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ABSTRACT 

 

Climate change is a global concern as it may affect many aspects of life, including water supply. A 

tool used to model climate change’s impacts is called a General Circulation Model (GCM). GCMs project 

future scenarios including temperature and precipitation, but these are designed at a coarse resolution and 

require downscaling for employment for regional hydrologic modeling. There is a vast amount of research 

on downscaling and bias-correcting GCMs data, but it is unknown whether these techniques alter 

precipitation signals embedded in these models or reproduce climate states that are viable for water resource 

planning and management. Using the Tampa, Florida region for the case study, the first part of the research 

investigated 1) whether GCM and the downscaled, bias-corrected data were able to replicate important 

historical climate states; and 2) if climate state and/or transition probabilities in raw GCMs were preserved 

or lost in translation in the corrected downscaled data. This has an important implication in understanding 

the limitations of bias-correction methods and shortcomings of future projection scenarios. Results showed 

that the GCM, and downscaled and bias-corrected data did a poor job in capturing historical climate states 

for wet or dry states as well as the variability in precipitation including some extremes associated with El 

Niño events. Additionally, the corrected products ended up creating different cycles compared to the 

original GCMs. Since the corrected products did not preserve GCMs historical transition probabilities, more 

than likely similar types of deviations will occur for “future” predictions and therefore another correction 

could be applied if desired to reproduce the degree of spatial persistence of atmospheric features and 

climatic states that are hydrologically important. 

Furthermore, understanding the sustainability of water supply systems in a changing climate is 

required for undertaking adaptation measures. Many water suppliers employ GCMs to examine climate 

change’s effect on hydrologic variables such as precipitation, but little is known on the propagation of 
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mismatch errors in downscaled products through cascade of hydrologic and systems models. The second 

study examined how deviations in downscaled GCMs precipitation propagated into streamflow and 

reservoir simulation models by using key performance metrics. Findings exhibited that simulations better 

reproduced the resilience metric, but failed to capture reliability, vulnerability and sustainability metrics. 

Discrepancies were attributed to multiple factors including variances in GCMs precipitation and streamflow 

cumulative distribution functions, and divergences in serial correlation and system memory. 

Finally, the last study examined multiple models, emission scenarios and an ensemble to obtain a 

range of possible implications on reservation operations for time periods 2030-2053, 2054-2077 and 2077-

2100 since the future emission trajectory is uncertain. Currently there are four Representative Concentration 

Pathways (RCPs) as defined by the IPCC’s fifth Assessment Report which provides time-dependent 

projections based on different forecasted greenhouse gas emission and land use changes. For this research 

Representative Concentration Pathways (RCPs) 4.0, 6.0 and 8.5 were examined. Scenarios were evaluated 

utilizing reliability, resilience, vulnerability and sustainability performance metrics and compared to a 

historical baseline. Findings exhibited that RCP 4.5, the lower end of emission scenario, improved reservoir 

reliability and resilience over time. Conversely, RCP 8.5, highest emissions, resulted in a steady decline of 

all metrics by 2100. Although vulnerability increased by 2100 for all emission scenarios, on average RCP 

4.5 was less vulnerable. Investigation of permits and adjustments to capture extreme flows might be 

necessary to combat climate changes and precipitation inputs along with improvements to atmospheric 

emissions, which correlated with system recuperation with time. 
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CHAPTER 1: INTRODUCTION 

 

1.1  Overview 

Climate change is a global concern but how will this impact water supply? This is a major question 

that water managers are trying to answer using General Circulation Models (GCMs). A GCM is a numerical 

model that simulates how oceans, atmosphere, land surface and cryosphere will respond to increasing 

greenhouse gas concentrations. There are multiple GCMs and runs, each taking into account different 

forcing scenarios. These scenarios include varied amounts of greenhouse gas emissions by certain time 

periods, changes in temperature, population growth and more. GCMs are created at a coarse resolution, 

around 250 and 600 kilometers (km) to simulate the entire earth. To support the spatial resolution of regional 

hydrologic simulations required for water supply, hydrologists have developed dynamical and statistical 

techniques to downscale a GCM to a regional scale (~1 to 10 km) (Ahmed et al. 2012, Daniels et al. 2012, 

and Sharma et al. 2013); however, these techniques cause biases such as variances in mean precipitation, 

underestimation of high precipitation, or differences in number of drizzle days (Grillakis et al. 2013; IPCC 

2013). It is unknown if these techniques alter precipitation signals embedded in these models or if they 

reproduce climate states that are viable for water resource planning and management. Replicating important 

historical climate states such as wet or dry season or El Niño Southern Oscillation (ENSO) is vital for water 

supply; therefore it is critical to understand GCM shortcomings prior to implementation for future 

projection scenarios. 

1.2  Research Objectives 

This research had three objectives. Firstly, historical GCMs were examined to determine (1) If the 

original raw GCMs data or their statistically downscaled products captured the persistence of climate cycles 

observed in historical data; and (2) If the bias-correction process altered the original GCM time series and 
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climate states embedded in these cycles. The second objective studied whether downscaled GCM errors 

propagated into the simulated streamflow and reservoir models. These were compared to baseline flows 

and evaluated via reservoir performance metrics. Finally, the last section simulated future streamflow using 

GCMs precipitation as a driver and examined the system’s resilience, reliability, vulnerability and 

sustainability for multiple emission scenarios. 1982-2005 data from the GCMs were employed as the 

benchmark to determine future deviations. 
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CHAPTER 2: EXAMINING CLIMATE STATES AND TRANSITION PROBABILITIES OF 

PRECIPITATION PROJECTIONS IN GENERAL CIRCULATION MODELS 

 

2.1  Introduction 

Climate change is a major concern for many water suppliers in the United States (U.S.) and 

worldwide. To develop a long-term resilient water management and supply plan, General Circulation 

Models (GCMs) are employed to project future scenarios of climate including temperature and 

precipitation. Data from these GCMs, however, are produced at a coarse resolution, typically between 250 

and 600 kilometers (km), which causes biases such as underestimation of high precipitation, differences in 

number of drizzle days, or variances in mean precipitation (Grillakis et al. 2013; IPCC 2013). Hydrologists 

have used statistical methods to downscale GCM precipitation to a regional scale, ~1 to 10 km, to support 

the spatial resolution of hydrologic simulations required for water supply and management (Panaou et al. 

2016; Hwang and Graham 2013; Asefa and Adams 2013; Ahmed et al. 2012; Daniels et al. 2012; and 

Sharma et al. 2011). Commonly used statistical downscaling techniques include bias-correction and spatial 

disaggregation (BCSD), bias-correction and constructed analog (BCCA), or bias-correction and stochastic 

analog method (BCSA) (Gutmann et al. 2014; Hwang and Graham 2013; Daniels et al. 2012). The goal of 

bias-correction is to account for regional scale processes that may not be represented by large scale GCM 

simulation data (Bruye`re et al. 2013; Tryhorn and DeGaetano 2011). This is achieved by either (1) applying 

a correction factor which has been used by Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) 

to preserve the relative and absolute trends in the simulated data (Yin et al. 2015; Hempel et al. 2013); (2) 

employing the delta method, a statistical bias-correction, which adds the difference between the means of 

the simulated and historical data to the simulated (Hempel et al. 2013; Wetterhall et al. 2012; Watanabe 

This chapter has previously been published in Journal of Water Resources Planning and Management. Permission is 

included in Appendix B. 



4 

 

 2012); or (3) correcting using the empirical distribution or quantile mapping method where the monthly 

frequency distribution of the simulated GCM is corrected to match historical data such as rain gauge data 

(Wood et al. 2004; Argüeso et al. 2013; Ehret et al. 2012; Lafon et al. 2013).   

Although these downscaling techniques can match the statistics and probability distribution of 

historical precipitation, they do not eliminate all errors (Maraun 2016; Eden and Widmann 2014; Grillakis 

et al. 2013). For instance, quantile mapping automatically modifies the number of wet days in order to 

match the probability distribution function (PDF) (Maraun 2016). Further, when sampling noise is 

extremely high, nonparametric quantile mapping basically employs random corrections which generates 

very noisy solutions (Maraun 2016). van Pelt et al. (2009) study examines two bias-correction methods. 

They conclude that although the first method amends the average, numerous consecutive precipitation days 

were incorrectly removed. The second method adjusted the coefficient of variance and mean, but the 

average underperformed while the temporal precipitation pattern improved. This leads to the hypothesis of 

this paper that bias-correction may alter the precipitation transition states of climate cycles embedded in 

the GCMs, which are hydrologically detrimental. For example, monthly and sometimes annual scale 

climate states that drive precipitation variability are important for water supply planning. At these temporal 

scales, persistence of certain states, such as multiple months or years of less-than-average precipitation 

during the wet season can have severe consequences on water management. Multiple consecutive months 

with below average precipitation could affect streamflow and the availability of surface water (Clark et al. 

2014). Additionally, multiple wet months would increase the availability of surface water, which could be 

captured and stored for future use. It is important to simulate the transition between these climate states to 

create a more robust model that can facilitate informed decisions. Although annual budgets are important 

and was considered, this research focuses on winter and summer months. 

Tampa Bay, Florida (FL) provides a great example where two nested scales of variability influence 

precipitation. The first scale is associated with the intra-annual transition from Dry-to-Wet season. About 

two-thirds of precipitation in the region occurs in only four months, June through September, creating a 

“wet season” easily distinguishable from the “dry season” that persists the rest of the year. Superimposed 
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on this seasonal cycle is the El Niño Southern Oscillation (ENSO), which creates an inter-annual variability 

with a time scale ranging from two to seven years (NOAA 2015; Schmidt et al. 2001; Zorn and Waylen 

1997). ENSO significantly affects both temperature and precipitation during the winter months. For the 

Tampa region, El Niño typically produces above average monthly precipitation whereas La Niña produces 

below average monthly precipitation for these same months (Schmidt et al. 2001). The persistence of these 

dry and wet climate states have significant implication for water supply management, affecting both supply 

and demand. There is a vast amount of research regarding how to downscale and bias-correct GCM data, 

but no attention is given to assessment of whether these efforts alter signals embedded in global climate 

models and/or, whether these projections reproduce climate states such as ENSO that are important for 

making management decisions. The lack of such investigation makes it difficult for water supply managers 

to be prepared for the impact of potential climate change in their region.    

In this study, experimental first order Markov Chain models were employed to evaluate empirical 

aggregation of data to attain the historical variability of the precipitation patterns and climate states. By 

applying the technique, dry or wet weather patterns and the transition and persistence in climate states of a 

system over time were ascertained. To achieve this, the states of a system, e.g. “wet” or “dry”, were defined, 

and a transition probability matrix was then developed. Markov Chains was selected as it has been 

successfully utilized in many water resources applications for precipitation states, weather cycles and 

hydrological evaluations, i.e. Gabriel and Neumann (1962), Todorovic and Woolhiser (1975), Mishra et al. 

(2013), Akyuz et al (2012), Smith and Marshall (2008), Moon et al. (2006), among others, therefore was 

selected for this research. Gabriel and Neumann (1962) is noted as one of the first to model the Markov 

Chains process for precipitation. Results deduced this a suitable model to account for weather cycles and 

distributions of dry and of wet events. Akyuz et al. (2012) successfully reproduced the stochastic structure 

of hydrological droughts in annual streamflow using first- and second-order Markov Chain models. 

Recently, Avilés et al. (2016) compared Markov chain and Bayesian network based models to characterize 

droughts. Their results showed that Markov Chains better predicted transition between wet and dry states.  
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Utilizing Markov Chains and graphical tools, this study evaluated GCMs and their downscaled and 

bias-corrected products and compared the results to National Oceanic and Atmospheric Administration 

(NOAA) gauge data. The objective was to investigate (1) whether the raw GCM and their downscaled, 

bias-corrected counterpart capture the persistence of climate states observed in historical data, and (2) if 

climate states and/or transition probabilities in raw GCMs are preserved or lost in translation. This is 

important because if key climate state signals are lost in translation in historical runs, one could possibly 

expect similar loss of information in future scenario projections. Note that usually future projection 

scenarios are developed by propagating a mismatch between historical observed data and a retrospective 

GCM run during a quantile mapping (see for examples, Li et al. 2009; Asefa et al., 2013). 

2.2  Materials and Methods 

The GCMs Bjerknes Centre for Climate Research (BCCR) model BCCR3-BCM2.0 (BCCR3) and 

model bcc-csm1-1 (BCCR5), and Community Climate System Model (CCSM) model CGCM3.1 were 

selected. The spatial resolutions for BCCR and CCSM are 2.8° x 2.8° and 1.4° x 1.4°, respectively. BCCR 

was chosen because results are available for both the third phase, BCCR3, and a more recent fifth phase, 

BCCR5, from the World Climate Research Programmer’s Coupled Model Intercomparison Projects 

(CMIP5 and CMIP3 Lawrence Livermore National Laboratory of the U.S. Department of Energy, 

http://www-pcmdi.llnl.gov/projects/pcmdi/). Hwang and Graham (2013) compared various statistical 

downscaling methods of GCMs and recommended that BCSA provided a better fit of historical data in the 

Tampa Bay area. Therefore, these GCMs were downscaled and bias-corrected using the BCSA technique 

of Hwang and Graham (2013) and Maurer’s nationally available precipitation data that is gridded at 1/8 

degree spatial resolution (about 12 km) (Maurer et al. 2002; 

http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles/). Maurer’s gridded precipitation dataset is widely 

known and has been used in many statistical downscaling techniques in the U.S. (Ning et al. 2015; Notaro 

et al. 2015; Hwang 2012). For CMIP5, BCCR5 was downscaled using the same BCSA technique for 

consistency. For this case study, the raw GCM datasets are denoted BCCR3-Raw, BCCR5-Raw, and 

CCSM-Raw, whereas the downscaled precipitation datasets are BCCR3-D, BCCR5-D, and CCSM-D. For 
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comparison, the GCMs were downscaled to the locations of two rainfall gauges in the Tampa region, 

namely Plant City and St. Leo, FL rain gauges (Figure 1). These locations were selected because both 

gauges are maintained by NOAA and have complete records that started in 1900. 

For each dataset, the monthly precipitation, and basic statistics of monthly precipitation such as 

mean, median, standard deviation and skewness were calculated. In addition, the empirical frequency 

distribution function of precipitation for each month was developed. Due to the limitation of the data size, 

two states were selected for examination in the transition probability. The probability of a state was defined 

with respect to being above the median (wet) or below the median (dry), therefore being either wet or dry, 

for the Markov Chains transition probability matrix. Using Markov Chains and quantiles, transition 

probabilities are simulated between states. Markov Chain is a discrete-time stochastic model that describes 

the probable sequence of events. The probability of a precipitation event depends only on the current state 

and not on a previous event. For a set of states where S = {s1, s2, s3, …, sr}, transition probabilities can be 

represented by the following Markov Chain equation if it has ‘r’ states: 

𝑷𝒊𝒋 = ∑ 𝑷𝒊𝒌𝑷𝒌𝒋 
𝒓
𝒌=𝟏                                                                                                                               (1)  

The process begins at one state and then moves on to the next state successively. For example, if 

the state is currently si in the chain, then it will have a probability pij of transitioning to state sj in the 

following period. Thus, elements in the transition probability matrix represent probabilities of shifting 

between states. Persistence in a certain state, e.g. “wet” month followed by more “wet” months in the 

sequence, is reflected by high values of Pii, the diagonal elements of the transition probability matrix (Moon 

et al. 2006; Grinstead and Snell 1997). 

𝑴 =
       𝑫    𝑾
𝑫

𝑾  
[
𝒑𝟏𝟏 𝒑𝟏𝟐

𝒑𝟐𝟏  𝒑𝟐𝟐
]                                                                                                                                  (2)   

Weiss (1964) described the probability model as a Markov Chain with two conditional probabilities 

parameters p0 and (1-p1), where p0 is the probability of a wet state if the preceding day was dry, and (1-p1) 

is the probability of a dry state if the preceding day was wet.  

p1 = Pr{W/W};          (1-p1) = Pr{D/W}                                                                                                                      (3) 
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p0 = Pr{W/D};          (1-p0) = Pr{D/D}                                                                                                                       (4) 

To assess the impact of ENSO, this research uses ‘dry period’, which is the sum of December, 

January and February, by year. These winter months are assessed as it eliminates potential impacts of 

hurricane season that ends in November. Furthermore, this is when some of the highest impacts are observed 

(FCC 2017; NWSCPC 2003). Since majority of precipitation is received in the summer months, ‘wet 

period’, July, August and September summed by year is examined. This ensures capturing entire months 

that are affected by high precipitation. After calculating the transition probabilities, any difference greater 

than 10% was noted. 

ENSO is defined by measuring the Oceanic Niño Index (ONI). This is a three month running mean 

of sea surface temperatures in the east-central tropical Pacific Ocean in a region known as Niño 3.4 (5°N-

5°S, 120°-170°W). La Niña occurs when the ONI is below 0.5°C normal for at least five consecutive 

overlapping months, and an El Niño period is when the ONI is above 0.5°C for the same five minimum 

criteria. Normal is the period in-between with an ONI value ranging between -0.5 and 0.5 (Peña et al. 2015; 

Gergis and Fowler 2005). These can be further broken down. For example, El Niño is classified as Very 

Strong (≥ 2.0), Strong (1.5 to 1.9), Moderate (1.0 to 1.4) and Weak (with a 0.5 to 0.9 SST anomaly) events, 

based on the ONI (Null 2016; Wang and Kumar 2015). This research is based on the ONI Index for the 

1950-2015 period. (NOAA NWSCPC 2015) shown in Table 1. 

2.3  Results 

2.3.1  Raw GCM Precipitation from CMIP3 and CMIP5 

As expected, the PDF of the raw GCM and gauge data did not match, supporting the need for 

downscaling and bias-correction. The disparities were not consistent and varied by GCM and by month. 

For example, Figure 2 showed how in January, CCSM-Raw underestimated the frequency of below average 

precipitation and overestimated frequency at high values. Figure 3 depicted an over estimated precipitation 

for CMIP3’s BCCR3-Raw for August. At a cumulative frequency of around 0.5, the NOAA_Plant gage 

experiences around 22 centimeters (cm) of precipitation whereas BCCR3-Raw estimated around 32 cm. 

Furthermore, the GCM estimated the maximum at 51.68 cm whereas the gauge was 35.68 cm. For August, 
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one of the months with the highest precipitation for this region, all simulation output from GCMs deviated 

drastically from the Plant City gauge. Both CCSM-Raw (Figure 4) and BCCR5-Raw (Figure 5) under 

predicted precipitation, generating values less than half the amount of what is experienced for this region. 

Therefore, neither CMIP3 nor CMIP5 raw data replicated precipitation statistics for the region.  

This finding is supported by the summary statistics (Table 2) which amplifies differences between 

GCMs predictions and historical records, further supporting the need for downscaling and bias-correction 

in order to encapsulate natural climate variability. With the exception of January and February, Table 2 

demonstrated how CCSM-Raw deviated throughout most of the year, inaccurately depicting March, April 

and May with the highest precipitation. Since these are typically dry months with the least precipitation, 

the GCM predictions failed to capture the precipitation seasonality of this region. Similarly, BCCR3-Raw 

(Table 3) and BCCR5-Raw (Table 4) showed greatest variations from gauge data during the region’s wet 

season, which consists of June, July, August and September. For instance, BCCR3-Raw over predicted 

precipitation and was more than double NOAA_Leo in June with a mean of 38.87 cm of precipitation, 

whereas the gauge was 18.03 cm (Table 3). Conversely, in June BCCR5-Raw was four times smaller with 

mean of 4.97 cm whereas NOAA_Leo was 20.84 cm (Table 4). Comparing CMIP3 to CMIP5, CMIP5 over 

corrected the previous errors of CMIP3. The reductions were so drastic that most months had similar means, 

thus missing rainfall seasonality that is a pronounced and important aspect of climate in this region. It is 

also important to note that there are minor variances in geographic locations displayed by the differences 

in the month mean. For instance in June, the mean for St. Leo gauge is 17.99 cm but Plant City gauge is 

19.83 cm (Table 2). 

Although an El Niño year typically produces above average precipitation for this region, there are 

months that might not achieve this. To account for this, dry period was created, which is the sum of three 

dry season months, December, January and February, which smooths out the values should a month  have 

low precipitation during an El Niño year, or alternatively high value during La Niña. The combination of 

multiple months provided a better representation of the cycle by accounting for any irregularities. Since 

transition probabilities only take into account the current state and prior state without regard for actual date 
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of occurrence, the probability value encapsulates the ENSO cycle as well as its length in the calculated 

values. This technique allows the GCM and gauges to be compared by only exposing persistence of cycles 

for the entire record and not zooming in on one actual event at a specific time. Since ENSO oscillates 

between La Niña, Normal and El Niño without staying in one state for many consecutive years, the 

probability will never be close to one. Furthermore, since the actual date of occurrence is not a factor and 

only the current state and prior state, the GCM and gauges are comparable as transition probabilities expose 

the statistical probability of precipitation cycles. One instance where the cycle appeared to have been 

represented is BCCR3-Raw (Table 5b), which had similar transition probabilities to the St. Leo gauge. All 

other instances CMIP3 GCMs dry period transition probabilities deviated. For example, if CCSM-Raw was 

in a current dry state there was an equal likelihood of next dry period being dry or wet since calculated 

transition probabilities was 0.5; however, the Plant City gauge data had a slight trend to transition from a 

dry state to a wet state indicative of a cycle (Table 5a).  

CMIP5 BCCR5-Raw findings (Table 5c and Table 5d) were inferior to CMIP3 since none of the 

results captured the transition probabilities of the gauges. For instance, there was 100% difference between 

BCCR5-Raw and NOAA_Leo for Current Wet-to-Wet (Table 5d). BCCR5-Raw also had more of a trend 

to want to switch to the alternate state, exhibiting minimal persistence. For instance, if in a currently wet 

state there was an 81.8% chance of switching to a dry state. This incorrectly stated that there was not a 

likely chance of remaining in an El Niño state for multiple years. Additionally, it showed a 72.7% chance 

of switching from a dry state to a wet state, once again incorrectly stating that there was not a likely chance 

of remaining in a La Niña state for multiple years. Although the GCMs are a valuable product for climate 

change predictions and planning, it has limitations such as the inability to capture transition probabilities 

and the embedded ENSO cycles and large frontal storms experienced in this region. 

Similarly, wet period results demonstrated that both CMIP3 and CMIP5 GCMs did not exhibit the 

transition probabilities for the respective gauges. For instance, BCCR3-Raw exemplified that if in a current 

dry state it was equally likely to shift to a dry or wet state since the transition probabilities were 0.5 (Table 

8b). Conversely, the gauge was more likely to transition to a wet state with a probability of 0.667 for Current 
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Dry-to-Wet. Similarly, CCSM-Raw data indicated that there was no state preference and if in a current wet 

state as there was an equal likeliness of next wet period being dry or wet, whereas the gauges were more 

likely to transition to a dry state (Table 8a). 

CMIP5’s BCCR5-Raw also diverged from both gauges for wet period. For instance, BCCR5-Raw’s 

transition probability for Current Dry-to-Dry was 0.417 whereas NOAA_Plant was 0.273 (Table 8c), with 

a 34.5% difference. Moreover, BCCR5-Raw reduced Current Dry-to-Wet persistence compared to both 

gauges, decreasing the amount of precipitation. Although CMIP3 did a slightly better job than CMIP5, 

neither captured all historical transitions of the gauges for wet periods.  

2.3.2  Comparison of Downscaled GCM Products to the Gauge 

Bias-correction generally improved the mean precipitation for all GCMs’ corrected products, such 

as BCCR5-D_Leo and CCSM-D_Leo, thus better capturing rainfall characteristics such as seasonality 

(Table 2, Table 3, and Table 4). For instance, downscaling using the BCSA approach generated a new 

dataset, CCSM-D_Plant, which more closely matched the historical PDF versus CCSM-Raw as shown in 

Figure 2. For August, BCCR3-D_Plant (Figure 3) corrected an over predicted raw GCM resulting in similar 

PDF curves compared to the gauge. Although both CCSM-D_Plant (Figure 4) and BCCR5-D_Plant (Figure 

5) improved the original raw GCMs, the maximum monthly precipitation in August was still 

underestimated, not eliminating all biases. This might result in the corrected GCMs missing some extreme 

events, such as tropical storms, that characterize this region. Although not perfect, e.g.: at a low cumulative 

frequency between 0.05 to 0.3 on NOAA_Plant displayed lower precipitation than CCSM-D_Plant (Figure 

4), or  the mean for BCCR3-D_Plant (Table 3) in January was 2.99 cm greater than the gauge, bias-corrected 

data which substantially resolved biases of the raw GCMs. 

Although basic statistics matched reasonably well, downscaled and bias-corrected GCMs have 

limitations evident by the distorted transition probabilities in dry periods. As shown in Table 6, BCCR3-

D_Plant increased the chance of the occurrence of a dry period following another dry period, possibly 

accentuating multiple La Niña years by 24% compared to the gauge. Additionally, BCCR3-D_Plant 

increased precipitation in dry period followed by another wet year, potentially implying a 30% escalation 
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in persistence of El Niño. CCSM-D_Plant closely matched the gauge, whereas CCSM-D_Leo reduced the 

resolution of the wet state and the embedded effect of multiple La Niña years, with a probability of 0.438 

compared to 0.529 of the St. Leo gauge (Table 6b). Overall, the downscaled and bias-corrected transition 

probabilities deviated by more than 10% in 75% of the climate states.  

Assessing CMIP5 dry period results to CMIP3, CMIP5 digressed. For instance, there was a 100% 

difference compared to the gauge for BCCR5-D_Leo Current Wet-to-Wet (Table 6f), whereas there was a 

-21.4% for BCCR3-D_Leo (Table 6d). There was not one instance where BCCR5-D was similar to any of 

the gauges with deviation ranging from -100% to 25%. Furthermore, BCCR5-D_Plant and BCCR5-D_Leo 

reduced the chance of the occurrence of a wet period followed by another wet period by 25% and 66.7%, 

compared to respective gauges. Furthermore, BCCR5-D_Plant and BCCR5-D_Leo diminished the 

possibility of sequential dry periods with transition probabilities of 0.364 and 0.273, respectively, whereas 

both gauges were 0.455 (Table 6e and Table 6f). These corrected products decreased the chance of 

persistence in the cycles or having extremes since the transition probabilities of the diagonals were reduced 

which is not surprising since the raw GCM also did not show persistence of a climate state. 

CMIP3 wet period results revealed that downscaling and bias-correcting did not fix errors and in 

some cases made things worse. BCCR3-D_Leo, CCSM-D_Plant, and CCSM-D_Leo did not reproduce any 

of the transition probabilities of the gauges. In fact, they over predicted remaining in a dry state if already 

in a dry state as well as if already in a wet state they had a higher chance of remaining in a wet state. For 

instance, BCCR3-D_Leo had a 0.526 transition probability whereas NOAA_Leo was 0.368 for Current 

Wet-to-Wet (Table 9d). This over estimation of multiple sequential wet states could impact water resource 

planning resulting in water shortages. Moreover, BCCR3-D_Leo had an equal likelihood of a wet or dry 

state following a dry state with 0.50 transition probabilities (Table 9d), making it difficult to predict 

precipitation conditions. The only instance where the corrected product resembled the gauge was BCCR3-

D_Plant (Table 9c). Ultimately, the bias-corrected products only captured wet period transition probabilities 

25% of the time, failing to replicate historical precipitation patterns for the most critical time for this region, 

wet season, when the region receives the majority of their rainfall. CMIP5 downscaled and bias-corrected 
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wet period products declined in accuracy for Plant City (Table 9e) but improved for St. Leo (Table 9f) 

compared to CMIP3 (Table 9c and Table 9d). BCCR5-D_Plant had a 38.9% increase of Current Wet-to-

Wet state versus the gauge, overstating the availability of water. This same product also increased the 

chance of remaining in a dry state for consecutive periods by 53.2%, with 0.583 probability versus gauges 

0.273. Although the correct precipitation products, e.g. BCCR3-D_Leo and CCSM-D_Plant, matched the 

PDF, the correction process failed to resolve all biases by failing to capture how climate states transition. 

2.3.3  Comparison of Downscaled Products to the GCMs 

After downscaling and bias-correction of the CMIP3 GCMs, the signals embedded in the GCMs 

became distorted. For instance, for dry period, BCCR3-D_Plant was altered by -28.6% for Current Wet-to-

Dry state and by 20% from Current Wet-to-Wet state (Table 7c), over estimating the amount of precipitation 

received during dry period. Since BCCR3-Raw transition probabilities were similar to the St. Leo gauge 

(Table 5d) but corrected product BCCR3-D_Leo did not match (Table 6d), the sequencing of states in the 

raw GCM were altered which could be translated into potential distortion in future predictions. CCSM-D 

was also affected; however, in reverse. CCSM-D_Plant (Table 7a) and CCSM-D_Leo (Table 7b) transition 

probabilities decreased by 14.3% for Current Wet-to-Wet and increased by 11.1% for Current Wet-to-Dry 

compared to the GCM, predicting the dry period has less precipitation. These errors could also be 

interpreted as the reduction in the probability of the occurrence of multiple, consecutive wet or potentially 

sequential El Niño years while increasing the chance of drier years. CMIP5 dry period performance were 

just as unreliable as CMIP3 as there was a 50/50 chance of either matching or not matching the transition 

probabilities of the GCM since BCCR5-D_Plant (Table 7e) varied greatly but BCCR5-D_Leo 100% 

matched (Table 7f). Overall, both CMIP3 and CMIP5 signals were altered compared to the GCMs. 

Ultimately, the results illustrate that bias-correction changed the transition states that were modeled in the 

GCM by either over or under estimation of wet and dry states. If the correction techniques alter the transition 

probabilities of GCMs compared to historical, climate signals embedded in future predictions will also be 

misrepresented which could impact water supply planning.  



14 

 

Similarly, CMIP3 wet period downscaling and bias-correcting products also did not capture the 

raw GCMs’ transition probabilities. CCSM-D_Plant over estimated precipitation for Current Wet-to-Wet, 

changing the number of consecutive wet periods whereas CCSM-D_Leo increased the transition probability 

by 15.3% for Current Dry-to-Wet, inaccurately amplifying the wet-dry cycle (Table 10a). CMIP5 wet 

period corrected products, BCCR5-D_Plant (Table 10b) and BCCR5-D_Leo (Table 10c), produced even 

more disparities compared to the GCM than CMIP3. In fact, there were no instances where the transition 

probabilities of the corrected products preserved the cycles of the GCM. BCCR5-D_Plant diminished the 

chance of a wet-dry cycle with a 0.455 probability compared to BCCR5-Raw’s 0.636 (Table 10b). BCCR5-

D_Plant and BCCR5-D_Leo increased precipitation for Current Wet-to-Wet by 33.3% and 20%, 

respectively, while magnifying dry conditions with Current Dry-to-Dry increased by 28.6% and 16.7%, 

respectively (Table 10b and Table 10c). Furthermore, the changes in values along the diagonals exhibited 

an increased persistence of a wet or dry states compared to the raw GCM, conceivably resulting in more 

extremes. It is inconclusive when bias-correction will over or under predict precipitation transition 

probability compared to the GCM, but it is probable that similar errors will be transmitted to future GCM 

corrected products. Using these tools for planning, water supply operators might over estimate available 

water during the over predicted, multiple years of wet-to-wet periods and inadequately designing their 

climate change mitigation and adaptation plans.  

2.3.4  ENSO Influence on Precipitation 

To further examine the ENSO cycle, the dry period results for gauges, GCMs and corrected 

products were separated by either La Niña, Normal or El Niño, and the mean of each was calculated. The 

‘years,’ sum of December, January and February, for La Niña, Normal or El Niño were defined by NOAA 

and are located in Table 1. Both the Plant City (Figure 6) and St. Leo gauge (Figure 7) data confirmed La 

Niña with below average precipitation, El Niño with above average precipitation and Normal in-between, 

accurately representing the cycle. As seen in Figure 7, the GCMs and downscaled and bias-corrected data 

did not capture the variability in precipitation from the ENSO cycle. If present, cycles were not occurring 

at the same years as defined by Table 1. Additional investigation, not performed in the research, to examine 
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sea surface temperature and calculate the ONI index for the GCMs would be required to confirm the timing 

of each phase of the cycle. 

To further examine the errors in the transition probabilities for dry season and the ENSO cycle, 

Dry Period precipitation were graphed by year (Figure 8 and Figure 9). Although the products match the 

statistics of the gauges, the GCM and bias-corrected products do not match the timing of the typical high 

and low precipitation associated with the ENSO, justifying one reason why the results above (Figure 6 and 

Figure 7) did not have La Niña with below average precipitation, El Niño with above average precipitation 

and Normal in-between. Although GCMs were not designed to match the time series, these graphs 

demonstrate how bias-correction failed to capture the extremes of the gauges and that the data is skewed. 

For instance, in Figure 8 the gauge experiences three high peak precipitation events, 42.85 cm, 45.7 cm and 

73.59 cm, during this timeframe; conversely, BCCR3-D_Leo never had precipitation above 42 cm. 

Similarly, BCCR5-Plant City graph (Figure 9) portrays the gauge with a precipitation of 67.8 cm whereas 

BCCR5-D_Plant never peaks above 47 cm. These numbers confirm that although the products were 

downscaled and bias-corrected to match the statistics of the gauges, they did not reproduce extremes, such 

as El Niño events. 

These graphs also magnify how at times the bias-correction process also altered the timing of the 

events of the raw GCM compared to the corrected product. In 1970 and 1994 on the BCCR3-Leo graph 

(Figure 8), BCCR3-Raw had lower-than-average precipitation but BCCR3-D_Leo had above-average 

precipitation. In 1940 and 1996, BCCR3-Raw was close to average precipitation whereas BCCR3-D_Leo 

was once again higher than the average. These shifts in cycles are also evident in the BCCR5-Plant graph 

(Figure 9). In 1990, BCCR5-Raw simulated precipitation close-to-average whereas BCCR5-D_Plant was 

extremely low. Additionally, in 1998, BCCR5-Raw had above-average precipitation but BCCR5-D_Plant 

was below average. Once again, these errors might translate to skewing future prediction data. 

2.4  Conclusion 

Matching the transition of climate states in a GCM or downscaled product to historical data is 

crucial for future water supply planning. This study evaluated BCCR3, CCSM, and BCCR5 GCMs and 
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their downscaled and bias-corrected products for St. Leo and Plant City locations in Tampa Bay, FL. The 

following were concluded: (1) The raw GCMs required downscaling and bias-correction since BCCR3-

Raw and BCCR5-Raw had large deviations in the means during the summer months, and CCSM-Raw 

deviated throughout the year. CCSM-Raw and BCCR5-Raw did not honor precipitation seasonality for the 

region; (2) The corrections of the raw data using the BCSA technique successfully reproduced the basic 

statistics of the observed gauge data; (3) The GCM and downscaled and bias-corrected products did not 

depict historical climate states for wet or dry periods when compared to gauge data. In some instances, the 

raw GCM did a better job capturing these states and in others, the downscaled and bias-corrected products 

outperformed the raw GCM; (4) The downscaled and bias-corrected products distorted the timing of the 

dry period cycles compared to the raw GCMs. For instance, for one time period, the GCM had above-

average precipitation indicative of a possible El Niño event but the corrected product did not; (5) Extreme 

precipitation in the dry period from strong El Niño events was not simulated by the GCMs or corrected 

products; however, La Niña events were better captured; (6) Corrected products didn’t preserve GCM 

historical transition probabilities. More than likely similar types of deviations will also be occurring for 

“future” predictions, potentially suggesting the need to carry forward biases in transition probabilities; and 

finally (7) If desiring to capture climatic cycles, a method that accounts for bias in transition probabilities 

is likely needed. It is important to note that coming up with sophisticated bias correction techniques cannot 

be the solution by itself as there is limitation on what downscaling and bias-correction can achieve.  On the 

other hand, capturing all elements of climatic processes that are responsible for precipitation for all regions 

at GCM level might prove to be extremely difficult and exhibit limitations in their practical applications. A 

close working relationship between climate modelers and stakeholders those who are consuming the data 

to understand limitations of such products and provide feedback on where improvement may be needed 

should go a long way in producing actionable science. Understanding regional scale climatic processes that 

impact regional water resources management is an important step. Two such stakeholder-scientist 

partnership that are trying to do just that are the Water Utilities Climate Alliance (www.wucaonline.org) 

and Florida Water and Climate Alliance (www.floridawca.org). Such continued engagement between 
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scientist and stakeholders would result in understanding what’s important for water resources management 

decision making and where improvement in climate modeling may need to be focused. 

2.5  Tables 

Table 1: ENSO cycle years (DJF) (NOAA NWSCPC 2015) 

La Niña 1964, 1966, 1969, 1970, 1973, 1977, 1978, 1980, 1983, 1987, 1988, 1992, 1995, 1998 

Normal 1962, 1963, 1967, 1979, 1981, 1982, 1984, 1986, 1990, 1991, 1993, 1994, 1997 

El Niño  1965, 1968, 1971, 1972, 1974, 1975, 1976, 1985, 1989, 1996, 1999 

 

Table 2: Mean and standard deviation for CCSM-Raw, NOAA_Leo, CCSM-D_Leo, NOAA_Plant, and 

CCSM-D_Plant 

Units: x10-2 m Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

CCSM-RAW          

Mean 7.53 12.61 19.26 17.26 14.17 9.81 6.82 4.38 6.74 10.51 9.16 8.01 
Standard Deviation 3.38 4.63 5.13 4.52 4.79 4.64 3.77 3.47 4.38 4.21 4.94 3.27 

NOAA_Leo         

Mean 8.61 8.81 10.30 5.74 10.98 17.99 19.77 20.44 16.14 6.71 6.10 6.75 
Standard Deviation 4.36 5.33 7.89 4.57 8.80 9.27 6.13 8.86 9.19 4.80 6.22 6.97 

CCSM-D_Leo          

Mean 7.09 8.27 10.50 6.13 9.16 17.07 19.06 18.59 18.12 7.97 5.14 6.22 
Standard Deviation 4.12 4.54 4.85 4.74 5.24 7.69 4.93 4.95 9.37 4.81 4.46 5.89 

NOAA_Plant          

Mean 6.84 8.20 8.61 5.01 9.32 19.83 19.17 21.06 15.97 6.56 5.29 6.36 
Standard Deviation 4.74 5.35 6.71 3.91 6.56 9.86 6.63 7.29 8.61 4.43 4.70 6.80 

CCSM-D_Plant          

Mean 6.35 7.99 9.75 5.29 9.63 19.20 18.88 19.17 17.13 7.90 5.01 6.34 
Standard Deviation 4.06 4.65 4.71 3.12 4.73 6.55 4.08 4.53 7.24 4.48 4.13 5.70 

 

Table 3: Mean and standard deviation for BCCR3-Raw, NOAA_Leo, BCCR3-D_Leo, NOAA_Plant, and 

BCCR3- D_Plant 

Units: x10-2 m Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

BCCR3-RAW         

Mean 5.81 5.85 5.04 5.49 10.51 38.87 35.19 31.31 22.68 8.28 3.34 4.54 

Standard Deviation 4.48 6.26 4.75 6.41 9.19 14.38 10.77 9.36 6.78 4.48 3.32 4.54 

NOAA_Leo          

Mean 8.66 9.10 10.22 5.50 10.59 18.03 19.66 20.29 16.22 6.90 5.99 6.56 

Standard Deviation 4.25 6.22 7.81 4.55 8.73 9.99 6.19 8.65 9.30 4.75 6.08 6.82 

BCCR3-D_Leo          

Mean 6.92 8.15 10.33 6.51 9.72 18.36 19.66 18.22 18.11 7.67 5.02 5.86 

Standard Deviation 5.64 5.91 7.18 6.14 7.41 8.97 6.02 5.55 10.30 5.20 5.08 5.99 

NOAA_Plant          

Mean 6.65 7.31 8.65 5.39 9.50 21.45 20.11 21.59 17.09 6.15 5.01 6.21 

Standard Deviation 4.32 5.34 6.92 3.99 7.47 10.13 6.12 7.35 9.92 4.43 4.45 6.46 

BCCR3-D_Plant          

Mean 9.63 8.39 9.74 6.01 9.30 18.52 19.34 19.33 17.24 7.29 4.91 6.38 

Standard Deviation 4.68 6.22 7.23 4.70 7.22 8.53 5.59 6.08 7.30 4.65 4.89 6.33 
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Table 4: Average and standard deviation for BCCR5-Raw, NOAA_Leo, BCCR5-D_Leo, NOAA_Plant, 

and BCCR5-D_Plant 

Units: x10-2 m Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

BCCR5-Raw          

Mean 5.46 5.16 3.37 3.97 4.49 4.97 2.72 3.85 10.11 12.06 7.16 4.81 

Standard Deviation 3.15 3.51 1.93 3.01 2.62 4.07 1.17 2.14 8.60 7.49 4.54 2.75 

NOAA_Leo          

Mean 8.97 7.99 11.47 6.49 6.55 20.84 20.23 19.72 18.78 7.70 6.18 6.74 

Standard Deviation 3.54 6.80 9.24 4.84 5.60 10.68 6.71 5.83 11.27 4.67 6.68 8.58 

BCCR5-D_Leo           

Mean 7.50 7.97 11.27 6.02 6.48 21.09 18.70 18.95 18.09 6.92 5.70 5.74 

Standard Deviation 6.29 6.01 7.32 2.45 3.71 10.16 7.61 6.74 9.68 5.25 3.67 3.78 

NOAA_Plant           

Mean 7.39 7.04 9.91 6.68 7.94 22.06 19.41 21.14 18.83 6.55 5.09 6.82 

Standard Deviation 3.71 5.97 8.19 4.10 6.43 10.44 6.22 8.48 11.73 3.94 4.07 8.63 

BCCR5-D_Plant           

Mean 6.89 7.05 9.58 6.51 6.22 20.25 18.70 20.01 17.90 6.95 4.87 6.71 

Standard Deviation 5.81 5.33 5.43 3.93 3.38 10.00 7.24 6.71 9.98 5.26 3.72 5.36 

 

Table 5: Compared Dry Period transition probabilities for BCCR3-Raw, BCCR5-Raw and CCSM-Raw 

to gauges.  

(a) Dry Period: CCSM-Raw & NOAA_Plant    (b) Dry Period: BCCR3-RAW & NOAA_Leo 

NOAA_Plant Dry Wet Units: x10-2 m   NOAA_Leo Dry Wet Units: x10-2 m 

Current Dry 0.467 0.533 Dry is < 18.4851   Current Dry 0.529 0.471 Dry is < 21.385 

Current Wet 0.563 0.438 Wet is > 18.4852   Current Wet 0.500 0.500 Wet is > 21.3851 
                  

CCSM-Raw Dry Wet     BCCR3-RAW Dry Wet   

Current Dry 0.500 0.500 Dry is < 28.5155   Current Dry 0.526 0.474 Dry is < 15.7429 

Current Wet 0.500 0.500 Wet is > 28.5156   Current Wet 0.529 0.471 Wet is > 15.743 
                  

Difference Dry Wet     Difference Dry Wet   

Current Dry 6.7% -6.7%     Current Dry -0.6% 0.7%   

Current Wet -12.5% 12.5%     Current Wet 5.6% -6.3%   
                  

(c) Dry Period: BCCR5-Raw & NOAA_Plant   (d) Dry Period: BCCR5-Raw & NOAA_Leo 

NOAA_Plant Dry Wet Units: x10-2 m   NOAA_Leo Dry Wet Units: x10-2 m 

Current Dry 0.455 0.545 Dry is < 17.8399   Current Dry 0.455 0.545 Dry is < 19.050 

Current Wet 0.636 0.364 Wet is > 17.840   Current Wet 0.636 0.364 Wet is > 19.0501 
                  

BCCR5-Raw Dry Wet     BCCR5-Raw Dry Wet   

Current Dry 0.273 0.727 Dry is < 15.8422   Current Dry 0.273 0.727 Dry is < 15.8422 

Current Wet 0.818 0.182 Wet is > 15.8423   Current Wet 0.818 0.182 Wet is > 15.8423 
                  

Difference Dry Wet     Difference Dry Wet   

Current Dry -66.7% 25.0%     Current Dry -66.7% 25.0%   

Current Wet 22.2% -100.0%     Current Wet 22.2% -100.0%   
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Table 6: Compared Dry Period transition probabilities for BCCR3-D, BCCR5-D and CCSM-D to 

gauges. 

(a) Dry Period: CCSM-D_Plant & NOAA_Plant  (b) Dry Period: CCSM-D_Leo & NOAA_Leo 

NOAA_Plant Dry Wet Units: x10-2 m  NOAA_Leo Dry Wet Units: x10-2 m 

Current Dry 0.467 0.533 Dry is < 18.4851  Current Dry 0.563 0.438 Dry is < 21.3850 

Current Wet 0.563 0.438 Wet is > 18.4852  Current Wet 0.471 0.529 Wet is > 21.3851 
                 

CCSM-D_Plant Dry Wet    CCSM-D_Leo Dry Wet   

Current Dry 0.500 0.500 Dry is < 18.6862  Current Dry 0.500 0.500 Dry is < 19.2735 

Current Wet 0.563 0.438 Wet is > 18.6863  Current Wet 0.563 0.438 Wet is > 19.2736 
                 

Difference Dry Wet    Difference Dry Wet   

Current Dry 6.7% -6.7%    Current Dry -12.5% 12.5%   

Current Wet 0.0% 0.0%    Current Wet 16.3% -21.0%   

                 

(c) Dry Period: BCCR3-D_Plant & NOAA_Plant  (d) Dry Period: BCCR3-D_Leo & NOAA_Leo 

NOAA_Plant Dry Wet Units: x10-2 m  NOAA_Leo Dry Wet Units: x10-2 m 

Current Dry 0.438 0.563 Dry is < 18.4851  Current Dry 0.529 0.471 Dry is < 21.385 

Current Wet 0.588 0.412 Wet is > 18.4852  Current Wet 0.500 0.500 Wet is > 21.3851 
                 

BCCR3-D_Plant Dry Wet    BCCR3-D_Leo Dry Wet   

Current Dry 0.579 0.421 Dry is < 23.1155  Current Dry 0.421 0.579 Dry is < 20.1284 

Current Wet 0.412 0.588 Wet is > 23.1156  Current Wet 0.588 0.412 Wet is > 20.1285 
                 

Difference Dry Wet    Difference Dry Wet   

Current Dry 24.4% -33.6%    Current Dry -25.7% 18.7%   

Current Wet -42.9% 30.0%    Current Wet 15.0% -21.4%   

                  

(e) Dry Period: BCCR5-D_Plant & NOAA_Plant   (f) Dry Period: BCCR5-D_Leo & NOAA_Leo 

NOAA_Plant Dry Wet Units: x10-2 m   NOAA_Leo Dry Wet Units: x10-2 m 

Current Dry 0.455 0.545 Dry is < 17.8399   Current Dry 0.455 0.545 Dry is < 19.050 

Current Wet 0.636 0.364 Wet is > 17.840   Current Wet 0.636 0.364 Wet is > 19.0501 
                  

BCCR5-D_Plant Dry Wet     BCCR5-D_Leo Dry Wet   

Current Dry 0.364 0.636 Dry is < 20.2092   Current Dry 0.273 0.727 Dry is < 23.1660 

Current Wet 0.727 0.273 Wet is > 20.2093   Current Wet 0.818 0.182 Wet is > 23.1661 
                  

Difference Dry Wet     Difference Dry Wet   

Current Dry -25.0% 14.3%     Current Dry -66.7% 25.0%   

Current Wet 12.5% -33.3%     Current Wet 22.2% -100.0%   

 

 



20 

 

Table 7: Compared Dry Period transition probabilities for BCCR3-D, BCCR5-D and CCSM-D to their 

respective Raw GCMs.  

(a) Dry Period: CCSM-D_Plant & CCSM-Raw   (b) Dry Period: CCSM-D_Leo & CCSM-Raw 

CCSM-Raw Dry Wet Units: x10-2 m   CCSM-Raw Dry Wet Units: x10-2 m 

Current Dry 0.500 0.500 Dry is < 28.5155   Current Dry 0.500 0.500 Dry is < 28.5155 

Current Wet 0.500 0.500 Wet is > 28.5156   Current Wet 0.500 0.500 Wet is > 28.5156 
                  

CCSM-D_Plant  Dry Wet     CCSM-D_Leo  Dry Wet   

Current Dry 0.500 0.500 Dry is < 18.6862   Current Dry 0.500 0.500 Dry is < 19.2735 

Current Wet 0.563 0.438 Wet is > 18.6863   Current Wet 0.563 0.438 Wet is > 19.2736 
                  

Difference Dry Wet     Difference Dry Wet   

Current Dry 0.0% 0.0%     Current Dry 0.0% 0.0%   

Current Wet 11.1% -14.3%     Current Wet 11.1% -14.3%   

                  

(c) Dry Period: BCCR3-D_Plant & BCCR3-RAW   (d) Dry Period: BCCR3-D_Leo & BCCR3-RAW 

BCCR3-RAW Dry Wet Units: x10-2 m   BCCR3-RAW Dry Wet Units: x10-2 m 

Current Dry 0.526 0.474 Dry is < 15.7429   Current Dry 0.526 0.474 Dry is < 15.7429 

Current Wet 0.529 0.471 Wet is > 15.743   Current Wet 0.529 0.471 Wet is > 15.743 
                  

BCCR3-D_Plant Dry Wet     BCCR3-D_Leo Dry Wet   

Current Dry 0.579 0.421 Dry is < 23.1155   Current Dry 0.421 0.579 Dry is < 20.1284 

Current Wet 0.412 0.588 Wet is > 23.1156   Current Wet 0.588 0.412 Wet is > 20.1285 
                  

Difference Dry Wet     Difference Dry Wet   

Current Dry 9.1% -12.5%     Current Dry -25.0% 18.2%   

Current Wet -28.6% 20.0%     Current Wet 10.0% -14.3%   

                  

(e) Dry Period: BCCR5-D_Plant & BCCR5-Raw   (f) Dry Period: BCCR5-D_Leo & BCCR5-Raw 

BCCR5-Raw Dry Wet Units: x10-2 m   BCCR5-Raw Dry Wet Units: x10-2 m 

Current Dry 0.273 0.727 Dry is < 15.8422   Current Dry 0.273 0.727 Dry is < 15.8422 

Current Wet 0.818 0.182 Wet is > 15.8423   Current Wet 0.818 0.182 Wet is > 15.8423 
                  

BCCR5-D_Plant Dry Wet     BCCR5-D_Leo Dry Wet   

Current Dry 0.364 0.636 Dry is < 20.2092   Current Dry 0.273 0.727 Dry is < 23.1660 

Current Wet 0.727 0.273 Wet is > 20.2093   Current Wet 0.818 0.182 Wet is > 23.1661 
                  

Difference Dry Wet     Difference Dry Wet   

Current Dry 25.0% -14.3%     Current Dry 0.0% 0.0%   

Current Wet -12.5% 33.3%     Current Wet 0.0% 0.0%   
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Table 8: Compared Wet Period transition probabilities BCCR3-Raw, BCCR5-Raw and CCSM-Raw 

compared to gauges. 

(a) Wet Period: CCSM-Raw & NOAA_Plant 

NOAA_Plant  Dry Wet Units: x10-2 m 

Current Dry 0.471 0.529 Dry is < 52.2899 

Current Wet 0.556 0.444 Wet is > 52.2900 
        

CCSM-Raw Dry Wet   

Current Dry 0.529 0.471 Dry is < 17.4929 

Current Wet 0.500 0.500 Wet is > 17.4930 
        

Difference Dry Wet   

Current Dry 11.1% -12.5%   

Current Wet -11.1% 11.1%   

        

(b) Wet Period: BCCR3-RAW & NOAA_Leo 

NOAA_Leo Dry Wet Units: x10-2 m 

Current Dry 0.333 0.667 Dry is < 56.2249 

Current Wet 0.632 0.368 Wet is > 56.2250 
        

BCCR3-RAW  Dry Wet   

Current Dry 0.500 0.500 Dry is < 89.7145 

Current Wet 0.526 0.474 Wet is > 89.7146 
        

Difference Dry Wet   

Current Dry 33.3% -33.3%   

Current Wet -20.0% 22.2%   

 

(c) Wet Period: BCCR5-Raw & NOAA_Plant 

NOAA_Plant Dry Wet Units: x10-2 m 

Current Dry 0.273 0.727 Dry is < 52.6900 

Current Wet 0.667 0.333 Wet is > 52.6901 
        

BCCR5-Raw  Dry Wet   

Current Dry 0.417 0.583 Dry is < 15.0802 

Current Wet 0.636 0.364 Wet is > 15.0803 
        

Difference Dry Wet   

Current Dry 34.5% -24.7%   

Current Wet -4.8% 8.3%   
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Table 9: Compared Wet Period transition probabilities for BCCR3-D, BCCR5-D and CCSM-D to 

gauges.  

(a) Wet Period: CCSM-D_Plant & NOAA_Plant   (b) Wet Period: CCSM-D_Leo & NOAA_Leo 

NOAA_Plant Dry Wet Units: x10-2 m   NOAA_Leo Dry Wet Units: x10-2 m 

Current Dry 0.471 0.529 Dry is < 52.2899   Current Dry 0.333 0.667 Dry is < 56.2249 

Current Wet 0.556 0.444 Wet is > 52.2900   Current Wet 0.647 0.353 Wet is > 56.2250 
                  

CCSM-D_Plant Dry Wet     CCSM-D_Leo Dry Wet   

Current Dry 0.556 0.444 Dry is < 53.8154   Current Dry 0.444 0.556 Dry is < 55.9655 

Current Wet 0.412 0.588 Wet is > 53.8155   Current Wet 0.529 0.471 Wet is > 55.9656 
                  

Difference Dry Wet     Difference Dry Wet   

Current Dry 15.3% -19.1%     Current Dry 25.0% -20.0%   

Current Wet -34.9% 24.4%     Current Wet -22.2% 25.0%   

                  

(c) Wet Period: BCCR3-D_Plant & NOAA_Plant   (d) Wet Period: BCCR3-D_Leo & NOAA_Leo 

NOAA_Plant Dry Wet Units: x10-2 m   NOAA_Leo Dry Wet Units: x10-2 m 

Current Dry 0.474 0.526 Dry is < 52.6900   Current Dry 0.333 0.667 Dry is < 56.2249 

Current Wet 0.556 0.444 Wet is > 52.6901   Current Wet 0.632 0.368 Wet is > 56.2250 
                  

BCCR3-D_Plant Dry Wet     BCCR3-D_Leo Dry Wet   

Current Dry 0.444 0.556 Dry is < 55.7651   Current Dry 0.500 0.500 Dry is < 56.8119 

Current Wet 0.526 0.474 Wet is > 55.7652   Current Wet 0.474 0.526 Wet is > 56.8120 
                  

Difference Dry Wet     Difference Dry Wet   

Current Dry -6.6% 5.3%     Current Dry 33.3% -33.3%   

Current Wet -5.6% 6.2%     Current Wet -33.3% 30.0%   

      

(e) Wet Period: BCCR5-D_Plant & NOAA_Plant   (f) Wet Period: BCCR5-D_Leo & NOAA_Leo 

NOAA_Plant Dry Wet Units: x10-2 m   NOAA_Leo Dry Wet Units: x10-2 m 

Current Dry 0.273 0.727 Dry is < 52.6900   Current Dry 0.545 0.455 Dry is < 58.9000 

Current Wet 0.667 0.333 Wet is > 52.6901   Current Wet 0.500 0.500 Wet is > 58.9001 
                  

BCCR5-D_Plant Dry Wet     BCCR5-D_Leo Dry Wet   

Current Dry 0.583 0.417 Dry is < 57.5614   Current Dry 0.500 0.500 Dry is < 57.5876 

Current Wet 0.455 0.545 Wet is > 57.5615   Current Wet 0.545 0.455 Wet is > 57.5877 
                  

Difference Dry Wet     Difference Dry Wet   

Current Dry 53.2% -74.5%     Current Dry -9.1% 9.1%   

Current Wet -46.7% 38.9%     Current Wet 8.3% -10.0%   
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Table 10: Compared Wet Period for BCCR3-D, BCCR5-D and CCSM-D to their respective Raw GCMs. 

(a) Wet Period: CCSM-D_Leo & CCSM-Raw 

CCSM-Raw Dry Wet Units: x10-2 m 

Current Dry 0.529 0.471 Dry is < 17.4929 

Current Wet 0.500 0.500 Wet is > 17.4930 
        

CCSM-D_Leo Dry Wet   

Current Dry 0.444 0.556 Dry is < 55.9655 

Current Wet 0.529 0.471 Wet is > 55.9656 
        

Difference Dry Wet  

Current Dry -19.1% 15.3%  

Current Wet 5.6% -6.3%   

    

(b) Wet Period: BCCR5-D_Plant & BCCR5-Raw 

BCCR5-Raw Dry Wet Units: x10-2 m 

Current Dry 0.417 0.583 Dry is < 15.0802 

Current Wet 0.636 0.364 Wet is > 15.0803 
        

BCCR5-D_Plant Dry Wet   

Current Dry 0.583 0.417 Dry is < 57.5614 

Current Wet 0.455 0.545 Wet is > 57.5615 
        

Difference Dry Wet  

Current Dry 28.6% -40.0%   

Current Wet -40.0% 33.3%   

 

(c) Wet Period: BCCR5-D_Leo & BCCR5-Raw 

BCCR5-Raw Dry Wet Units: x10-2 m 

Current Dry 0.417 0.583 Dry is < 15.0802 

Current Wet 0.636 0.364 Wet is > 15.0803 
        

BCCR5-D_Leo Dry Wet   

Current Dry 0.500 0.500 Dry is < 57.5876 

Current Wet 0.545 0.455 Wet is > 57.5877 
        

Difference Dry Wet   

Current Dry 16.7% -16.7%   

Current Wet -16.7% 20.0%   
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2.6  Figures 

 

Figure 1: CMIP3 and CMIP5 GCM locations and rain gauge locations for Tampa Bay, FL region 

 

Figure 2: January PDF for NOAA_Plant, CCSM-Raw, and CCSM-D_Plant 
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Figure 3: August PDF for NOAA_Plant, BCCR3-Raw, and BCCR3-D_Plant 

 

 

Figure 4: August PDF for NOAA_Plant, CCSM-Raw, and CCSM-D_Plant 
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Figure 5: August PDF for NOAA_Plant, BCCR5-Raw, and BCCR5-D_Plant 

 

 

Figure 6: BCCR3-Plant City average precipitation for ENSO cycle 
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Figure 7: BCCR5-St. Leo average precipitation for ENSO cycle 

 

 

Figure 8: BCCR3-St. Leo - Dry Period (sum of December, January and February) showing ENSO cycles 

in Gauge, BCCR3-Raw and BCCR3-D_Leo 
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Figure 9: BCCR5-Plant City - Dry Period (sum of December, January and February) showing ENSO 

cycles in Gauge, BCCR5-Raw and BCCR5-D_Plant 
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CHAPTER 3: ASCERTAINING IF GENERAL CIRCULATION MODELS REPLICATE 

HISTORIC PERFORMANCE METRICS FOR HYDROLOGIC AND SYSTEMS SIMULATIONS 

 

3.1  Introduction 

Water managers are challenged to adapt supply sources and infrastructure systems to the reality of 

climate change. In 2017, the United Nations stated that by 2030 1.8 billion people will live in regions with 

extreme water scarcity (United Nations 2017). This concurred with the Intergovernmental Panel on Climate 

Change’s (IPCC’s) Fifth Assessment Report which estimated that many regions will suffer from reduced 

water supply by 2040. Inadequate water supply puts human lives at risk by creating food shortages and 

reducing potable drinking water, stressing the necessity for planning (IPCC 2014a).  

To assess future water availability, hydrologists employ precipitation from general circulation 

models (GCMs) as inputs to drive streamflow and system simulation models. These GCMs incorporate 

various representative concentration pathways emission levels to model global climate response to 

greenhouse gas concentrations from air pollutant emissions and land use changes to capture a range of 

future scenarios (IPCC 2014b). The World Climate Research Programme’s Coupled Model 

Intercomparison Project 5 (CMIP5 Lawrence Livermore National Laboratory of the U.S. Department of 

Energy, http://www-pcmdi.llnl.gov/projects/pcmdi/) provides access to data from several climate models 

such as BCC-CSM, CSIRO, GFDL-ESM2M and MIROC (see Table 11). Because GCMs are designed at 

a coarse scale, ~250 km to 600 km, they require downscaling to employ in regional and local hydrologic 

simulation models (IPCC 2013). Statistical downscaling techniques include bias-correction and constructed 

analog (BCCA), bias-correction and spatial disaggregation (BCSD), and bias-correction and stochastic 

analog method (BCSA) (Panaou et al. 2016; Gutmann et al. 2014; Hwang and Graham 2013a).  

http://www-pcmdi.llnl.gov/projects/pcmdi/
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Due to spatial disparities, downscaled products result in residual biases and errors. For instance, 

Panaou et al. (2018) revealed that GCM and downscaled and bias-corrected data failed to capture historical 

climate cycles and the oscillations between wet and dry precipitation states or extremes associated with El 

Niño events. Further, when GCM precipitation was employed as inputs to hydrologic models, GCM errors 

propagated to simulated streamflow. Hwang et al. (2013b) showed how an integrated hydrologic model 

(IHM) streamflow outputs that were driven by GCMs differed from an IHM simulation produced with 

actual historical rainfall. However, it is unclear whether these mismatches would translate from the GCM 

precipitation to streamflow simulations, to the system model, and then ultimately the reservoir system. This 

research aimed to examine these impacts on reservoir operations via performance metrics because it is 

crucial to understand potential model simulation discrepancies for future water supply planning and 

adaptation.  

To evaluate water supply systems, water managers have employed Reliability, Resilience and 

Vulnerability (RRV) performance metrics. In their popular forms, RRV was first introduced by Hashimoto, 

Loucks and Stedinger in 1982. Since then they have been used in a wide range of applications (e.g. Fowler 

et al. 2003, Asefa et al. 2014). Frequently, GCM precipitation feed in systems models providing streamflow 

outputs, enabling one to assess the performance of water supply systems in a changing climate. However, 

few studies have looked at all RRVs through the lens of GCM outputs (e.g. Soundharajan et al. 2016, 

Sandoval-Solis et al. 2011, Fowler et al. 2003, Yang et al. 2012, Seung Beom et al. 2015, Amarasinghe et 

al. 2016.). Soundharajan et al. (2016) assessed climate change’s impact on the Pong reservoir in India. The 

authors utilized a rainfall–runoff model with delta perturbations to simulate future scenarios versus 

employing GCMs outputs directly into a hydrologic model. Sandoval-Solis et al. (2011) developed a 

sustainability Index to evaluate multiple water management policies by aggregating RRV indices. In 

contrast to this research, they compared scenarios of water management and policies, but did not consider 

climate change. Fowler et al. (2003) examined the influences of climate change on droughts in northern 

England via RRV. Although insightful, this study did not utilize CMIP5 GCMs but weather type frequency 

(Jenkinson and Collinson (1977)) using mean rainfall statistics and potential evapotranspiration. Yang et 
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al. (2012) investigated the impacts of climate change on water resources in Southern Taiwan using a 

weather generator to drive reservoir operation and hydrological simulation models using earlier GCMs, 

A1B emission scenario. They focused on identifying a drought risk index for their region by comparing 

three drought indexes, the sustainability index, modified sustainability index and drought risk index. 

Although insightful, it did not ascertain if GCMs could replicate each of the historic RRV metrics for a 

reservoir system. Seung Beom et al. (2015) employed GCMs to examine water supply for the Han River 

basin of Korea. This research examined both historical and future projections, but developed a conservative 

approach by assigning weights to IPCC’s Fourth Assessment Report scenarios. Further, it refrained from 

using performance metrics to evaluate if GCMs were a suitable tool to downscale precipitation inputs to 

reservoir simulations. Amarasinghe et al. (2016) studied the impacts of reduced precipitation due to climate 

change on the resiliency of a water supply system. Resiliency was calculated for a water distribution 

network using pressure to evaluate the water grid system. The designed system was set to operate at a 

specific level of pressure and a drop in pressure reduced the level of service triggering a failure state.  

Failure to estimate future water availability could result in water crisis, potentially leading to life 

threatening disasters. Furthermore, suppliers might implement different tactics and infrastructure 

development depending on a projected climate scenario. For instance, if models projected increased 

frequency of higher intensity storms that favors runoff, water resources managers might recommend 

increasing reservoir storage to capture larger fractions of streamflow. Conversely, if there is less annual 

precipitation, suppliers might opt for water reuse and water conservation strategies or other sources such as 

desalinated sea water. Therefore, it is critical to understand the nature of GCMs downscaled precipitation 

and whether it can accurately reproduce historical streamflow and, consequently, reservoir operations, 

before using GCMs to predict future climate scenario. This study aimed to determine if utilizing 

precipitation from GCMs as an input to a streamflow model is a feasible option, by providing an innovative 

assessment of both GCMs, hydrological reservoir tributaries and water supply systems. We are not aware 

of a study that considered a variety of performance metrics including reliability, resilience, vulnerability 

and sustainability, to evaluate the viability of employing GCMs downscaled precipitation into a streamflow 
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model to simulate a water supply and reservoir system. This research will increase the understanding of the 

GCMs capabilities and limitations prior to employment for water supply projections and mitigation. 

3.2  Materials and Methods 

For this research, the Greater Tampa Bay, Florida region was selected for the case study (Figure 

10). Downscaling was performed via BCSA technique, which was found better suited for this area (e.g. 

Hwang and Graham 2013a). During downscaling, this stochastic process produced realizations of daily 

GCM precipitation that preserved the observed temporal frequency distribution of daily rainfall over space 

and spatial autocorrelation. The biases were then corrected by matching the GCM’s cumulative distribution 

function (CDF) to historical rain gauge data observed at the local scale per respective month. Tampa Bay 

Water, the region’s water supplier, developed a surface water modeling simulator, Flow Modeling System 

Version 2 (FMS2), to evaluate impacts of precipitation variability on water supply (Asefa et al. 2014). 

FMS2 is a stochastic model that simulates regional surface water supply source flows in the Hillsborough 

and Alafia rivers watersheds by utilizing monthly precipitation inputs at St. Leo, Plant City and Cypress 

Creek gauges (Figure 11). Employing a fully-exogenous, seasonal-multivariate linear regression model 

(SMLR), FMS2 generates stochastic time series ensembles for source flows to Tampa Bay regional surface 

water supply systems, specifically monthly flows at the Alafia River and entering the Hillsborough 

Reservoir/Tampa Bypass Canal (TBC) based on monthly precipitation. These flow locations include Alafia 

River at Bell Shoals, the Hillsborough River at Morris Bridge, and ungauged groundwater inflow and runoff 

into the TBC Lower and Middle Pools (Table 12). A multivariate, nonparametric disaggregation algorithm 

converts a simulated monthly flow time series to a corresponding daily flow time series. It then transforms 

flows to a daily time scale to match daily permit rules shown in Table 13 (Asefa et al. 2014). 

3.2.1  Rainfall-Runoff Model 

Precipitation from three gauges, St. Leo, Plant City and Cypress Creek (Figure 11), were used as 

inputs into SMLR rainfall-runoff model. This model is briefly explained below and details are in Asefa at 

al. (2014). Streamflow is estimated as: 

𝑦𝑡 = 𝛼𝜏 + 𝑥𝜏,𝑡𝛽𝜏 + 𝜀𝑡  ,    t ~ N(0, )                                                      (5) 
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where yt represents the estimated streamflow;  is a 1-by-n vector of model intercepts specific to season  

= (t); and X,t is the predictor value for season  = (t) and time t.  

𝛼𝑡 = [𝛼𝜏,1, … 𝛼𝜏,𝑛]    ∃𝜏 ∈ 𝝉   (1 𝑥 𝑛)                                                           (6) 

 in X,t allows for different predictor values to be applied in different seasons.  is a p-by-n matrix 

of regression coefficients used only during season  = (t). For each unique seasonal value in , there are a 

total of |||| different  matrices. 

𝛽𝜏 =

[
 
 
 
 
𝛽𝜏,11  . . .    𝛽𝜏,1𝑛

.       .           .

.          .        .

.             .     .
𝛽𝜏,𝑝1  . . .    𝛽𝜏,𝑝𝑛]

 
 
 
 

    ∃𝜏 ∈ 𝝉   (𝑝 𝑥 𝑛)                                              (7) 

The impact of the predictor xj on predict and yi during season  is explained by each element ji, 

row j[1 …p] and column i [1 …n] of . Lastly, the residual  is assumed to obey a multivariate normal 

distribution with stationary 1-by-n vector with 0 mean and n-by-n variance-covariance matrix  specific 

to season  = (t). When estimates 𝛼̂𝜏, 𝛽̂𝜏 and Σ̂𝜀,𝜏 are determined for ,  and  in each season, an 

SMLR is specified. The SMLR parameters is computed by a least-square estimation; a separate analysis is 

performed for each season (Asefa et al. 2014).   

3.2.2  Daily Flow Generations 

While the precipitation in the rainfall-runoff model was at a monthly time step, operational models 

were simulated at a daily time scale to coincide with river flow daily withdrawal permits. To achieve this, 

a multi-variate nonparametric disaggregation procedure converted the models outputs using a family of K-

Nearest Neighbor algorithms. Resampling from historical data for triplet streamflow traces was performed 

in a transformed space that was insensitive to the actual data size at a given stream flow location. This 

allowed for consideration of all three locations even though stream flow magnitudes varied, while the 

similarity measure was not overpowered by one stations values. This procedure preserved daily flow 

characteristic when transitioning from one month to the next month, which was vital for daily operational 

models. (For further details on the streamflow model see Asefa et al. 2014).  
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3.2.3  Performance Metrics 

Reliability, Resilience, Vulnerability and Sustainability were adapted as metrics to evaluate the 

system’s performance. Reliability evaluated how often the water supply system was in a satisfactory state 

and was calculated as the ratio of total number of satisfactory outcomes to total possible number of 

outcomes during the planning period (Equation 8). Satisfactory states are typically defined using system 

level variables such as target reservoir storage levels at time t, or meeting system demand at time t. In this 

case, performance metrics were calculated from simulated reservoir water level Xt series. 

Reliability:   𝑹𝒆𝒍 =
𝟏

𝒏
∑ 𝒁𝒕

𝒏
𝒕=𝟏                                                                                                             (8) 

where Rel was the probability that a system was in satisfactory state, and Zt=1 if Xt  S and Zt=0 if Xt  

F; n was the total number of time steps which was 8766 days for these simulations; and S and F represented 

Success and Failure (unsatisfactory) states, respectively. In this study, an unsatisfactory state was triggered 

when the reservoir’s elevation dropped below 26 meters (m). The system then remained in failure state until 

reservoir recovered to 30.5 m as shown in Figure 12. Reliability ranges from zero and one, with one being 

the most reliable and zero being least reliable (Asefa et al. 2014; Hashimoto et al. 1982; Loucks 1997).  

Resilience measured the ability of a system to rebound from adversaries. It is typically defined as 

the ratio between the number of rebounds to the total time spent in an unsatisfactory state. Hashimoto et al. 

(1982) suggested that resilience reflected the expected length of time the system spent in an unsatisfactory 

state. However, since the system was forced to be in unsatisfactory state for prolonged period of time due 

to the 30.5 m recovery criteria, due to permits restricting unlimited water withdrawal, the resilience metric 

was examined at a monthly time step (30 days) (Equation 9). This provided an improved and better informed 

assessment of the system due to the constraints.  

Resilience:  𝑹𝒆𝒔 =
∑ 𝑾𝒕

𝒏
𝒕=𝟏

(𝒏−∑ 𝒁𝒕
𝒏
𝒕=𝟏 )

                                                                                                           (9) 

Wt indicated transition of the event from failure state to satisfactory state where Wt =1 if Xt  F and Xt+1  

S, and Wt =0 otherwise; Zt=1 if Xt  S and Zt=0 if Xt  F; and n was the total number of time steps. 
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Resilience ranges from zero and one, with one being the most resilient and zero being least resilient (Chanda 

et al. 2014; Hashimoto et al. 1982; Loucks 1997). 

Vulnerability described the severity of system once entering an unsatisfactory state. Severity could 

be represented in terms of quantity or loss of water production, and represented the average maximum 

deficit possible during failure event (Loucks 1997). For instance, Tampa Bay’s C.W. Bill Young Reservoir 

would be more vulnerable if the reservoir level dropped to an elevation of 23 m and rebounded in a week 

to an elevation of 30.6 m, versus if the reservoir level fell to 28 m and gradually recovered over several 

weeks. For this research, two forms of the equation were implemented, the maximum vulnerability (Vul 

Max) and the average vulnerability (Vul Avg) (Equations 10 and 11). The Vul Max examined only the most 

severe event over the entire period of record, whereas and the Vul Avg computed the vulnerability for each 

unsatisfactory event and then calculated the average. The Vul Max is traditionally examined, however, for 

water supply and planning it was deemed essential to extrapolate the average to improve system 

understanding. Since Vul Max would only occur one time, Vul Avg provided increased insight to typically 

elevation failures to allow for enhanced comparison of baseline and simulated GCM reservoir models by 

validation through multiple markers.   

Vulnerability:  𝑴𝒂𝒙 𝑽𝒖𝒍= 
Max

𝒋 = 𝟏,𝒎
{
1

nj
∑ (

C – Yt

C – Ymin
)

nj

t=1 }                                                           (10) 

Vulnerability:  𝑨𝒗𝒈 𝑽𝒖𝒍 =
1

𝒎
∑ {

1

nj
∑ (

𝑪 − 𝒀𝒕

𝑪 − 𝒀𝒎𝒊𝒏
)

nj

𝒕=𝟏 }𝒎
𝒋=𝟏                                                            (11) 

where j = 1,…m was running index for event failure with each event failure lasting nj period  in 

unsatisfactory states; and C was the Criterion to exit from an unsatisfactory state, in this case the reservoir 

level at 30.5 m; n was the number of time steps for the event period; m was the number of unsatisfactory 

events; Yt was the elevation of the reservoir at that time step; and Ymin was the minimum possible reservoir 

elevation at 22.8 m. Vul varies from zero to one, with zero being least vulnerable and one most vulnerable 

(Goharian 2016; Asefa et al. 2014). 

Finally, calculating the geometric mean of reliability, resilience and vulnerability, the sustainability 

or the endurance of the system was assessed.  
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Sustainability:  SI = (Rel * Res *(1- Vul)) 1/3                                                                                                         (12) 

where SI is the Sustainability Index that ranges from zero to one, with one being the most sustainable and 

zero least sustainable. Rel is reliability, Res is resilience, and Vul is vulnerability which represents either 

Vul Max or Vul Avg (Linhoss and Ballweber 2015; Sandoval-Solis et al. 2011, Jain 2010). 

3.3  Results and Discussion 

3.3.1  Reliability, Resilience, Vulnerability and Sustainability Metrics 

Figure 13 presents performance metrics for the reservoir system from simulations that utilized 

precipitation inputs from eight retrospective GCMs (GCMs-Sim) compared to a model driven by observed 

historical gauge data (Historical) for the same period of record. All GCMs-Sim predicted slightly more 

reliable reservoir (~0.88 to ~0.91) versus the model driven by historical rainfall (~0.87) (Figure 13a). This 

was an average increase of 3.55% in reliability, suggesting the system had fewer unsatisfactory days. Since 

all reliability metrics were close to one, this indicated that the reservoir was in a satisfactory state majority 

of the time. 

The majority of GCMs-Sim predicted more resilient system than a model driven by historical 

rainfall whereas two GCMs-Sim, namely BCCR and GFDL-ESM2G, predicted less resilient system. 

Historical resiliency was 0.21, whereas GCMs-Sim data ranged from 0.12 to 0.24 (Figure 13b). The largest 

deviations were NorESM1 and GFDL-ESM2G with a -75.79% and -55.36% difference, respectively, 

whereas GFDL-CM only differed by 0.92%. These metrics translated into the length of time the system 

remained in an unsatisfactory state. Using historical precipitation, the reservoir remained in an 

unsatisfactory state for an average of 146 days per failure event, whereas the GCMs-Sim varied from 124 

days (BNU) to 256 days (NorESM1) as shown in Table 14. Although all GCM driven simulations showed 

higher reliability, entry and exit to an event period were widely different among GCMs-Sim. For instance, 

GFDL-ESM2G remained in an unsatisfactory state for 577 days (2/12/2000-9/10/2001) and NorESM1 578 

days (2/9/2000-9/8/2001), whereas Historical entered 1/15/2000 and recovered after summer precipitation 

on 8/31/2000 (229 days), and then returned to an unsatisfactory state in the dry season and remained in that 

state for 310 days (11/18/2000-9/23/2001) (Table 15). This period coincided with a La Niña cycle, which 
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typically reduces precipitation in the dry season for this region; however, some GCMs-Sim over predicted 

the reduction and the reservoir level struggled to recovered during the wet season. There were no large 

differences in precipitation during this time frame; however, slight differences over multiple months and 

also how precipitation changed over time affected reservoir levels. These differences propagated to the 

sensitivity of the system to precipitation and water withdrawal limitations due to permit. Furthermore, 

requiring the system to rebound back to 30.6 m to emerge from an unsatisfactory event reduced the 

resiliency metrics. This definition limited oscillation between satisfactory and unsatisfactory states and 

lengthened the number of days to rebound, resulting in prolonging the recovery from the failure event. In 

water supply, it is important to maintain stability and not constantly alarm consumers. Therefore, it was 

imperative to ensure that once the system recovered from an unsatisfactory event it remained satisfactory 

for an extended period, hence the 30.6 m criteria was adopted by Tampa Bay Water. 

Maximum vulnerability (Max Vul) metric examined the gravity of the most severe unsatisfactory 

event. None of the GCMs-Sim outputs replicated Historical’s 0.87, with values ranging from 0.82 to 0.89 

(Figure 13c). BCCR had the largest disparity with a -4.53% difference, followed by GFDL-ESM with -

3.98%. Five of the GCMs-Sim were below Historical, indicating the system was not as vulnerable, an under 

prediction. Compared to Max Vul, the Avg Vul metric was even more under estimated. The Avg Vul 

incorporated the lowest and highest vulnerability values and described the average magnitude of a failure 

event over the entire period of record. Differences in Avg Vul   were even larger at -7.77% (BCCR), -7.41% 

(GFDL-ESM2G), and -7.13% (CSIRO), although Historical Avg Vul decreased to 0.74 compared to Max 

Vul at 0.87. GCMs-Sim metrics fluctuated from 0.69 to 0.75 for Avg Vul, with seven of the GCMs-Sim 

displaying improved performance compared to Historical (Figure 14a). Further, when comparing Max Vul 

to Avg Vul, BNU, CSIRO and GFDL-CM were higher than Historical, i.e. more vulnerable (Figure 13c); 

however, for Avg Vul they were less vulnerable (Figure 14a).  All vulnerability metrics were closer to one, 

indicating that on average when the system dropped below 30.6 m and got into an unsatisfactory state, the 

magnitude of the unsatisfactory state (how far the reservoir elevation dropped) was severe. All GCMs 

except MPI (0.75) underpredicted Historical’s vulnerability (0.74) with values ranging from 0.69 to 0.72.   
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Finally, sustainability was a composite performance metric. Since two vulnerability metrics were 

determined, two sustainability values were also derived, Maximum Sustainability (Max Sus) and Average 

Sustainability (Avg Sus) (Figure 13d and Figure 14b). For Max Sus, the GCMs-Sim and Historical ranged 

from 0.27 to 0.34, indicating that the system was not very sustainable. Both the low resiliency values and 

high vulnerability results affected these values (Figure 13b). Most of the GCMs-Sim fluctuated from 

baseline with the largest deviations occurring in NorESM1 (16.99%), BCCR (16.40%), GFDL-ESM2G 

(13.30%) and MIROC (13.02%), and the smallest in GFDL-CM (-3.45%). The Avg Sus metrics (Figure 

14b) improved compared to Max Sus with GCMs-Sim values ranging from 0.37 to 0.42, over predicting 

baseline (0.36). Compared to Historical, the largest deviations occurred in NorESM1 (14.05%), MIROC 

(13.43%) and BCCR (12.61%). MPI had the smallest divergence with 2.80% difference. Since both Max 

Sus and Avg Sus metrics were closer to zero, it further emphasized the system’s inability to supply water 

for a prolonged period of time during unsatisfactory events. Therefore, diversifying sources of water supply 

is preferable since an unsatisfactory state persisted for over a year for some events. Although sustainability 

numbers were low, it is important to remember that the system was in a satisfactory state for most of the 

record. For instance, Historical was in an unsatisfactory state 13.3% of time, and therefore the system was 

able to meet water supply demand around 86.7% of the time.  Diversifying supply sources, however, can 

help the system during the long failure events.    

Performance metrics are an important tool for understanding whether streamflow simulated for 

retrospective runs reproduced key indicators that water resources managers rely upon. Differences among 

GCMs could be attributed to rainfall persistence in either wet or dry states over several seasons that was 

not quite capture by these models, which in turn impacted streamflow. Had streamflow and reservoir 

simulations only been compared via statistics, results would have shown negligible variations in GCMs-

Sim statistics for the reservoir elevation (Table 16). This would not have provided information on how 

things changed on a daily time scale and if the system fell below a satisfactory state. Further, statistics were 

conflicting as it showed differences in the mean, minimum flow, and maximum flow values for Alafia, but 

Morris Bridge had minimal divergences (Table 17).  
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3.3.2  Statistical Analytics 

Because basic statistics were inconclusive for the retrospective GCM precipitation and simulated 

streamflow compared to historical runs, the streamflow CDFs were evaluated to explain the discrepancies 

in the metrics (Figure 15 and Figure 16). Table 18 and Table 19 displayed experimental CDF at values 

above the permit level where water withdrawal was feasible. Although biases in GCM precipitation were 

corrected using the CDF match method (example shown in Figure 17), there were variances in the 

streamflow CDFs. For instance, at the minimum threshold of 65 mgd to allow withdrawal from Morris 

Bridge, Historical CDF was 0.385 whereas BNU, BCCR, GFDL-CM, GFDL-ESM3G, MIROC and MPI 

were significantly lower (Table 18). This potentially propagated into the GCMs-Sim generating more 

opportunities to withdraw water than Historical, which could have resulted in dissimilarities in reservoir 

water levels. Similarly, for Alafia, at 83 mgd Historical CDF was 0.253 but BCCR, GFDL-CM, GFDL-

ESM2G and MPI had lower generated CDF values (Table 19). The precipitation inputs to the streamflow 

model attributed to the differences seen in the metrics. Figure 17 portrayed how below 0.30 CDF, the 

downscaled GCM’s precipitation was consistently higher than gauge observation at Plant City station. For 

instance at CDF of 0.15, CCSM_Plant (GCM downscaled to the Plant City gauge location) precipitation 

was 15 mm whereas actual NOAA gauge data (NOAA_Plant) was 12 mm. Furthermore, the CDF revealed 

a smoothing of GCM precipitation data (Figure 17). The Plant City NOAA rain gauge data ranged between 

9 mm and 36 mm with a narrow spread between the data points, whereas the GCM ranged between 7.5 mm 

and 30 mm exhibiting a wider range of variability. These discrepancies translated into the streamflow 

simulations, resulting in variations in the performance metrics which generally increased the reliability and 

sustainability indices generated by GCMs retrospective runs compared to Historical. 

Box-and-whisker plots provided a clear visual statistical summary. The box-and-whisker plots for 

Morris Bridge (Figure 18a-l) and Alafia (Figure 19a-l) used a logarithmic scale. Although there were 

differences during the winter months, the plots displayed more inconsistency in streamflow during the 

summer between July and September, when this region received two-thirds of its precipitation. For instance, 

Morris Bridge July plot revealed that Historical (baseline) had a median close to 100 mgd with a wide range 
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in the 25th percentile versus 75th percentile (Figure 18g). Conversely, the median was higher for all GCMs-

Sim except GFDL-CM. Furthermore, BNU, BCCR, CSIRO, GFDL-ESM2G and NorESM1 were less 

skewed compared to Historical. Similarly, there were also deviations in the Alafia plots (Figure 19a-l), with 

varied representations in the median, 25th percentile versus 75th percentile versus baseline. 

3.3.3  Autocorrelation 

Figure 20(a-i) and Figure 21(a-i) displayed the serial correlation for Morris Bridge and Alafia daily 

flows for the summer months (June through September). The time lag at which autocorrelation approaches 

zero, represented the memory of the system as seen in Figure 20 and Figure 21. For Morris Bridge, historical 

data had a memory of 18 days (Figure 20a) whereas the GCMs-Sim ranged from 14 to 25 days. For Alafia, 

Historical had a memory of 15 days (Figure 21a) whereas the GCMs-Sim estimated memory fluctuated 

from 8 to 22 days. None of the GCMs-Sim captured Historical’s autocorrelation for either location. The 

differences in the memory influenced resilience, vulnerability and sustainability system metrics. For 

instance, GFDL-CM had the longest memory for Morris Bridge and highest maximum vulnerability value. 

This related to the sluggishness of the system and that once in unsatisfactory state the system tended to 

remain there for an extended period, i.e. daily values were highly correlated. This in turn affected the length 

and magnitude of the unsatisfactory event. Contrary, for Morris Bridge BCCR had the shortest memory and 

smallest Max Vul metric. Shorter serial correlation memory allowed quicker recovery to satisfactory levels. 

3.4  Conclusion 

This research presented an evaluation of the effects of retrospective GCMs runs on streamflow 

modeling and reservoir operation via performance metrics. These metrics included reliability, resilience, 

vulnerability and sustainability. Each metric evaluated different aspects of reservoir water resource supply 

system to determine if downscaled GCMs inputs could replicate historical system performance. Results 

showed that GCMs driven results generally captured Historical’s resilience metric but none replicated 

reliability, vulnerability, and sustainability. Discrepancies occurred due to multiple factors, including 

variability in precipitation inputs due to smoothing and altered streamflow autocorrelation. The inconsistent 

results highlighted differences between utilizing precipitation from GCMs versus actual gauge data to 
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simulate streamflow and reservoir operations, further expressing the limitation of GCM data for water 

supply planning. This research further supported the importance of reproducing precipitation characteristics 

such as transition probabilities and persistence of climate states by GCMs, and streamflow autocorrelation. 

Further, bias-correction and downscaling of GCM precipitation aims at matching historical frequency 

distribution but may not adequately reproduce persistence over time for certain climate states such as those 

associated with La Niña. Although the retrospective GCMs did not perfectly mimic historical performance 

metrics, overall they performed reasonably well when aggregating statistics. Understanding the limitations 

of GCMs should provide insight when employing projected GCMs for streamflow and reservoir level 

simulations. Ultimately, for future climate change predictions, utilizing all the GCMs-Sim to create an 

ensemble might be a more reliable tool for water supply planning and management to deliver a spectrum 

of possible climate change and reservoir scenarios. Further, the historical GCM-Sim metric results can be 

used a baseline for comparison for future GCM-Sim simulations for this region, which could then depict 

degrees of deviation that can be attributed to future climate change. Furthermore, this research provided 

valuable insights on mismatches that prorogated from employing GCMs to simulate streamflow to aid in 

future model improvements. 

3.5  Tables 

Table 11: GCM models 

Model Name Model Center 

GCESS BNU-ESM 
College of Global Change and Earth System Science, Beijing Normal 

University 

BCC BCC-CSM Beijing Climate Center, China Meteorological Administration 

CSIRO-BOM CSIRO-mk3.6.0 
CSIRO (Commonwealth Scientific and Industrial Research Organization, 

Australia), and BOM (Bureau of Meteorology, Australia) 

NOAA GFDL 
GFDL-ESM2M;  

GFDL-ESM2G 
Geophysical Fluid Dynamics Laboratory 

MIROC MIROC-ESM 

Japan Agency for Marine-Earth Science and Technology, Atmosphere 

and Ocean Research Institute (The University of Tokyo), and National 

Institute for Environmental Studies 

MPI-M MPI-ESM-LR Max Planck Institute for Meteorology 

NCC NorESM1-M Norwegian Climate Centre 
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Table 12: Surface water source flows targets 

Target Historical Data Source 

Alafia-Bell Shoals flow 
Alafia-Bell Shoals flow is calculated over the historical record 

and then modeled as if a real gauged flow. 

Cypress Creek flow USGS daily flow data (02303800) 

Hillsborough River flow @ Morris Bridge USGS daily flow data (02303330) 

Hillsborough River @ Zephyrhills USGS daily flow data (02303000) 

Trout Creek Flow USGS daily flow data (02303350) 

Ungauged Hillsborough Reservoir inflow 
Using measured flow, elevation and operation data, three 

ungauged inflows are calculated as missing inflow/ outflow 

contributions in historical Hillsborough River and Tampa 

Bypass Canal volume balances Ungauged Lower and Middle Pool inflow 

 

Table 13: Tampa Bay Water permits 

Location Permit 

S161 

Diversion/Middle 

Pool (MP) 

Withdrawal 

 Criterion flow: total of measured previous-day flow over/through Hillsborough 

River Dam (HRD) and previous-day Control Structure S161 diversion: 

HRD flow (mgd) Permitted S161 Diversion/MP Withdrawal (mgd) 

0 – 65 0 

65 - 108.3 0 - 43.3 

108.3 – 485 43.3 - 194 

> 485 194 

 Also limited by current-day (instantaneous) HRD flow to disallow withdrawals 

that will take HRD flow below 65 mgd (lesser of permit based on previous-day 

total and instantaneous HRD flow minus 65 mgd). 

Lower Pool 

Permitted 

Withdrawal 

 100% of any same-day measured Lower Pool volume over 2.74 m elevation 

 No minimum flow requirement over S160 

 259 MGD maximum permitted withdrawal 

Alafia Permitted 

Withdrawal 

Criterion flow: 

 Previous-day Alafia flow at Lithia Gauge x 1.117 + 

 Historical daily average flows on day t of the year at Lithia Springs + 

 Historical daily average flows on day t of the year at Buckhorn Springs + 

 Historical daily average Mosaic withdrawal on day t of the year 

Criterion flow (mgd) Permitted Alafia Withdrawal, (mgd) 

0 – 82.73 0 

82.73 – 92 0 - 9.2 

92 – 600 9.2 - 60 

> 600 60 
 

 

Table 14: Average number of days to rebound out of an unsatisfactory event (1982-2005) 

1982-2005 Historical BNU BCCR CSIRO 
GFDL-

CM 

GFDL-

ESM2G 
MIROC MPI NorESM1 

Avg number of 

days to rebound 

per event 

146 124 168 125 144 226 150 152 256 
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Table 15: Reservoir unsatisfactory events (1982-2005) 

1982-2005 Historical BNU BCCR CSIRO GFDL-CM GFDL-ESM2G MIROC MPI NorESM1 

UnSat    79      

Dates    1/1/1982 - 

3/20/1982 
     

UnSat 127 112 126 167 144 133 123 102 110 

Dates 
4/13/1985 - 

8/17/1985 

4/27/1985 - 

8/16/1985 

4/24/1985 - 

8/27/1985 

3/13/1985 - 

8/26/1985 

3/20/1985 - 

8/10/1985 

4/10/1985 - 

8/20/1985 

4/24/1985 - 

8/24/1985 

5/10/1985 - 

8/19/1985 

4/29/1985 - 

8/16/1985 

UnSat 66 18        

Dates 
6/15/1990 - 

8/19/1990 

7/9/1990 - 

7/26/1990 
       

UnSat 93 145 119  121 108   80 

Dates 
3/15/1991-

6/12/1991 

2/10/1991 - 

7/4/1991 

2/11/1991 - 

6/9/1991 
 2/8/1991 - 

6/8/1991 

2/17/1991 - 

6/4/1991 
  5/5/1991 - 

7/23/1991 

UnSat   33 70 116   113  

Dates   6/2/1992 - 

7/4/1992 

5/18/1992 - 

7/26/1992 

4/18/1992 - 

8/11/1992 
  5/6/1992 - 

8/26/1992 
 

UnSat 160 154  85 120 87 98 228  

Dates 
3/10/1994 - 

8/16/1994 

2/28/1994 - 

7/31/1994 
 4/26/1994 - 

7/19/1994 

4/22/1994 - 

8/19/1994 

5/21/1994 - 

8/15/1994 

5/6/1994 - 

8/11/1994 

12/25/1993 - 

8/9/1994 
 

UnSat 116 104 84 103 130  174 119  

Dates 
6/23/1997 - 

10/16/1997 

6/20/1997 - 

10/1/1997 

7/7/1997 - 

9/28/1997 

6/20/1997 - 

9/30/1997 

5/29/1997 - 

10/5/1997 
 6/11/1997 - 

12/1/1997 

5/25/1997 - 

9/20/1997 
 

UnSat 229 100  195 155  113 92  

Dates 
1/15/2000 - 

8/30/2000 

4/26/2000 - 

8/3/2000 
 1/12/2000 - 

7/24/2000 

4/4/2000 - 

9/5/2000 
 4/10/2000 - 

7/31/2000 

4/30/2000 - 

7/15/2000 
 

UnSat 310 236 476 225 224 577 240 255 578 

Dates 
11/18/2000 - 

9/23/2001 

1/8/2001 - 

9/27/2001 

4/13/2000 - 

8/1/2001 

1/18/2001 - 

8/30/2001 

1/24/2001 - 

9/4/2001 

2/12/2000 - 

9/10/2001 

12/22/2000 - 

8/18/2001 

12/15/2000 - 

8/26/2001 

2/9/2000 - 

9/8/2001 

UnSat 64   75      

Dates 
5/23/2002 - 

7/25/2002 
  5/9/2002 - 

7/2/2002 
     

Total # Days 8766 8766 8766 8766 8766 8766 8766 8766 8766 

Total Sat 7601 7870 7928 7767 7756 7861 8018 7857 7998 

Total UnSat 1165 896 838 999 1010 905 748 909 768 

UnSat Count 8 7 5 8 7 4 5 6 3 

*UnSat = Unsatisfactory; Sat = Satisfactory
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Table 16: Daily reservoir elevation level (m) (1982-2005) 

 
Historical BNU BCCR CSIRO 

GFDL-

CM 

GFDL-

ESM2G 
MIROC MPI NorESM1 

Median 39.1 39.5 39.8 38.3 39.5 39.8 39.5 39.4 39.7 

Mean 36.4 36.8 37.1 36.3 36.9 37.0 37.2 36.9 37.2 

STD 6.1 5.8 5.5 5.7 5.7 5.6 5.3 5.6 5.5 

Min 22.7 22.8 22.7 22.8 22.7 22.8 22.8 22.7 22.8 

Max 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 

 

Table 17: Streamflow statistics for Alafia and Morris Bridge (mgd) (1982-2005) 

 
Historical BNU BCCR CSIRO 

GFDL-

CM 

GFDL-

ESM2G 
MIROC MPI NorESM1 

Alafia Daily Flow 

Median 144.8 144.4 145.9 136.1 152.3 148.5 144.1 152.7 146.1 

Mean 252.3 246.6 253.4 235.1 255.3 257.0 249.7 242.8 234.6 

STD 393.4 399.9 380.4 348.7 366.0 407.4 398.4 372.0 317.6 

Min 10.7 8.6 13.2 14.0 8.6 12.5 11.5 12.2 10.9 

Max 6795.7 9872.4 6662.0 9276.0 7779.0 9872.4 9872.4 9872.4 4989.4 

Morris Bridge Daily Flow 

Median 85.5 84.9 85.8 80.7 84.9 84.8 87.9 87.0 85.9 

Mean 184.3 185.3 197.5 183.3 185.6 190.4 193.0 176.5 172.8 

STD 344.1 339.5 391.0 333.9 350.0 383.1 359.4 289.7 284.2 

Min 14.4 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6 

Max 5536.5 5536.5 5536.5 5536.5 5536.5 5536.5 5536.5 5536.5 5221.1 

 

Table 18: Approximate CDF values of Morris Bridge daily flow (1982-2005)  

Flow 

(mgd) 
Historical BNU BCCR CSIRO 

GFDL-

CM 

GFDL-

ESM2G 
MIROC MPI NorESM1 

65 0.385 0.375 0.370 0.405 0.375 0.378 0.362 0.373 0.392 

108 0.582 0.591 0.585 0.597 0.592 0.579 0.585 0.587 0.594 

200 0.773 0.770 0.772 0.771 0.776 0.762 0.770 0.780 0.783 

300 0.853 0.854 0.852 0.850 0.862 0.849 0.853 0.858 0.854 

400 0.884 0.882 0.881 0.881 0.888 0.882 0.882 0.888 0.895 

*Closet values to Historical are bolded 



45 

 

Table 19: Approximate CDF values of Alafia daily flow (1982-2005) 

Flow 

(mgd) 
Historical BNU BCCR CSIRO 

GFDL-

CM 

GFDL-

ESM2G 
MIROC MPI NorESM1 

83 0.253 0.259 0.245 0.276 0.248 0.232 0.253 0.237 0.256 

92 0.297 0.299 0.283 0.318 0.286 0.273 0.297 0.276 0.286 

200 0.630 0.640 0.634 0.655 0.670 0.623 0.629 0.618 0.653 

400 0.835 0.854 0.844 0.862 0.846 0.841 0.849 0.850 0.840 

600 0.903 0.912 0.905 0.918 0.899 0.904 0.910 0.918 0.927 

*Closet values to Historical are bolded 

3.6  Figures 

 

Figure 10: Site map of Greater Tampa Bay, Florida region 
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Figure 11: Water supply system including rain gauge and stream gauge locations, river tributaries and 

reservoir 
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Figure 12: Reservoir system depicting failure events and unsatisfactory states 

The system plunges into unsatisfactory states when reservoir level drops to 26 m, and exits the failure 

event when the water level recovers to 30.5 m 

 

Figure 13: Historical reservoir performance metrics utilizing Maximum Vulnerability Metric 
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Figure 14: Historical reservoir performance metrics utilizing Average Vulnerability Metric 

 

 

Figure 15: Historical CDF plots of Morris Bridge daily flow 
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Figure 16: Historical CDF plots of Alafia daily flow 

 

 

Figure 17: Historical August PDF for Plant City at gauge (NOAA_Plant) and GCM (CCSM-D_Plant) 
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Figure 18: Historical monthly box-and-whisker plots for Morris Bridge daily flow 
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Figure 19: Historical monthly box-and-whisker plots for Alafia daily flow 



52 

 

 

Figure 20: Daily auto correlation for simulated Historical and GCMs at Morris Bridge for summer 

months (June, July, Aug & Sept). Dashed lines indicate range of significance. 
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Figure 21: Daily auto correlation for simulated Historical and GCMs at Alafia for summer months (June, 

July, Aug & Sept). Dashed lines indicate range of significance 
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CHAPTER 4: PERFORMANCE EVALUATION OF A WATER SUPPLY SYSTEM UNDER A 

CHANGING CLIMATE 

 

4.1  Introduction 

Determining potential climate change impacts on streamflow is crucial for water suppliers as new 

infrastructure and technology cannot be developed and implemented over night. Changes in precipitation 

spatial and temporal inputs can strain sources of water supply, some with devastating effects (EPA 2016; 

Darren et al. 2015). For instance, beginning in 2012, Western United States (U.S.) faced low precipitation 

and high evapotranspiration, resulting in severe water shortages with lakes and rivers drying (NACSE 

2017). California’s dry conditions resulted in record-breaking drought conditions with the governor 

declaring a State of Emergency on January 17, 2014 (Williams 2015; Brown and Bowen 2014). On October 

21, 2015, the New York Times posted an article depicting the severity of droughts in Ethiopia, the worst in 

a decade, with 15 million facing starvation due to water scarcity, causing crops and animals to die (NYT 

2015). Around the same time, similar drought impacts were seen in other parts of Africa, including South 

Africa where their government declared the Free State and KwaZulu Natal provinces as disaster areas 

(South Africa 2015; Lyon 2014).  

According to the Intergovernmental Panel on Climate Change (IPCC), the decadal average land 

temperature for 2002–2011 was 1.3° ± 0.11°C above the 1850–1899 average for Northern Europe, and 

temperatures are expected to rise (Kovats et al. 2014). Increased temperature results in a rise in evaporation, 

which affects the hydrologic cycle and stresses water resources. IPCC’s North America Fifth Assessment 

report indicated that in the future both the U.S. and Canada will experience diminished snowpacks due to 

increased evaporation, affecting the availability of fresh water. Furthermore, climate change is expected to 

put Mexico’s water supply at risk (Romero-Lankao et al. 2014). Moreover, soil water content will decrease 
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in Southern Europe, making it rare to have saturation conditions. Further, there will likely be a change in 

snow accumulation and melting, especially in the mid-mountain areas (Kovats et al. 2014). Although 

forecast data is available for larger regions, limited information is available on how precipitation will effect 

water resources at regional or local levels. Since water supply planning occurs at smaller scales, such as 

cities or counties, understanding impacts of climate change are vital for sustainability of urban 

communities.  

Although climatologists have found GCMs to be a suitable tool to for water supply planning, 

recommended common practice is to create an ensemble using multiple GCMs and Representative 

Concentration Pathways (RCPs) (i.e. emission scenarios see Figure 22) versus analyzing only one scenario 

to capture a range of options and detect consensus on future predictions (Panaou et al. 2018; Mani and Tsai 

2017; Giorgi and Coppola 2010; Christensen and Lettenmaier 2007). For instance, Panaou et al. (2018) 

examined simulated streamflow using GCM precipitation as input drivers and determined using multiple 

GCMs provided improved evaluation of the reservoir system since no one GCM captured all historical 

performance metrics and key streamflow statistics such as frequency distribution function and serial 

correlation. Mani and Tsai (2017) used ensemble averaging methods to quantify climate change impacts on 

runoff for watersheds in North Louisiana and South Arkansas. They compared three projected ensemble 

average methods: the variance of future runoff for the hierarchical Bayesian model averaging, simple model 

averaging, and reliability ensemble averaging. Christensen and Lettenmaier (2007) employed an ensemble 

approach using 11 GCMs to drive water resource and hydrology models. Giorgi and Coppola (2010) 

examined precipitation and temperature from CMIP3 models and recommended at least four to obtain 

robust regional forecasts. The use of seven GCMs with multiple RCPs (17 scenarios) is demonstrated here 

(see Table 20). These were examined individually, but since all three RCPs emission scenarios were 

examined for GFDL-ESM2G, MIROC and NorESM, an Average GCM (Avg GCM) was also analyzed. 

Precipitation data were obtained from the World Climate Research Programme’s Coupled Model 

Intercomparison Project 5 (CMIP5 Lawrence Livermore National Laboratory of the U.S. Department of 

Energy, http://www-pcmdi.llnl.gov/projects/pcmdi/).  
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In order to quantify future water supply changes, GCM precipitation was downscaled to a local 

scale then used to drive a hydrologic model to predict streamflow and evaluate water supply and reservoir 

performance metrics. Utilizing historical Reliability, Resilience, Vulnerability (RRV) and Sustainability 

metrics as a baseline, future predictions deviations were assessed. As introduced by Loucks et al. (1982), 

RRV metrics were used for performance of a water resource system. These metrics were aggregated using 

a Sustainability index (Sandoval-Solis et al. 2011) to evaluate a water resource system by accounting for 

both the water reservoir elevation and change in water demand. Yang et al. (2012) examined three drought 

indexes, the sustainability index, modified sustainability index and drought risk index, to determine 

potential impacts of climate change on a water resources system in Southern Taiwan using earlier GCMs, 

A1B emission scenarios. Singh et al. (2014) evaluated Lake Jordan, North Carolina reservoir system using 

stationary weather characteristics and climate change projections. They focused on a resilience index in 

order to establish strategies to ensure reliability under increased demands. In a recent study, Mateus and 

Tullos (2016) applied reliability and vulnerability metrics to examine reservoir operations under climate 

change, but did not consider resiliency and sustainability metrics. Additionally, they redefined vulnerability 

by contemplating the probability of operational failure and not the magnitude of the failure event. They also 

studied the effected of increasing temperatures and determined that although it impacted ground and surface 

water, it had minimal effects on surface reservoir. Amarasinghe et al. (2016) evaluated the impacts of 

climate change on a water supply system but only considered resiliency without addressing reliability, 

vulnerability and sustainability metrics. Further, resiliency was characterized by pressure recovery to 

evaluate performance water supply grid network. They set the design system to operate at a specific level 

of pressure and if the level of service was reduced to a pressure limit, it caused failure. Although all of these 

studies employed at least one of the performance metrics, none utilized all four to evaluate CMIP5 

precipitation that drove streamflow and reservoir simulations. 

Comparing reservoir performance with historical performance is critical to establish water resource 

operation strategies to mitigate climate change. For instance, if models predicted increased, higher intensity 

storms, additional reservoir storage might be needed to capture increased flows to meet demand. 
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Conversely, if annual precipitation was reduced suppliers might opt for strategies such as water reuse, 

desalinization and water conservation strategies. Therefore, this research examined future streamflow for 

time periods 2030-2053, 2054-2077 and 2077-2100, while using 1982-2005 as baseline to determine if the 

reservoir would meet operational targets. This research is novel as it provided an additional tactic to 

measure reservoir responses to climatic changes via performance metrics, as well as utilizing other 

statistical tools. These enabled future deviations to be calculated as well as determine periods when the 

reservoir system was at a critical level and unable to supply water. This method also assessed the degree of 

these unsatisfactory states, and the resiliency, vulnerability and sustainability of the surface water system. 

Multiple emission scenarios and an ensemble were analyzed since future emission trajectory is uncertain. 

Employing multiple GCMs and scenarios provided a range, enabling an enhanced and wider system 

understanding to allow suppliers to improve planning. 

For Materials and Methods, refer to Chapter 3.2. 

4.2  Results 

4.2.1  Reliability, Resilience, Vulnerability and Sustainability Metrics 

Employing performance metrics enabled a comprehensive analysis of the water resource system 

via evaluation of the reservoir elevation. Each metric was complimentary by investigating a different aspect 

to provide an enhanced understanding of how future reservoir supply changed from historical baseline. 

Figure 23 examined the reliability of the system by GCM and RCP. The bar in blue represented years 2030-

2053, grey 2054-2077 and yellow 2077-2100. 1982-2005 was denoted by the red (GCM) and black lines 

(Historical), where Historical used rain gauge data to simulate the streamflow and reservoir. GCMs BNU, 

GFDL-ESM2G, BCCR, MIROC and NorESM, generally predicted the future reservoir to be less reliable. 

For instance, in 1982-2005 MIROC was 91% reliable but by 2100 MIROC 8.5 was only 44%. For all future 

periods, GFDL-CM and MPI 4.5 estimated a higher reliability, predicting less days when the elevation of 

the reservoir was in an unsatisfactory state. For instance, GFDL-CM was at 88% reliability for 1982-2005 

but by 2100 GFDL-CM 6.0 increased to 99%. Further, there were zero unsatisfactory events for GFDL-

CM 6.0 (2030-2053) and GFDL-CM 8.5 (2054-2100), and MPI 4.5 (2077-2100). Figure 24(a-d) examined 
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the average of GFDL-ESM2G, MIROC and NorESM for all four metrics. Figure 24a calculated the average 

reliability metrics by RCP for the reservoir. All future scenarios forecasted a less reliable system than 

historical. For example, the GCMs average reliability metric for 1982-2005 was 0.91 whereas for 2030-

2053 RCP 6.5 declined to 0.82. RCP 8.5 exhibited a decreasing trend with being 85% reliable in 2030-2053 

versus 56% in 2077-2100 periods. Avg GCM Reliability for RCP 4.5, the lowest emission scenario, 

depicted the system at first less reliable, 0.84 for 2030-2053, then dropped to 0.78 by 2077, but by 2100 

improved to 0.87. This reflected the sluggishness of the system and that it would take time after reducing 

emissions to see an upward trend and atmospheric corrections. 

Examining resiliency by individual GCMs by year and RCP revealed a range.  Low resiliency 

metrics were prevalent with 71% above historical GCM benchmarks, and 29% below (Figure 25). Further, 

BNU, BCCR and MIROC (Figure 25a, c and e) were less resilient for all years and RCPs. This indicated 

the system remained in an unsatisfactory state for prolonged period of time, struggling to recover compared 

to the past. Conversely, GFDL-CM was more resilient for all years for RCP 8.5 as well as for 2054-2077 

and 2077-2100 for RCP 6.0 (Figure 25d). In fact, there were zero unsatisfactory days during 2054-2077 

period for both RCP 6.0 and RCP 8.5 and 2077-2100 timeframe for RCP 8.5. An ensemble of GFDL-

ESM2G, MIROC and NorESM (Figure 24b) provided an average resiliency trajectory. RCP 4.5 first 

declined in 2054 but by 2100 recovered, although not to 1985-2005 GCM metric. As observed with 

reliability, once radiative forcing stabilized around 4.5 Watt per square meter (W/m2) and the atmospheric 

system was allowed time to recuperate, the water resource system started improving. Contrary, RCP 8.5 

resiliency was at first similar to 2030-2053GCM metric (0.14), but by 2100 decreased to 0.087, reflecting 

that higher emissions resulted in prolonged consecutive unsatisfactory days. 

To explain future resiliency divergences, the average number of days the system remained in an 

unsatisfactory event period per RCP were examined. The average of GFDL-ESM2G, MIROC and NorESM 

is shown in Table 21. For 2030-2053 for all RCP’s, average days in unsatisfactory state were higher than 

1982-2005 period, indicating the system took longer to rebound. However, RCP 4.5 improved to 293 days 

by 2077, and then to 275 days by 2100. The worst case emission scenario, RCP 8.5, experienced the largest 
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average number of unsatisfactory days with a high of 464 days (2054-2077), double that of historical. 

Furthermore, assessment of individual GCMs revealed significant range. For instance, BNU (RCP 8.5) 

(Table 22) and MIROC (RCP 8.5) (Table 23) remained in an unsatisfactory state for 1,447 days (9/29/2032-

9/14/2036) and 1,510 days (2/14/2093-4/3/2097) respectively, stating the system would not be able to 

supply water for around 4 years. This was an extremely long time for the reservoir to be below optimal 

levels, which, if an accurate prediction, could lead to a major water shortage crisis if there is inadequate 

planning. This persistence was reflected by the low resiliency numbers. Furthermore, MIROC recovered in 

April 2097 heading into the wet season but then in November 2097 became unsatisfactory again for another 

859 days. Combing these consecutive events, the reservoir struggled to supply water for 7 years. It is 

important to note that this was just one of the GCM’s predictions and they varied depending on the GCM 

and RCP, hence the need for the evaluation of an ensemble. For instance, MPI 8.5 was in an unsatisfactory 

state 6/10/92-10/14/92 (127 days), but did not reenter a failure state until a few years later (6/16/95). 

Vul Max and Vul Avg were both examined for each GCM (Figure 26 and Figure 27). Vul Max 

measured the worst vulnerability event whereas Vul Avg provided a broader understanding of the system 

over all unsatisfactory events. Compared to GCMs baseline, 35 out 51 future simulations had a more severe 

Vul Max metric, indicating that when the system was below satisfactory the average deficit was worse. For 

example, BCCR 8.5 historically had a metric of 0.83 but future exhibited a value of 0.88 (2030-2053), 0.95 

(2054-2077), and 0.93 (2077-2100) (Figure 26). The highest possible number for vulnerability is one; 

therefore, after 2053 the system almost reached the maximum, experiencing the most extreme 

unsatisfactory events. Since simulated streamflow from the GCMs generally predicted less vulnerable 

reservoir than utilizing precipitation from the gauge (i.e. 1820-2005 for GFDL-ESM was 0.69 whereas the 

gauge was 0.74), it is feasible that these errors propagated to the future, resulting in a bleaker scenario than 

the simulated predicted. For vulnerability metric, GFDL-CM and MPI were outliers since there were no 

failures for some RCPs for 2054-2077 and 2077-2100 (Figure 26d and f). Taking the Vul Max metrics for 

GFDL-ESM2G, MIROC and NorESM and calculating the average by RCP (Figure 24c) indicated that the 

magnitude of the most severe failures steadily increased by 2100 with all years and RCPs being at or above 



60 

 

Historical GCM’s metric. For all periods, RCP 4.5 was less vulnerable than RCP 6.0, while both were less 

than RCP 8.5. This indicated that higher emissions resulted in a more vulnerable surface water supply 

system. Vul Avg (Figure 27) also indicated that future water supply would be more vulnerable to water 

shortages. Vul Avg did not exhibit a trend, as in some instances 2030-2053 was more vulnerable than year 

2100 (e.g. BCCR 8.5, MPI 8.5), whereas others it was reversed (e.g. GDFL-ESM2G 4.5, NorESM 8.5). 

There were 39 instances where this metric was greater than 1982-2005 GCM metric, and 12 times where is 

was less vulnerable. There were no unsatisfactory events for GFDL-CM3 8.5 from 2054 to 2100, and for 

period 2077-2100 for MPI 4.5. 

Finally, evaluating the geometric mean of reliability, resiliency and vulnerability metrics 

sustainability of the system was explored. Since the system was examined during the most extreme failure 

as well as average unsatisfactory events, therefore the system was examined during both to determine how 

sustainable it was during the worst case scenarios, Sustainability Max (Figure 28), and how it typically 

behaved, Sustainability Avg (Figure 29). For Sustainability Max metrics, 40 scenarios predicted a less 

sustainable system compared to historical. These results were indicative that the system overall was likely 

to have more severe and prolonged unsatisfactory days. Outliers were all scenarios for GFDL-CM, 2030-

2053 for MIROC 6.0, 2054-2100 for MPI 4.5, 2054-277 for MPI 8.5 and 2030-2053 for NorESM 4.5. 

Sustainability Avg metrics were only slightly improved with 39 scenarios predicting a less sustainable 

future. GDFL-ESM2G and MPI exhibited an increasing trend for RCP 4.5 and a decreasing trend for RCP 

8.5 by 2100. On the other hand, BCCR and MIROC experienced a decline for all three RCPs by 2100. 

There was no consensus in the results among the GCMs in stating that lower emissions would result in a 

more sustainable water supply system. Utilizing Vul Max for GFDL-ESM2G, MIROC and NorESM and 

calculating the average Sustainability Max by RCP (Figure 24d), all scenarios demonstrated lower metrics 

than historical. RCP 6.0 sustainability slightly increased in 2054-2077 period (0.25) but then became less 

sustainable by 2100 (0.20). RCP 8.5 had similar sustainability metric to RCP 6.0 (0.24) for 2030-2053 but 

then plummeted to 0.16 by 2100. Employing an average, RCP 8.5 was always lower than RCP 4.5, which 

would be more indicative of lower versus higher emission scenarios. 
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4.2.2  Statistical Analytics 

Table 24 expanded upon the streamflow statistics by GCM for RCP 8.5. Historically all GCMs 

flow averages were close to the baseline data (252 mgd at Alafia and 186 mgd at TBC), ranging from 234.6 

mgd to 253.4 mgd for Alafia and 173 mgd to 198 mgd for TBC. By utilizing an ensemble and computing 

the average, the results almost matched for both flow and withdrawal. Interestingly, for RCP 8.5 the daily 

average flows were more extreme for future periods than historical. For instance, for 2030-2053 for Alafia 

flows ranged from 194 mgd (BNU) to 405 mgd (GFDL-CM), a difference of 211 mgd (109%). The highest 

value was more than double the lowest. Further, by 2100, GFDL-CM was at 589 mgd whereas MIROC was 

147 MGC, producing a 442 mgd disparity (301% difference). Historically, the largest difference was 

significantly less at 22 mgd. 

Furthermore, streamflow statistics exhibited a similar trend for both Morris Bridge and Alafia 

simulated streamflow. Figure 30a (Alafia) and Figure 30b (Morris Bridge) examined the average simulated 

streamflows of GFDL-ESM2G, MIROC and NorESM by RCP and period. RCP 4.5 mimicked historical 

through 2054, then increased. RCP 6.0 at first declined below Historical (Alafia 252 mgd and Morris Bridge 

184 mgd) by 2053, then increased by 2077 to 271 mgd for Alafia and 202 mgd for Morris Bridge, then by 

2100 matched Historical. RCP 8.5 slightly decreased by 2053 to 242 mgd for Alafia and 172 mgd for Morris 

Bridge; however, after 2054 there was a rapid decline dropping to 171 mgd for Alafia and 114 mgd for 

Morris Bridge. Withdrawal was limited by permits, therefore Alafia (Figure 30c) and TBC (Figure 30d) did 

not have similar withdrawal trends even though streamflow trends matched. For instance, for Alafia all 

future withdrawals are above Historical whereas for TBC all withdrawal amounts were reduced. There was 

also a greater difference in withdrawals for TBC by RCP (Figure 30d). For instance for 2030-2053, RCP 

4.5 was at 70 mgd, then decreased slightly to 66 mgd, then by 2100 increased to 71mgd. Conversely, RCP 

8.5 was initially at 69 mgd and continued to drop until it reached 56 mgd by 2100. On the other hand, for 

Alafia (Figure 30c) RCP 4.5 and RCP 6.0 almost flatlined for all time periods at around 16 mgd and 16.5 

mgd, respectively. RCP 8.5 also had minimal variation with 17 mgd in 2030-2053 versus 16 mgd by 2100. 
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Variances in the reservoir elevation were also visible by RCP and period (Table 25). For example, 

RCP 4.5 declined in 2030-2053 and 2054-2077 with a median of 38.4 m and 36.9 m, respectively, but by 

2100 increased to 39.3 m. This same trend was evident in TBC withdrawal, which provided greater amount 

of water (Figure 30d). RCP 4.5 once again reflected that the system recovered after the atmospheric time 

to recuperate. Contrary, RCP 8.5 median declined from 39.6 m to 35.1 m by 2100, replicating TBC 

withdrawal. Averages had the same tendencies. 

These elevations trends could be translated to the number of unsatisfactory days (Table 26). For 

instance, RCP 4.5 exhibited a similar pattern by initially declining but then improving by 2100. It began 

with 1,332 unsatisfactory days in 2030-2053, decreased to 1,864 days in 2054-2077, and then improved to 

1,182 unsatisfactory days. Although it improved, it never reach Historical’s 807 unsatisfactory days. 

Furthermore, the average of these three GCMs under predicted Historical’s number of unsatisfactory days 

by 358 days or 44%. If this underestimation error also propagated into the future, unsatisfactory days would 

increase. For instance, 1,864*1.44 would translate to 2,684 days or 31% of the number of days in that period 

would be unsatisfactory. RCP 8.5 steadily increased in number of unsatisfactory days by 2100, painting a 

gloomy picture since 44% of the time the reservoir levels fell into a critical state. Further, RCP 8.5 also 

under predicted Historical (807 versus 1,165 days). Therefore, if the system estimated 3,841 unsatisfactory 

days, accounting for this error this would translate to 5,531 (3,841*1.44) unsatisfactory days or 63% of the 

time that period in a critical state.  

Evaluation of CDFs expands upon divergents in the flows. Table 27 and Table 28 examined the 

average CDF for Morris Bridge and Alafia streamflow at a level where permits allowed for water 

withdrawal, 65 mgd and 83 mgd respectively. For both Morris Bridge and Alafia, Historical (0.38 and 0.25 

respectively) was similar to the 1982-2005 gauge. For RCP 8.5 both CDF values steadily increased by the 

year 2100 with values of 0.55 for Morris Brides and 0.39 for Alafia. This translated into there being fewer 

opportunities to withdraw water. For instance, in 1982-2005 the system was able to withdraw water from 

Alafia 75% of the time whereas by 2100 was at 61%. For both simulated streamflows, RCP 4.5 CDF at first 

increased but by 2100 declined to a level similar to Historical, once again reflecting the systems recovery 
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after time. There were also variances amongst the individual simulations (Table 29). For example, GFDL-

CM was at 0.15 CDF value whereas GFDL-ESM2G was at 0.61 for 2077-2100 for Morris Bridge. GFDL-

ESM2G was double 1982-2005 value, and GFDL-CM was reduced by half. This was further reflected in 

the metrics where for this period GFDL-CM has no failures and GFDL-ESM2G reliability was one of the 

lowest (Figure 23d). All GCMs were similar for 1982-2005 period, but by 2100 ranged from 0.15 to 0.61 

CDF value (Table 29). Some values increased with time such as GFDL-ESM2G, MIROC, NorESM. Others 

such as BCCR, BNU, MPI fluctuated. Higher CDF values resulted in fewer opportunities for water 

withdrawal since flows had to meet the permit minimum requirement, ultimately affecting the reservoir. 

Evaluation of autocorrelation explained divergent flows by assessing how the memory of the 

system changed with RCP and timeframe. A short memory relates to less similar days in a state whereas a 

longer memory reflects persistence. Table 30 and Table 31 examined the average annual and summer 

autocorrelation examined flow for GFDL-ESM2G, MIROC and NorESM for streamflow, respectively. 

Compared to historical, the memory doubled in most instances. For example, 1982-2005 annual was at 30 

days whereas by 2077-2100 RCP 4.5 and RCP 6.0 were at 62 and 61 days, respectively (Table 30). This 

was reflected both in the duration a system remains in an unsatisfactory state as well as in a satisfactory 

state. Historically none of the simulations had unsatisfactory event periods greater than 578 days and the 

memory was reduced; however, future scenarios depicted events reaching up to 1,510 days and annual 

autocorrelations were doubled for all RCPs. For summer (Table 31), serial correlation increased for RCP 

4.5 for 2054-2077 but then declined by 2100. RCP 8.5 at first increased in 2030-2053, then decreased by 

20177, then improved to a value of 31 by 2100. Results indicate that future periods’ summer correlation, 

although not always on mark, was closer to historical than annual, revealing that the winter months had a 

greater variance. El Niño-Southern Oscillation (ENSO) affects this region primarily during the winter 

months with El Niño reducing precipitation and La Niña increasing prediction. It is possible that this is 

indicative of more intense events such as ENSO. 
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4.2.3  Precipitation 

Precipitation is the driver for these streamflow simulations; therefore, understanding and capturing 

the hydrological cycle is extremely important. Water supply withdrawal is sensitive to stream’s flowrate, 

which is affected by precipitation quantity, antecedent conditions, and persistence of a climate state (e.g. 

wet day follow by another wet day). Figure 31 displays precipitation at the Plant City gauge for the three 

time periods for each RCP. The average of the annual precipitation per time frame was computed. Figure 

31a combined three GCMs, GFDM-ESM2G, MIROC and NorESM, to provide an average GCM value. 

Comparing this to the average streamflow (Figure 30), the relationship was evident. For instance, in both, 

RCP 4.5 increased after 2077, RCP 6.0 decreased by 2100 and RCP 8.5 declined after 2030. Since 

Streamflow was modeled from three gauges, they would be affected from all three trends although annual 

precipitation is not expected to drastically change by location. Figure 31b, c and d shows the precipitation 

for the individual GCMs by RCP. The GCMs varied for RCP 4.5 before 2077 but afterwards all three 

increased. Once again, seeing improvements once the atmosphere recovered. Both RCP 6.0 (Figure 31c) 

and RCP 8.5 (Figure 31d) had mixed results by 2100. Two out of the three GCMS declined in precipitation 

and one increased. There was also a larger spread in the values for RCP 8.5 and RCP 6.0. GFDL-ESM2G 

predicted the lowest precipitation at 111 m-2, NorESM at 130 m-2 and MIROC at 142 m-2, a difference of 

31 m-2. RCP 6.0 fluctuated from 129 m-2 to 154 m-2, with a change of 25 m-2. RCP 4.5 values were closer 

as they ranged from 134 m-2 to 142 m-2 (difference of 8 m-2). Since models have more of a consensus by 

RCP closer to the present, it is possible that there was more error the further out they project. 

4.3  Discussion 

There are a few ways to interpret these results. One could state that because a GCM better 

reproduced historical data (i.e. GFDL-CM has the closest Total Number of Unsatisfactory Days) that it is 

more likely to accurately predict the future. On the other hand, others could argue that with a changing 

climate the past is not like the future, therefore just because a GCM better represented the past does not 

automatically mean it will more precisely predict the future. Further, some GCMs such as GFDL-CM or 

MPI performance metrics were more optimistic than the other models, but just because they do not converge 



65 

 

with the general consensus does not mean they are not correct. We do not know how nations are going to 

manage all greenhouse gases and if there will be adequate technologies in place to curb emissions (e.g. non 

reliant on fossil fuels for vehicles or other energy users), therefore it is really hard to determine the exact 

concentrations or path by the year 2100. Further, in order to plan for future water supply it might be 

challenging to find technologies that are less energy-intensive and will not admit greenhouse gases. For 

instance, desalination or reverse osmosis require a lot of energy to process the water. Therefore there is a 

need to find a balance between water supply and a reduction in emission. Finally, results revealed a 

consensus that serial correlation is significantly increasing in the future for all GCMs and RCPs. This can 

be reflected on the persistence of the system in turn potentially translating to more extreme events such as 

longer periods of drought or longer periods of precipitation. 

4.4  Conclusion 

This research evaluated potential climate change impacts on streamflow and water supply system 

for the Tampa, Florida region. After employing precipitation for streamflow modeling and reservoir 

operation, it evaluated each individual GCM and an average using reliability, resilience, vulnerability and 

sustainability performance metrics. Metrics enabled assessments of water resource reservoir system 

characteristics to determine future changes from the validation period. Three future periods were taken into 

consideration: an early-century period from 2030 to 2053, a mid-century period from 2054 to 2077, and a 

late-century period from 2077 to 2100, and these were compared to baseline (1982-2005). Key findings 

included the following: (1) As emissions increased, RCP 8.5 reliability declined whereas RCP 4.5 was on 

a recovering trajectory by 2100; (2) Resiliency depicted similar trend to Reliability for RCP 4.5 with an 

initial decline but slowing increasing by 2100. RCP 8.5 dropped by 2054 and then flatlined; (3) 

Vulnerability Max for all RCPs increased with time, however; RCP 4.5 was consistently less than RCP 6.0 

and RCP 8.5 by 2100; (4)  Once again, RCP 4.5 declined initially but improved with time for the overall 

sustainability of the system. The highest emission scenario, RCP 8.5, declined by year 2100; (5) GFDL-

CM was an outlier typically reflecting the opposite of the other GCMs, or more extreme metric values 

compared to the past; (6) Low resiliency and high vulnerability had important implications on the reservoir 
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system, ultimately reducing the sustainability metrics; and (7) Autocorrelation increased with time reflected 

by the increasing reliability and persistence of an event.  

To minimize impacts, a reduction of emissions would be imperative to decrease impacts to water 

supply. Since this would need to occur globally, it would require consensus and emission mitigation from 

all countries, which might prove extremely difficult. On a local level, diversifying of system (e.g. 

groundwater or desalination) or adding additional water storage would provide alternative water during 

reservoir failure events. Further, investigation of permits and adjustments to capture extreme flows might 

prove to be a useful tactic to combat climatic changes along with improvements in atmospheric emissions 

that exhibited beneficial system impacts over time. 

Considerations of this research is important. Firstly, to our knowledge, utilizing all four 

performance metrics to evaluate future reservoir operations modeled from inputs of CMIP5 GCM 

precipitation has not been utilized. Metrics enable evaluation of change using key system attributes, 

reliability, resiliency, vulnerability and sustainability. The metrics gauge when the reservoir was below 

threshold or unable to supply water, and the degree of the magnitude of the failure compared to baseline. 

Secondly, employing ensemble averaging provided an alternate option for evaluation of climate change 

impact on the system, where the effect of variability of individual models (e.g., specific biases) were filtered 

via counterbalancing different models. A limitation in this research was that only three GCMs were 

averaged since not all data for all RCPs for other GCMs were readily available. Future studies might 

compare the addition of other GCMs in this average calculation comparison. Further, due to future 

uncertainty, it is unsure which model(s) are actually correct per time period; therefore, it should be noted 

that it is feasible the ensemble average might mask the actual scenario providing a more conservative 

estimate. Since it is uncertain, the future might result in a more extreme or deviated response or it could be 

more conservative. Unfortunately, there is no way to unambiguously ascertain which model projection is 

the most likely choice; therefore, both ensemble and individual outputs were examined to provide a range 

for enhanced understanding. Furthermore, due to biases within the GCM and downscaling process, it is also 

probable that none of these future predictions accurately captured 100% the system. Additionally, it is likely 
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this research is also impacted by uncertainties in the hydrological model since it does not incorporate 

groundwater or atmospheric conditions such as temperature and evaporation. Since the model selects 

streamflow based on precipitation at the three gauges, it is assumed that future streamflow would be similar 

to historical when precipitation matches. Future streamflow values might vary. Moreover, the metrics are 

sensitive to time scales, especially resiliency, and selecting a longer period or large time scale would alter 

the metric values. Although variable, this research is valuable in gauging a change or answering the ultimate 

question: “will the water supply system be drastically impacted by climate?” This will enable water resource 

authorities to determine mitigation strategies based on likely scenarios. Ultimately, utilization of results 

will be determined on the most practical and/or feasible action plan for an organization’s system and budget, 

whether it is based on the worst case scenario, middle of the road, or an ensemble.  

4.5  Tables 

Table 20: GCM models and RCPs of each utilized in the future scenario research 

Model Name Model RCP 

BNU BNU-ESM 4.5; 8.5 

BCCR BCC-CSM 4.5; 8.5 

NOAA GFDL 

GFDL-CM3; 6.0; 8.5 

GFDL-ESM2G 4.5; 6.0; 8.5 

MIROC MIROC-ESM 4.5; 6.0; 8.5 

MPI MPI-ESM-LR 4.5; 8.5 

NorESM NorESM1-M 4.5; 6.0; 8.5 
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Table 21: Average number of days the system remained in an unsatisfactory state based on an average of 

GFDL-ESM2G, MIROC and NorESM 

Average # Unsat Days Avg RCP 4.5 Avg RCP 6.0 Avg RCP 8.5 

1982-2005 211 211 211 

2030-2053 323 269 234 

2054-2077 293 223 464 

2077-2100 275 297 379 

 

Table 22: Unsatisfactory events for RCP 8.5 for timeframes 2030-2039 

RCP 8.5 BCCR BNU GFDL-ESM2G GFDL-CM MIROC MPI NorESM 

UnSat days  1,447  58  116  

Dates  9/29/32-

9/14/36 
 5/7/32-7/3/32  4/4/32-

7/28/32 
 

UnSat days 201       

Dates 
1/4/33-

7/23/33 
      

UnSat days 304  185 82   157 

Dates 
10/7/34-

8/6/35 
 4/3/35-10/4/35 

4/27/34-

7/17/34 
  9/23/34-

2/26/35 

UnSat days 192  73   548  

Dates 
1/14/36-

7/23/36 
 11/27/36-2/7/37   4/16/36-

10/15/37 
 

UnSat days     24   

Dates     6/30/37-

7/23/37 
  

UnSat days 316      93 

Dates 
9/6/38-

7/18/39 
     12/16/39-

3/17/40 

*UnSat = Unsatisfactory 
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Table 23: Unsatisfactory events for RCP 8.5 for timeframes 2090-2100 

RCP 8.5 BCCR BNU 
GFDL-

ESM2G 

GFDL-

CM 
MIROC MPI NorESM 

UnSat days   797     

Dates   
11/26/90-

1/30/93 
    

UnSat days 45 609   287 127  

Dates 
7/3/92-

8/16/92 

2/13/92-

10/13/93 
  

1/20/92-

11/1/92 

6/10/92-

10/14/92 
 

UnSat days   456  1,510   

Dates   
6/20/93-

9/18/94 
 

2/14/93-

4/3/97 
  

UnSat days 156 28     121 

Dates 
5/7/94-

10/9/94 

6/7/94-

7/4/94 
    

5/10/94-

9/7/94 

UnSat days 280     79 76 

Dates 
12/26/94-

10/1/95 
    

6/16/95-

9/2/95 

10/28/95-

1/11/96 

UnSat days   755   501  

Dates   
8/18/96-

9/11/98 
  

10/28/95-

3/11/97 
 

UnSat days       36 

Dates       
5/22/96-

6/26/96 

UnSat days 107 668   859 91  

Dates 
9/7/97-

12/22/97 

3/19/98-

1/15/2100 
  

11/7/97-

3/15/2100 

7/17/98-

10/15/98 
 

UnSat days       180 

Dates       
10/3/99-

3/31/2100 

UnSat days       33 

Dates       
5/16/2100-

6/17/2100 

UnSat days 257  129   395 14 

Dates 
4/19/2100-

12/31/2100 
 

8/25/2100-

12/31/2100 
  

7/27/99-

8/25/2100 

12/18/2100-

12/31/2100 
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Table 24: Streamflow statistics for Alafia and Morris Bridge for RCP 8.5 by GCM simulation and 

average for all GCMs (mgd) 

Daily Average 

(mgd) 
Gauge BCCR BNU  

GFDL-

ESM2G  

GFDL-

CM 
MIROC  MPI NorESM  

Avg 

ALL 

GCMs 

1982-

2005 

ALA Flow 252.3 253.4 246.6 257.0 255.3 249.7 242.8 234.6 248.5 

ALA With 11.2 11.5 11.4 11.2 11.6 11.3 11.9 10.9 11.4 

MB Flow 184.3 197.5 185.3 190.4 185.6 193.0 176.5 172.8 185.9 

TBC With 70.8 70.9 71.3 71.2 71.1 73.3 70.5 72.2 71.5 

2030-

2053 

ALA Flow  263.8 193.5 260.2 405.4 239.3 271.3 227.1 265.8 

ALA With  19.2 15.52 17.1 12.9 18.0 15.9 16.23 16.4 

MB Flow  195.7 136.6 186.9 322.3 169.6 206.9 160.9 197.0 

TBC With  68.3 61.8 65.9 77.9 69.3 71.5 69.9 69.2 

2054-

2077 

ALA Flow  168.7 156.4 182.4 552.0 175.6 293.4 272.7 257.3 

ALA With  16.3 17.9 15.7 9.0 14.9 16.5 16.2 15.2 

MB Flow  112.2 101.9 134.9 468.8 116.5 208.5 179.1 188.8 

TBC With  59.5 55.9 63.7 81.9 56.7 72.0 65.2 65.0 

2077-

2100 

ALA Flow  184.4 212.7 148.2 589.5 147.3 258.3 217.6 251.1 

ALA With  17.2 17.1 14.4 11.1 16.9 15.4 16.3 15.48 

MB Flow  123.5 150.1 105.4 475.1 91.3 192.6 146.4 183.5 

TBC With  59.1 65.4 51.9 80.5 51.9 70.3 63.8 63.3 

*ALA = Alafia; MB = Morris Bridge; TBC = Tampa ByPass Canal; With = Withdrawal 

 

Table 25: Daily reservoir level for gauge and average of GFDL-ESM2G, MIROC and NorESM 

Daily Elevation (m) Gauge Avg RCP 4.5 Avg RCP 6.0 Avg RCP 8.5 

1982-

2005 

Median 39.0 39.6 39.6 39.6 

Average 36.3 37.2 37.2 37.2 

Minimum 22.6 22.9 22.9 22.9 

2030-

2053 

Median  38.4 37.5 39.6 

Average  36.3 35.4 37.5 

Minimum  22.9 22.9 22.9 

2054-

2077 

Median  36.9 38.1 37.2 

Average  35.1 36.3 36.0 

Minimum  22.9 22.9 26.5 

2077-

2100 

Median  39.3 38.1 35.1 

Average  36.6 35.7 34.7 

Minimum  22.9 22.9 25.9 
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Table 26: Unsatisfactory reservoir events for average of GFDL-ESM2G, MIROC and NorESM 

  Gauge Avg RCP 4.5 Avg RCP 6.0 Avg RCP 8.5 

1982-

2005 

Total Days 8,766 8,766 8,766 8,766 

Total Unsat 1,165 807 807 807 

% Time Unsat 13.3% 9.2% 9.2% 9.2% 

Unsat Events 8 4 4 4 

2030-

2053 

Total Days  8,766 8,766 8,766 

Total Unsat  1,332 1,629 1,305 

% Time Unsat  15.2% 18.6% 14.9% 

Unsat Events  4 6 6 

2054-

2077 

Total Days  8,766 8,766 8,766 

Total Unsat  1,864 1,140 2,759 

% Time Unsat  21.3% 13.0% 31.5% 

Unsat Events  6 5 8 

2077-

2100 

Total Days  8,765 8,765 8,765 

Total Unsat  1,182 1,507 3,841 

% Time Unsat  13.5% 17.2% 43.8% 

Unsat Events  4 6 10 

 

Table 27: CDF values for Morris Bridge daily flow for average of GFDL-ESM2G, MIROC and NorESM 

CDF Value at 65 mgd Gauge Avg RCP 4.5 Avg RCP 6.0 Avg RCP 8.5 

1982-2005 0.39 0.38 0.38 0.38 

2030-2053  0.39 0.43 0.41 

2054-2077  0.44 0.39 0.50 

2077-2100  0.36 0.43 0.55 

 

Table 28: CDF values for Alafia daily flow for average of GFDL-ESM2G, MIROC and NorESM 

CDF Value at 83 mgd Gauge Avg RCP 4.5 Avg RCP 6.0 Avg RCP 8.5 

1982-2005 0.26 0.25 0.25 0.25 

2030-2053  0.28 0.30 0.28 

2054-2077  0.32 0.27 0.37 

2077-2100  0.24 0.28 0.39 
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Table 29: CDF values for Morris Bridge daily flow for RCP 8.5 for individual GCM simulations 

CDF Value at 

65 mgd 
BCCR BNU 

GFDL-

ESM2G 

GFDL-

CM 
MIROC MPI NorESM 

1982-2005 0.37 0.38 0.38 0.38 0.36 0.37 0.39 

2030-2053 0.46 0.51 0.48 0.25 0.36 0.38 0.38 

2054-2077 0.56 0.56 0.54 0.15 0.54 0.35 0.41 

2077-2100 0.55 0.49 0.61 0.15 0.59 0.38 0.45 

 

Table 30: Annual autocorrelation in days by RCP for Morris Bridge daily flow for average of GFDL-

ESM2G, MIROC and NorESM 

Days Historical Avg RCP 4.5 Avg RCP 6.0 Avg RCP 8.5 

1982-2005 24 30 30 30 

2030-2053  54 51 64 

2054-2077  63 70 50 

2077-2100  62 61 69 

 

Table 31: Summer (July-October) autocorrelation in days by RCP for Morris Bridge daily flow for 

average of GFDL-ESM2G, MIROC and NorESM 

Days Historical Avg RCP 4.5 Avg RCP 6.0 Avg RCP 8.5 

1982-2005 26 29 29 29 

2030-2053  29 33 37 

2054-2077  47 32 30 

2077-2100  36 35 31 
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4.6  Figures 

 

Figure 22: Emission scenarios with RCP 2.6 being the lowest and RCP 8.5 the highest (IPCC 2014c) 

 

Figure 23: Reliability Metric by GCM 



74 

 

 

Figure 24: Metrics using the average of three GCMs Metrics (GFDL-ESM2G, MIROC and NorESM) by 

RCP and Max Vulnerability 

 

Figure 25: Resiliency Metric by GCM 
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Figure 26: Examining Unsatisfactory Events with the Vulnerability Maximum Metric by GCM 

 

Figure 27: Examining all the Unsatisfactory Events to calculate the Vulnerability Average by GCM 
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Figure 28: Sustainability Metric by GCM utilizing the Vulnerability Maximum Metric 

 

Figure 29: Sustainability Metric by GCM utilizing the Vulnerability Average Metric 
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Figure 30: Alafia and Morris Bridge streamflow and water withdrawal at Alafia and TBC examined by 

RPC and time period 

 

Figure 31: Average annual precipitation at Plant City gauge by time period and RCP for GFDL-ESM2G, 

MIROC, NorESM and average of all three 
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CHAPTER 5: CONCLUSION 

 

This research first evaluated GCM precipitation to determine whether they captured important 

hydrologic characteristics. It utilized Markov Chain to determine whether climatic states were captured. 

Results indicated that GCM models and the downscaled and bias-corrected products did not replicate 

historical wet or dry season transition probabilities at the gauges. The second phase then employed GCM 

precipitation to simulate historical streamflow to see if these errors propagated to reservoir operations. 

Results were evaluated via performance metrics, reliability, resilience, vulnerability and sustainability, as 

well as using statistical tools such as serial correlation and PDF. On average, the simulations performed 

reasonably well, although they did not capture all markers.  Finally, the last stage of the research ascertained 

whether future water supply would be susceptible to prolonged droughts. Depending on the emission 

scenario trajectory, lower or higher emissions, results varied. Overall consensus was that higher emissions 

would results in an increased strain on water supply resources, leading to multiple consecutive years when 

the reservoir would be unable to supply water. Lower emissions at first exhibited stresses on the system, 

but as time progressed and the atmosphere stabilized conditions improved. Therefore, it would be 

imperative for countries to have systems in place to reduce greenhouse gas emissions and have conservation 

and mitigations strategies. Additionally, water withdrawal permits could also be examined to determine if 

capturing additional water supply during extremely high flows might would significantly increase the 

systems sustainability or if only minimal changes would be observed. Further, as GCM models are tweaked 

and enhanced, it would be beneficial to reevaluate the system to continue to understand future implications. 
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APPENDIX A: LIST OF ACRONYMS 

 

AR5 Fifth Assessment Report 

Avg GCM Average GCM 

Avg Sus Average Sustainability 

BCCA Bias-Correction and Constructed Analog 

BCCR Bjerknes Centre for Climate Research  

BCCR3 BCCR3-BCM2.0  

BCCR5 BCC-CSM1-1 

BCSA Bias-Correction and Stochastic Analog  

BCSD Bias-Correction and Spatial Disaggregation  

BNU Beijing Normal University 

BOM Bureau of Meteorology 

CCSM Community Climate System Model 

CDF Cumulative distribution function 

cm Centimeters 

CMIP Coupled Model Intercomparison Projects  

CSIRO Commonwealth Scientific and Industrial Research Organization 

CWBYR C.W. Bill Young Reservoir 

DJF December January February 

ENSO El Niño Southern Oscillation  

FL Florida 

FMS2 Flow Modeling System Version 2 

GCM General Circulation Model 

GCMs-Sim Retrospective GCMs 

GFDL Geophysical Fluid Dynamics Laboratory 

HRD Hillsborough River Dam 

IHM Integrated Hydrologic Model 

IPCC Intergovernmental Panel on Climate Change 

ISI-MIP Inter-Sectoral Impact Model Intercomparison Project 

km kilometers 

km Kilometers 

m Meters 

Max Sus Maximum Sustainability 

mgd Million Gallons Per Day  

MND Multivariate, Nonparametric Disaggregation 

MPI Max Planck Institute  

NCC Norwegian Climate Centre 
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NOAA National Oceanic and Atmospheric Administration 

ONI Oceanic Niño 

PDF Probability Distribution Function  

RCP Representative concentration pathway  

RRV Reliability, Resilience and Vulnerability 

SMLR Seasonal-Multivariate Linear Regression 

SST Sea Surface Temperature 

TBC Tampa Bypass Canal  

U.S. United States  

Vul Avg Average Vulnerability 

Vul Max Maximum Vulnerability 

W/m2 Watt per square meter 
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