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ABSTRACT 

 

Rain-induced sanitary sewer overflow due to high infiltration is a significant challenge 

for many utilities, including Pinellas County utilities. The main aim of this study is to develop a 

hydraulic model to analyze the performance of the existing sanitary sewer system, especially 

during intense rainfall events.  

To calculate the flow inputs for the model, a times series analysis was performed to 

separate the inflow and infiltration from the actual sewer flow. Using the Stevens-Schutzbach 

method, daily Base Infiltration (BI) was calculated and was subtracted from the total observed 

flow to give the Dry Weather Flow (DWF). Adjusting the DWF by the diurnal pattern, residual 

flows were calculated to test the flow variability in the system and compare to rain events (> 0.5 

inches); the residual flow help deduced if there is a significant surface inflow into the system. 

Using PC SWMM as the hydraulic model, the average DWF was simulated using the 

average value and the diurnal daily and weekend pattern during the dry weather periods. The 

calculated BI was added to the model as a direct contribution from the statistical model. Both the 

average value of DWF and BI were distributed throughout the system for simulation. The 

simulated flow shows that few downstream manholes surcharges during extreme rainfall events 

and remained surcharge for over 48 hours.  

Cross-correlation analysis suggests the rainfall of the past seven days still impacts the BI, 

with the highest impact on days 1, 4 and 5.  The correlogram results were used to develop a 
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regression model, to predict the BI for different rainfall depths, which in turn was used for 

hydraulic performance analysis. 

Increasing the rainfall depths and routing the flow using PC SWMM, showed that the 

hydraulic grade line, number and hours of the surcharged manholes increases as total rainfall 

depths increases, but no sanitary sewer overflow. Sanitary sewer overflow occurred at the lift 

station with a design capacity of 200 GPM for all increased rainfall depths. Furthermore, the 

analysis results can help locate areas where overflow is more likely to occur, and can also help 

plan and implement a cost-effective rehabilitation program for the existing sewer network. 
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CHAPTER 1: INTRODUCTION 

 

One of the challenges facing by municipalities across the United States is the issue of 

Sanitary Sewer Overflow. Sanitary Sewer Overflow (SSO) is an unauthorized discharge of 

untreated wastewater from a collection system or wastewater treatment facility, which poses 

serious public health and environmental problems. According to Petrequin (2011), an estimate of 

40,000 overflows occurs per year, and at least one-third of the nation’s wastewater treatment 

municipalities faced fines or disciplinary measures for sewage violations. Due to the risk posed 

to public health, SSO has been linked to roughly 8.6 million cases of waterborne illness per year 

(Peterquin, 2011) diseases that range in severity from mild gastroenteritis to life-threatening 

illness such as cholera, dysentery, infectious hepatitis, and severe gastroenteritis (EPA, 2004).   

From a legal perspective, section 301 (a) of the Clean Water Act prohibits unpermitted 

discharge of pollutants. Furthermore, The National Pollutant Discharge Elimination System 

(NPDES) allows discharge under certain specific conditions which usually includes an effluent 

limit, and requires all permittees to properly operate, adhere and maintain all facilities, impose 

self-monitoring, and reporting requirements (EPA, 1995). SSO is as result of surcharge overflow 

in the sanitary sewer conveyance system. Sanitary sewer collection and conveyance system 

surcharges when the hydraulic grade line of the system rises to the ground surface level, because 

the actual flow exceeds the design capacity of the system. The sewer surcharges can occur at 

junctions such as manholes, pipe fittings, and outlets, collection wells and treatment facility. 
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1.1 Scale of Sanitary Sewer Overflow 

Sanitary sewer surcharge at a junction such as; manhole, cleanout or pipe fitting, results 

to SSO when the flow changes from free surface flow to pressurized flow. As the pressure 

increases, the water level rises until it raises to the surface, diffusing the build-up pressure, thus, 

SSO. Furthermore, sewer surcharge can occur at the collection wells and at the wastewater 

treatment facility when the flow exceeds the pumping capacity and volume capacity of the 

treatment facility respectively.  In September 2017, Hurricane Harvey delivered 40-61inches of 

rain across Texas, which led to approximately 150 million gallons of both SSO and industrial 

discharge into the environment (TCEQ, 2017).  In September 2016, an estimated combined 

volume of 240 million gallons of partially or untreated sewage was dumped into the Tampa Bay 

during Hurricane Hermine, which delivered up to 22 inches of rain in some parts of the Tampa 

Bay area (Neuhaus, 2016).  

1.2 Cause of Sanitary Sewer Overflow 

As stated above, SSO results from surcharge when the hydraulic grade line rises to the 

ground surface elevation. SSO occurs during the wet weather due to Rain Derived Inflow and 

Infiltration (RDII), blockages, cracked pipes and manholes, structural, mechanical and electrical 

failures and insufficient conveyance capacity. Reduction in pipe capacity caused by blockage 

often exacerbate surcharging and backups by causing a build-up of debris such as wood logs, 

plastic bags, household waste and solidified grease.  

RDII is rain-induced inflow and infiltration entering the sewer system, usually during wet 

weather events. Surface runoff (inflow) enters the sewer system via cleanouts, unsealed 

manholes or illegal connections. Inflow into the system is evident in the flow hydrograph as a 

fast increase or response in the flow rate during the duration of a rain event and quickly subsides 



3 

 

after the rain event. Infiltration is the inflow of groundwater into the sewer pipe and increases 

with the water table elevation. Groundwater infiltration is associated with soil water or 

groundwater that seeps into the sanitary sewer through cracks in the pipes, manholes, or wet 

wells. When the pipe or well is submerged beneath the water table, it creates a positive pressure 

higher than the atmospheric pressure, thus creating a pressure gradient. This pressure gradient 

drives the groundwater through cracks and holes into the pipe, leading to infiltration in the sewer 

pipes. Unlike surface inflow, infiltration in the system shows a slower but persistent response in 

the flow hydrograph with a rain event.   

1.3 Reduction of Sanitary Sewer Overflow 

Many programs and designs have been introduced to reduce the SSO at different scales. 

One of the methods is to maximize the capacity of flow. Maximizing the flow capacity can be 

accomplished by two methods: utilizing storage facilities and increasing the flow carrying 

capacity.  Due to high volumes and variability caused by RDII, additional wastewater storage 

facilities can be considered as a control for SSO. The additional storage facility is feasible 

because it requires relativity low-cost construction and maintenance and can operate regardless 

of the random high-intensity rain events. The only disadvantage is that the storage facilities are 

relatively large and requires a large area of land. Increasing the flow carrying capacity includes 

monthly/daily maintenance and cleaning out the clogged pipes, increasing the pumping capacity, 

and replacing the existing pipes with high diameter pipes.  

Another method for reducing SSO is rehabilitation strategy. Rehabilitation involves 

lining pipes segments to reduce infiltration induced by an increase in water table via cracks in the 

pipes, manholes and joint fitting. The advantage of rehabilitation is that it reduces the infiltration 

rate in the pipes thus reducing the volume of the sewer flow, increasing the efficiency of the 
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treatment facility; hence reduce SSO during extreme events.  The disadvantage of rehabilitation 

is cost. Because of limited resources, one of the challenges of rehabilitation is prioritizing which 

pipe segment to rehabilitate first to maximize the reduction of SSO. 

1.4 Objective of the Study 

The objective of the study is to perform system failure analysis on one of the sewershed 

located in South Pinellas County by developing a hydraulic model.  The primary focus of the 

study is to evaluate hydraulic performance of the sewer system, analyze and predict locations 

and conditions for SSO, to help plan and retrofit the areas within the sewer shed vulnerable to 

SSO. The study will focus on the wet weather events from June 1st - September 30th, 2016, and 

extreme tropical cyclone events.  

1.5 Literature Review 

1.5.1 Modeling Method 

Flow conditions in sanitary sewers vary and are both transient and non-uniform. During 

dry weather conditions, flow in gravity lines of sanitary sewer systems is designed as free-

surface flow. This flow can either be sub-critical or super-critical. However, during wet-weather, 

flows typically increase, often significantly due to RDII. The free-surface pipe flow may give 

way to surcharge flow conditions where pipes are full and under pressure causing SSO. 

Recommended by EPA and often applied in models, RDII is simulated using the R, T, K 

synthetic unit hydrograph method. The R, T, K synthetic unit hydrograph captures RDII by 

fitting three triangular unit hydrographs to the observed RDII, and then estimates the fast, 

medium and slow RDII responses (EPA, 2008). The three-unit hydrographs relate RDII and 

sewershed characteristics to unit rainfall volume entering the sewershed (R), specified time 

duration (T) and the ratio of time of recession (K) ( 9 parameters total). R, T, K parameters are 
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derived from site-specific flow monitoring data and require that a continuous flow monitoring 

program is implemented at strategic points in the sewer system. As mentioned beforehand, the R, 

T, K method generates three hydrographs; three R parameters are designated as R1, R2, and R3. If 

the value of R1 is high, it signifies that the system is more driven by surface inflow. However, if 

the total R-value is high for R2 and  R3, then the system is driven by groundwater infiltration.  

EPA Stormwater management model (SWMM) is a versatile tool used to model and 

study the hydraulic and the dynamic of flow in the system. Furthermore, EPA Sanitary Sewer 

Overflow Planning and Analysis (SSOAP) toolbox is software that enables the user to estimate 

the R, T, K values for each rainfall or flow monitoring events and generate corresponding RDII 

hydrographs. The R, T, K values for the three RDII response hydrographs can be inputted to 

software packages such as EPA SWMM, PC SWMM (CHI software) to simulate the total sewer 

flow and be able to pinpoint locations of possible SSO in the sewershed. For example, a study in 

Melbourne, Australia used both SSOAP toolbox and PC SWMM to perform a hydraulic sewer 

system assessment. The study analyzed the performance of the existing sanitary sewer system 

during the wet and dry year, specifically looking at the impacts on short duration intense rainfall 

(Tasnim et al., 2017). The study used the R, T, K synthetic unit hydrographs to capture the RDII, 

and PC SWMM to simulate the flow, noting locations and volume of SSO during the two intense 

rainfall events. Since the R, T, K parameters are different for different rainfall events, extensive 

data collection and multivariable linear regression are needed to predict the parameter for future 

rainfall event. 

Following the pilot study (Megan, 2017), Steven-Schutzbach method was used in 

quantifying the groundwater infiltration due to the shallow, and dynamic water table 

characteristic in Pinellas County region. Thus, negating the use of R, T, K synthetic unit 
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hydrograph for this study sewer modeling.  Instead, the groundwater infiltration component of 

the excess sewer flow will be added as an external source in the model for the hydraulic 

performance study.  
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Case Study Area and Infrastructure 

The study site sewershed, PS-119 (Figure 1) is a small residential neighborhood, located 

south of Sawgrass Lark Park, spanning approximately 72 acres. The neighborhood is mostly 

developed, impervious land with a separate sewer system. The ground elevation for this 

sewershed ranges between 11and 16 feet and the average water table ranges from 2 to 6 feet 

below the ground surface, which is relatively shallow. The soils type is mostly Myakka fine 

sands containing silt and organic matter with some Okeechobee muck near Sawgrass Lake 

(Megan, 2017). The PS-119 sanitary sewer system is a gravity-driven system with approximately 

2.3 mile of  8-inch diameter pipes, which eventually discharges into a wet well PS-119 located 

downstream of the system, and finally routed to  South Crosss Bayou Wastewater Facility 

(SCBWF).  

2.2 Instrumentation 

2.2.1 Flow Meters 

Isco 2150 flow meters were installed in three locations within PS-119 sewer shed: one in 

the pipe just before the wet well at PS-119, and two in the manholes throughout the 

neighborhood (Megan, 2017). The flow meters measure and record the flow depths (within 

±0.008ft/ft.), the velocity (within ±0.1ft/s), and the total flow in the sewer pipe at 15-minute 

interval. The 15 minutes time interval, provides a fine resolution for identifying potential surface 

inflow (Megan, 2017)  
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2.2.2 Rain Gages 

At the study site, a tipping bucket gage was installed on top of the wet well, PS-119 as 

part of the Pinellas County Utilities system. The rain gage was refined to provide hourly readings 

starting in February 2016. Since the rain data readings are in hourly instead of 15 minutes 

interval to match the flow records, available rain data on the area were assessed from the 

Southwest Florida Water Management District (SWFWMD) and the United States Geological 

Survey (USGS). The rain gauges are located approximately 0.4 miles north and at St. Joes Creek, 

2 miles southeast of the sewershed for the SWFWMD and USGS gages respectively. This 

additional rainfall data was used to fill any time gaps in the rain data at PS-119. 

2.2.3 Groundwater Monitoring Wells 

Two monitoring wells were installed to measure and record the groundwater levels in the 

study site. The first monitoring well is located directly next to PS-119 northwest of the sewer 

shed. The second monitoring well is located the southeast corner of the sewer shed. The two 

monitoring wells are both 15-feet deep, 2-inch diameter PVC with Solinst Levelogger® pressure 

transducer water level sensors that record the water level every hour within 0.05% accuracy, 

(Megan, 2017). 
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Figure 1: PS-119 (the outfall) sanitary sewer layout 

2.3 Methods 

2.3.1 Time Series Analysis 

The objective of the study is to evaluate the hydraulic performance of the system and 

determines which part of the system might fail during high intense events. The sanitary sewer 

flow comprises of sewage and freshwater intrusion. The sewage is the household wastewater 

production and follows typically in a diurnal pattern. The freshwater contribution includes 
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surface inflow and infiltration. While surface inflow can be noted quickly, a high spike in the 

time series graph corresponding to the rain event, groundwater infiltration is a slow, gradual 

process and varies with rainfall events and fluctuation in the water table. 

The first step of the analysis is to perform a time series analysis, differentiating between 

the dry weather flow and the infiltration (Appendix A). The Stevens-Schutzbach is an empirical 

equation, using the minimum daily flow (MDF) and the average daily flow (ADF) to calculate 

the daily Base Infiltration (Equation 1) 

𝐵𝐼 =
0.4 (𝑀𝐷𝐹)

(1 − 0.6 (
𝑀𝐷𝐹
𝐴𝐷𝐹 )

𝐴𝐷𝐹0.7

)

 

Equation 1: Steven-Schutzbach equation for Base Infiltration calculation. 

 

For this analysis, the minimum daily flow was calculated from the hours of 12:00 am to 

6:00 am. The inputs and the outputs of the equations is the flow measured in gallons per minute 

(gpm). The sewer flow data, the typical sewer flow value, were filtered by subtracting the BI 

from total sewer flow for each day. Adjusted by the diurnal pattern, residual flow was calculated 

to test the variability of the flow. The residual flow was used to determine if there is additional 

inflow from the surface runoff or random variability in household wastewater production for 

different rainfall events (Megan, 2017).  For this study, a rainfall event is defined as rainfall 

depth greater than 0.5-inches. The variability of the residual flow was captured by setting 

boundaries of two standard deviations, subtracting from series average zero to create the upper 

and lower bounds of the time series graph. If the rainfall event falls above the limits, it is 

considered a surface inflow; however if the rainfall event falls within or below the boundaries, it 

cannot be discerned as significant surface inflow. For PS-119, 49% of total observed sewer flow, 
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during wet weather is base infiltration, and the rainfall events fell within the boundaries. 

Therefore, it is deduced that there is no significant surface inflow at the site.   

 

Figure 2: Average residual flow for significant rainfall events. 

 

2.3.2 Cross-Correlation and Regression Analysis 

Cross-correlation is a measure of the strength of the relationships between two variables 

in a time series. Cross-correlation analysis shows the strength of the relationship between the two 

variables as a lag time for each value in the time series and calculates the variance between two 

variable time lags (Megan, 2017)  

The head above the pipe invert elevation is an important variable to consider for cross-

correlation analysis. Understanding the occurrence of SSO reveals that groundwater infiltration 

into the sewer system is highly dependent on the water table fluctuations. As the water table 

increases, submerging the pipes, it creates an elevated pressure head that forces the groundwater 

to infiltrate through the cracks into the sanitary sewer system, thus increasing the BI. Because the 

study site experience high inflow and infiltration problems after severe storm events (Megan, 
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2017), and water table fluctuation is highly dependent on the rainfall, rainfall is used for the 

cross-correlation analysis and used as an input variable in the regression analysis to predict the 

BI. For this study, the cross-correlation analysis is applied to the time series to help discern the 

strength of the BI and the rain events which will be useful inputs for a regression model to 

predict the BI for future events. Cross-correlation analysis was performed with the observed rain 

and calculated BI data during the wet weather periods in 2016 and 2017  

Regression analysis is used in this study as a predictive tool to estimate the BI for future 

rainfall events. While factors causing infiltration into the system may not be linear due to the 

system’s complexity, a linear regression model based on the cross-correlation analysis, with 

sufficient accuracy may help estimate the BI response to rain events. 

2.3.3 PC SWMM Model Analysis 

In this analysis, hydraulic modeling was conducted using PC SWMM to analyze how the 

flow moves through the system, and determine when and where the system fails. PC SWMM, 

hydraulic software from Computation Hydraulic International (CHI) was used to simulate and 

route the sewer flow, assessing the hydraulic performance of the existing system at the study site. 

The performance indicators for this study are defined as when the flow surcharges and SSO 

(flooding) occurs in the system. As mentioned in the introduction, the flow surcharge occurs 

when the flow changes from a gravity driven to pressurized flow, and SSO occurs when the flow 

depth is above the maximum pipe depth (ground elevation) of the system.  

2.3.3.1 Flow Routing Methods 

Similar to EPA SWMM 5.1, PC SWMM model flow routing is primarily governed by the 

conservation of mass and momentum and offers three methods of flow routing. The first method, 

steady flow routing, is the simplest flow routing method, assuming the flow is uniform and 
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steady within each time step flow. The method translates into flow hydrographs at the upstream 

and the downstream of the conduit with no delay or variability. Furthermore, the steady flow 

routing method does not account for channel storage, backwater effects, entrance/exist loss, and 

in this case study, pressurized (surcharged) flows. The second method is the kinematic wave 

routing, which is governed by continuity equation and a simplified form of the momentum 

equation for each conduit. The method assumes that the slope of the water surface is equal to the 

slope of the conduit, thus, this method mostly applies to steeply sloped conduits, shallow flow 

with high velocity. Similar to the steady flow routing, kinematic wave routing cannot account for 

backwater effects, entrance/exit losses, and pressurized (surcharged) flow. However, kinematic 

wave routing can be accurate and effective for long-term simulation because it maintains 

numerical stability for large time steps by ignoring both inertia and pressure force. The last 

method is the dynamic wave routing method. The dynamic wave routing is governed by one-

dimensional St. Venant flow equation (Equation 2), which consists of the combination of both 

continuity and the momentum equations for each conduit, and a volume continuity equations at 

the manholes. This method can be applied to any network layouts, including diversions, loops, 

pumps and flow regulators such as weirs, culvert, and orifices. Unlike the steady flow and the 

kinematic wave routing, the dynamic wave routing does account for channel storage, 

entrance/exist losses, and pressurized flows.  

Furthermore, each routing method uses the Manning equation to relate to flow rate, flow 

depth, and the slope. For this study, the modeling was conducted using the dynamic wave routing 

approach.  

𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= 0  (𝐶𝑜𝑛𝑡𝑖𝑢𝑛𝑖𝑡𝑦) 

Equation 2a: St. Venant continuity equation 
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𝜕𝑄

𝜕𝑡
+

𝜕(
𝑄2

𝐴 )

𝜕𝑥
+ 𝑔𝐴

𝜕𝐻

𝜕𝑥
+ 𝑔𝐴𝑆𝑓 = 0  (𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚) 

Equation 2b: St. Venant momentum equation 
𝜕𝑉

𝜕𝑡
=  

𝜕𝑉

𝜕𝐻
 
𝜕𝐻

𝜕𝑡
=  𝐴𝑠  

𝜕𝐻

𝜕𝑡
=  ∑ 𝑄 

Equation 2c: Volume continuity equation 

where A is the cross-sectional flow area (ft2), Q is the flow rate (ft3), t is the time, x is the 

distance (ft.), Sf is friction slope, V is the node assembly volume (ft3), As is the node assembly 

surface area (ft2) and ΣQ is the net flow (inflow-outflow) into the node assembly (cfs) 

2.3.3.2 Flow Inputs 

As mentioned in the time series analysis, the flow inputs are classified into two: dry 

weather inflow (DWF), and the BI. The dry weather inflow, DWF is a continuous inflow, 

reflecting the household sewage production or the base flow sanitary sewer in the system. DWF 

is represented by an average value (gpm) that can be adjusted on monthly, daily and hourly 

diurnal pattern (Figure 3).  

            

Figure 3: Diurnal pattern simulated using PC SWMM. Average value = 35.89 gpm 
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The average value is calculated using the flow data during the dry weather periods, 

January 1st - March 31st, 2016, with no rainfall and applied to the diurnal pattern with equation 3. 

Thus, the DWF for the entire time series was simulated (Figure 4). The DWF values are different 

for each type of drainage system node (junction, outfall, storage units and flow divider) and can 

be edited to fit any specified node, but for the simplicity of the model, the average value is 

apportioned equally across each node by dividing the average value by the number of manholes 

in the system. 

𝐷𝑊𝐹 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒 ∗ 𝑑𝑖𝑟𝑢𝑛𝑎𝑙 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (𝐻𝑜𝑢𝑟𝑙𝑦) ∗ 𝑑𝑖𝑟𝑢𝑛𝑎𝑙 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (𝑊𝑒𝑒𝑘𝑒𝑛𝑑) 

Equation 3: Hourly/Weekend Dry Weather Flow formula calculation for the flow simulation 

 

Figure 4: PS-119 simulated average DWF from June 1st–September 30th. C32 = Q sim, PS-119 = 

observed flow 

 

Because the Stevens-Schutzbach method was adopted instead of the convention RDII 

method, the BI was added as an external source into the system. External source is a user-defined 

time series inflows that are directly added to each node (manhole). The BI values, calculated 
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from the time series analysis, was added into system through direct inflow (under external 

source) using equation 4 below. From equation 4, the baseline pattern is left blank because the BI 

flow has no pattern unlike the DWF. Thus, no baseline value is generated. The time series is the 

calculated daily BI, normalized by average daily BI during the dry weather period, January 1st - 

March 31st, 2016. 

𝐷𝑖𝑟𝑒𝑐𝑡 𝐼𝑛𝑓𝑙𝑜𝑤 = (𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 ∗ 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛) + (𝑠𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 ) 

Equation 4: External source. BI direct inflow formula calculation for flow simulation. Scale 

factor = 1 

 

2.3.3.3 Geometric Parameters 

The geometric parameters used for the hydraulic modeling include; invert and manhole 

rim elevations, length, slope and size of the pipes, and Manning's coefficient n for closed 

conduits. For this study, the depth of the pipes was attained from the Pinellas County Utilities, 

and since the manhole rim elevation was not given, the ground surface elevations, attained from 

North American Vertical Datum (NAVD) (Megan, 2017) were used. Since the invert elevation 

was also not given, PC SWMM used a simple equation (ground elevation – depth) to calculate 

the pipe invert elevation. The pipe slope is automatically calculated with length and the 

elevations of inflow/outflow manholes.  
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CHAPTER 3: ANALYSIS RESULTS 

 

3.1 Cross-Correlation and Regression Analysis  

The correlogram (Figure 5) of the total rainfall (in inches) and the BI (in gpm) shows that 

the strength of the relationship drops significantly after seven days (lag time), indicating that the 

BI is significantly impacted by the total rainfall in the preceding seven days. The correlogram 

also shows that the most significant relationship occurs on day 1, 4 and 5, and there is no 

correlation on day 0. Considering the area has a shallow water table, the results are perceptive, as 

the rainfall takes about 1-2 days to infiltrate the soil and raise the water table, submerging the 

pipes and increasing pressure head. Thus, forcing the groundwater to infiltrate into the sewer 

system. 

 

Figure 5: Cross-correlation between BI and rain during wet weather periods. June-September 

2016 and June-September 2017. Significance ±0.13 
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For the regression analysis, using the total rainfall for the previous seven days as the 

predictor variables and the BI as the response variable, a regression model (Equation 4) was 

developed for the study. 

𝐵𝐼(𝑔𝑝𝑚) = 20.45 + 7.92𝑃1 +  2.74𝑃2 +  4.28𝑃3 +  5.56𝑃4 +  6.28𝑃5 +  4.26𝑃6 + 4.86𝑃7 

Equation 4: Regression model equation of BI (gpm) for PS-119. Pi is the total rainfall (in inches) 

for each preceding day.  

 

 

 

Figure 6: Regression model to predict BI at PS-119. 
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From the regression model, the coefficients for rainfall on day 1, 4 and 5 are greater than 

the coefficients of other days, thus showing a strong correlation of the rainfall event on the BI. 

The R-squared value for this regression model is 0.62, which is considered satisfactory for the 

model due to the complexity of the system’s response to different rainfall patterns, for different 

events and the complexity of cracks geometry in the sewer network (Figure 6) 

As previously mentioned the regression model is used to predict the BI for different 

rainfall events including hurricane events and routed through the system to analyze the hydraulic 

performance of the system. For hurricane events, the rainfall was spiked up with the period of the 

hurricane and sewer flows were routed for the following days to observe how the system reacts 

to the events. Table 1 and Figure 7 below shows different rainfall depths and BI distribution 

respectively, corresponding to different hurricane events used for the analysis 

Table 1: Different rainfall depths for different hurricane events.  

Hurricane events Date Total rainfall depths 

Hurricane Matthew August 28th - September 3rd, 2016 14 inches 

Hurricane Hermine September 28th - October 1st ,2016 17 inches 

Hurricane Irma September 10th - September 12th, 2017 22 inches 

Hurricane Harvey August 30th - September 1st, 2017 38 inches 
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Figure 7: BI distribution for different rainfall depths. 

3.2 PC SWMM Model Analysis 

As mentioned beforehand, a set of performance indicators; flow surcharge, and flooding 

(SSO), were defined for assessing the hydraulic performance of the system.  

Since, the total observed flow is the addition of the BI and DWF, the flow was simulated 

by combining both flow inputs and routed for the wet weather periods, June 1st- September 30th, 

2016. From Figure 8, the simulation result is greater than the observed flow with the routing 

continuity error of -0.01 percent. Since all the variables are either given or calculated for the 

model, there are fewer chances for calibrating the system to match the observation. Thus, the 

simulation results are considered satisfactory for further analysis. Figure 9 presents a hydraulic 

profile showing the manholes which had flow surcharges in the system. The flow surcharge 

occurred during two-time periods, June 10th and September 1st (Tropical storm after Hurricane 
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Hermine), and lasted for about 96 hours after these events. The total rainfall of the seven 

previous days for the two events were greater than 10 inches. 

 

Figure 8: PS-119 simulated time series graph, DWF+BI from June–September 2016. C32 = Q 

sim, PS-119 = observed flow 

 

 

Figure 9a: Hydraulic profile of flow surcharge downstream on June 10th. Total rainfall = 11.49 

inches 

Ground surface 
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Figure 9b: Hydraulic profile of flow surcharge downstream on September 1st. Total rainfall = 

10.46 inches 

 

Using the regression model, and increasing the rainfall exceeding 11 inches, the 

performance indicators regarding SSO (flooding) and surcharge and their values are presented in 

Table 1. The performance indicators show that as rainfall depth increases, the hydraulic grade 

line, the number of manholes and hours the manholes stayed surcharged increases (Figure 9). 

More so, it is intuitive that the longest surcharge manholes are located downstream of the 

system, since that is the location where all the flow converges before flowing into the wet well, 

PS-119. Additionally, looking at the pipe slopes, the slopes of the downstream pipes are mild, 

almost horizontal, thus increasing the potential for the flow to go from gravity to pressurized 

flow. Although the number and the length of time of surcharged manholes increased, there was 

no SSO at the manhole. Thus, the existing sewer system is most reliable and less vulnerable to 

Ground surface 
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SSO. However, as mentioned in the introduction, SSO can occur at the wet well, and in this 

study case at the lift station, PS-119. 

Since the capacity of PS-119 is unknown, PS-119 capacity (in gpm) was calculated using 

the number of houses, the average household sewer flow, and the peaking factor. As mentioned 

beforehand, the area of the sewershed is about 72 acres, and assuming each house is about one-

quarter acre, the average household sewer flow is 300 GPD, peaking factor is 3 and the roads and 

curbs are about 11 acres, the lift station capacity is approximately 200 gpm (equation 5) 

𝑃𝑆 − 119 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = (
(72 − 11)

0.25
) ∗ (300 𝐺𝑃𝐷) ∗ (

1

1440
) ∗ 3  

Equation 5: Lift station (PS-119) design capacity 

Furthermore, SSO occurred at the wet well, PS-119 (Figure 10), where the total flow 

received exceeds the calculated capacity at PS-119. Figure 10 shows the flow hydrographs of the 

different rainfall depths and the observed sewer flow compared to the PS-119 flow capacity. 

From the hydrographs and from Table 2, it shows that as the rainfall depths increase, the volume 

(area under the curve) of SSO at the lift station increases. Thus, the existing lift station, PS-119, 

is less reliable and more vulnerable to SSO. 

Table 2: Sewer system hydraulic performance indicators for different rainfall depths. 

Performan

ce 

indicators 

Details Rainfall depths 

Matthe

w 

Hermi

ne 

Irma 25-

inches 

30-

inches 

Harve

y 

40-

inches 

Manhole 

surcharge 

Number of 

surcharged 

manholes 

10 

manho

les 

14 

manho

les 

15 

manho

les 

17 

manho

les 

17 

manho

les 

20 

manho

les 

21 

manhol

es 

Manhole 

with 

maximum 

hours 

surcharged 

SM 

2006 

(188.8

7 hrs.) 

SM 

2006 

(198.4

7 hrs.) 

SM 

2006 

(207.7

9 hrs.) 

SM 

2006 

(211.6

9 hrs.) 

SM 

2006 

(220.2

1 hrs.) 

SM 

2006 

(238.1

4 hrs.) 

SM 

2006 

(245.7

5 hrs.) 

PS-119 

SSO 

Total 

volume of 

SSO 

24,833 43,850 74,344 83,321 116,31

2 

148,51

2 

172,89

5 
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Figure 10a: Hurricane Harvey rainfall depth. Hydraulic profile plot showing surcharged 

manholes 

 

 

Figure 10b: 40-inches rainfall depth. Hydraulic profile plot showing surcharge manholes 

 

Ground surface 

Ground surface 
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Figure 11: Flow hydrographs of the different rainfalls depths vs. PS-119 design capacity 
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CHAPTER 4: CONCLUSION 

 

Sanitary sewer overflow releases harmful contaminants, pollutants and nutrients that are 

detrimental to the environment, ecosystem and public health, and more so poses a financial 

difficulty to clean out the effects both on the environment and the public. In this study, 

performance indicators were defined to help evaluate the hydraulic performance of the existing 

system. Since the PS-119 sewer is located on an area with shallow water table (ranging from 2 to 

6 ft. below the ground elevation), groundwater infiltration would be a major problem, in addition 

to blockages and debris build up, thereby reducing the pipe diameter, will lead to flow surcharge 

and SSO. 

The time series analysis ruled out surface inflow as a significant source of freshwater 

contribution to excess sewer flow. Using the Steven-Schutzbach method, the base infiltration 

calculation showed that an annual of 49% of the flow during the wet weather, and 42% during 

dry weather was essentially groundwater infiltration. Thus, presenting a challenge of high 

infiltration into the sewer system. Correlation analysis suggests that significant relationship for 7 

days between base infiltration and rainfall. The analysis suggests that the rainfall takes about 1-2 

days to infiltrate the soil and raise the water table, peaking on day 4 and receding from day 5 to 

day 7 after the rainfall event. Applied to regression analysis to predict future base infiltration for 

different rainfall depths, it further showed the increase in the base infiltration flow as the rainfall 

depths increases. 
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Comparing the results of the hydraulic performance for different rainfall depths, showed 

that as the rainfall depths increase, the number and hours the surcharged manholes increases but 

no SSO occurred at the manholes. SSO occurred at the wet well, PS-119, and as the rainfall 

depths increased, the volume of SSO increased. However, since the occurrences of such high 

rainfall depths for SSO are rare, the system is considered reliable and less vulnerable. 

Furthermore, carefully looking at the surcharge manholes, the locations of the manholes are 

downstream of the system, where all the flow converges, and the pipe slopes are relatively 

horizontal. The observation helps pinpoint crucial locations where system failure is more likely 

to occur and can help propose a more strategic, sustainable, cost-effective plan to mitigate the 

negative impacts of sanitary sewer overflows.  

In conclusion, the hydraulic performance study helps provide information for strategic 

planning, implementing and improving the existing sanitary system to reduced rainfall-induced 

overflows. Future studies will detail the impacts of rehabilitation on the reduction of the 

infiltration in the system. This study will serve as a primary hydraulic model for the future study 

and will help compare and analyze the results, before and after rehabilitation.  
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APPENDIX A: SUPPLEMENTAL FIGURES 

 

Figure A1: Cross section of surcharged manhole 

 

Figure A2: Cross section of ponded/overflowed manhole 
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Figure A3: Rainfall intensity from February-September 2016 

 

Figure A4: Total observed flow and BI for PS-119. 
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Figure A5: Hurricane Matthew rainfall depth. Hydraulic profile plot showing surcharged 

manholes 

 

Figure A6: Hurricane Matthew rainfall depth. Summary of surcharged manholes 
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Figure A7: Hurricane Hermine rainfall depth. Hydraulic profile plot showing locations of 

surcharged 

 

Figure A8: Hurricane Hermine rainfall depth. Summary of surcharged manholes 
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Figure A9: Hurricane Irma rainfall depth. Hydraulic profile plot showing locations of surcharged 

manholes 

 

Figure A10: Hurricane Irma rainfall depth. Summary of surcharged manholes 
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Figure A11: 25-inches rainfall depth. Hydraulic profile plot showing locations of surcharged 

manholes 

 

Figure A12: 25-inches rainfall depth. Summary of surcharged manholes 
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Figure A13: 30-inches rainfall depth. Hydraulic profile plot showing locations of surcharged 

manholes 

 

Figure A14: 30-inches rainfall depth. Summary of surcharged manholes 
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Figure A15: Hurricane Harvey rainfall depth. Summary of surcharged manholes 
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Figure A16: 40-inches rainfall depth. Summary of surcharged manholes 
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