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ABSTRACT 
 

Direct numerical simulations (DNS) of an initially quiescent coupled air-water interface 

driven by an air flow with free stream speed of 5 m/s have been conducted. The DNS solves a 

scalar advection-diffusion equation for dissolved gas (or scalar) concentration in order to 

determine the impact of the water-side turbulence on scalar (mass) transfer from the air side to the 

water side and subsequent vertical transport in the water column. Two simulations are compared: 

one with a freely deforming interface and a second one with a flat interface. In the first simulation, 

the deforming interface evolves in the form of gravity-capillary waves generating aqueous 

Langmuir turbulence characterized by small-scale (centimeter-scale) Langmuir cells (LCs). The 

second simulation is characterized by pure shear-driven turbulence in the absence of LCs as the 

interface is intentionally held flat. It is concluded that the Langmuir turbulence serves to enhance 

vertical transport of the scalar in the water side and in the process increases scalar transfer 

efficiency relative to the shear-dominated turbulence in the flat interface case. Furthermore, 

transition to Langmuir turbulence was observed to be accompanied by a spike in scalar flux via 

molecular diffusion across the interface characterized by an order of magnitude increase. 

Such episodic flux increases, if linked to gusts and overall unsteadiness in the wind field, are 

expected to be an important contributor in determining the long-term average of the air-sea gas 

fluxes. The effectiveness of popular transfer velocity models, namely the small eddy model and 

the surface divergence model, in predicting this spike is evaluated via the DNS. In addition to LCs,  
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DNS reveals that the water side turbulence is characterized by smaller, shear-driven turbulent 

eddies at the surface embedded within the LCs. LES with momentum equation augmented with 

the well-known Craik-Leibovich (C-L) vortex force is used to understand the roles of the wave 

and shear-driven LCs (i.e. the Langmuir turbulence) and the smaller shear-driven eddies (i.e. the 

shear turbulence) in determining molecular diffusive scalar flux from the air side to the water side 

and vertical scalar transport beneath. The C-L force consists of the cross product between the 

Stokes drift velocity (induced by the interfacial waves) and the flow vorticity. It is observed that 

Stokes drift shear intensifies the smaller eddies (with respect to purely wind-driven flow, i.e. 

without wave effects) leading to enhanced diffusive scalar flux at the air-water interface. LC leads 

to increased vertical scalar transport at depths below the interface and thus greater scalar transfer 

efficiency.
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CHAPTER 1:   INTRODUCTION 
 

1.1.   Context 

In the last few decades, our planet has been undergoing drastic changes to its carbon cycle 

which is the main cause of global warming. This is attributed to the dramatic increase of 

greenhouse gases such as carbon dioxide (CO2) in the atmosphere due to the increasing 

industrialization of our societies. Greenhouse gases absorb solar energy and release it into the 

atmosphere, a process that keeps our planet warmer than it would be without the presence of these 

gases. A significant portion of these greenhouse gases interacts with the oceans because of the fact 

that oceans take up more than 70 % (the majority) of the surface of the earth in total. The United 

States Environmental Protection Agency (EPA) suggests that CO2 represents the majority (84%) 

of all greenhouse gases generated by human activities. Furthermore, about 30% to 40% of 

anthropogenic CO2 is taken up by the oceans (Donelan and Wanninkhof, 2002). The accuracy of 

this latter assumption is arguable however given how difficult it is to predict and field-measure 

gas (mass) transfer rates across wind-driven air-sea interfaces due to the infinitesimal sizes of 

adjacent molecular sublayers below and above the interface.  

Gas (or scalar) flux across the air-water interface can be expressed as the product of 

concentration difference across the interface and transfer velocity. The latter is a measure of 

transfer efficiency which for sparingly soluble gases such as CO2 depends on turbulence 

characteristics within the boundary layer of the water side in particular. This is due to the fact that 

for sparingly soluble gases, their diffusivity in water is three to four times  order  of    magnitudes  
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lower than their diffusivity in air. Consequently, oceanic turbulence structure and boundary layer 

dynamics in the vicinity of few millimeters immediately below the air-water interface greatly 

influence gas transfer rates (Figure 1.1).  

 

 

 
Figure 1.1  Molecular diffusive boundary layer in terms of dissolved gas (scalar) concentration in 
the water side. 𝐶𝐶𝑖𝑖 is the concentration at the air-water interface and 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the concentration in the 
bulk of the water column. 

 

The available gas transfer models or parameterizations as of today, which attempt to predict 

gas uptakes in oceans, have shown limitations by resulting in predictions not agreeing with each 

other. For example, if the methods of Liss and Merlivat (1986) and Wanninkhof and McGillis 

(1999) were to be used to estimate CO2 uptake in oceans, these methods would result in uptakes 

of approximately 1.1 PgC /year and 3.3 PgC/year respectively (Banerjee and MacIntyre, 2007). 

This variation of a factor of three between these methods is large enough to suggest these methods 

are not reliable in accurately predicting gas uptakes and thus there is a pressing need for more 

reliable methodologies to estimate gas transfer in oceans. Furthermore, for gas transfer models or 

parameterizations to  be  accurate  they  must  include  a  good  representation  of  the  turbulence 

characteristics of the boundary layer that are not yet well understood. 
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Near-surface aqueous turbulence and boundary layer characteristics depend on various 

mechanisms such as wave-breaking, wind shear, stratification and surface heat fluxes. The major 

processes controlling gas transfer through the wind-induced air-sea interface are turbulent-induced 

diffusive transport exchange as well as exchange driven by bubbles generated from the breaking 

of ocean waves (Frew et al., 2004). At high wind speeds (greater than 8 m s-1), the air-sea interface 

(wave) breaking intensifies thereby generating droplets that disperse in the air and bubbles that are 

engulfed into the water side (Zhao, 2006). At low and moderate wind speeds (less than 3 m s-1), 

the shear stress acting on the air-sea interface generates turbulent eddies on the water side which 

are the main controlling factors of transfer of sparingly soluble gases across the interface via 

diffusion (Komori, 1993).  

Gas transfer velocity determines how fast the gas uptake through the air-water interface 

occurs making it the physical factor to parametrize. Wind speed models are frequently used to 

predict gas transfer velocity into the water surface for different turbulent mixing conditions. One 

of the popular models is the Wanninkhof (1992) model which directly links the transfer velocity 

to the speed of wind at a height of 10 m above the air-water interface 𝑢𝑢10:   

 

                                                      𝑘𝑘𝐿𝐿 = 0.31 ∗ 𝑢𝑢10                                                               (1.1) 

 

Wanninkhof and McGillis (1999), determined another relationship between gas transfer 

velocity and 𝑢𝑢10 ,  this time as a cubical correlation:       

                            

                                                          𝑘𝑘𝐿𝐿 = 0.028 ∗ 𝑢𝑢103                                                       (1.2) 
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Wanninkhof (1992)   however   concluded   that “Many uncertainties regarding the 

relationship between gas transfer and wind speed remain.  It is not clear whether wind speed can 

be used by itself to estimate gas transfer velocities.” Indeed, estimating gas transfer using 𝑢𝑢10 or 

even using free-stream wind speed (Wanninkhof et. al, 2009) can be uncertain because all these 

models have a poor level of accuracy or they were established using laboratory data within 

conditions that are certainly not reflective of field conditions, while the models established using 

field data relied on data that is not necessarily accurate or validated.  

An alternative to wind speed-based parameterizations, surface renewal theory is one of the 

widely accepted theories used to obtain parameterizations of gas transfer velocity. Surface renewal 

theory is based on the principle that turbulent eddies bring up low concentration fluid packages 

from below intermittently. According to surface renewal theory, transfer velocity can be obtained 

as 

                                                       𝑘𝑘𝐿𝐿 = (𝐷𝐷 𝜏𝜏⁄ )1/2                                                               (1.3)                                          

 

where 𝜏𝜏 is the surface renewal time scale of the turbulent eddies and 𝐷𝐷 is the molecular diffusivity 

in water.  

In this dissertation, it should be noted that diffusivity and boundary layer turbulence are 

the prevailing factors driving the sparingly soluble gas transfer across the air-water interface 

(absent wave-breaking) whereas the chemistry effects are secondary and consequently not 

considered. Indeed, Doney (2006), for his “Gas exchange across the air-sea interface” lecture for 

a Marine Chemistry course given at Massachusetts Institute of Technology wrote in  notes  made 

available to the class the following: “It is possible to assess the significance of this by  comparing 
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the time constant of this buffering reaction, which is of the order of a minute, with the time it takes 

for a molecule to transit the boundary layer via molecular diffusion, which is related to: 

𝑇𝑇 ≈ 𝐿𝐿2

𝐷𝐷
  and using typical values  𝐿𝐿 = 40 × 10−6𝑚𝑚2  and 𝐷𝐷 = 2 × 10−9𝑚𝑚2𝑠𝑠−1  which substituted 

in the above yields  𝑇𝑇 ≈ 1𝑠𝑠. Thus a CO2 molecule spends far too little time in the boundary layer 

to be affected by chemical reaction whilst there”.  

Doney (2006) also suggests that films present at the air-sea interface may contain catalysts 

such as carbonic anhydrase that could potentially speed up the chemical reaction of CO2.  

Nevertheless, he reveals that measurements of bulk seawater do not show carbonic anhydrase 

concentrations in sufficient quantity for any catalyzation to happen.  Because of the earlier 

arguments, it is believed that chemical reaction of anthropogenic gases while entering the air-sea 

interface is not of any significance compared to the complex physical mechanisms which take 

place within the microscopic boundary layer of both sides of the air-sea interface.    

1.2.   Motivation and Objectives 

At the air-sea interface, wave-current interaction, during low winds speeds on the order of 

1-2 m s-1, leads to the generation of small (centimeter-scale) eddies known as Langmuir cells (LC) 

consisting of counter-rotating vortices parallel to the direction of the wind (see sketch in Figure 

1.2a). The manifestation of these vortices on the water side at the air-water interface was observed 

experimentally by Veron and Melville (2001) in terms of temperature as seen in Figure 1.2b. For 

example, here the blue streaks correspond to the surface convergences of the LC. 

The measurements of Veron and Melville (2001) showed that the inception of small scale 

LC and subsequent transition to Langmuir turbulence (prior to the onset of micro-breaking wind 



6 
 

waves1) leads to a 70% increase in gas or mass transfer velocity, demonstrating the strong impact 

of LC on gas transfer across the air-water interface. Transition to Langmuir turbulence refers to 

when the initially coherent vortices become unstable and loose coherency as they start to interact 

with each other nonlinearly. The measurements of Veron and Melville (2001) were collected under 

a gradually increasing wind with final speed of 5 m/s at a fetch of 10.72 m and during the presence 

of gravity-capillary waves possessing wavelengths up to 10-15 cm.  

 

 

                        (a)              (b) 

Figure 1.2  (a) Sketch of centimeter-scale Langmuir cells aligned in the direction of the wind and 
(b) surface temperature image (red is warmer) in wind-driven air-water interface in laboratory 
measurements of Veron and Melville (2001) during the presence of small-scale Langmuir cells. 
Langmuir cells are generated by wave-current interaction. 

 

 

 

 

 

Figure 1.3  Photograph showing complex structure of short gravity-capillary wave field associated 
with micro-breaking in wave-tank experiment (from Komori et al., 2010). 

                                                           
1 Micro-breaking wind waves refers to the breaking of gravity capillary waves without significant air entrainment. 
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Komori et al. (2010) performed a direct numerical simulation (DNS) similar to the 

laboratory setting of Veron and Melville (2001). In their DNS, LC-like structures coexisting with 

micro-breaking capillary waves riding on larger gravity-capillary waves were identified (similar 

to those in Figure 1.3). However, only recently researchers have begun using DNS to investigate 

LC-like structures and their connection with gas transfer across the air-water interface such as 

Takagaki et al.’s work in 2015.   

Because of the complexity of successfully running a DNS, early  DNS, conducted to study 

mass transfer across the air-sea interface and analyse the characteristics of interfacial turbulence 

signatures, used either flat interfaces (e.g. Nagaosa et al., 2012) or weakly deforming interfaces 

(Hung and Tsai, 2007). Neither of these approaches is able to capture the wave-current interaction 

mechanism generating LC. Also, in most cases these simulations did not resolve the air side. In 

the more recent DNS of Tsai et al. (2013), while they were able to simulate the turbulent structure 

below capillary waves and its impact on mass transfer, their simulation started from an imposed 

wave field, thus bypassing the wave generation by winds. This would not allow the investigation 

of the dependence of the turbulence on wind speed, which is typically a key component of 

parameterizations of transfer velocity.  Furthermore, the simulation of Tsai et al. (2013) did not 

resolve the air-side and consequently they noted that the coupling between the air and water phases 

and the natural randomness of such a two-phase flow is missing in their methodology. Thus they 

recommended the use of more realistic methodologies for the study of air-sea interfacial mass 

transfer. Tsai et al. (2013) have said the following in particular: “The posed canonical problem in 

the present numerical simulation is an idealized model of wind-driven surface waves and turbulent 

flow. It neglects the coupling between the air and water flows, and also the ambient randomness 
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and three-dimensionality of the natural forcing and thus is certainly a simplification of the settings 

in the wind-wave flume and the real oceans. “ 

The DNS of Komori et al. (2010) was performed with a multi-phase code and thus resolved 

both air and water sides enabling them to capture complex deforming gravity waves with micro-

breaking ripples representative of reality. Nevertheless, as mentioned earlier, their study did not 

analyse the effects of aqueous turbulence on mass transfer across the air-sea interface.  

To attain the objectives of this study it is essential to perform a three-dimensional 

multiphase DNS of a wind-driven coupled air-water interface. These computations are made to 

better understand the impact of small-scale LC on interfacial air-sea mass transfer. First, a DNS is 

developed of a coupled air-water interfacial flow with a wind speed similar to the wind speed 

considered by Veron and Melville (2001) and Komori et al. (2010), to capture the deforming air-

water interface characterized by micro-breaking capillary waves along with the induced turbulence 

signatures just beneath the air-sea interface. This methodology will be validated numerically via 

comparison with the DNS of Komori et al. (2010). 

In the experiments of Veron and Melville (2001), initiation of laminar LCs was followed 

by a sudden transition to Langmuir turbulence in which the growing LCs were characterized by 

irregularity while nonlinearly interacting with each other. In these physical experiments, the 

transition to Langmuir turbulence was accompanied by a spike in molecular diffusive scalar (gas) 

flux from the air to the water side, suggesting strong dependence of the flux on the waves and LC.  

One of the main objectives of this study is to further establish this process numerically while 

highlighting the importance of LC in determining the vertical transport of the scalar. As such, it is 

hypothesized that mass  or  scalar  transfer  efficiency  measured in  terms  of transfer  velocity  is 
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enhanced in the presence of LCs which should provide intense surface renewal. This will be 

possible to observe by comparing results from two DNS simulations, one simulation with a freely 

deforming interface (giving rise to gravity-capillary waves generating aqueous Langmuir 

turbulence characterized by small-scale (centimeter-scale) Langmuir cells (LCs)) and the other 

with the interface intentionally held flat (i.e. without LCs). This will be the subject of Chapter 4.  

Additionally the results from the DNS will be used to test the accuracy of parameterization 

models of mass transfer velocity based on surface renewal theory such as the small eddy model of 

Zappa et al. (2007) and the surface divergence model (Banerjee, 2007). This will also be evaluated 

in Chapter 4. Note that these models provide physically-grounded alternatives to the widely used 

models obtained from empirical relationships purely based on wind speed which disregard 

important physical processes such as LC which should play important roles in determining mass 

transfer velocity.  

   Lastly, Takagaki et al. (2015), in a DNS configuration similar to that of Komori et al. (2010) 

and the present DNS, performed a scale separation of the aqueous turbulence into the wave and 

wind shear-generated LCs and the smaller scale, less coherent turbulence. Takagaki et al. (2015) 

concluded that the smaller scale turbulence (characterized by eddies of sizes smaller than LCs) 

and not the LCs are responsible for determining the scalar or mass transfer across the air-water 

interface via molecular diffusion. Nevertheless, the role of the waves and associated LCs in 

determining molecular diffusive scalar flux should be further investigated/clarified in light of the 

physical experiments of Veron and Melville (2001) which  showed  that  generation  of  LCs  and 

associated transition to Langmuir turbulence leads to a spike in gas (mass) transfer velocity. In 

Chapter 5 we will investigate the role of the waves and LCs and their interaction with the smaller  
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scale turbulence in determining molecular diffusive scalar flux across the air-water interface and 

the turbulent vertical flux of scalar throughout the water column. This investigation will be 

performed via large-eddy simulation (LES) based on the well-known Craik-Leibovich (CL) vortex 

force (Craik and Leibovich, 1976) which augments the momentum equations and parameterizes 

the wave-current interaction generating the LC without the need to resolve the gravity-capillary 

waves at the interface. The C-L vortex force allows imposition of the Stokes drift induced by the 

waves and thus a convenient platform (unlike DNS) for understanding the effect of the waves 

through the Stokes drift shear on the turbulent scales, in particular the LCs and the smaller eddies 

at the surface, and ultimately the scalar (mass) transfer across the air-water interface via molecular 

diffusion and vertical scalar transport by the aqueous eddies.  

1.3.   Organization of the Dissertation 

This dissertation is organized as follows. Chapter 2 presents a literature review about 

turbulence from its physical aspect and its mathematical aspect followed by a discussion about the 

simulation methodologies and computational tool used in this study. In Chapter 3 a description of  

the boundary layer exchange at the air-water interface and current transfer velocity 

parametrizations is presented. In Chapter 4 the adopted DNS computational methodology will be 

explained in great details and its results analysed with an emphasis on the Langmuir turbulence 

structure resolved and its impact on vertical transport of the scalar on the water side. The second 

part of  Chapter 4 in particular presents transfer velocity results from surface renewal 

parameterizations (i.e., the small eddy model and the surface divergence model) using the DNS 

data and assesses these parameterizations via comparison with the transfer velocity measured 

directly in the DNS. Following that, in Chapter 5 the role of the waves and associated LCs in 

determining molecular diffusive scalar flux of scalar at the air-water interface will be explained 
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through LES. Finally, Chapter 6 summarizes the conclusions of this research in addition to 

providing recommendations for future work. 
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CHAPTER 2:   COMPUTATIONAL APPROACHES TO TURBULENCE AND  
 

NUMERICAL METHOD 
 

The main purpose of this dissertation is to numerically study scalar (mass) transfer across 

a wind-driven air-water interface characterized by non-breaking gravity-capillary waves and grasp 

the physical turbulent mechanisms controlling it. This knowledge should allow for future improved 

parametrization of mass transfer through the air-water interface. This chapter first includes a 

review of turbulence in terms of its physical properties followed by an introduction to the available 

numerical approaches suitable to solving the turbulent flow associated with a wind-driven air-

water interface. 

2.1.   What is Turbulence? 

When a liquid or a gas substance flows irregularly and develops random chaotic vortices 

in the three-dimensional directions, it is likely that the flow may be considered turbulent. Turbulent 

motions are characterized by the coexistence of a wide range of scales from small-scale eddies and 

bulges to as large as potentially the fluid domain. Turbulence is the most common state of fluid 

motion occurring in nature. For example, fluid flowing in a state of turbulence can be easily 

recognizable in river flows and waterfalls or even felt on an airplane when it cuts through mixing 

areas between jet streams with different air speeds.  Many more examples of turbulence occurring 

in nature present challenges the majority of engineering and scientific disciplines are dealing with, 

which include but not limited to aeronautics, nuclear engineering and applied sciences such as 

oceanography, meteorology, and environmental sciences.   
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2.2.   The Physical Features of Turbulence 

Although it is difficult to precisely define turbulence, scientists certainly would agree on a 

number of characteristics of turbulence listed below:  

• Turbulent flows are irregular.  

• Turbulent flows are rotational and three-dimensional.  

• Turbulent flows are both diffusive and dissipative.  

• Turbulent flows occur at high Reynolds numbers.  

• Turbulent flows are characterized by a wide range of spatial and temporal scales.  

• Turbulent flows are continuum phenomena. 

2.3.   Governing Equations  

The equations describing the motions of any Newtonian, incompressible fluid flow are the 

continuity equation (2.1), and the Navier-Stokes equations (2.2). Using the Einstein indicial 

notation, the dimensionless governing equations are: 

 

                                                                 𝜕𝜕𝑏𝑏𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

   = 0                                                                     (2.1) 

 

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕

+  𝑢𝑢𝑗𝑗
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

+ 
𝜕𝜕𝜏𝜏𝑖𝑖𝑗𝑗𝜐𝜐

𝜕𝜕𝑥𝑥𝑗𝑗
                                                      (2.2) 

 

where 𝑢𝑢𝑖𝑖 denotes the velocity field (𝑖𝑖 = 1, 2  and 3 respectively represent the streamwise (or 

downwind), spanwise and vertical directions), 𝜕𝜕 is the pressure field divided by density and 𝜏𝜏𝑖𝑖𝑗𝑗𝜐𝜐  is 

the molecular viscous stress defined as: 
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                                                         𝜏𝜏𝑖𝑖𝑗𝑗𝜐𝜐 =
1
𝑅𝑅𝑒𝑒
�
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

�                                                       (2.3) 

 

where  𝑅𝑅𝑒𝑒 = 𝑈𝑈0𝐷𝐷 𝜈𝜈⁄  is the Reynolds number, defined as a ratio of inertial forces to viscous forces, 

which quantifies the importance of advection relative to diffusion. Furthermore, 𝑈𝑈0 is a 

characteristic velocity of the flow, 𝐷𝐷 is a characteristic dimension and 𝜈𝜈 is the kinematic viscosity 

of the fluid. 

Using (2.1), (2.2) can be re-expressed as  

  

    
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕

+  𝑢𝑢𝑗𝑗
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

+  
1
𝑅𝑅𝑅𝑅

𝜕𝜕2𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗2

                                               (2.4) 

 

In addition to the continuity and momentum (Navier-Stokes) equations to predict air and 

water flow velocities and pressures, we will also consider concentration of a dissolved scalar (i.e. 

gas) in air and in water as predicted via a scalar transport equation:  

 

𝜕𝜕𝐶𝐶
𝜕𝜕𝜕𝜕

+  𝑢𝑢𝑗𝑗
𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥𝑗𝑗

=
1

𝑅𝑅𝑒𝑒𝑆𝑆𝐿𝐿
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

                                                      (2.5) 

 

where 𝑆𝑆𝐿𝐿 is the Schmidt number defined as kinematic viscosity divided by scalar diffusivity. For 

example, for CO2 dissolved in water the Schmidt number is ~200, implying that the diffusive 

molecular boundary layer is much smaller than the viscous momentum boundary layer. In this 

study, as has been done in others, the Schmidt number is set to 1 because this does not  affect  the  
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fundamental turbulent mechanisms promoting mass (scalar) transfer across the interface. A 

Schmidt number of 200 would require a more expensive computation in order to resolve the thinner 

diffusive boundary layer.   

2.4.   Numerical Approach to Turbulence Simulation 

2.4.1.   Direct Numerical Simulation (DNS) 

DNS is the most reliable approach to solve the full instantaneous Navier-Stokes equations 

because it is the only approach that resolves all the spatial scales from the smallest dissipative 

scales of turbulence through the largest scales of turbulence. This means that the numerical 

simulation will have to employ a dense enough computational meshing scheme that is capable of 

resolving all the dynamics involved with the smallest eddies of the flow as a well as a sufficiently 

large domain to capture the largest of the scales. As per Kolmogorov theory (Pope, 2000), the 

number of grid points suggested for a three-dimensional DNS simulation needs to be   𝑁𝑁 ∼ 𝑅𝑅𝑒𝑒
9/4 , 

where 𝑅𝑅𝑅𝑅 is the Reynolds number defined earlier. The range of scales in turbulent flows increases 

with increasing Reynolds number, and in cases where Reynolds numbers are exceedingly high, the 

use of DNS can be a challenge.  For these reasons the flows suitable for a DNS would be those 

with low to moderate Reynolds numbers.  

DNS provides the advantage of solving the governing equations directly, which allows 

accurate resolution of all spatial scales of turbulence without the need or use of a turbulence model 

or parameterization. Another advantage of DNS is the opportunity it gives to examine flow 

characteristics that can be difficult to measure via physical experiments such as pressure-strain 

correlations (Pope, 2000). Though, one of its disadvantages is the fine grid needed to allow all the 

smallest features of turbulence to be resolved which drives the cost of the computation to be high.  
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However, with the rapid improvement of high performance supercomputers in the last 

decade, it is nowadays possible to overcome the astronomical amount of computation needed for 

DNS of certain flows. 

2.4.2.   Large Eddy Simulation (LES) 

LES is an alternative methodology to DNS which focuses on separating scales of large 

energy-containing eddies and small energy-dissipating eddies. The small scales can be too 

computationally expensive to simulate. Therefore, rather than including all the small scales in the 

computation, LES uses a low-pass filtering operation to pass the large scales up to a chosen filter 

width Δ and damp (or filter out) the smaller scales (see Figure 2-1).  

 

 

Figure 2.1  Sketch of functions 𝑓𝑓(𝑥𝑥) and filtered function 𝑓𝑓(̅𝑥𝑥) with spatial filter of width ∆ 
(Tejada-Martínez, 2002). 

 

This filtering operation is applied to the Navier-Stokes equations generating a subgrid scale 

(SGS) stress in these equations which indirectly accounts for the effect of motions of the 

unresolved or damped scales. Solution of the filtered Navier-Stokes equations yields the filtered 

flow variables describing the behavior of the larger, energy-containing eddies.  The SGS stress 
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appearing in the filtered Navier-Stokes equations presents a closure problem requiring 

approximation of the effect of the unresolved scales on the resolved ones in terms of resolved 

quantities.  

The filtered governing equations in an LES are as follows: 

 

                                                                        
𝜕𝜕𝑏𝑏�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

 = 0                                                                 (2.6)                 

                                            

𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝜕𝜕

+  𝑢𝑢�𝑗𝑗
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= −
𝜕𝜕�̅�𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

+  
1
𝑅𝑅𝑒𝑒

𝜕𝜕2𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝜏𝜏𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆𝑆𝑆

𝜕𝜕𝑥𝑥𝑗𝑗
                                   (2.7) 

 

where the over-bar denotes application of the filter and thus 𝑢𝑢�𝑖𝑖 is the i-th component of the space-

filtered (resolved) velocity field while �̅�𝜕 is the space-filtered (resolved) pressure field. The SGS 

stress tensor 𝜏𝜏𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆𝑆𝑆 , which appears in filtered momentum equation, accounts for the effect of the 

filtered-out (unresolved) scales on the resolved scales and is defined as follows: 

 

                                                         𝜏𝜏𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗 − 𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥 ������                                                             (2.8) 

 

Since the unfiltered velocity 𝑢𝑢𝑖𝑖 is not resolved within the LES approach, the SGS stress 

presents a closure problem. For this reason, this stress must be modeled in terms of resolved 

quantities. The interested reader is directed to Pope (2000) for description of popular SGS stress 

models.   
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2.4.3.   Reynolds Averaged Navier-Stokes (RANS) 

Simulation based on the RANS equations (i.e. RANS simulation) is the most affordable 

methodology to simulate turbulent flows, though it is the least accurate of the three methodologies 

since it does not attempt to resolve any of the turbulent scales and exclusively focuses on resolving 

the mean components of the flow.  RANS is derived by averaging Navier-Stokes equations over 

time, resulting either in the set of steady equations for mean quantities in the case of steady RANS 

or a set of evolution equations for slow varying averaged variables (slower than the turbulence) in 

the case of unsteady RANS. Similar to LES, the RANS equations possess an unresolved stress, 

namely the well-known Reynolds stress. Closure of the Reynolds stress is provided by a turbulence 

model such as the popular k-epsilon model (Pope, 2000). Although RANS is particularly more 

efficient than LES and DNS, this methodology only computes mean quantities of the flow, hence, 

it does not capture any of the turbulent scales, a task that is needed in order to better analyze the 

turbulence behind mass transfer across the air-water interface which is the subject of this 

dissertation. Thus, DNS and LES are the methodologies to be used in this work. 

2.5.   Numerical Method and Framework 

 The flow solver used in this research is based on the open source numerical collection of 

C++ libraries OpenFOAM (Open source Field Operations and Manipulations) which uses the finite 

volume method to discretize the continuity, Navier-Stokes and scalar equations, reviewed earlier. 

After the discretization of the Navier-Stokes equations, the resulting pressure-velocity coupling 

for the momentum equation is solved using the PIMPLE method which is a combination of the 

Pressure Implicit with Splitting of Operators (PISO) method (Márquez Damián, 2013) and the 

Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) method (Patankar, 1972).  
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InterFOAM, a solver included with OpenFOAM and widely used to simulate two-phase 

flows, will be employed to compute the wind-driven air-water interfacial turbulent flows of focus 

in this thesis. InterFOAM tracks the air-water interface via a modified volume of fluid multiphase 

methodology based on solving an advection transport equation for a volume phase fraction, which 

was created following a manipulation of the original methodology of Hirt et. al (1981). The next 

paragraphs will discuss in more details the methodology used by OpenFOAM. 

2.5.1.   The Finite Volume Method (FVM) 

In the finite volume method, a three-dimensional computational domain is subdivided into 

a finite number of control volumes of any general polyhedral shape with variable numbers of 

neighboring volumes, hence, allowing any possible meshing scheme (i.e., structured or 

unstructured). Consequently, the integral form of the governing equations is discretized over the 

control volumes.  Surface and volume integrals are linearized using suitable discretization methods 

and the solution of the linearized equations is achieved using an iterative linear equation solver 

(see OpenCFD, 2012 for details on linear equation solvers).  

2.5.2.   Volume of Fluid Methodology (VoF) 

The volume of fluid method is a technique used to track multiphase interfaces. Its concept 

was first published by Hirt & Nichols (1981), although already established a decade earlier. The 

VoF method is based on the idea of a volume fraction defined such that it varies between 0 and 1, 

i.e. it is unity (1 or 100%) if a cell is fully occupied by a fluid of choice (water in the present study) 

and zero if it is not occupied by the fluid of choice (meaning that it is fully occupied by air in the 

present study).  

OpenFOAM, which  uses an improved VoF approach, has gained its popularity from 

accurately tracking and locating interfaces between different fluids due to the incorporation of an 
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interfacial compression flux term to mitigate the effects of numerical smearing of the interface 

between two liquids (Deshpande et al., 2012) and from its advantage of being fully conservative.  

In addition to the continuity and momentum equations, the governing equations of the VoF 

methodology include equations which take into consideration multi-phases via a phase fraction 

parameter 𝜸𝜸 which varies between 0 and 1, and physical properties of the fluids, i.e. dynamic 

viscosity and density of each phase, as well as the surface tension 𝝈𝝈. In this present DNS the 

density of water and air were chosen as 1000 kg/m3 and 1.2048 kg/m3 respectively, the air  

water surface tension was chosen as 0.07286 N/m and the kinematic viscosity of water and air 

were set to 1.0 × 10−6 m2/s and 1.5 × 10−5 m2/s respectively. In this study two fluids are 

considered (i.e., water and air). Denoting subscript “w” for water and “a” for air, the VoF 

methodology is expressed via the following equation for volume phase fraction, 𝛾𝛾  

 

                                        𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  + 𝛁𝛁. (𝛾𝛾𝑼𝑼) + 𝛁𝛁. [(𝑼𝑼𝑤𝑤 −𝑼𝑼𝑎𝑎)𝛾𝛾(1 − 𝛾𝛾)] = 0                             (2.9) 

 

Fluid velocity  𝑼𝑼 (𝑢𝑢𝑖𝑖), density 𝜌𝜌 and viscosity 𝜇𝜇 are expressed as 

 

                                                              𝑼𝑼 = 𝑼𝑼𝑤𝑤𝛾𝛾 + 𝑼𝑼𝑎𝑎(1 −  𝛾𝛾)                                               (2.10) 

 

                                                       𝜌𝜌 = 𝜌𝜌𝑤𝑤  𝛾𝛾 + 𝜌𝜌𝑎𝑎(1 −  𝛾𝛾)                                                      (2.11) 

 

                                                       𝜇𝜇 = 𝜇𝜇𝑤𝑤 𝛾𝛾 + 𝜇𝜇𝑎𝑎(1 −  𝛾𝛾)                                                                 (2.12) 
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where  𝛾𝛾 = 1 for water (i.e., this value corresponds to a finite volume (or grid) cell with 100% of 

its volume occupied by water) and 𝛾𝛾 = 0 for air (i.e., this value corresponds to a cell with 100% 

of its volume occupied by air). Thus 𝑼𝑼𝑤𝑤 and 𝑼𝑼𝑎𝑎  are the fluid velocities in water and in air, 

respectively, 𝜌𝜌𝑤𝑤 and 𝜌𝜌𝑎𝑎 are densities of water and air, respectively and 𝜇𝜇𝑤𝑤 and 𝜇𝜇𝑎𝑎 are dynamic 

viscosities of water and air, respectively. The above VoF methodology implemented in 

openFOAM follows the original methodology of Hirt et al.  (1981)   while   incorporating   a 

compression flux term (the 3rd term on the left hand side of equation 2.9) to lessen the effects of 

numerical smearing of the interface between the two phases (Deshpande et al., 2012) and therefore 

improve the sharpness of the interface.   

2.5.3.   Validation of OpenFOAM 

The accuracy of the VoF methodology used in this research has been tested by conducting 

simulations of classic (canonical) problems with solution comparing favorably with available 

analytical solutions that are found in the literature (see appendix A for more details). Furthermore, 

an additional DNS simulation of a turbulent channel flow was conducted and results in terms of 

mean streamwise velocity compared favorably to the theoretical solution (refer to Chapter 4). In 

addition to being a typical testing problem in CFD, this turbulent channel flow simulation was 

needed to compute initial conditions for the DNS of coupled air-water interfacial flow which will 

be the focus of this thesis. 

The results from these validations demonstrated the excellent agreement between the 

numerical solutions and the theory, which demonstrates OpenFOAM’s reliability as a numerical 

tool capable of achieving the goals of this study.  
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2.6.   Chapter Summary 
 

In this chapter, physical and mathematical aspects of turbulence were reviewed and 

computational methodologies for tackling turbulence were discussed. DNS and LES were 

identified as the methodologies suitable for achieving the goals of this thesis. Details were also 

given about the numerical methods used in this thesis to solve the DNS and LES equations and 

their validation.  
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CHAPTER 3:   MASS TRANSFER VELOCITY PARAMETRIZATION 
 

3.1.   Parametrization  

Figure 3.1 exhibits a comparison between mass transfer velocities through an air-water 

interface determined experimentally with respect to the speed of wind at a height of 10 m above 

the air-water interface 𝑢𝑢10 from the work of Banerjee (2004). This figure shows results from one 

of the most frequently used parametrizations, that of Liss and Merlivat (1986) which relies solely 

on 𝑢𝑢10 to predict gas transfer velocity following: 

 

                                          𝑘𝑘𝐿𝐿 = 0.17𝑢𝑢10   when  𝑢𝑢10 ≤ 3.6 𝑚𝑚/𝑠𝑠                                    (3.1-a) 

 

                        𝑘𝑘𝐿𝐿 = 2.85𝑢𝑢10 − 9.65   when   3.6 𝑚𝑚/𝑠𝑠 ≤ 𝑢𝑢10 ≤ 13 𝑚𝑚/𝑠𝑠                     (3.1-b) 

 

                                     𝑘𝑘𝐿𝐿 = 5.9𝑢𝑢10 − 49.3   when   𝑢𝑢10 ≥ 13 𝑚𝑚/𝑠𝑠                              (3.1-c) 

 

At a first glance of Figure 3.1, it is reasonable to say that these transfer velocity 

measurements do not indicate any strong correlation with 𝑢𝑢10. The data in Figure 3.1 is scattered 

which indicates that there must be more than just one variable (in this case 𝑢𝑢10 ) to explain the 

behavior of the transfer velocity.  

Nevertheless, Wanninkhof and McGillis (1999) established a cubical fit to transfer velocity 

using  𝑢𝑢10  (equation 3.2), whereas Nightingale et al. (2000) used quadratic fit:  

 



24 
 

                                 𝑘𝑘𝐿𝐿 = 0.078𝑢𝑢103 − 0.333𝑢𝑢102 + 1.09𝑢𝑢10                                          (3.2) 

 

                                          𝑘𝑘𝐿𝐿 = 0.222𝑢𝑢102 + 0.333𝑢𝑢10                                                      (3.3) 

 

 

Figure 3.1  Gas transfer coefficients vs. wind speed from lakes (MacIntyre S. et al., 1995). Liss 
and Merlivat (1986) fit shown dotted. This figure is a reprint of Figure 6.1 from the work of 
Banerjee (2004). 

 

More recently, Iwano (2013) fitted data using a combination of 𝑢𝑢10 raised to the powers 

1.25 and 3.4 separated into two equations based on 𝑢𝑢10 smaller or larger than the threshold of 33.6 

m/s:                                           

                             𝑘𝑘𝐿𝐿 = 1.61𝑢𝑢101.25     when   𝑢𝑢10 < 33.6 𝑚𝑚/𝑠𝑠                                  (3.4-a) 
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                           𝑘𝑘𝐿𝐿 = 8.43 ∗ 10−4𝑢𝑢103.4  when   𝑢𝑢10 ≥ 33.6 𝑚𝑚/𝑠𝑠                            (3.4-b) 

 

Additional parametrizations attempted to use friction velocity and significant wave height  

such as it is in the case of the parametrization by Woolf (2005): 

 

                                                            𝑘𝑘𝐿𝐿 = 𝑘𝑘0 + 2 ∗ 10−5𝑅𝑅𝐻𝐻                                                        (3.5) 

 

where  𝑘𝑘0 = 1.57 × 10−4𝑢𝑢∗  and  𝑅𝑅𝐻𝐻 = 𝑢𝑢∗𝐻𝐻𝑠𝑠/𝜈𝜈𝑤𝑤𝑎𝑎𝜕𝜕𝑒𝑒𝑤𝑤,  𝑢𝑢∗ being the friction velocity of air, 𝐻𝐻𝑠𝑠 is 

the significant wave height and 𝜈𝜈𝑤𝑤𝑎𝑎𝜕𝜕𝑒𝑒𝑤𝑤 is the kinematic viscosity of water. Recently Suzuki et al. 

(2015) suggested a parametrization based on fractional area of whitecap coverage: 

 

                                                    𝑘𝑘𝐿𝐿 = 2.06𝑢𝑢10(1 −𝑊𝑊) + 1035𝑊𝑊                                                  (3.6) 

 

where 𝑊𝑊 is the fractional area of whitecap coverage and 𝑊𝑊 = 3.88 × 10−7𝑅𝑅𝐵𝐵1.09 with 𝑅𝑅𝐵𝐵 being 

the air-water Reynolds number which corresponds to 𝑢𝑢𝜏𝜏𝑧𝑧/𝜈𝜈  where 𝑢𝑢𝜏𝜏 is friction velocity due to 

wind stress, while 𝜈𝜈  is the molecular viscosity.  

Per a technical report by Suzuki et al. (2015), using some of the parametrization models 

mentioned in this chapter and in Chapter 1 (i.e., equations 1.1, 1.2, 3.4-a and b, 3.5 and 3.6), the 

conclusion can be reached that there is a clear disagreement between all the aforementioned 

parametrization models. Some of the reasons behind reaching that conclusion is that all these 

models were empirically constructed with data collected during different conditions. Some of the 

variations in these conditions include differences in the margin of wind speeds considered  which  
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may have included only low wind speeds or only high wind speeds or a combination of low and 

high wind speeds that may or may not have induced wave breaking, or the conducted experiments 

were either experiments completed in the field or in different laboratories.  Moreover, as reasoned 

by Banerjee (2004), low predictions observed in Figure 3.1 are due to the missing representation 

of important factors by the parametrization used (e.g., Liss and Merlivat (1986)’s model) such as 

variables related to turbulent fluid motion near the deforming air water interface.  

Turbulent fluid motion is known to control mass transfer through the air-water interface 

and therefore should be studied more as its improved understanding should lead to better 

parametrizations of transfer velocity. Several theories based on either turbulent or molecular 

diffusion attempt to better explain the behavior of mass transfer across air-water interface. These 

theories include the film, surface renewal, interphase mass transfer and boundary layer theories 

which will be discussed further in this chapter. 

3.2.   Mass (Scalar) Transfer Theories 

3.2.1. Film Theory 

Using a simplistic one-dimensional representation of convective mass transfer, film theory 

(Lewis and Whitman, 1924) suggests that the concentration distribution is linear within a stagnant 

thin film just below the air-water interface (Figure 3.2). Inside this film, gas concentration drops 

linearly from the concentration 𝐶𝐶𝑖𝑖 at the interface to a bulk concentration 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 reached at the 

deeper end of the thin film. The concentration is constant at 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 below the thin film. Under the 

assumption of steady state mass transfer and low dissolved scalar (gas) concentration, a linear 

relationship was established, where transfer velocity is found to be directly correlated to the 

diffusion coefficient and inversely correlated to the thickness of the thin film:  
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                                                          𝑘𝑘𝐿𝐿 = 𝐷𝐷/δ                                                                 (3.7) 

 

where D is the molecular diffusivity of the scalar in water. 

 

 

 

 

Figure 3.2  Dissolved gas (scalar) concentration profile (concentration per film theory versus 
actual concentration).  

 

3.2.2.   Boundary Layer Theory  
 

In boundary layer theory both the concentration and velocity can vary in all three 

directions. This is in contrast with film theory in which the concentration and velocity vary in the 

vertical direction only. Furthermore, the change in the concentration profile in the thin film is 

larger in the vertical direction than in any of the other directions, thus it is sufficient to just consider 

diffusion in the vertical direction (Baehr and Stephan, 2006). As a result of this theory, a 

relationship between mass transfer velocity and molecular diffusivity is established as follows: 

 

                                                      𝑘𝑘𝐿𝐿~ν−1/2/𝐷𝐷2/3                                                          (3.8) 
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3.2.3.   Penetration Theory  
 

Another eminent theory of mass transfer between a liquid and a gas is penetration theory. 

This theory, established by Higbie (1935), is based on the assumption that turbulent eddies are 

continuously replenishing the gas-liquid interface with low concentration fluid brought from 

depths of the liquid column to the surface. This renewal cycle occurs periodically within a renewal 

period 𝜏𝜏𝑤𝑤  which is particular to the characteristics of turbulence in the fluid flow. By solving the 

unsteady state transport equation for concentration of a dissolved gas in liquid where the only 

retained gradient of concentration in this equation is the one with respect to the depth while the 

other two gradients of concentration (i.e., with respect to the spanwise and streamwise flow 

directions) are considered negligible, the average mass transfer velocity 𝑘𝑘𝐿𝐿 is found to be directly 

correlated with the square root of the diffusion coefficient 𝐷𝐷 and  inversely correlated with the 

renewal period 𝜏𝜏𝑤𝑤: 

 

                                                       𝑘𝑘𝐿𝐿 = 2 � 𝐷𝐷
𝜋𝜋𝜏𝜏𝑟𝑟

                                                           (3.9) 

 

3.2.4.   Surface Renewal Theory 

Surface renewal theory was introduced by Danckwerts (1951) who modified the 

penetration theory of Higbie (1935) considering that fluid elements stay at the surface for random 

amount of times, suggesting the use of an exponential age or contact time distribution (Toor and 

Marchello, 1958) as reflected by 
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                                                         φ(𝜕𝜕) = 𝑠𝑠𝑅𝑅−𝑠𝑠𝜕𝜕                                                       (3.10) 

 

where 𝑠𝑠 is the fractional rate of surface renewal due to turbulent eddies flowing between the bulk 

of fluid and the air-water interface, which carry low concentration fluid packages to the surface. 

Consequently, the average mass transfer velocity 𝑘𝑘𝐿𝐿 is found to be directly correlated with the 

square root of the diffusion coefficient 𝐷𝐷 and directly correlated with the square root of the 

fractional rate of surface renewal 𝑠𝑠 (or inversely correlated with the square root of the surface 

renewal time scale of the turbulent eddies 𝜏𝜏 ) as follows: 

 

                                                        𝑘𝑘𝐿𝐿 = (𝜅𝜅 𝜏𝜏⁄ )1/2                                                      (3.11) 

 

Since 𝜏𝜏 depends on the turbulent characteristics of flow, it is generally parametrized in 

terms of turbulent kinetic energy dissipation rate 𝜀𝜀 at the surface or in terms of surface divergence 

which are discussed in chapter 4 in more details. 

3.3.   Chapter Summary  

This chapter consists of a review of all different parametrization techniques used to predict 

mass transfer between a gas and a liquid. Conclusions arose as to why it is important to consider 

physically-grounded theories based on either turbulent or molecular diffusion (such as surface 

renewal theory) and not empirical relationships such as those based on 𝑢𝑢10 to better capture the 

behavior of gas transfer across air-water interface. In this dissertation, we will compare transfer 

velocity results from different parameterizations based on surface renewal theory in particular 

parametrizations based on near surface turbulent kinetic energy dissipation rate (Zappa et al., 2007) 
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and surface divergence (Banerjee, 2007) to results we obtain directly from the DNS to investigate 

the accuracy of the parameterizations.  
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CHAPTER 4:   DNS OF SCALAR (MASS) TRANSFER ACROSS AN AIR-WATER 
 

INTERFACE DURING INCEPTION OF SMALL-SCALE LANGMUIR 
 

CIRCULATION 
 

4.1.   Introduction 

 Turbulence associated with small scale (centimeter-scale) eddies known as Langmuir cells 

or LCs can have direct impact on gas uptake by oceans. During low wind speeds of 1 to 2 m/s, 

wave-current interaction leads to the generation of Langmuir turbulence characterized by these 

small scale LCs. As seen in Figure 1.2a of Chapter 1, LCs consist of parallel counter-rotating 

vortices roughly aligned in the direction of the wind. It is well-known that LCs result from the 

interaction between the Stokes drift velocity induced by surface waves and the wind-driven shear 

current. Recall that Figure 1.2b shows the manifestation of the LCs through the pattern in surface 

temperature, where elongated streaks with cold temperatures coincide with the surface 

convergence zones of the LCs, and elongated streaks of warmer temperatures coincide with the 

surface divergence  zones of LCs.   

In the measurements of Veron and Melville (2001) the inception of small scale LCs and 

subsequent transition to Langmuir turbulence (prior to the onset of micro-breaking wind waves) 

lead to a 70% increase in gas transfer velocity, demonstrating the strong impact of LC on gas 

transfer across the air-water interface. Transition to Langmuir turbulence refers to when the 

initially coherent vortices become unstable and loose coherency as they start to interact with each 

other nonlinearly. The measurements of Veron and Melville (2001) were collected under a 
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gradually increasing wind with final speed of 5 m/s at a fetch of 10.72 m and during the presence 

of gravity-capillary waves possessing wavelengths up to 10-15 cm. More recent experiments made 

with sub-surface Particle Image Velocimetry (PIV) and surface infrared radiometry were 

conducted by Veron in a large air-sea interaction facility at the University of Delaware. Several 

wind forcings were studied in order to obtain a variety of LC scales and intensities. It was found 

that the LCs provide intense surface renewal (see Figure 4.1) and disrupt the near surface molecular 

layers. In particular, the LC rapidly transport surface layers to depth thereby transporting 

momentum away from the surface at rates much larger than that of molecular diffusion. Figure 4.1 

presents snapshots from a video filmed in these laboratory measurements taken at two different 

times, showing the progress of fluorescent dye initially deposited on the surface of a wind-driven 

air-water interface as a tracer during the presence of small-scale LCs. The images are in the 

crosswind-vertical plane, with the wind and  waves traveling  in  the  “into   the  page”   direction.  

 

 

 

wind 
and bulk 

flow 

direction 
is into 
page 

  

(a)  (b)  

Figure 4.1  Fluorescent dye sprayed on a wind-driven air-water interface as a tracer during the 
presence of small-scale Langmuir cells at a) an early time, b) later time. Courtesy of Fabrice 
Veron, University of Delaware. 
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In Figure 4.1 we can see the formation of pairs of vortices which correspond to small scale 

Langmuir cells. By comparing the progress of the fluorescent dye within the water side between 

an early time (Figure 4.1a) and a later time (Figure 4.1b) the effect of Langmuir cells on vertical 

transport of momentum and scalars can be observed. Komori et al. (2010) performed a direct 

numerical simulation (DNS) similar to the laboratory setting of Veron and Melville (2001). In their 

DNS, LC-like structures coexisting with micro-breaking capillary waves riding on larger gravity-

capillary waves were identified. However, a study of LC-like structures and their connection with 

gas transfer efficiency across the air-water interface was not explored. 

For the present study, a similar DNS of a wind-driven coupled air-water interface was 

conducted focusing on the vertical transport induced by small scale LCs to further establish the 

connection between the cells and scalar transfer across the interface. Two simulations are 

compared: one with a freely deforming interface and a second one with a flat interface. In the first 

simulation, the deforming interface evolves in the form of gravity-capillary waves generating 

aqueous Langmuir turbulence characterized by small scale LCs. The second simulation is 

characterized by pure shear-driven turbulence in the absences of LCs as the interface is 

intentionally held flat 

4.2.   Governing DNS Equations 

The DNS equations consist of the incompressible continuity and the Navier-Stokes 

equations: 

                                                         𝜕𝜕𝑏𝑏𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

 = 0                                                                 (4.1) 

                                                𝜕𝜕𝑏𝑏𝑖𝑖
𝜕𝜕𝜕𝜕

+  𝑢𝑢𝑗𝑗
𝜕𝜕𝑏𝑏𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= − 1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

+  ν 𝜕𝜕
2𝑏𝑏𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

2                                       (4.2)                                                                           
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where 𝑢𝑢𝑖𝑖 denotes the velocity field (i = 1, 2 and 3 represent the streamwise (or downwind), 

spanwise and vertical components, respectively), p is the pressure field, ν is the molecular 

kinematic viscosity and ρ is the density. In addition to the continuity and momentum (Navier-

Stokes) equations to predict air and water flow velocities and pressures, the concentration of 

dissolved scalar (i.e. gas) in air and in water is predicted via an additional scalar transport equation: 

 

                                                         𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕

+  𝑢𝑢𝑗𝑗
𝜕𝜕𝐿𝐿
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝜅𝜅 𝜕𝜕2𝐿𝐿
𝜕𝜕𝑥𝑥𝑗𝑗

2                                              (4.3)                                                                                                                

 

where C is the concentration of the scalar and κ is the molecular diffusivity of the scalar. In this 

study, as has been done in others, the ratio ν/𝜅𝜅 or Schmidt number (Sc) is set to 1 because this 

does not affect the fundamental turbulent mechanisms promoting scalar transfer across the 

interface.  

Simulations conducted follow closely the recent DNS of Komori et al. (2010) of wind-

driven, coupled air-water molecular boundary layers with a nonlinearly deformable surface 

(interface). The juxtaposed domains of the air and water fluids along an initially flat gas-liquid 

interface are represented by rectangular  boxes  with depths of   δ   and   2δ    respectively,  where  

δ = 1.25cm, while the streamwise and  spanwise  lengths are 8δ  and  4δ  respectively ( see  Figure 

4.2.a). A Cartesian coordinate system was adopted where the streamwise and spanwise directions 

are given by the x-axis and the y-axis respectively, while the z-axis spans the air and water depths 

(see computational domain in Figure 4.2.a). 
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Figure 4.2  a) Coupled air-water flow domain and computational mesh and b) flow domain and 
boundary conditions: Zero shear stress with zero normal flow and prescribed scalar concentration 
at top and bottom of the domain; periodicity in streamwise and spanwise directions. 

 

The water side in this simulation is started from rest with a flat air-water interface driven 

from above by the sudden imposition of a pre-computed, fully-developed boundary layer airflow 

driven by a pressure gradient with zero shear stress at the top and periodic streamwise and spanwise 

faces. This boundary layer airflow was pre-computed as a first step, in a separate simulation with 

a no-slip bottom and a zero-shear stress condition on top while maintaining periodic boundary 

conditions elsewhere (along streamwise and spanwise boundaries). The pre-computed airflow was 

characterized by far-field mean velocity U∞ = 5 m/s which is the same as the final wind speed in 

the experiments of Veron and Melville (2001). The initial condition for scalar concentration was 

C = 1 mol/m3) in the air side and C = 0 in the water side. At the top of the domain (at the top of 

the air side) C was set to 1 mol/ m3 and at the bottom of the domain (the bottom of the water side) 

C was set to 0, ensuring a flux of scalar from the air side to the water side (Figure 4.2.b).  

The simulated Reynolds number based on U∞, and the height of the air column, δ, is 4160. 

The Reynolds number based on the air-side friction velocity at the air-water interface, uτ, and δ is 

200. Given this modest Reynolds number, we have ensured that the distances from  the  air-water  
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interface to the closest grid points on the water and air sides, Δz, are less than Δz+ = 1, where 

Δz+ =  uτ Δz/ν with uτ and ν being the friction velocity and kinematic viscosity, respectively, in the 

water side or air side. Thus, the closest grid points to the air-water interface fall within the 

molecular sub-layer (see Appendix B for definition) either on the air or water sides. As such, the 

air and water-side regions near the air-water interface have DNS-level resolution and do not require 

a subgrid-scale large-eddy simulation model. The grid points used in the streamwise, spanwise and 

vertical directions of the computational domain were 200 by 100 by 60 on the air side and 200 by 

100 by 120 on the water side. The grid resolution for this mesh is between the order of 0.006 

centimeters (within the air-water interface) and 0.05 centimeters (near the top and bottom of the 

air side). The computational mesh is chosen as uniform along the streamwise and spanwise 

directions while a non-uniform gradually refined meshing scheme was applied starting from the 

top surface of the air column down to the air-water interface and from the bottom surface of the 

water column up to the air-water interface.  This meshing scheme was purposely used to heavily 

refine the air-water interfacial region of interest in order to capture the centimeter-scale interfacial 

deformations as well as the molecular sub-layers in the air and water sides. 

4.3.   Preliminary Simulation to Obtain Initial Condition  

As mentioned earlier, a simulation of solely airflow was necessary to fully develop the 

turbulent airflow that will be superimposed above a flat interface separating the air side and the 

water side to start the two-phase air-water DNS simulation. For   consistency, the computational 

mesh to run the preliminary airflow simulation was made identical to the air side portion of the 

air-water mesh in Figure 4.2.a. This simulation also serves as a validation test of the OpenFOAM 

finite volume solver of this study.  The turbulent airflow was driven by a body force of approxima- 
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tely   6.024 N/m3 in the x-direction which corresponds to an air friction velocity of 𝑢𝑢𝜏𝜏 = 0.25 m/s 

and leading to a final free stream wind speed of U∞ = 5.0 𝑚𝑚/𝑠𝑠. The top of the domain was 

characterized by imposed zero shear stress and the bottom by no-slip. Periodicity was set in the 

streamwise and spanwise directions. The mesh was designed to resolve the bottom viscous 

boundary layer as described earlier. Furthermore, the time step was chosen so that the Courant 

Friedrichs Lewy (CFL) number is smaller than unity for all times to ensure that a fluid parcel is 

not allowed to move more than one grid spacing for each time step avoiding numerical instabilities 

(Courant et al. 1967). This simulation ran long enough until its combined resolved (Reynolds and 

mean viscous) stresses matched expected results from theory (Pope, 2000).    

 

 

Figure 4.3  Mean streamwise velocity. 

 

Figure 4.3 shows the mean streamwise velocity profile, non-dimensionalized in so-called 

wall or plus units defined as   𝑢𝑢+ =  〈𝑢𝑢〉/𝑢𝑢𝜏𝜏  where the bracket denotes averaging in time and over 
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spanwise and streamwise directions. Figure 4.3 shows this velocity versus the dimensionless 

distance to the bottom no-slip wall in plus units defined as  𝑧𝑧+ =  𝑢𝑢𝜏𝜏𝑧𝑧/𝜈𝜈  . 

The dashed lines in Figure 4.3 above represent the theoretical law of the wall and the log 

law. The simulated mean streamwise velocity distribution overall is in excellent agreement with 

the theoretical solution (details of the expected turbulent boundary layer structure and the mean 

streamwise velocity distribution versus 𝑢𝑢+ are found in Appendix B) . Indeed, within the viscous 

sub-layer, which is the nearest region to the wall , where molecular viscosity is predominant in 

momentum transport while turbulence is negligible, the mean streamwise velocity follows a linear 

correlation with the wall distance up to 𝑧𝑧+ = 5 (Tennekes et al., 1972). Furthermore, the buffer 

sub-layer, which corresponds to a blending region where both turbulence and molecular viscosity 

are important in momentum transport is observed from 𝑧𝑧+ = 5  until approximately  𝑧𝑧+ = 30 

where the mean streamwise velocity transitions to a logarithmic correlation (linear in the semilog 

representation) with the wall distance (Tennekes et al., 1972). Beyond  𝑧𝑧+ = 30 , a logarithmic 

correlation between the mean streamwise velocity and the wall distance is observed, where 

turbulent regime is predominant in momentum transport while viscous effects are negligible. This 

region is represented  by a theoretical equation as follows  

 

                                           𝑢𝑢+ =  1
𝜅𝜅

ln(𝑧𝑧+) + 𝐵𝐵                                                              (4.4) 

 

where the von Karman coefficient is 𝜅𝜅 = 0.41 and the coefficient 𝐵𝐵 ≈ 5.5 (Schlichting, 1960). A 

small discrepancy between the simulated mean streamwise velocity and the theoretical log-law  

was observed, potentially due to a low-Reynolds number effect given that the the theoretical log-
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law is derived for Reynolds number much higher than the Reynolds number of the simulation 

(200) .  

The excellent agreement between the computed mean velocity and the theoretical velocity 

throughout the boundary layer shows that the DNS mesh is able to accurately resolve (capture) the 

boundary layer dynamics important for determining the gas transfer across analogous boundary 

layer regions above and below the air-water interface in DNS of the coupled air-water flow 

presented next. 

4.4.   Simulation of Coupled Air-water Flow  

The fully developed boundary layer airflow characterized by air friction velocity of 𝑢𝑢𝜏𝜏 =

0.25 m/s and free stream air speed of 𝑢𝑢∞ = 5 𝑚𝑚/𝑠𝑠 obtained in the previous simulation (section 

4.1) was superimposed on the air portion of the computational mesh in Figure 4.2 while the water 

portion is started from rest with a flat air-water interface. The top and bottom boundary conditions 

applied to the computational domain are zero-shear stress. This DNS was performed with a CFL 

condition of at least 0.25 maintained throughout the simulation which corresponds to the VoF 

methodology limitation as suggested by Wardle (2008). Figure 4.4.a shows the initial condition of 

the air-water interface coupled simulation. The figure shows that the simulated wind speed has a 

magnitude of approximately 𝑢𝑢∞ = 5 m/s (red corresponds to this value) at the top of the air side 

and decreases as the boundary layer reaches the air-water interface.  

Figure 4.4.b shows an instantaneous snapshot of streamwise (x) velocity field distribution 

within the domain showing the turbulence in action within both the air side and the water side at  

t=5 seconds. Note the air flow velocities are much higher than the water flow velocities as 

expected. 
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(a) (b) 

Figure 4.4  a) Instantaneous snapshot of streamwise (x) velocity field distribution within the 
domain showing the turbulence in action within the air side and the water at rest as initial 
conditions and b) Instantaneous snapshot of streamwise velocity field distribution within the 
domain showing turbulence in action within both the air and water sides after 5s. 

 

4.5.   Small-scale Capillary Waves (Ripples)  

Soon after the simulation started, at time 𝜕𝜕 = 1.5s , short gravity-capillary waves as small 

as one centimeter in wavelength and 0.25  millimeters in height are present accompanied by small 

capillary waves (ripples) with length scales around 1 to 2 millimeters. 

 

 

Figure 4.5  Instantaneous air-water interface: a) present DNS at t=2.5s and b) Komori et al. (2010) 
at     t=6.5s. 
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Figure 4.5.a shows a snapshot of the air-water interface deformation (corresponding to 

simulation time  𝜕𝜕 = 2.5𝑠𝑠) of the present DNS revealing gravity-capillary waves along with 

superimposed smaller capillary waves or ripples. Figure 4.5.b illustrates the captured waves and 

ripples in the Komori et al.(2010) DNS at their simulation time 𝜕𝜕 = 6.5𝑠𝑠 .Similar to the results of 

Komori et al (2010), it has been observed in the present DNS that the simulated capillary waves 

are slightly non-uniform in the spanwise direction while ripples are localized on the forward face 

just below the gravity waves that carry them (Figure 4.5.a and b). According to Hung and Tsai 

(2009) the beginning of the formation of these ripples is characterized by a localized pressure 

disturbance on the forward side of the carrier wave near the crest which develops an oscillatory 

train of capillary waves. Hung and Tsai (2009) suggest the existence of a minimum crest curvature 

threshold (0.25 cm−1) of the carrier wave for the formation of the ripples to take place, and this 

threshold curvature is almost independent of the carrier wavelength.  

4.6.   Quantification of Interface Wave Height and Water Velocity On the Interface 

During the simulation, a time series of maximum wave height of the air-water interface 

was recorded where for each selected time step the maximum wave height corresponds to the 

highest air-water interface elevation simulated, shown in Figure 4.6.a. The evolution of the 

simulated gravity waves compares well with the results from the DNS of Komori et al. (2010) 

(Figure 4.7.a) since both time series of the air-water maximum wave height were found to follow 

the same trend. In order to avoid excessive storage requirement while completing this study, only 

approximately 40 computation steps were used to plot the general trend of the wave heights which 

explains why the simulated curve does not exhibit the fluctuations of the wave height evolution 

seen in the Komori et al. DNS. Also, the difference in time to reach a wave height of  𝛿𝛿/4 (0.32 𝑐𝑐𝑚𝑚)  
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between the present DNS and the DNS of Komori et al. (2010) is about one second and this 

difference is perhaps due to the different numerical methodologies used. Note that Komori et al. 

(2010) used the marker and cell (MAC) method to solve the governing equations (Harlow and 

Welch, 1965) while they tracked the air-water interface using an arbitrary Lagrangian-Eulerian 

approach with a moving grid.  

The time series in Figures 4.6 and 4.7 end at 𝜕𝜕~8 s, which corresponds to the end of the 

simulations. Komori et al. (2010) argued that for the extent of the model domain adopted, the DNS 

should run until the wave height reaches 𝛿𝛿/4 which corresponds to approximately 0.32 cm to 

ensure that the effect of the boundary conditions on the wind waves is minimal. This criterion has 

been used in the present DNS to stop the simulation. 

 

 

 

                             (a)                     (b) 

 

Figure 4.6  (a) Time series of maximum air-water interfacial wave heights simulated in the present 
DNS; (b) Time series of average streamwise velocity on the air-water interface, simulated in the 
present DNS. 
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                               (a)                       (b) 

Figure 4.7  (a) Time series of maximum air-water interfacial wave heights, simulated by Komori 
et al., 2010; (b) Time series of average streamwise velocity on the air-water interface, simulated 
by Komori et al., 2010. 

 

The average streamwise velocity of the grid cells that fall halfway between the air and 

water sides (representative of downwind velocity at the interface) were also plotted to compare 

with Komori et al.’s DNS results. Per Figures 4.6.b and 4.7.b, the interfacial velocities reached a 

maximum velocity of approximately 0.1 m/s in both the current DNS and DNS of Komori et al.  

The shapes of these velocity curves were also found to be similar. In both cases, a sharp increase  

of the air-water interfacial velocity is observed until reaching its maximum in a span of two 

seconds, followed by a decrease, after which the interfacial velocity stabilizes at approximately 

half of its maximum.  

4.7.   Turbulence Structure and Scalar Flux 

During the early stages of the DNS of the coupled air-water interface, a coherent structure 

is observed in terms of streamwise velocity fluctuation at the interface, even though the capillary 

wave deformation was not yet noticeable. As early as time  𝜕𝜕 = 0.5 s, the DNS streamwise velocity 

fluctuation, displayed on the instantaneous air-water interface in Figure 4.8.a, exhibits narrow 

smooth downwind elongated streaks. These narrow streaks are found to be parallel to each other 
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and alternate in sign in the spanwise direction. The fluctuation is obtained by subtracting the mean 

velocity (averaged over the interface) from the velocity on the interface.  

 

 

 

 

Figure 4.8   Instantaneous streamwise velocity fluctuation in m/s at a) t = 0.5 s, b) t = 1 s c) t = 
2.5 s and d) t = 4 s and Instantaneous scalar flux in mol/(m2s)  at e) t = 0.5 s and f) t = 1 s g) t = 
2.5 s and h) t = 4 s. 
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These narrowly-spaced downwind-elongated streaks are associated with coherent small-

scale vortices or small scale LCs within the emerging turbulent boundary layer on the water side. 

These vortices will be revealed further below in terms of streamwise vorticity. The positive streaks 

correspond to the surface convergence zones of the small scale LCs resolved and result in an 

acceleration of the local downwind bulk flow similar to the downwind acceleration usually 

observed over the surface convergence zones of the much larger Langmuir cells typically observed 

spanning the ocean surface mixed layer (e.g. see Thorpe, 2004). Soon after the start of the growth 

of capillary waves, starting at approximately 𝜕𝜕 = 1 s (Figure 4.8b), it was observed that the streaky 

structure of the streamwise velocity fluctuation was disrupted by the capillary wave deformations 

until about t = 2.5 s (Figure 4.8c). This disruption is due to the fact that the downwind velocity 

fluctuation not only has a component from the turbulence but it also includes a significant gravity-

capillary wave-induced component. As time progresses beyond 𝜕𝜕=2.5 s, (e.g. at t = 4 s, Figure 

4.8d) the downwind elongated streaks re-emerge, due to the turbulent component of the velocity 

becoming more dominant than the wave-induced component. This re-emergence of the downwind 

elongated streaks is indicative of the flow transitioning to Langmuir turbulence.  

Figures 4.8.e-h show instantaneous scalar molecular fluxes at the air-water interface at 𝜕𝜕 =

1 s,  𝜕𝜕 = 2.5 s,  𝜕𝜕 = 4 s and 𝜕𝜕 = 6 s. This flux can be obtained as 

 

                                                          𝐹𝐹 = 𝜅𝜅∇𝐶𝐶 ∙ 𝒏𝒏                                                             (4.5) 

 

evaluated at the air-water interface, where 𝒏𝒏 is the normal to the interface. As seen in Figures 

4.8.e-h, the flux shows an increase for  simulation  times  greater than 𝜕𝜕 = 2.5 𝑠𝑠,  attributed  to  the  
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transition to Langmuir turbulence previously described. Note that the flux is characterized by 

streaks similar to the velocity fluctuations, suggesting strong correlation between the turbulence 

and the flux.  

Vorticity of the flow was computed following its mathematical representation defined as 

the curl of the velocity field 𝑢𝑢�⃗  as follows:  

 

                                                        𝜔𝜔��⃗ = ∇ × 𝑢𝑢�⃗                                                                 (4.6)                                         

 

Additionally, we compare results in terms of instantaneous streamwise vorticity in our 

DNS of the air-water interface (deforming case) with instantaneous streamwise vorticity coming 

from a similar simulation but with the air-water interface held fixed (flat).  

 

 

 

Figure 4.9  Instantaneous streamwise vorticity (1/s) from DNS with air-water interface held flat 
at a) t = 1s and b) t = 3s and instantaneous streamwise vorticity (1/s) from DNS with freely 
deforming air-water interface at c) t = 1s and d) t = 3s. 
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The results from the flat interface case are shown on Figures 4.9.a and 4.9.b and the results  

from the deforming interface case are shown on Figures 4.9.c and 4.9.d. The deforming interface 

case is characterized by Langmuir cells growing in the cross-stream direction and in depth whereas 

the simulation with the flat interface shows smaller and less intense near-surface vortices. A 

random spanwise-vertical cross section was selected at  𝜕𝜕 = 2.5 s from the start of the deforming 

interface case to have a look at the correlation between velocity and vorticity fields. Figure 4.10 

shows spanwise velocity and streamwise vorticity in order to further elucidate the structure beneath 

the streamwise streaks presented earlier.  For example the surface convergence of vortices is 

characterized by convergence of positive and negative spanwise velocity fluctuation giving rise to 

the downwelling limbs of the vortices beneath.  

 

 

 
 
 
 

(a) 

 

 
 
 

(b) 

 
 
Figure 4.10  Instantaneous (t = 2.5s) a) spanwise velocity, b) streamwise vorticity. In panel (a) 
arrows denote the surface convergence and bottom convergence zones of the LCs. In panel (b), 
arrows denote the downwelling and upwelling limbs of the LCs. 
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Moreover, prior to the transition to Langmuir turbulence in the freely-deforming interface 

case which was previously determined to be at approximately t=2.5 s, both cases simulated (flat 

and deforming interface simulations) were compared in terms of depth profiles of mean scalar 

concentration in the water column. It was found that both cases possess similar concentration 

profiles through t = 2.5 seconds (not shown). However, for times greater than 2.5 seconds, the 

Langmuir turbulence and associated Langmuir cells in the deforming interface case generate 

greater vertical transport than the purely shear generated turbulence in the flat interface case. From 

the depth profiles and instantaneous contours of scalar concentration shown in Figure 4.11, we can 

conclude that the Langmuir turbulence penetrates deeper than the shear turbulence thus the 

Langmuir turbulence is able to transport higher concentration fluid to greater depths. Note that as 

time progresses the difference between Langmuir turbulence penetration in the deforming interface 

case and the shear turbulence penetration in the flat interface case becomes more significant.  

 
 
Figure 4.11  Depth profiles (averaged over streamwise and spanwise directions) and instantaneous 
snapshots of scalar concentration at time t = 4s in the simulation with a deforming interface and 
the simulation with a flat interface. 
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The spatially averaged scalar flux across the wind-driven air-water interface for the flat 

and deforming interface cases are shown in Figure 4.12. A dramatic explosion or spike of scalar 

flux is observed in the deforming case at approximately t = 2.5 s when the flow transitions to 

Langmuir turbulence. In contrast, this sudden increase in scalar flux is noticeably absent in the flat 

interface case. After this spike, the average scalar flux obtained in the deforming interface case 

decreases significantly but stabilizes at a mean value approximately five times greater than the 

scalar flux obtained in the flat interface case. In the field, it is likely that such gas flux spikes are 

correlated with wind transients or gusts and thus might be a dominant contributor to the long-term 

time-averaged gas flux as postulated by Veron and Melville in their laboratory experiments 

exhibiting this same phenomena. 

 

 

 

Figure 4.12  Average scalar flux through the air-water interface. 
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4.8.   Transfer Velocity 

We calculate transfer velocity, a measure of scalar transfer efficiency, following Kader et 

al. (1972), as 

                                                          𝑘𝑘𝐿𝐿 = 𝜅𝜅 ∇𝐿𝐿·𝑛𝑛
(𝐿𝐿𝑖𝑖 − 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

                                                         (4.7) 

 

where  𝐶𝐶𝑖𝑖 is streamwise and spanwise average concentration on the interface and 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is bulk 

concentration calculated as 

                                                    𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∫ 〈𝐶𝐶〉𝑥𝑥,𝑦𝑦
2𝛿𝛿
0 〈𝑢𝑢1〉𝑥𝑥,𝑦𝑦𝑑𝑑𝑧𝑧                                                  (4.8) 

 

with 〈∙〉𝑥𝑥,𝑦𝑦 denoting the average over streamwise and spanwise directions. Due to the enhanced 

vertical transport induced by the Langmuir turbulence and associated cells, the bulk concentration 

is greater in the interface deforming case compared to the flat interface case (Figure 4.13). 

 

Figure 4.13  Bulk concentration of the air-water interface. 
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Figure 4.14  Transfer velocity. 

 

Ultimately this leads to a greater transfer velocity (𝑘𝑘𝐿𝐿) in the deforming interface case 

(Figure 4.14), as 𝑘𝑘𝐿𝐿 is inversely proportional to the difference between concentration at the 

interface and bulk concentration (Eq. 4.5).   In the field, direct evaluation of scalar flux via Eq. 

(4.5) is impractical and instead following Eq. (4.7), the flux is evaluated as a parameterized transfer 

velocity multiplied by the difference in concentration at the interface and the bulk,  (𝐶𝐶𝑖𝑖 −  𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏).  

4.9.   Parametrization 

As discussed in Chapter 1 and Chapter 3, it was established that surface renewal theory is 

one of the most solid theories used to parameterize transfer velocity 𝑘𝑘𝐿𝐿. This theory is based on 

the principle that turbulent eddies bring up low concentration fluid packages from below 

intermittently. Recall that, according to the surface renewal theory, transfer velocity can be 

obtained from the diffusivity 𝐷𝐷 and from knowledge about the surface renewal time scale of the 

turbulent eddies 𝜏𝜏 following equation 4.9.1. 
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𝑘𝑘𝐿𝐿 = (𝐷𝐷 𝜏𝜏⁄ )1/2                                                              (4.9)                                          

 

Two parametrization models to estimate 𝜏𝜏 are based on near surface turbulent kinetic 

energy dissipation rate (Zappa et al., 2007) and surface divergence (Banerjee,2007), respectively. 

These models are more physically grounded compared to the widely used models obtained from 

empirical relationships purely based on wind speed disregarding other important physical 

processes known to play important roles. For example, in the experimental work of Zappa et al. 

(2007), turbulent kinetic energy (TKE) dissipation at or near the air-air water interface is seen to  

be positively correlated with gas transfer velocity, suggesting that a transfer velocity model should 

be given in term of TKE dissipation at the surface.  In the next sub-sections, the small eddy model 

(based on surface TKE dissipation) and the surface divergence model will be introduced. 

Following that, and using the results of the DNS, the accuracy of these models is examined, 

including investigating their different predictions of the spike in transfer velocity during the 

transition of the flow to Langmuir turbulence as observed on Figure 4.14. 

4.9.1.   Small Eddy Model 

Assuming that small near-surface eddies control the surface renewal, Banerjee et al. (1968) 

proposed a parameterization of 𝜏𝜏 in terms turbulent kinetic energy dissipation rate 𝜀𝜀 at the surface 

defined as: 

                                                         𝜏𝜏 ∝ (ν 𝜀𝜀)⁄ 1/2                                                                     (4.10)                                                                                                                                  

 

where 𝜀𝜀 is defined as  
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                                                  𝜀𝜀 = ν 〈𝜕𝜕𝑏𝑏𝑖𝑖
′

𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑏𝑏𝑖𝑖
′

𝜕𝜕𝑥𝑥𝑗𝑗
〉                                                             (4.11)                                                                                                             

 

evaluated at  the surface. Inserting (4.10) into Eqn. (4.9.1) leads to the small eddy model with a 

parameter or coefficient due the proportionality in (4.10). Zappa et al. (2007) used a large field 

experimental data set collected under a wide range of wind and wave conditions and determined 

the following final expression: 

 

                                            𝑘𝑘𝐿𝐿 = 0.419(𝜀𝜀ν)1/4𝑆𝑆𝑐𝑐−1/2                                                   (4.12) 

 

4.9.2.   Surface Divergence Model 

An alternative surface renewal time scale was proposed by McCready et al. (1986) in terms 

of surface divergence as 

                                                              𝜏𝜏 ∝< 𝛽𝛽2 >−1/2                                                                      

(4.13) 

 

where the surface divergence 𝛽𝛽 corresponds to: 

 

                                                        𝛽𝛽 = −𝜕𝜕𝑏𝑏3′

𝜕𝜕𝑥𝑥3
                                                                  (4.14) 

 

evaluated at the water surface. Inserting (4.14) into (4.13) and using (4.9) leads to the surface 

divergence model: 
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                                                 𝑘𝑘𝐿𝐿 = 0.71ν1/2 < 𝛽𝛽2 >1/4 𝑆𝑆𝑐𝑐−1/2                                              (4.15) 

 

with 0.71 being the constant of proportionality associated with (4.13).   

4.9.3.   Parametrization Results 

Using the results of the DNS, investigating the accuracy of parameterizations of gas 

transfer velocity via the small eddy model and the surface divergence model, especially their 

prediction of the spike in transfer velocity during the transition of the flow to Langmuir turbulence 

is possible. As seen in Figure 4.15, prior to this transition both models agree well with the DNS. 

The peak of the transfer velocity is best predicted by the surface divergence model whereas the 

small eddy model underpredicts the peak by 19%. After the peak, the surface divergence model 

slightly overpredicts while the small eddy model underpredicts the transfer velocity. 

 

 

Figure 4.15  Comparison of transfer velocity in the DNS (defined in Eq. (4)) with modelled 
transfer velocity predicted via the SEM in Eq. (9) and via the SDM in Eq. (12). 
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4.10.   Chapter Summary 

In this chapter a DNS of a wind-driven coupled air-water interface with resolution of 

gravity-capillary waves and molecular sublayers below and above the interface similar to Komori 

et al. (2010) was conducted following a thorough validation process. For example, results from 

the present DNS compared favorably to the DNS of Komori et al. (2010) in terms of evolution of 

the air-water interface waves and the streamwise velocity at the air-water interface. 

Transfer of scalar (mass) from the air to the water side in the DNS was ensured by 

saturating the air side with the scalar. It was seen that the deforming interface and associated 

aqueous Langmuir turbulence plays an important role in determining vertical transport of the scalar 

throughout the water side. Vertical transport induced by the LCs was seen to enhance bulk 

concentration throughout the water column which ultimately enhances transfer velocity, a measure 

of scalar transfer efficiency. LCs rapidly transport surface layers to depth thereby transporting 

momentum and scalars away from the surface at rates much larger than shear-driven turbulence 

occurring when the air-water interface was intentionally held flat. 

Transition to Langmuir turbulence was observed to be accompanied by a spike in scalar 

(mass) flux characterized by an order of magnitude increase. These flux increases, if linked to 

episodic gusts and unsteadiness in the wind field, are expected to be an important contributor in 

determining the long-term average of the air-sea fluxes. Thus, these results highlight a new 

(pressing) need of developing practical parameterizations of transfer velocity that can capture 

scalar flux spikes associated with transition to Langmuir turbulence on the sea surface during 

sudden wind gusts. Although parameterizations of the transfer velocity such as the small eddy 

model and surface divergence model were seen to be able to capture the spike, these parameteriza- 
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tions require knowledge of the turbulence, for example, in terms of the surface TKE dissipation 

rate and the surface divergence. More practical parameterizations of the transfer velocity have 

been developed in terms of easily accessible parameters such as wind speed, however, such a 

parameterization would not be able to capture the spike in scalar transfer as a result of the transition 

to Langmuir turbulence. In the cases studied here, the spike in scalar flux occurred during transition 

to turbulence while the mean far-field wind speed was constant at 5 m s−1, thus the wind speed 

would not be able to serve as a proxy for the spike in transfer velocity. 

Finally, recent DNS studies by Takagaki et al. (2015) have shown that the surface shear 

turbulence of smaller scale than the LCs is the primary factor in driving scalar transfer across the 

air-water interface via molecular diffusion. Nevertheless, the DNS case investigated here with 

gravity-capillary waves and associated Langmuir turbulence is characterized by a spike in scalar 

transfer unlike the DNS case without waves and LCs (i.e. when the air-water interface is 

intentionally held flat). Furthermore, after the passage of the scalar flux spike, the scalar flux 

remained higher (by a factor of five) in the case with waves and LCs unlike the case with air-water 

interface held flat. Thus, the upcoming chapter will focus on understanding the cause of this and 

thus the influence of the waves on the small scale shear-turbulence (smaller than the LCs) that 

controls the scalar transfer across the air-water interface via molecular diffusion. 
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CHAPTER 5:   IMPORTANCE OF LANGMUIR CELLS IN SCALAR FLUX 
 

5.1.  Introduction  

Recent DNS studies by Takagaki et al. (2015) have shown that the surface shear turbulence 

of smaller scale than the LCs is the primary factor in driving scalar transfer across the air-water 

interface via molecular diffusion. Nevertheless, as seen in Chapter 4, the DNS case investigated 

with gravity-capillary waves and associated Langmuir turbulence is characterized by a spike in 

scalar transfer unlike the DNS case without waves and LCs (i.e. when the air-water interface is 

intentionally held flat). Additionally, after the passage of the scalar flux spike, the scalar flux 

remained higher (by factor of five) in the case with waves and LCs unlike the case with air-water 

interface held flat.  The goal of this chapter is to grasp the cause of this and thus the influence of 

the waves on the small scale shear-turbulence (smaller than the LCs) that controls the scalar 

transfer across the air-water interface via molecular diffusion which is the subject of this chapter. 

5.2. Governing Equations and Numerical Setup  

In the present chapter, results from the DNS described in the previous chapter are further 

analysed to assess the importance of the small-scale turbulence (smaller that the Langmuir cells) 

on scalar transport. Furthermore, large-eddy simulation (LES) will be performed to understand the 

impact of the wave forcing on the small -scale turbulence as well as the LCs. 

   The governing equations for the DNS and associated numerical solution technique have 

been described in  previous chapters. The LES consists of the governing equations and numerical  
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approach described earlier, but with the air-water interface held fixed (flat) and the momentum 

equation in (4.1 in chapter 4) for the water side augmented with the Craik-Leibovich (C-L) vortex 

force (Craik and Leibovich, 1976) consisting of the cross-product between the Stokes drift velocity 

induced by the unresolved air-water interface waves and the flow vorticity: 

 

                                                                    𝐹𝐹𝑖𝑖𝐿𝐿𝐿𝐿 = 𝜖𝜖𝑖𝑖𝑗𝑗𝑏𝑏𝑢𝑢𝑗𝑗𝑠𝑠𝜔𝜔𝑏𝑏                                                       (5.1) 

 

here 𝜖𝜖𝑖𝑖𝑗𝑗𝑏𝑏 is the totally antisymmetric third rank tensor, 𝜔𝜔𝑖𝑖 is the flow vorticity, and 𝑢𝑢𝑗𝑗𝑠𝑠 is the 

inputted Stokes drift velocity. The Stokes drift velocity profile is based on the deep water wave 

approximation (Phillips, 1977) with non-zero component in the streamwise (𝑥𝑥1 or 𝑥𝑥) direction of 

the flow (i.e. the wind direction) and zero components in the spanwise (𝑥𝑥2 or 𝑦𝑦) and vertical (𝑥𝑥3 

or 𝑧𝑧): 

 

                                      𝑢𝑢1𝑠𝑠 = �2π
𝜆𝜆�
�
2
𝑐𝑐 exp(−2𝑘𝑘𝑧𝑧) , 𝑢𝑢2𝑠𝑠 = 0,   𝑢𝑢3𝑆𝑆 = 0                                  (5.2) 

 

where �̂�𝜆 is the wavelength-to-amplitude ratios (�̂�𝜆 = 𝜆𝜆 𝐴𝐴⁄ )  with 𝜆𝜆 being the dominant wavelength 

and 𝐴𝐴 the dominant amplitude of the unresolved surface (air-water interface) waves, 𝑘𝑘 = 2𝜋𝜋/𝜆𝜆  is 

the dominant wavenumber of the waves , 𝑐𝑐 = �𝑔𝑔/𝑘𝑘 is the phase velocity, z is the distance from 

the undisturbed interface (i.e., 𝑧𝑧 = 0 at the interface) and 𝑔𝑔 is gravity. Furthermore, in the case of 

LES, the advecting velocity in scalar advection-diffusion equation in (4.3), 𝑢𝑢𝑗𝑗, is reset as 𝑢𝑢𝑗𝑗 + 𝑢𝑢𝑗𝑗𝑠𝑠.  
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The formulation with the C-L vortex force in the momentum equation in (4.2) and the 

modified advecting velocity in the scalar advection-diffusion equation in (4.3) in the water side of 

the domain results from phase-averaging the DNS equations in 4.1-4.2. This procedure averages 

out the waves occurring at the air-water interface and allows for the simulation to be performed 

with a flat interface with the effect of wave forcing on the water side accounted for through the 

vortex force without the need to resolve interfacial waves. Thus, this formulation is referred to as 

LES. Note that this is not an LES in the traditional sense of spatial filtering described earlier, but 

rather in the sense of phase-averaging which may be considered as a filter in the time domain. The 

flow domain, mesh, boundary and initial conditions for the LES follow the same description of 

Chapter 4 for the DNS. 

5.3.   Results 

For simplicity, flow velocity components will be referred to as  𝑢𝑢, 𝑣𝑣 and 𝑤𝑤 where 𝑢𝑢 =

𝑢𝑢1, 𝑣𝑣 = 𝑢𝑢2 and 𝑤𝑤 = 𝑢𝑢3 are the streamwise, spanwise and vertical velocity components, 

respectively. Similarly 𝑥𝑥 = 𝑥𝑥1,𝑦𝑦 = 𝑥𝑥2 and 𝑧𝑧 = 𝑥𝑥3 are the streamwise, spanwise and vertical axis, 

respectively. 

5.3.1.   DNS 

Following Takagaki et al. (2015), the turbulent structures resolved in the DNS with gravity 

capillary waves (described earlier in Chapter 4) can also be observed via instantaneous scalar 

concentration on a spanwise-vertical (𝑦𝑦- 𝑧𝑧) plane at a fixed 𝑥𝑥, as seen in Figure 5.1. The turbulence 

is characterized by two principal structures: (1) small-scale LCs which at t = 6.5 s occupy the 

majority of the water side of the domain and (2) smaller surface eddies embedded within the larger 

LC. The latter are akin to the shear-driven small eddies associated with the classical wall streaks 
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next to a no-slip wall in turbulent boundary layers (Smith and Metzler, 1983). Initially the 

Langmuir cells are  smaller  than  those  shown in  Figure 5.1, and over  time  grow  in  depth  and  

spanwise length. By time t = 6.5 s, the domain is only able to capture a pair of LCs observed in 

Figure 5.1. It can be seen that the downwelling limb of the LCs brings high concentration fluid 

from the surface to depths below, while the upwelling limbs bring low concentration fluid close to 

the surface. 

 

 

Figure 5.1  Turbulent structures in terms of scalar concentration (mol m-3) in DNS with deformable 
air-water interface characterized by gravity-capillary waves. The turbulent structures correspond 
to t = 6 s. Downward arrows denote either the downwelling limb of a Langmuir cell or a smaller 
scale eddy at the surface both bringing high concentration fluid to depths below. The upward arrow 
corresponds to the upwelling limb of the resolved LCs. 
  

The activity of the smaller shear-driven surface eddies embedded within the LCs can be 

observed in Figure 5.1 through small filaments of high concentration fluid ejected from the surface 

within the larger scale vertical scalar transport pattern induced by the downwelling and upwelling 

limbs of the LCs previously described. The high scalar concentrations carried by these ejections 

are transported further down by the downwelling limb of the LCs. As noted by Takagaki et al. 

(2015), these scalar ejections by the smaller eddies serve to thin the molecular diffusive boundary 
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layer of the scalar, thereby controlling the gradient of scalar across the boundary layer and thus 

the transfer of scalar across the air-water interface via molecular diffusion.  

The distinct scales of the LCs from the rest of the turbulence enable a scale decomposition 

of the near-surface turbulence to determine the contribution of the LCs to the turbulent vertical 

flux compared to that of the smaller scale turbulence. In particular, following Takagaki et al. 

(2015), the near-surface turbulent vertical flux of scalar can be decomposed as: 

 
 
                                 〈𝑤𝑤′𝐶𝐶′〉 ~ 〈𝑤𝑤𝐿𝐿𝐿𝐿

′ 𝐶𝐶𝐿𝐿𝐿𝐿′ 〉 + 〈𝑤𝑤𝑇𝑇
′ 𝐶𝐶𝑇𝑇′ 〉                                            (5.3) 

 

where the first term on the right side is the contribution to the flux due to the LCs and the second 

term is the contribution due to the smaller scale turbulence. 

In (5.3), the brackets denote averaging over the streamwise and spanwise directions, and the 

fluctuations are defined as 𝑤𝑤′ = 𝑤𝑤 −  〈𝑤𝑤〉 and 𝐶𝐶′ = 𝐶𝐶 −  〈𝐶𝐶〉, respectively. Furthermore, the 

velocity and concentration fluctuations associated with the LCs can be obtained by applying a low 

pass filter. Specifically, 𝑤𝑤′ and 𝐶𝐶′ at a fixed depth are averaged over the streamwise direction, 

Fourier transformed in the spanwise direction and low-pass filtered with the spectral cut-off filter 

(Pope, 2000) with threshold wavenumber of the LCs. The resulting velocity and concentration are 

then inversed Fourier transformed resulting in 𝑤𝑤𝐿𝐿𝐿𝐿
′  and 𝐶𝐶𝐿𝐿𝐿𝐿′ . The threshold wavenumber of the LCs 

is defined as 𝑘𝑘𝐿𝐿𝐿𝐿 = 2𝜋𝜋 𝐷𝐷𝐿𝐿𝐿𝐿⁄  where  𝐷𝐷𝐿𝐿𝐿𝐿 is the characteristic spacing of the downwelling limbs of 

the LCs. Finally, 𝑤𝑤𝑇𝑇
′  and 𝐶𝐶𝑇𝑇′  are defined as 𝑤𝑤𝑇𝑇

′  = 𝑤𝑤′ − 𝑤𝑤𝐿𝐿𝐿𝐿
′  and 𝐶𝐶𝑇𝑇′  = 𝐶𝐶′ − 𝐶𝐶𝐿𝐿𝐿𝐿′ .  

Following the decomposition in (5.3) described above, it can be found that near the surface 

the contribution of the LCs towards the vertical turbulent  flux  is  relatively  small.  For example,  
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at   t = 7s   (  after    transition   to   Langmuir    turbulence  occurs )     with      𝐷𝐷𝐿𝐿𝐿𝐿  =   0.025 m ,   

〈𝑤𝑤𝐿𝐿𝐿𝐿
′ 𝐶𝐶𝐿𝐿𝐿𝐿′ 〉 〈𝑤𝑤𝑇𝑇

′ 𝐶𝐶𝑇𝑇′ 〉⁄ = 0.08 at a depth of 1.5 mm below the unperturbed air-water interface. A 

similar result led Takagaki et al. (2015) to conclude that in general the near-surface turbulent 

vertical transport of the scalar is controlled by the smaller scales (i.e. the smaller, shear-driven 

eddies embedded within the Langmuir cells).  

However, in contrast to the previous result in Chapter 4 it was shown that transition to 

Langmuir turbulence is accompanied by a spike of approximately an order of magnitude in 

molecular diffusive flux of the scalar across the air-water interface (Figure 4.12 of Chapter 4). 

Such a spike was noticeably absent in DNS in which the air-water interface is intentionally held 

flat (i.e. in DNS without LCs) suggesting strong dependence of the flux on LC. As can be also 

seen in Figure 4.12, after transition to Langmuir turbulence occurs, the DNS exhibits a statistically 

steady state flux of about 8 times greater than in the DNS with air-water interface held flat, further 

evidence of the importance of LC towards determining scalar flux. Recall that the molecular 

diffusive flux of the scalar at the air-water interface is defined as 

 

                                                                    𝐹𝐹 = 𝜅𝜅∇𝐶𝐶 ∙ 𝒏𝒏                                                             (5.4) 

 

where the gradient of concentration, ∇𝐶𝐶, is evaluated at the air-water interface and 𝒏𝒏 is the normal 

to the interface. 

In Chapter 4, the importance of vertical transport induced by LC in determining scalar 

transfer efficiency was shown in terms of the transfer velocity. The latter is defined as  

 

                                                           𝑘𝑘𝐿𝐿 = 𝐹𝐹/(𝐶𝐶𝑖𝑖  −  𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)                                     (5.5) 
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where 𝐶𝐶𝑖𝑖 is the scalar concentration at the air-water interface averaged over the interface and  𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

is the scalar concentration in the bulk of the wind and wave-driven water flow. It was found that 

the LCs provide intense surface renewal rapidly transporting surface layers and accompanying 

momentum and scalar to depth from the water surface at rates much larger than that of molecular 

diffusion and of wind-driven shear turbulence (in the absence of waves). Consequently, in DNS 

with gravity-capillary waves at the air-water interface (i.e. with LCs), values of (𝐶𝐶𝑖𝑖  −  𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) are 

smaller than in DNS with air-water interface held intentionally flat (i.e. with pure wind-driven 

shear turbulence without LCs). The smaller values of (𝐶𝐶𝑖𝑖  −  𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) in the DNS with LCs tend to 

lead to greater 𝑘𝑘𝐿𝐿. For example, as illustrated in Figure 4.14 in Chapter 4, 𝑘𝑘𝐿𝐿 approximately 8 

times greater than 𝑘𝑘𝐿𝐿 values in DNS with interface held flat after transition to Langmuir turbulence 

had occurred. 

5.3.2.   LES 

Based on the DNS, the decomposition in (5.3) following Takagaki et al. (2015) shows that 

the contribution of LC to the vertical turbulent flux of scalar near the air-water interface is minor, 

suggesting that the smaller near-surface eddies are responsible for setting the thickness of the 

diffusive boundary layer and thus the scalar transfer across the air-water interface via molecular 

diffusion. However, the role of the wave forcing generating LC remains unclarified given the spike 

in gas transfer via molecular diffusion during transition to Langmuir turbulence and the subsequent 

larger values of the diffusive flux compared to DNS without wave forcing in which the air-water 

interface was held flat (Figure 4.12 in Chapter 4). 

In order to reveal the role of wave forcing, LES was performed with the same domain 

configuration introduced earlier.  In the LES, the momentum equation was augmented with the C- 
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L vortex force described earlier while holding the air-water interface flat. The formulation allows 

direct input of the Stokes drift velocity facilitating study of the impact of wave forcing on the 

turbulent structures and ultimately the scalar transfer across the air-water interface via molecular 

diffusion and the vertical transport of the scalar in the water side. Two LES simulations were 

performed characterized by different wavelength-to-amplitude ratios (�̂�𝜆 = 𝜆𝜆 𝐴𝐴⁄ ) of the waves 

generating LC, �̂�𝜆 = 14 and �̂�𝜆 = 25. The Stokes drift velocity and Stokes drift velocity shear 

associated with these two values of �̂�𝜆 are shown in Figure (5.2). The Stokes drift shear serves to 

promote the growth of LC (Holm, 1996), and the LES with �̂�𝜆 = 25 is expected to be characterized 

by more vigorous LC deeper into the water column given its greater Stokes drift shear at depths 

below the air-water interface. 

 

Figure 5.2  (a) Stokes drift velocity and (b) Stokes drift velocity shear in the two LES simulations 
performed with vortex forcing in water side and air-water face held flat. 
 

Figure 5.3 shows a comparison of downwind-averaged vertical velocity fluctuations at t = 

0.2 s and 1 s in simulations with interface held flat with and without C-L vortex forcing. These 

fluctuations reveal the downwelling and upwelling limbs of the turbulent eddies resolved. 

(a) (b) 
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The simulation without C-L vortex forcing is driven purely by the air flow above the air-

water interface. In this case shown in panels (a)-(c) of Figure 5.3, the near-surface eddies are shear-

driven and are akin to the shear-driven eddies associated with the classical wall streaks next to a 

no-slip wall in turbulent flow (Smith and Metzler, 1983). Note that the surface shear-driven eddies 

remain present in the flows with C-L vortex forcing (panels (d)-(i)) while now embedded within 

the larger LCs in similar fashion to how they were observed in DNS with gravity-capillary waves 

at the air-water interface (Figure 5.1). The LCs quickly grow in depth and spanwise length, and 

eventually by time t = 1 s (panels (e) and (f) of Fig. 5.3), a single pair occupies the entire spanwise 

extent of the domain in both cases with  �̂�𝜆 = 14 and �̂�𝜆 = 25. This is also consistent with the DNS. 

As expected, the LCs obtained with Stokes drift with �̂�𝜆 = 25 in the C-L vortex force penetrate 

deeper in the water column than the LCs obtained with �̂�𝜆 = 14. This can be observed by comparing 

the LCs at t = 1 s in panels (e) and (f) and is due to the greater Stokes drift shear reaching deeper 

in the water column in the case with �̂�𝜆 = 25 (Figure 5.2).  

Remarkably, the Stokes drift shear not only serves to promote the growth of LCs but also 

is seen to strengthen the near-surface smaller eddies. This can be observed by comparing panel (c) 

in Figure 5.3 (LES without C-L vortex forcing) with panels (f) and (i) (LES with C-L vortex 

forcing). In the cases with C-L vortex forcing, the Stokes drift shear leads to more intense small 

eddies compared to the case without the vortex force. Furthermore, the small eddies in the flow 

with �̂�𝜆 = 14 are of greater intensity than the eddies in the flow with �̂�𝜆 = 25, seen by comparing 

panels (f) and (i) in Figure 5.3. This is attributed to the greater near-surface Stokes drift shear in 

the �̂�𝜆 = 14 case, seen in Figure 5.2. In turn, the stronger near-surface small eddies in the flow with 

�̂�𝜆 = 14 lead to greater diffusive flux of the scalar across the air-water interface, seen in Figure 5.4.  
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In both flows with C-L vortex forcing, the transition to Langmuir turbulence leads to a 

spike in scalar flux across the interface, whereas this spike is absent in the case without the vortex 

forcing (Figure 5.4), consistent with the DNS results in Figure 4.12 of Chapter 4. Although the 

small eddies control the scalar transfer across the interface as originally concluded by Takagaki et 

al. (2015), the presence of the waves and thus Langmuir forcing significantly enhances the scalar 

transfer induced by the small eddies. 

 

Figure 5.3 Downwind-averaged vertical velocity fluctuations, 𝑤𝑤′, at t = 0.1 and 1 s over the 
spanwise-vertical extent of the domain in simulations with interface held flat with and without CL 
vortex forcing (i.e. with and without LCs). In LES with CL vortex force, the Stoke drift was set 
with either �̂�𝜆 = 14 or �̂�𝜆 = 25.  Panels (c), (f) and (i) presents the same data as panels (b), (e) and 
(h) but with different scale in order to better highlight the intensity of the near-surface small eddies.  
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Figure 5.4 Molecular diffusive flux of the scalar at the air-water interface in simulations with flat 
interface with or without CL vortex forcing. The simulations with vortex forcing are characterized 
by the value of �̂�𝜆 in the Stokes drift velocity. The fluxes were averaged over the interface. 

  

To investigate the impact of the turbulent scales (i.e., the LC and the smaller eddies) on 

vertical turbulent flux of the scalar, the vertical velocity and concentration fluctuations are 

decomposed following the low pass filtering approach originally proposed by Takagaki et al. 

(2015) described earlier in sub-section 5.3.1. As noted earlier, by t = 1s a pair of LCs occupies the 

entire spanwise extent of the domain (see panels (e) and (h) in Fig. 5.3), hence the spanwise spacing 

of the downwelling limbs of the LCs is taken as 𝐷𝐷𝐿𝐿𝐿𝐿 = 0.05 m, corresponding to the spanwise 

length of the domain. Thus the cut-off wavenumber in the spanwise low pass filtering of the 

velocity and concentration fluctuations (𝑤𝑤′and  𝐶𝐶′, respectively) is 𝑘𝑘𝐿𝐿𝐿𝐿 = 2𝜋𝜋 𝐷𝐷𝐿𝐿𝐿𝐿⁄  = 125.6 m-1. 

Recall that this low pass filtering operation decomposes a field as 𝑓𝑓 = 𝑓𝑓𝐿𝐿𝐿𝐿 + 𝑓𝑓𝑇𝑇 where 𝑓𝑓𝐿𝐿𝐿𝐿 is the 

low pass filtered field associated with the LC and 𝑓𝑓𝑇𝑇 is the residual associated with the smaller 

scale turbulence (smaller than the LC). The low-pass filtered velocity and concentration 

fluctuations, 𝑤𝑤𝐿𝐿𝐿𝐿
′  and 𝐶𝐶𝐿𝐿𝐿𝐿′ , are plotted in Figure 5.5 along with their unfiltered counterparts,  𝑤𝑤′ 

and 𝐶𝐶′, for the flows with vortex forcing at t = 1 s and at depth 1.5 mm from the air-water interface.  
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It can be seen that the contributions of the LC to the vertical velocity and scalar 

concentration fluctuations are relatively small, as would be expected given that the small eddies 

are active close to the surface (i.e. at 1.5 mm below the air-water interface).  

 

 

Figure 5.5 Downwind-averaged, low-pass filtered and unfiltered velocity  (𝑤𝑤𝐿𝐿𝐿𝐿
′  and 𝑤𝑤′, 

respectively) and scalar concentration (𝐶𝐶𝐿𝐿𝐿𝐿′  and 𝐶𝐶′, respectively) fluctuations plotted vs. spanwise 
direction at 1.6 mm from the air-water interface in flows with LC with �̂�𝜆 = 25 in the vortex force 
((a) and (b)) and with �̂�𝜆 = 14  ((c) and (d)). 

 

The importance of LC relative to the smaller scale turbulence in determining the vertical 

turbulent flux of the scalar may be measured through the ratio 〈𝑤𝑤𝐿𝐿𝐿𝐿
′ 𝐶𝐶𝐿𝐿𝐿𝐿′ 〉 〈𝑤𝑤𝑇𝑇

′ 𝐶𝐶𝑇𝑇′ 〉⁄ . At 1.5 mm depth 

below the surface, this ratio is 0.079 and 0.155 for the flows with �̂�𝜆 = 14 and �̂�𝜆 = 25, respectively. 

Thus in both cases, the contribution of the LCs to the overall vertical turbulent flux of the scalar is  

 



69 
 

relatively small compared to the contribution from the smaller scales, as would be expected given  

the presence of the dominant small eddies near the surface. This is the same conclusion obtained 

from the DNS of Takagaki et al. (2015) and our own DNS both reviewed earlier. In order to further 

investigate the LC contribution, the quantity 〈𝑤𝑤𝐿𝐿𝐿𝐿
′ 𝐶𝐶𝐿𝐿𝐿𝐿′ 〉 〈𝑤𝑤𝑇𝑇

′ 𝐶𝐶𝑇𝑇′ 〉⁄  is plotted as a function of depth in 

Figure 5.6. Here it can be observed that the contribution of LC to 〈𝑤𝑤′𝐶𝐶′〉 increases away from the 

air-water interface as would be expected, given that the smaller eddies occupy the near-surface 

region whereas the  LC extends deeper into the water column. This behaviour is observed in both 

the LC cases with C-L vortex forcing and in the DNS. 

The above analysis paints an effective system for the vertical turbulent transport of the 

scalar in which near the surface the small eddies are directly enhanced by the Stokes drift shear 

providing the dominant mechanism in vertical transport. Meanwhile deeper in the water column, 

the Stokes drift shear generates vigorous LC serving to carry the scalar to greater depths than in 

flow with shear-driven near-surface small eddies only (without C-L vortex forcing).    

 

Figure 5.6  LC contribution to the vertical turbulent flux of the scalar in flows with LC and C-L 
vortex forcing (flat cases) and in the DNS (deforming case) with or without CL vortex forcing. 
The simulations with vortex forcing are characterized by the value of �̂�𝜆 in the Stokes drift velocity. 
The fluxes were averaged over the streamwise and downwind directions. 
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5.3.3.   Chapter Summary 

In Chapter 4, it was revealed that the presence of the near surface eddies by themselves in 

the DNS with air-water interface held intentionally flat led to lower values of the scalar flux across 

the interface than that of the DNS with waves (deforming case). In this Chapter, multiple LES 

scenarios with different C-L vortex forcing were performed using the same configuration as the 

DNS, but with the air-water interface held flat to investigate the effect of waves and thus the Stokes 

drift shear on the small, shear-driven eddies at the surface. It was observed that these eddies control 

the scalar transfer across the air-water interface while the presence of Stokes drift shear intensifies 

these small eddies leading to the spike in scalar transfer during transition to Langmuir turbulence 

as well as to an overall greater scalar flux relative to flow without the C-L vortex force (i.e. without 

wave forcing). Moreover, the wave-induced LC also leads to enhanced vertical transport of the 

scalar at greater depths than those reached by the shear-driven small eddies thereby increasing 

transfer efficiency throughout the water column.  

 

 

 

 

 

 

 



71 
 

 
 
 
 
 

CHAPTER 6:   CONCLUSIONS AND FUTURE RESEARCH 
 

In this dissertation several DNS and LES scenarios of a wind driven air-water interface 

characterized by gravity-capillary waves and molecular sublayers below and above the interface 

have been performed to better understand the impact of the waterside turbulence on scalar transfer 

from the air side to the water side and subsequent vertical transport in the water column.  The flow 

generated gravity-capillary waves along the air-water interface which combined with the aqueous 

shear flow led to development of small-scale (centimeter-scale) LC. Results from the DNS 

simulations showed that vertical transport induced by the LCs enhances bulk concentration 

throughout the water column which ultimately enhances transfer velocity, a measure of scalar 

transfer efficiency. The DNS also revealed that the spike in scalar transfer across the air-water 

interface occurred in the presence of waves only as a DNS in which the air-water interface was 

held flat (thereby precluding the LC but not shear-driven small eddies) did not yield a similar spike. 

LCs rapidly transport surface layers to depth thereby transporting momentum and scalars away 

from the surface at rates much larger than shear-driven turbulence occurring when the air-water 

interface was intentionally held flat.  

Moreover, transition to Langmuir turbulence was observed to be accompanied by a spike 

in scalar flux characterized by an order of magnitude increase. These episodic flux increases, if 

linked to gusts and unsteadiness in the wind field, are expected to be an important contributor in 

determining the long-term average of the air-sea fluxes. The spike in scalar flux occurred during 
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transition to turbulence while the mean far-field wind speed was constant, thus the wind speed 

would not be able to serve as a proxy for the spike in transfer velocity.  

In Chapter 5, it was revealed that, in addition to LC, the turbulence is characterized by 

near-surface eddies of smaller size and embedded within the LC. The observed eddies were 

attributed to the shear on the water side and not the waves, as these eddies are akin to the shear-

driven eddies associated with the classical wall streaks next to a no-slip wall in turbulent boundary 

layers (Smith and Metzler, 1983).  A scale decomposition performed allowed to determine the 

contribution of the LCs to vertical turbulent flux of the scalar relative to the contribution of the 

smaller scale turbulence, showing that the small, shear-driven eddies were the dominant drivers of 

scalar transfer from the air side to water side and not the LC. Furthermore, the presence of the near 

surface eddies by themselves in the DNS with air-water interface held intentionally flat led to 

lower values of the scalar flux across the interface, relative to the DNS with waves.  

LES was performed using the same configuration as the DNS, but with the air-water 

interface held flat to clarify the effect of waves and thus the Stokes drift shear on the scalar flux 

across the interface. It was observed that the presence of Stokes drift shear intensifies the small 

shear-driven eddies leading to the spike in scalar transfer during transition to Langmuir turbulence 

as well as to an overall greater scalar flux relative to flow without the C-L vortex force (i.e. without 

wave forcing). Meanwhile the wave-induced LC leads to enhanced vertical transport of the scalar 

at greater depths than those reached by the shear-driven small eddies thereby increasing transfer 

efficiency throughout the water column.  

In the last decades, the world has witnessed an alarming and costly impact from Global 

warming which threatens our societies’ health and existence. For these reasons scientists have been 

more focused on exchange of greenhouse gases between the atmosphere and the oceans.  Due to 
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the increase in computation capabilities, as an alternative to experimental data which has proven 

to be difficult to acquire, DNS is now becoming a key tool that will help develop more effective 

parameterizations of gas transfer velocity needed by climate models to predict gas fluxes into the 

ocean. The DNS via the OpenFOAM methodology used in this study is found to replicate oceanic 

turbulence and its physical impact on gas uptake as perceived through experiment, which is an 

indicator that it can be adopted to improve the gas transfer velocity models needed for global 

climate modelling. 

Future research should exploit DNS and LES in order to enhance parameterizations of the 

scalar transfer velocity (a measure of transfer efficiency) through the incorporation of Stokes drift 

shear dependence. Additionally, future work should explore the wind speed dependence on 

intermittent and intense enhancement in scalar transfer occurring during rapid transition to 

turbulence in the presence of waves. In the field, these spikes are expected to occur frequently 

associated with wind gusts, and thus may account for the bulk of gas transfer in the gravity-

capillary wave regime. 
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APPENDIX A:  VALIDATION 
 

One of the validation problems simulated has been that of a two-dimensional standing 

capillary wave. Here an air-water interface is perturbed as shown in Figure A.1 and allowed to 

return to its unperturbed state under the influence of surface tension only (excluding gravity).  The 

interface returns to its unperturbed state while exhibiting an exponentially decaying temporal 

oscillation. For a sufficiently small initial perturbation amplitude, the decaying oscillation 

frequency has been obtained analytically by Lamb (1932). The frequency of interface oscillation 

𝜔𝜔𝑜𝑜𝑠𝑠𝑜𝑜   is given as  

                                                     

                                                            𝜔𝜔𝑜𝑜𝑠𝑠𝑜𝑜 = � 𝜎𝜎𝑏𝑏3

𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑟𝑟+𝜌𝜌𝑤𝑤𝑖𝑖𝑟𝑟
                                                       (A.1) 

 

where: 

𝜎𝜎   is the air-water surface tension in N m⁄ . 

λ    is the wavelength in m. 

𝑘𝑘 = 2𝜋𝜋
λ

 is the wavenumber in m−1. 

𝜌𝜌𝑤𝑤𝑎𝑎𝜕𝜕𝑒𝑒𝑤𝑤  is the water density in  kg m3⁄ . 

𝜌𝜌𝑎𝑎𝑖𝑖𝑤𝑤  is the air density in  kg m3⁄ . 

Furthermore, the rate of decay of global vertical kinetic energy (KE) of the water due to 

both viscosity, 𝜐𝜐𝑤𝑤𝑎𝑎𝜕𝜕𝑒𝑒𝑤𝑤,  and surface tension, 𝜎𝜎, was also solved analytically by Lamb.   
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The dimensionless solution is given below: 

 

                                                    𝐾𝐾𝐾𝐾(𝜕𝜕) 𝐾𝐾𝐾𝐾𝑚𝑚𝑎𝑎𝑥𝑥⁄ = e−4𝜐𝜐∗𝜕𝜕∗                                                      (A.2a) 

          

                                                    𝜕𝜕∗ = 𝜕𝜕
�𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑟𝑟 (𝜎𝜎𝑏𝑏3)⁄

                                                           (A.2b) 

                        

                                                              𝜐𝜐∗ = 𝜐𝜐𝑤𝑤𝑎𝑎𝜕𝜕𝑒𝑒𝑤𝑤 𝑘𝑘2 �𝜌𝜌𝑤𝑤𝑎𝑎𝜕𝜕𝑒𝑒𝑤𝑤 (𝜎𝜎𝑘𝑘3)⁄                                             (A.2c) 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 Time series of global vertical kinetic energy (KE) of water normalized by its maximum 
value and time series of analytically-determined decay of Lamb (1932). 

 
The simulation is initialized with a perturbation of the air-water interface with a wavelength 

of λ = 0.1 m and an amplitude 𝑎𝑎 = 𝐻𝐻/10 (see Figure A.1) where H = 0.035 m is the depth of the 
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unperturbed water. This initial perturbation is allowed to decay in time under the influence of 

surface tension.  

The densities of water and air were set to 1000 kg/m3 and 1.204819 kg/m3 respectively, the 

air water surface tension was set to 0.07286 N/m and the kinematic viscosity of water and air were 

set to 1.0 ∗ 10−6 𝑚𝑚2/𝑠𝑠  and  1.5 ∗ 10−5 𝑚𝑚2/𝑠𝑠 respectively. 

A structured mesh of 200 hexahedral elements along x and 180 hexahedral elements along 

y was used for the simulation. The lateral boundary conditions were chosen as periodic along with 

a no-slip condition at the bottom of the water column. 

 

 

Figure A.2  Time series of global vertical kinetic energy (KE) of water normalized by its 
maximum value and time series of analytically-determined decay of Lamb (1932). 
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The simulation is characterized by the temporal oscillatory decay of the interfacial wave, 

manifested through a decaying global vertical kinetic energy of the water defined as 

 

                                                     𝐾𝐾𝐾𝐾(𝜕𝜕) =  ∫ 𝑤𝑤 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝛺𝛺𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑟𝑟
                                                     (A.3) 

 

where 𝛺𝛺𝑤𝑤𝑎𝑎𝜕𝜕𝑒𝑒𝑤𝑤 is the volume of the water and w is the vertical velocity of the water. Figure A.2 

shows the time evolution of the global vertical kinetic energy normalized by its maximum value. 

Its overall decay is in good agreement with the analytically-derived decay of Lamb (1932). 

Furthermore, the frequency of oscillation computed as 8.5 Hz is also in good agreement with 

Lamb’s analytical solution.  

 Lastly, Prosperetti (1981) derived an analytical solution for the same problem studied here, 

when both surface tension and gravity are considered. Recall that the solutions previously 

described excluded the effect of gravity. With the inclusion of gravity the frequency of decaying 

wave oscillation was obtained analytically by Prosperetti (1981) as  

 

                           𝜔𝜔𝑜𝑜𝑠𝑠𝑜𝑜 = � 𝜎𝜎∗𝑏𝑏3

(𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑟𝑟+𝜌𝜌𝑤𝑤𝑖𝑖𝑟𝑟)
+ (𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑟𝑟−𝜌𝜌𝑤𝑤𝑖𝑖𝑟𝑟)

(𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑟𝑟+𝜌𝜌𝑤𝑤𝑖𝑖𝑟𝑟)
𝑔𝑔𝑘𝑘                                             (A.4) 

 

Simulations with the inclusion of gravity (not shown) have been found to be in good 

agreement with Prosperetti’s analytical solution.  
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APPENDIX B:  TURBULENT BOUNDARY LAYER 
 

Unlike in laminar boundary layers where fluid flows occur similar to sliding laminates or 

laminates, turbulent boundary layers are characterized by intense agitation and eddy mixing across 

many layers simultaneously, resulting in a much more effective mixing of energy, momentum and 

mass across the water column.  

In 1904, Ludwig Prandtl was the first who introduced the concept of boundary layer. 

Prandtl established that, for any viscous fluid that flows over a stationary solid body, the fluid 

slows down due to frictional forces resisting its flow while two distinct regions are observed. The 

first region is the boundary layer characterized by viscosity dominance on the flow while the 

second region is characterized by minimal viscosity control and thus may be considered nearly 

inviscid (Figure B.1).  

 

 

 

  

 

 

 

 

 

Figure B.1  Turbulent boundary layer structure 
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Prandtl established a mixing length ‘l’ which he defined as the distance for which an eddy 

is retaining its identity before collision with other eddies. This theory is an analogy to the theory 

of mean free path in Thermodynamics. Moreover, Prandtl proposed that the mixing length is 

proportional to the normal distance between the wall boundary and the eddy as follows: 

 

                                                                𝑙𝑙 =  𝜅𝜅 ∗ 𝑦𝑦                                                                        (B.1) 

 

where 𝜅𝜅 is the empirical Von Karman’s constant (𝜅𝜅 = 0.41) and 𝑦𝑦 is the wall-normal distance 

from the wall.  

 

 

 

  

 

 

 

 

 

Figure B.2  Turbulent boundary layer structure 

 

The near-wall region may be subdivided into four different regions as suggested in Figure 

B.2. These four regions will be described in more detail below. 
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(normalized) wall distances in the range 0 < 𝑧𝑧+ < 5 (Tennekes et. al, 1972), where  𝑧𝑧+ is 

the dimensionless wall distance in wall units 𝑧𝑧+ =  𝑏𝑏𝜏𝜏𝑧𝑧
𝜈𝜈

  where  𝜈𝜈 is the dynamic viscosity. 

Within the viscous sub-layer, mean streamwise velocity 𝑢𝑢+ can be approximated as 

                                                                  𝑢𝑢+ =  𝑧𝑧+                                                                      (B.2) 

 

where 𝑢𝑢+ = 𝑏𝑏
𝑏𝑏𝜏𝜏

  is the mean streamwise velocity scaled by wall friction velocity  𝑢𝑢𝜏𝜏 =

�𝜏𝜏𝑤𝑤 𝜌𝜌⁄   which depends on the wall shear stress  𝜏𝜏𝑤𝑤 and the density 𝜌𝜌. 

The buffer layer or blending region is where both turbulence and molecular viscosity are 

important in momentum transport and in particular, maximum turbulence production 

occurs at approximately  𝑧𝑧+ = 12 , according to Sahay and Sreenivasan (1999). This region 

occurs for (normalized) distances from the wall in the range 5 < 𝑧𝑧+ < 3 (Tennekes et al., 

1972). 

• The inertial sub-layer or the log-layer is where turbulence is predominant in momentum 

transport while viscous effects are negligible. This region is observed for (normalized) wall 

distances such as 30 < 𝑧𝑧+ < 200 (Tennekes et. al, 1972), where the (normalized) mean 

streamwise velocity 𝑢𝑢+ is observed to be following a logarithmic correlation given as 

follows: 

                                                       𝑢𝑢+ =  1
𝜅𝜅
∗ ln(𝑧𝑧+) + 𝐵𝐵                                                           (B.3) 

 

where the Van Karman coefficient is approximated as 𝜅𝜅 = 0.4 is and the coefficient 𝐵𝐵 ≈

             5.5 (Schlichting, 1960) 
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• The defect layer or the outer layer is where the mean streamwise velocity can be 

approximated by the Law of the Wake established by Coles (1956) as 

 

                                             𝑢𝑢+ =  �1
𝜅𝜅
∗ ln(𝑧𝑧+) + 𝐵𝐵�+  Π(𝑧𝑧+)                                               (B.4) 

  

where Π is an empirical wake function that depends on the Reynolds number. 
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APPENDIX C:  RIGHTS AND PERMISSIONS 
 

C.1 Permissions to Use the Figures in Chapter 1 

C.1.1 Permission to Use Figure 1.3 
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C.2 Permissions to Use the Figures in Chapter 2 

C.2.1 Permission to Use Figure 2.1 
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C.3 Permissions to Use the Figures in Chapter 4 

C.3.1 Permission to Use Figure 4.5b 
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C.3.2 Permission to Use Figure 4.7 
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