
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

November 2017

Comprehensive Exploratory Analysis of Truck
Route Choice Diversity in Florida
Trang D. Luong
University of South Florida, trangluong@mail.usf.edu

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the Urban Studies and Planning Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Scholar Commons Citation
Luong, Trang D., "Comprehensive Exploratory Analysis of Truck Route Choice Diversity in Florida" (2017). Graduate Theses and
Dissertations.
http://scholarcommons.usf.edu/etd/7052

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F7052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F7052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F7052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F7052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F7052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F7052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/436?utm_source=scholarcommons.usf.edu%2Fetd%2F7052&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


 

 

 

 

 

Comprehensive Exploratory Analysis of Truck Route Choice Diversity in Florida 

 

 

 

by 

 

 

 

Trang D. Luong 

 

 

 

 

 

A thesis submitted in partial fulfillment 

of the requirements for the degree of 

Master of Science in Civil Engineering 

Department of Civil and Environmental Engineering 

College of Engineering 

University of South Florida 

 

 

 

Major Professor: Abdul R. Pinjari, Ph.D. 

Robert Bertini, Ph.D. 

Pei-Sung Lin, Ph.D. 

Seckin Ozkul, Ph.D. 

 

 

Date of Approval: 

November 1, 2017 

 

 

 

Keywords: truck-GPS data, route diversity, route overlap, route dominance, network structure 

 

Copyright © 2017, Trang D. Luong 

  



 

 

 

 

 

DEDICATION 

 

To the students who have acquired sincere interests in transportation modeling  

  



 

 

 

 

 

ACKNOWLEDGEMENTS 

 

My sincere gratefulness is due to major advisor, Dr. Abdul R. Pinjari, for his attentive 

guidance and thoughtful discussions about graduate research and coursework. His meticulous 

dedication to research has taught me the importance of in-depth studies. His wholehearted support 

signifies beyond fully funding my Master’s studies: the respect for my diverse involvement at USF 

and efforts of guiding my professional growth. 

My gracious thanks are to Divyakant Tahlyan for his rigorous commitment to research on 

transportation modeling, and Mohammadreza Kamali for his initial work on deriving routes and 

counting the number of unique routes. 

My hearty appreciation is extended to Drs. Robert Bertini, Pei-Sung Lin, Seckin Ozkul, for 

participating in my thesis committee, reinforcing the value of research, and offering me full 

concentration on completing this work.  

The data used in this research was obtained from projects funded by the Florida Department 

of Transportation (FDOT) and the United States Department of Transportation (USDOT). This 

study partially contributes to the report of the research project funded by the USDOT National 

University Transportation Center (UTC) Consortium led by the Center for Advanced Infrastructure 

and Transportation (CAIT), Rutgers University. Any opinions, findings, and conclusions or 

recommendations expressed in this material are those of the author and do not necessarily reflect 

the views of the National University Transportation Center, USDOT, or FDOT. 

 



i 

 

 

 

 

 

 

TABLE OF CONTENTS 

 

LIST OF TABLES ......................................................................................................................... iii 

 

LIST OF FIGURES ....................................................................................................................... iv 

 

ABSTRACT .................................................................................................................................... v 

 

CHAPTER 1: INTRODUCTION ................................................................................................... 1 
1.1 Background ................................................................................................................... 1 

1.2 Literature Review.......................................................................................................... 2 

1.3 Research Objectives ...................................................................................................... 3 
1.4 Thesis Organization ...................................................................................................... 4 

 

CHAPTER 2: DATASETS ............................................................................................................. 5 
2.1 Raw Truck GPS Data .................................................................................................... 5 

2.2 Deriving Truck Routes .................................................................................................. 5 
2.2.1 Converting Truck-GPS Data to Truck Trips .................................................. 5 
2.2.2 Deriving Truck Routes from Truck Trips ...................................................... 6 

2.2.2.1 Improving Map-matching Procedure for Short-haul Routes ...........7 

2.3 Database of Truck Routes for Diversity Analysis ........................................................ 9 

 

CHAPTER 3: DEVELOPMENT OF ROUTE DIVERSITY METRICS ..................................... 15 

3.1 Introduction ................................................................................................................. 15 
3.2 Number of Unique Routes .......................................................................................... 15 

3.3 Route Variability Metrics ........................................................................................... 18 
3.3.1 Average Commonality Factor ...................................................................... 18 
3.3.2 Average Path Size ........................................................................................ 18 

3.3.3 Non-overlapping Index ................................................................................ 19 
3.3.4 Illustrations of Route Variability Metrics .................................................... 19 

3.4 Route Dominance Metrics .......................................................................................... 21 

3.4.1 Standardized Variance of Route Usage ....................................................... 21 

3.4.2 Standardized Shannon Entropy of Route Usage .......................................... 22 

3.4.3 Illustrations of Route Dominance Metrics ................................................... 23 
3.5 Illustration ................................................................................................................... 24 

 

CHAPTER 4: MODELING METHODOLOGY .......................................................................... 26 
4.1 Introduction ................................................................................................................. 26 

4.2 Count Data Models for Number of Observed Unique Routes .................................... 26 
4.3 Fractional Response Models for Average Path Size and Standardized Shannon 

Entropy of Route Usage .............................................................................................. 27 



ii 

 

CHAPTER 5: DESCRIPTIVE ANALYSIS ................................................................................. 28 
5.1 Introduction ................................................................................................................. 28 

5.2 Diversity Metrics ........................................................................................................ 28 
5.3 Potential Determinants of Diversity............................................................................ 32 

5.3.1 Trip Characteristics ...................................................................................... 33 
5.3.2 OD Location Characteristics ........................................................................ 33 
5.3.3 Network Structure ........................................................................................ 33 

 

CHAPTER 6: ESTIMATION RESULTS .................................................................................... 35 
6.1 Introduction ................................................................................................................. 35 
6.2 NB Regression Model for Number of Unique Routes ................................................ 35 
6.3 Fractional Response Models for Average Path Size ................................................... 39 

6.4 Fractional Response Models for Standardized Shannon Entropy of Usage ............... 40 

 

CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH ................................................... 41 

7.1 Summary of Research ................................................................................................. 41 

7.2 Findings and Conclusions of Research ....................................................................... 42 
7.3 Opportunities for Future Research .............................................................................. 44 

 

REFERENCES ............................................................................................................................. 45 
 

  



iii 

 

 

 

 

 

 

LIST OF TABLES 

 

Table 2.1 Dataset Summary .......................................................................................................... 11 

Table 5.1 Descriptive Statistics of Diversity Metrics ................................................................... 28 

Table 5.2 Descriptive Statistics of Explanatory Variables for Route Diversity Analysis ............ 32 

Table 6.1 Estimation Results of Truncated Negative Binomial Regression of Number of 

Unique Routes .............................................................................................................. 37 

Table 6.2 Estimation Results of Fractional Response Models for Average Path Size ................. 39 

Table 6.3 Estimation Results of Fractional Response Models for Standardized Shannon 

Entropy of Usage .......................................................................................................... 40 

 

  



iv 

 

 

 

 

 

 

LIST OF FIGURES 

 

Figure 2.1 Geographical Distribution of all Long-haul Truck Routes.......................................... 10 

Figure 2.2 Geographical Distribution of all Short-haul Truck Routes ......................................... 10 

Figure 2.3 Trip Length Distributions of Long-haul and Short-haul Trips .................................... 12 

Figure 2.4 Trip Time Distributions of Long-haul and Short-haul Trips ....................................... 12 

Figure 2.5 Florida Weigh Stations Map ........................................................................................ 13 

Figure 2.6 Florida Seaport System................................................................................................ 14 

Figure 3.1 Number of Unique Routes Distribution for Long-haul and Short-haul Datasets ........ 16 

Figure 3.2 Scatter Plots of the Number of Unique Routes versus the a) Number of Trips,             

b) Number of Truck IDs, and c) Direct OD Distance ................................................. 17 

Figure 3.3 Correlations of a) Average Commonality Factor, b) Average Path Size,  c) Non-

overlapping Index with the Number of Unique Routes .............................................. 20 

Figure 3.4 Correlation of a) Standardized Variance of Route Usage and b) Standardized 

Shannon Entropy of Route Usage with the Number of Unique Routes ..................... 23 

Figure 3.5 Correlation between Two Dominance Metrics ............................................................ 24 

Figure 3.6 Examples of Unique Routes for a Long-haul OD Pair and a Short-haul OD Pair ...... 25 

Figure 5.1 Number of Unique Routes Distribution ...................................................................... 29 

Figure 5.2 Average Commonality Factor Distribution ................................................................. 30 

Figure 5.3 Average Path Size Distribution ................................................................................... 30 

Figure 5.4 Non-overlapping Index Distribution ........................................................................... 30 

Figure 5.5 Standardized Variance of Usage Distribution ............................................................. 31 

Figure 5.6 Standardized Shannon Entropy of Usage Distribution ................................................ 31 

Figure 5.7 Long Ellipse, Short Ellipse, and Circular Buffers ....................................................... 34 

  



v 

 

 

 

 

 

 

ABSTRACT 

 

This thesis presents a comprehensive exploratory analysis of truck route choice diversity 

in the state of Florida, for both long-haul and short-haul truck travel segments. We employ six 

metrics to measure three different dimensions of diversity in truck route choice between any given 

origin-destination (OD) pair. These dimensions are: (1) number of distinct routes used to travel 

between the OD pair, (2) the extent of overlap (or lack thereof) among the routes, and (3) the 

evenness (or the dominance) of the usage of different unique routes. The diversity metrics were 

utilized to examine truck route choice diversity from over 73,000 truck trips that were derived 

from over 200 million GPS records of a large truck fleet. Descriptive analysis and statistical 

modeling of the diversity metrics offered insights on the determinants of various dimensions of 

truck route choice diversity between an OD pair. The results could be used to improve choice set 

generation algorithms for truck route choice modeling as well as in planning truck route policies 

and investments.   



1 

 

 

 

 

 

 

CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Highway freight mobility is critical to a region’s economic growth. An essential step 

toward enhancing highway freight mobility is to improve our understanding of freight movement. 

Analyzing truck routes can help design short-term truck routing policies aimed at mitigating 

congestion and improving travel time reliability. Due to limited data on truck movements, 

however, truck route choice has been an understudied dimension of freight movement. The recent 

availability of global positioning systems (GPS) data has started to fill this gap. A few studies have 

used GPS data to understand route choice behaviors of freight trucks or to derive freight 

performance measures (Brown and Racca, 2012; Liao, 2014; Wang et al., 2016; Woodard et al., 

2017). However, not much attention has been paid to gain a better understanding of the truck travel 

patterns, particularly on the degree of diversity among truck routes. 

Analyses of the degree of truck route diversity have important applications in both planning 

and modeling practices. Transportation planners can use route variability measures to evaluate the 

performance of transportation networks, particularly for the demand of designated truck routes or 

toll roads. More diversity in the chosen routes implies higher resiliency of the roadway system, 

especially for routine infrastructure maintenance and rebuilding efforts for emergency recovery. 

Identifying OD pairs with higher diversity can help trucking companies in optimizing routing 

strategies. For modeling applications, route diversity measures, such as the number of expected 

routes and their amount of route overlap, can be useful criteria to guide route choice set generation 

algorithms, and subsequently improve the generated routes. 
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1.2 Literature Review 

The availability of GPS-data in recent years has offered three major venues for route choice 

research, such as building route choice models, examining the choice set algorithms, and analyzing 

behaviors of the chosen routes. Route choice research has utilized the recently available GPS-data 

to build route choice models, examine the choice set algorithms, and analyze behaviors of the 

chosen routes. Several advanced route choice models have utilized this rich GPS data collected to 

analyze routes taken by automobiles (Levinson and Zhu, 2013). There are still limited route choice 

models build for truck mode. Hess et al., 2015 is the only recent study that explored a large set of 

truck-GPS data collected in a dense urbanized network. Generating a sensible and exhaustive route 

choice set is the focus of not only the algorithm itself but also on the robustness of the route choice 

model estimates (e.g.: Bekhor et al., 2006; Bliemer and Bovy, 2008). Bovy, 2009 suggested four 

aspects of the choice set: (1) the sufficient number of route alternatives, (2) the inclusion of 

observed routes, (3) the plausibility of the route hierarchical sequence, and the (4) diversity of the 

generated routes. Those criteria need to be determined by a model that can estimate the reasonable 

number of diverse alternatives for any given OD pair. 

In addition to developing route choice models, researchers have deployed GPS data to 

analyze the route deviation or the variability of observed routes. Jan et al., 2000 concluded that 

most chosen routes differed from the shortest time path by comparing matches of few similar OD 

pairs. Papinski et al. 2009 estimated that up to 20% of travelers deviated from their planned route. 

Papinski and Scott, 2009 found that the observed routes are longer than both shortest time and 

shortest distance routes because travelers also consider many other route characteristics. Spissu et 

al., 2011 quantified the time and distance that the observed routes deviated from minimum-cost 

routes, while examining the variability of daily routes chosen by same or different individuals. 
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Zhu and Levinson’s empirical test of the user-optimal equilibrium principle in trip assignment 

using all chosen routes is the latest study on the extent of route variability. Among those few 

studies, the datasets were limited by the size of only tens or hundreds of observed routes. Only a 

few indices were applied to quantify the extent of route deviation or route variability, such as 

path/time/distance deviation index and overlapping index (Jan et al., 2000; Spissu et al., 2011). 

1.3 Research Objectives 

Based on the available datasets of truck routes derived for two FDOT projects, the objective 

of this thesis is to conduct a comprehensive exploratory analysis of truck route choice diversity in 

Florida for both long-haul and short-haul travel segments. The term diversity is used to 

characterize the differences in observed routes used by trucks along three different dimensions: 

(1) the number of different routes used by trucks for travel between an OD pair, (2) the amount of 

overlap/similarity among different routes used between an OD pair, and (3) the evenness (or, 

otherwise, the dominance) in usage of different routes. Specifically, the study addresses two broad 

questions: (1) How to measure the degree of diversity in the routes trucks use to travel between an 

OD pair? (2) What factors influence the diversity of truck route choice between an OD pair? To 

this end, six metrics were used to measure the following three different dimensions of diversity in 

route choice between a given OD pair: (1) number of different routes used between the OD pair, 

(2) extent of overlap (or lack thereof) among the routes, and (3) evenness (or the dominance) of 

the use of different unique routes between that OD pair. These metrics were applied to quantify 

truck route choice diversity using large streams of more than 200 million GPS records. Next, 

statistical models were estimated to explore the influence of various determinants on the three 

dimensions of route choice diversity between different OD pairs. The models provided insights 
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into the influence of truck travel characteristics, OD location characteristics, and network structure 

characteristics between an OD pair on the diversity of route choice between that OD pair.  

1.4 Thesis Organization 

Chapter 2 describes the truck-GPS data and the derived route datasets used in this thesis. 

Chapter 3 describes the metrics used to quantify diversity in truck route choice. The statistical 

models used in this thesis and empirical results are presented in Chapter 4. Chapter 5 documents 

descriptive analysis of diversity metrics and explanatory variables. Chapter 6 summaries empirical 

findings from statistical models on the determinants of diversity. Chapter 7 concludes this thesis 

with findings and recommendations for future research.   
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CHAPTER 2: DATASETS 

 

2.1 Raw Truck GPS Data 

The truck-GPS data used in this thesis was obtained from the American Transportation 

Research Institute (ATRI) for two Florida Department of Transportation (FDOT) funded projects 

(Pinjari et al., 2014; Tahlyan et al., 2017). The data used to derive long-haul truck trips (trips longer 

than 50 miles) comprised more than 145 million GPS records corresponding to a fleet of nearly 

50,000 freight trucks. The long-haul GPS data spanned spatially over the state of Florida and 

temporally over a four-month period (March–June 2010). The data used to derive short-haul trips 

(trips shorter than 50 miles) comprised more than 96 million GPS records corresponding to a fleet 

of nearly 110,000 freight trucks and spanned six counties of the Tampa Bay region in Florida. 

Temporally, the short-haul data corresponded to first 15 days in October 2015, December 2015, 

April 2016, and June 2016. 

2.2 Deriving Truck Routes 

2.2.1 Converting Truck-GPS Data to Truck Trips 

The raw truck-GPS data were first converted into a database of truck-trips using algorithms 

developed by Thakur et al. (2015) and later refined by Pinjari et al. (2015) for the same data. The 

overall procedure to convert ATRI’s truck-GPS data into a database of truck trips is summarized 

in the following three broad steps:  

1. Clean, read, and sort raw GPS data in chronological order for each truck ID. At the end 

of this step, all GPS data belonging to each truck ID are grouped together in chronological 

order.  
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2. Identify an initial set of truck trip stops (i.e., trip ends) based on spatial movement, time 

gap, and speed between consecutive GPS points. In this step, a truck is considered to have 

stopped at a destination if it stops (i.e., if the average travel speed between two consecutive 

GPS points is less than 5 mph) for at least 5 minutes. A truck stop of less than 5-minute 

duration is considered to be a traffic stop (i.e., not a valid destination) and, therefore, is 

considered part of the travel between origin and destination. 

3. Conduct quality checks and refine or eliminate trips that do not satisfy quality criteria. 

2.2.2 Deriving Truck Routes from Truck Trips 

To derive the chosen route for each long-haul trip, raw GPS records corresponding to each 

trip were map-matched using the procedure developed by Kamali et al. (2016) to high-resolution 

NAVTEQ roadway networks provided by FDOT. The long-haul truck routes were derived by 

Kamali et al. (2016). The 2010 NAVTEQ network used to derive long-haul routes comprised more 

than 1.5 million links and 5.8 million nodes. To match the time frame when the GPS data was 

collected, the 2015 NAVTEQ network used for short-haul routes comprised over 1.8 million links 

and more than 6.9 million nodes. The short-haul truck routes were derived by the author and her 

colleagues as one of the main tasks in the report “Development and Analysis of Truck Route 

Choice Data for the Tampa Bay Region using GPS Data” (Tahlyan et al., 2017). The procedure 

for deriving routes using GPS data consisted of three broad steps: 1) map-matching data set 

preparation, 2) map-matching process, and 3) route generation. Section 2.2.2.1 documents the 

improvements of the first two steps of the map-matching procedure developed by Kamali et al. 

(2016) to better suit the nature of short-haul truck trips. 
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2.2.2.1 Improving Map-matching Procedure for Short-haul Routes 

1. Map-matching data set preparation: The raw GPS data of each trip were refined based 

on the following criteria: a) Removing GPS coordinates within a 1,000-ft radius of the 

origin or destination of each trip. For trips that started or ended in urban areas with a high 

density of highway network links, it was not easy to accurately map-match the raw GPS 

data because of the absence of many minor roadway network links in the Navteq network 

used in the study. Mismatching these GPS points would lead to loops (circuitous 

maneuvers) in the generated routes. As this step also removes the origin and destination 

GPS points, these points were later added back to the set of GPS points corresponding to a 

trip. b) Space-sampling the remaining GPS coordinates to be at least 1,000 ft apart. This 

was done to eliminate GPS points that were too close to each other and did not help enhance 

the accuracy of matching the points to the road network. The space-sampling approach is 

different from the time-sampling approach mentioned in Kamali et al. (2016), but space 

sampling helps to keep consistency across the spatial distribution of the consecutive GPS 

points. In the time-sampling approach, GPS points can still be very close to each other after 

a period of time (e.g., 1 or 2 minutes when a truck stops at a traffic light, etc.). c) Based on 

the remaining GPS points in each trip, removing trips with less than 5 GPS points, as the 

number of GPS points in those trips was considered below the number needed to accurately 

derive the travel route.  

2. Map-matching process: Map-matching is a technique that uses a combination of GPS 

location data and roadway network data to identify the correct link that has been traversed 

by the vehicle on the network. The author modified the map-matching procedure used in 

Kamali et al. (2016), which was originally proposed by Yang et al. (2005). 
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First, all the GPS points that were within 500-ft buffer around the highway interchanges 

were removed. Points close to highway interchanges are difficult to map-match and can lead to 

major detours from the actual route. This was done by drawing a 500-ft buffer around the highway 

interchanges; these interchanges were identified using the attributes present in the Navteq network 

that indicated if a network link belongs to a highway interchange. The GPS points falling within 

the 500-ft buffer were identified by intersecting the GPS data layer with the 500-ft buffer layer 

around the highway interchanges.  

Second, the distance of each GPS point from the first nearest link in the network was 

calculated. This distance was denoted as D1, and all GPS points where D1 > 500 ft were removed. 

Subsequently, distance of each GPS point from the second nearest link in the network was 

calculated and denoted as D2. This was done using the “Generate Near Distance Table” tool in the 

ArcGIS environment.  

Third, the angle between the geographic north and a perpendicular line drawn from each 

GPS point to the first- and second-nearest links in the network was calculated. If the location of 

the link was east of the location of the GPS point, the angle was measured in the clockwise 

direction; if the location of the link was west of the GPS point, the angle was measured in the anti-

clockwise direction. These angles were denoted as A1 and A2. If 170° < (A1 + A2) < 190°, the 

GPS point was supposedly between two parallel roads and was difficult to be map-matched 

accurately. All such GPS points were removed from the dataset. Of the points that were removed, 

those that fell within the 65-ft buffer of just one roadway intersection were retained and were map-

matched to the intersections instead of the links.   

Finally, all trips with fewer than five GPS points were removed, as these trips did not have 

enough GPS points for accurate route determination. 
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2.3 Database of Truck Routes for Diversity Analysis 

To analyze route choice and the diversity therein, it is useful to aggregate trip end locations 

to larger spatial units to observe a sufficient number of trips to get an uncensored view of the 

various routes trucks choose between two locations. Even if a substantial number of trips was 

observed between disaggregate OD locations, it might not exhibit the complete alternatives in 

route choice due to lack of diversity in the truck drivers, operators and/or nature of the trucking 

businesses. Furthermore, practical implementations of route choice analysis and modeling 

consider spatially-aggregated units such as traffic analysis zones (TAZs). There are 5,403 TAZs 

in the Florida statewide travel demand model (FLSWM). The size of each TAZs varies based on 

each region’s traffic, population, and employment densities. Therefore, in this thesis, all trip end 

locations were aggregated to the TAZs defined in Florida’s statewide travel demand model.  

Based on empirical observations, TAZ OD pairs that had at least 50 trips for long-haul data 

and at least 30 trips for short-haul data were selected, as OD pairs with fewer trips might not offer 

a complete picture of truck route diversity. Table 2.1 summarizes the attributes and selection 

criteria for both long-haul and short-haul truck trips. All subsequent analyses were built parallel 

for both datasets to compare and contrast the degree of route diversity for long-haul and short-haul 

trips. From a set of more than 78,000 routes, the final long-haul dataset used in this analysis 

comprised 277 TAZ OD pairs with a total of 30,263 routes that were longer than 50 miles as shown 

in Figure 2.1. Thakur et al., 2015 estimated that ATRI GPS data only cover about 10% of truck 

traffic volumes in Florida. Figure 2.2 shows the geographical distribution for 527 short-haul OD 

pairs comprising 42,884 routes refined from a set of more than 230,000 routes. As trips shorter 

than 5 miles would not have many route choice options for truck travel, all short-haul routes are 

between 5 and 50 miles long.  
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Figure 2.1 Geographical Distribution of all Long-haul Truck Routes 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Geographical Distribution of all Short-haul Truck Routes 
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Table 2.1 Dataset Summary 

Attributes Long-haul Short-haul 

Original datasets 

Collected period 
March, April, May and June 

2010 

October, December 2015 and 

April, June 2016 

Coverage region Entire State of Florida 
Six counties in the Tampa 

Bay (mid-west of Florida) 

Number of raw GPS 

records 
96 million 145 million 

Number of derived routes 78,381 233,329 

Selection criteria for route diversity analysis 

Minimum trip length 50 miles 5 miles 

Minimum number of 

trips per OD pair 
50 30 

Refined datasets for route diversity analysis 

Number of truck routes 30,263 42,884 

Number of OD pairs 277 527 

 

As all selected truck trips have their corresponding traversed routes along the road network, 

the terms “trip” and “route” are used interchangeably. Figure 2.3 presents the trip length 

distribution of the trips selected for analyzing truck route diversity. More than half of long-haul 

trips are between 50 and 100 miles long, with the maximum trip length of 470 miles. The trip time 

distribution shown in Figure 2.4 indicates that the average truck speed is less than 60 miles per 

hour, especially for long-haul trips.  
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Figure 2.3 Trip Length Distributions of Long-haul and Short-haul Trips 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Trip Time Distributions of Long-haul and Short-haul Trips 
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Figure 2.5 presents the locations of all 20 active weigh stations that are distributed along 

or near the Interstate system. The long-haul routes shown in Figure 2.1 pass through 18 out of 20 

weigh stations. The White Springs Weigh-In-Motion Station may have trips going out of / into 

Florida while this analysis only considers routes trips within Florida. Truck trips going through 

the Old Town Static Station may have not been a part of an OD pair with at least 50 trips. Three 

weigh stations—Wildwood, Seffner and Hopewell are within the study boundaries for the short-

haul dataset. 

 
Figure 2.5 Florida Weigh Stations Map 

 



14 

 

Figure 2.6 presents the locations of ten cargo seaports that were visited by long-haul routes. 

Detailed analysis of the route distributions confirms that the Port Tampa Bay and Port Manatee 

are the two popular origins and destinations for short-haul truck trips. It can be observed that 

freight truck is the primary mode to transport goods into and out of seaports. 

 
Figure 2.6 Florida Seaport System 
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CHAPTER 3: DEVELOPMENT OF ROUTE DIVERSITY METRICS 

 

3.1 Introduction 

To measure diversity in truck route choice between a given OD pair, the following six 

metrics were employed: (1) number of unique routes, (2) average commonality factor, (3) average 

path size, (4) non-overlapping index, (5) standardized variance of route usage, and (6) standardized 

Shannon entropy of route usage. The first metric measures the number of unique routes traveled 

by trucks between an OD pair. The next three metrics measure the extent of overlap (or lack 

thereof) among the observed unique routes, which are referred to as the route variability metrics. 

The last two metrics measure the evenness (or, otherwise, dominance) in the usage of the routes 

between the OD pair, which are referred to as the route dominance metrics. These three dimensions 

together provide a complete picture of the diversity in truck route choice between an OD pair.  

3.2 Number of Unique Routes 

Many routes traveled between an OD pair are different by only a few links. To determine 

a set of distinct or unique routes traveled between an OD pair, we used the commonality factor 

proposed by Cascetta et al. (1996). Commonality factor (𝐶𝑖𝑗) between routes 𝑖 and 𝑗 is defined as: 

𝐶𝑖𝑗 = 𝑙𝑖𝑗 √𝐿𝑖𝐿𝑗⁄    (3.1) 

where 𝐿𝑖 and 𝐿𝑗 represent the length of routes 𝑖 and 𝑗, respectively, and 𝑙𝑖𝑗 is the length of the 

shared portion between the two routes. The two routes are referred to as unique from each other if 

the commonality factor between the two routes is below 0.95. To determine the number of unique 

routes observed between an OD pair, all routes between that OD pair are arranged in an ascending 

order of route length. The shortest route is the first unique route. The commonality factor of each 
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subsequent route is computed with respect to all previous unique routes to determine if it is a 

unique route (if 𝐶𝑖𝑗 is less than 0.95). The result of this process is a set of unique routes between 

an OD pair, where the commonality factor between any two unique routes is less than 0.95. The 

size of this unique route set represents the number of unique routes used between that OD pair. As 

a result, the initial large set of routes derived for all trips is reduced to a smaller set of unique routes 

per OD pair as shown in Figure 3.1. It is important to note that even for a large number of unique 

routes between an OD pair, there still may not be many competitive alternative routes since each 

unique route can overlap up to 95% with any other routes.  

 
Figure 3.1 Number of Unique Routes Distribution for Long-haul and Short-haul 

Datasets 

 

Figure 3.2 depicts the number of unique routes as a function of a) number of trips, b) 

number of truck IDs per OD pair, and c) direct OD distance. Each sub-figure shows the Pearson’s 

correlation coefficient to quantify the correlation of the independent and dependent variables. 
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Figure 3.2 Scatter Plots of the Number of Unique Routes versus the                           

a) Number of Trips, b) Number of Truck IDs, and c) Direct OD Distance 
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As shown in Figure 3.2 a), the short-haul dataset has a stronger positive correlation between 

number of trips and unique routes. Figure 3.2 b) shows a relative linearly increasing trend for the 

number of unique routes as the number of truck IDs increases. The negative Pearson correlation 

coefficients in Figure 3.2 c) imply some decrease in the number of unique routes as the distance 

between origin and destination increases. 

3.3 Route Variability Metrics 

3.3.1 Average Commonality Factor 

Average commonality factor for a given OD pair is the mean value of the commonality 

factors computed across all pairs of unique routes between that OD pair. Since the earlier metric 

(number of unique routes) does not consider the extent of overlap (or lack thereof) between the 

unique routes, this metric measures the degree of overlap between all unique routes in an OD pair. 

Ranging between 0 and 1, an average commonality factor value closer to 0 (or 1) represents low 

(or high) overlap between the unique routes.  

3.3.2 Average Path Size 

Path size is a commonly-used metric in the route choice literature to measure the degree of 

overlap of two routes between an OD pair. Proposed by Ben-Akiva and Bierlaire (1999), the path 

size for a unique route 𝑖 is defined as: 

𝑃𝑆𝑖 = ∑ (
𝑙𝑎

𝐿𝑖
)

1

∑ 𝛿𝑎𝑗𝑗𝜖𝑘
𝑎𝜖𝛤𝑖

   (3.2) 

where Γi is the set of all links composing route 𝑖, 𝑙𝑎 is the length of link 𝑎, 𝐿𝑖 is the length of route 

𝑖, and 𝛿𝑎𝑗 is equal to 1 if a route 𝑗 belonging to the unique route set 𝑘 uses link 𝑎, and zero 

otherwise. The maximum possible value of PS is 1, and the minimum value tends to 0. A route 

with no overlap with any other routes has a PS value 1. Average PS in an OD pair is the mean 

value of all PS computed for all unique routes between that OD pair.  
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3.3.3 Non-overlapping Index  

Complementary to the above two metrics, the degree of non-overlap among the unique 

routes between an OD pair is quantified using the non-overlapping index. This index is measured 

as the ratio between the total length of links (on unique routes) that were used only once to the 

total length of all links (on unique routes) that were used at least once. This index ranges between 

0 and 1, where a value closer to 1 represents low overlap among unique routes.  

3.3.4 Illustrations of Route Variability Metrics 

Figure 3.3 demonstrates the distributions of the three aforementioned route variability 

metrics across OD pairs as well as their correlations with the number of unique routes. The degree 

of route variability generally increases for OD pairs with higher number of unique routes shown 

by the decrease of average commonality factor and increase of non-overlapping index. There is a 

strong non-linear relationship between the number of unique routes and average path size. In 

particular, a dense concentration of OD pairs on the top left corner of Figure 3.3 a) indicates that 

many OD pairs with fewer unique routes also have higher average commonality factors, which 

means the majority of OD pairs only have a few alternative routes, and these routes also overlap 

considerably with each other. Figure 3.3 b) shows a sharp decrease of average path size as the 

number of unique routes increases. While there is no apparent correlation between the number of 

unique routes and the non-overlapping index, some OD pairs have the non-overlapping index of 

zero, which means all road links are used by more than one unique route.  
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Figure 3.3 Correlations of a) Average Commonality Factor, b) Average Path Size, c) 

Non-overlapping Index with the Number of Unique Routes 
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3.4 Route Dominance Metrics 

3.4.1 Standardized Variance of Route Usage 

Another dimension of diversity is based on the evenness of the usage of different unique 

routes between an OD pair. The most even usage is when all observed trips between an OD pair 

are equally distributed among the observed unique routes between that OD pair. A complementary 

concept is the degree of dominance, when most trips are observed to have taken only one or a few 

unique routes.  

To measure the degree of evenness in usage, the distribution of N trips among K different 

unique routes between a given OD pair may be characterized as a multinomial distribution, with 

each trip being allocated to any one of the K different unique routes. If the random variable 

𝑋𝑘 (𝑘 = 1,2,3, … , 𝐾) indicates the number of trips choosing route 𝑘 and 𝑝𝑘 is the proportion of 

trips allocated to route 𝑘, vector 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝐾) follows a multinomial distribution with 

parameters 𝑁 and 𝑝, where 𝑝 = (𝑝1,𝑝2, … , 𝑝𝐾). The variance of such multinomial-distributed 

random variables is 𝑉𝑎𝑟(𝑋𝑘) = 𝑁 ∗ 𝑝𝑘 ∗ (1 − 𝑝𝑘).  

The variance of route usage between an OD pair is defined as the sum of variances of usage 

frequency for each route, as: 𝑁 ∗ ∑ 𝑝𝑘 ∗ (1 − 𝑝𝑘)𝐾
1 . This metric is influenced by three factors: (1) 

total number of unique routes between the OD pair (more routes, higher the variance), (2) total 

number of observed trips between the OD pair (more trips, higher the variance), and (3) evenness 

of the distribution of the observed trips among various unique routes. To measure solely the nature 

of trip distribution without being influenced by the number of observed trips (N) or unique routes 

(K), this metric may be standardized as follows. For a given OD pair with N observed trips and K 

unique routes, the maximum possible value of variance of route usage is: N ∗ K ∗ (1 K)⁄ ∗

(1 − 1 K⁄ ) = N ∗ (1 − 1 K⁄ ), when all trips are evenly distributed among all unique routes. 
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Standardized variance of route usage is the ratio of the variance of usage to the maximum 

possible variance, defined as: 

∑ pk ∗ (1 − pk)K
1

(1 − 1/K)
   (3.3) 

The closer this metric is to its maximum possible value 1, the more evenly-distributed the 

observed trips are among various unique routes. For example, if there are 100 trips using two 

unique routes in an OD pair, the standardized variance of usage for that OD pair would be 1 if 50 

trips take the first route and the other 50 trips take the second route. The value of this metric would 

become 0.36 if 90 trips take the first route and the remaining 10 trips take the second route. 

3.4.2 Standardized Shannon Entropy of Route Usage  

Shannon entropy (Shannon, 2001) is a metric typically-used to measure the evenness of 

distribution of different entities among a given number of categories. Proposed in the field of 

information science, the concept of entropy has been applied widely by transportation researchers 

to quantify the degrees of geodiversity, etc., in a land use context (Brown et al., 2009; Li et al., 

2016; Yabuki et al., 2009). The Shannon entropy of usage of K unique routes between an OD pair 

is defined as ∑ pkln (pk)K
1 , where pk is the proportion of trips taking the kth unique route. The 

maximum value of the Shannon entropy of route usage is K ∗ (1 K⁄ ) ∗ ln(1 K⁄ ) = ln (1 K⁄ ) when 

all trips are equally distributed among the identified unique routes between an OD pair. To 

eliminate the effect of number of unique routes between an OD pair, the standardized Shannon 

entropy of route usage is computed as:  

∑ pkln (pk)K
1

ln(1 K⁄ )
   (3.4) 

The standardized Shannon entropy of route usage has the maximum possible value of 1 

when all trips are evenly distributed among all unique routes.  
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3.4.3 Illustrations of Route Dominance Metrics 

Figure 3.4 presents the distributions of the two route dominance metrics across OD pairs 

as well as their correlations with the number of unique routes. The increasing trends of these two 

metrics for OD pairs with higher number of unique routes suggest that trips were distributed more 

evenly when there are more options to travel between an OD pair. These trends are compatible 

between long-haul and short-haul datasets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Correlation of a) Standardized Variance of Route Usage and b) 

Standardized Shannon Entropy of Route Usage with the Number of Unique Routes 
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Figure 3.5 Correlation between Two Dominance Metrics 

 

Figure 3.5 demonstrates a strong linear relationship between the two diversity metrics for 

both datasets. Among the two metrics capturing similar degree of route dominance, the 

standardized Shannon entropy of usage frequency as the dependent variable in fractional response 

models discussed in Chapter 6. 

3.5 Illustration 

To summarize the application of the above diversity metrics, Figure 3.6 presents examples 

of observed unique routes (indicated as the bold red lines) between two different OD pairs 

observed in the data. The long-haul OD pair has 8 unique routes that are 62 miles to 82 miles long. 

Note that many of the 8 unique routes overlap quite a bit with each other. Such overlap is measured 

by the average commonality factor and average path size. 53 out of 65 trips observed between this 

OD pair used the first unique route, indicating the dominance of the first unique route. The short-

haul OD pair has 32 observed trips that are more evenly distributed among the different routes 

than those between the first OD pair. Such differences in dominance of route usage are measured 

by the standardized variance of usage and the standardized Shannon entropy of usage.   

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ta

n
d

ar
d

iz
ed

 e
n
tr

o
p

y
 o

f 
u
sa

g
e 

fr
eq

u
en

cy

Standardized variance of usage frequency

Long-haul (N=258)

Short-haul (N=505)

45-degree line



25 

 

Unique routes chosen by 66 trips for long-haul travel 

62 miles, 

53 trips with 

𝑇𝑇̅̅̅̅  of 91 

minutes 

75 miles, 

5 trips with 

𝑇𝑇̅̅̅̅  of 116 

minutes 

79 miles, 

2 trips with 

𝑇𝑇̅̅̅̅  of 127 

minutes 

80 miles, 

1 trip with 

𝑇𝑇̅̅̅̅  of 131 

minutes 

 81 miles, 

2 trips with 

𝑇𝑇̅̅̅̅  of 100 

minutes 

82 miles, 

1 trip with 

𝑇𝑇̅̅̅̅  of 103 

minutes 

 81 miles, 

1 trip with 

𝑇𝑇̅̅̅̅  of 106 

minutes 

84 miles, 

1 trip with 

𝑇𝑇̅̅̅̅  of 150 

minutes 

        

Unique routes chosen by 32 trips for short-haul travel 

7.7 miles, 10 trips 

with 𝑇𝑇̅̅̅̅  of 17 minutes 

8.1 miles, 8 trips with 

𝑇𝑇̅̅̅̅  of 18 minutes 

8.3 miles, 6 trips with 

𝑇𝑇̅̅̅̅  of 24 minutes 

 8.4 miles, 2 trips with 

𝑇𝑇̅̅̅̅  of 25 minutes 

    

8.6 miles, 2 trips with 

𝑇𝑇̅̅̅̅  of 15 minutes 

 8.8 miles, 1 trip with 

𝑇𝑇̅̅̅̅  of 22 minutes 

9.2 miles, 1 trip with 

𝑇𝑇̅̅̅̅  of 18 minutes 

 9.9 miles, 2 trips with 

𝑇𝑇̅̅̅̅  of 21 minutes 

    

Figure 3.6 Examples of Unique Routes 

for a Long-haul OD Pair and a Short-haul OD Pair 

𝑇𝑇̅̅̅̅  denotes the mean travel time of all trips taking the same unique route.  
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CHAPTER 4: MODELING METHODOLOGY 

 

4.1 Introduction 

This section explains the statistical model structures used to analyze the determinants of 

the following three of the six metrics developed in this thesis—number of unique routes between 

and OD pair, average path size of unique routes between an OD pair, and standardized Shannon 

entropy of route usage between an OD pair. 

4.2 Count Data Models for Number of Observed Unique Routes 

Negative binomial (NB) regression (Washington et al., 2010) is an appropriate choice to 

model count data given by the number of observed unique routes in this research. Typically, 

Poisson regression is preferred if the mean of the count process is equal to the variance. If there is 

a significant difference between the mean and the variance of the count process, the data are said 

to be over-dispersed, and NB regression is preferred. Current empirical data supported the use of 

NB regression over Poisson regression, because of over-dispersion in the data. 

In NB regression, the probability 𝑃(𝑦𝑖) of OD pair 𝑖 having 𝑦𝑖 number of unique routes is: 

𝑃(𝑦𝑖) =
𝛤(1

𝛼⁄ +𝑦𝑖)

𝛤(1
𝛼⁄ )𝑦𝑖!

(
1/𝛼

(1
𝛼⁄ )+𝜆𝑖

)
1/𝛼

(
𝑦𝑖

(1
𝛼⁄ )+𝜆𝑖

)
𝑦𝑖

   (4.1) 

where 𝛤(∙) is the gamma function, 𝜆𝑖 = 𝑒𝑥𝑝(𝛽𝑋𝑖 + 휀𝑖), 𝑋𝑖 is a vector of explanatory variables, 𝛽 

is a vector of parameters to be estimated, and 𝑒𝑥𝑝(휀𝑖) is a Gamma-distributed disturbance term 

with unit mean and variance given by the dispersion parameter 𝛼. The model parameters can be 

estimated using a maximum likelihood estimation technique.  
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Depending on the count process being modeled, the regression can be right, left, or two-

side truncated. To model the number of unique routes between an OD pair, count data models were 

left-truncated at 1, because any OD pair would have at least one unique route.  

4.3 Fractional Response Models for Average Path Size and Standardized Shannon Entropy 

of Route Usage 

It is worth noting that all diversity metrics proposed in this thesis, except the number of 

unique routes, ranged between 0 and 1. The fractional response model structure proposed by Papke 

and Wooldridge (1993) may be used to model such quantities whose values lie between 0 and 1. 

Before applying ordinary least squares regression, proportion data may be modeled by logit 

transformation of the dependent variable as: 

 𝑙𝑛 [𝑦𝑖 (1 − 𝑦𝑖)⁄ ] = 𝛽𝑋𝑖   (4.2) 

However, this transformation cannot be used when the dependent variable is at 0 or 1. This 

issue can be resolved with the fractional response model (Papke and Wooldridge, 1993) whose 

expected value of the dependent variable is 𝐸(𝑦𝑖|𝑥𝑖) = 𝐺(𝑥𝑖𝛽) where 𝐺(∙) is a known function 

with 0 < 𝐺(𝑧) < 1 ∀𝑧 ∈ ℝ. Two possible functional forms for 𝐺(𝑧) are (1) logistic function, 

𝐺(𝑧) = 𝑒𝑥𝑝 (𝑧) (1 + 𝑒𝑥𝑝 (𝑧)⁄ ) and (2) cumulative density function of a standard normal 

distribution. According to this model, the quasi likelihood of an OD pair with an observed value 

𝑦𝑖 is given by ℒ𝑖(𝛽) = 𝑦𝑖 ∗ 𝑙𝑜𝑔[𝐺(𝑥𝑖𝛽)] + (1 − 𝑦𝑖) ∗ 𝑙𝑜𝑔 [1 − 𝐺(𝑥𝑖𝛽)]. The parameter 

estimation is done using maximization of the quasi log-likelihood function. Note that since the 

expected value of the dependent variable modeled is always a fraction (ranging between zero and 

one), the expected value of the model prediction will also be a fraction.  
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CHAPTER 5: DESCRIPTIVE ANALYSIS 

 

5.1 Introduction 

This section provides a descriptive analysis of various metrics of diversity derived for both 

long-haul and short-haul datasets and the potential determinants of diversity.  

5.2 Diversity Metrics 

Table 5.1 summarizes the mean and standard deviation values of all diversity metrics 

calculated for the long-haul and short-haul datasets used in this thesis. There were 19 OD pairs in 

the long-haul data and 22 OD pairs in the short-haul data that had one observed unique route. 

Except for the number of unique routes metric, all other diversity metrics reported in the table were 

computed after excluding such OD pairs with a single unique route. 

Table 5.1 Descriptive Statistics of Diversity Metrics 

No. Diversity Metrics 
Long-haul Short-haul 

Average SD Average SD 

1 Number of unique routes 8.61 6.54 9.03 6.51 

2 Average commonality factor 0.69 0.17 0.68 0.18 

3 Average path size 0.28 0.12 0.29 0.14 

4 Non-overlapping index 0.26 0.13 0.32 0.15 

5 Standardized variance of usage 0.62 0.26 0.65 0.25 

6 Standardized Shannon entropy of usage 0.57 0.21 0.61 0.21 

 

From Table 5.1, a noteworthy pattern shows that the short-haul routes exhibit greater 

diversity than long-haul routes with higher average values of observed unique routes, non-

overlapping index, standardized variance of route usage, and standardized Shannon entropy of 

route usage. The standard deviations are also higher for short-haul data, suggesting a greater 

incidence of higher values for this data. In other words, short-haul routes are move diverse than 

long-haul routes from the standpoint of lower overlap as well as lower dominance in their usage. 
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Figure 5.1 presents the histograms of the number of unique routes extracted for both 

datasets. The short-haul dataset has higher degree of diversity shown by a higher percentage of 

OD pairs with more unique routes. There were at most 42 unique routes found for one short-haul 

OD pair and 40 unique routes found for one long-haul OD pair. 88% and 85% of OD pairs have 

less than 20 unique routes for long-haul and short-haul data, respectively. 

 
Figure 5.1 Number of Unique Routes Distribution 

 

Figures 5.2 to 5.4 present the histograms of the three route variability metrics – average 

commonality factor, non-overlapping index, and average path size – calculated for both datasets. 

Note that, in all these figures, the numbers of OD pairs were reduced to 258 and 505 for long-haul 

and short-haul data, respectively, after excluding 19 and 22 OD pairs, respectively, with a single 

unique route. The short-haul dataset has higher degree of route variability shown by a higher 

percentage of OD pairs taking values closer to 1 for all three metrics. About 82% of OD pairs for 

both datasets have an average commonality factor greater than 0.5, which means most unique 

routes overlap considerably with each other.  
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Figure 5.2 Average Commonality Factor Distribution 

 

 
Figure 5.3 Average Path Size Distribution 

 

 
Figure 5.4 Non-overlapping Index Distribution 
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Figures 5.5 and 5.6 present the histograms of the two route dominance metrics calculated 

for both datasets. The short-haul dataset has lower degree of dominance of route usage shown by 

a higher percentage of OD pairs taking values closer to 1. A value of 1 for the standardized variance 

of usage means that each unique route in an OD pair has the same number of trips. For example, 

for an OD pair with 100 trips and 10 taking unique routes, standardized variance of usage of that 

OD pair will take the value of 1, if there are 10 trips taking each unique route.  

 
Figure 5.5 Standardized Variance of Usage Distribution 

 

 
Figure 5.6 Standardized Shannon Entropy of Usage Distribution 
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5.3 Potential Determinants of Diversity 

To explore the correlates of diversity in route choice between various OD pairs, a variety 

of factors describing observed travel demand, OD locations, and network structure between the 

OD pairs were extracted. These explanatory variables are presented in Table 5.2. 

Table 5.2 Descriptive Statistics of Explanatory Variables for Route Diversity Analysis 

No. Potential Determinants of Diversity 
Long-haul Short-haul 

Average SD Average SD 

1 No. of trips observed for an OD pair 109.3 99.7 81.1 123.7 

2 No. of trucks observed for an OD pair 19.7 16.6 68.3 113.5 

3 OD airway distance (mi) 109.8 69.6 21.9 11.0 

4 

Travel time of trips taking most used 

route (min) 

SD 7.5 3.6 4.8 18.4 

5 Average 146.1 73.9 31.4 13.0 

6 95th percentile 158.5 77.4 35.9 14.3 

7 5th percentile 136.9 71.7 27.8 12.1 

8 Ratio of most used route length to airway OD distance  1.2 0.1 1.2 0.4 

9 

Employment density of OD TAZs (1000 

jobs/sq. mi.) 

All types 7.0 5.5 5.7 4.0 

10 Industrial 1.5 1.1 0.9 0.7 

11 Service 3.4 3.1 3.0 2.8 

12 Commercial 2.1 1.9 1.8 1.3 

13 Average area of OD TAZs (mi2) 2.2 2.8 2.3 3.4 

14 Indicator if both OD TAZs are urban  0.8 0.3 0.9 0.3 

15 
Average distance from centroid of all trip ends to each trip 

end (mi) 
0.4 0.5 0.8 1.0 

16 
Average distance from the TAZ centroid to major arterials 

(mi) 
6.0 3.5 4.7 3.2 

17 

Length of major arterials (mi) 

Long ellipse 331.8 411.8 27.1 27.9 

18 Short ellipse 274.2 386.1 15.7 17.5 

19 Ending buffers 29.0 23.6 8.8 10.0 

20 

Length of minor arterials (mi) 

Long ellipse 621.4 855.4 42.6 49.4 

21 Short ellipse 502.6 800.1 18.2 25.9 

22 Ending buffers 62.8 60.2 17.8 24.0 

23 

Length of collectors (mi) 

Long ellipse 1276.6 1561.8 110.5 114.3 

24 Short ellipse 1031.3 1446.2 48.7 62.2 

25 Ending buffers 137.9 96.0 48.1 56.7 

26 

Length of local roads (mi) 

Long ellipse 10155.1 14471.0 673.1 639.2 

27 Short ellipse 9867.2 11496.5 311.3 349.2 

28 Ending buffers 1212.1 768.9 259.8 279.2 

29 Toll roads (mi) Long ellipse 81.4 117.6 5.8 8.2 

30 

No. of rest stops 

Long ellipse 9.2 12.1 1.0 1.4 

31 Short ellipse 8.1 11.6 0.6 1.0 

32 Ending buffers 0.3 0.9 0.4 0.8 

33 

No. of interchanges 

Long ellipse 84.4 124.6 9.3 12.1 

34 Short ellipse 60.5 107.6 4.0 6.7 

35 Ending buffers 18.1 24.3 4.2 7.1 

36 

No. of traffic signals 

Long ellipse 728.6 1043.8 59.2 86.3 

37 Short ellipse 532.9 901.4 25.0 47.4 

38 Ending buffers 136.2 168.4 29.1 53.0 
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5.3.1 Trip Characteristics 

The first category of variables includes the number of trips observed for each OD pair and 

the number of trucks taking those trips (a measure of truck travel demand), spatial separation 

(straight-line distance or direct distance) between the OD locations, and travel conditions measured 

between the OD pair (particularly on the most used route). For the most used unique route, travel 

time variability and level of route circuity (defined as the ratio of route length to the direct OD 

distance) were measured.  

5.3.2 OD Location Characteristics 

Characteristics of origin and destination TAZs include land-use descriptors (employment 

densities, TAZ size, urban/rural classification) and spatial dispersion of freight activity centers 

(calculated as the average distance of all trip end centroid to each trip end location).  

5.3.3 Network Structure 

To explore the impact of network structure on the diversity of observed routes, two 

different areas of influence between OD pairs were hypothesized, as illustrated in Figure 2.3. In 

the first hypothesis, the diversity of route choice between an OD pair was provided by the entire 

road network inside an elliptical area of influence connecting that OD pair, referred to as the long 

ellipse (see illustration on left side in Figure 2.3). The long ellipse’s major axis was assumed to be 

the same distance and orientation of the straight line connecting the centroids of origin and 

destination TAZs. Its minor axis was set to be one-third of the major axis length. In the second 

hypothesis, the diversity of route choice between an OD pair was differentially impacted by two 

different areas of influence. The first area of influence was a circular area around the OD TAZ 

centroids, referred to as circular buffers. The buffer radii explored were 1, 2, and 5 miles for direct 

distances of 5–10, 10–20, and more than 20 miles, respectively. The second area of influence was 
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elliptically shaped, referred to as the short ellipse, with the major axis as the difference of straight-

line distance and radius of the circular buffers on each end (see illustration on right in Figure 5.1).  

 
Figure 5.7 Long Ellipse, Short Ellipse, and Circular Buffers 

 

Within these hypothesized areas of influence for each OD pair, densities of various road 

types (major arterials, minor arterials, collectors, and local roads) were computed to characterize 

the network structure between the OD pair. In addition, other facilities along the roadway, such as 

traffic signals, intersections, interchanges, truck rest stops, were counted within long and short 

ellipses and circular buffers.  
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CHAPTER 6: ESTIMATION RESULTS  

 

6.1 Introduction 

Statistical models were estimated separately for long-haul and short-haul datasets to 

analyze the determinants of diversity metrics, including number of unique routes, average path 

size, and standardized Shannon entropy. This section presents the empirical model results.  

6.2 NB Regression Model for Number of Unique Routes 

Table 6.1 presents the NB regression estimation results for the number of unique routes 

between an OD pair, separately for long-haul and short-haul travel segments. Both model results 

indicate that OD pairs with a higher number of observed trucks are likely to have more unique 

routes. This was an expected result because more trucks traveling between an OD pair may lead 

to greater diversity in route choice due to heterogeneity in preferences of truck drivers, operators, 

and the businesses they serve. Similarly, OD pairs with more observed trips had more unique 

routes, in both long- and short-haul travel segments (specifically, when there are more than 150 

trips in the short-haul segment). More trips represent a greater demand for travel and may lead to 

greater diversity in route choices as well.  

The next variable in the long-haul model, indicating high travel time variability (when the 

difference between 95th and 5th percentile travel time on the most used route is greater than 15 

minutes), suggests more unique routes since the variability in travel conditions or low reliability 

in travel time causes travelers to prefer alternative routes. Furthermore, in the long-haul model, 

deviation of the most used route from the straight-line OD distance (measured as the ratio of the 

most used route length to straight-line distance) had a positive influence on the number of observed 
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unique routes. When the most-used route is more circuitous, more available routes in the network 

may exist (or travelers may look for more alternatives), which decreases trucker preference for any 

particular route. Interestingly, neither travel time variability nor route circuity had a significant 

influence in the short-haul segment.  

In the context of OD location characteristics, OD pairs with larger OD TAZs were likely 

to have lower number of unique routes in both travel segments, perhaps because those TAZs were 

typically in areas with sparse network, population, and employment density and, therefore, had 

fewer network options to travel. For the same reason, both OD locations being in an urban zone is 

associated with a higher number of unique routes in the short-haul model. In the context of direct 

distance, OD pairs within 200 miles separation are likely to have more unique routes than those 

that are farther from each other. In the short-haul segment, the diversity of route choice appears to 

increase as spatial separation increases from small (<10 miles) to moderate (10–20 miles) and then 

decreases in the highest length segment. This may be because the network does not offer too many 

route options both for short-length (<10 miles) or long-length (>40 miles) travel. In the short-haul 

model, employment densities at the OD TAZs were positively correlated with the number of 

unique routes, perhaps because a greater employment density is a surrogate for the heterogeneity 

of businesses served by freight trucks, which leads to a greater diversity in route choice.  

Similarly, the average distance between the TAZ-centroid of the trip ends and each trip’s 

end coordinates (a measure of spatial dispersion of the freight activity generators in the OD TAZs) 

is positively associated with the number of unique routes observed between an OD pair (only in 

the short-haul model). The next variable in the short-haul model, average distance from TAZ-

centroids to the nearest major arterial, is a surrogate for how quickly the trucks can reach a major 

arterial, which is negatively correlated with the number of observed unique routes.  
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Table 6.1 Estimation Results of Truncated Negative Binomial Regression of Number of 

Unique Routes 

Variable Description 
Long-haul Data Short-haul Data 

Coefficient t-stat Coefficient t-stat 

Trip Characteristics     

Logarithm of number of truck IDs 0.293 5.53 0.358 10.93 

Logarithm of number of trips 0.379 4.97 -- -- 

Indicator (1 if more than 150 trips, 0 otherwise) -- -- 0.159 1.80 

Travel time variability on most used route indicator (1 if 

difference of 95th and 5th percentile of travel time greater than 

15 minutes, 0 otherwise) 

0.172 1.86 -- -- 

Ratio of length of most used route to direct OD distance 

(mi/mi) 
1.486 3.51 -- -- 

OD Characteristics     

Average area of OD TAZs (mi2) -0.040 -1.85 -0.036 -3.85 

Indicator if both OD TAZs are urban zone -- -- 0.277 3.83 

Indicator if direct OD distance indicator between 50 and 200 

miles 
0.381 3.59 N/A N/A 

Indicator if direct OD distance between 10 and 20 miles N/A N/A 0.128 2.84 

Indicator if direct OD more than 40 miles N/A N/A -0.671 -6.52 

Industrial employment density (1000 jobs/mile2) -- -- 0.215 6.41 

Commercial employment density (1000 jobs/mile2) -- -- 0.059 2.95 

Average distance from centroid of all trip ends to each trip end 

(mi) 
-- -- 0.283 12.54 

Average distance from TAZ centroids to nearest major or 

minor arterials (mi) 
-- -- 0.042 4.87 

Network Structure     

Ratio of toll roads to major arterials in long ellipse (mi/mi) 1.283 3.09 -- -- 

Density of major and minor arterials in 5-mile buffers around 

both endings (mi/mi2) 
-0.583 -2.87 -- -- 

Density of collectors in 5-mile buffers around both endings 

(mi/mi2) 
0.340 2.29 -- -- 

Density of major, minor arterials and collectors in short ellipse 

(mi/mi2) 
0.231 2.12 -- -- 

Density of minor arterials and collectors in the long ellipse 

(mi/mi2) 
-- -- 0.108 2.70 

Proportion of major arterials to total length of major, minor 

arterials and collectors in long ellipse (miles/mile) 
-- -- -0.534 -2.41 

Proportion of minor arterials and collectors to total length of 

major and minor arterials and collectors in short ellipse 

(mi/mi) 

1.375 2.24 -- -- 

Constant -3.997 -5.06 -0.254 -1.41 

Dispersion parameter 0.235 5.78 0.075 5.80 

Number of observations (OD pairs) 277 527 

Log likelihood at convergence -782.90 -1372.45 

Log likelihood for constant-only model -842.92 -1617.90 

Adjusted ρ2 with respect to constant-only model 0.056 0.141 

 

For variables that have significant influence in one model but not in other, “--” appears in 

place of parameter estimate and t-stat for that variable in latter model. “N/A” is used when variable 

not applicable to specific model. 
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In the context of network characteristics, long-haul OD pairs with a higher ratio of toll 

roads to major arterials captured in the long ellipse are likely to have more unique routes, because 

truck operators might look for alternative routes to avoid tolls. However, this variable is 

insignificant in the short-haul model mostly because the study region for the short-haul segment 

does not have many toll roads. In the long-haul model, OD locations with a higher density of major 

and minor arterials in circular buffers around trip ends likely are associated with a lower number 

of unique routes, whereas the OD locations with a higher density of collectors likely are associated 

with more unique routes. This may be because access to more major and minor arterials at the OD 

locations reduces the need to search for alternative routes. On the other hand, OD pairs with a 

higher density of major and minor arterials and collectors in the short ellipse are likely to have 

more unique routes, probably because of an increased number of route options.  

For similar reasons, OD pairs with a greater proportion of minor arterials and collectors 

(with respect to major and minor arterials and collectors) in the short ellipse are likely to have a 

greater number of observed unique routes in the long-haul model. In the short-haul model, whereas 

the density of the minor arterials and collectors in the long ellipse has a positive influence on the 

number of observed unique routes, the influence of the proportion of major arterials (with respect 

to major, minor arterials and collectors) is negative. All these results highlight subtle but notable 

differences in the influence of network structure on the diversity of truck route choice between 

long-haul and short-haul travel segments.  

Overall, modeling results were consistent between two datasets with a better overall fit for 

the short-haul model.  
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6.3 Fractional Response Models for Average Path Size  

Table 6.2 presents the fractional response model estimation results for average path size 

estimated for OD pairs with at least two observed unique routes. OD pairs with only one unique 

route were removed because their average path size always takes a deterministic value of 1.  

Table 6.2 Estimation Results of Fractional Response Models for Average Path Size 

Variables in Average Path Size Model 
Long-haul Data Short-haul Data 

Coefficient t-stat Coefficient t-stat 

Number of unique routes -0.068 -9.66 -0.056 -9.74 

Proportion of trips on the most used route 0.534 3.72 0.705 6.25 

Direct OD distance (mi) -- -- -0.012 -5.71 

Direct OD distance indicator (1 if more than 200 

miles, 0 otherwise) 
-0.175 -1.95 -- -- 

Constant -0.665 -4.73 -0.539 -4.70 

Number of observations (OD pairs) 258 505 

Log pseudo likelihood at convergence -101.08 -202.11 

Log pseudo likelihood for constant-only model -106.37 -211.61 

Rho-square with respect to constant-only model 0.050 0.045 

 

Since the average path size metric measures the compounded correlations between unique 

routes through the degree of overlapping and usage frequency of a portion of each route, only a 

few explanatory variables were found to be statistically significantly correlated with the metric. 

Both models’ parameter estimates exhibit consistent impact on the increase or decrease of average 

path size. As expected, OD pairs with a higher number of observed unique routes are likely to have 

lower average path size (i.e., greater overlap) in both models. OD pairs with a higher proportion 

of trips on the most used route are likely to have higher average path size (i.e., lower overlap) in 

both models. The presence of a dominant route may imply the presence of other longer routes that 

do not overlap much and are less preferable. A greater spatial separation of OD pairs is associated 

with a smaller value of path size (i.e., greater overlap) of the different unique routes in both models; 

perhaps because an increase in spatial separation may reduce the number of travel routes offered 

by the network. The negative constant in the model suggests that the average effect of unobserved 

factors on path size is likely to make the average path size to decrease toward zero, ceteris paribus. 
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6.4 Fractional Response Models for Standardized Shannon Entropy of Usage 

Table 6.3 presents the fractional response model estimation results for standardized 

Shannon entropy of usage, estimated for OD pairs with at least two observed unique routes.  

Table 6.3 Estimation Results of Fractional Response Models for  

Standardized Shannon Entropy of Usage 
Variables in Standardized  

Shannon Entropy Model 

Long-haul Data Short-haul Data 

Coefficient t-stat Coefficient t-stat 

Number of unique routes 0.059 5.76 0.052 6.37 

Number of trips -0.003 -4.83 -0.002 -3.74 

Average path size -1.345 -1.78 -1.667 -4.31 

Average distance from centroid of all trip ends to each trip 

end (mi) 
-- -- 0.255 4.60 

Constant 0.498 1.81 0.462 2.80 

Number of observations (OD pairs) 258 505 

Log pseudo likelihood at convergence -119.19 -224.05 

Log pseudo likelihood for constant-only model -126.39 -241.98 

Rho-square with respect to constant-only model 0.057 0.074 

 

Similar to the lack of statistically significant explanatory variables, the fractional response 

models of the standardized Shannon entropy of usage frequency metric were mainly explained the 

number of trips and unique routes. As expected when modeling standardized Shannon entropy, 

OD pairs with a higher number of observed unique routes are likely to have a higher Shannon 

entropy (i.e., more even distribution of trips among unique routes) in both models. OD pairs with 

a higher number of observed trips are likely to have a more even usage of the routes in both models. 

OD pairs with a higher average path size (or lower overlap) among unique routes demonstrate a 

more uneven usage of different routes in both models. Such OD pairs with less overlapping routes 

are likely to have one or few dominant routes that are largely preferred over other routes. In the 

short-haul model, OD pairs with a greater average distance from the centroid of the trip end TAZs 

to all trip ends (i.e., greater spatial dispersion of freight activity generators) are likely to be 

associated with a more even distribution of trips among different unique routes. This suggests the 

influence of heterogeneity or spatial dispersion in trip ends on the heterogeneity of preferences for 

truck routes.   



41 

 

 

 

 

 

 

CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH 

 

7.1 Summary of Research 

This thesis presents a comprehensive exploratory analysis of truck route choice diversity 

in Florida for both long-haul and short-haul truck travel segments. First, six metrics were 

developed to measure three dimensions of diversity in truck routes between any given OD pair, as 

identified below:  

1. The number of different routes traveled by trucks 

2. The extent of overlap (or lack thereof) among the routes 

i. Average commonality factor 

ii. Average path size 

iii. Non-overlapping index 

3. The evenness (or, otherwise, the dominance) in usage of different routes  

iv. Standardized variance of route usage 

v. Standardized Shannon entropy of route usage 

The above six metrics together provide a complete picture of the diversity in truck route choice 

between an OD pair. Using these metrics, the thesis conducted a detailed analysis of the the route 

diversity analysis as below:  

1. Computed the diversity metrics for: (a) 277 long-haul OD pairs comprising 30,623 routes 

longer than 50 miles in Florida, and (b) 527 short-haul OD pairs comprising 42,884 routes 

between 5–50 miles long in the Tampa Bay region, 
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2. Performed descriptive analysis on the distribution of diversity metrics and their 

correlations with each other, 

3. Compiled an extensive set of variables characterizing truck travel characteristics, OD 

location characteristics, and network structure characteristics, and 

4. Estimated econometric models to understand the determinants of truck route diversity. 

Specifically, negative binomial regression models were estimated to explore the influence 

of various factors on the number of unique routes between OD pairs. Fractional response 

models were estimated to explore the determinants of average path size (route overlap) and 

standardized Shannon entropy (evenness) of route usage between OD pairs. And explored 

the differences in the influence of various factors on route diversity between short-haul and 

long-haul OD pairs. 

7.2 Findings and Conclusions of Research 

The analysis suggests that short-haul truck travel exhibits greater diversity in route choice 

than long-haul travel, in terms of number of unique routes observed, the extent of non-overlap 

between unique routes, as well the evenness of usage of different unique routes. Within the long-

haul segment, OD pairs farther than 200 miles from each other exhibit lower diversity than those 

that are closer. Among the short-haul OD pairs, short distance (<10 miles) travel and long-distance 

travel (>40 miles) exhibit lower diversity than medium distance travel. OD pairs in urban zones 

are associated with a greater diversity in route choice, because urban areas offer wider network 

options for route choice. OD pairs with a greater number of trips and/or trucks observed (i.e., 

greater demand for travel) are associated with a higher number of unique routes. OD pairs with 

greater variability in travel conditions (travel time) and those with routes that deviate more from a 

straight-line have more diverse traveled routes. In addition, the network structure variables have a 
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considerable influence on the diversity of truck route choices. Another important finding is that 

the determinants and their extent of influence differs between short-haul and long-haul travel 

segments. For example, OD TAZ land-use (employment density and diversity of freight activity 

locations) has a significant influence on route choice diversity only in the short-haul segment. 

Furthermore, network structure variables have differential impacts on route diversity between the 

two segments. Finally, OD pairs with a higher number of observed unique routes have greater 

overlap (i.e., lower average path size) and lower dominance of route usage, whereas OD pairs with 

less overlapping routes exhibit greater dominance of usage. 

The findings from this study can be used for improving the algorithms used in the literature 

for generating choice sets for truck route choice modeling; by customizing the algorithms based 

on the truck travel demand, OD location, and network structure characteristics found to be 

influential in this analysis. Specifically, the count models of number of unique routes can 

potentially be incorporated into route choice set generation algorithms to generate route choice 

alternatives for subsequent route choice analysis. 

An enhanced understanding of truck route choice diversity observed in the field can also 

help improve truck routing policies and inform routing decisions during emergency situations. For 

example, as OD pairs with only one unique route tend to be more vulnerable in the event of 

roadway disruption, transportation planners can focus on these OD pairs to have a proactive plan 

for emergency routing options as well as better maintenance of critical road segments. 

Furthermore, as OD pairs with high average commonality factor and low number of unique routes 

indicate higher degree of route overlap, transportation planners can focus on these OD pairs to 

identify bottlenecks for both mitigating congestion as well as improving emergency response. Of 
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course, OD pairs with high travel demand but served by such critical links can potentially be 

considered for future roadway expansion to provide additional route options in the network. 

7.3 Opportunities for Future Research  

The current analysis can be complemented by conducting a survey of truck drivers and 

trucking companies to better understand the reasons behind truckers’ variation in their chosen 

routes to travel between an OD pair. In addition, it is a fruitful avenue to examine roadway 

characteristics that might constrain trucks’ travel route options, such as weight limit, turning radii, 

and vertical clearance. Further, it is of interest to explore aggregation units for trip ends other than 

TAZs to assess if the overall findings depend on the aggregation unit for trip ends. Finally, the 

diversity metrics and analysis methods used in this study can potentially be applied to understand 

route choice diversity for different travel markets, especially for commuting trips.   
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