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ABSTRACT

Climate change is a global concern as it may affect many aspects of life, including water supply. A
tool used to model climate change’s impacts is called a General Circulation Model (GCM). GCMs project
future scenarios including temperature and precipitation, but these are designed at a coarse resolution and
require downscaling for employment for regional hydrologic modeling. There is a vast amount of research
on downscaling and bias-correcting GCMs data, but it is unknown whether these techniques alter
precipitation signals embedded in these models or reproduce climate states that are viable for water resource
planning and management. Using the Tampa, Florida region for the case study, the first part of the research
investigated 1) whether GCM and the downscaled, bias-corrected data were able to replicate important
historical climate states; and 2) if climate state and/or transition probabilities in raw GCMs were preserved
or lost in translation in the corrected downscaled data. This has an important implication in understanding
the limitations of bias-correction methods and shortcomings of future projection scenarios. Results showed
that the GCM, and downscaled and bias-corrected data did a poor job in capturing historical climate states
for wet or dry states as well as the variability in precipitation including some extremes associated with El
Nifio events. Additionally, the corrected products ended up creating different cycles compared to the
original GCMs. Since the corrected products did not preserve GCMs historical transition probabilities, more
than likely similar types of deviations will occur for “future” predictions and therefore another correction
could be applied if desired to reproduce the degree of spatial persistence of atmospheric features and
climatic states that are hydrologically important.

Furthermore, understanding the sustainability of water supply systems in a changing climate is
required for undertaking adaptation measures. Many water suppliers employ GCMs to examine climate

change’s effect on hydrologic variables such as precipitation, but little is known on the propagation of

vii



mismatch errors in downscaled products through cascade of hydrologic and systems models. The second
study examined how deviations in downscaled GCMs precipitation propagated into streamflow and
reservoir simulation models by using key performance metrics. Findings exhibited that simulations better
reproduced the resilience metric, but failed to capture reliability, vulnerability and sustainability metrics.
Discrepancies were attributed to multiple factors including variances in GCMs precipitation and streamflow
cumulative distribution functions, and divergences in serial correlation and system memory.

Finally, the last study examined multiple models, emission scenarios and an ensemble to obtain a
range of possible implications on reservation operations for time periods 2030-2053, 2054-2077 and 2077-
2100 since the future emission trajectory is uncertain. Currently there are four Representative Concentration
Pathways (RCPs) as defined by the TPCC’s fifth Assessment Report which provides time-dependent
projections based on different forecasted greenhouse gas emission and land use changes. For this research
Representative Concentration Pathways (RCPs) 4.0, 6.0 and 8.5 were examined. Scenarios were evaluated
utilizing reliability, resilience, vulnerability and sustainability performance metrics and compared to a
historical baseline. Findings exhibited that RCP 4.5, the lower end of emission scenario, improved reservoir
reliability and resilience over time. Conversely, RCP 8.5, highest emissions, resulted in a steady decline of
all metrics by 2100. Although vulnerability increased by 2100 for all emission scenarios, on average RCP
4.5 was less vulnerable. Investigation of permits and adjustments to capture extreme flows might be
necessary to combat climate changes and precipitation inputs along with improvements to atmospheric

emissions, which correlated with system recuperation with time.
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CHAPTER 1: INTRODUCTION

1.1 Overview

Climate change is a global concern but how will this impact water supply? This is a major question
that water managers are trying to answer using General Circulation Models (GCMs). A GCM is a numerical
model that simulates how oceans, atmosphere, land surface and cryosphere will respond to increasing
greenhouse gas concentrations. There are multiple GCMs and runs, each taking into account different
forcing scenarios. These scenarios include varied amounts of greenhouse gas emissions by certain time
periods, changes in temperature, population growth and more. GCMs are created at a coarse resolution,
around 250 and 600 kilometers (km) to simulate the entire earth. To support the spatial resolution of regional
hydrologic simulations required for water supply, hydrologists have developed dynamical and statistical
techniques to downscale a GCM to a regional scale (~1 to 10 km) (Ahmed et al. 2012, Daniels et al. 2012,
and Sharma et al. 2013); however, these techniques cause biases such as variances in mean precipitation,
underestimation of high precipitation, or differences in number of drizzle days (Grillakis et al. 2013; IPCC
2013). It is unknown if these techniques alter precipitation signals embedded in these models or if they
reproduce climate states that are viable for water resource planning and management. Replicating important
historical climate states such as wet or dry season or El Nifio Southern Oscillation (ENSO) is vital for water
supply; therefore it is critical to understand GCM shortcomings prior to implementation for future
projection scenarios.
1.2 Research Objectives

This research had three objectives. Firstly, historical GCMs were examined to determine (1) If the
original raw GCMs data or their statistically downscaled products captured the persistence of climate cycles

observed in historical data; and (2) If the bias-correction process altered the original GCM time series and



climate states embedded in these cycles. The second objective studied whether downscaled GCM errors
propagated into the simulated streamflow and reservoir models. These were compared to baseline flows
and evaluated via reservoir performance metrics. Finally, the last section simulated future streamflow using
GCMs precipitation as a driver and examined the system’s resilience, reliability, vulnerability and
sustainability for multiple emission scenarios. 1982-2005 data from the GCMs were employed as the

benchmark to determine future deviations.



CHAPTER 2: EXAMINING CLIMATE STATES AND TRANSITION PROBABILITIES OF

PRECIPITATION PROJECTIONS IN GENERAL CIRCULATION MODELS

2.1 Introduction

Climate change is a major concern for many water suppliers in the United States (U.S.) and
worldwide. To develop a long-term resilient water management and supply plan, General Circulation
Models (GCMs) are employed to project future scenarios of climate including temperature and
precipitation. Data from these GCMs, however, are produced at a coarse resolution, typically between 250
and 600 kilometers (km), which causes biases such as underestimation of high precipitation, differences in
number of drizzle days, or variances in mean precipitation (Grillakis et al. 2013; IPCC 2013). Hydrologists
have used statistical methods to downscale GCM precipitation to a regional scale, ~1 to 10 km, to support
the spatial resolution of hydrologic simulations required for water supply and management (Panaou et al.
2016; Hwang and Graham 2013; Asefa and Adams 2013; Ahmed et al. 2012; Daniels et al. 2012; and
Sharma et al. 2011). Commonly used statistical downscaling techniques include bias-correction and spatial
disaggregation (BCSD), bias-correction and constructed analog (BCCA), or bias-correction and stochastic
analog method (BCSA) (Gutmann et al. 2014; Hwang and Graham 2013; Daniels et al. 2012). The goal of
bias-correction is to account for regional scale processes that may not be represented by large scale GCM
simulation data (Bruye're et al. 2013; Tryhorn and DeGaetano 2011). This is achieved by either (1) applying
a correction factor which has been used by Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP)
to preserve the relative and absolute trends in the simulated data (Yin et al. 2015; Hempel et al. 2013); (2)
employing the delta method, a statistical bias-correction, which adds the difference between the means of

the simulated and historical data to the simulated (Hempel et al. 2013; Wetterhall et al. 2012; Watanabe

This chapter has previously been published in Journal of Water Resources Planning and Management. Permission is
included in Appendix B. 3



2012); or (3) correcting using the empirical distribution or quantile mapping method where the monthly
frequency distribution of the simulated GCM is corrected to match historical data such as rain gauge data
(Wood et al. 2004; Argleso et al. 2013; Ehret et al. 2012; Lafon et al. 2013).

Although these downscaling techniques can match the statistics and probability distribution of
historical precipitation, they do not eliminate all errors (Maraun 2016; Eden and Widmann 2014; Grillakis
et al. 2013). For instance, quantile mapping automatically modifies the number of wet days in order to
match the probability distribution function (PDF) (Maraun 2016). Further, when sampling noise is
extremely high, nonparametric quantile mapping basically employs random corrections which generates
very noisy solutions (Maraun 2016). van Pelt et al. (2009) study examines two bias-correction methods.
They conclude that although the first method amends the average, numerous consecutive precipitation days
were incorrectly removed. The second method adjusted the coefficient of variance and mean, but the
average underperformed while the temporal precipitation pattern improved. This leads to the hypothesis of
this paper that bias-correction may alter the precipitation transition states of climate cycles embedded in
the GCMs, which are hydrologically detrimental. For example, monthly and sometimes annual scale
climate states that drive precipitation variability are important for water supply planning. At these temporal
scales, persistence of certain states, such as multiple months or years of less-than-average precipitation
during the wet season can have severe consequences on water management. Multiple consecutive months
with below average precipitation could affect streamflow and the availability of surface water (Clark et al.
2014). Additionally, multiple wet months would increase the availability of surface water, which could be
captured and stored for future use. It is important to simulate the transition between these climate states to
create a more robust model that can facilitate informed decisions. Although annual budgets are important
and was considered, this research focuses on winter and summer months.

Tampa Bay, Florida (FL) provides a great example where two nested scales of variability influence
precipitation. The first scale is associated with the intra-annual transition from Dry-to-Wet season. About
two-thirds of precipitation in the region occurs in only four months, June through September, creating a
“wet season” easily distinguishable from the “dry season” that persists the rest of the year. Superimposed

4



on this seasonal cycle is the EI Nifio Southern Oscillation (ENSQ), which creates an inter-annual variability
with a time scale ranging from two to seven years (NOAA 2015; Schmidt et al. 2001; Zorn and Waylen
1997). ENSO significantly affects both temperature and precipitation during the winter months. For the
Tampa region, El Nifio typically produces above average monthly precipitation whereas La Nifia produces
below average monthly precipitation for these same months (Schmidt et al. 2001). The persistence of these
dry and wet climate states have significant implication for water supply management, affecting both supply
and demand. There is a vast amount of research regarding how to downscale and bias-correct GCM data,
but no attention is given to assessment of whether these efforts alter signals embedded in global climate
models and/or, whether these projections reproduce climate states such as ENSO that are important for
making management decisions. The lack of such investigation makes it difficult for water supply managers
to be prepared for the impact of potential climate change in their region.

In this study, experimental first order Markov Chain models were employed to evaluate empirical
aggregation of data to attain the historical variability of the precipitation patterns and climate states. By
applying the technique, dry or wet weather patterns and the transition and persistence in climate states of a
system over time were ascertained. To achieve this, the states of a system, e.g. “wet” or “dry”, were defined,
and a transition probability matrix was then developed. Markov Chains was selected as it has been
successfully utilized in many water resources applications for precipitation states, weather cycles and
hydrological evaluations, i.e. Gabriel and Neumann (1962), Todorovic and Woolhiser (1975), Mishra et al.
(2013), Akyuz et al (2012), Smith and Marshall (2008), Moon et al. (2006), among others, therefore was
selected for this research. Gabriel and Neumann (1962) is noted as one of the first to model the Markov
Chains process for precipitation. Results deduced this a suitable model to account for weather cycles and
distributions of dry and of wet events. Akyuz et al. (2012) successfully reproduced the stochastic structure
of hydrological droughts in annual streamflow using first- and second-order Markov Chain models.
Recently, Avilés et al. (2016) compared Markov chain and Bayesian network based models to characterize

droughts. Their results showed that Markov Chains better predicted transition between wet and dry states.



Utilizing Markov Chains and graphical tools, this study evaluated GCMs and their downscaled and
bias-corrected products and compared the results to National Oceanic and Atmospheric Administration
(NOAA) gauge data. The objective was to investigate (1) whether the raw GCM and their downscaled,
bias-corrected counterpart capture the persistence of climate states observed in historical data, and (2) if
climate states and/or transition probabilities in raw GCMs are preserved or lost in translation. This is
important because if key climate state signals are lost in translation in historical runs, one could possibly
expect similar loss of information in future scenario projections. Note that usually future projection
scenarios are developed by propagating a mismatch between historical observed data and a retrospective
GCM run during a quantile mapping (see for examples, Li et al. 2009; Asefa et al., 2013).

2.2 Materials and Methods

The GCMs Bjerknes Centre for Climate Research (BCCR) model BCCR3-BCM2.0 (BCCR3) and
model bcc-csml-1 (BCCRS5), and Community Climate System Model (CCSM) model CGCM3.1 were
selected. The spatial resolutions for BCCR and CCSM are 2.8° x 2.8° and 1.4° x 1.4°, respectively. BCCR
was chosen because results are available for both the third phase, BCCR3, and a more recent fifth phase,
BCCRS, from the World Climate Research Programmer’s Coupled Model Intercomparison Projects
(CMIP5 and CMIP3 Lawrence Livermore National Laboratory of the U.S. Department of Energy,
http://www-pcmdi.lInl.gov/projects/pcmdi/). Hwang and Graham (2013) compared various statistical
downscaling methods of GCMs and recommended that BCSA provided a better fit of historical data in the
Tampa Bay area. Therefore, these GCMs were downscaled and bias-corrected using the BCSA technique
of Hwang and Graham (2013) and Maurer’s nationally available precipitation data that is gridded at 1/8
degree spatial resolution (about 12 km) (Maurer et al. 2002;
http://hydro.engr.scu.edu/files/gridded obs/daily/ncfiles/). Maurer’s gridded precipitation dataset is widely
known and has been used in many statistical downscaling techniques in the U.S. (Ning et al. 2015; Notaro
et al. 2015; Hwang 2012). For CMIP5, BCCR5 was downscaled using the same BCSA technique for
consistency. For this case study, the raw GCM datasets are denoted BCCR3-Raw, BCCR5-Raw, and
CCSM-Raw, whereas the downscaled precipitation datasets are BCCR3-D, BCCR5-D, and CCSM-D. For

6



comparison, the GCMs were downscaled to the locations of two rainfall gauges in the Tampa region,
namely Plant City and St. Leo, FL rain gauges (Figure 1). These locations were selected because both
gauges are maintained by NOAA and have complete records that started in 1900.

For each dataset, the monthly precipitation, and basic statistics of monthly precipitation such as
mean, median, standard deviation and skewness were calculated. In addition, the empirical frequency
distribution function of precipitation for each month was developed. Due to the limitation of the data size,
two states were selected for examination in the transition probability. The probability of a state was defined
with respect to being above the median (wet) or below the median (dry), therefore being either wet or dry,
for the Markov Chains transition probability matrix. Using Markov Chains and quantiles, transition
probabilities are simulated between states. Markov Chain is a discrete-time stochastic model that describes
the probable sequence of events. The probability of a precipitation event depends only on the current state
and not on a previous event. For a set of states where S = {si, S», Ss, ..., s}, transition probabilities can be
represented by the following Markov Chain equation if it has ‘r’ states:

Py = Yh=1PiPy; 1)

The process begins at one state and then moves on to the next state successively. For example, if
the state is currently s; in the chain, then it will have a probability p; of transitioning to state s; in the
following period. Thus, elements in the transition probability matrix represent probabilities of shifting
between states. Persistence in a certain state, e.g. “wet” month followed by more “wet” months in the
sequence, is reflected by high values of Pi;, the diagonal elements of the transition probability matrix (Moon
et al. 2006; Grinstead and Snell 1997).

D W

M =£[P11 Plz] (2)
W 1p21 p22

Weiss (1964) described the probability model as a Markov Chain with two conditional probabilities
parameters po and (1-p1), where po is the probability of a wet state if the preceding day was dry, and (1-p1)
is the probability of a dry state if the preceding day was wet.

p1 = Pr{W/W}; (1-p1) = Pr{D/W} 3



po = Pr{W/D}; (1-po) = Pr{D/D} 4)

To assess the impact of ENSO, this research uses ‘dry period’, which is the sum of December,
January and February, by year. These winter months are assessed as it eliminates potential impacts of
hurricane season that ends in November. Furthermore, this is when some of the highest impacts are observed
(FCC 2017; NWSCPC 2003). Since majority of precipitation is received in the summer months, ‘wet
period’, July, August and September summed by year is examined. This ensures capturing entire months
that are affected by high precipitation. After calculating the transition probabilities, any difference greater
than 10% was noted.

ENSO is defined by measuring the Oceanic Nifio Index (ONI). This is a three month running mean
of sea surface temperatures in the east-central tropical Pacific Ocean in a region known as Nifio 3.4 (5°N-
5°S, 120°-170°W). La Nifia occurs when the ONI is below 0.5°C normal for at least five consecutive
overlapping months, and an El Nifio period is when the ONI is above 0.5°C for the same five minimum
criteria. Normal is the period in-between with an ONI value ranging between -0.5 and 0.5 (Pefia et al. 2015;
Gergis and Fowler 2005). These can be further broken down. For example, El Nifo is classified as Very
Strong (> 2.0), Strong (1.5 to 1.9), Moderate (1.0 to 1.4) and Weak (with a 0.5 to 0.9 SST anomaly) events,
based on the ONI (Null 2016; Wang and Kumar 2015). This research is based on the ONI Index for the
1950-2015 period. (NOAA NWSCPC 2015) shown in Table 1.

2.3 Results
2.3.1 Raw GCM Precipitation from CMIP3 and CMIP5

As expected, the PDF of the raw GCM and gauge data did not match, supporting the need for
downscaling and bias-correction. The disparities were not consistent and varied by GCM and by month.
For example, Figure 2 showed how in January, CCSM-Raw underestimated the frequency of below average
precipitation and overestimated frequency at high values. Figure 3 depicted an over estimated precipitation
for CMIP3’s BCCR3-Raw for August. At a cumulative frequency of around 0.5, the NOAA_Plant gage
experiences around 22 centimeters (cm) of precipitation whereas BCCR3-Raw estimated around 32 cm.
Furthermore, the GCM estimated the maximum at 51.68 cm whereas the gauge was 35.68 cm. For August,
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one of the months with the highest precipitation for this region, all simulation output from GCMs deviated
drastically from the Plant City gauge. Both CCSM-Raw (Figure 4) and BCCR5-Raw (Figure 5) under
predicted precipitation, generating values less than half the amount of what is experienced for this region.
Therefore, neither CMIP3 nor CMIP5 raw data replicated precipitation statistics for the region.

This finding is supported by the summary statistics (Table 2) which amplifies differences between
GCMs predictions and historical records, further supporting the need for downscaling and bias-correction
in order to encapsulate natural climate variability. With the exception of January and February, Table 2
demonstrated how CCSM-Raw deviated throughout most of the year, inaccurately depicting March, April
and May with the highest precipitation. Since these are typically dry months with the least precipitation,
the GCM predictions failed to capture the precipitation seasonality of this region. Similarly, BCCR3-Raw
(Table 3) and BCCR5-Raw (Table 4) showed greatest variations from gauge data during the region’s wet
season, which consists of June, July, August and September. For instance, BCCR3-Raw over predicted
precipitation and was more than double NOAA_Leo in June with a mean of 38.87 cm of precipitation,
whereas the gauge was 18.03 cm (Table 3). Conversely, in June BCCR5-Raw was four times smaller with
mean of 4.97 cm whereas NOAA _Leo was 20.84 cm (Table 4). Comparing CMIP3 to CMIP5, CMIP5 over
corrected the previous errors of CMIP3. The reductions were so drastic that most months had similar means,
thus missing rainfall seasonality that is a pronounced and important aspect of climate in this region. It is
also important to note that there are minor variances in geographic locations displayed by the differences
in the month mean. For instance in June, the mean for St. Leo gauge is 17.99 cm but Plant City gauge is
19.83 cm (Table 2).

Although an EI Nifio year typically produces above average precipitation for this region, there are
months that might not achieve this. To account for this, dry period was created, which is the sum of three
dry season months, December, January and February, which smooths out the values should a month have
low precipitation during an EIl Nifio year, or alternatively high value during La Nifia. The combination of
multiple months provided a better representation of the cycle by accounting for any irregularities. Since
transition probabilities only take into account the current state and prior state without regard for actual date
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of occurrence, the probability value encapsulates the ENSO cycle as well as its length in the calculated
values. This technique allows the GCM and gauges to be compared by only exposing persistence of cycles
for the entire record and not zooming in on one actual event at a specific time. Since ENSO oscillates
between La Nifia, Normal and El Nifio without staying in one state for many consecutive years, the
probability will never be close to one. Furthermore, since the actual date of occurrence is not a factor and
only the current state and prior state, the GCM and gauges are comparable as transition probabilities expose
the statistical probability of precipitation cycles. One instance where the cycle appeared to have been
represented is BCCR3-Raw (Table 5b), which had similar transition probabilities to the St. Leo gauge. All
other instances CMIP3 GCMs dry period transition probabilities deviated. For example, if CCSM-Raw was
in a current dry state there was an equal likelihood of next dry period being dry or wet since calculated
transition probabilities was 0.5; however, the Plant City gauge data had a slight trend to transition from a
dry state to a wet state indicative of a cycle (Table 5a).

CMIP5 BCCR5-Raw findings (Table 5¢ and Table 5d) were inferior to CMIP3 since none of the
results captured the transition probabilities of the gauges. For instance, there was 100% difference between
BCCR5-Raw and NOAA_Leo for Current Wet-to-Wet (Table 5d). BCCR5-Raw also had more of a trend
to want to switch to the alternate state, exhibiting minimal persistence. For instance, if in a currently wet
state there was an 81.8% chance of switching to a dry state. This incorrectly stated that there was not a
likely chance of remaining in an El Nifio state for multiple years. Additionally, it showed a 72.7% chance
of switching from a dry state to a wet state, once again incorrectly stating that there was not a likely chance
of remaining in a La Nifia state for multiple years. Although the GCMs are a valuable product for climate
change predictions and planning, it has limitations such as the inability to capture transition probabilities
and the embedded ENSO cycles and large frontal storms experienced in this region.

Similarly, wet period results demonstrated that both CMIP3 and CMIP5 GCMs did not exhibit the
transition probabilities for the respective gauges. For instance, BCCR3-Raw exemplified that if in a current
dry state it was equally likely to shift to a dry or wet state since the transition probabilities were 0.5 (Table
8b). Conversely, the gauge was more likely to transition to a wet state with a probability of 0.667 for Current
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Dry-to-Wet. Similarly, CCSM-Raw data indicated that there was no state preference and if in a current wet
state as there was an equal likeliness of next wet period being dry or wet, whereas the gauges were more
likely to transition to a dry state (Table 8a).

CMIP5’s BCCR5-Raw also diverged from both gauges for wet period. For instance, BCCR5-Raw’s
transition probability for Current Dry-to-Dry was 0.417 whereas NOAA_Plant was 0.273 (Table 8c), with
a 34.5% difference. Moreover, BCCR5-Raw reduced Current Dry-to-Wet persistence compared to both
gauges, decreasing the amount of precipitation. Although CMIP3 did a slightly better job than CMIP5,
neither captured all historical transitions of the gauges for wet periods.

2.3.2 Comparison of Downscaled GCM Products to the Gauge

Bias-correction generally improved the mean precipitation for all GCMs’ corrected products, such
as BCCR5-D_Leo and CCSM-D_Leo, thus better capturing rainfall characteristics such as seasonality
(Table 2, Table 3, and Table 4). For instance, downscaling using the BCSA approach generated a new
dataset, CCSM-D_Plant, which more closely matched the historical PDF versus CCSM-Raw as shown in
Figure 2. For August, BCCR3-D_Plant (Figure 3) corrected an over predicted raw GCM resulting in similar
PDF curves compared to the gauge. Although both CCSM-D_Plant (Figure 4) and BCCR5-D_Plant (Figure
5) improved the original raw GCMs, the maximum monthly precipitation in August was still
underestimated, not eliminating all biases. This might result in the corrected GCMs missing some extreme
events, such as tropical storms, that characterize this region. Although not perfect, e.g.: at a low cumulative
frequency between 0.05 to 0.3 on NOAA_Plant displayed lower precipitation than CCSM-D_Plant (Figure
4), or the mean for BCCR3-D_Plant (Table 3) in January was 2.99 cm greater than the gauge, bias-corrected
data which substantially resolved biases of the raw GCMs.

Although basic statistics matched reasonably well, downscaled and bias-corrected GCMs have
limitations evident by the distorted transition probabilities in dry periods. As shown in Table 6, BCCR3-
D_Plant increased the chance of the occurrence of a dry period following another dry period, possibly
accentuating multiple La Nifia years by 24% compared to the gauge. Additionally, BCCR3-D_Plant
increased precipitation in dry period followed by another wet year, potentially implying a 30% escalation
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in persistence of EI Nifio. CCSM-D_Plant closely matched the gauge, whereas CCSM-D_Leo reduced the
resolution of the wet state and the embedded effect of multiple La Nifia years, with a probability of 0.438
compared to 0.529 of the St. Leo gauge (Table 6b). Overall, the downscaled and bias-corrected transition
probabilities deviated by more than 10% in 75% of the climate states.

Assessing CMIP5 dry period results to CMIP3, CMIP5 digressed. For instance, there was a 100%
difference compared to the gauge for BCCR5-D_Leo Current Wet-to-Wet (Table 6f), whereas there was a
-21.4% for BCCR3-D_Leo (Table 6d). There was not one instance where BCCR5-D was similar to any of
the gauges with deviation ranging from -100% to 25%. Furthermore, BCCR5-D_Plant and BCCR5-D_Leo
reduced the chance of the occurrence of a wet period followed by another wet period by 25% and 66.7%,
compared to respective gauges. Furthermore, BCCR5-D_Plant and BCCR5-D_Leo diminished the
possibility of sequential dry periods with transition probabilities of 0.364 and 0.273, respectively, whereas
both gauges were 0.455 (Table 6e and Table 6f). These corrected products decreased the chance of
persistence in the cycles or having extremes since the transition probabilities of the diagonals were reduced
which is not surprising since the raw GCM also did not show persistence of a climate state.

CMIP3 wet period results revealed that downscaling and bias-correcting did not fix errors and in
some cases made things worse. BCCR3-D_Leo, CCSM-D_Plant, and CCSM-D_Leo did not reproduce any
of the transition probabilities of the gauges. In fact, they over predicted remaining in a dry state if already
in a dry state as well as if already in a wet state they had a higher chance of remaining in a wet state. For
instance, BCCR3-D_Leo had a 0.526 transition probability whereas NOAA_Leo was 0.368 for Current
Wet-to-Wet (Table 9d). This over estimation of multiple sequential wet states could impact water resource
planning resulting in water shortages. Moreover, BCCR3-D_Leo had an equal likelihood of a wet or dry
state following a dry state with 0.50 transition probabilities (Table 9d), making it difficult to predict
precipitation conditions. The only instance where the corrected product resembled the gauge was BCCR3-
D_Plant (Table 9¢). Ultimately, the bias-corrected products only captured wet period transition probabilities
25% of the time, failing to replicate historical precipitation patterns for the most critical time for this region,
wet season, when the region receives the majority of their rainfall. CMIP5 downscaled and bias-corrected
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wet period products declined in accuracy for Plant City (Table 9e) but improved for St. Leo (Table 9f)
compared to CMIP3 (Table 9c¢ and Table 9d). BCCR5-D_Plant had a 38.9% increase of Current Wet-to-
Wet state versus the gauge, overstating the availability of water. This same product also increased the
chance of remaining in a dry state for consecutive periods by 53.2%, with 0.583 probability versus gauges
0.273. Although the correct precipitation products, e.g. BCCR3-D_Leo and CCSM-D_Plant, matched the
PDF, the correction process failed to resolve all biases by failing to capture how climate states transition.
2.3.3 Comparison of Downscaled Products to the GCMs

After downscaling and bias-correction of the CMIP3 GCMs, the signals embedded in the GCMs
became distorted. For instance, for dry period, BCCR3-D_Plant was altered by -28.6% for Current Wet-to-
Dry state and by 20% from Current Wet-to-Wet state (Table 7c), over estimating the amount of precipitation
received during dry period. Since BCCR3-Raw transition probabilities were similar to the St. Leo gauge
(Table 5d) but corrected product BCCR3-D_Leo did not match (Table 6d), the sequencing of states in the
raw GCM were altered which could be translated into potential distortion in future predictions. CCSM-D
was also affected; however, in reverse. CCSM-D_Plant (Table 7a) and CCSM-D_Leo (Table 7b) transition
probabilities decreased by 14.3% for Current Wet-to-Wet and increased by 11.1% for Current Wet-to-Dry
compared to the GCM, predicting the dry period has less precipitation. These errors could also be
interpreted as the reduction in the probability of the occurrence of multiple, consecutive wet or potentially
sequential EI Nifio years while increasing the chance of drier years. CMIP5 dry period performance were
just as unreliable as CMIP3 as there was a 50/50 chance of either matching or not matching the transition
probabilities of the GCM since BCCR5-D_Plant (Table 7e) varied greatly but BCCR5-D_Leo 100%
matched (Table 7f). Overall, both CMIP3 and CMIP5 signals were altered compared to the GCMs.
Ultimately, the results illustrate that bias-correction changed the transition states that were modeled in the
GCM by either over or under estimation of wet and dry states. If the correction techniques alter the transition
probabilities of GCMs compared to historical, climate signals embedded in future predictions will also be

misrepresented which could impact water supply planning.
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Similarly, CMIP3 wet period downscaling and bias-correcting products also did not capture the
raw GCMs’ transition probabilities. CCSM-D_Plant over estimated precipitation for Current Wet-to-Wet,
changing the number of consecutive wet periods whereas CCSM-D_ Leo increased the transition probability
by 15.3% for Current Dry-to-Wet, inaccurately amplifying the wet-dry cycle (Table 10a). CMIP5 wet
period corrected products, BCCR5-D_Plant (Table 10b) and BCCR5-D_Leo (Table 10c), produced even
more disparities compared to the GCM than CMIP3. In fact, there were no instances where the transition
probabilities of the corrected products preserved the cycles of the GCM. BCCR5-D_Plant diminished the
chance of a wet-dry cycle with a 0.455 probability compared to BCCR5-Raw’s 0.636 (Table 10b). BCCR5-
D_Plant and BCCR5-D_Leo increased precipitation for Current Wet-to-Wet by 33.3% and 20%,
respectively, while magnifying dry conditions with Current Dry-to-Dry increased by 28.6% and 16.7%,
respectively (Table 10b and Table 10c). Furthermore, the changes in values along the diagonals exhibited
an increased persistence of a wet or dry states compared to the raw GCM, conceivably resulting in more
extremes. It is inconclusive when bias-correction will over or under predict precipitation transition
probability compared to the GCM, but it is probable that similar errors will be transmitted to future GCM
corrected products. Using these tools for planning, water supply operators might over estimate available
water during the over predicted, multiple years of wet-to-wet periods and inadequately designing their
climate change mitigation and adaptation plans.

2.3.4 ENSO Influence on Precipitation

To further examine the ENSO cycle, the dry period results for gauges, GCMs and corrected
products were separated by either La Nifia, Normal or EI Nifio, and the mean of each was calculated. The
‘years,” sum of December, January and February, for La Nifia, Normal or El Nifio were defined by NOAA
and are located in Table 1. Both the Plant City (Figure 6) and St. Leo gauge (Figure 7) data confirmed La
Nifia with below average precipitation, El Nifio with above average precipitation and Normal in-between,
accurately representing the cycle. As seen in Figure 7, the GCMs and downscaled and bias-corrected data
did not capture the variability in precipitation from the ENSO cycle. If present, cycles were not occurring
at the same years as defined by Table 1. Additional investigation, not performed in the research, to examine
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sea surface temperature and calculate the ONI index for the GCMs would be required to confirm the timing
of each phase of the cycle.

To further examine the errors in the transition probabilities for dry season and the ENSO cycle,
Dry Period precipitation were graphed by year (Figure 8 and Figure 9). Although the products match the
statistics of the gauges, the GCM and bias-corrected products do not match the timing of the typical high
and low precipitation associated with the ENSO, justifying one reason why the results above (Figure 6 and
Figure 7) did not have La Nifia with below average precipitation, EI Nifio with above average precipitation
and Normal in-between. Although GCMs were not designed to match the time series, these graphs
demonstrate how bias-correction failed to capture the extremes of the gauges and that the data is skewed.
For instance, in Figure 8 the gauge experiences three high peak precipitation events, 42.85 cm, 45.7 cm and
73.59 cm, during this timeframe; conversely, BCCR3-D_Leo never had precipitation above 42 cm.
Similarly, BCCR5-Plant City graph (Figure 9) portrays the gauge with a precipitation of 67.8 cm whereas
BCCR5-D_Plant never peaks above 47 cm. These numbers confirm that although the products were
downscaled and bias-corrected to match the statistics of the gauges, they did not reproduce extremes, such
as El Nifio events.

These graphs also magnify how at times the bias-correction process also altered the timing of the
events of the raw GCM compared to the corrected product. In 1970 and 1994 on the BCCR3-Leo graph
(Figure 8), BCCR3-Raw had lower-than-average precipitation but BCCR3-D_Leo had above-average
precipitation. In 1940 and 1996, BCCR3-Raw was close to average precipitation whereas BCCR3-D_Leo
was once again higher than the average. These shifts in cycles are also evident in the BCCR5-Plant graph
(Figure 9). In 1990, BCCR5-Raw simulated precipitation close-to-average whereas BCCR5-D_Plant was
extremely low. Additionally, in 1998, BCCR5-Raw had above-average precipitation but BCCR5-D_Plant
was below average. Once again, these errors might translate to skewing future prediction data.

2.4 Conclusion

Matching the transition of climate states in a GCM or downscaled product to historical data is

crucial for future water supply planning. This study evaluated BCCR3, CCSM, and BCCR5 GCMs and
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their downscaled and bias-corrected products for St. Leo and Plant City locations in Tampa Bay, FL. The
following were concluded: (1) The raw GCMs required downscaling and bias-correction since BCCR3-
Raw and BCCR5-Raw had large deviations in the means during the summer months, and CCSM-Raw
deviated throughout the year. CCSM-Raw and BCCR5-Raw did not honor precipitation seasonality for the
region; (2) The corrections of the raw data using the BCSA technique successfully reproduced the basic
statistics of the observed gauge data; (3) The GCM and downscaled and bias-corrected products did not
depict historical climate states for wet or dry periods when compared to gauge data. In some instances, the
raw GCM did a better job capturing these states and in others, the downscaled and bias-corrected products
outperformed the raw GCM; (4) The downscaled and bias-corrected products distorted the timing of the
dry period cycles compared to the raw GCMs. For instance, for one time period, the GCM had above-
average precipitation indicative of a possible El Nifio event but the corrected product did not; (5) Extreme
precipitation in the dry period from strong El Nifio events was not simulated by the GCMs or corrected
products; however, La Nifia events were better captured; (6) Corrected products didn’t preserve GCM
historical transition probabilities. More than likely similar types of deviations will also be occurring for
“future” predictions, potentially suggesting the need to carry forward biases in transition probabilities; and
finally (7) If desiring to capture climatic cycles, a method that accounts for bias in transition probabilities
is likely needed. It is important to note that coming up with sophisticated bias correction technigues cannot
be the solution by itself as there is limitation on what downscaling and bias-correction can achieve. On the
other hand, capturing all elements of climatic processes that are responsible for precipitation for all regions
at GCM level might prove to be extremely difficult and exhibit limitations in their practical applications. A
close working relationship between climate modelers and stakeholders those who are consuming the data
to understand limitations of such products and provide feedback on where improvement may be needed
should go a long way in producing actionable science. Understanding regional scale climatic processes that
impact regional water resources management is an important step. Two such stakeholder-scientist
partnership that are trying to do just that are the Water Utilities Climate Alliance (www.wucaonline.org)
and Florida Water and Climate Alliance (www.floridawca.org). Such continued engagement between
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scientist and stakeholders would result in understanding what’s important for water resources management
decision making and where improvement in climate modeling may need to be focused.
2.5 Tables

Table 1: ENSO cycle years (DJF) (NOAA NWSCPC 2015)

La Nifia 1964, 1966, 1969, 1970, 1973, 1977, 1978, 1980, 1983, 1987, 1988, 1992, 1995, 1998
Normal 1962, 1963, 1967, 1979, 1981, 1982, 1984, 1986, 1990, 1991, 1993, 1994, 1997
El Nifio 1965, 1968, 1971, 1972, 1974, 1975, 1976, 1985, 1989, 1996, 1999

Table 2: Mean and standard deviation for CCSM-Raw, NOAA_Leo, CCSM-D_Leo, NOAA_Plant, and

CCSM-D_Plant

Units: x10?m Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
CCSM-RAW
Mean| 7.53 | 12.61 | 19.26 | 17.26 | 14.17 | 9.81 | 6.82 | 4.38 | 6.74 | 10.51 | 9.16 | 8.01

Standard Deviation| 3.38 | 4.63 | 513 | 452 | 479 | 464 | 3.77 | 347 | 438 | 421 |4.94|3.27
NOAA Leo

Mean| 8.61 | 881 | 10.30 | 5.74 | 10.98 | 17.99 | 19.77 | 20.44 | 16.14 | 6.71 | 6.10 | 6.75

Standard Deviation| 4.36 | 5.33 | 7.89 | 457 | 880 | 9.27 | 6.13 | 886 | 9.19 | 480 |6.22|6.97
CCSM-D_Leo
Mean| 7.09 | 827 | 1050 | 6.13 | 9.16 | 17.07 | 19.06 | 18.59 | 18.12 | 7.97 |5.14 | 6.22

Standard Deviation| 4.12 | 454 | 485 | 474 | 524 | 769 | 493 | 495 | 9.37 | 481 |4.46|5.89
NOAA Plant

Mean| 6.84 | 820 | 861 | 5.01 | 9.32 |19.83 | 19.17 | 21.06 | 15.97 | 6.56 |5.29 | 6.36

Standard Deviation| 4.74 | 535 | 6.71 | 391 | 656 | 9.86 | 6.63 | 7.29 | 8.61 | 443 |4.70|6.80
CCSM-D_Plant
Mean| 6.35 | 799 | 9.75 | 529 | 9.63 |19.20 | 18.88 | 19.17 | 17.13 | 7.90 | 5.01 | 6.34

Standard Deviation| 4.06 | 465 | 471 | 312 | 473 | 655 | 408 | 453 | 7.24 | 448 |4.13|5.70

Table 3: Mean and standard deviation for BCCR3-Raw, NOAA_Leo, BCCR3-D_Leo, NOAA_Plant, and

BCCR3- D_Plant

Units: x102m Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

BCCR3-RAW
Mean| 5.81 | 5.85| 5.04 | 5.49 | 10.51 | 38.87 | 35.19 | 31.31 | 22.68 | 8.28 | 3.34 | 4.54

Standard Deviation| 4.48 | 6.26 | 4.75 | 6.41 | 9.19 | 14.38 | 10.77 | 9.36 | 6.78 | 4.48 | 3.32 | 4.54

NOAA _Leo

Mean| 8.66 | 9.10 | 10.22 | 5.50 | 10.59 | 18.03 | 19.66 | 20.29 | 16.22 | 6.90 | 5.99 | 6.56

Standard Deviation| 4.25 | 6.22 | 7.81 | 455 | 8.73 9.99 6.19 | 865 | 9.30 |4.75|6.08 | 6.82
BCCR3-D_Leo
Mean| 6.92 | 8.15| 10.33 | 6,51 | 9.72 | 18.36 | 19.66 | 18.22 | 18.11 | 7.67 | 5.02 | 5.86

Standard Deviation| 5.64 | 591 | 7.18 | 6.14 | 7.41 8.97 6.02 | 555 | 10.30 | 5.20 | 5.08 | 5.99
NOAA Plant

Mean| 6.65 | 7.31 | 8.65 | 5.39 | 9.50 | 21.45 | 20.11 | 2159 | 17.09 | 6.15|5.01 | 6.21

Standard Deviation| 4.32 | 5.34 | 6.92 | 3.99 | 7.47 | 10.13 | 6.12 | 7.35 | 9.92 | 4.43|4.45 | 6.46
BCCR3-D Plant
Mean| 9.63 | 8.39 | 9.74 | 6.01 | 9.30 | 18,52 | 19.34 | 19.33 | 17.24 | 7.29 | 4.91 | 6.38

Standard Deviation| 4.68 | 6.22 | 7.23 | 4.70 | 7.22 8.53 559 | 6.08 | 7.30 |4.65]|4.89 | 6.33
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Table 4: Average and standard deviation for BCCR5-Raw, NOAA _Leo, BCCR5-D_Leo, NOAA_Plant,

and BCCR5-D_Plant

Units: x102m Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov  Dec
BCCR5-Raw
Mean| 5.46 | 516 | 3.37 | 397 | 449|497 | 272 | 385 | 10.11 | 12.06 | 7.16 | 4.81

Standard Deviation| 3.15 | 3.51 | 1.93 | 3.01 |2.62 | 407 | 1.17 | 2.14 8.60 749 | 454 | 2.75
NOAA_Leo

Mean| 8.97 | 7.99 | 11.47 | 6.49 | 6.55|20.84|20.23 | 19.72 | 18.78 | 7.70 | 6.18 | 6.74

Standard Deviation| 3.54 | 6.80 | 9.24 | 4.84 | 5.60 |10.68| 6.71 | 583 | 11.27 | 4.67 | 6.68 | 8.58
BCCR5-D_Leo
Mean| 7.50 | 7.97 | 11.27 | 6.02 | 6.48 | 21.09|18.70 | 18.95 | 18.09 | 6.92 | 5.70 | 5.74

Standard Deviation| 6.29 | 6.01 | 7.32 | 245 [3.71|10.16| 7.61 | 6.74 9.68 525 | 3.67 | 3.78
NOAA_Plant

Mean| 7.39 | 7.04 | 9.91 | 6.68 | 7.94 |22.06|19.41| 21.14 | 1883 | 655 | 5.09 | 6.82

Standard Deviation| 3.71 | 597 | 8.19 | 4.10 | 6.43 |1044| 6.22 | 848 | 11.73 | 3.94 | 4.07 | 8.63
BCCR5-D Plant
Mean| 6.89 | 7.05 | 9.58 | 6.51 | 6.22 |20.25|18.70| 20.01 | 1790 | 6.95 | 4.87 | 6.71

Standard Deviation| 5.81 | 533 | 543 | 3.93 | 3.38 |10.00| 7.24 | 6.71 9.98 526 | 3.72 | 5.36

Table 5: Compared Dry Period transition probabilities for BCCR3-Raw, BCCR5-Raw and CCSM-Raw

to gauges.
(a) Dry Period: CCSM-Raw & NOAA Plant (b) Dry Period: BCCR3-RAW & NOAA Leo
NOAA Plant Dry Wet Units: X102 m NOAA Leo Dry Wet Units: X102 m

Current Dry 0.467 0.533 Dry is < 18.4851 Current Dry 0.529 0.471 Dry is < 21.385
Current Wet 0.563 0.438 Wet is > 18.4852 Current Wet 0.500 0.500 Wet is > 21.3851

CCSM-Raw Dry Wet BCCR3-RAW Dry Wet
Current Dry 0.500 0.500 Dry is < 28.5155 Current Dry 0.526 0.474 Dry is < 15.7429
Current Wet 0.500 0.500  Wetis > 28.5156 Current Wet 0.529 0.471 Wet is > 15.743

Difference Dry Wet Difference Dry Wet

Current Dry 6.7%  -6.7% Current Dry -0.6% 0.7%

Current Wet ~ -12.5% 12.5% Current Wet 56%  -6.3%

(c) Dry Period: BCCR5-Raw & NOAA Plant (d) Dry Period: BCCR5-Raw & NOAA _Leo

NOAA Plant Dry Wet Units: X102 m NOAA Leo Dry Wet Units: X102 m
Current Dry 0.455 0.545 Dry is <17.8399 Current Dry 0.455 0.545 Dry is < 19.050

Current Wet 0.636 0.364 Wet is > 17.840 Current Wet 0.636 0.364  Wetis > 19.0501

BCCR5-Raw Dry Wet BCCR5-Raw Dry Wet
Current Dry 0.273 0.727 Dry is < 15.8422 Current Dry 0.273 0.727 Dry is < 15.8422
Current Wet 0.818 0.182  Wetis > 15.8423 Current Wet 0.818 0.182 Wet is > 15.8423

Difference Dry Wet Difference Dry Wet
Current Dry -66.7% 25.0% Current Dry -66.7% 25.0%
Current Wet 22.2% -100.0% Current Wet 22.2% -100.0%
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Table 6: Compared Dry Period transition probabilities for BCCR3-D, BCCR5-D and CCSM-D to

gauges.

(a) Dry Period: CCSM-D Plant & NOAA Plant

(b) Dry Period: CCSM-D Leo & NOAA Leo

NOAA Plant Dry Wet Units: x102m | INOAA Leo Dry Wet Units: X102 m
Current Dry 0.467 0.533 Dryis<18.4851 | [Current Dry 0.563 0.438 Dryis<21.3850
Current Wet 0.563  0.438 Wetis > 18.4852 | |Current Wet 0.471 0.529  Wet is > 21.3851
CCSM-D_Plant Dry Wet CCSM-D _Leo Dry Wet

Current Dry 0.500 0.500 Dryis<18.6862 | [Current Dry 0.500 0.500 Dryis<19.2735
Current Wet 0.563 0.438 Wetis> 18.6863 | |Current Wet 0.563 0.438 Wetis > 19.2736
Difference Dry Wet Difference Dry Wet

Current Dry 6.7% -6.7% Current Dry -12.5% 12.5%

Current Wet 0.0% 0.0% Current Wet 16.3% -21.0%

(c) Dry Period: BCCR3-D_Plant & NOAA_Plant

(d) Dry Period: BCCR3-D Leo & NOAA Leo

NOAA Plant Dry Wet Units: x102m | INOAA_Leo Dry Wet Units: X102 m
Current Dry 0.438 0.563 Dryis<18.4851 | |Current Dry 0.529 0.471 Dry is < 21.385
Current Wet 0.588  0.412 Wetis > 18.4852 | |Current Wet 0.500 0.500  Wetis >21.3851
BCCR3-D Plant  Dry Wet BCCR3-D_Leo  Dry Wet

Current Dry 0.579  0.421 Dryis<23.1155| [Current Dry 0.421 0.579 Dryis<20.1284
Current Wet 0412  0.588 Wetis>23.1156 | |Current Wet 0.588 0.412  Wetis > 20.1285
Difference Dry Wet Difference Dry Wet

Current Dry 24.4% -33.6% Current Dry -25.7% 18.7%

Current Wet -42.9% 30.0% Current Wet 15.0% -21.4%

(e) Dry Period: BCCR5-D_Plant & NOAA Plant

(f) Dry Period: BCCR5-D _Leo & NOAA_Leo

NOAA Plant Dry Wet Units: x102m | INOAA Leo Dry Wet Units: X102 m
Current Dry 0.455 0.545 Dryis<17.8399 | [Current Dry 0.455 0.545 Dry is < 19.050
Current Wet 0.636  0.364 Wetis>17.840 | |Current Wet 0.636 0.364  Wetis > 19.0501
BCCR5-D_Plant  Dry Wet BCCR5-D_Leo  Dry Wet

Current Dry 0.364 0.636 Dryis<20.2092 | |Current Dry 0.273 0.727  Dry is <23.1660
Current Wet 0.727  0.273  Wet s >20.2093 | [Current Wet 0.818 0.182  Wet s > 23.1661
Difference Dry Wet Difference Dry Wet

Current Dry -25.0% 14.3% Current Dry -66.7% 25.0%

Current Wet 12.5% -33.3% Current Wet 22.2% -100.0%
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Table 7: Compared Dry Period transition probabilities for BCCR3-D, BCCR5-D and CCSM-D to their

(a) Dry Period: CCSM-D _Plant & CCSM-Raw

respective Raw GCMs.

(b) Dry Period: CCSM-D Leo & CCSM-Raw

CCSM-Raw Dry Wet Units: X102 m CCSM-Raw Dry Wet Units: X102 m
Current Dry 0.500 0.500 Dry is < 28.5155 Current Dry 0.500 0.500 Dryis<28.5155
Current Wet 0.500 0.500 Wet is >28.5156 Current Wet 0.500 0.500 Wetis > 28.5156
CCSM-D_Plant Dry Wet CCSM-D_Leo Dry Wet

Current Dry 0.500 0.500 Dry is<18.6862 Current Dry 0.500 0.500 Dryis<19.2735
Current Wet 0.563 0.438  Wet is > 18.6863 Current Wet 0.563 0.438 Wetis>19.2736
Difference Dry Wet Difference Dry Wet

Current Dry 0.0% 0.0% Current Dry 0.0% 0.0%

Current Wet 11.1% -14.3% Current Wet 11.1% -14.3%

(c) Dry Period: BCCR3-D_Plant & BCCR3-RAW

(d) Dry Period: BCCR3-D Leo & BCCR3-RAW

BCCR3-RAW Dry Wet Units: X102 m BCCR3-RAW Dry Wet Units: X102 m
Current Dry 0.526 0.474 Dryis<15.7429 Current Dry 0.526  0.474 Dryis<15.7429
Current Wet 0.529 0471  Wetis>15.743 Current Wet 0529 0471 Wetis>15.743
BCCR3-D_Plant Dry Wet BCCR3-D _Leo Dry Wet

Current Dry 0.579 0.421 Dryis<23.1155 Current Dry 0.421 0579 Dryis<20.1284
Current Wet 0.412 0.588 Wetis >23.1156 Current Wet 0.588 0.412 Wetis>20.1285
Difference Dry Wet Difference Dry Wet

Current Dry 9.1%  -12.5% Current Dry -25.0% 18.2%

Current Wet -28.6%  20.0% Current Wet 10.0% -14.3%

(e) Dry Period: BCCR5-D Plant & BCCR5-Raw

(f) Dry Period: BCCR5-D _Leo & BCCR5-Raw

BCCR5-Raw Dry Wet Units: X102 m BCCR5-Raw Dry Wet Units: X102 m
Current Dry 0.273 0.727  Dry is < 15.8422 Current Dry 0.273  0.727 Dryis<15.8422
Current Wet 0.818 0.182  Wetis > 15.8423 Current Wet 0.818 0.182 Wetis > 15.8423
BCCR5-D_Plant Dry Wet BCCR5-D_Leo  Dry Wet

Current Dry 0.364 0.636  Dry is < 20.2092 Current Dry 0.273  0.727 Dryis<23.1660
Current Wet 0.727 0.273  Wet s > 20.2093 Current Wet 0.818 0.182 Wetis > 23.1661
Difference Dry Wet Difference Dry Wet

Current Dry 25.0% -143% Current Dry 0.0% 0.0%

Current Wet -12.5%  33.3% Current Wet 0.0%  0.0%

20




Table 8: Compared Wet Period transition probabilities BCCR3-Raw, BCCR5-Raw and CCSM-Raw

compared to gauges.

(a) Wet Period: CCSM-Raw & NOAA Plant

NOAA Plant Dry Wet Units: X102 m
Current Dry 0.471 0.529 Dry is < 52.2899
Current Wet 0.556 0.444 Wet is > 52.2900
CCSM-Raw Dry Wet

Current Dry 0.529 0.471 Dry is < 17.4929
Current Wet 0.500 0.500 Wet is > 17.4930
Difference Dry Wet

Current Dry 11.1% -12.5%

Current Wet -11.1%  11.1%

(b) Wet Period: BCCR3-RAW & NOAA Leo

NOAA Leo Dry Wet Units: X102 m
Current Dry 0.333 0.667 Dry is < 56.2249
Current Wet 0.632 0.368 Wet is > 56.2250
BCCR3-RAW Dry Wet

Current Dry 0.500 0.500 Dry is < 89.7145
Current Wet 0.526 0.474 Wet is > 89.7146
Difference Dry Wet

Current Dry 33.3% -33.3%

Current Wet -20.0%  22.2%

(c) Wet Period: BCCR5-Raw & NOAA_Plant

NOAA Plant Dry Wet Units: X102 m
Current Dry 0.273 0.727 Dry is <52.6900
Current Wet 0.667 0.333 Wet is > 52.6901
BCCR5-Raw Dry Wet

Current Dry 0.417 0.583 Dry is < 15.0802
Current Wet 0.636 0.364 Wet is > 15.0803
Difference Dry Wet

Current Dry 345% -24.7%

Current Wet -4.8% 8.3%
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Table 9: Compared Wet Period transition probabilities for BCCR3-D, BCCR5-D and CCSM-D to

gauges.

(a) Wet Period: CCSM-D Plant & NOAA Plant

(b) Wet Period: CCSM-D Leo & NOAA Leo

NOAA Plant Dry Wet Units: X102 m NOAA Leo Dry Wet Units: X102 m
Current Dry 0471 0529 Dryis<52.2899 | |Current Dry 0.333  0.667 Dryis<56.2249
Current Wet 0.556  0.444 Wetis>52.2900| |Current Wet 0.647  0.353 Wetis > 56.2250
CCSM-D_Plant Dry Wet CCSM-D _Leo Dry Wet

Current Dry 0.556  0.444 Dryis<53.8154 | |Current Dry 0.444 0.556 Dryis <55.9655
Current Wet 0.412 0.588 Wetis>53.8155| |Current Wet 0.529 0.471 Wetis > 55.9656
Difference Dry Wet Difference Dry Wet

Current Dry 15.3% -19.1% Current Dry 25.0% -20.0%

Current Wet -34.9% 24.4% Current Wet -22.2% 25.0%

(c) Wet Period: BCCR3-D_Plant & NOAA_Plant

(d) Wet Period: BCCR3-D_Leo & NOAA Leo

NOAA Plant Dry Wet Units: X102 m NOAA Leo Dry Wet Units: X102 m
Current Dry 0.474 0526 Dryis<52.6900 | [Current Dry 0.333  0.667 Dry is<56.2249
Current Wet 0.556 0.444 Wetis>52.6901 | |Current Wet 0.632 0.368 Wet is>56.2250
BCCR3-D _Plant  Dry Wet BCCR3-D_Leo Dry Wet

Current Dry 0.444 0556 Dryis<55.7651 | [Current Dry 0.500 0.500 Dryis<56.8119
Current Wet 0.526 0.474 Wetis>55.7652 | |Current Wet 0474 0.526 Wet s > 56.8120
Difference Dry Wet Difference Dry Wet

Current Dry -6.6% 5.3% Current Dry 33.3% -33.3%

Current Wet -5.6% 6.2% Current Wet -33.3% 30.0%

(e) Wet Period: BCCR5-D Plant & NOAA Plant

(f) Wet Period: BCCR5-D Leo & NOAA Leo

NOAA Plant Dry Wet Units: X102 m NOAA Leo Dry Wet Units: X102 m
Current Dry 0.273  0.727 Dryis<52.6900 | |Current Dry 0.545 0.455 Dry is<58.9000
Current Wet 0.667  0.333 Wetis>52.6901 | |Current Wet 0.500  0.500 Wet is > 58.9001
BCCR5-D Plant  Dry Wet BCCR5-D_Leo Dry Wet

Current Dry 0.583 0.417 Dryis<57.5614 | [Current Dry 0.500 0.500 Dryis<57.5876
Current Wet 0.455 0.545 Wetis>57.5615| |Current Wet 0545 0.455 Wetis >57.5877
Difference Dry Wet Difference Dry Wet

Current Dry 53.2% -74.5% Current Dry -91%  9.1%

Current Wet -46.7% 38.9% Current Wet 8.3% -10.0%
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Table 10: Compared Wet Period for BCCR3-D, BCCR5-D and CCSM-D to their respective Raw GCMs.

(a) Wet Period: CCSM-D_Leo & CCSM-Raw

CCSM-Raw Dry Wet Units: X102 m
Current Dry 0.529 0.471 Dry is < 17.4929
Current Wet 0.500 0.500 Wet is > 17.4930
CCSM-D_Leo Dry Wet

Current Dry 0.444 0.556 Dry is < 55.9655
Current Wet 0.529 0.471 Wet is > 55.9656
Difference Dry Wet

Current Dry -19.1%  15.3%

Current Wet 5.6% -6.3%

(b) Wet Period: BCCR5-D_Plant & BCCR5-Raw

BCCR5-Raw Dry Wet Units: X102 m
Current Dry 0.417 0.583 Dry is < 15.0802
Current Wet 0.636 0.364 Wet is > 15.0803
BCCR5-D Plant Dry Wet

Current Dry 0.583 0.417 Dry is <57.5614
Current Wet 0.455 0.545 Wet is > 57.5615
Difference Dry Wet

Current Dry 28.6% -40.0%

Current Wet -40.0%  33.3%

(c) Wet Period: BCCR5-D Leo & BCCR5-Raw

BCCR5-Raw Dry Wet Units: X102 m
Current Dry 0.417 0.583 Dry is < 15.0802
Current Wet 0.636 0.364 Wet is > 15.0803
BCCR5-D _Leo Dry Wet

Current Dry 0.500 0.500 Dry is < 57.5876
Current Wet 0.545 0.455 Wet is > 57.5877
Difference Dry Wet

Current Dry 16.7% -16.7%

Current Wet -16.7%  20.0%
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Figure 1: CMIP3 and CMIP5 GCM locations and rain gauge locations for Tampa Bay, FL region
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Figure 2: January PDF for NOAA_Plant, CCSM-Raw, and CCSM-D_Plant
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Figure 3: August PDF for NOAA_Plant, BCCR3-Raw, and BCCR3-D_Plant
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Figure 4: August PDF for NOAA_Plant, CCSM-Raw, and CCSM-D_Plant
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Figure 6: BCCR3-Plant City average precipitation for ENSO cycle
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Figure 7: BCCR5-St. Leo average precipitation for ENSO cycle
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CHAPTER 3: ASCERTAINING IF GENERAL CIRCULATION MODELS REPLICATE

HISTORIC PERFORMANCE METRICS FOR HYDROLOGIC AND SYSTEMS SIMULATIONS

3.1 Introduction

Water managers are challenged to adapt supply sources and infrastructure systems to the reality of
climate change. In 2017, the United Nations stated that by 2030 1.8 billion people will live in regions with
extreme water scarcity (United Nations 2017). This concurred with the Intergovernmental Panel on Climate
Change’s (IPCC’s) Fifth Assessment Report which estimated that many regions will suffer from reduced
water supply by 2040. Inadequate water supply puts human lives at risk by creating food shortages and
reducing potable drinking water, stressing the necessity for planning (IPCC 2014a).

To assess future water availability, hydrologists employ precipitation from general circulation
models (GCMs) as inputs to drive streamflow and system simulation models. These GCMs incorporate
various representative concentration pathways emission levels to model global climate response to
greenhouse gas concentrations from air pollutant emissions and land use changes to capture a range of
future scenarios (IPCC 2014b). The World Climate Research Programme’s Coupled Model
Intercomparison Project 5 (CMIP5 Lawrence Livermore National Laboratory of the U.S. Department of
Energy, http://www-pcmdi.llnl.gov/projects/pcmdi/) provides access to data from several climate models
such as BCC-CSM, CSIRO, GFDL-ESM2M and MIROC (see Table 11). Because GCMs are designed at
a coarse scale, ~250 km to 600 km, they require downscaling to employ in regional and local hydrologic
simulation models (IPCC 2013). Statistical downscaling techniques include bias-correction and constructed
analog (BCCA), bias-correction and spatial disaggregation (BCSD), and bias-correction and stochastic

analog method (BCSA) (Panaou et al. 2016; Gutmann et al. 2014; Hwang and Graham 2013a).
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Due to spatial disparities, downscaled products result in residual biases and errors. For instance,
Panaou et al. (2018) revealed that GCM and downscaled and bias-corrected data failed to capture historical
climate cycles and the oscillations between wet and dry precipitation states or extremes associated with El
Nifo events. Further, when GCM precipitation was employed as inputs to hydrologic models, GCM errors
propagated to simulated streamflow. Hwang et al. (2013b) showed how an integrated hydrologic model
(IHM) streamflow outputs that were driven by GCMs differed from an IHM simulation produced with
actual historical rainfall. However, it is unclear whether these mismatches would translate from the GCM
precipitation to streamflow simulations, to the system model, and then ultimately the reservoir system. This
research aimed to examine these impacts on reservoir operations via performance metrics because it is
crucial to understand potential model simulation discrepancies for future water supply planning and
adaptation.

To evaluate water supply systems, water managers have employed Reliability, Resilience and
Vulnerability (RRV) performance metrics. In their popular forms, RRV was first introduced by Hashimoto,
Loucks and Stedinger in 1982. Since then they have been used in a wide range of applications (e.g. Fowler
etal. 2003, Asefa et al. 2014). Frequently, GCM precipitation feed in systems models providing streamflow
outputs, enabling one to assess the performance of water supply systems in a changing climate. However,
few studies have looked at all RRVs through the lens of GCM outputs (e.g. Soundharajan et al. 2016,
Sandoval-Solis et al. 2011, Fowler et al. 2003, Yang et al. 2012, Seung Beom et al. 2015, Amarasinghe et
al. 2016.). Soundharajan et al. (2016) assessed climate change’s impact on the Pong reservoir in India. The
authors utilized a rainfall-runoff model with delta perturbations to simulate future scenarios versus
employing GCMs outputs directly into a hydrologic model. Sandoval-Solis et al. (2011) developed a
sustainability Index to evaluate multiple water management policies by aggregating RRV indices. In
contrast to this research, they compared scenarios of water management and policies, but did not consider
climate change. Fowler et al. (2003) examined the influences of climate change on droughts in northern
England via RRV. Although insightful, this study did not utilize CMIP5 GCMs but weather type frequency
(Jenkinson and Collinson (1977)) using mean rainfall statistics and potential evapotranspiration. Yang et
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al. (2012) investigated the impacts of climate change on water resources in Southern Taiwan using a
weather generator to drive reservoir operation and hydrological simulation models using earlier GCMs,
A1B emission scenario. They focused on identifying a drought risk index for their region by comparing
three drought indexes, the sustainability index, modified sustainability index and drought risk index.
Although insightful, it did not ascertain if GCMs could replicate each of the historic RRV metrics for a
reservoir system. Seung Beom et al. (2015) employed GCMs to examine water supply for the Han River
basin of Korea. This research examined both historical and future projections, but developed a conservative
approach by assigning weights to IPCC’s Fourth Assessment Report scenarios. Further, it refrained from
using performance metrics to evaluate if GCMs were a suitable tool to downscale precipitation inputs to
reservoir simulations. Amarasinghe et al. (2016) studied the impacts of reduced precipitation due to climate
change on the resiliency of a water supply system. Resiliency was calculated for a water distribution
network using pressure to evaluate the water grid system. The designed system was set to operate at a
specific level of pressure and a drop in pressure reduced the level of service triggering a failure state.
Failure to estimate future water availability could result in water crisis, potentially leading to life
threatening disasters. Furthermore, suppliers might implement different tactics and infrastructure
development depending on a projected climate scenario. For instance, if models projected increased
frequency of higher intensity storms that favors runoff, water resources managers might recommend
increasing reservoir storage to capture larger fractions of streamflow. Conversely, if there is less annual
precipitation, suppliers might opt for water reuse and water conservation strategies or other sources such as
desalinated sea water. Therefore, it is critical to understand the nature of GCMs downscaled precipitation
and whether it can accurately reproduce historical streamflow and, consequently, reservoir operations,
before using GCMs to predict future climate scenario. This study aimed to determine if utilizing
precipitation from GCMs as an input to a streamflow model is a feasible option, by providing an innovative
assessment of both GCMs, hydrological reservoir tributaries and water supply systems. We are not aware
of a study that considered a variety of performance metrics including reliability, resilience, vulnerability
and sustainability, to evaluate the viability of employing GCMs downscaled precipitation into a streamflow
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model to simulate a water supply and reservoir system. This research will increase the understanding of the
GCMs capabilities and limitations prior to employment for water supply projections and mitigation.
3.2 Materials and Methods

For this research, the Greater Tampa Bay, Florida region was selected for the case study (Figure
10). Downscaling was performed via BCSA technique, which was found better suited for this area (e.g.
Hwang and Graham 2013a). During downscaling, this stochastic process produced realizations of daily
GCM precipitation that preserved the observed temporal frequency distribution of daily rainfall over space
and spatial autocorrelation. The biases were then corrected by matching the GCM’s cumulative distribution
function (CDF) to historical rain gauge data observed at the local scale per respective month. Tampa Bay
Water, the region’s water supplier, developed a surface water modeling simulator, Flow Modeling System
Version 2 (FMS2), to evaluate impacts of precipitation variability on water supply (Asefa et al. 2014).
FMS?2 is a stochastic model that simulates regional surface water supply source flows in the Hillsborough
and Alafia rivers watersheds by utilizing monthly precipitation inputs at St. Leo, Plant City and Cypress
Creek gauges (Figure 11). Employing a fully-exogenous, seasonal-multivariate linear regression model
(SMLR), FMS2 generates stochastic time series ensembles for source flows to Tampa Bay regional surface
water supply systems, specifically monthly flows at the Alafia River and entering the Hillsborough
Reservoir/Tampa Bypass Canal (TBC) based on monthly precipitation. These flow locations include Alafia
River at Bell Shoals, the Hillsborough River at Morris Bridge, and ungauged groundwater inflow and runoff
into the TBC Lower and Middle Pools (Table 12). A multivariate, nonparametric disaggregation algorithm
converts a simulated monthly flow time series to a corresponding daily flow time series. It then transforms
flows to a daily time scale to match daily permit rules shown in Table 13 (Asefa et al. 2014).
3.2.1 Rainfall-Runoff Model

Precipitation from three gauges, St. Leo, Plant City and Cypress Creek (Figure 11), were used as
inputs into SMLR rainfall-runoff model. This model is briefly explained below and details are in Asefa at
al. (2014). Streamflow is estimated as:

Ve = Qrt+ xgfrte &~ N Ze) )
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where y; represents the estimated streamflow; a.. is a 1-by-n vector of model intercepts specific to season 1
= 1(t); and X, is the predictor value for season t = 7(t) and time t.
a; = [am, am] dr et (1xn) (6)
T in X:tallows for different predictor values to be applied in different seasons. B- is a p-by-n matrix
of regression coefficients used only during season t = t(t). For each unique seasonal value in <, there are a
total of ||z|| different B. matrices.
[31,11 .Br,1n]

Br = dr €T (pxn) (7)

et - Bopn

The impact of the predictor x; on predict and y; during season t is explained by each element B.j;,
row je[1 ...p] and columnie [1 ...n] of B.. Lastly, the residual €. is assumed to obey a multivariate normal
distribution with stationary 1-by-n vector with 0 mean and n-by-n variance-covariance matrix X . specific
to season t = t(t). When estimates &, 8, and %, . are determined for a., B and Z. in each season, an
SMLR is specified. The SMLR parameters is computed by a least-square estimation; a separate analysis is
performed for each season (Asefa et al. 2014).
3.2.2 Daily Flow Generations

While the precipitation in the rainfall-runoff model was at a monthly time step, operational models
were simulated at a daily time scale to coincide with river flow daily withdrawal permits. To achieve this,
a multi-variate nonparametric disaggregation procedure converted the models outputs using a family of K-
Nearest Neighbor algorithms. Resampling from historical data for triplet streamflow traces was performed
in a transformed space that was insensitive to the actual data size at a given stream flow location. This
allowed for consideration of all three locations even though stream flow magnitudes varied, while the
similarity measure was not overpowered by one stations values. This procedure preserved daily flow
characteristic when transitioning from one month to the next month, which was vital for daily operational

models. (For further details on the streamflow model see Asefa et al. 2014).
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3.2.3 Performance Metrics

Reliability, Resilience, Vulnerability and Sustainability were adapted as metrics to evaluate the
system’s performance. Reliability evaluated how often the water supply system was in a satisfactory state
and was calculated as the ratio of total number of satisfactory outcomes to total possible number of
outcomes during the planning period (Equation 8). Satisfactory states are typically defined using system
level variables such as target reservoir storage levels at time t, or meeting system demand at time t. In this

case, performance metrics were calculated from simulated reservoir water level X; series.
T 1
Reliability: Rel = - 1Z, (8)

where Rel was the probability that a system was in satisfactory state, and Z=1 if X; € S and Z=0 if X; €
F; n was the total number of time steps which was 8766 days for these simulations; and S and F represented
Success and Failure (unsatisfactory) states, respectively. In this study, an unsatisfactory state was triggered
when the reservoir’s elevation dropped below 26 meters (m). The system then remained in failure state until
reservoir recovered to 30.5 m as shown in Figure 12. Reliability ranges from zero and one, with one being
the most reliable and zero being least reliable (Asefa et al. 2014; Hashimoto et al. 1982; Loucks 1997).
Resilience measured the ability of a system to rebound from adversaries. It is typically defined as
the ratio between the number of rebounds to the total time spent in an unsatisfactory state. Hashimoto et al.
(1982) suggested that resilience reflected the expected length of time the system spent in an unsatisfactory
state. However, since the system was forced to be in unsatisfactory state for prolonged period of time due
to the 30.5 m recovery criteria, due to permits restricting unlimited water withdrawal, the resilience metric
was examined at a monthly time step (30 days) (Equation 9). This provided an improved and better informed

assessment of the system due to the constraints.

e _ _ZeaWe
Resilience: Res = -x5i—n (9)

W, indicated transition of the event from failure state to satisfactory state where W; =1 if X; € F and X1 €

S, and W; =0 otherwise; Z=1 if X; € S and Z=0 if X; € F; and n was the total number of time steps.
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Resilience ranges from zero and one, with one being the most resilient and zero being least resilient (Chanda
et al. 2014; Hashimoto et al. 1982; Loucks 1997).

Vulnerability described the severity of system once entering an unsatisfactory state. Severity could
be represented in terms of quantity or loss of water production, and represented the average maximum
deficit possible during failure event (Loucks 1997). For instance, Tampa Bay’s C.W. Bill Young Reservoir
would be more vulnerable if the reservoir level dropped to an elevation of 23 m and rebounded in a week
to an elevation of 30.6 m, versus if the reservoir level fell to 28 m and gradually recovered over several
weeks. For this research, two forms of the equation were implemented, the maximum vulnerability (Vul
Max) and the average vulnerability (Vul Avg) (Equations 10 and 11). The Vul Max examined only the most
severe event over the entire period of record, whereas and the VVul Avg computed the vulnerability for each
unsatisfactory event and then calculated the average. The Vul Max is traditionally examined, however, for
water supply and planning it was deemed essential to extrapolate the average to improve system
understanding. Since Vul Max would only occur one time, Vul Avg provided increased insight to typically
elevation failures to allow for enhanced comparison of baseline and simulated GCM reservoir models by

validation through multiple markers.

ppel _ MaX 1 l'lj C—Yt

Vulnerability: Max Vul—j _ Lm{;izt:l (C_Ymm)} (10)
I _leom (Lony [ C-Y

Vulnerability: Avg Vul = m21'=1 {nj PN (c — Ymin)} (12)

where j = 1,...m was running index for event failure with each event failure lasting n; period in
unsatisfactory states; and C was the Criterion to exit from an unsatisfactory state, in this case the reservoir
level at 30.5 m; n was the number of time steps for the event period; m was the number of unsatisfactory
events; Y was the elevation of the reservoir at that time step; and Y min Was the minimum possible reservoir
elevation at 22.8 m. Vul varies from zero to one, with zero being least vulnerable and one most vulnerable
(Goharian 2016; Asefa et al. 2014).

Finally, calculating the geometric mean of reliability, resilience and vulnerability, the sustainability
or the endurance of the system was assessed.
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Sustainability: SI = (Rel * Res *(1- Vul)) 3 (12)
where Sl is the Sustainability Index that ranges from zero to one, with one being the most sustainable and
zero least sustainable. Rel is reliability, Res is resilience, and Vul is vulnerability which represents either
Vul Max or Vul Avg (Linhoss and Ballweber 2015; Sandoval-Solis et al. 2011, Jain 2010).

3.3 Results and Discussion
3.3.1 Reliability, Resilience, Vulnerability and Sustainability Metrics

Figure 13 presents performance metrics for the reservoir system from simulations that utilized
precipitation inputs from eight retrospective GCMs (GCMs-Sim) compared to a model driven by observed
historical gauge data (Historical) for the same period of record. All GCMs-Sim predicted slightly more
reliable reservoir (~0.88 to ~0.91) versus the model driven by historical rainfall (~0.87) (Figure 13a). This
was an average increase of 3.55% in reliability, suggesting the system had fewer unsatisfactory days. Since
all reliability metrics were close to one, this indicated that the reservoir was in a satisfactory state majority
of the time.

The majority of GCMs-Sim predicted more resilient system than a model driven by historical
rainfall whereas two GCMs-Sim, namely BCCR and GFDL-ESM2G, predicted less resilient system.
Historical resiliency was 0.21, whereas GCMs-Sim data ranged from 0.12 to 0.24 (Figure 13b). The largest
deviations were NorESM1 and GFDL-ESM2G with a -75.79% and -55.36% difference, respectively,
whereas GFDL-CM only differed by 0.92%. These metrics translated into the length of time the system
remained in an unsatisfactory state. Using historical precipitation, the reservoir remained in an
unsatisfactory state for an average of 146 days per failure event, whereas the GCMs-Sim varied from 124
days (BNU) to 256 days (NorESM1) as shown in Table 14. Although all GCM driven simulations showed
higher reliability, entry and exit to an event period were widely different among GCMs-Sim. For instance,
GFDL-ESM2G remained in an unsatisfactory state for 577 days (2/12/2000-9/10/2001) and NorESM1 578
days (2/9/2000-9/8/2001), whereas Historical entered 1/15/2000 and recovered after summer precipitation
on 8/31/2000 (229 days), and then returned to an unsatisfactory state in the dry season and remained in that
state for 310 days (11/18/2000-9/23/2001) (Table 15). This period coincided with a La Nifia cycle, which

36



typically reduces precipitation in the dry season for this region; however, some GCMs-Sim over predicted
the reduction and the reservoir level struggled to recovered during the wet season. There were no large
differences in precipitation during this time frame; however, slight differences over multiple months and
also how precipitation changed over time affected reservoir levels. These differences propagated to the
sensitivity of the system to precipitation and water withdrawal limitations due to permit. Furthermore,
requiring the system to rebound back to 30.6 m to emerge from an unsatisfactory event reduced the
resiliency metrics. This definition limited oscillation between satisfactory and unsatisfactory states and
lengthened the number of days to rebound, resulting in prolonging the recovery from the failure event. In
water supply, it is important to maintain stability and not constantly alarm consumers. Therefore, it was
imperative to ensure that once the system recovered from an unsatisfactory event it remained satisfactory
for an extended period, hence the 30.6 m criteria was adopted by Tampa Bay Water.

Maximum vulnerability (Max Vul) metric examined the gravity of the most severe unsatisfactory
event. None of the GCMs-Sim outputs replicated Historical’s 0.87, with values ranging from 0.82 to 0.89
(Figure 13c). BCCR had the largest disparity with a -4.53% difference, followed by GFDL-ESM with -
3.98%. Five of the GCMs-Sim were below Historical, indicating the system was not as vulnerable, an under
prediction. Compared to Max Vul, the Avg Vul metric was even more under estimated. The Avg Vul
incorporated the lowest and highest vulnerability values and described the average magnitude of a failure
event over the entire period of record. Differences in Avg Vul were even larger at -7.77% (BCCR), -7.41%
(GFDL-ESM2G), and -7.13% (CSIRO), although Historical Avg Vul decreased to 0.74 compared to Max
Vul at 0.87. GCMs-Sim metrics fluctuated from 0.69 to 0.75 for Avg Vul, with seven of the GCMs-Sim
displaying improved performance compared to Historical (Figure 14a). Further, when comparing Max Vul
to Avg Vul, BNU, CSIRO and GFDL-CM were higher than Historical, i.e. more vulnerable (Figure 13c);
however, for Avg Vul they were less vulnerable (Figure 14a). All vulnerability metrics were closer to one,
indicating that on average when the system dropped below 30.6 m and got into an unsatisfactory state, the
magnitude of the unsatisfactory state (how far the reservoir elevation dropped) was severe. All GCMs
except MPI (0.75) underpredicted Historical’s vulnerability (0.74) with values ranging from 0.69 to 0.72.
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Finally, sustainability was a composite performance metric. Since two vulnerability metrics were
determined, two sustainability values were also derived, Maximum Sustainability (Max Sus) and Average
Sustainability (Avg Sus) (Figure 13d and Figure 14b). For Max Sus, the GCMs-Sim and Historical ranged
from 0.27 to 0.34, indicating that the system was not very sustainable. Both the low resiliency values and
high vulnerability results affected these values (Figure 13b). Most of the GCMs-Sim fluctuated from
baseline with the largest deviations occurring in NorESM1 (16.99%), BCCR (16.40%), GFDL-ESM2G
(13.30%) and MIROC (13.02%), and the smallest in GFDL-CM (-3.45%). The Avg Sus metrics (Figure
14b) improved compared to Max Sus with GCMs-Sim values ranging from 0.37 to 0.42, over predicting
baseline (0.36). Compared to Historical, the largest deviations occurred in NorESM1 (14.05%), MIROC
(13.43%) and BCCR (12.61%). MPI had the smallest divergence with 2.80% difference. Since both Max
Sus and Avg Sus metrics were closer to zero, it further emphasized the system’s inability to supply water
for a prolonged period of time during unsatisfactory events. Therefore, diversifying sources of water supply
is preferable since an unsatisfactory state persisted for over a year for some events. Although sustainability
numbers were low, it is important to remember that the system was in a satisfactory state for most of the
record. For instance, Historical was in an unsatisfactory state 13.3% of time, and therefore the system was
able to meet water supply demand around 86.7% of the time. Diversifying supply sources, however, can
help the system during the long failure events.

Performance metrics are an important tool for understanding whether streamflow simulated for
retrospective runs reproduced key indicators that water resources managers rely upon. Differences among
GCMs could be attributed to rainfall persistence in either wet or dry states over several seasons that was
not quite capture by these models, which in turn impacted streamflow. Had streamflow and reservoir
simulations only been compared via statistics, results would have shown negligible variations in GCMs-
Sim statistics for the reservoir elevation (Table 16). This would not have provided information on how
things changed on a daily time scale and if the system fell below a satisfactory state. Further, statistics were
conflicting as it showed differences in the mean, minimum flow, and maximum flow values for Alafia, but
Morris Bridge had minimal divergences (Table 17).
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3.3.2 Statistical Analytics

Because basic statistics were inconclusive for the retrospective GCM precipitation and simulated
streamflow compared to historical runs, the streamflow CDFs were evaluated to explain the discrepancies
in the metrics (Figure 15 and Figure 16). Table 18 and Table 19 displayed experimental CDF at values
above the permit level where water withdrawal was feasible. Although biases in GCM precipitation were
corrected using the CDF match method (example shown in Figure 17), there were variances in the
streamflow CDFs. For instance, at the minimum threshold of 65 mgd to allow withdrawal from Morris
Bridge, Historical CDF was 0.385 whereas BNU, BCCR, GFDL-CM, GFDL-ESM3G, MIROC and MPI
were significantly lower (Table 18). This potentially propagated into the GCMs-Sim generating more
opportunities to withdraw water than Historical, which could have resulted in dissimilarities in reservoir
water levels. Similarly, for Alafia, at 83 mgd Historical CDF was 0.253 but BCCR, GFDL-CM, GFDL-
ESM2G and MPI had lower generated CDF values (Table 19). The precipitation inputs to the streamflow
model attributed to the differences seen in the metrics. Figure 17 portrayed how below 0.30 CDF, the
downscaled GCM’s precipitation was consistently higher than gauge observation at Plant City station. For
instance at CDF of 0.15, CCSM_Plant (GCM downscaled to the Plant City gauge location) precipitation
was 15 mm whereas actual NOAA gauge data (NOAA_Plant) was 12 mm. Furthermore, the CDF revealed
a smoothing of GCM precipitation data (Figure 17). The Plant City NOAA rain gauge data ranged between
9 mm and 36 mm with a narrow spread between the data points, whereas the GCM ranged between 7.5 mm
and 30 mm exhibiting a wider range of variability. These discrepancies translated into the streamflow
simulations, resulting in variations in the performance metrics which generally increased the reliability and
sustainability indices generated by GCMs retrospective runs compared to Historical.

Box-and-whisker plots provided a clear visual statistical summary. The box-and-whisker plots for
Morris Bridge (Figure 18a-l) and Alafia (Figure 19a-1) used a logarithmic scale. Although there were
differences during the winter months, the plots displayed more inconsistency in streamflow during the
summer between July and September, when this region received two-thirds of its precipitation. For instance,
Morris Bridge July plot revealed that Historical (baseline) had a median close to 100 mgd with a wide range
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in the 25" percentile versus 75" percentile (Figure 18g). Conversely, the median was higher for all GCMs-
Sim except GFDL-CM. Furthermore, BNU, BCCR, CSIRO, GFDL-ESM2G and NorESM1 were less
skewed compared to Historical. Similarly, there were also deviations in the Alafia plots (Figure 19a-I), with
varied representations in the median, 25" percentile versus 75" percentile versus baseline.
3.3.3 Autocorrelation

Figure 20(a-i) and Figure 21(a-i) displayed the serial correlation for Morris Bridge and Alafia daily
flows for the summer months (June through September). The time lag at which autocorrelation approaches
zero, represented the memory of the system as seen in Figure 20 and Figure 21. For Morris Bridge, historical
data had a memory of 18 days (Figure 20a) whereas the GCMs-Sim ranged from 14 to 25 days. For Alafia,
Historical had a memory of 15 days (Figure 21a) whereas the GCMs-Sim estimated memory fluctuated
from 8 to 22 days. None of the GCMs-Sim captured Historical’s autocorrelation for either location. The
differences in the memory influenced resilience, vulnerability and sustainability system metrics. For
instance, GFDL-CM had the longest memory for Morris Bridge and highest maximum vulnerability value.
This related to the sluggishness of the system and that once in unsatisfactory state the system tended to
remain there for an extended period, i.e. daily values were highly correlated. This in turn affected the length
and magnitude of the unsatisfactory event. Contrary, for Morris Bridge BCCR had the shortest memory and
smallest Max Vul metric. Shorter serial correlation memory allowed quicker recovery to satisfactory levels.
3.4 Conclusion

This research presented an evaluation of the effects of retrospective GCMs runs on streamflow
modeling and reservoir operation via performance metrics. These metrics included reliability, resilience,
vulnerability and sustainability. Each metric evaluated different aspects of reservoir water resource supply
system to determine if downscaled GCMs inputs could replicate historical system performance. Results
showed that GCMs driven results generally captured Historical’s resilience metric but none replicated
reliability, vulnerability, and sustainability. Discrepancies occurred due to multiple factors, including
variability in precipitation inputs due to smoothing and altered streamflow autocorrelation. The inconsistent
results highlighted differences between utilizing precipitation from GCMs versus actual gauge data to
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simulate streamflow and reservoir operations, further expressing the limitation of GCM data for water
supply planning. This research further supported the importance of reproducing precipitation characteristics
such as transition probabilities and persistence of climate states by GCMs, and streamflow autocorrelation.
Further, bias-correction and downscaling of GCM precipitation aims at matching historical frequency
distribution but may not adequately reproduce persistence over time for certain climate states such as those
associated with La Nifia. Although the retrospective GCMs did not perfectly mimic historical performance
metrics, overall they performed reasonably well when aggregating statistics. Understanding the limitations
of GCMs should provide insight when employing projected GCMs for streamflow and reservoir level
simulations. Ultimately, for future climate change predictions, utilizing all the GCMs-Sim to create an
ensemble might be a more reliable tool for water supply planning and management to deliver a spectrum
of possible climate change and reservoir scenarios. Further, the historical GCM-Sim metric results can be
used a baseline for comparison for future GCM-Sim simulations for this region, which could then depict
degrees of deviation that can be attributed to future climate change. Furthermore, this research provided
valuable insights on mismatches that prorogated from employing GCMs to simulate streamflow to aid in

future model improvements.

3.5 Tables
Table 11: GCM models
Model Name Model Center
GCESS BNU-ESM Col_lege_of Global Change and Earth System Science, Beijing Normal
University
BCC BCC-CSM Beijing Climate Center, China Meteorological Administration

CSIRO (Commonwealth Scientific and Industrial Research Organization,

CSIRO-BOM | CSIRO-mk3.6.0 Australia), and BOM (Bureau of Meteorology, Australia)

GFDL-ESM2M,; . . .
NOAA GFDL GEDL-ESM2G Geophysical Fluid Dynamics Laboratory
Japan Agency for Marine-Earth Science and Technology, Atmosphere
MIROC MIROC-ESM |and Ocean Research Institute (The University of Tokyo), and National
Institute for Environmental Studies
MPI-M MPI-ESM-LR | Max Planck Institute for Meteorology
NCC NorESM1-M | Norwegian Climate Centre
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Table 12: Surface water source flows targets

Target

Historical Data Source

Alafia-Bell Shoals flow

Alafia-Bell Shoals flow is calculated over the historical record
and then modeled as if a real gauged flow.

Cypress Creek flow

USGS daily flow data (02303800)

Hillsborough River flow @ Morris Bridge

USGS daily flow data (02303330)

Hillsborough River @ Zephyrhills

USGS daily flow data (02303000)

Trout Creek Flow

USGS daily flow data (02303350)

Ungauged Hillsborough Reservoir inflow

Ungauged Lower and Middle Pool inflow

Using measured flow, elevation and operation data, three
ungauged inflows are calculated as missing inflow/ outflow
contributions in historical Hillsborough River and Tampa
Bypass Canal volume balances

Table 13: Tampa Bay Water permits

Location Permit
Sl61 e Criterion flow: total of measured previous-day flow over/through Hillsborough
Diversion/Middle River Dam (HRD) and previous-day Control Structure S161 diversion:
Pool (MP) HRD flow (mgd) | Permitted S161 Diversion/MP Withdrawal (mgd)
Withdrawal 0-65 0
65 - 108.3 0-43.3
108.3 — 485 43.3-194
> 485 194
e Also limited by current-day (instantaneous) HRD flow to disallow withdrawals
that will take HRD flow below 65 mgd (lesser of permit based on previous-day
total and instantaneous HRD flow minus 65 mgd).
Lower Pool o 100% of any same-day measured Lower Pool volume over 2.74 m elevation
Permitted e No minimum flow requirement over S160
Withdrawal e 259 MGD maximum permitted withdrawal
Alafia Permitted | Criterion flow:
Withdrawal e Previous-day Alafia flow at Lithia Gauge x 1.117 +
o Historical daily average flows on day t of the year at Lithia Springs +
o Historical daily average flows on day t of the year at Buckhorn Springs +
o Historical daily average Mosaic withdrawal on day t of the year
Criterion flow (mgd) | Permitted Alafia Withdrawal, (mgd)
0-82.73 0
82.73 - 92 0-9.2
92 — 600 9.2 -60
> 600 60

Table 14: Average number of days to rebound out of an unsatisfactory event (1982-2005)

- GFDL- | GFDL-
1982-2005 Historical | BNU | BCCR | CSIRO CM ESM2G MIROC | MPI | NorESM1
Avg number of
days to rebound 146 124 168 125 144 226 150 152 256
per event
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Table 15: Reservoir unsatisfactory events (1982-2005)

1982-2005 Historical BNU BCCR CSIRO GFDL-CM | GFDL-ESM2G MIROC MPI NoreESM1
UnSat 79
Dates 1/1/1982 -
3/20/1982
UnSat 127 112 126 167 144 133 123 102 110
Dates 4/13/1985 - | 4/27/1985 - | 4/24/1985 - | 3/13/1985 - | 3/20/1985 - 4/10/1985 - 4/24/1985 - | 5/10/1985- | 4/29/1985 -
8/17/1985 8/16/1985 8/27/1985 8/26/1985 8/10/1985 8/20/1985 8/24/1985 8/19/1985 8/16/1985
UnSat 66 18
Dates 6/15/1990 - 7/9/1990 -
8/19/1990 7/26/1990
UnSat 93 145 119 121 108 80
Dates 3/15/1991- | 2/10/1991 - | 2/11/1991 - 2/8/1991 - 2/17/1991 - 5/5/1991 -
6/12/1991 7/4/1991 6/9/1991 6/8/1991 6/4/1991 7/23/1991
UnSat 33 70 116 113
Dates 6/2/1992 - | 5/18/1992 - | 4/18/1992 - 5/6/1992 -
7/4/1992 7/26/1992 8/11/1992 8/26/1992
UnSat 160 154 85 120 87 98 228
Dates 3/10/1994 - | 2/28/1994 - 4/26/1994 - | 4/22/1994 - 5/21/1994 - 5/6/1994 - | 12/25/1993 -
8/16/1994 7/31/1994 7/19/1994 8/19/1994 8/15/1994 8/11/1994 8/9/1994
UnSat 116 104 84 103 130 174 119
Dates 6/23/1997 - | 6/20/1997 - | 7/7/1997 - | 6/20/1997 - | 5/29/1997 - 6/11/1997 - | 5/25/1997 -
10/16/1997 10/1/1997 9/28/1997 9/30/1997 10/5/1997 12/1/1997 9/20/1997
UnSat 229 100 195 155 113 92
Dates 1/15/2000 - | 4/26/2000 - 1/12/2000 - | 4/4/2000 - 4/10/2000 - | 4/30/2000 -
8/30/2000 8/3/2000 7/24/2000 9/5/2000 7/31/2000 7/15/2000
UnSat 310 236 476 225 224 577 240 255 578
Dates 11/18/2000 - | 1/8/2001 - | 4/13/2000 - | 1/18/2001 - | 1/24/2001 - 2/12/2000 - 12/22/2000 - | 12/15/2000 - | 2/9/2000 -
9/23/2001 9/27/2001 8/1/2001 8/30/2001 9/4/2001 9/10/2001 8/18/2001 8/26/2001 9/8/2001
UnSat 64 75
Dates 5/23/2002 - 5/9/2002 -
7/25/2002 7/2/2002
Total # Days 8766 8766 8766 8766 8766 8766 8766 8766 8766
Total Sat 7601 7870 7928 7767 7756 7861 8018 7857 7998
Total UnSat 1165 896 838 999 1010 905 748 909 768
UnSat Count 8 7 5 8 7 4 5 6 3

*UnSat = Unsatisfactory; Sat = Satisfactory
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Table 16: Daily reservoir elevation level (m) (1982-2005)

P GFDL- | GFDL-
Historical | BNU | BCCR | CSIRO cM | EsM2G MIROC | MPI | NorESM1

Median 39.1 39.5 39.8 38.3 39.5 39.8 39.5 39.4 39.7
Mean 36.4 36.8 37.1 36.3 36.9 37.0 37.2 36.9 37.2
STD 6.1 5.8 55 5.7 5.7 5.6 5.3 5.6 55
Min 22.7 22.8 22.7 22.8 22.7 22.8 22.8 22.7 22.8
Max 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6

Table 17: Streamflow statistics for Alafia and Morris Bridge (mgd) (1982-2005)

P GFDL- | GFDL-
Historical | BNU | BCCR | CSIRO cM | EsM2G MIROC | MPI | NorESM1
Alafia Daily Flow
Median 144.8 1444 | 1459 | 136.1 152.3 148.5 144.1 152.7 146.1
Mean 252.3 246.6 | 253.4 | 235.1 255.3 257.0 249.7 242.8 234.6
STD 393.4 399.9 | 380.4 | 348.7 366.0 407.4 398.4 372.0 317.6
Min 10.7 8.6 13.2 14.0 8.6 12.5 115 12.2 10.9
Max 6795.7 | 9872.4 | 6662.0 | 9276.0 | 7779.0 | 9872.4 | 98724 | 98724 | 4989.4
Morris Bridge Daily Flow

Median 85.5 84.9 85.8 80.7 84.9 84.8 87.9 87.0 85.9

Mean 184.3 185.3 | 1975 | 183.3 185.6 190.4 193.0 176.5 172.8
STD 344.1 339.5 | 391.0 | 3339 350.0 383.1 359.4 289.7 284.2
Min 14.4 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6
Max 5536.5 | 5536.5 | 5536.5 | 5536.5 | 5536.5 | 5536.5 | 5536.5 |5536.5| 5221.1

Table 18: Approximate CDF values of Morris Bridge daily flow (1982-2005)

Flow . GFDL- GFDL-

(mgd) Historical| BNU | BCCR |CSIRO CM ESM2G MIROC MPI  |[NorESM1
65 0.385 | 0.375 | 0.370 | 0.405 0.375 0.378 0.362 0.373 0.392
108 0.582 | 0.591 | 0.585 | 0.597 0.592 0.579 0.585 0.587 0.594
200 0.773 | 0.770 | 0.772 | 0.771 0.776 0.762 0.770 0.780 0.783
300 0.853 | 0.854 | 0.852 | 0.850 | 0.862 0.849 0.853 0.858 0.854
400 0.884 | 0.882 | 0.881 | 0.881 0.888 0.882 0.882 0.888 0.895

*Closet values to Historical are bolded
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Table 19: Approximate CDF values of Alafia daily flow (1982-2005)

Flow . . GFDL- | GFDL-

(mgd) Historical | BNU | BCCR |CSIRO CM ESM2G MIROC MPI |NorESM1
83 0.253 0.259 | 0.245 | 0.276 0.248 0.232 0.253 0.237 0.256
92 0.297 0.299 | 0.283 | 0.318 0.286 0.273 0.297 0.276 0.286
200 0.630 0.640 | 0.634 | 0.655 0.670 0.623 0.629 0.618 0.653
400 0.835 0.854 | 0.844 | 0.862 0.846 0.841 0.849 0.850 0.840
600 0.903 0.912 | 0.905 | 0.918 0.899 0.904 0.910 0.918 0.927

*Closet values to Historical are bolded
3.6 Figures

Legend
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Figure 10: Site map of Greater Tampa Bay, Florida region
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Figure 16: Historical CDF plots of Alafia daily flow
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Figure 18: Historical monthly box-and-whisker plots for Morris Bridge daily flow
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CHAPTER 4: PERFORMANCE EVALUATION OF A WATER SUPPLY SYSTEM UNDER A

CHANGING CLIMATE

4.1 Introduction

Determining potential climate change impacts on streamflow is crucial for water suppliers as new
infrastructure and technology cannot be developed and implemented over night. Changes in precipitation
spatial and temporal inputs can strain sources of water supply, some with devastating effects (EPA 2016;
Darren et al. 2015). For instance, beginning in 2012, Western United States (U.S.) faced low precipitation
and high evapotranspiration, resulting in severe water shortages with lakes and rivers drying (NACSE
2017). California’s dry conditions resulted in record-breaking drought conditions with the governor
declaring a State of Emergency on January 17, 2014 (Williams 2015; Brown and Bowen 2014). On October
21, 2015, the New York Times posted an article depicting the severity of droughts in Ethiopia, the worst in
a decade, with 15 million facing starvation due to water scarcity, causing crops and animals to die (NYT
2015). Around the same time, similar drought impacts were seen in other parts of Africa, including South
Africa where their government declared the Free State and KwaZulu Natal provinces as disaster areas
(South Africa 2015; Lyon 2014).

According to the Intergovernmental Panel on Climate Change (IPCC), the decadal average land
temperature for 2002-2011 was 1.3° = 0.11°C above the 18501899 average for Northern Europe, and
temperatures are expected to rise (Kovats et al. 2014). Increased temperature results in a rise in evaporation,
which affects the hydrologic cycle and stresses water resources. IPCC’s North America Fifth Assessment
report indicated that in the future both the U.S. and Canada will experience diminished snowpacks due to
increased evaporation, affecting the availability of fresh water. Furthermore, climate change is expected to

put Mexico’s water supply at risk (Romero-Lankao et al. 2014). Moreover, soil water content will decrease
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in Southern Europe, making it rare to have saturation conditions. Further, there will likely be a change in
snow accumulation and melting, especially in the mid-mountain areas (Kovats et al. 2014). Although
forecast data is available for larger regions, limited information is available on how precipitation will effect
water resources at regional or local levels. Since water supply planning occurs at smaller scales, such as
cities or counties, understanding impacts of climate change are vital for sustainability of urban
communities.

Although climatologists have found GCMs to be a suitable tool to for water supply planning,
recommended common practice is to create an ensemble using multiple GCMs and Representative
Concentration Pathways (RCPs) (i.e. emission scenarios see Figure 22) versus analyzing only one scenario
to capture a range of options and detect consensus on future predictions (Panaou et al. 2018; Mani and Tsai
2017; Giorgi and Coppola 2010; Christensen and Lettenmaier 2007). For instance, Panaou et al. (2018)
examined simulated streamflow using GCM precipitation as input drivers and determined using multiple
GCMs provided improved evaluation of the reservoir system since no one GCM captured all historical
performance metrics and key streamflow statistics such as frequency distribution function and serial
correlation. Mani and Tsai (2017) used ensemble averaging methods to quantify climate change impacts on
runoff for watersheds in North Louisiana and South Arkansas. They compared three projected ensemble
average methods: the variance of future runoff for the hierarchical Bayesian model averaging, simple model
averaging, and reliability ensemble averaging. Christensen and Lettenmaier (2007) employed an ensemble
approach using 11 GCMs to drive water resource and hydrology models. Giorgi and Coppola (2010)
examined precipitation and temperature from CMIP3 models and recommended at least four to obtain
robust regional forecasts. The use of seven GCMs with multiple RCPs (17 scenarios) is demonstrated here
(see Table 20). These were examined individually, but since all three RCPs emission scenarios were
examined for GFDL-ESM2G, MIROC and NorESM, an Average GCM (Avg GCM) was also analyzed.
Precipitation data were obtained from the World Climate Research Programme’s Coupled Model
Intercomparison Project 5 (CMIP5 Lawrence Livermore National Laboratory of the U.S. Department of
Energy, http://www-pcmdi.lInl.gov/projects/pcmdi/).
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In order to quantify future water supply changes, GCM precipitation was downscaled to a local
scale then used to drive a hydrologic model to predict streamflow and evaluate water supply and reservoir
performance metrics. Utilizing historical Reliability, Resilience, Vulnerability (RRV) and Sustainability
metrics as a baseline, future predictions deviations were assessed. As introduced by Loucks et al. (1982),
RRV metrics were used for performance of a water resource system. These metrics were aggregated using
a Sustainability index (Sandoval-Solis et al. 2011) to evaluate a water resource system by accounting for
both the water reservoir elevation and change in water demand. Yang et al. (2012) examined three drought
indexes, the sustainability index, modified sustainability index and drought risk index, to determine
potential impacts of climate change on a water resources system in Southern Taiwan using earlier GCMs,
A1B emission scenarios. Singh et al. (2014) evaluated Lake Jordan, North Carolina reservoir system using
stationary weather characteristics and climate change projections. They focused on a resilience index in
order to establish strategies to ensure reliability under increased demands. In a recent study, Mateus and
Tullos (2016) applied reliability and vulnerability metrics to examine reservoir operations under climate
change, but did not consider resiliency and sustainability metrics. Additionally, they redefined vulnerability
by contemplating the probability of operational failure and not the magnitude of the failure event. They also
studied the effected of increasing temperatures and determined that although it impacted ground and surface
water, it had minimal effects on surface reservoir. Amarasinghe et al. (2016) evaluated the impacts of
climate change on a water supply system but only considered resiliency without addressing reliability,
vulnerability and sustainability metrics. Further, resiliency was characterized by pressure recovery to
evaluate performance water supply grid network. They set the design system to operate at a specific level
of pressure and if the level of service was reduced to a pressure limit, it caused failure. Although all of these
studies employed at least one of the performance metrics, none utilized all four to evaluate CMIP5
precipitation that drove streamflow and reservoir simulations.

Comparing reservoir performance with historical performance is critical to establish water resource
operation strategies to mitigate climate change. For instance, if models predicted increased, higher intensity
storms, additional reservoir storage might be needed to capture increased flows to meet demand.
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Conversely, if annual precipitation was reduced suppliers might opt for strategies such as water reuse,
desalinization and water conservation strategies. Therefore, this research examined future streamflow for
time periods 2030-2053, 2054-2077 and 2077-2100, while using 1982-2005 as baseline to determine if the
reservoir would meet operational targets. This research is novel as it provided an additional tactic to
measure reservoir responses to climatic changes via performance metrics, as well as utilizing other
statistical tools. These enabled future deviations to be calculated as well as determine periods when the
reservoir system was at a critical level and unable to supply water. This method also assessed the degree of
these unsatisfactory states, and the resiliency, vulnerability and sustainability of the surface water system.
Multiple emission scenarios and an ensemble were analyzed since future emission trajectory is uncertain.
Employing multiple GCMs and scenarios provided a range, enabling an enhanced and wider system
understanding to allow suppliers to improve planning.

For Materials and Methods, refer to Chapter 3.2.
4.2 Results
4.2.1 Reliability, Resilience, Vulnerability and Sustainability Metrics

Employing performance metrics enabled a comprehensive analysis of the water resource system
via evaluation of the reservoir elevation. Each metric was complimentary by investigating a different aspect
to provide an enhanced understanding of how future reservoir supply changed from historical baseline.
Figure 23 examined the reliability of the system by GCM and RCP. The bar in blue represented years 2030-
2053, grey 2054-2077 and yellow 2077-2100. 1982-2005 was denoted by the red (GCM) and black lines
(Historical), where Historical used rain gauge data to simulate the streamflow and reservoir. GCMs BNU,
GFDL-ESM2G, BCCR, MIROC and NorESM, generally predicted the future reservoir to be less reliable.
For instance, in 1982-2005 MIROC was 91% reliable but by 2100 MIROC 8.5 was only 44%. For all future
periods, GFDL-CM and MPI 4.5 estimated a higher reliability, predicting less days when the elevation of
the reservoir was in an unsatisfactory state. For instance, GFDL-CM was at 88% reliability for 1982-2005
but by 2100 GFDL-CM 6.0 increased to 99%. Further, there were zero unsatisfactory events for GFDL-
CM 6.0 (2030-2053) and GFDL-CM 8.5 (2054-2100), and MPI 4.5 (2077-2100). Figure 24(a-d) examined
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the average of GFDL-ESM2G, MIROC and NorESM for all four metrics. Figure 24a calculated the average
reliability metrics by RCP for the reservoir. All future scenarios forecasted a less reliable system than
historical. For example, the GCMs average reliability metric for 1982-2005 was 0.91 whereas for 2030-
2053 RCP 6.5 declined to 0.82. RCP 8.5 exhibited a decreasing trend with being 85% reliable in 2030-2053
versus 56% in 2077-2100 periods. Avg GCM Reliability for RCP 4.5, the lowest emission scenario,
depicted the system at first less reliable, 0.84 for 2030-2053, then dropped to 0.78 by 2077, but by 2100
improved to 0.87. This reflected the sluggishness of the system and that it would take time after reducing
emissions to see an upward trend and atmospheric corrections.

Examining resiliency by individual GCMs by year and RCP revealed a range. Low resiliency
metrics were prevalent with 71% above historical GCM benchmarks, and 29% below (Figure 25). Further,
BNU, BCCR and MIROC (Figure 25a, ¢ and e) were less resilient for all years and RCPs. This indicated
the system remained in an unsatisfactory state for prolonged period of time, struggling to recover compared
to the past. Conversely, GFDL-CM was more resilient for all years for RCP 8.5 as well as for 2054-2077
and 2077-2100 for RCP 6.0 (Figure 25d). In fact, there were zero unsatisfactory days during 2054-2077
period for both RCP 6.0 and RCP 8.5 and 2077-2100 timeframe for RCP 8.5. An ensemble of GFDL-
ESM2G, MIROC and NorESM (Figure 24b) provided an average resiliency trajectory. RCP 4.5 first
declined in 2054 but by 2100 recovered, although not to 1985-2005 GCM metric. As observed with
reliability, once radiative forcing stabilized around 4.5 Watt per square meter (W/m?) and the atmospheric
system was allowed time to recuperate, the water resource system started improving. Contrary, RCP 8.5
resiliency was at first similar to 2030-2053GCM metric (0.14), but by 2100 decreased to 0.087, reflecting
that higher emissions resulted in prolonged consecutive unsatisfactory days.

To explain future resiliency divergences, the average number of days the system remained in an
unsatisfactory event period per RCP were examined. The average of GFDL-ESM2G, MIROC and NorESM
is shown in Table 21. For 2030-2053 for all RCP’s, average days in unsatisfactory state were higher than
1982-2005 period, indicating the system took longer to rebound. However, RCP 4.5 improved to 293 days
by 2077, and then to 275 days by 2100. The worst case emission scenario, RCP 8.5, experienced the largest
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average number of unsatisfactory days with a high of 464 days (2054-2077), double that of historical.
Furthermore, assessment of individual GCMs revealed significant range. For instance, BNU (RCP 8.5)
(Table 22) and MIROC (RCP 8.5) (Table 23) remained in an unsatisfactory state for 1,447 days (9/29/2032-
9/14/2036) and 1,510 days (2/14/2093-4/3/2097) respectively, stating the system would not be able to
supply water for around 4 years. This was an extremely long time for the reservoir to be below optimal
levels, which, if an accurate prediction, could lead to a major water shortage crisis if there is inadequate
planning. This persistence was reflected by the low resiliency numbers. Furthermore, MIROC recovered in
April 2097 heading into the wet season but then in November 2097 became unsatisfactory again for another
859 days. Combing these consecutive events, the reservoir struggled to supply water for 7 years. It is
important to note that this was just one of the GCM’s predictions and they varied depending on the GCM
and RCP, hence the need for the evaluation of an ensemble. For instance, MPI 8.5 was in an unsatisfactory
state 6/10/92-10/14/92 (127 days), but did not reenter a failure state until a few years later (6/16/95).

Vul Max and Vul Avg were both examined for each GCM (Figure 26 and Figure 27). Vul Max
measured the worst vulnerability event whereas Vul Avg provided a broader understanding of the system
over all unsatisfactory events. Compared to GCMs baseline, 35 out 51 future simulations had a more severe
Vul Max metric, indicating that when the system was below satisfactory the average deficit was worse. For
example, BCCR 8.5 historically had a metric of 0.83 but future exhibited a value of 0.88 (2030-2053), 0.95
(2054-2077), and 0.93 (2077-2100) (Figure 26). The highest possible number for vulnerability is one;
therefore, after 2053 the system almost reached the maximum, experiencing the most extreme
unsatisfactory events. Since simulated streamflow from the GCMs generally predicted less vulnerable
reservoir than utilizing precipitation from the gauge (i.e. 1820-2005 for GFDL-ESM was 0.69 whereas the
gauge was 0.74), it is feasible that these errors propagated to the future, resulting in a bleaker scenario than
the simulated predicted. For vulnerability metric, GFDL-CM and MPI were outliers since there were no
failures for some RCPs for 2054-2077 and 2077-2100 (Figure 26d and f). Taking the VVul Max metrics for
GFDL-ESM2G, MIROC and NorESM and calculating the average by RCP (Figure 24c) indicated that the
magnitude of the most severe failures steadily increased by 2100 with all years and RCPs being at or above
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Historical GCM’s metric. For all periods, RCP 4.5 was less vulnerable than RCP 6.0, while both were less
than RCP 8.5. This indicated that higher emissions resulted in a more vulnerable surface water supply
system. Vul Avg (Figure 27) also indicated that future water supply would be more vulnerable to water
shortages. Vul Avg did not exhibit a trend, as in some instances 2030-2053 was more vulnerable than year
2100 (e.g. BCCR 8.5, MPI 8.5), whereas others it was reversed (e.g. GDFL-ESM2G 4.5, NorESM 8.5).
There were 39 instances where this metric was greater than 1982-2005 GCM metric, and 12 times where is
was less vulnerable. There were no unsatisfactory events for GFDL-CM3 8.5 from 2054 to 2100, and for
period 2077-2100 for MPI 4.5.

Finally, evaluating the geometric mean of reliability, resiliency and wvulnerability metrics
sustainability of the system was explored. Since the system was examined during the most extreme failure
as well as average unsatisfactory events, therefore the system was examined during both to determine how
sustainable it was during the worst case scenarios, Sustainability Max (Figure 28), and how it typically
behaved, Sustainability Avg (Figure 29). For Sustainability Max metrics, 40 scenarios predicted a less
sustainable system compared to historical. These results were indicative that the system overall was likely
to have more severe and prolonged unsatisfactory days. Outliers were all scenarios for GFDL-CM, 2030-
2053 for MIROC 6.0, 2054-2100 for MPI 4.5, 2054-277 for MPI 8.5 and 2030-2053 for NorESM 4.5.
Sustainability Avg metrics were only slightly improved with 39 scenarios predicting a less sustainable
future. GDFL-ESM2G and MPI exhibited an increasing trend for RCP 4.5 and a decreasing trend for RCP
8.5 by 2100. On the other hand, BCCR and MIROC experienced a decline for all three RCPs by 2100.
There was no consensus in the results among the GCMs in stating that lower emissions would result in a
more sustainable water supply system. Utilizing Vul Max for GFDL-ESM2G, MIROC and NorESM and
calculating the average Sustainability Max by RCP (Figure 24d), all scenarios demonstrated lower metrics
than historical. RCP 6.0 sustainability slightly increased in 2054-2077 period (0.25) but then became less
sustainable by 2100 (0.20). RCP 8.5 had similar sustainability metric to RCP 6.0 (0.24) for 2030-2053 but
then plummeted to 0.16 by 2100. Employing an average, RCP 8.5 was always lower than RCP 4.5, which
would be more indicative of lower versus higher emission scenarios.
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4.2.2 Statistical Analytics

Table 24 expanded upon the streamflow statistics by GCM for RCP 8.5. Historically all GCMs
flow averages were close to the baseline data (252 mgd at Alafia and 186 mgd at TBC), ranging from 234.6
mgd to 253.4 mgd for Alafia and 173 mgd to 198 mgd for TBC. By utilizing an ensemble and computing
the average, the results almost matched for both flow and withdrawal. Interestingly, for RCP 8.5 the daily
average flows were more extreme for future periods than historical. For instance, for 2030-2053 for Alafia
flows ranged from 194 mgd (BNU) to 405 mgd (GFDL-CM), a difference of 211 mgd (109%). The highest
value was more than double the lowest. Further, by 2100, GFDL-CM was at 589 mgd whereas MIROC was
147 MGC, producing a 442 mgd disparity (301% difference). Historically, the largest difference was
significantly less at 22 mgd.

Furthermore, streamflow statistics exhibited a similar trend for both Morris Bridge and Alafia
simulated streamflow. Figure 30a (Alafia) and Figure 30b (Morris Bridge) examined the average simulated
streamflows of GFDL-ESM2G, MIROC and NorESM by RCP and period. RCP 4.5 mimicked historical
through 2054, then increased. RCP 6.0 at first declined below Historical (Alafia 252 mgd and Morris Bridge
184 mgd) by 2053, then increased by 2077 to 271 mgd for Alafia and 202 mgd for Morris Bridge, then by
2100 matched Historical. RCP 8.5 slightly decreased by 2053 to 242 mgd for Alafia and 172 mgd for Morris
Bridge; however, after 2054 there was a rapid decline dropping to 171 mgd for Alafia and 114 mgd for
Morris Bridge. Withdrawal was limited by permits, therefore Alafia (Figure 30c) and TBC (Figure 30d) did
not have similar withdrawal trends even though streamflow trends matched. For instance, for Alafia all
future withdrawals are above Historical whereas for TBC all withdrawal amounts were reduced. There was
also a greater difference in withdrawals for TBC by RCP (Figure 30d). For instance for 2030-2053, RCP
4.5 was at 70 mgd, then decreased slightly to 66 mgd, then by 2100 increased to 71mgd. Conversely, RCP
8.5 was initially at 69 mgd and continued to drop until it reached 56 mgd by 2100. On the other hand, for
Alafia (Figure 30c) RCP 4.5 and RCP 6.0 almost flatlined for all time periods at around 16 mgd and 16.5

mgd, respectively. RCP 8.5 also had minimal variation with 17 mgd in 2030-2053 versus 16 mgd by 2100.
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Variances in the reservoir elevation were also visible by RCP and period (Table 25). For example,
RCP 4.5 declined in 2030-2053 and 2054-2077 with a median of 38.4 m and 36.9 m, respectively, but by
2100 increased to 39.3 m. This same trend was evident in TBC withdrawal, which provided greater amount
of water (Figure 30d). RCP 4.5 once again reflected that the system recovered after the atmospheric time
to recuperate. Contrary, RCP 8.5 median declined from 39.6 m to 35.1 m by 2100, replicating TBC
withdrawal. Averages had the same tendencies.

These elevations trends could be translated to the number of unsatisfactory days (Table 26). For
instance, RCP 4.5 exhibited a similar pattern by initially declining but then improving by 2100. It began
with 1,332 unsatisfactory days in 2030-2053, decreased to 1,864 days in 2054-2077, and then improved to
1,182 unsatisfactory days. Although it improved, it never reach Historical’s 807 unsatisfactory days.
Furthermore, the average of these three GCMs under predicted Historical’s number of unsatisfactory days
by 358 days or 44%. If this underestimation error also propagated into the future, unsatisfactory days would
increase. For instance, 1,864*1.44 would translate to 2,684 days or 31% of the number of days in that period
would be unsatisfactory. RCP 8.5 steadily increased in number of unsatisfactory days by 2100, painting a
gloomy picture since 44% of the time the reservoir levels fell into a critical state. Further, RCP 8.5 also
under predicted Historical (807 versus 1,165 days). Therefore, if the system estimated 3,841 unsatisfactory
days, accounting for this error this would translate to 5,531 (3,841*1.44) unsatisfactory days or 63% of the
time that period in a critical state.

Evaluation of CDFs expands upon divergents in the flows. Table 27 and Table 28 examined the
average CDF for Morris Bridge and Alafia streamflow at a level where permits allowed for water
withdrawal, 65 mgd and 83 mgd respectively. For both Morris Bridge and Alafia, Historical (0.38 and 0.25
respectively) was similar to the 1982-2005 gauge. For RCP 8.5 both CDF values steadily increased by the
year 2100 with values of 0.55 for Morris Brides and 0.39 for Alafia. This translated into there being fewer
opportunities to withdraw water. For instance, in 1982-2005 the system was able to withdraw water from
Alafia 75% of the time whereas by 2100 was at 61%. For both simulated streamflows, RCP 4.5 CDF at first
increased but by 2100 declined to a level similar to Historical, once again reflecting the systems recovery
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after time. There were also variances amongst the individual simulations (Table 29). For example, GFDL-
CM was at 0.15 CDF value whereas GFDL-ESM2G was at 0.61 for 2077-2100 for Morris Bridge. GFDL-
ESM2G was double 1982-2005 value, and GFDL-CM was reduced by half. This was further reflected in
the metrics where for this period GFDL-CM has no failures and GFDL-ESM2G reliability was one of the
lowest (Figure 23d). All GCMs were similar for 1982-2005 period, but by 2100 ranged from 0.15 to 0.61
CDF value (Table 29). Some values increased with time such as GFDL-ESM2G, MIROC, NorESM. Others
such as BCCR, BNU, MPI fluctuated. Higher CDF values resulted in fewer opportunities for water
withdrawal since flows had to meet the permit minimum requirement, ultimately affecting the reservoir.
Evaluation of autocorrelation explained divergent flows by assessing how the memory of the
system changed with RCP and timeframe. A short memory relates to less similar days in a state whereas a
longer memory reflects persistence. Table 30 and Table 31 examined the average annual and summer
autocorrelation examined flow for GFDL-ESM2G, MIROC and NorESM for streamflow, respectively.
Compared to historical, the memory doubled in most instances. For example, 1982-2005 annual was at 30
days whereas by 2077-2100 RCP 4.5 and RCP 6.0 were at 62 and 61 days, respectively (Table 30). This
was reflected both in the duration a system remains in an unsatisfactory state as well as in a satisfactory
state. Historically none of the simulations had unsatisfactory event periods greater than 578 days and the
memory was reduced; however, future scenarios depicted events reaching up to 1,510 days and annual
autocorrelations were doubled for all RCPs. For summer (Table 31), serial correlation increased for RCP
4.5 for 2054-2077 but then declined by 2100. RCP 8.5 at first increased in 2030-2053, then decreased by
20177, then improved to a value of 31 by 2100. Results indicate that future periods’ summer correlation,
although not always on mark, was closer to historical than annual, revealing that the winter months had a
greater variance. El Nifio-Southern Oscillation (ENSO) affects this region primarily during the winter
months with El Nifio reducing precipitation and La Nifia increasing prediction. It is possible that this is

indicative of more intense events such as ENSO.
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4.2.3 Precipitation

Precipitation is the driver for these streamflow simulations; therefore, understanding and capturing
the hydrological cycle is extremely important. Water supply withdrawal is sensitive to stream’s flowrate,
which is affected by precipitation guantity, antecedent conditions, and persistence of a climate state (e.g.
wet day follow by another wet day). Figure 31 displays precipitation at the Plant City gauge for the three
time periods for each RCP. The average of the annual precipitation per time frame was computed. Figure
31a combined three GCMs, GFDM-ESM2G, MIROC and NorESM, to provide an average GCM value.
Comparing this to the average streamflow (Figure 30), the relationship was evident. For instance, in both,
RCP 4.5 increased after 2077, RCP 6.0 decreased by 2100 and RCP 8.5 declined after 2030. Since
Streamflow was modeled from three gauges, they would be affected from all three trends although annual
precipitation is not expected to drastically change by location. Figure 31b, ¢ and d shows the precipitation
for the individual GCMs by RCP. The GCMs varied for RCP 4.5 before 2077 but afterwards all three
increased. Once again, seeing improvements once the atmosphere recovered. Both RCP 6.0 (Figure 31c)
and RCP 8.5 (Figure 31d) had mixed results by 2100. Two out of the three GCMS declined in precipitation
and one increased. There was also a larger spread in the values for RCP 8.5 and RCP 6.0. GFDL-ESM2G
predicted the lowest precipitation at 111 m2, NorESM at 130 m2 and MIROC at 142 m™?, a difference of
31 m™. RCP 6.0 fluctuated from 129 mto 154 m=, with a change of 25 m2 RCP 4.5 values were closer
as they ranged from 134 m to 142 m (difference of 8 m). Since models have more of a consensus by
RCP closer to the present, it is possible that there was more error the further out they project.
4.3 Discussion

There are a few ways to interpret these results. One could state that because a GCM better
reproduced historical data (i.e. GFDL-CM has the closest Total Number of Unsatisfactory Days) that it is
more likely to accurately predict the future. On the other hand, others could argue that with a changing
climate the past is not like the future, therefore just because a GCM better represented the past does not
automatically mean it will more precisely predict the future. Further, some GCMs such as GFDL-CM or
MPI performance metrics were more optimistic than the other models, but just because they do not converge
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with the general consensus does not mean they are not correct. We do not know how nations are going to
manage all greenhouse gases and if there will be adequate technologies in place to curb emissions (e.g. non
reliant on fossil fuels for vehicles or other energy users), therefore it is really hard to determine the exact
concentrations or path by the year 2100. Further, in order to plan for future water supply it might be
challenging to find technologies that are less energy-intensive and will not admit greenhouse gases. For
instance, desalination or reverse osmosis require a lot of energy to process the water. Therefore there is a
need to find a balance between water supply and a reduction in emission. Finally, results revealed a
consensus that serial correlation is significantly increasing in the future for all GCMs and RCPs. This can
be reflected on the persistence of the system in turn potentially translating to more extreme events such as
longer periods of drought or longer periods of precipitation.
4.4 Conclusion

This research evaluated potential climate change impacts on streamflow and water supply system
for the Tampa, Florida region. After employing precipitation for streamflow modeling and reservoir
operation, it evaluated each individual GCM and an average using reliability, resilience, vulnerability and
sustainability performance metrics. Metrics enabled assessments of water resource reservoir system
characteristics to determine future changes from the validation period. Three future periods were taken into
consideration: an early-century period from 2030 to 2053, a mid-century period from 2054 to 2077, and a
late-century period from 2077 to 2100, and these were compared to baseline (1982-2005). Key findings
included the following: (1) As emissions increased, RCP 8.5 reliability declined whereas RCP 4.5 was on
a recovering trajectory by 2100; (2) Resiliency depicted similar trend to Reliability for RCP 4.5 with an
initial decline but slowing increasing by 2100. RCP 8.5 dropped by 2054 and then flatlined; (3)
Vulnerability Max for all RCPs increased with time, however; RCP 4.5 was consistently less than RCP 6.0
and RCP 8.5 by 2100; (4) Once again, RCP 4.5 declined initially but improved with time for the overall
sustainability of the system. The highest emission scenario, RCP 8.5, declined by year 2100; (5) GFDL-
CM was an outlier typically reflecting the opposite of the other GCMs, or more extreme metric values
compared to the past; (6) Low resiliency and high vulnerability had important implications on the reservoir
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system, ultimately reducing the sustainability metrics; and (7) Autocorrelation increased with time reflected
by the increasing reliability and persistence of an event.

To minimize impacts, a reduction of emissions would be imperative to decrease impacts to water
supply. Since this would need to occur globally, it would require consensus and emission mitigation from
all countries, which might prove extremely difficult. On a local level, diversifying of system (e.g.
groundwater or desalination) or adding additional water storage would provide alternative water during
reservoir failure events. Further, investigation of permits and adjustments to capture extreme flows might
prove to be a useful tactic to combat climatic changes along with improvements in atmospheric emissions
that exhibited beneficial system impacts over time.

Considerations of this research is important. Firstly, to our knowledge, utilizing all four
performance metrics to evaluate future reservoir operations modeled from inputs of CMIP5 GCM
precipitation has not been utilized. Metrics enable evaluation of change using key system attributes,
reliability, resiliency, vulnerability and sustainability. The metrics gauge when the reservoir was below
threshold or unable to supply water, and the degree of the magnitude of the failure compared to baseline.
Secondly, employing ensemble averaging provided an alternate option for evaluation of climate change
impact on the system, where the effect of variability of individual models (e.g., specific biases) were filtered
via counterbalancing different models. A limitation in this research was that only three GCMs were
averaged since not all data for all RCPs for other GCMs were readily available. Future studies might
compare the addition of other GCMs in this average calculation comparison. Further, due to future
uncertainty, it is unsure which model(s) are actually correct per time period; therefore, it should be noted
that it is feasible the ensemble average might mask the actual scenario providing a more conservative
estimate. Since it is uncertain, the future might result in a more extreme or deviated response or it could be
more conservative. Unfortunately, there is no way to unambiguously ascertain which model projection is
the most likely choice; therefore, both ensemble and individual outputs were examined to provide a range
for enhanced understanding. Furthermore, due to biases within the GCM and downscaling process, it is also
probable that none of these future predictions accurately captured 100% the system. Additionally, it is likely
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this research is also impacted by uncertainties in the hydrological model since it does not incorporate
groundwater or atmospheric conditions such as temperature and evaporation. Since the model selects
streamflow based on precipitation at the three gauges, it is assumed that future streamflow would be similar
to historical when precipitation matches. Future streamflow values might vary. Moreover, the metrics are
sensitive to time scales, especially resiliency, and selecting a longer period or large time scale would alter
the metric values. Although variable, this research is valuable in gauging a change or answering the ultimate
question: “will the water supply system be drastically impacted by climate?” This will enable water resource
authorities to determine mitigation strategies based on likely scenarios. Ultimately, utilization of results
will be determined on the most practical and/or feasible action plan for an organization’s system and budget,
whether it is based on the worst case scenario, middle of the road, or an ensemble.

4.5 Tables

Table 20: GCM models and RCPs of each utilized in the future scenario research

Model Name Model RCP
BNU BNU-ESM 45;85
BCCR BCC-CSM 45;85

GFDL-CM3; 6.0; 8.5

NOAA GFDL

GFDL-ESM2G 45;6.0; 8.5

MIROC MIROC-ESM 45;6.0; 85
MPI MPI-ESM-LR 45;85

NorESM NorESM1-M 45;6.0; 8.5
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Table 21: Average number of days the system remained in an unsatisfactory state based on an average of

GFDL-ESM2G, MIROC and NorESM

Average # Unsat Days AvgRCP 4.5 | AvgRCP 6.0 | Avg RCP 8.5
1982-2005 211 211 211
2030-2053 323 269 234
2054-2077 293 223 464
2077-2100 275 297 379

Table 22: Unsatisfactory events for RCP 8.5 for timeframes 2030-2039

RCP85 | BCCR | BNU |GFDL-ESM2G|GFDL-CM | MIROC | MPI | NorESM
UnSat days 1,447 58 116
9/29/32- 414/32-
Dates 9114736 5/7/32-7/3/32 108132
UnSat days| 201
1/4/33-
Dates | 7/93/33
UnSat days| 304 185 82 157
10/7/34- 4127/34- 9/23/34-
Dates 8/6/35 413/35-10/4135 | 2/17/34 2/26/35
UnSat days| 192 73 548
1/14/36- 4/16/36-
Dates | 5ioaae 11/27/36-2/7/37 L0/15/37
UnSat days 24
6/30/37-
Dates 7/23/37
UnSat days| 316 93
Dat 0/6/38- 12/16/39-
ates | 7118139 3/17/40

*UnSat = Unsatisfactory
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Table 23: Unsatisfactory events for RCP 8.5 for timeframes 2090-2100

GFDL- GFDL-
RCP 8.5 BCCR BNU Esv2G | com | MIROC MPI NorESM
UnSat days 797
11/26/90-
Dates 1/30/93
UnSat days 45 609 287 127
Dates 7/3/92- 2/13/92- 1/20/92- 6/10/92-
8/16/92 10/13/93 11/1/92 10/14/92
UnSat days 456 1,510
Dates 6/20/93- 2/14/93-
9/18/94 4/3/97
UnSat days 156 28 121
Dates 5/7/94- 6/7/94- 5/10/94-
10/9/94 714194 9/7/94
UnSat days 280 79 76
Dates 12/26/94- 6/16/95- 10/28/95-
10/1/95 9/2/95 1/11/96
UnSat days 755 501
Dates 8/18/96- 10/28/95-
9/11/98 3/11/97
UnSat days 36
5/22/96-
Dates 6/26/96
UnSat days 107 668 859 91
Dates 9/7/97- 3/19/98- 11/7/97- 7/17/98-
12/22/97 | 1/15/2100 3/15/2100 | 10/15/98
UnSat days 180
10/3/99-
Dates 3/31/2100
UnSat days 33
Dates 5/16/2100-
6/17/2100
UnSat days 257 129 395 14
Dat 4/19/2100- 8/25/2100- 7/27/99- | 12/18/2100-
ates 1 12/31/2100 12/31/2100 8/25/2100 | 12/31/2100
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Table 24: Streamflow statistics for Alafia and Morris Bridge for RCP 8.5 by GCM simulation and

average for all GCMs (mgd)

Daily Average | ., | Bccr | Bnu | CFPL- | CFPL- I viiroc| MPI | NorEsMm AAI\_/gL
(mgd) ESM2G | CM GCMs
ALA Flow| 252.3 | 253.4 | 2466 | 257.0 | 255.3 | 249.7 | 2428 | 2346 2485
1982- |ALAWith| 112 | 115 | 11.4 11.2 11.6 11.3 11.9 10.9 11.4
2005 | MB Flow | 184.3 | 1975 | 1853 | 190.4 | 1856 | 193.0 | 1765 | 1728 185.9
TBC With| 708 | 709 | 713 71.2 711 73.3 70.5 72.2 715
ALA Flow 263.8 | 1935 | 260.2 | 4054 | 2393 | 2713 | 2271 265.8
2030- |ALA With 19.2 | 1552 | 17.1 12.9 18.0 15.9 16.23 16.4
2053 | MB Flow 195.7 | 136.6 | 186.9 | 3223 | 169.6 | 206.9 | 160.9 197.0
TBC With 68.3 | 61.8 65.9 77.9 69.3 715 69.9 69.2
ALA Flow 168.7 | 156.4 | 182.4 | 552.0 | 175.6 | 2934 | 272.7 257.3
2054- | ALA With 16.3 | 17.9 15.7 9.0 14.9 16.5 16.2 15.2
2077 | MB Flow 112.2 | 101.9 | 1349 | 4688 | 1165 | 2085 179.1 188.8
TBC With 59.5 | 55.9 63.7 81.9 56.7 72.0 65.2 65.0
ALA Flow 184.4 | 212.7 | 1482 | 5895 | 1473 | 2583 | 217.6 251.1
2077- |ALA With 172 | 171 14.4 11.1 16.9 15.4 16.3 15.48
2100 | MB Flow 1235 | 150.1 | 105.4 | 475.1 91.3 | 192.6 146.4 183.5
TBC With 59.1 | 65.4 51.9 80.5 51.9 70.3 63.8 63.3

*ALA = Alafia; MB = Morris Bridge; TBC = Tampa ByPass Canal; With = Withdrawal

Table 25: Daily reservoir level for gauge and average of GFDL-ESM2G, MIROC and NorESM

Daily Elevation (m) Gauge Avg RCP 4.5 |Avg RCP 6.0 |Avg RCP 8.5
Median 39.0 39.6 39.6 39.6
e | Average 363 372 372 372
Minimum 22.6 22.9 22.9 22.9
Median 38.4 37.5 39.6
2030- ™A erage 36.3 354 375
2053 — : ' :
Minimum 22.9 22.9 22.9
Median 36.9 38.1 37.2
2054-
2077 Average 35.1 36.3 36.0
Minimum 22.9 22.9 26.5
Median 39.3 38.1 35.1
2077-
2100 Average 36.6 35.7 34.7
Minimum 22.9 22.9 25.9
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Table 26: Unsatisfactory reservoir events for average of GFDL-ESM2G, MIROC and NorESM

Gauge Avg RCP 4.5 | Avg RCP 6.0 | Avg RCP 8.5
Total Days 8,766 8,766 8,766 8,766
1982- Total Unsat 1,165 807 807 807
2005 | 9% Time Unsat 13.3% 9.2% 9.2% 9.2%
Unsat Events 8 4 4 4
Total Days 8,766 8,766 8,766
2030- Total Unsat 1,332 1,629 1,305
2053 | 9% Time Unsat 15.2% 18.6% 14.9%
Unsat Events 4 6 6
Total Days 8,766 8,766 8,766
2054- Total Unsat 1,864 1,140 2,759
2077 | % Time Unsat 21.3% 13.0% 31.5%
Unsat Events 6 5 8
Total Days 8,765 8,765 8,765
2077- Total Unsat 1,182 1,507 3,841
2100 | 9% Time Unsat 13.5% 17.2% 43.8%
Unsat Events 4 6 10

Table 27: CDF values for Morris Bridge daily flow for average of GFDL-ESM2G, MIROC and NorESM

CDF Value at 65 mgd Gauge AvgRCP 45 [ AvgRCP 6.0 | AvgRCP 85
1982-2005 0.39 0.38 0.38 0.38
2030-2053 0.39 0.43 0.41
2054-2077 0.44 0.39 0.50
2077-2100 0.36 0.43 0.55

Table 28: CDF values for Alafia daily flow for average of GFDL-ESM2G, MIROC and NorESM

CDF Value at 83 mgd Gauge AvgRCP 45 | AvgRCP6.0 | AvgRCP 8.5
1982-2005 0.26 0.25 0.25 0.25
2030-2053 0.28 0.30 0.28
2054-2077 0.32 0.27 0.37
2077-2100 0.24 0.28 0.39
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Table 29: CDF values for Morris Bridge daily flow for RCP 8.5 for individual GCM simulations

CDGFSVr:g(‘f at| gccr | BNU SSFI\I/ID;C-‘ G(F:BIL' MIROC | MPI | NorESM
1982-2005 | 037 | 0.38 0.38 0.38 0.36 0.37 0.39
2030-2053 | 046 | 051 0.48 0.25 0.36 0.38 0.38
2054-2077 | 056 | 056 0.54 0.15 0.54 0.35 0.41
2077-2100 | 055 | 0.49 0.61 0.15 0.59 0.38 0.45

Table 30: Annual autocorrelation in days by RCP for Morris Bridge daily flow for average of GFDL-

ESM2G, MIROC and NorESM

Days Historical | Avg RCP 4.5 Avg RCP 6.0 Avg RCP 8.5
1982-2005 24 30 30 30
2030-2053 54 51 64
2054-2077 63 70 50
2077-2100 62 61 69

Table 31: Summer (July-October) autocorrelation in days by RCP for Morris Bridge daily flow for

average of GFDL-ESM2G, MIROC and NorESM

Days Historical | AvgRCP 45 | AvgRCP 6.0 | Avg RCP 8.5
1982-2005 26 29 29 29
2030-2053 29 33 37
2054-2077 47 32 30
2077-2100 36 35 31
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4.6 Figures
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Figure 22: Emission scenarios with RCP 2.6 being the lowest and RCP 8.5 the highest (IPCC 2014c)
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Figure 23: Reliability Metric by GCM
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Figure 24: Metrics using the average of three GCMs Metrics (GFDL-ESM2G, MIROC and NorESM) by

RCP and Max Vulnerability
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Figure 25: Resiliency Metric by GCM
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Figure 26: Examining Unsatisfactory Events with the Vulnerability Maximum Metric by GCM
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Figure 27: Examining all the Unsatisfactory Events to calculate the Vulnerability Average by GCM
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Figure 28: Sustainability Metric by GCM utilizing the Vulnerability Maximum Metric
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Figure 29: Sustainability Metric by GCM utilizing the Vulnerability Average Metric
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CHAPTER 5: CONCLUSION

This research first evaluated GCM precipitation to determine whether they captured important
hydrologic characteristics. It utilized Markov Chain to determine whether climatic states were captured.
Results indicated that GCM models and the downscaled and bias-corrected products did not replicate
historical wet or dry season transition probabilities at the gauges. The second phase then employed GCM
precipitation to simulate historical streamflow to see if these errors propagated to reservoir operations.
Results were evaluated via performance metrics, reliability, resilience, vulnerability and sustainability, as
well as using statistical tools such as serial correlation and PDF. On average, the simulations performed
reasonably well, although they did not capture all markers. Finally, the last stage of the research ascertained
whether future water supply would be susceptible to prolonged droughts. Depending on the emission
scenario trajectory, lower or higher emissions, results varied. Overall consensus was that higher emissions
would results in an increased strain on water supply resources, leading to multiple consecutive years when
the reservoir would be unable to supply water. Lower emissions at first exhibited stresses on the system,
but as time progressed and the atmosphere stabilized conditions improved. Therefore, it would be
imperative for countries to have systems in place to reduce greenhouse gas emissions and have conservation
and mitigations strategies. Additionally, water withdrawal permits could also be examined to determine if
capturing additional water supply during extremely high flows might would significantly increase the
systems sustainability or if only minimal changes would be observed. Further, as GCM models are tweaked

and enhanced, it would be beneficial to reevaluate the system to continue to understand future implications.
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APPENDIX A: LIST OF ACRONYMS

AR5 Fifth Assessment Report

Avg GCM Average GCM

Avg Sus Average Sustainability

BCCA Bias-Correction and Constructed Analog
BCCR Bjerknes Centre for Climate Research
BCCR3 BCCR3-BCM2.0

BCCR5 BCC-CSM1-1

BCSA Bias-Correction and Stochastic Analog
BCSD Bias-Correction and Spatial Disaggregation
BNU Beijing Normal University

BOM Bureau of Meteorology

CCSM Community Climate System Model

CDF Cumulative distribution function

cm Centimeters

CMIP Coupled Model Intercomparison Projects
CSIRO Commonwealth Scientific and Industrial Research Organization
CWBYR C.W. Bill Young Reservoir

DJF December January February

ENSO El Nifio Southern Oscillation

FL Florida

FMS2 Flow Modeling System Version 2

GCM General Circulation Model

GCMs-Sim Retrospective GCMs

GFDL Geophysical Fluid Dynamics Laboratory
HRD Hillsborough River Dam

IHM Integrated Hydrologic Model

IPCC Intergovernmental Panel on Climate Change
ISI-MIP Inter-Sectoral Impact Model Intercomparison Project
km kilometers

km Kilometers

m Meters

Max Sus Maximum Sustainability

mgd Million Gallons Per Day

MND Multivariate, Nonparametric Disaggregation
MPI Max Planck Institute

NCC Norwegian Climate Centre
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NOAA
ONI
PDF
RCP
RRV
SMLR
SST
TBC
uU.s.

Vul Avg
Vul Max

W/m?

National Oceanic and Atmospheric Administration
Oceanic Nifio

Probability Distribution Function
Representative concentration pathway
Reliability, Resilience and Vulnerability
Seasonal-Multivariate Linear Regression
Sea Surface Temperature

Tampa Bypass Canal

United States

Average Vulnerability

Maximum Vulnerability

Watt per square meter
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