work, and less time travelling, at meals, and at other activities.  Some of these differences may be due to 

differences in spatial scale, geography, and demographics.  Specifically, the NHTS results are for 

Hillsborough County, FL, while the NHAPS and CHAPS results are for the entire US and Canada, 

respectively.  Further, Florida is a state with large older-adult population, which may contribute to more 

time spent at home.  Finally, different definitions of the activity type categories between the surveys could 

also have led to some differences. 

Table 3.1 Average time spent per day by activity location type 

  This Work1 NHAPS2 CHAPS3 
Activity Type4 min. (%) (%) (%) 

Home 1151 80 67 67 
Other 116 8.0 19 20 
Work 98 6.8 5.9 6.0 
Travel 62 4.3 5.7 5.3 
Meals 13 0.9 1.9 1.8 

1Filtered sample from 2009 NHTS for Hillsborough County.  
2National Human Activity Pattern Survey (Klepeis et al, 2001).  
3Canadian Human Activity Pattern Survey (Leech et al, 2002).  
4The following specific categories from each study were included under each label.  Home – NHTS Home category; 
NHAPS and CHAPS categories of Indoor at Home and Outdoor at Home.  Work – NHTS Work category; NHAPS and 
CHAPS Office/Factory category.  Travel – NHTS categories of Travel and Transport Someone; NHAPS and CHAPS 
categories of In Vehicles and Near Vehicles - Outside.  Meals – NHTS Meals category; NHAPS and CHAPS 
Bar/Restaurant category.  Other – NHTS categories of School/Daycare/Religious Activity, and Medical/Dental 
Services, Shopping/Errands, Family Personal/Business Obligations, Social/Recreational Activities, and Other 
categories; NHAPS and CHAPS categories of School/Public Building, Indoors-Other, Outdoors-Other, and Mall/Store. 

Figure 3.2 provides the spatial distribution of activity time from the study sample (the percentage 

of total time spent in each block group area (subplots a–c), along with urbanicity (subplot d) of each block 

group).  To our knowledge, this presentation of a spatially distributed activity time density map applied to 

exposure analysis is novel.  Subplot d indicates that urbanicity generally decreases from central Tampa, 

surrounded by suburbs (including Citrus Park and Temple Terrace).  A few pockets classified as second 

city areas (Sun City Center, Brandon, Plant City, New Tampa, Town 'N' Country) are farther from central 

Tampa and are surrounded by areas classified as the rural urbanicity category.  The block group areas in 

the largest time density category (with at least 0.4% of the total time in the sample) are located in areas 
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that are categorized as rural (e.g., Fish Hawk), suburban, and some second city locations (e.g., in Brandon 

and Sun City Center) and largely correspond to the areas with the highest percentage of residential 

activity time (not shown).  The block groups with the highest densities of non-residential time are largely 

special locations (Tampa International Airport, University of South Florida) or, for the second highest 

category (containing from 0.1% to 0.4% of total time in the sample), in rural, second city, or suburban 

locations.  As a whole, the population of the Hillsborough County sample spent little time in urban block 

groups, though the time densities are larger for non-residential activities. 

 
Figure 3.2 Spatial distribution of sample population activity-time (% of time spent) and urbanicity in 
study area.  a) % of total time spent in all activity types within block group, b)% of total time spent in 
non-residential activities within block group, c) difference (%) between residential (r) and non-residential 
(nr) activity-times spent in each block group, d) urbanicity category of block group. 
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3.4.2 Diurnally Varying Spatial Distributions of NOx Concentration 

The average diurnal cycle of modeled NOx concentration for the study area is shown in Figure 

3.3.  See Yu and Stuart (2013) for a detailed discussion of the spatial distribution of concentrations in the 

study area and results from evaluation of model performance.  For our purposes here, note that for many 

hours of the day the concentrations are highest along the major roadways in the area with a broad peak 

apparent over central Tampa and near Tampa International Airport.  A high is also often visible near a 

major port facility (Port Sutton) to the south of Downtown.  Diurnally, concentrations exhibit morning 

(6:00–8:00 am) and evening (5:00–9:00 pm) peaks, consistent with increased NOx emissions from traffic 

during commute hours.  The evening peak is more spread out in time than the morning peak, consistent 

with both a larger meteorological mixing height in the evening and typical commute behaviors; 

specifically, the morning commute is known to be largely driven by work-related activities, while the 

evening commute may include maintenance, social, recreational, and other activities (Jou & Mahmassani, 

1997; Kim et al., 2008).  A detailed evaluation of modeled estimates against measured data is provided in 

Yu and Stuart (2013). 
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Figure 3.3 Estimated diurnal cycle of hourly average ambient NOx concentrations (µg/m3) in study area, 
from dispersion modeling results 

3.4.3 Daily Time-weighted Activity-based Exposure Concentrations and their Social Distribution 

The cumulative distribution of estimated daily (24-hour) activity-based NOx exposure 

concentration is shown in Figure 3.4 (left side).  The mean exposure concentration for the study sample is 

17 µg/m3, with values for individual person-day records ranging from 7.0 to 43 µg/m3.  Using a typical 

fraction of NO2 in NOx estimated for the Tampa area of 0.8 (Poor, 2008), the values found here roughly 

correspond to daily NO2 exposure concentrations of 7.4 ppb and 18 ppb for the sample mean and 

maximum, respectively.  Although these values are on the low end of 24-h NO2 exposure concentrations 

measured elsewhere (e.g., Delfino et al. (2008); Kim et al. (2006)), they are in the range of 24-hour 

average NO2 exposure concentrations that have been found to be associated with a variety of respiratory-

related health outcomes (US Environmental Protection Agency, 2008). 
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Figure 3.4 Cumulative distributions for daily exposure concentrations.  Activity-based daily exposure 
concentration (left), residence-based daily exposure concentration (middle), and daily exposure error 
between the two as a percent difference, (CA – CR)/CA (right).  Boxplot whiskers indicate 5th and 95th 
percentile values, (x) indicates mean value.  Summary statistics provided below each box plot; 95% 
confidence intervals around each mean in parentheses. 

The distribution statistics of the activity-based daily NOx exposure concentrations for a few 

subgroups are provided in Table 3.2.  Cumulative distributions are provided in Figure 3.5.  Apparent 

differences in exposure concentrations among subgroups in the racioethnic and income categories are 

seen.  Among the racioethnic groups, estimated mean daily exposure concentration is highest for the 

black group (20 µg/m3), followed by the Hispanic group; mean exposures were lowest for whites (16 

µg/m3).  Results for the Asian subgroup are not shown due to the small sample size (14 person-days).  

Although within-group variations increase with increasing group mean concentrations, the 95% 

confidence intervals around the means for the black and white categories are far apart, and one-way 

ANOVA with post-hoc Games Howell testing also indicated high significance for the difference (p = 

6x10-8).  Differences between the other categories were not significant, as the confidence intervals 

overlap.  Among the income categories, the mean daily exposure concentration was highest for the group 
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characterized by household income below the poverty level (18 µg/m3).  This value is slightly lower than 

that estimated for the black group.  Mean exposure concentration decreases with the income category, to 

16 µg/m3 for the group characterized by higher incomes (household annual incomes above $75,000).  The 

confidence intervals and post-hoc testing indicate statistically significant differences between means for 

the below poverty versus highest income group, and between the two above poverty groups, but not 

between the below poverty versus middle income group.  Differences in mean exposure among the age-

based groups are not apparent. 
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Table 3.2 Group distribution statistics for daily activity-based exposure concentration and exposure error 

     Exposure Concentration (µg/m3)   Exposure Error (%) 

 Group N 
 

Mean Confidence Interval Min Max   Mean Confidence Interval Min Max 

Race/ethnicity1 1173  
                 Black  115  20 ( 19.0 - 21.5 ) 8.5 43 

 
1 ( -1.1 - 3.3 ) -64 34 

Hispanic  29  18 ( 15.9 - 19.2 ) 11 28 
 

5 ( 1.3 - 9.6 ) -8.9 45 

White  1029  16 ( 16.0 - 16.6 ) 7.0 41 
 

4 ( 3.3 - 4.4 ) -32 58 

Income2 1131  
                 Below poverty  137  18 ( 17.1 - 19.2 ) 7.4 43 

 
1 ( -0.6 - 2.6 ) -64 45 

Middle income  577  17 ( 16.8 - 17.6 ) 7.0 41 
 

3 ( 1.9 - 3.5 ) -52 53 
Higher income  417  16 ( 15.6 - 16.5 ) 7.4 32 

 
6 ( 4.6 - 6.5 ) -31 58 

Age 1224  
                 5–18  148  17 ( 16.1 - 17.9 ) 8.5 29 

 
3 ( 0.6 - 4.6 ) -64 53 

19– 65  665  17 ( 16.6 - 17.4 ) 7.0 41 
 

5 ( 4.2 - 6.0 ) -48 58 
Over 65  411  16 ( 15.9 - 16.9 ) 7.4 43 

 
1 ( 1.0 - 1.8 ) -17 23 

Urbanicity 1224  
                 Urban 267  22 ( 21.2 - 22.4 ) 12 43 

 
0 ( -1.3 - 0.9 ) -64 25 

Suburban 387  17 ( 16.3 - 17.2 ) 10 35 
 

4 ( 3.3 - 5.2 ) -31 42 
Second city 287  16 ( 15.5 - 16.2 ) 8.8 25 

 
4 ( 3.1 - 4.9 ) -31 38 

Town & rural 283  13 ( 12.6 - 13.6 ) 7.0 27 
 

6 ( 4.3 - 7.1 ) -17 58 

Daily travel time 1224  
                 More than 60 min  452  17 ( 17.0 - 17.8 ) 8.5 41 

 
8 ( 6.5 - 8.8 ) -32 58 

Up to 60 min  533  17 ( 16.2 - 17.1 ) 7.6 43 
 

2 ( 1.0 - 2.4 ) -64 42 
No travel  239  16 ( 15.3 - 16.7 ) 7.0 35   0 ( 0 - 0 ) 0 0 

1Racioethnic labels used here are shortened forms of Race and Origin category labels used by US Census.  Category descriptions are available at www.census.gov.  Note 
that placement in a category is by self-selection, and individuals may be categorized in multiple or no categories.  
2Below Poverty, Middle Income, and Higher Income labels refer to households with income below poverty threshold, above poverty threshold but less than $75,000, and 
$75,000 or above.
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Figure 3.5 Cumulative distributions of daily activity-based exposure concentration for population 
subgroups.  (a) personal attributes and (b) urban characteristics.  Category definitions provided in text.  
Note that racioethnic subgroup populations are not exclusive; populations have overlapping individuals. 

Differences in daily activity-based exposure concentrations observed here between the 

racioethnic groups are consistent with our previous studies that have estimated exposures in the Tampa 

area using only residence location (Stuart et al., 2009; Yu & Stuart, 2013) or school location (Stuart & 

Zeager, 2011).  Specifically, we found greater exposures for the black, Hispanic, and low-income (below 

poverty) groups than the white and higher-income groups, respectively.  Hence, regardless of the use of 

individual-level activity information in the exposure estimation, the qualitative direction of the disparities 

found for the Tampa area appears to be robust.  

Furthermore, results are consistent with other findings from the study area and elsewhere.  

Specifically, in a study of the Tampa area using 1999 National-scale Air Toxics Assessment 

concentration data and the population distributions from the 2000 US census, Chakraborty (2009) found 

that the black, Hispanic, and below poverty groups are subject to disproportionate cancer risks and 

respiratory hazards, while no conclusive inequalities were found for individuals above age 65.  Overall, 

results here contribute to the body of literature across localities in the US and elsewhere (Green et al., 
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2004; Houston et al., 2004; Linder et al., 2008; Marshall, 2008; Marshall et al., 2006; Mitchell & Dorling, 

2003; O'Neill et al., 2003; Pearce et al., 2006), largely finding typically higher exposures to primary 

pollutants for socially and economically disadvantaged groups, with some exceptions (Buzzelli & Jerrett, 

2007) and reverse finding for secondary pollutants (Marshall, 2008).  

It is worthy of mention that the use of spatiotemporal activity information in this study did not 

change the relative ranking of mean disparities between racioethnic versus income groups.  The mean 

difference between the black and white category was larger than the difference between the below 

poverty and highest income group; blacks had the highest estimated average exposure of all racioethnic or 

income groups.  However, this result is complicated by the results of regression analysis (discussed 

below), for which income below poverty was associated with a larger independent increase in exposure 

concentration (1.7 µg/m3), than being black (versus non-black, 1.2 µg/m3).  However, the comparative 

difference in group mean disparities found here is consistent with results from other study areas.  

Specifically, in a study in southern California, Marshall et al. (2006) found that exposure levels differed 

more among ethnic groups than between high- and low-income households, while Clark et al. (2014) 

found a similar result through a national level analysis.  We note that there are many aspects of social 

disadvantage that are not captured by race, ethnicity, or income alone.  Further, it is well established that 

there are interactions between factors that affect exposure disparities (e.g., Apelberg et al. (2005); Perlin 

et al. (2001)) with many studies in the air pollution field now using multi-factor indices that can also 

include education, occupation, employment status, family size, and home ownership (Forastiere et al., 

2007). 

Although differences in daily exposure concentrations are evident in our results, their importance 

to health outcomes is not necessarily clear.  To explore the potential importance, we applied literature 

estimates of increased risk (primarily as reported by US Environmental Protection Agency 2008) to 

estimate possible health impacts.  Neuberger et al. (2007) found a 2.9% increase in risk of total mortality 

associated with a 10 µg/m3 increase in 24-hour mean NO2 concentrations.  Applying this to the 

differences in group means found here would suggest an increased risk of 1% for blacks versus whites (on 
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average), and an increased risk of 0.5% for those living in poverty versus in households with annual 

incomes over $75, 000 (on average).  Even higher differences in health risks may be present between 

groups, when considering susceptible people, such as children and older adults.  Application of the 61.3% 

increased risk for cough incidence per 20 ppb increase in 24-hour NO2 concentration found by Schwartz 

et al. (1994) in a study of children, would result in an approximately 5% excess risk for black compared 

to white children here, on average.  Similarly, applying the ratio of 6.8% increased risk of all respiratory 

hospitalizations per 20 ppb increase in daily NO2 concentrations found in a study by Fung et al. (2006) of 

adults aged 65 and older, suggests a 0.6% higher risk for elderly blacks compared to elderly whites here, 

on average.  Note that for any individual, the comparative risks may be higher or lower due to individual 

risk factors (smoking, diet, exercise, occupation, access to health care, etc.) (Dockery  et al., 1993; Pope 

III et al., 2002).  Additionally, since differences in harmful health effects have been found even when 

differences in exposures are not clear (Deguen & Zmirou-Navier, 2010), small differences in exposures 

between groups may be important.  

Overall, our results suggest that to attain the policy goal of reducing disparities in health 

outcomes (Healthy People 2020 & US Department of Health and Human Services, 2010), interventions 

that reduce existent disparities in exposure between socioeconomic groups may be helpful.  Further, the 

methods used here provide an approach for estimating activity-based exposures specific to individual 

person-days, but for a large sample.  This could be helpful for the study of factors affecting population 

health outcomes and for estimation of expected risks, without the intractably large costs of personal 

exposure concentration sampling for a large population. 

3.4.4 Urban Form, Activity, and Exposure Relationships 

We are interested in understanding how factors related to urban form may impact the magnitude 

of exposures and their social distribution in the Tampa area.  Figure 3.5b provides the distributions of 

estimated daily activity-based exposure concentrations categorized by the urbanicity of residence 

location, with statistics provided in Table 3.2.  Substantial differences in NOx exposure concentrations are 

seen between residence urbanicity types.  The highest mean daily exposure concentration (22 µg/m3 ) was 
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found for records with urban residence location, while that for records with rural residence location was 

40% lower (13 µg/m3 ).  Mean exposures were intermediate for the suburban and second city categories.  

The confidence intervals and post-hoc testing indicate that all differences between the category means are 

significant.  The largest difference in means between urban versus rural residence urbanicity categories (9 

µg/m3) is also more than twice as large as the largest difference among the social categories discussed 

above (4 µg/m3 for the black versus white subgroup mean difference).  Hence, residence urbanicity likely 

influences exposure and its social distribution among groups.  This is broadly consistent with results of 

previous studies comparing exposures for populations in urban versus rural areas.  For example, in the 

EXPOLIS-Helsinki study, individuals living in Downtown had 23% higher exposures than suburban 

residents (Rotko et al., 2001).  Similarly, in a study of school children, Rijnders et al. (2001) found that 

both outdoor and personal NO2 exposures increased with the level of urbanicity (and traffic density), with 

a mean difference in personal exposures for the highest versus lowest urbanicity category of 14.6 µg/m3. 

Results of the multivariate linear regression analysis (Table 3.3) also indicate that urbanicity was 

the strongest predictor of exposure concentrations (with the highest coefficient value and t-statistic) 

among the factors studied.  A model using only the urbanicity variables as predictors (not shown) 

captures about 35% of variance in the individual exposures, a substantial portion of the total model 

variability captured in the more complex model shown.  Consideration of interaction terms between the 

sociodemographic and urbanicity variables provides further insight on the influence of residence 

urbanicity on the disparities in exposure found above between sociodemographic groups.  Specifically, 

interaction terms urban*black, suburban*black, and suburban*below poverty all had significant 

t-statistics (significance values of 0.002, 0.005, and 0.004, respectively) and high coefficients (3.2, 3.1, 

and 2.5 µg/m3, respectively) when added to the base model shown.  Furthermore, with the interactions 

terms added, the black explanatory variable (which now represents blacks living in second city and rural 

regions) was no longer significant, and the below poverty variable had substantially reduced significance 

(0.04 with a reduced coefficient value of 0.9 µg/m3).  Additional comparisons of subgroup exposures (not 

shown) also indicate that, for those living in second city and rural regions, the difference in the mean 
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exposure for blacks versus others is not significant.  That is, the exposure disparity (higher group mean 

daily exposure concentration) found here for the black group, on average, above, is due to both higher 

exposures for the urban and suburban black population, and higher residence urbanicity for the black 

population in the study area.  Residence urbanicity classification also explains some of the disparity 

between economic groups, but the result is more complicated, as an urban below-poverty interaction term 

was not found to contribute significantly, but the suburban below-poverty term was. 

Table 3.3 Linear regression model for activity-based exposure concentration 

Explanatory Variable Coefficient1 (β i, γ i) t statistic Significance 

constant2 (β 0) 11.5 35 3e-180 

Black 1.2 2.9 3e-3 

Below poverty 1.7 4.3 2e-5 

Middle income3  1.2 4.7 2e-6 

Urban 8.3 23 1e-98 

Suburban 3.4 11 8e-25 

Second city 2.6 7.5 1e-13 

Time away from residence  0.2 6.8 1e-11 

Goodness of fit 
   

R2 0.40 
  

Adjusted R2 0.39 
  

Number of cases 1120     
1Regression model is CA (µg/m3) = β0 + β1Xc1 + β2Xc2 + … γ1Xt1 + γ2Xt2 + … + ε, where Xci -> (1,0) are binary 
variables, and Xti are continuous variables.  Only time variable entered as continuous variable (with units of hours).  βi 
have units of µg/m3, γi have units of (µg/m3)/hr. 
2Constant concentration represents exposures for people who are non-black with incomes over $75,000, who live in 
town/rural areas and did not travel on sample day.  
3Middle income refers to households with income above poverty threshold but less than $75,000. 

Although it is known that residence urbanicity is associated with increased exposure, the reasons 

for this are not well understood.  One contributing reason that has been explored extensively is the 

presence of higher concentrations of pollutants in urban versus rural areas.  We can clearly see in 

comparing Figure 3.3 and Figure 3.2d that NOx concentration is generally higher in urban versus rural 

areas throughout the day.  However, we look here at the additional role of activity, with a focus on travel 

activity.  Figure 3.6 provides NOx concentration and exposure distributions categorized by activity-

location types (at-residence, non-residential, and in-travel) for the subsample (n = 975) of person-day 
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records that included some activity in each category on the survey day.  The mean (time-weighted) 

concentration is highest (19 µg/m3) for the in-travel activity category and lowest (16 µg /m3) for the at-

residence category.  That is, ambient concentrations were higher at the locations of non-residential and 

travel activities (at least during the times when our sample population was located there).  However, mean 

exposures (µg hr/m3) are lower for travel and non-residential activities, as less time is spent in these 

activities (see Table 3.1).  Overall, the group mean daily exposure concentration increases for those who 

travel more (Figure 3.5b).  Confidence intervals for the categorical means (Table 3.2) indicate 

significantly different group mean exposure concentrations for daily activity records with more than 60 

minutes of travel time versus those with no travel.  Our multivariate linear regression (Table 3.3) also 

indicates a small increase in exposure concentration with increased daily time away from the residence 

location (travel time plus time at non-residential locations), with concentrations increasing by 0.2 µg/m3 

per hour of total daily time.  Hence, although residence location remains a better predictor of daily 

exposure concentration than does time away from the residence (or time travelling), these activity times 

may play a role. 

 
Figure 3.6 Cumulative distributions of time-weighted NOx concentration (µg/m3) and NOx exposure  
(µg-hr/m3) by activity type location for all sampled daily records, including some activity away from 
residence.  NOx concentrations and exposures shown in left and right figures, respectively.  Summary 
statistics provided below each box plot; 95% confidence intervals around each mean are in parentheses. 
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These results are consistent with those of other recent studies indicating the importance of 

exposures during travel.  de Nazelle et al. (2013) found that travel activities contributed 24% of the total 

daily intake of NO2.  Dons et al. (2011b) and Dons et al. (2012) found that transport time accounted for 

21% of black carbon exposures, and identified transport activity as a primary reason for differences in 

exposure between family members.  Zhang and Batterman (2013) also recently found that increased 

traffic congestion led to greater population health risks; for the on-road population, this was due in part to 

increased transport times.  We found the contribution of time in travel to be less for our study area, 

accounting for 6% of the total daily exposure on average, but time at nonresidential locations accounted 

for 24%. 

From an exposure mitigation perspective, it is known that higher concentrations of many 

pollutants in urban areas are due largely to the proximity and spatial concentration of air pollution sources 

in urban areas, including car exhaust on congested roadways, combustion emissions from home heating, 

and nearby industrial emissions.  Hence, mitigation policies have focused on reducing emissions from 

sources (e.g., through engineering control technologies).  However, reduction in exposures requires 

reduction in emissions at a rate outpacing economic and population growth, which has proved difficult to 

sustain.  Another popular strategy has been urban design that displaces sources away from where people 

live via urban planning and zoning policies (South Coast Air Quality Management District (AQMD), 

2005).  However, this strategy has resulted in collocation of sources with socially-disadvantaged 

population groups who cannot afford to live in less polluted areas (Perlin et al., 2001; Pulido, 2000) and 

with increases in emissions-producing travel necessary for people to access their homes, places of 

employment, and services.  

Hence, “smart growth” urban design strategies are now being promoted as potentially mitigating 

exposures (Office of Sustainable Communities et al., 2013).  Previous work has suggested that high-

density urban growth can potentially help in reducing the vehicle miles travelled and the overall 

emissions (Hankey & Marshall, 2010; Stone et al., 2009).  However, simply applying land use 

intensification (or densification) strategies without making modifications to the existing transportation 
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infrastructure might increase congestion and lead to higher concentrations in urban areas (Farber et al., 

2009).  This could also exacerbate social disparities in exposures, as many disadvantaged groups 

disproportionately live in more dense urban areas (Baum et al., 1999).  This underscores the need for 

caution in implementing high-density developments alone.  However, another informative viewpoint may 

be differences in activity behavior that place people in spatiotemporal locations of high concentrations.  

Particularly interesting from a policy viewpoint are activity behaviors that are impacted by civic 

infrastructure.  In this study, we found that average concentrations were higher in travel and non-

residential activities, and estimated daily exposures were higher for those who travel more.  Hence, a 

focus on civic infrastructure that reduces time travelling (and other non-residential activities) as well as 

emissions at those locations may be warranted.  Implementation of transit infrastructure is one such 

approach, as it can reduce congestion (with concomitant reductions in emissions) and can reduce the time 

spent travelling on congested roadways.  However, cost-competitive transit infrastructure requires high-

density development (Kenworthy & Laube, 1999). 

3.4.5 Exposure Error 

The cumulative distributions of estimated residence-based daily NOx exposure concentration and 

exposure error (due to the use of residence versus activity-based approach) are shown in Figure 3.4.  

Overall, we found the mean exposure error [(CA-CR)/ CA] to be 3.6%, with a range of -64% to 58%.  

Additionally, for the majority of the sample (56%), the error is positive (the activity-based exposure 

estimate is larger than the residence-based estimate).  There is a small amount of overlap in the 

confidence intervals around each mean, though a paired samples t-test suggests statistically significant 

differences (p = 3e-22).  Additionally, for the subsample of person-day records (n = 985) that included at 

least some travel away from the residence on the survey day, the mean error is slightly increased (4.4%).  

The calculated bias factors for the full sample and for travelling subsample, were 0.85 and 0.82, 

respectively, indicating that in a health impact study using residence-based daily exposure estimates, the 

relative risk may be underestimated by 15%, or 18% for the traveling sample. 
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Mean exposure bias (or error) values observed in our study are consistent with previously 

reported results, and suggest the importance of consideration of activity and travel patterns for exposure 

estimation.  For Metro Vancouver, Setton et al. (2011) reported an exposure bias for residence-based 

versus activity-based exposure estimates of 0.70 to 0.84 for NO2 (depending on the method used for 

concentration interpolation).  Further, in a study of Flanders and Brussels, Dhondt et al. (2012) found 

small but significant differences between the mean dynamic (i.e., activity-based) exposures and 

residential exposures (21.6 versus 20.98 µg/m3), with a resulting exposure error of 2.9%.  Similarly, in a 

Belgian study, Dons et al. (2011b) found that time-activity patterns could account for approximately 30% 

of weekly personal mean exposure differences between a worker and a homemaker from the same 

household.  While their study does not consider exposure error explicitly, their findings underscore the 

importance of time-activity patterns and their impact on exposures. 

Our results suggest that a residence-based approach likely underestimates exposures for a large 

proportion of the population, resulting in underestimated risks of health impacts of air pollution.  

However, for almost half (46%) of the population, exposures and risks may be overestimated using a 

residence-based approach.  Additionally, although the average error was found to be 3.6%, the maximum 

(absolute) error was 64%.  Hence, exposure estimation methods that account for spatiotemporal changes 

in location and concentration may be needed for more accurate estimation of exposure and better health 

impact assessments.  Nonetheless, this does not discount the importance of exposures at the residence 

location.  Our results above on the large percentage of time spent at the residence location (on average) 

and on the predictive value of residence urbanicity are consistent with epidemiological studies that 

continue to suggest the value of exposures at residence location as a predictor for health responses 

(Brauer et al., 2008; Gan et al., 2011). 

3.4.6 Social Distribution of Exposure Error 

It is interesting to inquire whether estimated exposure error differs between demographic groups, 

i.e., whether residence-based estimates may be systematically biased for specific segments of the 

population; systematic biases could lead to systematic misclassification of exposures by group during 



62 
 

health impact analyses.  To address this question, Figure 3.7 provides the cumulative distributions of 

exposure error for each of the sociodemographic groups studied above, with statistics provided in Table 

3.2. 

 
Figure 3.7 Cumulative distributions of exposure error for population subgroups.  Exposure errors 
presented by (a) personal attributes, and (b) urban characteristics.  Above-poverty refers to households 
with income above poverty threshold but with incomes less than $75,000.  Note that racioethnic subgroup 
populations are not exclusive; populations have overlapping individuals. 

Among the racioethnic groups, exposure errors are largely positive (underestimation) for the 

Hispanic and white subpopulations, with the highest variation seen for the Hispanic group.  Results are 

mixed for the black subgroup, with largely positive errors, but a substantial proportion in the negative 

(overestimation) range.  Mean exposure errors were not found to be significantly different between any of 

the racioethnic groups considered.  With regard to income, exposure errors are largely positive 

(underestimation) for the higher-income (annual income above $75,000) and middle-income groups, with 

some negative (overestimation) errors in the below-poverty group.  We found the mean exposure errors 

between the higher income group significantly different from those for both the below poverty group and 

the middle income group, but difference between the low and middle income groups was not significant.  

Mean exposure error is positive for all age groups, but is highest (most underestimation of exposures) for 
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active adults (ages 19–65), and lowest, with least variation, for older adults (over age 65).  Mean errors 

were significantly different between these two age groups, but not between either of these groups and the 

child (ages 5–18) group. 

Residential location appears to be a major determinant of the direction and the extent of exposure 

error.  As can be observed from the box plots, the residence-based exposure concentrations are almost 

equal to the activity-based exposure concentrations for a large proportion (50%) of those living in urban 

areas.  This suggests that pollutant concentrations at residential and activity locations may be similar for 

those living in urban areas.  Moreover, with decreasing density, the variability in the exposure error 

increases.  Specifically, there is a greater incidence (and magnitude) of under-estimation of exposures by 

residence-based estimates in rural regions (and over-estimation in urban regions).  Further, the mean 

exposure error was found to be significantly different for the individuals residing in urban regions and the 

individuals residing in the suburban, second city and rural regions.  These results suggest that using 

residence-based estimates may lead to underestimation of NOx exposures (and resulting health effects) for 

those living in low-density regions, when compared to those in high-density urban areas. 

Exposure error also increases, both in magnitude and variability, with an increase in the travel 

time.  Further, an increase in the travel time leads to higher potential for under-estimation of exposures.  

As such, ignoring activity and travel patterns for individuals who travel for a significant portion of their 

daily time, could lead to the underestimation of health effect estimates. 

In summary, the mean exposure errors are high for age groups 19–65, above-poverty groups, 

Hispanics, rural residents, and groups with travel time greater than 60 minutes.  Specifically, the age-

based differences in the exposure error may be a manifestation of the differences in the propensity to 

travel among the different age groups (children and older adults are likely to travel less).  Within the 

context of income groups and rural residents, their travel patterns may be a contributing factor for the 

high exposure error (their daily activity patterns may lead them into more polluted areas compared to their 

residential locations).  For the groups with longer travel times, spatial variation in concentrations could be 

a contributing factor for such large exposure error.  These results suggest that residence-based estimates 
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may underestimate exposures for the advantaged population groups, rather than vulnerable groups (with 

the exception of Hispanics). 

Further, our results suggest that the residence-based approach may not necessarily lead to 

severely flawed exposure estimates for most vulnerable subgroups of the population.  This provides 

support for previous studies that did not consider activity and travel patterns in exposure analysis.  In 

absence of data on activity and travel patterns, such residence-based approaches may not necessarily lead 

to significantly biased exposure estimates, at least for a majority of the most vulnerable population 

segments.  However, there are individuals within the susceptible groups who are still prone to either under 

or over estimation of exposures using the residence-based approach.  Additionally, the error may be 

important for people whose occupations require them to travel or be present for significant portions of 

time on roadways (e.g., sales personnel, highway workers etc.).  

To our knowledge, there is little previous literature on the socioeconomic distributions of 

exposure error within the US.  Limited evidence on this topic is available from Europe (Dhondt et al., 

2012).  Although it is difficult to compare the social distributions of exposure error between these studies 

(as groupwise exposure errors are not reported in their study), we are able to observe a few similarities.  

Specifically, they also report that exposure error in rural locations is significantly higher compared to 

urban locations.  Dhondt et al. (2012) also reported that rural zones had dynamic NO2 exposure values 

that could be 15% higher than the static values.  Our results above provide differences in the variability of 

exposure error between urban and rural regions and the distribution of exposure error among population 

subgroups. 

3.5 Limitations 

Some limitations affect the robustness of these findings.  First, the travel survey data used here 

may not be representative of the true spatiotemporal distribution of activities.  Although the survey 

sample size is quite large, the county sample may not be large enough to capture the full spatial coverage 

necessary.  Use of activity-based travel demand models for exposure analysis (Beckx et al., 2009b; 

Dhondt et al., 2013; Dons et al., 2014; Hatzopoulou & Miller, 2010) is one promising approach for 
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generating the larger sample sizes that are needed.  Second, exposures during travel activity were 

estimated using concentrations along the shortest route, as path data were not available.  Although this is 

a reasonable approach, computed routes may not coincide with the actual travel paths on the particular 

sampled person-day.  Third, due to limitations in the temporal availability of the input data sets, the travel 

data are from a 2009 survey, but the concentrations are based on 2002 data.  Hence, results are not 

expected to represent exposures for a particular year.  Fourth, findings are limited by the use of estimated 

ambient pollutant concentrations for exposure analysis, rather than indoor, microenvironmental, or 

personal measurements.  In the case of important indoor or personal sources, this could poorly represent 

exposures.  Fifth, we have directly considered only one pollutant (NOx) in the analysis here.  It is well 

known that spatial and temporal concentration patterns and scales of variability differ by pollutant 

(Bhugwant & Brémaud, 2001).  These differences could result in different distributions of exposure and 

exposure error.  We expect the result here to be somewhat informative to understanding exposures to 

primary pollutants with substantial traffic emissions, but not to pollutants with substantial secondary 

formation or important emissions sources that are not collocated with traffic (such as ozone and 

formaldehyde).  Sixth, defining urbanicity based on a single contextual population density measure could 

limit our findings.  Whereas this definition incorporates a few key characteristics of urban form, there is a 

need to consider additional measures including transportation infrastructure characteristics in defining 

urbanicity.  Seventh, this work has focused on investigating inequality in exposures (and potential health 

outcomes) between population groups characterized by race, ethnicity, income (and residence urbanicity).  

However, we note that there are many indices of social disadvantage and inequality that have been used in 

air pollution exposure and health impact studies; appropriate indicators likely depend on the social and 

political context.  Further, there are many individual and group factors other than differences in exposures 

that can lead to differences in health outcomes (O'Neill et al., 2003); some of these are access to health 

care, overall health, smoking, diet, exercise, occupation, and genetics.  Finally, it is well established that 

group averages do not necessarily represent the exposures of individuals in that group.  Hence, the social 

disparity findings and implications can only address group level differences. 
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3.6 Conclusion 

In this study, we estimated ambient NOx exposures for residents of Hillsborough County, Florida, 

using activity and travel data (from the national household travel survey) matched to the spatially-

resolved diurnal cycle of NOx concentrations.  Travel routes were estimated based on the shortest-time 

path.  We examined the social distribution of these daily activity-based exposures.  Finally, we compared 

our activity-based estimates with those that result from using only residence location. 

The findings of this work include the following: 

• The Hillsborough County travel survey sample population spent little time in urban block 

groups.  The time densities in urban block groups are larger for non-residential than 

residential activities. 

• The diurnal cycle of NOx concentration in the study area exhibited typical morning and 

evening peaks, consistent with increased NOx emissions from traffic during commute 

hours.  Spatially, concentrations were highest near roadways and in urban areas 

throughout the day. 

• The mean daily activity-based exposure concentration for the study sample was found to 

be 17 µg/m3, with values for individual person-day records ranging from 7.0 to 43 µg/m3. 

• The black, Hispanic, and low-income subgroups had higher mean estimated activity-

based exposures than comparison groups.  The mean disparity in exposure between the 

black and white groups is larger (4 µg/m3) than that between the below-poverty and high-

income groups (2 µg/m3).  However, regression results show that income below poverty 

is associated with a higher increase in exposure than black heritage alone, whereas 

Hispanic status was not found to be a significant predictor. 

• The highest group mean exposure concentrations (22 µg/m3) were seen for those living in 

urban regions.  Having an urban versus rural residence was also associated with the 

largest increase in exposure concentration in the regression (8.3 µg/m3).  Furthermore, the 
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residence urbanicity interaction variables largely explained the largest disparities found 

between sociodemographic groups.  Being black while living in urban or suburban areas 

and living below poverty in suburban locations were each associated with higher 

exposures. 

• Time in travel and other non-residential activities was also associated with higher 

activity-based exposure concentrations, specifically 0.2 µg/m3 per hour spent away from 

home.  This is due to the higher concentrations at these locations. 

• The overall mean exposure error resulting from using residence-based versus activity-

based estimation was 3.6% here, with residence-based estimate lower for most of the 

sample population. 

• The mean group exposure errors were highest for person-days with more than an hour of 

travel, people with higher household income, people living in rural areas, adults aged   

19–65, and Hispanics.  This suggests that studies that use residence-based exposure 

estimation may not be severely misclassifying exposures for disadvantaged and 

susceptible groups including blacks, low-income households, and older adults, at least on 

average.  

In summary, this work demonstrates an approach for using available travel survey data and 

concentration modeling results for spatiotemporally-resolved estimation of activity-based exposures.  

Novel contributions include the presentation and use of a spatially distributed activity time density map 

applied to exposure analysis, and the examination of the social distribution of errors in exposure.  Our 

results suggest that activity-based exposure estimation may be important for assessing exposures of 

individuals, but a residence-based approach may not necessarily lead to substantially biased exposure 

estimates for the most vulnerable groups, on average.  Within the context of previous work, the results 

here continue to reveal the presence of social disparities in exposure and, possibly, exposure-related 

health risks, in the study area, even after accounting for spatiotemporal population movement.  Further, 

they confirm the importance of the urbanicity of residence location (and to a lesser degree, travel time) in 
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influencing exposures and their social distribution.  This supports the need for urban design policies that 

ensure that densification is accompanied by civil infrastructure (e.g., public transit) that decreases 

emissions in urban areas as well as time spent traveling, particularly for disadvantaged groups.  
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CHAPTER 4: AN INTEGRATED MODELING FRAMEWORK TO ESTIMATE EMISSIONS, 

CONCENTRATIONS, AND EXPOSURES UNDER  

ALTERNATE TRANSPORTATION DESIGN SCENARIOS IN THE TAMPA AREA 

4.1 Introduction 

Human exposure to traffic-related pollution is of specific interest due to its linkages to adverse 

health impacts (HEI Panel on the Health Effects of Traffic-Related Air Pollution, 2010).  Past research 

efforts have focused on accurately estimating exposure to traffic-related pollution using a variety of 

personal monitoring techniques in which individuals wear exposure measurement devices (Dons et al., 

2011b; Kousa et al., 2001); however, personal monitoring campaigns are often limited to small sample 

sizes due to high costs.  Alternatively, studies also used fixed monitoring station measurement data 

(Sarnat et al., 2010) to estimate individual exposures; however, this approach cannot capture important 

spatial variations in pollutant concentrations, especially for traffic-related air pollutants (Monn, 2001), 

potentially leading to exposure misclassification.  To address this, locally in Tampa, travel-survey data 

was used to estimate personal exposures to traffic-related pollution (Gurram et al., 2015).  However, these 

sample-based studies are generally inadequate for exploring impacts of policy scenarios that seek to lower 

human exposure levels. 

Previously, researchers pursued several policy initiatives including pollution control technologies 

(Kimura et al., 2001), congestion taxation (Johansson et al., 2009), and smart growth approaches such as 

compact growth urban design and vehicle electrification (Yu & Stuart, 2017) that seek to improve air 

quality.  Within these options, the smart growth approaches are appealing as they seek to improve public 

health by providing individuals with active forms of transportation while improving air quality (Frank et 

al., 2006a).  However, there is a considerable ambiguity about the utility of smart growth-based urban 

design policies for alleviating air pollution and reducing population exposure.  Specifically, studies 
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argued that employing a compact growth or high density development would lead to higher primary 

pollutant exposures for individuals within the high dense zones (Frank & Engelke, 2005; Hixson et al., 

2009).  Considering this, it is important to gather further evidence by evaluating the impact of alternative 

urban design policies on air quality and population exposure. 

To address these issues, a few recent studies used a variety of transport and land use modeling 

approaches to estimate exposures to traffic-related pollution and answer policy questions (Beckx et al., 

2009a; Hatzopoulou & Miller, 2010; Hixson et al., 2009; Stone et al., 2009).  Within these tools, the 

activity-based travel demand models are equipped to provide high-resolution human activity information 

both in time and space.  This information may be combined with pollutant concentration data to obtain 

disaggregate exposure measures for a hypothetical population. 

A European study led by Beckx et al. (2009c) and a Canadian study led by Hatzopoulou and 

Miller (2010) produced the seminal work in the area of exploiting activity-based travel demand models to 

estimate personal exposure to traffic-related pollution.  Beckx et al. (2009c) used the activity-based model 

ALBATROSS in conjunction with the emission model MIMOSA and the dispersion model AURORA to 

estimate roadway link-specific emissions, ambient concentrations, and personal exposures.  Hatzopoulou 

and Miller (2010) used a similar model setup initially and enhanced this approach later by including an 

agent-based dynamic traffic assignment model (MATSim) to improve the sensitivity of vehicular 

emissions to congestion (Hao et al., 2010; Hatzopoulou et al., 2011).  Despite the important advances 

made by these two studies, they have a few limitations.  Both studies simulated individual activities at 

low spatial resolution; Beckx et al. (2009c) used postal codes (with average size of 8.8 km2), and 

Hatzopoulou and Miller (2010) used traffic analysis zones (TAZ).  Typically, the spatial size of a TAZ 

varies, but it holds under 3000 individuals.  Additionally, concentrations were simulated for a short time 

period in both studies.  Moreover, both studies used a receptor grid with low spatial resolution to estimate 

pollutant concentrations; Beckx et al. (2009c) used a grid size of 9 km2, whereas Hatzopoulou and Miller 

(2010) estimated concentrations at the TAZ centroids.  Finally, neither study explicitly modeled 

individual exposures during travel.  The European group tried to address this in a later study by 
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incorporating domain average near-roadway concentrations (Dhondt et al., 2012).  Within the context of 

the US, a similar framework based on the above two studies was used recently to estimate population 

exposure to traffic pollution (Vallamsundar et al., 2016).  However, the limitations discussed in the earlier 

studies carry over to this study.  For a detailed comparison of the activity-based exposure modeling 

frameworks, refer to Table 4.1. 

The limitations from the earlier studies raise an important point about the spatial resolution that is 

needed to accurately predict exposure to traffic-related pollution.  Since traffic-related pollutant (e.g., 

NO2) levels exhibit substantial small-scale spatial variation, use of a high-resolution concentration 

receptor network in conjunction with high-resolution population activity data may be necessary.  

Otherwise, the small-scale spatial variations in pollutant concentrations could go undetected, leading to 

biased exposure estimates.  Moreover, exposures during travel have been found to contribute significantly 

toward overall daily exposures; ignoring them could lead to exposure misclassification (de Nazelle et al., 

2013; Dons et al., 2012; Dons et al., 2011b; Gurram et al., 2015).
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Table 4.1 Comparison of activity-based exposure modeling frameworks 

 

 

Study Spatial Scope Pollutant(s) 

Daily Activity schedules Traffic Assignment 

Name and Type Spatial 
Resolution 

Temporal 
Resolution 

Population 
Sample Size Model 

Vehicle 
Population 

Sample Size 

Beckx et al. 
(2009) 

Utrecht, Netherlands 
(Urban city center 
with area of 7.8 km2) 

PM10 and 
PM2.5 

A Learning-Based, Transportation-
Oriented Simulation System 
(ALBATROSS); rule-based 
computational process model 

Postcode area 
(3987 postcode 
areas with 
average size of 
8.8 km2) 

1-hour 
30% expanded 
to 100% using 
extrapolation 

All-or-nothing 
assignment 
(TRANSCAD) 

100% 

Beckx et al. 
(2009b) 

Netherlands 
(Country with area 
of 42,000 km2) 

NO2 

A Learning-Based, Transportation-
Oriented Simulation System 
(ALBATROSS); rule-based 
computational process model 

Postcode area 
(3987 postcode 
areas with 
average size of 
8.8 km2) 

1-hour 
30% expanded 
to 100% using 
extrapolation 

All-or-nothing 
assignment 
(TRANSCAD) 

100% 

Hatzopoulou 
and Miller 
(2010) 

Greater Toronto 
(Metropolitan area 
that covers 7,200 
km2) 

NOx 
Toronto Area Scheduling model for 
Household Agents (TASHA); rule-
based computational process model 

Traffic analysis 
zone (463 TAZs) 5-minutes 

5% expanded to 
100% using 
extrapolation 

Static traffic 
assignment 
(EMME/2) 

5% 

Hatzopoulou 
and Miller 
(2011) 

Greater Toronto 
(Metropolitan area 
that covers 7,200 
km2) 

NOx 
Toronto Area Scheduling model for 
Household Agents (TASHA); rule-
based computational process model 

Traffic analysis 
zone (463 TAZs) 5-minutes 

5% expanded to 
100% using 
extrapolation 

Dynamic traffic 
assignment 
(MATSim) 

5% 

Dhondt et al. 
(2012) 

Flanders and 
Brussels, Belgium 
(Regional cities 
covering 13,750 
km2) 

NO2 

Forecasting Evolutionary Activity-
Travel of Households and their 
Environmental RepercussionS 
(FEATHERS); uses the activity-
scheduler based on ALBATROSS 

Zone-level (1145 
zones with 
average size of 12 
km2) 

1-hour 100% 
Equilibrium traffic 
assignment 
(TRANSCAD) 

100% 

Vallamsundar 
et al. (2016) 

Maricopa County, 
AZ (600 km2) PM2.5 

open-source Activity Mobility 
Simulator (OpenAMOS); composite 
of a rule-based computational 
process and utility-maximization 
based model 

Traffic analysis 
zone (175 TAZs) 1-minute 5% 

Dynamic traffic 
assignment 
(DTALite) 

5% 

This study 
Hillsborough 
County, FL (3280 
km2) 

NOx 
The Person Day Activity and Travel 
Simulator (DaySim); utility-
maximization based model 

Parcels (1.02 
million) 

30-minutes 
(adjusted to 
1-minute) 

100% 
Dynamic traffic 
assignment 
(MATSim) 

100% 
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Table 4.1 (continued) 

 

Study 
Vehicle Emissions Pollutant Concentrations 

Exposure During Travel 

Model Spatial Resolution Temporal 
Resolution Model Spatial Resolution Temporal 

Resolution 

Beckx et al. (2009) MIMOSA Link-level 1-hour AURORA 9 km2 1-hour Domain-average concentrations measured at 
traffic-related monitoring stations 

Beckx et al. 
(2009b) MIMOSA Link-level 1-hour AURORA 9 km2 1-hour Domain-average concentrations measured at 

traffic-related monitoring stations 

Hatzopoulou and 
Miller (2010) Mobile 6.2 Link-level 1-hour CALPUFF Traffic analysis zone (463 

TAZs) 1-hour Not modeled 

Hatzopoulou and 
Miller (2011) Mobile 6.2 Link-level 1-hour CALPUFF Traffic analysis zone (463 

TAZs) 1-hour Not modeled 

Dhondt et al. 
(2012) MIMOSA4 Link-level 1-hour IFDM 0.02 km2 near roads and 1 

km2 elsewhere 1-hour Averaged the hourly concentrations near the 
roadway receptors for the entire study area 

Vallamsundar et 
al. (2016) MOVES 

Link-level (only 3 major 
corridors totaling 55 km 
was used) 

1-hour AERMOD 
0.01 to 0.09 km2 (receptor 
concentrations are averaged 
over TAZs) 

1-hour Not modeled 

This study MOVES Link-level 1-hour R-LINE 0.25 km2 1-hour 
Estimates intermediate locations along travel 
routes at every 5-second interval and uses the 
nearest receptor concentration 
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In this study, an integrated modeling framework built using an activity-based travel demand 

model (DaySim), dynamic traffic assignment model (MATSim), mobile source emission model 

(MOVES), and line-source pollution dispersion model (R-LINE) is presented.  This modeling framework 

may be used to estimate human activity patterns, mobile source emissions, ambient traffic-related 

pollutant concentrations, and human exposure.  Whereas the European and Canadian studies use a similar 

setup to explore human exposures to traffic pollution, this study is warranted for the following reasons.  

First, there is a need to gather further evidence on the utility of such frameworks that use the activity-

based travel demand, dynamic traffic assignment, and dispersion modeling (ABM-DTA-dispersion) to 

estimate human exposure to traffic-related pollution.  Second, the activity-based models that have been 

used for exposure estimation in the previous studies are rule-based computational process models that 

follow a set of if-then condition-action rules to estimate the activity and travel behavior of individuals.  

Exposure estimation frameworks that use utility maximization-based econometric models are currently 

non-existent.  The utility maximization-based models originate from the economic theories of consumer 

choice and operate under the philosophy that individuals choose the alternatives that maximize their 

utility; utility refers to the level of satisfaction that an individual achieves by choosing an alternative.  

Thus, this study demonstrates the applicability of a utility maximization-based econometric model for 

exposure estimation.  Third, this study simulates the activity and travel patterns of individuals at high 

spatial resolution.  Specifically, activities of individuals are simulated at a parcel level instead of a TAZ 

level.  Here, parcels refer to the detailed coordinates of the centroids of physical structures including 

office buildings and housing units.  Fourth, to my knowledge, no other study that uses an ABM-DTA-

dispersion framework explicitly simulates personal exposures during travel.  Fifth, unlike previous 

studies, this study uses the full hypothetical population rather than a sample to simulate detailed 

spatiotemporal activities of individuals and their exposures.  Finally, this study can provide insights on 

the impact of spatial resolution of modeled activity and pollutant data on individual and population 

exposures.  In essence, this study can add to the current body of work on the utility of transportation 
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modeling for estimating individual-level population exposure to traffic-related pollutants, using a tool that 

offers high spatiotemporal resolution. 

4.2 Methods 

This section provides an overview of the study area and demographics, followed by the integrated 

modeling framework along with the data sources used. 

4.2.1 Study Area, Demographics, and Pollutant Focus 

The study area is Hillsborough County, Florida, which is a part of the Tampa Bay region.  The 

geographic context of the county is presented in Figure 4.1 (Google, 2017).  Interstate highway 275 acts 

as a major commuter corridor connecting north of Tampa to the central business district at the south.  I-75 

and I-4 run along the north-south and east-west directions, respectively, and serve as major highways for 

intra-city, inter-city, and inter-state travel. 

According to the US Census, county population in 2010 was approximately 1.2 million, with 

51.2% female.  The age categories of under 5 years, 5–19, 20–44, 45–64, and over 65 represented 6.7%, 

20.6%, 36.3%, 24.8%, and 11.5% of population, respectively.  Within the context of race, the white, 

black, and Asian categories were the largest, with 74.2%, 16.4%, and 3.4% of the population, 

respectively.  Additionally, 23.9% of individuals identified with Hispanic or Latino origin.  Finally, the 

county household income categories of below $25,000, $25,000 to $75,000, and above $75,000 

correspond to 23.5%, 45.8%, and 30.8% of the population, respectively (US Census Bureau, 2010a). 
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Figure 4.1 Study area of Hillsborough County, Florida (Source: Google 2017) 

In addition to a diverse mix of people, the county has few public transportation options, an 

unsatisfactory air quality record (American Lung Association, 2011), and a sprawling urban form (Smart 

Growth America, 2014).  These attributes make it a good testbed for investigating alternate transportation 

design scenarios that may improve air quality in the region.  The study focused on oxides of nitrogen 

(NOx) as a surrogate for traffic-related air pollution (HEI Panel on the Health Effects of Traffic-Related 

Air Pollution, 2010). 
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4.2.2 Transportation and Air Quality Modeling Framework 

The integrated transportation and air quality modeling framework used to estimate personal 

exposures for the entire population in the study region is shown in Figure 4.2. 

 
Figure 4.2 Integrated transportation and air quality modeling framework for population exposure 
estimation 

4.2.2.1 Estimation of Travel Demand using DaySim 

The Person Day Activity and Travel Simulator (DaySim) shown in Figure 4.2 is an econometric 

travel-demand model system based on the principle of utility maximization.  The theory of utility 

maximization suggests that individuals choose the activity and travel alternatives that maximize their 

utility; utility is a representation of the level of satisfaction that individuals achieve by pursuing an 
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alternative.  DaySim predicts the travel demand for a region by estimating the long-term and short-term 

choices of individuals.  Long-term choices include work and school locations for individuals and auto 

ownership levels for households, and short-term choices include the location and scheduling of daily 

activities and mode of travel between activities (Bradley et al., 2010). 

The DaySim framework requires inputs including synthetic population and parcel information as 

well as level of service measures including travel time and travel cost for different times-of-day and travel 

modes to estimate the daily activity and travel behavior of individuals (Bowman & Ben-Akiva, 2001; 

Bradley et al., 2010).  Synthetic population refers to the population records generated from the census 

data using an Iterative Proportional Fitting approach (Beckman et al., 1996).  Specifically, individual 

records from the Public Use Microdata Area (PUMA) sample are replicated a sufficient number of times 

so that the resulting aggregate distributions at the level of the census block group match those provided by 

the census for a few control categories.  Similarly, parcel information refers to a high-resolution dataset 

that provides information including the spatial location, land use, and property value for each land parcel 

in a region.  Using these inputs, DaySim provides the activity and travel information including the 

location, sequence, and timing of activities and the mode of travel between activity locations, for each and 

every hypothetical individual in the study area.  

For the purpose of this study, the Tampa Bay Activity-based Model (TBABM) was used; 

TBABM developed for the Tampa Bay area as part of the Federal Highway SHRP2 project, was based on 

the DaySim modeling framework (Gliebe et al., 2014).  The Tampa Bay area consists of five counties—

Hillsborough, Pinellas, Pasco, Hernando, and Citrus; thus, the geographic scope of TBABM extends 

beyond Hillsborough County, which is the primary geographic focus for estimating population exposure.  

Considering the activity and travel behavior of the adjacent county residents is important to account for 

the travel related to inter-county activities including work.  The demographic inputs based on the 2010 

census were developed by  using POPGen 1.1 (Ye et al., 2009) for an estimated 3.1 million individuals in 

the Tampa Bay region, including 1.2 million in Hillsborough County.  The parcel-based land use and 

highway and transit network inputs for the model were created by the staff of the District 7 office of the 
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Florida Department of Transportation (FDOT District 7).  The model structure and parameters initially 

developed for the Sacramento region were retained in the Tampa Bay ABM, as the consultant team found 

that local data were insufficient to estimate many key models in the system (Gliebe et al., 2014).  Results 

of a model run of the TBABM provide the daily activity and travel information from 3:00 AM to 2:59 AM 

on a typical weekday for the entire population in the Tampa Bay region; the activity and travel 

information include the purpose of each travel trip (work, shopping, recreation, etc.), trip start and end 

times, travel times and travel distances, and the detailed geo-coded locations of activities. 

4.2.2.2 Estimation of Dynamic Traffic Patterns using MATSim 

Whereas DaySim provides detailed spatiotemporal information pertaining to the fixed-activity 

locations of individuals, it is not capable of providing their whereabouts during travel.  This knowledge is 

crucial to accurately estimate exposures because exposures during travel typically were found to be higher 

compared to other activities (Dons et al., 2011b; Gurram et al., 2015).  Therefore, to estimate 

spatiotemporal locations of individuals for the entire 24 hours, the Multi-Agent Transport Simulation 

(MATSim) was used, as shown in Figure 4.2.  MATSim is an iterative agent-based micro simulation of 

traffic systems and provides a framework for optimizing the travel demand of each modeled individual or 

simply an agent (Balmer et al., 2009; Raney & Nagel, 2006).  To initiate the optimization process, the 

program requires the travel plans (i.e., travel-demand) for each agent and the characteristics of the 

transportation network.  Specifically, a plan refers to the activity and travel information including detailed 

origin-destination location coordinates, activity types, activity start and end times, and travel modes 

between activities.  The network characteristics describe the transportation infrastructure by providing 

information including geographic coordinates, length, free-flow speed, capacity, number of lanes, and 

allowed travel modes for each roadway link.  Initial plans are the activity and travel patterns obtained 

from the TBABM.  MATSim then simulates the agents’ daily schedule (i.e., their initial plan) subject to 

the network capacity and travel time constraints.  Each agent was allowed to store a maximum of three 

different plans in memory.  In every iteration, MATSim selects a plan, executes it, and then calculates a 

score for the simulated plan based on its utility (Nagel et al., 2016).  The utility of a plan Splan with N 
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activities is obtained by a summation of all utilities from activity participation (Sact,q) and travel disutilities 

(Strav,mode(q)) and is based on the scoring function developed by Charypar and Nagel (2005) as shown in 

equation 4.1.  Generally, participating in an activity is associated with positive utility while activities like 

travel are associated with negative utility or disutility. 

𝐒𝒑𝒑𝒑𝒑  = ∑ 𝑺𝒑𝒂𝒂,𝒒𝑵−𝟏
𝒒=𝟎 + ∑ 𝑺𝒂𝒕𝒑𝒂,𝒎𝒎𝒎𝒎(𝒒)

𝑵−𝟏
𝒒=𝟎         4.1 

In this study, the default parameters proposed by Charypar and Nagel (2005) were used for 

scoring; activity participation, late arrival, and traveling are scored at 6, -18, and -6 utilities/hour, 

respectively.  Thus, plans that maximize activity participation times while minimizing the travel times and 

avoiding late arrivals have higher scores.  

Following the scoring at the end of every iteration, the scores of the executed plan are compared 

with that of the plans in memory, and the plan with the least score is dropped.  Following this, for a fixed 

percentage of agents, the program replans (i.e., modifies) the activity schedules by either rerouting or 

adjusting the departing times by 15 minutes.  Specifically, in every iteration, 10% of the agents were 

rerouted, departure times were adjusted for 10% agents, and the rest of the agents stuck to their previous 

best plans.  These percentages were based on computational feasibility and guidance from previous 

literature (Waraich et al., 2015).  Subsequently, the program proceeds to the next iteration.  To completely 

exploit the high computing resources available to us, the simulation was allowed to continue until 300 

iterations although only a minimum of 60 iterations is generally needed according to the authors of 

MATSim (Waraich et al., 2015).  

Only those trips that use the automobile mode of travel were simulated in this study as they have 

the largest mode share (close to 90%) in the study region based on the DaySim modeling results; the total 

number of automobile trips is approximately 9.7 million.  To successfully simulate this large number of 

trips made by 2.3 million individuals (the rest of the population did not travel), a cluster setup of 48 

processors each with 25 GB of RAM was used.  The outputs from MATSim include updated activity and 

travel patterns and travel route information for each and every agent along with roadway link-specific 

traffic volumes and links-specific average speeds for each hour of a typical weekday.  
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4.2.2.3 Estimation of Mobile-Source Emissions using MOVES 

The roadway-link traffic volumes and speeds simulated using MATSim can be used to generate 

link-specific mobile source emissions for each hour of the day.  To estimate the mobile source emissions 

of pollutants, the United States Environmental Protection Agency’s Motor Vehicle Emission Simulator 

2014a (EPA MOVES) model was used (Koupal et al., 2003; US Environmental Protection Agency & 

Office of Transportation and Air Quality, 2015), as shown under the air pollution modeling component in 

Figure 4.2.  MOVES estimates emission factors (e.g., mass per km per vehicle) or emission totals for both 

on-road motor vehicles and non-road equipment (Koupal et al., 2003). 

Although Hillsborough County, FL, is the area of focus for air quality and exposure estimates in 

this study, the roadway links that fell within a five-kilometer buffer around Hillsborough County were 

also included for air quality analysis as impacts of emissions near the county edges on air quality cannot 

be ignored.  The diurnal cycle of hourly emissions was estimated for an average winter day by running 

MOVES in a batch mode at the project scale for 14,025 roadway links.  Specifically, MATSim-generated 

hourly car volumes and average speeds for each roadway link were input to the MOVES model.  MOVES 

provides default data for the diurnal cycle of hourly temperature and relative humidity for each month of 

2010.  These observations were aggregated across November through March to generate an average 

diurnal cycle of hourly temperature and relative humidity for a representative winter day.  County-

specific default fuel formulation data and the national default vehicle age distribution data for 2010 were 

also used.  The output from MOVES includes roadway link-specific running emissions of NOx in grams 

for each hour of a typical winter weekday. 

4.2.2.4 Estimation of Pollutant Concentrations using R-LINE 

To estimate the pollutant concentrations from mobile sources, R-LINE was used, as shown in 

Figure 4.2.  R-LINE is a line source model based on steady-state Gaussian formulation, which is 

consistent with current regulatory models including AERMOD and is used to simulate the mobile-source 

pollutant dispersion of near-surface releases (Snyder et al., 2013).  The model includes new treatments for 

vertical and horizontal plume spread of near-surface releases and incorporates new tracer field and wind 
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tunnel study data (Snyder et al., 2013).  Additionally, it has been formulated to reduce estimation errors 

under light and variable wind conditions. 

As presented by Snyder et al. (2013), R-LINE simulates concentrations from roadway sources by 

integrating the Gaussian plume formulation as a line segment.  Given the coordinates (xr, yr, zr ) for the 

receptor r and a plume with origin at (0,Ys), the concentration at receptor r due to a line source of length L 

with origin Y1 is given by the summation of contribution from a differential element (dCpt) as shown in 

equation 4.2 (Snyder et al., 2013). 

𝐶(𝑥𝑑,𝑏𝑑, 𝑧𝑑  ) = ∫ 𝑑𝐶𝑑𝜕
𝑌1+𝐿
𝑌1          4.2 

The element’s contribution is further a function of plume (pl) and meander (m) components 

which are added using a weighting factor f as shown in equation 4.3.  Here, f is a function of lateral 

turbulence and mean wind (Snyder et al., 2013). 

𝑑𝐶𝑑𝜕 = (1 − 𝑜) ∗ 𝑑𝐶𝑑𝑝 + 𝑜 ∗ 𝑑𝐶𝑚       4.3 

The plume concentration and the meander component are composed of vertical (VERT) and 

horizontal (HORZ) dispersion terms, emission rate of q (mass/(time*length)), and effective wind speed of 

Ue (length/time) and are represented using equations 4.4 and 4.5, respectively (Snyder et al., 2013). 

𝑑𝐶𝑑𝑝 = 𝑞𝑎𝑌𝑠
𝑈𝑒

�𝑉𝑉𝑉𝑇 ∗ 𝐻𝐻𝑉𝐻𝑑𝑝�        4.4 

𝑑𝐶𝑚 = 𝑞𝑎𝑌𝑠
𝑈𝑒

[𝑉𝑉𝑉𝑇 ∗ 𝐻𝐻𝑉𝐻𝑚]        4.5 

The vertical component for both plume and meander and the horizontal component for plume, 

and the horizontal component for meander are shown in equation 4.6, 4.7, and 4.8, respectively.  Under 

low wind speeds, the horizontal plume is assumed to move equally in all directions, thus giving rise to the 

horizontal meander equation 4.8 ( Snyder et al., 2013). 

𝑉𝑉𝑉𝑇 = 1
√2𝜋𝜎𝑧

�𝑟𝑥𝑒 �− 1
2
�𝑧𝑠−𝑧𝑟

𝜎𝑧
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2
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𝐻𝐻𝑉𝐻𝑚 = 1
2𝜋 �(𝑥𝑟−𝑥𝑠)2+(𝑦𝑟−𝑦𝑠)2

        4.8 

The diurnal cycle of winter time hourly link-specific emission outputs from MOVES were used 

as inputs to R-LINE to calculate the diurnal cycle of concentrations throughout the spatial domain, i.e., 

Hillsborough County, FL.  Specifically, link-level emissions were modeled as line sources using the 

roadway length and width characteristics obtained from the roadway network file provided by FDOT 

District 7 as part of TBABM.  Based on Grimmond and Oke (1999), the ratio of displacement height to 

roughness length was assumed to be 5.  Additionally, the initial dispersion length for the plumes created 

from the line sources was assumed to be 1.2 m based on an average vehicle height of 1.5 m and in 

accordance with the US EPA’s guidance for hot-spot analysis (US Environmental Protection Agency et 

al., 2010).  Hourly meteorological surface data for November through March 2010 were prepared using 

the AERMET program by using raw data from the National Climatic Data Center for the Tampa 

International Airport.  A total of 15% of the hours in 2010 had missing meteorological data fields, thus 

resulting in 3060 hours with valid meteorological data.  Concentrations were generated for each hour of 

this record for a regular grid of receptor locations with 500 m resolution throughout the study area; the 

number of receptors totaled 13,806.  Output values from the simulation were averaged to generate the 

diurnal cycle of concentrations for each hour of an average winter day. 

4.2.2.5 Analysis of Exposure 

The exposure modeling step involves combining the spatiotemporal locations of simulated 

hypothetical individuals with the spatiotemporal distribution of pollutant concentrations to estimate 

person-level exposures, as shown in Figure 4.2.  The outputs from DaySim and MATSim were merged to 

create a sequential activity-record for each Hillsborough County resident for a 24-hour period.  

Specifically, the activity records contain the location coordinates, time-of-day, and activity durations both 

for fixed-location activities and the travel activity, for each individual.  This information is combined with 

the diurnal cycle of winter-average concentrations to generate time-weighted exposure measures for all 

the representative individuals in the county.  The daily activity-based exposure concentration was 
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numerically estimated as CA = (∑cσΔtσ)/T for each person-day in the study sample, with cσ and Δtσ 

representing the ambient concentration and the time spent at each discretized spatiotemporal activity 

location; σ represents the latitude, longitude, time; and T the total exposure averaging period. 

To understand the impact of using high-resolution versus low-resolution data on sub-group and 

population exposures, two different sets of data were used to model exposures.  The high-resolution 

activity data refers to the activity and travel patterns of individuals at the parcel level for fixed-activity 

locations and every five seconds during their travel; the low-resolution activity data refers to activity and 

travel patterns estimated at the block group-level with even assignment of the travel times to the origin 

and destination block groups.  Thus, in the low-resolution scenario, individuals are assumed to stay at the 

block group centroid instead of the parcel location.  Similarly, the high-resolution concentration data were 

estimated for a 500-meter regularly-spaced receptor network, whereas the low-resolution data were 

estimated for receptors located at the block group centroids. 

4.3 Results 

4.3.1 Spatiotemporal Distributions of Activities 

Analysis of the time spent by county residents in different locations reveal that they spent little 

time collectively in the county during active working hours, predominantly from 8:00 AM until 5:00 PM, 

as shown in Figure 4.3.  Conversely, they spent a lot of time collectively in the county during the off-

work hours, predominantly from 8:00 PM until 7:00 AM.  More specifically, the collective time spent 

within the county remains highest and fairly constant from 11:00 PM until 6:00 AM, after which it falls 

steeply until 10:00 AM.  It remains fairly constant and at its lowest level from 10:00 AM until 3:00 PM.  

Finally, the collective time spent in the county increases from 3:00 PM until the end of the day, with a 

steep rise from 4:00 PM until 8:00 PM. 
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Figure 4.3 Diurnal cycle of daily cumulative duration spent by all county residents 

The spatiotemporal distributions of the activity and travel patterns of individuals at block group-

resolution are shown in Figure 4.4.  Spatially, for much of the day, high activity durations were observed 

in the residential areas of New Tampa, Westchase, Riverview, Sun City Center, Fish Hawk, Brandon, and 

Plant City; it should be noted that activity durations at these locations were more pronounced in the off-

work hours.  As the workday begins, activities spill over into the adjacent block groups and/or block 

groups that are (often) categorized as employment and business generators.  Specifically, starting at 7:00 

AM, higher activity durations were observed in the University area, the industrial area behind Tampa 

International Airport, at the intersection of I-4 and I-75 west of Brandon, MacDill Airforce Base, and the 

corridor along Dale Mabry Highway.  The higher activity durations in most of these employment and 

business-generator block groups persist until 8:00 PM.  Unlike for the high activity durations, the block 

groups with low activity duration are generally scattered throughout the county.  The only exception to 

this is the set of block groups near Downtown Tampa that appear to have lower activity durations during 

the off-work hours from 7:00 PM until 7:00 AM. 

Although the raw activity durations provide information on the collective locations of individuals, 

they may overemphasize results toward larger geographies.  To account for the impact of block group size 

on activity duration, the activity durations were normalized by the block group area to create an activity-

duration density map, as shown in Figure 4.5.  Not surprisingly, high activity-duration densities coincided 

with smaller block groups concentrated in the urban core of Tampa.  High activity-duration densities were 
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observed throughout the day in smaller block groups that are interspersed near the University area, 

Westchase, and Egypt Lake.  Similarly, high activity duration densities were observed near Downtown 

from 7:00 AM until 8:00 PM.  Conversely, low activity duration densities were predominantly restricted to 

the larger block groups that form the exoskeleton of Tampa.
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Figure 4.4 Total activity duration (person-hours) by block group and hour of day for all individuals in Hillsborough County 
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Figure 4.5 Activity-duration densities (person-hours/km2) for Hillsborough resident sample in 2010
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Diurnal patterns of link-level passenger car volumes and travel speeds for Hillsborough County 

are presented in Figure 4.6 (in the form of bi-hourly averages).  As expected, traffic volumes, as shown in 

Figure 4.6a), were higher during the morning (7:00–9:00 AM) and the evening (4:00–7:00 PM) peak hours 

than the rest of the day.  Additionally, traffic volumes during evening peak hours were higher than 

volumes during morning peak hours.  Travel speeds, as shown in Figure 4.6b, correspond to the diurnal 

pattern of traffic volumes, with lower speeds during the morning and evening peak hours.  Spatially, 

higher volumes were observed along major freeway corridors—I-75, I-275, and I-4.  This is expected, as 

these freeway corridors experience high traffic volumes, which also were observed along the road 

network near suburban locations including Brandon, Citrus Park, and Town ‘N’ Country.  Accordingly, 

travel speeds were lower in these suburban locations along with the North Tampa area, the University 

area, and a few sections of the freeway corridors. 

Traffic-count data for eight different locations in the Tampa Bay area were available in the 

transportation network input file of TBABM (Gliebe et al., 2014).  Root Mean Squared Error (RMSE) 

between the estimated daily traffic volumes and observed annual average daily traffic (AADT) volumes, 

for these eight locations, was found to be 0.41.  Further, the error between estimated and observed traffic 

flows for inter-city roads was higher than those for intra-city roads, presumably because the current model 

system does not consider long-distance (or inter-city) travel, visitor travel, and freight movement in detail.
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Figure 4.6 Bi-hourly average passenger car volumes (left) and travel speeds (right) for Hillsborough County on typical weekday 
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4.3.2 Spatiotemporal Distributions of Emissions and Concentrations 

The diurnal cycle of spatially-distributed NOx emissions for a representative winter day (obtained 

by estimating a mean diurnal cycle of temperature and humidity for November through March) is shown 

in Figure 4.7.  The total emissions resulting from passenger car travel in Hillsborough County was 

approximately 20.4 tonnes/day.  The highest link-specific hourly emission of approximately 9800 grams 

was observed on the I-275 section in North Tampa from 7:00–8:00 AM.  Temporally, emissions were 

higher during the morning (7:00–10:00 AM) and evening (3:00–7:00 PM) peak hours compared to the rest 

of the day.  Emissions during the morning and evening peak hours make up more than 50% of daily total 

NOx emissions.  Additionally, emissions during the evening peak hours were higher compared to the 

emissions during the morning peak hours; specifically, the evening peak hour contributed 30.8% towards 

daily total emissions, whereas the morning peak contributed 21.8% to total emissions.  This could be 

because the evening commute has a higher propensity for stopping to participate in other activities when 

compared to the morning commute (Chu, 2003). 

Spatially, the highest emissions were observed along the major freeway corridors including I-75, 

I-275, and I-4; this is expected, as these corridors experience high traffic volumes—specifically, the 

roadway links on I-275 and I-75 in North Tampa, leading to the I-4 and I-75 intersection point on I-275 to 

the south of Brandon near Sun City Center, and on I-275 and Courtney Campbell Causeway, which 

connects Tampa with Clearwater.  These roadway sections contributed roughly 7.5% towards daily NOx 

emissions.  Similarly, high emissions also were observed along the Veterans Expressway and the road 

network near Brandon and Town ‘N’ Country.  Emissions were somewhat low in the Tampa Downtown 

area. 

The diurnal cycle of NOx concentrations resulting from passenger cars is presented in Figure 4.8.  

Overall, the predicted winter-average NOx concentration for Tampa was approximately 4.7 µg/m3.  NOx 

concentrations have two temporal peaks; one during the morning (5:00–9:00 AM) and the other during the 

evening (5:00–10:00 PM) peak hours.  Note that emission estimates during the evening peak hours were 
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Figure 4.7 NOx emissions by hour of day from cars for representative winter day in Hillsborough County
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Figure 4.8 Diurnal cycle of NOx concentrations from on-road passenger cars 

found to be higher than emissions during the morning peak hours, which is in contrast to the peak hour 

concentration estimates.  Lower mixing heights could be a reason for the higher morning concentrations. 

Similar to the emissions patterns, higher concentrations were observed along the major freeway 

corridors, including I-75, I-275, and I-4, as shown in Figure 4.9.  This is primarily because automobiles 

were the only pollutant sources modeled here.  High concentrations also were observed along the road 

network near the University area, the Downtown area, and Brandon, a suburban location near Tampa.
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Figure 4.9 NOx concentration distribution by hour of day due to on-road passenger cars in Hillsborough County for winter months 2010



95 
 

4.3.3 Distribution of Exposures by Demographics, Urbanicity, and Travel Activity 

To understand the potential disparities in exposure to traffic-related pollution, distributions of 

exposures for a few demographics were obtained; to understand the impact of residence location and 

transport on exposures, distributions of exposures for urbanicity and travel categories were obtained.  The 

corresponding cumulative distributions of subgroup exposures along with the overall population exposure 

in Hillsborough County are shown in Figure 4.10.  Figure 4.10a shows distributions of NOx exposures by 

race, Hispanic origin status, income, and age, and Figure 4.10b shows NOx exposures by residence 

location urbanicity and daily travel time in minutes. 

 
Figure 4.10 Cumulative distributions of personal exposure concentration for NOx resulting from 
passenger cars.  Exposures are shown by a) demographics and b) urbanicity and travel activity.  “Other” 
racial category includes American Indian or Alaskan Native, Native Hawaiian, multiracial, or other races.  
Income categories based on the household income.  Middle income refers to individuals from households 
above poverty level but income below $75,000. 

The mean and median daily average population exposure concentration for NOx resulting from 

passenger cars was 10.2 and 9 µg/m3, respectively; exposures range from 0.2 to 145 µg/m3.  Compared to 
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the mean population exposure, subgroup mean exposure was lower for whites (lower by 1.4%), non-

Hispanics (1%), individuals with household income above $75, 000 (0.6%), children ages 0–5 (4.4%) and 

6–8 (9%), and older adults above age 65 (11.2%).  Conversely, mean exposure was higher for blacks 

(higher by 5.9%), Asians (2.1%), other racial subgroups (2.1%), Hispanics (3.7%), individuals from 

households living below poverty (2.7%) and at middle incomes (2.9%), and adult ages 19–45 (7.2%) and 

46–65 (0.5%) compared to the mean population exposure.  Similarly, for the urbanicity and travel 

categories, group mean exposure was lower for individuals living in rural areas (51%) who did not travel 

(9.7%) and whose daily travel time is less than 60 minutes (1.1%) compared to the mean population 

exposure; group mean exposure was higher for individuals living in urban areas (1.8%) whose daily travel 

time is greater than 60 minutes (8.3%) than the mean population exposure.  Thus, on average, exposures 

were higher for the black, Asian, lower-income, middle-income, and active age (19–65) subgroups.  

Similarly, exposures were higher for individuals residing in urban zones and with higher daily travel 

times. 

Although the distributions of group exposures describe the exposure disparities between groups 

of interest, they provide few details.  To identify the strength of exposure-disproportionality at each 

exposure level, a subgroup inequality index shown in equation 4.9 was used (Stuart et al., 2009).  

𝐹𝑎𝑖  = log�𝐻𝑎𝑖 𝑇𝑎⁄ �         4.9 

Fij quantifies the degree to which members of a specific population subgroup i are disproportionately 

exposed to a particular level of pollutant, j, Zij is the fraction of the total population with exposures above 

level that is the specific subgroup, and Ti is the fraction of the total population of Hillsborough County 

that is the specific subgroup.  Thus, positive and negative index values suggest disproportionately high 

and low representation of that subgroup at any exposure level.  Exposure level can be quantified by a 

number of measures.  Here, the percentile values of daily personal exposure concentration were used. 

The subgroup inequality indices by race, Hispanic origin, income, and age are shown in Figure 

4.11.  Blacks, Asians, and other groups have disproportionately high representation at most exposure 

percentiles.  Alarmingly, this trend accentuates as the exposure levels increases, i.e., minority groups were 
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more disproportionately affected at higher exposure levels.  Conversely, a disproportionately low 

percentage of the white subgroup was affected at most exposure levels.  As the exposure levels increased, 

the low representation of the white subgroup was further accentuated.  Similar trends were observed for 

the Hispanic and non-Hispanic groups in which Hispanics make up for a disproportionately high 

percentage of exposed individuals at higher exposure levels.  Among the income categories, middle-

income group made up for a disproportionately high percentage of exposed individuals at most of the high 

exposure levels when compared to the below-poverty and above $75,000 income groups.  However, when 

the below-poverty group was further separated into two groups—i.e., below-poverty white and below-

poverty non-white—the below-poverty non-white group had disproportionately high representation at 

almost all the exposure levels as opposed to the disproportionately low representation of  the below-

poverty white group at most exposure levels.  Further, the inequality index for the below-poverty non-

white group increases steeply as the exposure levels rise.  Finally, the active age groups—i.e., ages 18–65 

years—appear to be disproportionately affected by high exposure levels compared to the relatively 

inactive age groups. 
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Figure 4.11 Subgroup inequality index by demographics versus percentile of cumulative distribution of 
individual daily exposure concentrations 

4.3.4 Spatiotemporal Distributions of Exposure and Exposure Density 

The spatiotemporal distributions of cumulative personal exposure concentration for NOx 

aggregated by block groups are shown in Figure 4.12.  The diurnal trend of spatially-aggregated 

exposures aligned very closely with the diurnal trend of estimated NOx concentrations.  The morning 

(6:00–8:00 AM) and evening (5:00–7:00 PM) commute hours accounted for about 48% of the daily 

population exposure.
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Figure 4.12 Total cumulative exposure (µg/m3 person-hr) to NOx by block group and hour for sample of Hillsborough County residents
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Spatially, high exposures were observed near the greater Carrollwood area, along the I-275 

corridor, Riverview, and Sun City Center during off-work hours.  However, during working hours, high 

exposures were concentrated in those block groups that form the urban core of Tampa; predominantly, 

Downtown and the corridors along I-275 and Dale Mabry Highway.  The University area appears to have 

high exposures throughout the day.  Low exposures were more prominent within the block groups that 

form the outer skeleton of Tampa, possibly due to the low NOx concentrations in these areas; 

interestingly, unlike the activity durations, the Downtown area does not figure in the group of low 

exposure regions, thus pointing to the impact of ambient concentrations on exposures. 

The spatiotemporal distributions of exposure densities (normalized by block group area) are 

shown in Figure 4.13.  Spatially, during off-work hours, high exposure densities were concentrated in the 

residential pockets between the University area and I-275, along I-275, and near Downtown.  During the 

morning commute from 5:00–8:00 AM, the high-exposure density areas shifted from the residential 

pockets and spread out across the urban core of Tampa, especially along major highways and suburban 

areas such as Brandon and Plant City.  The spatial distribution of the exposure density remained fairly 

constant from 8:00 AM until 5:00 PM.  During these work hours, the Downtown appeared to have the 

highest exposure densities.  In addition, the University area, areas along I-275, the airport area, and the 

Carrollwood business area also featured high exposure density pockets; very few pockets in the Brandon 

and Plant City areas featured high exposure densities.  During the evening commute of 5:00–7:00 PM, 

similar to the morning commute, high exposure densities were spread out across the urban core of Tampa, 

Brandon, and Plant City.  However, it should be noted that the exposure densities during the evening 

commute appear to be more diffuse compared to that during the morning commute.
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Figure 4.13 Cumulative exposure density (µg/m3 * person hr/km2) for Hillsborough County resident sample 2010
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4.3.5 Impact of Spatiotemporal Resolution of Modeled Data on Human Exposures 

The differences in exposures obtained using highly spatiotemporally-resolved activity and 

concentration data and low-resolution data are shown in Figure 4.14.  A positive value in the figure 

indicates higher estimates for the high-resolution approach compared to the low-resolution approach.  A 

negative value indicates lower estimates of exposures using high-resolution activity and concentration 

data. 

 
Figure 4.14 Relative percent difference in exposures obtained using highly spatiotemporally-resolved 
activity and concentration data and low-resolution activity and travel, and concentration data 

Overall, the use of low-resolution activity and concentration data over high-resolution data led to 

10% lower exposures, on average; the differences range from about -800% to 90%.  This difference in 

exposure resulting from the use of low-resolution activity and concentration data versus high-resolution 

data can inform our understanding of exposure error resulting from using low-resolution data.  On 

average, use of low-resolution data resulted in underestimation of exposures (positive differences) for all 

the demographic groups.  The distribution of this exposure error among the various racial and ethnic 
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groups showed little to no variation from the distribution of population-level exposure error.  Similarly, 

the below-poverty income category showed little difference from the population-level exposure errors.  

However, the exposure errors for the middle income and the above $75,000 income groups were slightly 

larger compared to the population-level exposure error.  The mean (and median) exposure errors for the 

middle and above $75,000 income groups were 0.4% (1.3%) and 2.2% (3.2%) higher compared to the 

population-level exposure error; this suggests that, on average, these two groups have a greater propensity 

for underestimation of exposures with the use of low-resolution data, compared to the population.  

Comparing age groups, the under 5, 6–18, and over 65 categories had slightly smaller exposure errors 

compared to the population; the mean (and median) exposure errors for the under 5, 6–18, and over 65 

categories were 0.8% (2.1%), 2% (3.2%), and 3.3% (2.3%) lower compared to population exposure errors 

suggesting a lower propensity for underestimation of exposures on average.  In contrast, the more active 

population groups of age 19–45 and 46–65 had slightly greater propensities for underestimation of 

exposures compared to the population; the mean (and median) exposure errors for these two groups were 

1.6% (1.7%) and 0.4% (1.1%) greater than the population exposure error. 

Similar to the demographic groups, the use of low-resolution data resulted in underestimation of 

exposures for the urbanicity groups on average.  Moreover, the exposure error distributions for the urban 

and rural categories were very similar to the population-level exposure error distribution.  The only caveat 

is the slightly higher (by 2.9%) mean exposure error for the rural category compared to the population 

suggesting a greater propensity for underestimation on average.  In contrast to the demographic and 

urbanicity categories, the exposure error distributions for the travel categories showed a larger variation 

compared to the population.  On average, use of low-resolution data for the groups traveling up to 30 

minutes, 31–60 minutes, and above 60 minutes per day resulted in overestimation by 4% and 

underestimation by 11% and 21%, respectively.  In addition, the mean (and median) exposure error for 

the group with low travel time was lower by 14.3% (8.8%) compared with population-level error.  

However, the mean (and median) exposure error for the group with the highest travel time was 11% 

(7.6%) greater than the population.  For the group with travel time between 30 and 60 minutes, the mean 
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and median errors were respectively greater (0.2%) and lower (2.3%) compared to the population-level 

exposure error. 

The use of low-resolution data also affected the ranking of mean exposures for a few 

demographic and travel categories.  Specifically, use of low-resolution data resulted in a higher rank of 

mean exposure for medium travelers (31–60 min. per day), whites, other racial subgroups, non-Hispanics, 

and low-income individuals in their respective subgroups.  In contrast, the ranking of mean exposure for 

heavy travelers (more than 60 minutes per day), medium and high income individuals, and the age group 

of 45–65 dropped with the use of low-resolution data. 

4.4 Discussion 

The spatiotemporal distributions of population activities in this study are consistent with 

observations from other study areas.  Specifically, a shift in the activity locations from residential to non-

residential (i.e., business, educational, airport, and work) locations between work hours (8:00 AM to 5:00 

PM) and non-work hours (9:00 PM to 6:00 AM) was observed.  Dhondt et al. (2012) and Vallamsundar et 

al. (2016) reported similar findings of higher person-hours in industrial or business zones during day and 

vice versa during nights.  Moreover, morning and evening commute from 6:00–8:00 AM and 5:00–7:00 

PM, respectively, show slightly different spatial activity patterns compared to the rest of the day 

predominantly due to individuals’ commute. 

The spatiotemporal trends of exhaust emissions resulting from passenger car travel in Tampa are 

comparable to emission estimates from other regions, but the aggregate emissions were slightly lower.  

Specifically, Hatzopoulou and Miller (2010) found that exhaust NOx emissions were the highest along the 

major roads and the emission peaks correspond with the peaks in travel, as in this study.  Additionally, 

they also observed higher emissions during the evening peak.  However, this study estimated the daily 

total NOx emissions for a typical weekday in 2010 to be 20.4 tonnes, whereas Hao et al. (2010) estimated 

the daily total NOx emissions for the Greater Toronto Area in 2001 to be 75.62 tonnes, Beckx et al. 

(2009d) reported 70,210 tonnes for Netherlands in 2000, Batterman et al. (2014) reported 14,715 

tonnes/yr (which roughly translates to a daily total of 40.3 tonnes) for Detroit in 2010, and Yu and Stuart 
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(2016) reported 44.4 tonnes on-road emissions for the same study region.  The lower emissions totals here 

could be attributed to a variety of factors including the geographic scale, vehicle mix, and emissions 

processes considered.  Specifically, both the Greater Toronto area and Netherlands feature much larger 

transportation networks compared to Hillsborough County.  Further, the Netherlands and Detroit studies 

estimated emissions from heavy-duty diesel and gasoline vehicles, and the Greater Toronto Area and 

Netherlands studies estimated NOx emissions from exhaust, hot, and cold start processes, whereas this 

study estimated on-road exhaust emissions for passenger cars only; moreover, this study is for 2010 

whereas both the Greater Toronto Area and Netherlands studies were conducted for 2000 suggesting a 

temporal mismatch. 

Due to the focus on car emissions only, the predicted NOx concentrations in this study were also 

generally lower than the observed concentrations near a roadway monitor, and our research group’s 

previous studies in this region using a more comprehensive emissions inventory (including point and area 

sources).  Specifically, this study found some differences in the diurnal cycles of the estimated and 

observed hourly concentrations for winter, as shown in Figure 4.15.  Generally, estimated NOx values 

were lower than the observed values except for the peak hours.  Following the peak, modeled 

concentrations drop rapidly, as opposed to a slow decline in the observed values.  This is probably due to 

the non-inclusion of additional sources of pollution other than passenger cars.  The spatially-averaged 

winter mean NOx level in this study is 4.7 µg/m3, and Yu and Stuart (2013) reported a domain average 

annual mean NOx concentration for 2002 of 12 µg/m3.  Using a similar activity-based, emission, and 

dispersion modeling approach like this study, Beckx et al. (2009c) predicted NO2 levels of 38 µg/m3 in 

2005 for Netherlands. 
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Figure 4.15 Diurnal cycle of hourly observed and estimated concentrations at near-roadway monitor 

Although the winter-average NOx levels in this study appear to be low, the hourly NOx 

concentrations at a few locations in Tampa may be high.  For example, the NOx concentration near the 

intersection of I-275 and I-4 on January 7, 2010 from 5:00–6:00 PM was 4405 µg/m3.  Using a NO2–NOx 

ratio of 0.4 for near-roadway locations (Batterman et al., 2014), this translates to 1762 µg/m3 of NO2.  

Moreover, the 98th percentile of one-hour daily maximum for 2010 winter measured at the same location 

was 1642 µg/m3, which is about 9 times higher than the one-hour NO2 standard (185 µg/m3) set according 

to the National Ambient Air Quality Standards (NAAQS), defined as the 98th percentile of one-hour daily 

maximum concentrations averaged over three years.  Although this study does not report a three-year 

average, uses a non-regulatory air quality model, and predicts NOx instead of NO2, the high one-hour NO2 

value estimated at this specific location makes a strong case for exploring human exposure to traffic-

related pollution. 

On average, exposures to NOx were lower but high-end exposures in this study are greater than 

maximum exposures from earlier studies.  Specifically, mean (and maximum) exposure concentration to 

NOx in this study is 10.2 µg/m3 (and 145 µg/m3); a previous study for the same location that included 

additional sources of emissions reported activity-based NOx exposure concentration of 17 µg/m3 (and 43 
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µg/m3) (Gurram et al., 2015).  Similarly, activity-based exposure concentration of NO2 for Flanders was 

estimated to be 21.6 µg/m3 (and 44.3 µg/m3) (Dhondt et al., 2012).  Finally, Hatzopoulou and Miller 

(2010) estimated the maximum activity-based NOx exposure concentration of 81 µg/m3 for the city of 

Toronto.  These findings show that although exposures were low on average in this study, the high-end 

exposures are either comparable to or greater than the maximum exposures reported in other locations.  

Additionally, the spatiotemporal exposure plot provides a novel way to interpret population exposures.  

Specifically, morning and evening commute largely influences the population exposure levels and the 

highest exposure densities were generally concentrated in the urban core of Tampa.  In such a scenario, 

urban design policies that seek to reduce the travel times and distances, especially during the commute, 

and encourage non-auto modes of transport may potentially mitigate concentrations and population 

exposures. 

Demographical and urbanicity-related exposure analysis in this study confirms the existence of 

exposure inequalities at the population-level.  Specifically, findings of higher mean exposures for blacks, 

Hispanics, low-income groups, urban residents, and individuals with higher travel times, in this study, are 

consistent with previous investigations in the same study area and elsewhere (Gurram et al., 2015; 

Marshall, 2008; Yu & Stuart, 2013).  Although consistent patterns of exposure variations with age were 

not observed in Chapter 3, this study found that mean and median exposures for active-age groups were 

higher.  This could be of public health significance for working individuals who may be more susceptible 

(e.g., asthma patients) to the effects of traffic-related pollutants.  Additionally, the finding of greater 

exposure inequalities (shown in Figure 4.11) for the below-poverty non-white group as opposed to the 

below-poverty white group is consistent with earlier studies (Clark et al., 2014; Gurram et al., 2015; 

Marshall, 2008).  This shows that race may be a stronger predictor of individual exposure inequalities 

than income in some cases.  But more importantly, this confirms that traffic-related exposure inequalities 

are persistent in Tampa and are propagated by the spatiotemporal distributions of the individuals and 

pollutants under the existing layout of transportation infrastructure.  Thus, it is important to explore urban 

design policies that not only seek to mitigate exposures but also exposure inequalities. 
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The spatiotemporal resolution of the modeled activity and travel patterns, and pollutant 

concentrations has a substantial impact on the accuracy of estimated exposures.  This suggests that the 

disaggregated exposure estimates in previous studies that used low-resolution activity and travel patterns 

and (or) pollutant concentrations (Beckx et al., 2009a; Beckx et al., 2009c; Dhondt et al., 2012; 

Hatzopoulou & Miller, 2010; Vallamsundar et al., 2016) and did not explicitly model exposures during 

travel (Hatzopoulou & Miller, 2010; Vallamsundar et al., 2016) could potentially be underestimated or 

overestimated in some cases.  This also explains the larger disaggregate exposure levels, despite low 

mean NOx concentrations, in this study compared to previous studies.  Moreover, use of low-resolution 

data modifies the relative ranking of group-wise mean exposures.  It is worthy of mention that earlier 

studies showed differences in overall (Gurram et al., 2015; Setton et al., 2011) and group-wise mean 

exposures (Gurram et al., 2015) when activity and travel patterns were included in exposure analysis.  

This study further demonstrates that the resolution of activity and travel, and pollutant concentration data 

is important, especially for disaggregated exposure analysis. 

4.5 Conclusion 

Activity-based travel demand modeling provides a unique opportunity to exploit the rich set of 

disaggregate spatiotemporal activity and travel data to inform on subgroup and population-level 

exposures to traffic-related pollution.  This study used a framework based on activity-based travel 

demand modeling (DaySim), dynamic traffic assignment (MATSim), mobile-source emissions estimation 

(MOVES), and dispersion modeling (R-LINE) to estimate disaggregate and subgroup exposures to NOx.  

Passenger-car-related NOx concentrations at a few near-roadway locations could potentially exceed the 

one-hour NAAQS standard for NO2.  Additionally, persistent exposure inequalities were observed in the 

study area.  Finally, the spatial resolution of activity and travel, and concentration data was found to 

influence exposure estimation and use of low-resolution data may lead to both underestimation and 

overestimation of exposures.  Thus, this study adds to the body of literature on exposure modeling 

frameworks that use ABM-DTA-Dispersion paradigms. 
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CHAPTER 5: IMPACT OF TRANSIT-ORIENTED COMPACT GROWTH ON AIR QUALITY 

AND EXPOSURES TO TRAFFIC-RELATED AIR POLLUTION IN TAMPA AREA 

5.1 Introduction 

Exposure to traffic-related air pollution poses major health risks.  A wide spectrum of studies 

associated exposure to traffic-related air pollution with autism (Volk et al., 2013), negative birth 

outcomes (Brauer et al., 2008), diminished cognitive development (Sunyer et al., 2015), lung cancer 

incidence (Beelen et al., 2008b), mortality (Beelen et al., 2008a; Hoek et al., 2002), and respiratory 

symptoms, atopic diseases, and allergic sensitization in children (Kim et al., 2004; Morgenstern et al., 

2008).  Understanding the pathways that lead to population exposure to traffic pollution may help in 

controlling the negative health outcomes. 

Urban land use and design and transport planning are considered to be among the important 

factors that influence population exposure to traffic pollution.  Frank et al. (2006b) used a walkability 

index that characterizes the urban form by quantifying the compactness, connectedness, and diversity of 

neighborhoods and found that increase in walkability leads to reductions in vehicular travel and 

emissions.  Similarly, (Clark et al., 2011) found from an examination of 111 US urban areas that urban 

form characteristics such as population density and centrality along with transit supply may influence the 

urban air quality and corresponding population exposures.  Although these studies reported associations 

between urban form, transport, and air quality, they were mainly observational and did not provide 

insights on the air quality and exposure effects of pursuing alternate urban forms for future development 

in a region. 

To address this, a few studies modeled the impact of alternate urban forms and/or investment in 

transit infrastructure on vehicular emissions, concentrations, and population exposure.  Stone et al. (2007) 

simulated vehicular activity in alternate hypothetical urban forms and found that compact urban forms 
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lead to less vehicular travel and emissions.  Hixson et al. (2009) used a GIS-based land use planning tool, 

a four-step travel demand model, and a source-oriented three-dimensional photochemical air quality grid 

model to estimate air quality and population-weighted exposure in the San Joaquin Valley.  They found 

that compact growth urban forms, when pursued along with investments in high speed rail and adoption 

of clean technologies, result in lower emissions of non-methane organic gases, NOx, and PM2.5 when 

compared to sprawling or business-as-usual urban forms.  Additionally, they showed that compact urban 

form helps in reducing the PM2.5 concentrations over most of their study region (except for urban centers) 

but increases the population-weighted exposure by 10–15% when compared with low-density 

development.  

Similarly, De Ridder et al. (2008a) combined spatial land use data obtained from satellite imagery 

with a four-step travel demand model and an atmospheric chemical transport dispersion model to study 

the impact of sprawling urban form on regional air quality and population exposure.  They found that 

relocating 12% of the urban population to the greener peripheries results in a 17% increase in traffic 

volume, approximately 4% increase in ozone and PM10 levels, and 13% reduction and 1.2% increase in 

exposures for the group of individuals who moved out and who stayed, respectively.  

More recently, Shekarrizfard et al. (2017) combined a travel demand model with EPA MOVES 

and the dispersion model CALPUFF to estimate the impact of transit and vehicle technology 

improvements on air quality and population exposure.  Overall, they found that a large portion of 

reductions in vehicular emissions in the future transit investment scenario is due to improvements in 

vehicular technology, with transit investment accounting for an additional 3% reduction in the 2031 NO2 

levels; similarly, transit investment resulted in an additional 10% reduction in future-year population 

exposure to NO2 (Shekarrizfard et al., 2017).  

Locally in Tampa, Yu and Stuart (2017) found that compact urban form development along with 

vehicle fleet electrification could have varied (in both strength and direction) impacts on air quality and 

population exposure depending upon the type of primary pollutant being studied.  Finally, Stevenson et 

al. (2016) modeled the health benefits of compact cities and found that such cities can achieve overall 
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health gains of 420–826 disability-adjusted life-years (DALYs) per 100,000 population.  However, they 

also cautioned that their study quantified the linkages between land use, transport, and population health 

from a macro-level perspective and argued for the need to look at these linkages using agent-based 

modeling approaches.  

In fact, most of the modeling studies mentioned above use transportation models that rely on 

aggregated demographic information to estimate travel demand; these models may not be sensitive 

enough to predict the shifts in the daily activity and travel patterns of individuals, including their travel 

mode, departure time, and activity-participation preferences.  These activity and travel choices may have 

a significant impact on the distributions of on-road vehicles, emissions from those vehicles, 

concentrations, and population exposure.  Thus, it is important to understand the linkages between urban 

land use and design, transport, and air quality through the use of highly resolved agent-based modeling 

approaches. 

Previously, studies pioneered this approach by building frameworks that integrate activity-based 

travel demand models (ABM), dynamic traffic assignment models (DTA), mobile-source emission 

models, and dispersion models to estimate population-level exposures to traffic pollution (Beckx et al., 

2009c; Dhondt et al., 2012; Hatzopoulou & Miller, 2010; Vallamsundar et al., 2016).  The activity-based 

travel demand models, in particular, offer the capability to simulate the daily activity and travel patterns 

of individuals and their exposures to traffic-related pollution under different policy scenarios.  

Specifically, using the above ABM-DTA-emissions-dispersion framework, Dons et al. (2011a) studied 

the impact of altering shopping hours and Dhondt et al. (2013) explored the impact of fuel price increase 

on population exposures.  Whereas these studies provide valuable insights into the effects of local policies 

on exposures, they did not fully exploit the land use and transportation-related features of this framework 

to understand the relationship between urban land use, transport design, and population exposure.  This is 

a significant gap, especially considering that such transportation and air pollution frameworks are well-

suited for simulating the impacts of alternate land use and transportation infrastructure scenarios on air 

quality and population exposures.  In addition, as discussed in Chapter 4, the integrated transportation and 
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air pollution modeling framework in this study has more desirable features (over other such modeling 

frameworks) such as higher spatial and temporal resolution, inclusion of meteorological conditions for an 

entire season (as opposed to only a few days in a year), and explicit modeling of exposures during travel. 

This study—part of an overarching study in Tampa—seeks to use an activity-based travel 

demand modeling approach to understand the impact of transit-oriented compact-growth strategies on 

local air quality and exposure levels; the multi-year ongoing project in Tampa is focused on 

understanding the linkages between urban form, transportation infrastructure design, exposures to traffic-

related air pollution, and its social distribution (Evans & Stuart, 2011; Fridh & Stuart, 2014; Gurram et 

al., 2015; Stuart et al., 2009; Stuart & Zeager, 2011; Yu & Stuart, 2013, 2016, 2017).  Specifically, this 

study uses the ABM-DTA-emissions-dispersion framework to understand the impact of implementing a 

future-year transit vision in conjunction with population reassignment strategies that reduce the distances 

between residences and work locations; the daily activity and travel patterns of individuals, vehicular 

emissions, air quality levels, and population exposure for different urban design scenarios are predicted in 

this study.  Thus, this study will further add to the body of literature on sustainable urban forms that seek 

to improve public health through policy interventions focusing on land use/urban form and transportation 

design. 

5.2 Methods 

5.2.1 Study Area and Pollutant Focus 

This study is focused on Hillsborough County, Florida, a county with an estimated population of 

1.3 million, and its largest city is Tampa.  It is a predominantly urban county, with an estimated 96.5% of 

the population residing in the urbanized areas (US Census Bureau, 2010b).  The county provides an 

interesting setting to conduct this research due to the limited transit availability, dependence on 

automobile for travel, and unsatisfactory air quality record (American Lung Association, 2011).  

Additionally, the metropolitan area of Tampa-St. Petersburg-Clearwater figures in the top 100 sprawling 

metro areas in the US (Smart Growth America, 2014).  More recently, the county is planning to expand 

the current interstate system by adding express toll lanes (Florida Department of Transportation, 2017).  
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The impact of these automobile-oriented expansions on the county’s air quality and population exposures, 

especially for the vulnerable population groups, is largely unclear. 

HEI identified NOx as a potential surrogate for traffic-related pollution (HEI Panel on the Health 

Effects of Traffic-Related Air Pollution, 2010).  Thus, this study chose NOx as a surrogate for the more 

complex mix of traffic-related pollution in the study area.  Additionally, NOx is associated with a variety 

of adverse health outcomes including reduced lung function, wheezing, and asthma (HEI Panel on the 

Health Effects of Traffic-Related Air Pollution, 2010). 

5.2.2 Modeling Framework 

The integrated modeling framework that comprises activity-based travel demand simulation, 

dynamic-traffic assignment simulation, emissions estimation model, and pollutant dispersion, and 

described in Chapter 4, was used to simulate the effect of alternate land use and transportation scenarios 

on regional travel, air quality, and population exposure.  Briefly, the activity-based travel demand model 

DaySim was used to estimate the initial travel demand of the study region.  DaySim employs the principle 

of utility-maximization and estimates individual daily activity and travel patterns using a suite of 

econometric models including multinomial and nested logit models.  Since this initial travel demand from 

DaySim does not provide the travel route information for individuals, the dynamic traffic-assignment 

model MATSim was used to estimate the specific route of travel.  In this process, MATSim also provides 

an updated set of activity and travel information that is consistent with the network travel conditions 

during the simulation.  In contrast to Chapter 4, which focused on simulating car and ride mode trips, this 

study includes simulation of additional modes of travel such as public transit, walk, and bicycle.  Thus, 

MATSim provides the updated activity and travel information along with the distribution of automobile 

and public transit vehicular volumes on the roadway network. 

Following this, the vehicular volumes on the roadway network were input to MOVES to estimate 

the hourly roadway link-level emissions.  Similar to Chapter 4, the emissions were estimated for an 

average winter day and the default vehicular distribution on the roadways was used; however, in this 

study, public transit vehicles were additionally considered for the estimation of emissions.  These link-
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level emissions were then input to R-LINE to estimate the hourly concentrations for the winter months.  

Once the hourly concentrations were estimated for the winter months, they were processed to obtain a 

diurnal average.  To estimate the population exposure to NOx, these diurnal average concentrations were 

spatially and temporally matched with the locations of individuals.  Exposures during travel were 

explicitly calculated using the travel route information from MATSim.  For a more detailed description of 

the modeling framework, refer to Chapter 4. 

5.2.2.1 Specifications for the Transportation Models 

To accurately represent the vehicular emissions resulting from daily activity and travel patterns, it 

is important to consider the inter-regional travel.  Thus, this study focused on characterizing the travel 

within and between Hillsborough County and its surrounding counties using the Tampa Bay activity-

based travel demand model (TBABM) developed for the Florida Department of Transportation’s (FDOT) 

District 7 jurisdiction (Gliebe et al., 2014).  District 7 includes Hillsborough, Pinellas, Pasco, Hernando, 

and Citrus counties.  Hence, the travel demand was derived for the full projected population in 2040 using 

TBABM. 

Consequently, this initial travel demand was input to MATSim to obtain an updated set of daily 

activity and travel information along with detailed route information for individuals in the District 7.  Due 

to computational feasibility, MATSim runs were performed using a randomly-chosen 10% population as 

opposed to the use of full population.  Since the simulation used only a sample of the population, the 

capacities of the highway infrastructure and the transit vehicle sizes were proportionately reduced to 

simulate real-world conditions (Horni et al., 2016).  This was operationalized by setting the flow capacity 

and storage capacity factors to 0.1 and 0.18, respectively.  Similarly, the passenger car equivalent (PCE) 

value for the transit services was proportionately scaled down using a factor of 0.1.  

As mentioned previously, this study includes the simulation of travel modes including car, public 

transit, shared ride, walk, bicycle, and school bus.  To facilitate the simulation of car mode, a hypothetical 

2040 transportation roadway network prepared by the FDOT was used (Florida Department of 

Transportation, 2015).  To simulate public transit, MATSim requires an additional set of transit-related 
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input files that describe the spatial distribution of the stop locations, presence of bus bays, route, schedule, 

and the physical characteristics of vehicles (e.g., seating and standing capacity, vehicle length) for each 

transit line.  These transit-related input files were created based on the 2040 transit-schedule information 

provided by FDOT (Florida Department of Transportation, 2015).  Further details about the transit inputs 

are provided in Section 5.2.3.2, as these inputs vary for the low and enhanced-transit infrastructure 

scenarios.  Ride mode users correspond to the individuals who travel via the car mode as passengers.  

Therefore, ride trips ideally should make route choices similar to that of car trips but without using the 

roadway capacity.  To facilitate the simulation of ride mode trips, the maximum travel speed for the ride 

mode was set equal to that of the car mode, and the PCE value was set to zero.  To accurately simulate the 

route choices for the bicycle and school bus modes, information on the availability of bicycle paths and 

school bus routes and schedules is needed.  However, this information is not readily available for the 

FDOT-supplied transportation network.  Therefore, bicycle and school bus trips were assumed to use the 

same roadway network and travel routes as car.  The PCE for these two modes was reduced sufficiently 

so as to not impact roadway capacity.  Moreover, travel speed for the bicycle mode was set as 15 km/h, 

and the travel speed for school bus was set equal to the car mode.  Finally, walk mode trips were assumed 

to travel 1.3 times the beeline-path distance between the origin and destination at a speed of 5 km/h. 

MATSim provides a variety of strategies that focus on time, route, and mode innovation to 

simulate individual daily activity and travel patterns (Horni et al., 2016).  This study used the mode 

innovation, time-allocation-mutator, and reroute strategies.  Collectively, these strategies help to optimize 

individual daily activity and travel patterns by minimizing their daily travel time.  More specifically, the 

travel time reductions are achieved through the substitution of car mode with alternate travel modes such 

as public transit and bicycle for sub-tours, alteration of trip departure times, and exploration of alternate 

travel routes.  In each iteration, the mode innovation strategy was applied for 20% of the population, the 

time mutation and reroute strategies were simultaneously applied for 20% of the population, and the 

remaining 60% of the population stick to their initial (or previously-optimized) activity and travel 

schedules.  
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5.2.2.2 Specifications for the Air Pollution Models 

The activity-based travel demand outputs from TBABM and MATSim pertain mainly to daily 

personal travel.  Thus, the non-personal or commercial travel including freight was not considered for 

emissions estimation.  To estimate the roadway link-level NOx emissions, three MOVES onroad source 

vehicle types, i.e., passenger cars, passenger trucks, and transit buses, were used.  Here, passenger cars 

refer to any coupes, compacts, sedans, or station wagons whose primary purpose is to carry passengers 

(US Environmental Protection Agency et al., 2015).  Passenger trucks refer to light-duty trucks including 

pickups, sport utility vehicles (SUVs), and vans that are mainly used for the purpose of personal travel 

(US Environmental Protection Agency et al., 2015).  The percentage of transit buses on a roadway link 

was determined by analyzing the hourly vehicle volumes output from MATSim.  However, for car mode 

trips, separating passenger car volumes from passenger truck volumes is slightly more challenging, 

because neither TBABM nor MATSim delineate passenger car trips by vehicle type.  Therefore, 

passenger car and passenger truck share for every roadway link was assumed to be 56% and 44% of the 

automobile volumes on the corresponding link.  This share is based on the distributions of VMT by 

vehicle type in the US for 2010 (Davis et al., 2016). 

For the R-LINE dispersion modeling, the surface roughness and displacement height for Tampa 

were chosen based on guidelines in Grimmond and Oke (1999); specifically, the ratio of displacement 

height to roughness length is assumed to be 5.  Additionally, the initial dispersion for the plumes created 

from the line sources is assumed to be 1.2 based on an average vehicle height of 1.5 m and in accordance 

with the US EPA’s guidance for hot-spot analysis (US Environmental Protection Agency et al., 2010).  

Using these parameters, NOx concentrations were estimated for the winter months, i.e., November 

through March.  The receptor grid is made of 13,806 receptors evenly spaced at 500 meters.  

Meteorological data for Tampa International Airport for 2010 were obtained from the National Climatic 

Data Center.  Further modeling details pertaining to the specific urban design scenarios are presented 

below. 
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5.2.3 Alternate Urban Design Scenarios 

Three alternate urban land use, population redistribution, and transportation infrastructure 

scenarios were used in this study to understand the impact of transit-oriented compact-growth strategies 

on population exposure to NOx.  All scenarios were implemented for the 2040 model year.  The three 

scenarios include a low-bus service (low-transit) scenario that implements the 2010 bus-transit 

infrastructure, an enhanced-bus service (enhanced-transit) scenario that uses the planned 2040 bus-transit 

infrastructure, and a transit-oriented compact (compact-growth) scenario that uses the 2040 bus-transit 

infrastructure and increases residential density.  To control for potential confounding factors that impact 

vehicular emissions and NOx concentrations and to systematically identify the impact of urban 

transportation, population redistribution, and land use characteristics on population exposure, the 

modeling specifications discussed in sections 5.2.2.1 and 5.2.2.2 were held constant across the three 

scenarios. 

5.2.3.1 Spatial Distribution of Population 

Figure 5.1a shows the spatial distribution of the 2040 base residential density (used in both the 

low-transit and enhanced-transit scenarios); Figure 5.1b shows the spatial distribution of the difference in 

residential density between the compact-growth scenario and the low-transit/enhanced-transit scenarios.  

The distribution of population demographics for 2040 is done by the Hillsborough County Planning 

Commission (Hillsborough Metropolitan Planning Organization, 2014), which used 2010 as the base year 

and updated the population distribution every five years until 2040.  Specifically, the population growth 

projections made by the Florida Bureau of Economic and Business Research were used as the control 

totals for the future year.  For each TAZ, they developed an attractiveness index based on the vacant 

developable acres and inverse-weighted it by the square of distance between activity centroids and the 

vacant developable land.  In the compact-growth scenario, the residential distribution is densified.  

Specifically, an attractiveness index was developed to redistribute the households in the study region.  

The attractiveness index (AI) for every parcel 𝑎 in the study region was calculated as shown in equation 

5.1. 



118 
 

𝐴𝐴𝑎 = 𝜕𝑖
log𝐷𝑡𝑖

∑ 𝑑𝑘
log𝐷𝑟𝑘

𝑎
𝑘=1            5.1 

𝑘 represents a parcel within a 0.5-mile buffer around the origin parcel, 𝑟𝑘 is the number of retail and 

service type of jobs in the 𝑘𝜕ℎ parcel, 𝑟𝑎 is 1 if no bus stops are present in a 0.5 mile buffer around the 𝑎𝜕ℎ 

parcel and 0 otherwise, 𝐷𝑑𝑘 is the distance in feet between the 𝑎𝜕ℎ parcel and the 𝑘𝜕ℎ parcel, and 𝐷𝜕𝑎 is the 

distance in feet between the 𝑎𝜕ℎ parcel and the nearest bus stop.  Overall, the attractiveness index assigns 

weight to a parcel based on the number of service and retail jobs available near it, availability of a walk-

accessible bus stop, and the distance to job locations and the nearest bus stop; the parcels that are closest 

to both locations with a high number of jobs and a bus stop have higher weights.  In essence, the 

attractiveness index developed aims at achieving compaction by directly capturing some of the key D 

variables including density, diversity, and distance to transit as identified by Ewing and Cervero (2010). 

 
Figure 5.1 Spatial distribution of block group-level residential density in 2040 base and compact-growth 
scenarios.  a) base residential density for 2040, b) difference in residential density between hypothetical 
compact growth scenario and base scenario.  Note that low-transit and enhanced-transit scenarios use base 
residential density. 
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Following the development of the attractiveness index, 50% of households that fall in parcels 

with an attractiveness index below 75th percentile were randomly chosen for reallocation.  New parcels 

were randomly chosen from the set of all parcels with probability (𝑒𝑎) given in equation 5.2. 

𝑒𝑎 = 𝐴𝐴𝑖
∑ 𝐴𝐴𝑖𝑛
𝑖=1

           5.2 

Thus, about 37.5% of households in the study region were reallocated from parcels with a low 

attractiveness index to parcels with a high attractiveness index.  As shown in Figure 5.1, residences were 

more spread out in the 2040 base case compared with the compact-growth scenario.  Due to the 

population reallocation, the residence density of several block groups that form the urban core of 

Hillsborough County has increased.  The mean residential density in the compact-growth scenario is 1199 

households/km2 and represents an increase of 27% compared to the base residence density in 2040.  The 

highest increase in residence density of 250% is observed for a block group in Downtown near the 

Selmon Expressway.  Conversely, the largest drop in residence density of 49% is observed in the Town 

‘N’ Country area. 

The high-density block groups resulting from population reallocation fall primarily along I-275, 

Dale Mabry Highway, Selmon Expressway, near the University area, Downtown Tampa, Brandon, 

Mango, and Plant City.  Particularly, the highest increase in residential density is observed near 

Downtown Tampa, the University area, and Tampa International Airport.  Consequently, the block groups 

that surround the urban core of Tampa, Brandon, Mango, and Plant City witness a drop in residential 

density. 

5.2.3.2 Bus-Transit Infrastructure 

Figures 5.2a and 5.2b show the spatial distribution of 2010 bus service and 2040 bus service, 

respectively.  The 2010 bus service is used in the low-transit scenario, and the 2040 bus service is used in 

the enhanced-transit and compact-growth scenarios.  The county plans to migrate its entire bus-fleet to 

compressed natural gas (CNG) by 2040.  However, to elicit the impact of transportation infrastructure and 

land use on air quality while controlling for the effect of vehicle and fuel technologies, diesel-powered 
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buses were simulated in the three alternative urban design scenarios.  The bus infrastructure plan for 2010 

was created by reducing the frequency of services and removing the additional bus routes from the 

FDOT-supplied 2040 bus infrastructure plan.  Thus, after this adjustment, the newly-created 2010 bus 

infrastructure plan closely resembles District 7’s original transit scheme for 2010.  The 2010 bus services 

comprise 6284 bus stops, 94 routes, and 2811 km of bus-serviced roadways, and 2040 bus services 

include 8754 bus stops, 195 routes, and 5413 km of bus-serviced roadways. 

 
Figure 5.2 Highway and transit infrastructure in 2040 for low-transit and enhanced-transit scenarios 

An overall summary of the scenarios and their urban form and transportation characteristics is 

provided in Table 5.1.  The enhanced-transit scenario captures the impact of additional bus services on the 

local air quality and population exposure; similarly, the compact-growth scenario captures the impact of 

both additional bus services and compact urban development on the regional air quality and population 

exposure. 
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Table 5.1 Summary of urban land use and transportation infrastructure characteristics for three alternate 
urban design scenarios 

 

5.3 Results 

5.3.1 Mode Shares and Travel Characteristics for Alternative Urban Design Scenarios 

The travel mode shares of daily personal trips for the three urban design scenarios are shown in 

Figure 5.3.  The initial mode shares resulting from the DaySim model and the updated shares following 

the MATSim model are presented separately.  The relative ranking of most of the mode shares was same 

in both DaySim and MATSim models, with the exception of the bicycle mode, with MATSim 

comparatively lower than DaySim for the three scenarios. 

 
Figure 5.3 Mode shares for low-transit, enhanced-transit, and compact-growth scenarios.  Mode shares 
shown follow simulation in a) DaySim and b) MATSim.  Low-transit simulates 2010 transit bus services; 
enhanced-transit simulates 2040 bus services; compact-growth simulates both 2040 bus services and 
population compaction. 

Urban Form and 
Transportation 
Characteristics 

Scenario 

Low Transit Enhanced Transit Compact Growth 

Urban form 
2040 base population distribution Reallocated base 

population 

Lower residential density Higher residential density 

Transportation 
2040 highway 

2010 bus service 2040 bus service 
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Overall, in all of the scenarios, the car mode drew the highest share; however, its share dropped 

from the low-transit scenario to the enhanced-transit scenario and further dropped for the compact-growth 

scenario.  This decline was more discernible in the MATSim model results, with the drop amounting to 

2.3% and 9% from low-transit to enhanced-transit and compact-growth, respectively.  In contrast to the 

car mode, both the walk and transit modes experienced a rise in their shares from the low-transit to the 

compact-growth scenarios; the mode share gain for walk was much higher compared to transit.  

Specifically, the increase in the share of walk mode from low-transit to enhanced-transit and compact-

growth was 1.1% and 7.1%, respectively; the increase in transit share from low-transit to enhanced-transit 

and compact-growth was 1.2% and 1.8%, respectively.  Similar to the walk and transit mode shares, the 

mode share for bicycle also generally increased from low-transit to compact-growth, although this 

increase was relatively low.  The mode share for the school bus remained relatively constant across all the 

scenarios. 

In addition to shifts in mode shares, the three urban design scenarios led to changes of other travel 

measures, including travel times and distances.  The percent change in the travel measures for the 

enhanced-transit and compact-growth scenarios when compared with the low-transit scenario are shown 

in Figure 5.4.  The total daily trips predicted in the enhanced-transit scenario was less than that in the low-

transit scenario by 0.5%; however, the total daily trips in the compact-growth scenario was very similar to 

the low-transit scenario.  Compared to the low-transit scenario, both the cumulative daily travel time and 

travel distance for the enhanced-transit and compact-growth scenarios were low, although the reductions 

in the enhanced-transit scenario were more muted compared to the compact-growth scenario.  It should be 

noted that despite no reduction in the overall number of trips, the compact-growth scenario led to 

reductions in the travel distances and times. 
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Figure 5.4 Percent change in cumulative travel distance, travel time, and number of trips for enhanced-
transit and compact-growth scenarios compared with low-transit scenario.  Low-transit simulates 2010 
transit bus services; enhanced-transit simulates 2040 bus services; compact-growth simulates both 2040 
bus services and population compaction. 

5.3.2 Distributions of Emissions and Concentrations of NOx 

Figure 5.5 shows the diurnal emissions for the alternate urban design scenarios.  Emissions in all 

scenarios displayed a similar diurnal trend with a morning peak from 7:00–9:00 AM and an evening peak 

from 4:00–6:00 PM.  The peak emissions in the evening were higher compared to the morning by 15% for 

the low-transit and enhanced-transit scenarios and 12% for the compact-growth scenario.  The daily 

aggregate emissions in the low-transit, enhanced-transit, and compact-growth scenarios were 47.9, 48.7, 

and 42.8 tonnes, respectively; thus, the total emissions in the low-transit scenario were 2% less compared 

to the enhanced-transit scenario and 11% more compared to the compact-growth scenario.  The emissions 

in all scenarios were higher compared to the daily auto-only emissions (20.4 metric tonnes) for 2010 

estimated in Chapter 4.  The higher emissions in the 2040 scenarios compared to 2010 can predominantly 

be attributed to an increase in auto-driver trips by 42%, 40%, and 30% for the low-transit, enhanced-

transit, and compact-growth scenarios, respectively.  Additionally, emissions from bus-transit were also 

included in the 2040 scenarios. 
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Figure 5.5 Diurnal NOx emissions for low-transit, enhanced-transit, and compact-growth scenarios.  Low-
transit simulates 2010 transit bus services; enhanced-transit simulates 2040 bus services; compact-growth 
simulates both 2040 bus services and population compaction. 

Figures 5.6 and 5.7 show the diurnal cycle of the domain-average NOx concentrations and the 

distribution of hourly NOx concentrations for the three urban design scenarios, respectively.  The morning 

peak for the diurnal concentrations led by 1 hour compared to the emissions; thus, the highest mean 

concentrations were observed from 6:00–8:00 AM.  Similarly, the peak hour concentrations in the evening 

were observed from 5:00–6:00 PM as opposed to 4:00–6:00 PM for the emissions.  The peak 

concentrations in the morning were higher compared to the evening; this trend was in contrast with the 

diurnal trend for emissions. 

The domain-average hourly-mean concentration in the winter season for the low-transit scenario 

was 10.7 µg/m3.  The hourly-mean concentrations in the enhanced-transit and compact-growth scenarios 

were 2% higher and 9% lower than the low-transit scenario, respectively.  The maximum concentrations 

for the low-transit, enhanced-transit, and compact-growth scenarios were 5072, 5314, and 7321 µg/m3, 

respectively, and were observed along the insterstate corrirdors of I-275 and I-4 between 5:00–6:00 PM, as 

shown in Figure 5.8. 
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Figure 5.6 Diurnal cycle of domain-average NOx concentrations for low-transit, enhanced-transit, and 
compact-growth scenarios.  Low-transit simulates 2010 transit bus services; enhanced-transit simulates 
2040 bus services; compact-growth simulates both 2040 bus services and population compaction. 

 
Figure 5.7 Distribution of hourly NOx concentration for low-transit, enhanced-transit, and compact-
growth scenarios.  Lower whisker given by max(min(x), Q1–1.5*IQR), upper whisker given by 
min(max(x), Q3+1.5*IQR), where x represents vector of concentrations, Q1 is 25th percentile, Q3 is 75th 
percentile, IQR is Q3-Q1. 
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Figure 5.8 Spatial locations of maximum NOx concentrations for low-transit, enhanced-transit, and 
compact-growth scenarios 

Additionally, Figures 5.9, 5.10, and 5.11 show the spatial distributions of the differences in NOx 

concentration between the enhanced-transit and low-transit scenarios, the compact-growth and low-transit 

scenarios, and compact-growth and enhanced-transit scenarios, respectively.  Overall, NOx concentrations 

in the low-transit scenario were higher compared to the enhanced-transit scenario in a few outer 

geography pockets surrounding Tampa’s urban core.  The concentrations in the enhanced-transit scenario 

were higher than the low-transit scenario within the urban core of Tampa, especially along the I-275 

commute corridor.  A similar and more accentuated trend was observed for the concentration differences 

between the compact-growth and low-transit scenarios.  Concentrations in the compact-growth scenario 

were higher than the low-transit scenario almost entirely within Tampa’s urban core along the I-275 

starting from the University area, I-4, and Dale Mabry Highway.  For the rest of the county, the 

concentrations in the compact-growth scenario were lower compared with the low-transit scenario.  The 

concentration differences between the compact-growth and enhanced-transit scenarios were very similar 
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to those between the compact-growth and low-transit scenarios.  The only difference was that the urban 

core, where the concentrations in the compact-growth scenario were higher is spatially smaller when 

compared with the enhanced-transit scenario (Figure 5.11) instead of the low-transit scenario (Figure 

5.10). 

 
Figure 5.9 Spatial distribution of the difference in NOx concentrations between enhanced-transit and low-
transit scenarios (enhanced transit-low transit) for morning and evening peaks hours 
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Figure 5.10 Spatial distribution of difference in NOx concentrations between compact-growth and low-
transit scenarios (compact growth-low transit) for morning and evening peaks hours 

 
Figure 5.11 Spatial distribution of difference in NOx concentrations between compact-growth and 
enhanced-transit scenarios (compact growth-enhanced transit) for morning and evening peaks hours 
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5.3.3 Population Exposure 

Figure 5.12 shows the distribution of the exposures to NOx for the individuals in the low-transit, 

enhanced-transit, and compact-growth scenarios.  The mean population exposure concentration in the 

low-transit scenario was 22.7 µg/m3, and the mean exposure concentrations in the enhanced-transit and 

compact-growth scenarios were higher than the low-transit scenario by 3.3% and 29%, respectively.  The 

spatial distribution of the differences in daily exposure density between the enhanced-transit and low-

transit scenarios and compact-growth and low-transit scenarios is shown in Figure 5.13.  The mean 

exposure density for the enhanced-transit and compact-growth scenarios was approximately 3.3% and 

33.3% higher than the low-transit scenario, respectively.  The block groups with high exposure density in 

the enhanced-transit scenario compared with the low-transit scenario were interspersed throughout 

Tampa’s urban core and the suburban areas.  In contrast, the high exposure density block groups in the 

compact-growth scenario were concentrated primarily in the urban core of Tampa along I-275, I-4, and 

Dale Mabry Highway.  The highest increase in exposure density in the compact-growth scenario was 

observed in block groups near the Downtown, especially those between the Selmon Expressway and I-

275.  High exposure density was also observed in the block group below Tampa International Airport.  

Low-exposure densities were observed along the I-75 corridor in the southern part of the county. 

 
Figure 5.12 Distribution of population exposure for low-transit, enhanced-transit, and compact-growth 
scenarios.  Lower whisker given by max(min(x), Q1–1.5*IQR), upper whisker given by min(max(x), 
Q3+1.5*IQR), where x represents vector of concentrations, Q1 is 25th percentile, Q3 is 75th percentile, 
and IQR is Q3-Q1. 
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Figure 5.13 Differences in block group-level aggregated exposure densities between different scenarios.  
Exposure density differences are shown between a) enhanced-transit and low-transit and b) compact-
growth and low-transit scenarios. 

5.4 Discussion 

This study provides complementary evidence on the impact of urban design featuring transit-

oriented compact-growth policies on population distribution, traffic emissions, concentrations, and 

population exposure.  Transportation and air pollution models were used to estimate high resolution 

spatiotemporal distributions of individuals, vehicular activity, and pollutant concentrations.  In the study, 

an increase in household (and population) density was observed in the compact-growth scenario, which 

employs transit-oriented population compaction policies; the population density in the compact-growth 

scenario was 7146 people/km2, which represents an 8% increase compared to the 2040 base population 

distribution in the low-transit and enhanced-transit scenarios.  This is similar to the findings of Stone et al. 

(2007), who reported a mean increase in density between 6.6 and 26.8% for different metropolitan 

statistical areas in their compact growth scenario; similarly, Hixson et al. (2009) created a high-density 

transit-oriented scenario with an estimated population density of 3935 people/km2. 

The drop in VMT in this study as a result of simulating transit-oriented compact-growth 

development is about 10%.  This is consistent with the findings of Gim (2012), who performed a meta-

analysis on the relationship between density and travel behavior and concluded that higher densities lead 
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to reduced auto travel in the US (although muted compared to Europe).  Additionally, Stone et al. (2007) 

estimated a median drop in VMT of 6% for a compact-growth scenario when compared to projected 

business-as-usual growth.  Similar reductions in VMT due to increases in residential density were 

reported by Chattopadhyay and Taylor (2012). 

Compact and mixed-use urban forms reduce VMT and boost alternate modes of travel, including 

walk, transit, and bicycling (National Research Council et al., 2009).  In this study, lower share for the 

auto mode was observed with a concomitant increase in the share for the walk mode in the compact-

growth scenario.  Only a marginal increase in the share for the transit mode was observed in the compact-

growth scenario (3.1% and 2.5% in the compact-growth and enhanced-transit scenarios, respectively, as 

opposed to 1.3% in the low-transit scenario).  Additionally, the shares for the bicycle mode for the three 

scenarios remained the same.  Primarily, two reasons are hypothesized for the lower shares of the transit 

mode—one, the 2040 hypothetical transit envisioned by the county is simply inadequate for attracting 

additional transit riders, and two, the attractiveness index developed in this study controls for the presence 

of transit at individual residences but did not consider the availability of transit at the travel destinations.  

Previously, it has been shown that transit ridership is primarily dependent on the connectivity between 

origins and destinations (Arrington & Cervero, 2008).  The reason for low bicycle mode shares is unclear.  

Overall, air quality in the transit-oriented compact-growth scenario slightly improved.  Emissions 

and concentrations in the compact-growth scenario were lower by 11% and 9%, respectively, compared to 

the low-transit scenario.  This is consistent with the findings of Yu and Stuart (2017), who looked into the 

effects of compact-growth on the regional emissions, concentration, and population exposure for the 

Tampa Bay area.  They found that regional on-road NOx emissions in the compact scenario were reduced 

by 29% compared to the sprawled-growth scenario.  However, in their compact-growth scenario, a 

significant portion of the region-wide future population was reallocated to Hillsborough County; this 

resulted in 20% higher on-road NOx emissions for the county in the compact-growth scenario compared 

to the sprawled-growth scenario.  Similarly, Schweitzer and Zhou (2010) studied 80 metropolitan areas 

and reported lower ozone concentrations in the compact urban forms.  Finally, Hixson et al. (2009) also 
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reported reductions in NOx emissions when pursuing a compact-growth scenario.  However, the 

emissions and concentrations in the enhanced-transit scenario were higher compared to those in the low-

transit scenario.  This could be due to the insufficient offset of emissions as a result of lower travel mode 

shifts from car to bus.  In addition to the low mode shift, the increased bus frequencies and the addition of 

new diesel-powered buses seems to have led to higher emissions.  For example, the daily total NOx 

emissions for the bus-only roadway links (i.e., only buses travel on these links) is 796 grams/meter for the 

enhanced-transit scenario as opposed to 73 grams/meter for the low-transit scenario, an increase of almost 

1000%.  Similarly, the enhanced-transit scenario records daily total emissions of 58,740 grams/meter (an 

increase of 68% compared to low-transit scenario) for bus links (i.e., other travel modes were allowed on 

these links apart from bus).  However, for non-bus links (i.e., no buses travel on these links), the daily 

total emissions in the enhanced-transit scenario is 34,018 grams/meter, i.e., 38% lower compared to the 

low-transit scenario.  This suggests that transit intensification strategies, if not targeted precisely, may 

lead to the deterioration of air quality; hence, transit investment in itself, which several studies use as a 

predictor for increased share of the transit mode (for example, Hixson et al. (2009)), may not always be a 

reliable indicator for increased transit use.  Additionally, it is not clear if the air quality results in this 

study will hold with other types of transit, such as CNG-powered buses, light rail, and heavy rail.  

Nonetheless, compact urban design policies in conjunction with competent transit plans that displace a 

significant portion of auto drivers to the transit mode may hold the key for improving air quality. 

Although the compact-growth scenario marginally improves the urban air quality in the study 

area, the population exposure is higher compared to the low-transit and enhanced-transit scenarios.  This 

seems to be in contrast with Yu and Stuart (2017), who reported lower population exposure to NOx in 

compact scenarios compared to sprawl scenarios for the same study region.  However, they also reported 

higher exposures under compact scenarios for butadiene and benzene, thus arguing that compact forms 

may have differential effects on population exposure depending on the mix of pollutant sources.  

Similarly, Schweitzer and Zhou (2010) reported higher neighborhood exposures to ozone and PM2.5 in 

compact regions.  Hixson et al. (2009) found 10–15% higher exposure to primary PM2.5 components such 
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as elemental carbon and organic carbon in high-density development scenarios.  Thus, compact urban 

forms by themselves may not always lead to reductions in population exposure.  Perhaps they need to be 

combined with other strategies such as development of public transit infrastructure that improves 

accessibility between activity locations, urban design that encourages alternate modes of travel including 

walk and bicycle, fuel and vehicle technologies that lead to lesser life-cycle emissions, and displacing 

pollutant sources from high-density population zones.  A combination of these strategies may lead to 

lower exposures and better health outcomes especially for the vulnerable population groups. 

5.5 Limitations 

This study has several limitations, one of which arises from the use of parameters for the activity-

based travel demand model from the Sacramento region instead of Tampa.  The available sample sizes to 

estimate the travel demand model parameters for Tampa were insufficient; thus, model parameters were 

borrowed from the Sacramento region by the developers of the model (Gliebe et al., 2014).  Although the 

model developers concluded that it is preferable to borrow parameters from regions with large sample 

sizes than estimating parameters with insufficient local data, estimating travel demand based on 

parameters from a different urban region may introduce some uncertainty and variability. 

Although the traffic on the roadways was simulated using MATSim, information on toll roads 

was not included in the simulation.  This could lead to biased estimates of the spatial distribution of traffic 

in the urban region.  The study did not include the emissions from commercial traffic such as freight, 

shipping, and other on-road sources such as school buses.  Further, emissions from point and area sources 

were not included.  Thus, it is not clear if the observed trends in concentrations and population exposure 

will remain the same even after the inclusion of these additional sources of pollution. 

The attractiveness index developed in this study solely considers transit and job accessibility at 

the residence locations of individuals.  However, Arrington and Cervero (2008) argued that transit 

accessibility between origin and destination is important for improving transit mode share.  Additionally, 

accessibility to other activity locations such as shops, hospitals, and entertainment places was not 
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considered.  Thus, the compact urban form employed in this study may not entirely represent a mixed-use 

development. 

Finally, the transit infrastructure simulated here entirely comprises diesel buses.  It is highly 

unlikely that the county will pursue diesel buses in 2040.  Additionally, Hillsborough County’s Long 

Range Transportation Plan includes light rail for 2040 (Tampa Bay Area Regional transportation 

Authority, 2015).  However, the rail mode was not included in the activity-based model by the model 

developers.  As such, the impact of this hypothetical light rail transit on the county’s air quality and 

population exposure was not simulated. 

5.6 Conclusion 

This study investigated the impact of a transit-oriented compact-growth scenario on population 

distribution, vehicular travel and emissions, concentrations, and population exposure.  Adding more 

diesel-powered bus routes and improving bus frequencies increased NOx emissions, leading to higher 

exposures.  Thus, the bus-transit plan adopted for Tampa may not be adequate to cause sufficient travel 

mode shifts and may, in fact, deteriorate the air quality.  Additionally, the compact urban forms co-

located individuals near major roadway sources, thus exacerbating their exposures.  Hence, there is a need 

for collaborative solutions from public health and urban design professionals that seek to improve air 

quality and population health.  Future research efforts should consider alternate modes of transit, 

including light and heavy rail, which improve accessibility between locations and urban design plans that 

proliferate mixed-use neighborhoods.  
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CHAPTER 6: SYNTHESIS 

6.1 Introduction 

Over the past six decades, the world has witnessed continued migration from the rural regions to 

the urban regions, giving rise to a phenomenon known as urbanization.  This urbanization trend is 

expected to continue at least until 2050 (United Nations et al., 2015).  Recognizing the potential impacts 

of this large-scale population movement on urban regions, the heads of governments across the world 

have come together to adopt policies consistent with the 2030 agenda for sustainable development (UN 

General Assembly, 2016).  Sustainable development is defined as the type of development that meets the 

needs of the current generation without taking away from the resources of future generations; thus, 

sustainable development features elements of intra-generational and inter-generational equity (Brundtland 

Commission, 1987).  The 2030 agenda for sustainable development stipulates targets that include safe and 

sustainable transport for all, betterment of population health through improvement of air quality, and 

reduction of inequalities to shift the world onto a more sustainable and resilient path (UN General 

Assembly, 2015). 

Although the 2030 sustainability agenda does not identify curbing air pollution as a standalone 

goal, it establishes clean air as a desirable target under multiple goals (Lode et al., 2016; UN General 

Assembly, 2015).  This suggests the importance of clean air for improving human health and reducing 

environmental degradation.  Within the urban context, the transportation sector emits a significant 

proportion of pollutants that are of interest to human health and climate change.  Exposure to traffic-

related air pollution assumes special interest due to the growing body of evidence on its associations with 

mortality, morbidity, and environmental justice concerns (Gurram et al., 2015; HEI Panel on the Health 

Effects of Traffic-Related Air Pollution, 2010; Hystad et al., 2015; Marshall, 2008; Schultz et al., 2015; 

Stuart et al., 2009; Stuart & Zeager, 2011; Yu & Stuart, 2013, 2016).  Thus, improving air quality and 
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mitigating population exposure to traffic-related air pollution and the associated exposure inequalities 

directly helps to achieve urban sustainability, including the health and inequality-related targets from the 

2030 agenda for sustainable development. 

Within this context, an emerging field of research suggests that the design of urban form may 

have an impact on travel demand, regional and local air quality, and population exposure.  Moreover, the 

US EPA’s report on the built environment suggests that about two thirds of new development in the next 

40–45 years is yet to be built (US Environmental Protection Agency, 2013).  This provides the necessary 

impetus for transportation engineers and urban planners, air quality specialists, and public health policy 

experts to collaborate in the design of healthy and sustainable cities that improve air quality and 

population health.  However, the underlying mechanisms that govern the relationships between urban 

transportation infrastructure, land use, air quality, and population exposure are not yet well understood. 

To this end, a few major gaps in the literature were identified in this study.  First, the importance 

of consideration of detailed spatiotemporal activity and travel patterns of individuals for the estimation of 

exposure to traffic-related air pollution is not extensively investigated in the current literature.  Also, 

previous literature did not extensively study the distributions of exposure to traffic-related air pollution 

for different socioeconomic and urbanicity-related subgroups of the population.  Moreover, several 

previous studies used human activity and travel patterns derived from travel surveys for exposure 

estimation.  Given the limited intra-urban spatial representation of the activity and travel patterns of 

individuals in survey samples, it is not entirely clear if the exposure results from a survey-based sample 

analysis are robust compared to a population analysis.  Similarly, the importance of using high-resolution 

activity and travel, and pollutant concentration data in modeling frameworks that estimate exposures has 

received little to no attention.  Finally, previous studies that developed transportation and air pollution 

modeling frameworks for exposure estimation have not extensively used such frameworks to simulate air 

quality levels and personal exposures under alternate transportation and land use design scenarios.  In 

view of this discussion, the overarching goal of this dissertation was to understand the linkages between 

urban transportation infrastructure and land use design, and population exposure to traffic-related air 
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pollution using a transportation and air pollution modeling framework.  Understanding these linkages 

may aid the design of healthy and sustainable cities and communities.  

Section 6.2 provides a summary of each of the aims and their corresponding results in this 

research.  Section 6.3 discusses the policy implications of these findings, and Section 6.4 discusses the 

limitations of this work along with the directions for future research. 

6.2 Summary of Results 

6.2.1 Impact of Activity and Travel Patterns, and Urbanicity on Exposures to NOx 

In the study presented in Chapter 3, the activity and travel patterns of individuals generated using 

the 2009 National Household Travel Survey (NHTS) were combined with CALPUFF-modeled NOx 

concentrations for 2002 to estimate the exposures and their social distribution for the residents of 

Hillsborough County, FL.  To understand the importance of human activity and travel patterns for 

estimation of personal exposures, two exposure measures were estimated—activity-based exposure and 

residence-based exposure.  The activity-based approach considered the movements of individuals in time 

and space along with time-dependent NOx concentrations at those locations, whereas the residence-based 

approach estimated the exposures based on the concentrations at individuals’ residences.  Finally, to 

understand the important predictors of exposure, a multivariate regression model was estimated. 

It was found that the population from the county’s travel survey sample spent more time in 

suburban and rural areas compared to urban areas.  However, time densities for nonresidential activities in 

urban areas were higher than those of residential activities.  Although exposures in this study were found 

to be generally lower than the National Ambient Air Quality Standards (NAAQS), a large range of 

exposures was found, from 7.0 to 43 µg/m3.  Additionally, disproportionately high mean exposures were 

found for blacks, Hispanics, low-income households or individuals, urban residents, and individuals with 

daily travel time above one hour. 

On average, exclusion of the activity and travel patterns of individuals (i.e., use of a residence-

based exposure measure) led to an underestimation of exposure by 3.6%.  However, exposure errors were 

found to be lower for vulnerable population subgroups including blacks, Hispanics, low-income 
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individuals, and urban residents.  NOx concentrations during travel and at nonresidential locations were 

generally high compared to the concentrations at residential locations.  However, on average, the 

concentrations at nonresidential locations made up a small portion of daily total personal exposure.  

Finally, urban form variables, time spent away from home, income, and race (Black category) were found 

to be significant predictors of exposure. 

Overall, the results suggest the importance of considering the activity and travel patterns of 

individuals for exposure estimation.  Additionally, the study found associations between urban form, 

activity and travel variables, and exposures.  Thus, the study has implications for improving air quality 

and population health through urban design interventions. 

6.2.2 Integration of Models for Travel Demand and Air Pollution to Predict Population Exposures 

In the study presented in Chapter 4, an activity-based travel demand model (DaySim) was 

combined with a dynamic traffic assignment simulator (MATSim), mobile-source emissions estimator 

(MOVES), and a dispersion model (R-LINE) to estimate population exposure to traffic-related air 

pollution and its social distribution for the Tampa area.  This modeling framework was developed to 

improve tools for understanding of the relationships between urban transportation and land use design, air 

quality, and population exposure.  Whereas Chapter 3 focused on the estimation of the exposures for a 

population sample based on a travel survey, Chapter 4 refined the exposure estimation methodology (by 

computing travel paths of individuals that take congestion effects into consideration) and expanded the 

exposure analysis to the full population.  This modeling framework was used for Hillsborough County for 

a typical winter day and was applied to explore the impact of using high-resolution data on population 

and subgroup exposures by computing exposure measures using high-resolution and low-resolution data. 

Higher activity durations and densities (normalized by block group area) were found in the urban 

core of Tampa as opposed to the outer areas.  By 7:00 AM, activities began spilling over into the 

University area, intersections near I-4 and I-75, and locations that generate employment and business in 

the urban core of Tampa; the high activity durations in these locations persisted until 8:00 PM.  A morning 

peak (7:00–9:00 AM) and an evening peak (4:00–7:00 PM) were observed in the traffic volumes and NOx 
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emissions that largely coincided with the commute patterns.  The peak-hour emissions contributed more 

than 50% towards the daily total passenger car emissions in the county.  Emissions and the resulting 

concentrations were high along the major freeway corridors, especially near the zones including 

Downtown, the airport, and University. 

Although concentrations in this study were generally lower than other studies, evidence was 

found for high NO2 concentrations (obtained using a NO2/NOx ratio) that potentially may be greater than 

the one-hour National Ambient Air Quality Standard (NAAQS) for NO2 in some areas.  Regarding 

demographics, higher mean exposures were observed for blacks, Asians, and other racial subgroups 

compared to whites and Hispanics compared to non-Hispanics, below-poverty and middle-income groups 

compared to the high-income group, and the active age groups (19–65 years old) compared to the rest of 

the age categories.  Disproportionately higher mean exposures also were found for individuals residing in 

the urban regions compared with those living in rural areas and those whose daily total travel time 

exceeded one hour as opposed to individuals whose daily travel time was less than one hour.  Moreover, it 

was found that exposure disparities increased as the levels of exposure to NOx rose for blacks, Asians, 

other racial minorities, Hispanics, and below-poverty non-whites. 

On average, use of low-resolution activity and travel, and concentration data appears to have 

resulted in the underestimation of exposures for the population and most of the studied subgroups.  The 

mean underestimation of exposure due to the use of low-resolution data was about 10% for the 

population; the population subgroup that traveled for more than one hour per day had the greatest 

underestimation. 

Overall, this study suggests the possible harmful impact of traffic-related air pollution on 

population health due to the current urban transportation infrastructure design, thus providing an impetus 

for further work on the complex linkages between urban design, air quality, and population health. 

6.2.3 Impact of Transit-Oriented Compact-Growth Policies on Population Exposure 

In Chapter 5, three alternate urban design scenarios were simulated for 2040 using an integrated 

modeling framework to understand the relationship between urban transportation infrastructure and land 
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use design, air quality, and population exposure.  Specifically, a low-transit scenario was simulated with 

the 2010 diesel bus infrastructure and the 2040 default household distribution.  The enhanced-transit 

scenario improved upon this by simulating the 2040 diesel bus infrastructure while maintaining the 2040 

default household distribution.  The compact-growth scenario used the same bus infrastructure as the 

enhanced-transit scenario but compactly redistributed the 2040 households to reduce the spatial distance 

between households, and jobs and transit stops.  All the scenarios used the same 2040 highway network. 

Compared to the low-transit scenario, a slight drop was observed in the share of auto mode in the 

enhanced-transit scenario, with a concomitant increase in the shares of walk and transit modes.  The 

highest drop in the share of auto mode was observed in the compact-growth scenario.  Most of this 

reduction in the share of auto mode was reallocated to the walk mode, with a small portion allocated to 

transit.  Thus, the share of transit was rather low in both the enhanced-transit and compact-growth 

scenarios.  Additionally, the enhanced-transit scenario had slightly decreased aggregate travel distances 

and travel times and total daily trips compared to the low-transit scenario.  In contrast, the compact-

growth scenario had lower aggregate travel distances and times, despite no apparent change in the daily 

total number of trips, compared to the low-transit scenario. 

The NOx emissions in 2040 for all the scenarios were higher than the emissions in 2010 (from 

Chapter 4).  Additionally, the lowest and highest total emissions were observed in the compact-growth 

and enhanced-transit scenarios, respectively.  Similarly, the lowest and highest domain-average hourly-

mean NOx concentration was recorded for the compact-growth and enhanced-transit scenarios, 

respectively.  Although the domain-average concentration for the compact-growth scenario was lower 

than the low-transit scenario (and the enhanced-transit scenario), spatial distribution of the differences in 

concentrations between the two scenarios revealed that concentrations were higher in the urban core of 

Tampa for the compact-growth scenario.  Conversely, concentrations in the compact-growth scenario 

were lower compared to both the low-transit and enhanced-transit scenarios for a majority of the outer 

Tampa area surrounding the urban core.  This is likely due to relocation of mobile-pollutant sources from 

outer/isolated peripheries to inner areas.  Mean population exposure in the compact-growth scenario was 
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higher compared to the enhanced-transit and low-transit scenarios.  This is likely due to high exposure 

densities in the urban core. 

Results suggest that compact urban forms potentially may lead to improved air quality; however, 

to realize similar exposure-related benefits, they may need to be implemented with transportation 

infrastructure designs that encourage transit-use and active modes of transport including walk and bicycle. 

6.3 Implications 

Overall, this dissertation seeks to add to the body of knowledge on the relationships between 

urban transportation infrastructure and land use design, air quality, and population exposure.  Specific 

answers to the science questions determined through this dissertation along with a discussion of their 

potential science and policy implications are provided below. 

6.3.1 Impacts of Activity and Travel Patterns on Exposure Estimates 

Through a travel survey-based analysis, it was found that exclusion of activity and travel patterns 

for exposure estimation significantly underestimated individual exposures by about 3.6%.  This is 

consistent with the findings of Setton et al. (2011).  Although this exposure error may appear to be low, it 

potentially could result in inaccurate/biased health outcome assessments, especially at the high end of 

exposures.  Additionally, this finding may have implications for developing nations where pollutant 

concentrations are orders of magnitude higher compared to those in developed nations.  Thus, assessment 

of exposures using detailed activity and travel patterns of individuals may be important. 

Exposure errors were found to be generally lower for vulnerable population groups, including 

blacks and below-poverty and middle-income groups.  With regard to urban characteristics, high exposure 

errors were found for suburban and rural residents and individuals whose daily travel time is greater than 

one hour.  Thus, using coarser approaches may particularly affect the health outcome assessments for 

individuals who travel for a significant portion of the day or whose activity radius is large. 

6.3.2 Exposure Disparities 

Statistically significant exposure disparities were found for minorities and low-income subgroups 

in the Hillsborough County.  Higher exposures were found for urban residents and individuals whose 
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daily travel time is greater than one hour.  Although NOx levels observed in this study were somewhat 

low, a recent analysis on a cohort of about 61 million Medicare beneficiaries suggested that exposure to 

pollutant levels lower than the current NAAQS may still have an adverse impact on the overall population 

health, with pronounced effects on racial minorities and lower economic groups (Di et al., 2017); it 

should be noted that this study focused on exposures to PM2.5 and ozone, although similar observations 

were made for exposures to NO2 previously (Young et al., 2014).  This challenges policy-makers to take a 

lead on intervention strategies that seek to reduce exposure disparities along with the overall exposure 

levels. 

6.3.3 Robustness of Exposure Estimates using a Sample-Based and Population-Level Analysis 

Distributions of exposure by sociodemographic and urbanicity characteristics had similar 

exposure disparity trends for the sample-based analysis (using travel survey data) and a population-level 

analysis.  However, there was a substantive difference in the maximum personal exposure levels 

(43 µg/m3 for sample vs 145 µg/m3 for population).  This is important considering that NOx 

concentrations in the population analysis were estimated based only on passenger car emissions, whereas 

the sample analysis used additional emissions from other point and area sources to estimate NOx levels.  

Thus, conducting a population-level analysis may be of help in identifying the high percentile exposures 

in both developed countries and the highly-polluted regions in developing countries where exposures 

generally exceed American and European standards. 

6.3.4 Impacts of using Low-Resolution Data Versus High-Resolution Data on Exposure Estimates 

The integrated transportation and air pollution modeling framework that was adopted in this study 

to estimate population exposure is computationally more intensive than similar frameworks from other 

studies (Beckx et al., 2009a; Hatzopoulou & Miller, 2010; Vallamsundar et al., 2016).  Specifically, the 

framework used in this study estimated fixed-activity locations at a high spatial resolution of parcels and 

the locations of individuals during travel at every five seconds along the roadways; hence, the framework 

in this study is of higher spatial resolution compared to those in other studies.  Therefore, one might 

naturally ask what are the benefits of such a computationally-intensive, high spatial resolution approach 
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used in this study?  However, it was found in this dissertation research that use of low-resolution modeled 

data resulted in the underestimation of exposures on average, with a large range of error in exposures.  

This finding is consistent with previous studies that found that exposures during travel are of high 

importance to daily total exposure (de Nazelle et al., 2013; Dons et al., 2012; Gurram et al., 2015).  

Therefore, exposure modeling frameworks that do not incorporate highly resolved fixed-activity locations 

and travel path information may substantially underestimate exposures, thus potentially leading to 

inaccurate health assessments. 

6.3.5 Impact of Transit-Oriented Compact-Growth on Air Quality and Population Exposure 

Neither bus-transit intensification nor compact development, independently or collectively, were 

found to shift individuals to the transit mode beyond a very small increase in transit share.  However, 

similar to previous studies that investigated the relationships between urban form and transport, it was 

found that compact-growth increased the travel share for the walk mode.  Thus, compact-growth 

strategies may improve population health by inducing individuals to choose active modes of travel.  

Air quality generally improved for the compact-growth scenario, except in the urban core areas, 

compared to the remaining two scenarios.  This could be due to a combination of lower travel distances 

and travel times and a shift to active modes of travel that resulted in lower daily total NOx emissions and 

diurnal concentrations.  Thus, compact-growth scenarios may help to improve urban air quality levels. 

Although air quality improved in the compact-growth scenario, on average, the mean population 

exposure was highest in the compact-growth scenario due to the relocation of households into the urban 

core of the study region.  Thus, compact growth may exacerbate population exposure.  However, de 

Hartog et al. (2010) suggest that shifting to actives modes of transport such as bicycling could potentially 

offset health risks due to exposure to air pollution.  Thus, although compact-growth policies by 

themselves may not be a panacea for the negative outcomes due to exposure to traffic-related pollution, 

they may be combined with other policy initiatives such as active campaigning for bicycle and walk 

modes, incentivizing the use of active travel modes, and clean-fuel technologies to mitigate emissions 

and, therefore, population exposure. 
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Overall, bus-transit intensification did not result in substantial shifts to transit mode in the study 

area.  The low shares for the transit mode in all scenarios suggest that transit planning may need to be 

rethought for the area.  Moreover, several previous studies used transit investment as a surrogate for 

higher transit shares.  However, as demonstrated in this study, that may not always be the case.  This is 

not to say that transit investment is not important; in fact, transit investment plays a very significant role 

in expanding transit services and improving the mobility of individuals.  But equal consideration must be 

given to transit planning such that both trip origins and destinations are equally serviced.  Moreover, the 

increase of diesel bus services in the scenarios led to higher NOx emissions and concentrations and a 

general deterioration of air quality.  Thus, transit agencies may also need to give appropriate 

consideration to the type of fuel used in their services.  For example, using compressed natural gas (CNG) 

powered buses in a compact-growth scenario may lead to the reduction of emissions from transit vehicles 

and improve the air quality. 

6.4 Limitations and Future Research 

This research has several limitations.  A few important limitations along with the directions for 

future research are discussed below. 

6.4.1 Travel-Survey Samples 

Chapter 3 used a travel-survey sample to estimate the activity and travel patterns of individuals, 

which were then combined with NOx concentrations to estimate exposures.  Although the survey sample 

is fairly large, it may be limited in capturing the true spatiotemporal distributions of human activities.  

Additionally, simulating the vehicles from the travel survey on roadways would generally result in 

uncongested conditions, since the simulated volumes substantially underestimate the actual volumes on 

the roadways.  Thus, estimating routes based on uncongested conditions may result in poor/biased travel 

path estimates.  Overall, the use of travel surveys may result in spatially non-representative and inaccurate 

activity and travel patterns of individuals.  Despite these limitations, it was found that the trends of social 

distribution of exposures for survey-based analysis was robust compared to a population analysis. 
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6.4.2 Single Pollutant Analysis 

Throughout this dissertation, NOx was the pollutant of interest.  NOx is an appropriate choice to 

represent the traffic-related air pollution, as the HEI panel identified it as a potential surrogate for 

exposures to traffic-related pollution (HEI Panel on the Health Effects of Traffic-Related Air Pollution, 

2010).  Moreover, NO2 is a component of NOx and a criteria pollutant regulated by the US EPA and has 

known health effects.  However, the HEI panel also recognized that there is no ideal surrogate that 

accurately represents the complex mix of traffic-related air pollution.  Thus, analysis based on a single 

pollutant may not fully represent the type of pollution in question.  Considering this, future studies that 

use this framework may consider additional primary traffic-related pollutants including fine particulate 

matter, benzene, and carbon monoxide.  Moreover, to understand the relationships between urban 

transportation and land use design and population exposure to secondary formations, pollutants including 

ozone and formaldehyde may be considered (Yu & Stuart, 2016). 

6.4.3 Microenvironmental Exposure Factors 

In this study, the effect of exposure adjustment factors such as indoor infiltration fractions or 

inhalation rates on human exposure to traffic-related air pollution were not considered.  Furthermore, 

additive exposure to pollutants due to sources in particular microenvironments including the kitchen or 

car and exposure to other sources including smoking were excluded in this analysis.  Only exposures to 

ambient NOx concentrations from traffic were estimated.  This may result in overestimation or 

underestimation of exposures.  Since this study focused on exposure to ambient traffic pollution, the 

microenvironmental sources of pollution were ignored.  However, future studies may address this issue by 

including microenvironmental adjustment factors along with inhalation intakes.  

6.4.4 Data Requirements for the Integrated Modeling Framework 

The integrated modeling framework used in this study needs significantly large computational 

resources and detailed data inputs.  Given that many local planning agencies may not have such resources, 

application of this framework for smaller planning agencies may be a challenge.  Thus, it is of interest to 

look further into the question of appropriate spatial and temporal resolution of the activity and travel and 
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air quality data that may be needed for the estimation of population exposure.  On a related note, it is of 

interest to understand how exposure estimates vary as the sample size increases from one percent to the 

full population.  Such an exercise may give an understanding of the appropriate sample size needed to 

accurately predict population exposure while meeting the resource constraints. 

6.4.5 Health Impact Assessments 

Although the modeling framework used in this study integrated several models that use highly 

spatially- and temporally-resolved data to estimate agent-based exposures, it was not extended to estimate 

the health outcomes of these exposures.  Moreover, the additional health benefits resulting from pursuing 

active modes of travel were not simulated.  Thus, coupling the framework presented herein with health 

impact assessment tools such as US EPA’s Benefits Mapping and Analysis Program (BenMAP) may 

provide further insights into the potential health impacts of the simulated alternate urban design scenarios. 

6.4.6 Model Uncertainty 

The integrated modeling framework used in this study comprises a variety of transportation and 

air pollution models.  Each model comes with its own set of uncertainties.  Perhaps the greatest 

uncertainty in the framework comes from the activity-based travel demand model (ABM) due to the use 

of modeling parameters from the Sacramento region instead of those from the Tampa Bay area.  It was 

found that Tampa had a higher proportion of retirees and non-work-trips compared to Sacramento, which 

may add uncertainty to the model predictions.  Additionally, since the activity-based models were 

estimated using observed data and since it is difficult to accurately collect all the information pertinent for 

model estimations, this may add further uncertainty. 

Following this, MATSim simulation results in further uncertainties, as evidenced by the 

differences in the observed and estimated volumes at count stations.  Roadway link-specific volumes 

were used to estimate the link-specific NOx emissions.  Since an average speed method was used instead 

of the second-by-second vehicle specific power data, emission estimates may be prone to uncertainty.  

Additional uncertainty may result due to the use of national default vehicle age distributions instead of the 

local data for the county.  Finally, all passenger cars were assumed to be of the same type in the MOVES 
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analysis, which is unrealistic and may result in uncertainties.  Finally, uncertainties in exposure estimates 

from R-LINE may be due to the use of meteorological data from a single location, uniform values of 

surface roughness and displacement height for all of Tampa, and an assumed value for the initial 

dispersion of plumes. 

Although the above-mentioned modeling parameters may result in uncertainties, they may be 

controlled by implementing the same parameters across multiple scenarios.  Thus, the relative differences 

in travel, air quality, and exposure outcomes between the scenarios may be attributed to the differences in 

the transportation and land use design.  Additionally, in future studies, the biggest source of uncertainty 

for the travel demand models may be addressed by re-estimating the model components using local data 

for Tampa.  Finally, characterization and quantification of uncertainty in exposure estimates of such 

integrated models is an important avenue for future research. 

6.5 Conclusion 

This study investigated the relationship between urban transportation and land use design, air 

quality, and population exposure and its social distribution.  Use of highly spatially- and temporally-

resolved activity and travel, and pollution data led to more accurate exposure estimates.  It was found that 

lower socioeconomic subgroups, minorities, urban residents, and individuals whose daily travel was 

greater than one hour were subject to disproportionately high NOx exposures.  Using an integrated 

modeling framework, it was found that compact development led to improved air quality for a substantial 

area of the urban region.  However, mean population exposure increased under the compact development 

scenario compared to a scenario with lower population density.  Similarly, intensification of diesel bus 

services led to higher emissions, concentrations, and population exposure, suggesting that the type of fuel 

used in transit may influence air quality levels.  Overall, this study found associations between urban 

design, air quality, and exposures.  Thus, urban design interventions may potentially improve air quality 

and population health.  
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