
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

June 2018

Expediting the Consolidation of Clayey Soils
Utilizing Microwaves
Thilini Jayatissa
University of South Florida, thilini.jay157@gmail.com

Follow this and additional works at: https://scholarcommons.usf.edu/etd

Part of the Other Civil and Environmental Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Scholar Commons Citation
Jayatissa, Thilini, "Expediting the Consolidation of Clayey Soils Utilizing Microwaves" (2018). Graduate Theses and Dissertations.
https://scholarcommons.usf.edu/etd/7310

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F7310&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F7310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F7310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F7310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F7310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F7310&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/257?utm_source=scholarcommons.usf.edu%2Fetd%2F7310&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


 

 

 
 
 
 
 

Expediting the Consolidation of Clayey Soils Utilizing Microwaves 
 
 
 

by 
 
 
 

Thilini Jayatissa 
 
 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of 

Master of Science in Civil Engineering 
Department of Civil and Environment Engineering 

College of Engineering 
University of South Florida 

 
 
 

Major Professor: M. Gunaratne, Ph.D. 
M. Celestin, Ph.D. 

A.Tejada-Martinez, Ph.D. 
 
 

Date of Approval: 
June 19, 2018 

 
 
 

Keywords: Settlement, Thermal, Irradiation, Hydaulic Conductivity, Kaolin 
 

Copyright © 2018, Thilini Jayatissa 
 
 
 



 

 

DEDICATION 

 
 

I dedicate this work to my family and friends for their relentless support and           

encouragement toward my educational accomplishments. 

 

 

 

  



 

 

ACKNOWLEDGMENTS 

 
 

I am grateful to my major professor, Dr. M. Gunaratne, for giving me the opportunity to 

work on this project. I am very appreciative for his support throughout this journey. I also 

appreciate the numerous support and encouragement I received from the research engineers at the 

College of Engineering, Dr. M. Celestin and Mr. Mike Konrad. My special thanks is extended to 

Dr. Gray Mullins for his support in practical implementations. I thank Mr. Chuck McGee at the 

College of Arts, ceramics department for sharing his knowledge of practical experimentation. I am 

thankful to all my colleagues at the Department of Civil Engineering for their support. 

 

 

 
 

 

 

 

 

 

 



i 

 

 

 

TABLE OF CONTENTS 

LIST OF TABLES ......................................................................................................................... iii 

LIST OF FIGURES ....................................................................................................................... iv 

ABSTRACT ................................................................................................................................... vi 

CHAPTER 1: INTRODUCTION ................................................................................................... 1 
1.1 Effect of Temperature on Rate of Settlement ............................................................... 1 

1.1.1 Increase in Hydraulic Conductivity ............................................................... 1 
1.1.2 Generation of Excess Pore Water Pressure .................................................... 1 

1.2 EM Irradiation of Soils ................................................................................................. 2 
1.2.1 Heating Mechanism ....................................................................................... 3 
1.2.2 Effects of Soil Moisture on Temperature Variation ...................................... 4 

CHAPTER 2: NUMERICAL MODEL .......................................................................................... 5 
2.1 Principles of MW Penetration in Soils.......................................................................... 5 
2.2 Governing Equations of Water and Heat Flow ............................................................. 6 

2.2.1 Heat Transfer Equation .................................................................................. 7 
2.2.2 Equation of Water Flow ................................................................................. 7 
2.2.3 Pore Pressure and Porosity Relation .............................................................. 8 
2.2.4 Boundary Conditions ..................................................................................... 8 
2.2.5 Finite Difference Approximations ................................................................. 9 

2.2.5.1 Finite Difference Form of the Heat Transfer Equation ................... 9 
2.2.5.2 Finite Difference Form of the Flow Equation............................... 10 
2.2.5.3 Finite Difference Form of the Porosity Equation ......................... 11 

2.2.6 Computer Coding ......................................................................................... 12 
2.2.6.1 Soil and MW Parameters .............................................................. 14 

CHAPTER 3: EXPERIMENTAL SETUP ................................................................................... 15 
3.1 Preparation of the Soil Sample ................................................................................... 15 
3.2 Frequency Selection of the Microwaves ..................................................................... 16 
3.3 Experiment Layout...................................................................................................... 17 

3.3.1 Fabrication of the Faraday Cage .................................................................. 18 
3.4 Experimental Procedure .............................................................................................. 19 

3.4.1 Control Experiment (Test 1) ........................................................................ 19 
3.4.2 Comparison Experiment .............................................................................. 21 

3.4.2.1 Irradiated Sample (Test 2.1) ......................................................... 21 
            3.4.2.2 Non-irradiated Sample (Test 2.2) ................................................. 24 



ii 

 

3.5 Measurement of Rate of Consolidation ...................................................................... 24 

CHAPTER 4: RESULTS AND DISCUSSION............................................................................ 27 
4.1 Experimental Results of Test 1 ................................................................................... 27 
4.2 Verification of the Numerical Model and the Computer Program ............................. 28 

4.2.1 Determination of Unknown Coefficients ..................................................... 28 
4.3 Computational Results ................................................................................................ 30 
4.4 Parametric Study ......................................................................................................... 33 
4.5 Experimental Results of Heated/Non-heated Samples (Test 2.1 and Test 2.2) .......... 35 

4.5.1 Variation of Vertical Height Measurements ................................................ 35 

CHAPTER 5: CONCLUSION ..................................................................................................... 40 

REFERENCES ............................................................................................................................. 41 

APPENDIX A: MATLAB CODE ................................................................................................ 42 

APPENDIX B: SETTLEMENT COMPUTATION ..................................................................... 50 

 



iii 

 

LIST OF TABLES 

 
Table 2.1 Soil and MW parameters .............................................................................................. 14 

Table B.1 Measured height of 3 marked locations of heated sample..............................................50 

Table B.2 Area of pore pressure curve calculations of heated sample.............................................50 

 

 

  



iv 

 

LIST OF FIGURES 

 

Figure 2.1   Finite element at a distance r from irradiation source considered for numerical   
model ........................................................................................................................... 6 

Figure 2.2   Grid point definition in the radial domain of the sample .......................................... 12 

Figure 2.3   Flow chart for numerical model ................................................................................ 13 

Figure 3.1   Mixing of kaolin and sand to make the clay mix ...................................................... 15 

Figure 3.2   Packing of clay mix into the plastic drum ................................................................. 16 

Figure 3.3   Schematic layout of experimental setup .................................................................... 17 

Figure 3.4   (a) Faraday cage and (b) grounding rod .................................................................... 18 

Figure 3.5   Plastic bucket (a) lined with drainage cloth and (b) filled with 9.4inch of         
saturated clay ............................................................................................................. 19 

Figure 3.6   (a) Sample preparation with polythene barrier with (b) wooden disk and antenna         
inserted in place ......................................................................................................... 20 

Figure 3.7   (a) Thermometers inserted into the clay and (b) radial arrangment of         
thermometers ............................................................................................................. 20 

Figure 3.8   (a) Non-heated sample and (b) MW irradiated (heated) sample enclosed in a      
faraday cage ............................................................................................................... 21 

Figure 3.9   (a) Sample preparation with polythene barrier and (b) wooden disk, antenna and      
thermometer in place ................................................................................................. 22 

Figure 3.10 (a) Insulated sample and (b) sample with the tube inserted ...................................... 22 

Figure 3.11 Loaded sample enclosed in the faradey cage ............................................................ 23 

Figure 3.12 (a) Sample with inserted PVC pipe and (b) loaded sample ....................................... 24 

Figure 3.13 (a) Laser distance sensor mounted glass plate (b) corresponding target points          
on the sample ............................................................................................................. 25 



v 

 

Figure 3.14 (a) Laser sensor positioned for measurement and (b) close-up view of         
positioned sensor ....................................................................................................... 26 

Figure 4.1   Variation of temperature of nodes R1-R5 with time ................................................. 27 

Figure 4.2  Variation of 𝜀𝜀′ and 𝜀𝜀′′  with temperature for E0=603 V/m ........................................ 29 

Figure 4.3  Numerical temperature variations vs. experimental data .......................................... 29 

Figure 4.4  The variation of (a) pore pressure and (b) temperature of node 21 with time ........... 31 

Figure 4.5  Analytical model predictions of the variation of temperature, pore pressure and 
porosity for times (a) 4hr, (b) 6hr and (c) 8hr ............................................................ 32 

Figure 4.6  Radial variation of temperature for varying electric field strengths at                     
time = 5.5hrs. ............................................................................................................. 33 

Figure 4.7   Radial variation of pore pressure with time for different hydraulic conductivity 
values ......................................................................................................................... 34 

Figure 4.8  Vertical height variation of 3 marked locations of non-heated sample ..................... 35 

Figure 4.9  Vertical height variation of 3 marked locations of heated sample ............................ 36 

Figure 4.10 Percentage variation of a representative volume with time....................................... 36 

Figure 4.11 Modified percentage variation in volume of the two samples plotted against          
time ............................................................................................................................ 37 

Figure 4.12 Variation of the percentage change of an area representative of the dissipated       
pore pressure with and without heating as predicted analytically ............................. 39 

 



vi 

 

ABSTRACT 

 

Post-construction settlement has been an issue in the field of construction due to the 

excessive time taken for the dissipation of pore water pressure. This is significant for construction 

carried out on clayey soils primarily due to the low permeability of clayey soils. Therefore, 

attention has been directed at finding means of increasing the rate of pre-consolidation. Recent 

research has focused on the effects of temperature on consolidation. It has been shown that elevated 

temperature increases the hydraulic conductivity of pore water due to both the reduction of 

viscosity and differential volumetric expansion of soil and water. This results in an increase in the 

rate of pore pressure dissipation. In addition, it has been proven that compressibility properties 

also improved at elevated temperature and subsequently, the rate of consolidation of the clay.   

This research aimed to study the feasibility of utilizing microwaves to expedite the 

aforementioned temperature elevation and the subsequent consolidation of a clay soil. A numerical 

model has been formulated using finite difference methods to theoretically predict the temperature 

rise and pore pressure dissipation. The results of the numerical model proved to be in general 

agreement with the experimental data. The feasibility of utilizing microwaves to raise the 

temperature of the soil sample was also evaluated practically by conducting bench-scale 

experiments. The use of microwave irradiation to rapidly increase the temperature of saturated 

clay was quantified by this research and was proven to be more efficient than currently used soil 

heating   methodologies.  Comparable   consolidation   experiments  showed   that   increasing  the 
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temperature of the sample using microwave heating resulted in a higher rate of settlement when 

compared with the settlement of the non-heated sample while the ultimate percentage settlement 

of both were equal. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Effect of Temperature on Rate of Settlement  

1.1.1 Increase in Hydraulic Conductivity 

Hydraulic conductivity refers to the ease with which water can flow through porous media 

and can be expressed as in equation (1),  

 𝑘𝑘 = 𝐾𝐾
𝛾𝛾
µ

 (1) 

where, 𝑘𝑘 is the hydraulic conductivity, 𝐾𝐾 is the intrinsic hydraulic conductivity (or permeability), 

𝛾𝛾 is the unit weight of water and 𝜇𝜇 is the viscosity of water.  

Research by Abuel-Naga, Bergado, & Chaiprakaikeow (2006) indicates an increase in 

hydraulic conductivity with increasing temperature. This corresponds to a decrease in viscosity of 

water 

 
1.1.2 Generation of Excess Pore Water Pressure 

Clay consolidation process is driven entirely by an applied surcharge. The increase in 

overburden stress will generate an excess pore pressure. However, pore pressure can be further 

increased by increasing the temperature of the clay. This phenomenon can be attributed to the 

difference  of  the  coefficient  thermal  expansion (CTE)  between  clay  skeleton  and  water.  In 
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comparison with the clay skeleton, water has a significantly higher CTE. Therefore, a clay sample, 

when heated, would generate excess pore water pressure due to differential volumetric expansion. 

For a dry soil skeleton, the relevant analytical representation is as follows. Considering the 

initial volume of voids (𝑉𝑉𝑉𝑉) , thermal expansion coefficient of the soil skeleton (𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), 

temperature increase (𝛥𝛥𝛥𝛥), the final volume of voids (𝑉𝑉𝑉𝑉) can be written as: 

 𝑉𝑉𝑣𝑣 = 𝑉𝑉𝑜𝑜(1 + 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)∆𝑇𝑇 (2) 

For a saturated sample, the initial volume of water can be equated to 𝑉𝑉𝑜𝑜. Then the final 

volume of water 𝑉𝑉𝑤𝑤 can be written as, 

 𝑉𝑉𝑤𝑤 = 𝑉𝑉𝑜𝑜(1 + 𝛼𝛼𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)∆𝑇𝑇 (3) 

Therefore, the differential volumetric expansion can be written as: 

 ∆𝑉𝑉 = 𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉(𝛼𝛼𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)∆𝑇𝑇 (4) 

However, the thermal expansion of water is far greater than that of the soil skeleton. 

Therefore, the differential volumetric expansion, and the subsequent pore pressure increase can be 

attributed mostly to the expansion of pore water. Hence, Eq (3) can be simplified to Eq (4). 

 ∆𝑉𝑉 = 𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉.𝛼𝛼𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 .∆𝑇𝑇 (5) 

 
1.2 EM Irradiation of Soils 

In recent years, there has been a shift of interest toward utilizing electro-magnetic (EM) 

waves to increase the temperature of soil. This interest is fueled by the ability of EM waves, 

microwaves (MW) in particular, which operate on principles of radiation, to rapidly heat the soil 

to higher temperatures. Current research has been more or less limited to utilizing MW irradiation 
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for soil remediation. Falciglia et al. in 2015 conducted lab scale experiments on diesel 

contaminated soils using 2.45GHz microwaves with an incident electric field of 1000 V/m for a 

period of 6 days and achieved temperatures higher than 180 oC. Thus, in pre-consolidation of clay, 

utilization of microwaves could prove to be a more effective heating alternative to conventional 

injection wells. 

However, a significant limitation of using MW irradiation would be its high attenuation. 

The higher the frequency of incident EM wave the higher the attenuation. Falciglia (2016), used 

2.56 GHz MW for soil decontamination and observed negligible thermal effects past a maximum 

distance of 0.2m. However, this limitation maybe overridden as the soil dielectric properties are 

temperature dependent. The increase in temperature was seen to change the dielectric properties 

and consequently increase the depth of penetration of the waves which resulted in a progressive 

increase in the electric field penetration into soil [7]. However, there is limited knowledge available 

in the literature on the variation of above parameters. 

 
1.2.1 Heating Mechanism 

 The heating of water molecules under an applied EM field can be attributed to the polarity 

of water molecules. A high frequency alternating electric field applied on a dipolar molecule 

causes molecular dipole rotation whereby polar molecules continuously attempt to align 

themselves in an electric field. This leads to a dissipation of kinetic energy which is reflected by 

an increase in temperature. This phenomenon could be directly applied to the heating of saturated 

soil. During irradiation, the dipole pore water would react to the incident electric field thus heating 

the bulk soil. 
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1.2.2 Effects of Soil Moisture on Temperature Variation 

The temperature variation of soil is greatly dependent upon the soil moisture content. 

Hallikainen et al. (1985) observed that dielectric constants of soil were roughly proportional to the 

water content of soil and decrease with electromagnetic wave frequency. Robinson et al (2012) 

observed that dielectric constant and loss factor of soil, and subsequently the absorption MW 

energy, were relatively high in soils at temperatures less than 100 oC. It was observed that above 

100 oC, due to the loss of free water by evaporation, the soils became much less absorbent.  
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CHAPTER 2: NUMERICAL MODEL 

 

2.1 Principles of MW Penetration in Soils 

During soil irradiation, MW energy is partially absorbed and converted to heat in clay 

according to the law of Lambert and Beer. (Barba et al., 2012) This generates an exponential 

decrease of the local electric field (𝐸𝐸) with the distance from the MW source (𝑑𝑑) as Eq. (6), 

 
𝐸𝐸 = 𝐸𝐸0. 𝑒𝑒

− 𝑑𝑑
𝐷𝐷𝑝𝑝 

(6) 

where 𝐸𝐸0- incident electric field (V/m) and 𝐷𝐷𝑝𝑝- penetration depth of MW. The penetration depth 

of MW for loss dielectric materials such as clay, can be calculated using Eq.(7),  

 
𝐷𝐷𝑝𝑝 =

𝜆𝜆0
2𝜋𝜋

.
√𝜀𝜀′
𝜀𝜀′′

 
(7) 

where 𝜆𝜆0 is the wavelength of the irradiation (m) whereas 𝜀𝜀′ and 𝜀𝜀′ are the real and imaginary part 

of the complex dielectric permittivity of the clay respectively. The electric power dissipated into a 

unit volume of clay is quantified by Eq. (8) which is derived using the Maxwell’s equations 

(Metaxas and Meredith, 1993),  

 
𝑄̇𝑄 =

1
2
𝜔𝜔𝜀𝜀0𝜀𝜀′′|𝐸𝐸2𝑚𝑚𝑚𝑚𝑚𝑚|  = 𝜔𝜔𝜀𝜀0𝜀𝜀′′|𝐸𝐸2|  

(8) 
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where 𝜔𝜔 is the angular frequency, 𝜀𝜀0 is the permittivity of free space (8.85 x 10-12 F/m), 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 is 

the electromagnetic field peak value (V/m) and 𝐸𝐸 is electromagnetic field effective value (V/m). 

 
2.2 Governing Equations of Water and Heat Flow 

Assuming that the source of MW irradiation (antenna) is installed at the center of the 

cylindrical sample and spans the entire depth of clay sample, the model can be considered 

axisymmetric about the vertical axis of the antenna (Fig. 2.1). The flow towards the top and bottom 

surfaces of the clay sample are restricted with the use of impervious barriers. Additionally, 

assuming a uniform irradiation zone, which results in a uniform temperature distribution in the 

vertical direction, the model can be simplified to a one-dimensional radial problem. The numerical 

models are derived for a finite element at a radial distance 𝑟𝑟 from the heat source.  

 

Figure 2.1 Finite element at a distance r from irradiation source considered                                 
for numerical model 
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2.2.1 Heat Transfer Equation 

The rate of heat absorbed into a radial element at a distance r from the heat source will be 

the summation of the rates of heat conducted into the element and that generated by the applied 

EM field - 𝑄̇𝑄. This is expressed in Eq. (9),  

 
𝑛𝑛𝜌𝜌𝑤𝑤𝑐𝑐𝑤𝑤 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝜌𝜌𝑠𝑠𝑐𝑐𝑠𝑠(1 − 𝑛𝑛) �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = �

𝑘𝑘
𝑟𝑟
� ∇2𝑇𝑇 + 𝑄̇𝑄 

(9) 

where 𝜌𝜌𝑤𝑤 ,𝜌𝜌𝑠𝑠, 𝑐𝑐𝑤𝑤, 𝑐𝑐𝑠𝑠 are the density and specific heat capacity of water and soil (kaolin clay) 

respectively and 𝑛𝑛 and 𝑘𝑘 are the porosity and thermal conductivity of the clay respectively. Using 

Eq. (8) this can be rewritten as, 

 
(𝑛𝑛𝜌𝜌𝑤𝑤𝑐𝑐𝑤𝑤 + 𝜌𝜌𝑠𝑠𝑐𝑐𝑠𝑠(1 − 𝑛𝑛))

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑘𝑘 �
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑟𝑟2

+ �
1
𝑟𝑟
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝜔𝜔𝜖𝜖0𝜀𝜀′′ 𝐸𝐸02. 𝑒𝑒

− 2𝑟𝑟𝐷𝐷𝑝𝑝 
(10) 

 

2.2.2 Equation of Water Flow 

The rate of flow within a finite element can be derived using the Darcy’s equation for water 

flow, the volumetric expansion of pore water due to temperature rise and the rate of pore volume 

change as, 

 
0 =

𝐾𝐾ℎ
𝛾𝛾𝜔𝜔

�𝑟𝑟
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑟𝑟2

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑛𝑛 𝛼𝛼𝜔𝜔 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 

(21) 

 

where, 𝐾𝐾ℎ- horizontal hydraulic conductivity of clay, 𝛾𝛾𝜔𝜔- specific gravity of water, 𝑐𝑐-coefficient 

of compressibility, 𝛼𝛼𝜔𝜔- thermal expansion coefficient of water and 𝑛𝑛- porosity. 
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2.2.3 Pore Pressure and Porosity Relation 

The porosity and effective stress within a finite element of a saturated sample, for constant 

total stress, can be related as shown in Eq. (12) using fundamental soil theory.  

 
𝑑𝑑𝜎𝜎′ = −

𝜎𝜎′

𝑐𝑐(1 − 𝑛𝑛)2 .𝑑𝑑𝑑𝑑 
(12) 

where, 𝜎𝜎′ -effective stress acting on the element. However as, 𝑑𝑑𝜎𝜎′ = −𝑑𝑑𝑑𝑑,  Eq (12) can be written 

as,  

 −𝑑𝑑𝑑𝑑 = −
𝜎𝜎 − 𝑢𝑢

𝑐𝑐(1 − 𝑛𝑛)2 .𝑑𝑑𝑑𝑑 (13) 

Equations (10) (11) and (13) together governs the temperature variation and subsequent 

pore pressure dissipation of the system. 

 

2.2.4 Boundary Conditions 

A total of 6 boundary conditions (b.c.s) are needed to solve the above equations. It is 

assumed that, initially the pore pressure of the sample is equal to the stress increase due to the load 

on the sample. The sample is also assumed to be open to the atmosphere at the surface adjacent to 

the antenna and at the outer periphery of the sample. The temperature b.c. at the innermost 

boundary was imposed assuming a negligible thermal conductivity of the air contained in the small 

air gap between the sample and antenna. The entire sample is also assumed to be perfectly insulated 

while the heat conducted at the outer radius is assumed to be absorbed completely into the 

surrounding plastic container. The boundary conditions are summarized below.  
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1) Pore pressure boundary conditions (Note: all pressure values are gauge pressures): 
 

a) 𝑢𝑢𝑟𝑟,0 = 𝑃𝑃1 , where 𝑃𝑃1 is the stress increase in the clay sample caused by the added load. 

b) 𝑢𝑢𝑛𝑛,𝑡𝑡 = 0  , circumferential end of the sample is open to the atmosphere  

c) 𝑢𝑢1,𝑡𝑡 = 0   , soil sample is not flush with the antenna and is open to the atmosphere 

2) Temperature boundary conditions: 

a) 𝑇𝑇𝑟𝑟,0    = 𝑇𝑇0 , where 𝑇𝑇0 is the measured temperature at the beginning of the clay sample. 

b) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
1,𝑡𝑡

= 0   , no temperature gradient at the inner boundary of the sample 

c) −𝑘𝑘 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑛𝑛,𝑡𝑡

= 𝑚𝑚𝑝𝑝𝑐𝑐𝑝𝑝
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 , conduction at soil boundary is absorbed into the plastic container. 

 

2.2.5 Finite Difference Approximations 

The heat balance equation (10), flow equation (11) and compressibility equation (13) were 

simultaneously solved using the finite difference method based on forward time centered space 

scheme. Due to the axisymmetry of the soil sample and uniformity in the z direction, a radial axis 

at any elevation within the soil sample can be considered in a 1D model.  

 

2.2.5.1 Finite Difference Form of the Heat Transfer Equation  

The following finite difference form can be written for Eq. (10) for inner uniformly placed 

nodes with central difference in the special direction and forward difference in time.  
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 (𝑛𝑛𝜌𝜌𝑤𝑤𝑐𝑐𝑤𝑤 + 𝜌𝜌𝑠𝑠𝑐𝑐𝑠𝑠(1 − 𝑛𝑛)) �
𝑇𝑇𝑟𝑟,𝑡𝑡+1 − 𝑇𝑇𝑟𝑟,𝑡𝑡

∆𝑡𝑡
�

= 𝑘𝑘 ��
𝑇𝑇𝑟𝑟+1,𝑡𝑡 − 2𝑇𝑇𝑟𝑟,𝑡𝑡 + 𝑇𝑇𝑟𝑟−1,𝑡𝑡

(∆𝑟𝑟)2 �

+ �
1
𝑅𝑅
� �
𝑇𝑇𝑟𝑟+1,𝑡𝑡 − 𝑇𝑇𝑟𝑟−1,𝑡𝑡

2.∆𝑟𝑟
�� + 𝜔𝜔𝜖𝜖0𝜀𝜀′′ 𝐸𝐸02. 𝑒𝑒

− 2𝑟𝑟𝐷𝐷𝑝𝑝 

(14) 

 

For unevenly spaced nodes with central difference method in the spatial direction and 

forward difference in time, the above equation modified to Eq. (15). 

 (𝑛𝑛𝜌𝜌𝑤𝑤𝑐𝑐𝑤𝑤 + 𝜌𝜌𝑠𝑠𝑐𝑐𝑠𝑠(1 − 𝑛𝑛)) �
𝑇𝑇𝑟𝑟,𝑡𝑡+1 − 𝑇𝑇𝑟𝑟,𝑡𝑡

∆𝑡𝑡
�

= 𝑘𝑘 �2�
𝑑𝑑1 . 𝑇𝑇𝑟𝑟+1,𝑡𝑡 − (𝑑𝑑1 + 𝑑𝑑2)𝑇𝑇𝑟𝑟,𝑡𝑡 + 𝑑𝑑2.𝑇𝑇𝑟𝑟−1,𝑡𝑡

𝑑𝑑1𝑑𝑑2(𝑑𝑑1 + 𝑑𝑑2)
�

+ �
1
𝑟𝑟
� �
𝑑𝑑12.𝑇𝑇𝑟𝑟+1,𝑡𝑡 + (𝑑𝑑22 − 𝑑𝑑12)𝑇𝑇𝑟𝑟,𝑡𝑡 − 𝑑𝑑22.𝑇𝑇𝑟𝑟−1,𝑡𝑡

𝑑𝑑1𝑑𝑑2(𝑑𝑑1 + 𝑑𝑑2)
��

+ 𝜔𝜔𝜖𝜖0𝜀𝜀′′ 𝐸𝐸02. 𝑒𝑒
− 2𝑟𝑟𝐷𝐷𝑝𝑝 

(15) 

 

2.2.5.2 Finite Difference Form of the Flow Equation 

The flow equation (Eq. 11) can be rewritten for inner uniformly placed nodes with central 

difference in spatial direction and forward difference in time as follows. 
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0 =

𝐾𝐾ℎ
𝛾𝛾𝜔𝜔

�𝑟𝑟 �
𝑢𝑢𝑟𝑟+1,𝑡𝑡 − 2𝑢𝑢𝑟𝑟,𝑡𝑡 + 𝑢𝑢𝑟𝑟−1,𝑡𝑡

(∆𝑟𝑟)2 � + �
𝑢𝑢𝑟𝑟+1,𝑡𝑡 − 𝑢𝑢𝑟𝑟−1,𝑡𝑡

2.∆𝑟𝑟
��

+  �
𝑐𝑐𝑅𝑅(1 − 𝑛𝑛)2

𝜎𝜎′
� �
𝑢𝑢𝑟𝑟,𝑡𝑡+1 − 𝑢𝑢𝑟𝑟,𝑡𝑡

∆𝑡𝑡
�

+ 𝑛𝑛 𝛼𝛼𝜔𝜔 �
𝑇𝑇𝑟𝑟,𝑡𝑡+1 − 𝑇𝑇𝑟𝑟,𝑡𝑡

∆𝑡𝑡
� 

(16) 

 

For unevenly spaced nodes with central difference method in the spatial direction and 

forward difference in time, the above equation modified to Eq. (17). 

 (𝑛𝑛𝜌𝜌𝑤𝑤𝑐𝑐𝑤𝑤 + 𝜌𝜌𝑠𝑠𝑐𝑐𝑠𝑠(1 − 𝑛𝑛)) �
𝑇𝑇𝑟𝑟,𝑡𝑡+1 − 𝑇𝑇𝑟𝑟,𝑡𝑡

∆𝑡𝑡
�

= 𝑘𝑘 �2�
𝑑𝑑1 . 𝑇𝑇𝑟𝑟+1,𝑡𝑡 − (𝑑𝑑1 + 𝑑𝑑2)𝑇𝑇𝑟𝑟,𝑡𝑡 + 𝑑𝑑2.𝑇𝑇𝑟𝑟−1,𝑡𝑡

𝑑𝑑1𝑑𝑑2(𝑑𝑑1 + 𝑑𝑑2)
�

+ �
1
𝑟𝑟
� �
𝑑𝑑12.𝑇𝑇𝑟𝑟+1,𝑡𝑡 + (𝑑𝑑22 − 𝑑𝑑12)𝑇𝑇𝑟𝑟,𝑡𝑡 − 𝑑𝑑22.𝑇𝑇𝑟𝑟−1,𝑡𝑡

𝑑𝑑1𝑑𝑑2(𝑑𝑑1 + 𝑑𝑑2)
��

+ 𝜔𝜔𝜖𝜖0𝜀𝜀′′ 𝐸𝐸02. 𝑒𝑒
− 2𝑟𝑟𝐷𝐷𝑝𝑝 

(17) 

 

2.2.5.3 Finite Difference Form of the Porosity Equation 

The porosity equation can be written for any node with forward difference in time as,  

 

𝑛𝑛𝑟𝑟,𝑡𝑡+1 =

⎣
⎢
⎢
⎢
⎢
⎡
�𝑢𝑢𝑟𝑟,𝑡𝑡 − 𝑢𝑢𝑟𝑟,𝑡𝑡+1� 

�
𝜎𝜎 − 𝑢𝑢𝑟𝑟,𝑡𝑡 

𝑐𝑐�1 − 𝑛𝑛𝑟𝑟,𝑡𝑡�
2�
⎦
⎥
⎥
⎥
⎥
⎤

+ 𝑛𝑛𝑟𝑟,𝑡𝑡 

          (18) 
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2.2.6 Computer Coding 

As illustrated in Fig. 2.2, in the numerical model, a given radial axis was divided into 

segments of equal size and nodes were introduced at the center of each segment. The last node on 

the radial axis was considered to be representative of the plastic drum. The numerical grid 

consisted of 129 equally spaced grid points of Δ𝑑𝑑=0.001m radial spacing and the temporal spacing 

was optimized to achieve a minimum time step while ensuring stability of numerical model. The 

time step used was 0.05s 

 

Figure 2.2 Grid point definition in the radial domain of the sample 

 

 Subsequently, the heat transfer equations (14 & 15), the flow equation (16 & 17) and 

porosity equation (18) were solved simultaneously in the numerical model. 
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Figure 2.3 Flow chart for numerical model 
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2.2.6.1 Soil and MW Parameters 

The parameters shown in Table 2.1 were used in the implementation of the program for 

radial consolidation based on MW heating. The initial temperature of the entire clay sample was 

assumed to be uniform at a value T0=22.5 oC.  

Table 2.1 Soil and MW parameters 

Description Value Units 

Height of soil layer 

 

0.11938 m 

Specific heat capacity of water 4184 

 

J/kg.K 

Specific heat capacity of Kaolin 

 

1010 

 

J/kg.K 

Specific heat capacity of plastic 

 

1900 

 

J/kg.K 

Specific weight of clay 

 

16000 

 

N/m3 

Specific weight of water 

 

9810 

 

N/m3 

Density of dry kaolin 

 

2650 

 

kg/m3 

Density of water 

 

985 kg/m3 

Density of plastic 

 

950 

 

kg/m3 

Initial temperature of clay 

 

22.5 

 

oC 

Initial temperature of plastic 

 

22.5 

 

oC 

Annular frequency 5.65 x 106 

 

rad/s 

Dielectric permittivity of free space 8.8 x 10-6 

 

F/m 

Wavelength of MW 

 

0.333 

 

m 

Thermal conductivity of kaolin clay 

 

1.2 

 

W/m.K 

Coefficient of compressibility  

 

0.3 m2/s 

Hydraulic conductivity of clay 

 

7.8 x 10-8 m/s 

Initial porosity of the sample 

 

0.5 
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CHAPTER 3: EXPERIMENTAL SETUP 

 

Two separate experiments were conducted during this research. The first experiment was 

conducted on a soil sample of an approximate volume of 4 gal with the primary objective of 

observing the spatial and temporal temperature variation of the sample caused by MW heating. 

The second experiment was conducted on two identical soil samples for a duration of 6 days. The 

objective of the latter experiment was to compare both the magnitude and rate settlement of the 

soil under identical loading conditions with and without MW heating. 

 

3.1 Preparation of the Soil Sample 

Two identical soil samples were prepared each by mixing 150 lb of dry EPK Kaolin clay 

powder, 80 lb of silica sand to create a 4:1 clay to sand dry mix. This was mixed with 43 lb of 

water to create saturated clay samples of specific weight 16 kN/m3. 

Figure 3.1 Mixing of kaolin and sand to make the clay mix 
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Figure 3.2 Packing of clay mix into the plastic drum 
 

 
3.2 Frequency Selection of the Microwaves 

Of the wide range of electromagnetic waves (EMWs), microwaves (MW) can be classified 

as EMWs with frequencies in the range 300 MHz - 300 GHz.  The Industrial, Scientific and 

Medical (ISM) frequency bands are designated radio bands set aside for non-telecommunication 

purposes defined by the ITU Radio Regulations. The most common ISM bands are known to be 

900MHz and 2.56 GHz. Although the higher frequency waves allow faster vibration of water 

molecules and thus higher rate of temperature increase in the soil sample, they result in higher 

attenuation of the signal. As an example, Falciglia (2016) used 2.56GHz MW and observed 

negligible thermal effects past a maximum distance of 0.2m 

As this research aimed to limit the maximum temperature of the clay to 176 oF, an excessive 

heating rate was not required and hence a 900 MHz frequency was selected. This allowed for an 

adequate heating rate while maintaining a low attenuation.  
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3.3 Experiment Layout  

The physical layout of the model experiment is shown in Fig 3.3, A Motorola Quantar 

T5365A 900MHz 100W Repeater was modified to generate and amplify a 900 MHz signal. This 

signal was then sent to the transmitting antenna which irradiated the clay sample. Thermistors were 

inserted into the soil sample to measure its temperature distribution with time. The MW 

transmission was turned when the maximum soil temperature reached 80 oC and turned back on at 

75 oC. This allowed for the clay sample to be kept at an elevated temperature range while ensuring 

that the pore water did not reach a boiling point, which would have resulted in a rapid rise and 

subsequent explosive release of built up pore pressure. Weights were placed on top the sample to 

increase the effective stress on the clay. 

 
Figure 3.3 Schematic layout of experimental setup 
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3.3.1 Fabrication of the Faraday Cage 

The transmitted power permitted in ISM bands is regulated by Part 15 of the Federal 

communications commission (FCC) rules which limit ISM band 902-928MHz emissions to 1 

Watt. Therefore, to be compliant, the clay sample was enclosed in a well-grounded, copper mesh 

(mesh spacing=0.2in, maximum allowable mesh spacing = 0.6 inch for 900MHz MW) faraday 

cage. The faraday cage was grounded using gage 4 copper rods welded to the mesh. 

 

                                     (a)   (b) 

Figure 3.4 (a) Faraday cage and (b) grounding rod 
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3.4 Experimental Procedure 

3.4.1 Control Experiment (Test 1) 

Initially, a 5-gal plastic bucket of diameter 10.8 inches, lined with a drainage cloth, was 

filled with 80-20 Kaolin-Sand mixture of 16 kN/m3 up to 9.4 inches in height. A polythene 

membrane was placed flushed with the top surface of the clay to impose a no-flow boundary 

condition. The antenna was inserted at the center of the clay sample with care taken to not flush 

the clay with the antenna surface thus creating a free draining boundary at the antenna. A circular 

wooden disk was then placed on top of the soil for even application and transfer of loads to the 

soil. 

 

                   (a) (b) 

Figure 3.5 Plastic bucket (a) lined with drainage cloth and (b) filled with 9.4inch                     
of saturated clay 
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               (a) (b) 

Figure 3.6 (a) Sample preparation with polythene barrier with (b) wooden disk and antenna 
inserted in place 

 
Five digital thermometers were inserted at a depth of 4 inches at varying radial distances 

of 20, 40, 65, 90 and 110mm as shown in Fig 3.7 from the center of the sample and the disk was 

loaded with 6 kg of weights. The entire sample was then insulated using fiberglass. The sample 

was then heated by MW irradiation via the antenna and the temperature readings were recorded at 

10 min time intervals.  

                           (a)                         (b) 

Figure 3.7 (a) Thermometers inserted into the clay and (b) radial arrangement of thermometers  
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3.4.2 Comparison Experiment  

For comparison of both the magnitude and rate settlement of the clay under identical 

loading conditions with and without MW heating a comparison experiment was conducted. Fig. 3. 

shows the two experiments. It must be noted that the only set of weights have been moved onto 

the heated sample when the picture was taken. 

(a)                                                                                       (b) 

Figure 3.8 (a) Non-heated sample and (b) MW irradiated (heated) sample enclosed                      
in a faraday cage  

 
 

3.4.2.1 Irradiated Sample (Test 2.1)  

First the antenna was inserted to the center of the soil sample. The height of the soil sample 

was identical to the effective length of the antenna. Next a circular wooden disk was placed on top 

of the soil for even application and transfer of loads. A digital thermometer was inserted 20mm 

radially outwards from the circumference of the antenna to monitor the temperature. The top and 
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circumferential surface of the sample was then insulated using fiberglass. Weights were placed on 

3 pillars symmetrically erected on the wooden disk. A tube was inserted to facilitate the addition 

of water to the inner gap of the sample to ensure saturation of the sample for the duration of the 

experiment. Finally, the setup was completed by assembling the faraday cage around the sample.  

   
(a) (b) 

Figure 3.9 a) Sample preparation with polythene barrier and (b) wooden disk, antenna and 
thermometer in place 

 

  
(a) (b) 

Figure 3.10 (a) Insulated sample and (b) sample with the tube inserted. 
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Figure 3.11 Loaded sample enclosed in the faradey cage 
 

The repeater was turned on and the sample was irradiated immediately following the cage 

assembly. The repeater was kept on until the thermometer reading reached 80 °C and then toggled 

between ON and OFF positions to maintain the temperature between 80-76 °C. A laser distance 

measuring device was placed on a mounted glass plate. Vertical distance measurements were taken 

at 3 marked points along the periphery of the circular weights (Fig. 3.13b) to monitor the settlement 

of the samples (further elaborated in section 3.5) Data was taken at 15 min time intervals for the 

first 3 hrs and then the data acquisition time interval was increased to 5 hrs and 8 hrs after 24 hrs 

and 48 hrs respectively.  
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3.4.2.2 Non-irradiated Sample (Test 2.2) 

A PVC pipe with diameter identical to the antenna was inserted at the center of the soil 

sample (Fig. 3.12a) to maintain identicality with the irradiated sample. The wooden disks and 

weights were placed on the sample similarly to Test 2.1 (Fig. 3.12b). Vertical distance 

measurements were taken identically to the previous test at 3 marked locations around the 

periphery of the circular disks at similar time intervals.  

 

     
                        (a)                       (b) 

Figure 3.12 (a) Sample with inserted PVC pipe and (b) loaded sample  
 

3.5 Measurement of Rate of Consolidation 

Consolidation of the clay samples is reflected by the pore pressure dissipation and the 

overall height reduction of the sample. For the pore pressure range of this experiment (<3psi) 

piezometers are large in dimension and inserting them into the soil sample could disrupt the fluid 

flow and may also lead to uneven settling. Additionally, the incident high power electric field may 
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affect the piezo-metric readings. Therefore, traditional pore pressure transducers were not used in 

this experiment. This could have been overcome by inserting a capillary tube into the soil sample 

which extends out of the faraday cage and connects to a piezometer. However, there could have 

been practical difficulties related to this approach leading to erroneous readings for such low pore 

pressure values as the setup must be completely sealed ensuring no water is allowed to leak out. 

Considering the above factors, the rate of consolidation was measured using the height of 

the clay sample. Commonly used LVDT sensors cannot be used in this experiment as they are 

known to be sensitive to external magnetic fields. Thus a laser distance sensor of resolution 

0.0001mm was used. Utilizing a laser sensor allowed the unit to be kept outside the faraday cage 

limiting the influence of the EMWs on the laser sensor.  

 
 

(a)                                      (b) 
Figure 3.13 (a) Laser distance sensor mounted glass plate (b) corresponding target points        

on the sample 
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(a) (b) 

Figure 3.14 (a) Laser sensor positioned for measurement and (b) close-up view of positioned 
sensor  
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1 Experimental Results of Test 1 

As discussed in Chapter 3, the variation of temperature of nodes R1-R5 (Fig. 3.7) were 

measured using 5 thermometers inserted at a depth of 4inches in the test sample. The resultant 

temperature variations of each node are shown in Fig. 4.1 . 

 

Figure 4.1 Variation of temperature of nodes R1-R5 with time  
 

It can be observed from the results in Fig 4.1 that the temperature at the inner most node 

(R1) achieved the maximum allowable temperature of 80 oC in 8.2 hrs while a maximum 

temperature of 65.6 oC was achieved at the outermost node (R5).    
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4.2 Verification of the Numerical Model and the Computer Program 

The output of the computer code was compared with the empirical data of Test 1 in order 

to validate the program results and radial variations of temperature at varying time steps were 

considered. Data fitting was carried out to determine the unknown coefficients in Eq (10).  

 

4.2.1 Determination of Unknown Coefficients 

The values of E0, 𝜀𝜀′ and 𝜀𝜀′′, which governs the variation of temperature, and subsequently, 

the pore pressure and porosity, were unknown for the clay setup and hence they were determined 

by fitting experimental and theoretical data. For the node R1, the effects of hydraulic conductivity 

and coefficient of consolidation would have negligible effects on the temperature variation. 

Therefore, utilizing the measured values of 𝜀𝜀′ and 𝜀𝜀′′ at 25 oC allowed the accurate determination 

of the value of E0 to be 603 V/m. The variations of 𝜀𝜀′ and 𝜀𝜀′′, greatly affected by the temperature 

and frequency of the incident EMWs, were determined by fitting the experimental and numerically 

predicted temperature variation of the node R1 over the duration of Test 1. The real part of the 

dielectric permittivity (𝜀𝜀′) was kept constant [3] and the imaginary part (𝜀𝜀′′) was varied to fit the 

data. This variation, shown in Fig 4.2 was then included in the computer program to predict nodal 

temperatures of the rest of the nodes. 
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Figure 4.2 Variation of 𝜀𝜀′ and 𝜀𝜀′′ with temperature for E0=603 V/m 

 
The radial variations of temperature at varying time steps were then considered to validate 

the numerical model. These are shown in Fig 4.3. 

Figure 4.3 Numerical temperature variations vs. experimental data 
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It can be observed from Fig 4.3 that the numerical model prediction and empirical data are 

in good agreement initially. For longer times it can be observed that the results deviate 

increasingly. However, it can be seen that the exponential decreasing trend of the temperature 

holds in each case. The above deviation maybe due to practical errors in the experiment. The 

numerical model assumes a uniform sample, however, as the clay sample was packed manually, 

inconsistencies in density and porosity of the sample could have resulted. Above reasons may have 

caused deviations in the temperature increase in addition to causing disruptions to microwave 

propagation.  

 

4.3 Computational Results 

The analytical model was used to predict the temperature, pore pressure and porosity of the 

clay sample. Fig.4.4 shows the variation of pore pressure and temperature of the node at r=21 with 

time for a duration of 8 hrs predicted by the model. It can be seen that the temperature increases 

steadily with time whist the pore pressure reaches a peak value. Initially, the pore pressure of the 

sample rises as the temperature increased due to differential thermal expansion of clay. However, 

the temperature rise also results in the increase of the hydraulic conductivity of soil and with time 

the effects of the hydraulic conductivity takes prominence and the pore water dissipation causes a 

decrease in pore pressure. The radial variations of temperature, pore pressure and porosity at 4 hr, 

6 hr and 8 hr time intervals as predicted by the model are depicted in Fig 4.5.  
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         (a)                                                                      (b) 

Figure 4.4 The variation of (a) pore pressure and (b) temperature of node 21 with time 
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(a) 

 

 

 

 

 

 

 

 

(b) 

 
(c) 

Figure 4.5 Analytical model predictions of the variation of tempertaure, pore pressure and 
porosity  for times (a) 4 hr, (b) 6 hr and (c) 8 hr 
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4.4 Parametric Study 

A parametric study was conducted to investigate the influence of the significant parameters 

on the variation of temperature and pore pressure in the clay sample. The variation of temperature 

is highly dependent on the incident electric field strength(𝐸𝐸0). A higher 𝐸𝐸0 value would result in 

elevated temperatures for a given duration of irradiation. This phenomenon is accurately 

represented by fig 4.6 which shows the radial variation of temperature predicted by the analytical 

model at a selected time of 5.5hrs.  

 

Figure 4.6 Radial variation of temperature for varying electric field strengths at time = 5.5hrs. 
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The pore pressure distribution within the clay is greatly influenced by the hydraulic 

conductivity of the clay. An increased hydraulic conductivity of the sample will result in an 

increase of the rate of pore pressure dissipation. This is accurately represented by fig 4.7 which 

depicts the radial variation of pore pressure predicted by the analytical model for varying hydraulic 

conductivities at time = 8 hrs.  

  

Figure 4.7 Radial variation of pore pressure with time for different hydraulic conductivity values 
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4.5 Experimental Results of Heated/Non-heated Samples (Test 2.1 and Test 2.2)  

The experimental data and the analysis to predict the settlement of the soil samples are 

presented in the following section. 

 

4.5.1 Variation of Vertical Height Measurements 

As discussed in Chapter 3, the rate of consolidation of the samples were monitored using 

a laser distance sensor at 3 representative locations on the surface of the sample. The measured 

vertical height variation of the 3 locations of the non-heated and heated samples are summarized 

in Fig. 4.8 and Fig. 4.9 respectively.  

 
Figure 4.8 Vertical height variation of 3 marked locations of non-heated sample 
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Figure 4.9 Vertical height variation of 3 marked locations of heated sample 

 
The consolidation of the clay sample would result in vertical height change of the surveyed 

locations. This is reflected in Fig 4.8 and Fig 4.9. The overall settlements of the clay samples were 

evaluated by considering the percentage variation of a representative volume of the clay sample. 

The percentage variation of a representative volume with time is plotted in Fig 4.10 . 

 
Figure 4.10 Percentage variation of a representative volume with time 
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Per Federal Communications Commission requirements, the sample with MW irradiation 

(heating) was to be carried out while the sample was enclosed in a faraday cage, therefore, the 

cage was assembled around the sample prior to heating of the sample. It is noted that due to 

measurements being recorded after the faraday cage was assembled, a time of 35min elapsed from 

the time the samples were loaded to the first measurement. Therefore, a correction of height 

measurements to include the settlement during the initial 35 min was needed. This was achieved 

by back extrapolating the measured data trends up to time zero. The resultant decrease in 

percentage of consolidation of a representative volume is shown in Fig 4.11. 

 

Figure 4.11 Modified percentage variation in volume of the two samples                             
plotted against time 

 
 

The ultimate consolidation of a clay sample can be calculated using Eq. (19),  

 
𝑆𝑆𝑐𝑐 =

𝐶𝐶𝑐𝑐𝐻𝐻
1 + 𝑒𝑒0

log �
𝜎𝜎0′ + Δ𝜎𝜎′

𝜎𝜎0′
� 

(19) 
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where, 𝐶𝐶𝑐𝑐is the compression index, 𝐻𝐻 is the saturated clay layer thickness, 𝑒𝑒0 is the initial void 

ratio, 𝜎𝜎0′  is the initial effective overburden pressure and Δ𝜎𝜎′ is the increase in effective pressure 

due to the added load.  

It is evident from Eq. (19) that the ultimate consolidation is dependent only upon soil 

parameters and therefore, the ultimate percentage settlement of both the heated and non-heated 

samples could be expected to be equal. Additionally, the introduction of heating is expected to 

generate excess pore pressure and increase the hydraulic conductivity resulting in an increase of 

the rate of dissipation of excess pore pressure. These expectations are seen to be accurately 

represented by the results in Fig 4.11 which depicts that the percentage variations of the two 

samples ultimately reach the same value while the rate of settlement is higher for the heated 

sample. However, it must be noted that as the consolidation process is irreversible, only a single 

experiment was conducted for this work and as such, a confidence interval cannot be drawn. 

 The rate of settlement could also be represented by the change in the area under the pore 

pressure diagram predicted by the analytical model. The percentage change of the area under the 

analytically predicted pore pressure curve representing the dissipated pore pressure is presented in 

Fig. 4.12. (Calculations of which are presented in Appendix B). The introduction of heating is 

expected to dissipate pore pressure at a higher rate. Therefore, the rate of percentage change of the 

representative area under the pore pressure curve is expected to be higher. These expectations are 

accurately represented by Fig. 4.12.  
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Figure 4.12 Variation of the percentage change of an area representative of the dissipated pore 
pressure with and without heating as predicted analytically  
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CHAPTER 5: CONCLUSION 

 

This research aimed to study the feasibility of utilizing microwaves to expedite the excess 

pore pressure dissipation and hence the consolidation of clay. A numerical model has been 

formulated and implemented using finite differencing methods to theoretically predict the 

temperature rise and pore pressure dissipation due to MW heating.  

The feasibility of utilizing microwaves to raise the temperature of a clay sample was also 

evaluated practically by conducting bench-scale experiments. The use of microwave irradiation to 

rapidly increase the temperature of saturated clay was quantified in this research with temperatures 

of 80 oC being achieved after 8 hrs of soil irradiation.  This proved to be more efficient than current 

soil heating methodologies. The effects of MW on the settlement of the clay was evaluated by 

conducting two comparable consolidation experiments. Considering the percentage variation of a 

representative volume of each clay sample, it was observed that increasing the temperature of the 

clay sample using MW heating resulted in a higher rate of settlement when compared with the 

settlement of the non-heated sample while the ultimate percentage settlement of both were more 

or less the same. Considering the area under the pore pressure variation curve representative of the 

dissipated pore pressure, the analytical predictions showed a higher rate of pore water dissipation 

for a heated clay sample. The predictions of the numerical model are in good correlation with the 

corresponding experimental data. 
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APPENDIX A: MATLAB CODE 

 

The Matlab code used to analyse the numerical model is given below.  

%% INPUTS ---------------------------------------------------------------- 
tic 
% Sure inputs: 
z=0.11938;                  % Height of soil above (m), taken as half the clay size of the test sample.@@ 
cw=4184;                    % Specific heat cap of water J/kg/K@@ 
rhos=2650;                  % Density of dry Kaolin kg/m3 @@ 
T0=22.5;                      % Initial temperature (Celsius)@@ 
Ta=22.5;                      % Ambient temperature (Celsius)@@ 
Tp=22.5;                      % Initial temperature of plastic@@ 
W=10;                         % Weight placed on sample(kg)                 
w=5654866776.46;     % Annular frequency (rad/s) = 2*pi*f @@ 
e0=8.8541878176e-12;% Dielectric permitivity of free space (F/m)@@ 
ep=33.93;                    % Real part of the relative dielectric permitivity.   
epp=3.72;                    % Imaginary part of the relative dielectric permitivity.  
lamda=0.333;              % Wavelength of the MW. (m)@@ 
La=0.014;                    % Radius of antenna (m) 
L=0.137-La;                % Max radial length of sample (m)= (radial length of clay measured - radius of 
antenna) 
k=1.2;                          % Thermal conductivity (W/mK) of Kaolin clay with 80% sand: 
https://www.tandfonline.com/doi/pdf/10.1080/1064119X.2015.1033072?needAccess=true@@ 
% kh @ 25 =7.8e-9;    %3.26e-9; % Hydraulic conductivity of kaolin 
(m/s)  http://www.ejge.com/2012/Ppr12.068alr.pdf. 
                                    % K70S20 = 3.6e-10, K100S0 = 2.6e-10. Linearly interpolated.  
gc=16000;                   % Specific weight of clay. (N/m3)              
             
gw=9810;                     % Specific weight of water. (N/m3)@@ Is a function of T. 
https://www.engineeringtoolbox.com/water-density-specific-weight-d_595.html,  
                                      % Drawn on excel for empherical formula: gw = -0.00000125709467446722*T^4 
+ 0.000403040504841412*T^3 - 0.0734914863970049*T^2 + 0.502255621126391*T + 
9,805.36629538316 
alphaw=5.16/10000;          % Coefficient of thermal expansion of water.(/K) Is a function of T. 
https://www.engineeringtoolbox.com/water-density-specific-weight-d_595.html,  
                            % Drawn on excel for empherical formula: alphaw = (-0.000000068260086*T^4 + 
0.000018582195265*T^3 - 0.002135775005238*T^2 + 0.173020160507236*T - 
0.672871058607526)/10000 
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rhop=950;                   % density of plastic, kg/m3,@@  http://www.goodfellow.com/E/Polyethylene-
High-density.html 
cp=1900;                    % cp of plastic, J/kg/K,@@  http://www.goodfellow.com/E/Polyethylene-High-
density.html 
rhow=985;                   % Density of water kg/m3.@@ Density change from 996 to 968 for 27C - 8%C. 
Average taken. 
n0=0.5;                      % Initial porosity of the sample@@  
cs=1010;                    % Specific heat cap of Kaolin@@ (J/kg/K) at room temp. 
https://vdocuments.site/thermal-conductivity-and-specific-heat-of-kaolinite-evolution-with-thermal.html 
E0=603;                     % V/m 
c=0.5;                        % Constant  
 
%% GRID FORMING INPUTS ---------------------------------------------------------------- 
 
% l is the physical length from the actual beginning point of the sample.  
% all l are the length to the element size changing point in r direction. 
% Make sure these can be divided by d to get integers. 
l1=0.1; 
l2=2*l1; 
l3=L; 
% all d are the element sizes in the r direction 
d1=0.001; 
d2=d1; 
d3=d1; 
% all v are the lenth to the element size changing point in t direction 
v3=29880; 
v1=v3/4;     
v2=v3/2; 
 
% all h are the element sizes in the t direction 
h1=0.1; 
h2=h1; 
h3=h1; 
 

%% Forming arrays and preliminary grids ---------------------------------- 
 
P1  = W*9.81/(pi*L^2); % Pressure after weight placement = Weight*g/area_applied  
% sig = 4;                       % Effective stress at z meters below the sample surface 
P1+gw*z; 
sig=P1+gc*z; 
%u=P1+gw*z; % t goes from 0-m3 
m1=v1/h1; 
m2=m1+((v2-v1)/h2); 
m3=m2+((v3-v2)/h3); 
% r goes from 1-n3 
n1=(l1/d1); 
n2=n1+((l2-l1)/d2); 
n3=n2+((l3-l2)/d3); 
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T=zeros(n3+1,m3+1); 
T(1:n3,1)=T0; 
T(n3+1,1)=Tp; %n3+1 node is the plastic. Which at t=1 is at Tp 
u=zeros(n3+1,m3+1); 
u(1:n3,1)= P1+gw*z; 
u(n3+1,1:m3+1)=0;   
n=zeros(n3+1,m3+1); 
n(1:n3,1)=n0; 
 

% Then make a set of arrays: 
% R (distance to the node from the beginning) 
% p (the length of the grid infront of the node point) 
% Then these can be called to solve the unequal grid point for any node 
% Remember when calling a node it has to be p(r) is the forward grid size, 
% p(r-1) is the behind grid size 
 
p=zeros(1,n3); 
for i=1:n1-1 
    p(int16(i))=d1; 
end 
 
for i=n1+1:n2-1 
    p(int16(i))=d2; 
end  
 
for i=n2+1:n3-1 
    p(int16(i))=d3; 
end  
p(n1)=(d1+d2)/2; 
p(int16(n2))=(d2+d3)/2; 
p(int16(n3))=d3; 
 

R=zeros(1,n3); 
for i=1:n1 
    R(int16(i))=(2*i-1)*d1/2; 
end 
 
for i=n1+1:n2 
    R(int16(i))=n1*d1+((2*(i-n1)-1)*d2/2); 
end 
 
for i=n2+1:n3 
    R(int16(i))=n1*d1+((n2-n1)*d2)+((2*(i-n2)-1)*d3/2); 
end 
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aaaTherm1=0.02/d1+1; %Therm1 at R= 20mm, then r=20mm/d1 
ttt=m3; %time considered in code 
hours=ttt*h1/3600 
seconds=ttt*h1; 
aaa=1; 
 
%%   t=1:m3 Code with simultaneously solved T , u and n --------------- 
 
r2=zeros(ttt+1,1); 
r4=zeros(ttt+1,1); 
r6=zeros(ttt+1,1); 
 
t2=zeros(ttt+1,1); 
t4=zeros(ttt+1,1); 
t6=zeros(ttt+1,1); 
 
k2=zeros(ttt+1,1); 
k4=zeros(ttt+1,1); 
k6=zeros(ttt+1,1); 
 

% for t=1:m3 the forward differencing parts are all h1 in length 
for t=1 
    dp=lamda*sqrt(ep)/(2*pi*epp); 
    for r=1:n3 
        epp=-0.000607526051132*T0^2 + 0.235065134973541*T0 - 3.9933369776088150; 
        a=n(r,t)*rhow*cw+rhos*cs; 
        v=k*h1*(1/d3^2+1/(2*R(r)*d3)); 
        m=-d3^2*rhop*cp/(k*h1); 
                        
%         temperature eqn 
        if r==1 
            T(r,t+1)= (((k*h1/d1^2+k*h1/(2*R(r)*d1))*T(2,t))+((a-k*h1/d1^2-
k*h1/(2*R(r)*d1))*T(1,t))+(w*e0*epp*(E0^2)*h1*exp(-2*R(r)/dp)))/a;%checked 
  
        elseif r==n3 
            T(r,t+1)= (((a-2*k*h1/d3^2)*T(r,t))+((k*h1/d3^2-k*h1/(2*R(r)*d3))*T(r-
1,t))+(v*Tp)+(w*e0*epp*(E0^2)*h1*exp(-2*R(r)/dp)))/a; %checked 
            T(r+1,t+1)= Tp+(1/m)*T(r,t)-(1/m*T(r-1,t)); %checked 
             
        else 
            p1=k/(p(r-1)*p(r)*(p(r-1)+p(r))); 
            T(r,t+1)= (((2*p1*p(r-1)+p1*(p(r-1))^2/R(r))*T(r+1,t))+((p1*((p(r))^2-(p(r-1))^2)/R(r)-
2*p1*(p(r-1)+p(r))+a)*T(r,t))+((2*p1*p(r)-p1*(p(r))^2/R(r))*T(r-1,t))+(w*e0*epp*(E0^2)*exp(-
2*R(r)/dp)*h1))/a; %checked 
        end 
         
% %        This bottom part allows to track the change of temperature of a specific node. Or three nodes for 
now.       
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        if r==aaaTherm1 
            t2(t,1)=T(r,t);            
        elseif r==aaa-1 
            t4(t,1)=T(r,t); 
        elseif r==aaa-2 
            t6(t,1)=T(r,t); 
        end 
  
 
%        flow eqn 
        gw = -0.00000125709467446722*(T(r,t))^4 + 0.000403040504841412*(T(r,t))^3 - 
0.0734914863970049*(T(r,t))^2 + 0.502255621126391*(T(r,t)) + 9805.36629538316; 
        kh=0.000000000001244153813550590000*(T(r,t))^2 + 
0.000000000075945707518922500000*T(r,t) + 0.000000005187823391736720000000; 
        f=kh*R(r)/(gw*d1^2); 
        sigminu = (sig-u(r,t)); 
 

        b=c*R(r)*((1-n(r,t))^2)/(h1*(sigminu)); 
%       alphaw=((-0.000000068260086*(T(r,t))^4 + 0.000018582195265*(T(r,t))^3 - 
0.002135775005238*(T(r,t))^2 + 0.173020160507236*(T(r,t)) - 0.672871058607526)/10000)/2; 
         
        if r==1 
            u(1,t+1)= (((b-2*f)*u(1,t))+((f+kh/(2*gw*d1))*u(2,t))-(n(r,t)*alphaw*R(r)/h1*(T(1,t+1)-
T(1,t))))/b;%checked 
             
        elseif r>=2 && r<=n3-1 
            q=kh/(gw*p(r-1)*p(r)*(p(r-1)+p(r))); 
            u(r,t+1)= (((b-2*R(r)*q*(p(r-1)+p(r))+q*((p(r))^2-(p(r-1))^2))*u(r,t))+((2*R(r)*q*p(r-1)+q*(p(r-
1))^2)*u(r+1,t))+((2*R(r)*q*p(r)-q*(p(r))^2)*u(r-1,t))-(n(r,t)*alphaw*R(r)/h1*(T(r,t+1)-T(r,t))))/b; 
%checked 
            
        end 
         
%         This bottom part allows to track the change of pore pressure of a specific node. Or three nodes for 
now. 
         
        if r==aaaTherm1 
            r2(t,1)=u(r,t);  
        elseif r==aaa-1 
            r4(t,1)=u(r,t); 
        elseif r==aaa-2 
            r6(t,1)=u(r,t); 
        end 
         
%         porosity eqn 
        n(r,t+1)=(u(r,t+1)-u(r,t))/((sigminu)/(c*((1-n(r,t))^2)))+n(r,t); 
         
        if r==1 
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%             disp(n(1,t+1)) 
            k2(t,1)=n(r,t);  
%              
        end 
         
    end  
  
end 
 
% The below ttt part allow  the code to run only till that time step.  
% Putting ttt= m3 runs it till the predefind end of time.  
% The plot ss part plots the last column. 
  
for t=2:ttt 
    dp=lamda*sqrt(ep)/(2*pi*epp);   % Depth of penetration 
     
    for r=1:n3 
        epp=-0.000607526051132*T(r,t-1)^2 + 0.235065134973541*T(r,t-1) - 3.9933369776088150; 
        a=n(r,t)*rhow*cw+rhos*cs; 
        v=k*h1*(1/d3^2+1/(2*R(r)*d3)); 
        m=-d3^2*rhop*cp/(k*h1); 
                      
%         temperature eqn 
        if r==1 
            T(r,t+1)= (((k*h1/d1^2+k*h1/(2*R(r)*d1))*T(2,t))+((a-k*h1/d1^2-
k*h1/(2*R(r)*d1))*T(1,t))+(w*e0*epp*(E0^2)*h1*exp(-2*R(r)/dp)))/a; %checked 
        elseif r==n3 
            T(r,t+1)= (((a-2*k*h1/d3^2)*T(r,t))+((k*h1/d3^2-k*h1/(2*R(r)*d3))*T(r-
1,t))+(v*T(r+1,t))+(w*e0*epp*(E0^2)*h1*exp(-2*R(r)/dp)))/a; %checked 
            T(r+1,t+1)= T(r+1,t)+(1/m*T(r,t))-(1/m*T(r-1,t)); %checked 
                         
        else 
            p1=k/(p(r-1)*p(r)*(p(r-1)+p(r))); 
            T(r,t+1)= (((2*p1*p(r-1)+p1*(p(r-1))^2/R(r))*T(r+1,t))+((p1*((p(r))^2-(p(r-1))^2)/R(r)-
2*p1*(p(r-1)+p(r))+a)*T(r,t))+((2*p1*p(r)-p1*(p(r))^2/R(r))*T(r-1,t))+(w*e0*epp*(E0^2)*exp(-
2*R(r)/dp)*h1))/a; %checked 
        end 
 
% %        This bottom part allows to track the change of temperature of a specific node. Or three nodes for 
now.       
        if r==aaaTherm1 
            t2(t,1)=T(r,t);            
        elseif r==aaa-1 
            t4(t,1)=T(r,t); 
        elseif r==aaa-2 
            t6(t,1)=T(r,t); 
        end 
         
%         flow eqn 



48 

 

        gw = -0.00000125709467446722*(T(r,t))^4 + 0.000403040504841412*(T(r,t))^3 - 
0.0734914863970049*(T(r,t))^2 + 0.502255621126391*(T(r,t)) + 9805.36629538316; 
        kh=0.000000000001244153813550590000*(T(r,t))^2 + 
0.000000000075945707518922500000*T(r,t) + 0.000000005187823391736720000000; 
        f=2*kh*R(r)/(gw*d1^2); 
        sigminu = (sig-u(r,t)); 
 
        b=c*R(r)*((1-n(r,t))^2)/(h1*(sigminu)); 
%         alphaw=((-0.000000068260086*(T(r,t))^4 + 0.000018582195265*(T(r,t))^3 - 
0.002135775005238*(T(r,t))^2 + 0.173020160507236*(T(r,t)) - 0.672871058607526)/10000)/2; 
         
        if r==1 
            u(1,t+1)= (((b-2*f)*u(1,t))+((f+kh/(2*gw*d1))*u(2,t))+(n(r,t)*alphaw*R(r)/h1*(T(1,t+1)-
T(1,t))))/b;%checked 
%              
        elseif r>=2 && r<=n3-1 
            q=kh/(gw*p(r-1)*p(r)*(p(r-1)+p(r))); 
            u(r,t+1)= (((b-2*R(r)*q*(p(r-1)+p(r))+q*((p(r))^2-(p(r-1))^2))*u(r,t))+((2*R(r)*q*p(r-1)+q*(p(r-
1))^2)*u(r+1,t))+((2*R(r)*q*p(r)-q*(p(r))^2)*u(r-1,t))+(n(r,t)*alphaw*R(r)/h1*(T(r,t+1)-T(r,t))))/b; 
%checked 
        end 
         
%         This bottom part allows to track the change of pore pressure of a specific node. Or three nodes for 
now.  
         
        if r==aaaTherm1 
            r2(t,1)=u(r,t);                                                    
        elseif r==aaa-1 
            r4(t,1)=u(r,t); 
        elseif r==aaa-2 
            r6(t,1)=u(r,t); 
        end 
         
         
%         porosity eqn 
        n(r,t+1)=(u(r,t+1)-u(r,t))/((sigminu)/(c*((1-n(r,t))^2)))+n(r,t); 
        if r==aaaTherm1 
            k2(t,1)=n(r,t);            
        end 
 

    end  
     
end 
 
%% Plotting excess pore pressure and writing to excel 
 
% usum=zeros(3,35); 
% x=1; 
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% for i=1:9001:295351 
%     usum(1,x)=(i-1)/36000; 
%     usum(2,x)=sum(u(1:n3,i))*d1; % without heating 
% %     usum(3,x)=sum(u(1:n3,i))*d1; % heating 
%     x=x+1; 
% end 
% usum=usum' 
%  
 
%% Plotting the change of pore pressure/temperature of different nodes with time 
 
figure 
ax1 = subplot(1,2,1); 
plot(ax1,1:ttt,r2(1:ttt,1)) 
title(ax1,[ 'Variation of pore pressure with time at E0=' num2str(E0)]); 
ylabel(ax1,'Pore pressure (Pa)') 
xlabel(ax1,'time (s)') 
 
ax5 = subplot(1,2,2); 
plot(ax5,1:ttt,t2(1:ttt,1)) 
title(ax5,[ 'Variation of temperature with time at E0=' num2str(E0)]); 
ylabel(ax5,'Temperature (C)') 
xlabel(ax5,'time (s)') 
 
%% Plotting the overall change of pore pressure/temperature of with time 
 

figure 
ax1 = subplot(3,1,1); 
plot(ax1,R(1,1:n3),T(1:n3,ttt)) 
title(ax1,['Temperature (C) variation after ' num2str(hours) 'hours']) 
 
ax2 = subplot(3,1,2); 
plot(ax2,R(1,1:n3),u(1:n3,ttt)) 
title(ax2,['Pore pressure (Pa) variation after ' num2str(hours) 'hours']) 
 
ax3 = subplot(3,1,3); 
plot(ax3,R(1,1:n3),n(1:n3,ttt)) 
title(ax3,['Porosity variation after ' num2str(hours) 'hours']) 
toc 
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APPENDIX B: SETTLEMENT COMPUTATION 

  

The practically evaluated percentage of change of a representative volume of the clay 

sample was calculated as follows: 

Table B.1 Measured height of 3 marked locations of heated sample 
Time 
(hr) 

Measured height Volume 
of clay 
sample  Point A Point B Point C 

0 44163 44862 46078 16623.42 
1 44178 44885 46099 16645.73 

  

Therefore the percentage variation of volume = 16645.73-16623.42 
        16645.73 
         

=  0.134 % 
 
 

The percentage change of pore pressure dissipation as predicted by the analytical model 

was calculated considering the area under the pore pressure variation plot as follows.  

Table B.2 Area of pore pressure curve calculations of heated sample 
Time 
(hr) 

Area under pore 
pressure curve (Pa.m) 

Area of dissipated 
pore pressure (Pa.m) 

 
0 397.92 0 
1 375.39 22.53 

 

Therefore the percentage variation of area = 397.92-375.39 
              397.92 
         

=  0.057 % 
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