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ABSTRACT 
 

Non-point sources (NPS) of pollution are non-discernable, diffuse sources of pollution that 

are often difficult to localize and in turn mitigate. NPS can include stormwater runoff, 

agricultural/aquaculture wastes and wastes from small decentralized wastewater treatment 

systems, such as conventional septic systems. The mitigation of these NPS is imperative to reduce 

their potential detrimental effects on the water environment. This dissertation addresses novel 

treatment technologies for the mitigation of nutrients, particularly nitrogen, in Recirculating 

Aquaculture Systems (RAS) and onsite wastewater treatment systems (OWTS). The removal of 

trace organics limiting RAS production and water reuse were also investigated. 

The first question this dissertation addressed is: Can the application of a UV-TiO2 reactor 

reduce the concentration of off-flavor compounds in RAS? In the UV-TiO2 reactor, spray-coated 

TiO2 plates were placed in an aluminum reactor and exposed to UV light. The process was applied 

in both a full-scale sturgeon RAS and a bench-scale RAS for the degradation of Geosmin (GSM) 

and 2-methylisoborneol (MIB). Improved performance on the removal of GSM and MIB was 

observed when the UV-TiO2 was applied as a batch reactor since it allowed for a longer treatment 

time without the effect of constant production of the compounds in the biological treatment 

processes. Treatment performance of UV-TiO2 was affected by GSM and MIB concentrations and 

dissolved oxygen. No harmful effects were observed on other water quality parameters when the 

UV-TiO2 reactor was operated as a batch or side stream process.



xi 

The second question this dissertation addressed is: Does the application of Tire-Sulfur 

Hybrid Adsorption Denitrification (T-SHAD) in RAS improve nutrient and off-flavor compound 

removal when compared to conventional heterotrophic denitrification? T-SHAD combines tire 

mulch as an adsorbent and sulfur oxidizing denitrification for the removal of NO3
--N from the 

aquaculture waters. Adsorption studies showed the tire has significant adsorption capacity for the 

off-flavor compounds GSM and MIB but can be limited by contact time and, possibly, the presence 

of competing organic matter in RAS. The application of T-SHAD as an effluent polishing step in 

RAS with a high empty bed contact time (EBCT) of 720 min removed 96.6% of NO3
--N and 69.6% 

of GSM. The application of T-SHAD within RAS as denitrification side treatment for NO3
--N 

removal resulted in lower EBCT (185 min) that limited NO3
--N removal to 21% and showed no 

significant removal of off-flavor compounds. The comparison between T-SHAD and a molasses 

fed heterotrophic upflow packed bed reactor (UPBR), showed no significant differences in N 

species concentrations as well as off-flavor compound removal. However, high production of 

SO4
2- resulted from sulfur oxidizing denitrification (SOD) processes was noted.  

Hybrid Adsorption and Biological Treatment Systems (HABiTS), is composed of two 

biofilters in series employing ion exchange (IX) and nitrification for removal of NH4
+ and tire 

scrap coupled with sulfur chips and oyster shells for both adsorption and SOD of NO3
-. The third 

question addressed in this dissertation is: What IX/adsorption media best balances both ammonium 

removal and cost effectiveness for application in OWTS? Adsorption isotherms performed with 

different media materials showed that the zeolite material, clinoptilolite, was the best medium for 

the nitrification stage of HABiTS due to its high IX capacity for NH4
+and cost. An adsorption 

capacity of 11.69 mg g-1 NH4
+-N when in competition with other cations present in septic tank 

effluents was determined by the IX model fit to the data. 
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 The cost of clinoptilolite is significantly higher than the other media materials tested. 

However, the high adsorption capacity would allow for low dosages that can be combined with 

non-adsorptive material reducing overall costs.  

The fourth question this dissertation addressed is: How is the BNR process within HABiTS 

affected by IX? Results from side-by-side biofilter studies with HABiTS and a conventional 

nitrification/denitrification biofilter showed that the combined IX and nitrification in HABiTS can 

allow for faster startup, sustain variable loading, and achieve over 80% removal of NH4
+ at a 

hydraulic loading rate of 0.34 m3 m-2-d-1 when compared to the conventional biofilter with 73% 

removal. Under lower loading rates the biological treatment was enhanced and dominated the NH4
+ 

removal processes in both columns. The addition of a denitrification stage decreased Total 

Inorganic Nitrogen (TIN) by 53.54% and 40.97%, for the HABiTS treatment and the control 

treatment, respectively, under loading rates of 0.21 m3 m-2-d-1. Further decrease of NH4
+-N loading 

rates results in high desorption of exchanged NH4
+ in the clinoptilolite, resulting in lower TIN 

removal efficiencies (28.7%) when compared to the conventional control treatment (62%). 

The final question addressed in this dissertation is: Does the proposed hybrid system 

enhance the removal of TIN in OWTS under transient loading conditions? Further studies with 

HABiTS and the conventional biofilter were performed to determine N removal performance on 

an hourly basis. It was found that the performance of HABiTS varies with daily and hourly loads, 

particularly when recovering from periods of very low loading to high loadings and vice versa. If 

recovering from low loading periods, IX is observed for HABiTS and the biofilter outperforms the 

conventional treatment in overall TIN removal. However, recovery from a high loading period 

results in release of NH4
+-N stored in the clinoptilolite and increased production of NO3

--N that 

could affect the performance of the denitrification stage.
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CHAPTER 1:!INTRODUCTION 
 
1.1 Non-Point Sources of Pollution 

Point sources of pollution have been the focus of the wastewater industry for decades, 

resulting in advances in the design, development, implementation and optimization of treatment 

technologies to mitigate them. More often than not these pollution sources (i.e. industrial and 

domestic wastewater) are mitigated with centralized wastewater treatment systems. These large-

scale systems, most common in the developed world, collect the wastewater from industry and 

large residential areas where it is treated to achieve minimum standards enforced locally and/or 

nationally depending on the country. In the United States, for example, effluents from centralized 

wastewater treatment systems must comply with National Pollutant Discharge Elimination System 

(NPDES) permits, which often have stringent limits on solids, fecal coliforms, organics (i.e. 

biochemical oxygen demand) and nutrient (e.g. nitrogen (N) and phosphorus (P) species) 

concentrations (USEPA, 2002). Non-point sources (NPS) of pollution, on the other hand, are much 

more challenging to regulate and control. NPS are defined as non-discernable, diffuse sources of 

pollution (USEPA, 2002) that are often difficult to localize and in turn mitigate. NPS can include 

stormwater runoff, agricultural/aquaculture wastes and wastes from small decentralized 

wastewater treatment systems (DWTS), such as conventional septic systems. This dissertation 

focuses on two of the above mentioned NPS, aquaculture wastes and conventional septic systems, 

and addresses novel treatment technologies for the mitigation of nutrients and trace organics 

produced by these sources. Although stormwater runoff has also been recognized to have 

significant impact on aquatic environments, technologies for control of stormwater runoff are 
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outside of the scope of this dissertation. Further review on these NPS as well as nutrient and trace 

organic removal processes within the technologies that address NPS is addressed in Chapter 2, the 

literature review. Chapters 3, 4 and 5 address technologies for the management and advanced 

treatment of these NPS. Chapter 6 of this dissertation presents conclusions and recommendations 

on the studied treatment technologies. 

1.2 Recirculating Aquaculture Systems 

Aquaculture is a form of agriculture that involves the farming of aquatic species, be it for 

decoration (such as tropical fish), animal consumption (shrimp) or human consumption (catfish, 

salmon, sturgeon, caviar) (FDAC, 2013). Farm level aquaculture has become popular worldwide 

due to the high demand for fish protein (Christianson and Summerfelt, 2014) and declining wild 

fish stocks. Sales from farm-level aquaculture were reported to be approximately $1.1 billion in 

the US in 2005 (USDA, 2005). In the state of Florida, total aquaculture sales were reported of 

approximately $69 million in 2012, of which $24.1 million were products for human consumption 

(FDAC, 2013). Conventional aquaculture systems involve constant fresh water inputs and high 

wastewater production (Hamlin et al., 2008). Recirculating aquaculture systems (RAS) treat and 

recirculate wastewater back to fish tanks, reducing fresh water inputs and wastewater discharges, 

while providing more environmental control and higher aquaculture product production rates 

(Gonçalves and Gagnon, 2011). Treatment processes in RAS include media or drum filters for 

solids removal and biological nitrogen removal (BNR). Typical RAS treatment is focused on 

ammonium (NH4
+) and subsequently nitrite (NO2

-) removal due to the high toxicity of these 

species for aquatic organisms at concentrations above 1 mg L-1 and 0.3 mg L-1, respectively 

(Timmons et al., 2002; Hamlin et al., 2008). Through BNR processes under aerobic conditions 

these compounds are oxidized to NO3
-, which accumulates in the RAS and often climbs to high 
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concentrations in low water exchange systems. Depending on the type of fish and desired water 

recirculation rates and quality, additional treatment units can be utilized including denitrification 

and ultraviolet (UV) light and/or ozone for disinfection. Prior studies indicate detrimental effects 

of high NO3
--N (>100 mg L-1) on fish health (Hamlin, 2006; Davidson et al., 2014) highlighting 

the importance of the mitigation of all inorganic N species in RAS. 

RAS are also challenged by their limited removal of trace organics, such as off-flavor 

compounds geosmin (GSM) and 2-methylisoborneol (MIB). These compounds are secondary 

metabolites of cyanobacteria and some actinomycetes (Guttman and van Rijn, 2008) that cause an 

earthy musty flavor that can be detected in water at extremely low concentrations (between 10 and 

20 ng L-1; Drikas et al., 2009). Additionally, GSM and MIB accumulate in the lipid-rich tissue of 

fish and can affect taste and quality of fish, particularly catfish, salmon and sturgeon (Howgate, 

2004). The current removal approach for these compounds is to purge them from the fish prior to 

harvesting, which requires large amounts of highly treated water (Burr et al., 2012). 

Multiple technologies have been studied for removal of GSM and MIB. Physical-chemical 

processes, such as activated carbon adsorption, have also been studied for the removal GSM and 

MIB. Activated carbon has been found effective at removal off-flavor compounds but require high 

dosing rates to achieve concentration levels below the detection threshold (Matsui et al., 2013) 

resulting in high cost of treatment (Bamuza-Pemu and Chirwa, 2012), and the need to regenerate 

or dispose of the spent material. The effect of other organic materials, such as humic acids, 

competing for the same adsorption space can also limit adsorption capacity and rate, further 

hindering the removal process (Matsui et al., 2013; Newcombe et al., 2002).  

Advanced treatment technologies for GSM and MIB include oxidation processes such as 

ultraviolet radiation (UV), ozonation, and advanced oxidation processes (AOPs) using different 
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catalysts (Srinivasan & Sorial, 2011) or a combination of two or more oxidation processes. AOPs 

rely on highly reactive hydroxyl radicals, which are non-selective and able to oxidize electron-rich 

organic compounds (Howe et al., 2012). In aquaculture, UV or ozonation are commonly used for 

pathogen control but the dosing is often insufficient for GSM and MIB removal (Schrader et al., 

2010). UV photocatalysis with titanium dioxide (TiO2) is an AOP that has been used in multiple 

applications and found to oxidize up to 99% of GSM and MIB (Lawton et al., 2003). The catalyst 

is typically applied as a slurry, which requires post treatment for the removal of the particles. The 

application of this method in aquaculture is problematic since the filtration method typically used 

cannot remove fine particles and the effect of TiO2 particles on fish health is unknown.  

Chapter 3 of this dissertation discusses the application of a novel UV-TiO2 photocatalysis 

reactor for the removal of GSM and MIB in RAS.  In the UV-TiO2 reactor, spray coated TiO2 

plates are placed in an aluminum reactor and submitted to UV light. The process was applied in 

both a full-scale sturgeon RAS and a bench-scale RAS for the degradation of GSM and MIB. The 

question this chapter aims to answer is: Can the application of a UV-TiO2 reactor reduce the 

concentrations off-flavor compounds in RAS? The specific objectives of this chapter were as 

follows: 

•! Investigate the performance of the UV-TiO2 treatment under batch and continuous flow 

reactor configurations for the removal of GSM and MIB in RAS. 

•! Evaluate and discuss the effect of the UV-TiO2 treatment on water quality parameters and 

the possible impacts on biological wastewater treatment processes in RAS. 

Chapter 4 of this dissertation discusses the application of a Tire Sulfur Hybrid Adsorption 

Denitrification (T-SHAD) reactor in RAS. T-SHAD combines tire mulch as an adsorbent and 

sulfur oxidizing denitrification for the removal of NO3
- from the fish water. This chapter aims to 
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answer the following question: Does the application of T-SHAD in RAS improve nutrient and off-

flavor compound removal when compared to conventional heterotrophic denitrification? The 

specific objectives of this study were to: 

•! Determine the adsorption capacity of tire mulch for GSM and MIB. 

•! Assess denitrification and off-flavor compound removal performance of T-SHAD in 

different reactor configurations in a bench-scale RAS. 

•! Compare T-SHAD to heterotrophic denitrification utilizing molasses as an organic electron 

donor and carbon source. 

1.3 Onsite Wastewater Systems 

Conventional septic tank systems, also known as onsite waste water treatment systems 

(OWTS), treat approximately one third of the wastewater in the US and in some states the use of 

these systems can exceed 40% (USEPA, 2002). In 2007, more than 26 million households 

employed a septic system for their wastewater treatment, with the majority located in rural and 

suburban areas (USEPA, 2008). Conventional OWTS consist of a septic tank for solids separation 

and biodegradation of organics and a soil infiltration system, or drainfield, to further remove solids, 

organics and pathogens.  There are many advantages tied to OWTS, such as simplicity of 

operation, reliability, low cost when compared to centralized treatment in rural and suburban areas, 

and low maintenance requirements (USEPA, 1999). Major challenges of conventional OWTS 

include: 

•! Application limitations due to water table elevation and proximity to drinking water 

supplies and environmentally sensitive areas (USEPA, 1999; FDOH, 2013; Gorman and 

Halvorsen, 2006). 
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•! Variable water usage within the household and long idle times (e.g. during vacations) 

result in highly variable loading rates, which in turn affect the biological treatment 

process (USEPA, 1999, 2002; Oakley, 2010). 

•! Little to no N removal (USEPA, 1999) causing contamination of groundwater and 

surface water (Howe et al, 2012; Liu et al, 2009). 

Reported water quality data for domestic wastewater in the US are shown in Table 1. Most 

of the total nitrogen (TN) entering OWTS is in the form of organic N and NH4
+ from urine and 

food wastes (Ahuja et al., 2014). Since anaerobic conditions persist in the septic tank, only 

pathogen inactivation and some organic matter degradation will occur. When the effluent is 

distributed over the surface of the drainfield, nitrification can occur as the wastewater percolates 

through the soil media surrounding the distribution system. The effluent of the drainfield, which 

is high in NO3
-, can eventually reach the groundwater and other water bodies (Gill et al., 2009) 

and potentially affect the quality of drinking water if the OWTS is close to drinking water wells. 

Table 1.1: Quality of domestic wastewater (modified from Siegrist et al., 2013). 

Constituent Units Lowe et 
al. (2009) 

USEPA 
(2002) 

Crites & 
Tchobanoglous  

(1998) 

Hirst et al. 
(2013) 

  Range Range Range Range 
TSSa mg L-1 22-1690 155-330 100-350 22-63 

cBOD5b mg L-1 112-1101 155-286 110-400 30-190 
CODc mg L-1 139-4584 500-600 250-1000 170-420 

TOCd mg L-1 35-738 Not 
reported 80-290 Not reported 

TNe mg L-1 9-240 26-75 20-85 71-97 
TPf mg L-1 0.2-32 6-12 4-15 6-11 

a Total Suspended Solids (TSS) 
b Carbonaceous Biological Oxygen Demand (cBOD5) 
c Chemical Oxygen Demand (COD) 
d Total Organic Carbon (TOC) 
e Total Nitrogen 
f Total Phosphorus 
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Passive OWTS are defined as systems that utilize only one pump, no artificial aeration for 

nitrification, and reactive media for denitrification (FDOH, 2013).  A number of prior studies have 

investigated passive N-removing OWTS. The majority of these studies enhanced treatment within 

the drainfield to allow for BNR and remove N species (Chang et al., 2010; Xuan et al., 2012; Kong 

et al., 2014). However, removal of N species was very variable requiring additional research into 

the subject.  

A combination of ion exchange (IX) and biological treatment has the potential to enhance 

passive nitrogen removal in OWTS. IX materials, such as the zeolite compounds chabazite and 

clinoptilolite, have the ability to adsorb positively charged ions, such as NH4
+ (Jorgensen and 

Weatherley, 2003; Rozic et al., 2000; Wen et al., 2006). Bioregeneration can be carried out by 

nitrifying bacteria (Lahav and Green, 1999), allowing the reuse of the material.  The combination 

of IX and biological nitrification has the potential to provide enhanced treatment of the variable 

NH4
+ loadings observed in OWTS.  During periods of high loading, NH4

+ loads in excess of the 

capacity of the nitrifying bacteria are adsorbed by the IX media.  During low loading periods, NH4
+ 

is desorbed and is utilized by the nitrifying population. A study by the Florida Department of 

Health (FDOH) and Hazen and Sawyer (H&S) showed that application of clinoptilolite in the 

nitrification stage of a two-stage passive OWTS resulted in 94% removal of Total Kedhjal 

Nitrogen (TKN; NH4
+-N + Organic N) entering the system (Hirst et al., 2013).  The use of the 

combined IX/nitrification process coupled with sulfur oxidizing denitrification (SOD) resulted in 

average effluent TN below 3 mg L-1.  The residual TN was mostly in the form of organic nitrogen 

and NH4
+ since NO3

- and NO2
- were reduced below 1 mg L-1 (Hirst et al., 2013). In a similar 

manner, scrap tire chips were recently shown in our laboratory to have a high IX capacity for NO3
- 

(Krayzelova et al., 2014; Lisi et al., 2004).  The tire chips can be bioregenerated by biological 
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denitrification.  Krayzelova et al. (2014) combined IX on scrap tire chips and autotrophic SOD in 

bench-scale studies with synthetic OWTS wastewater.  NO3
- removal efficiencies of 90%, 89% 

and 94% were achieved under steady state, variable flow and variable concentrations, respectively.  

Inspired by the studies of Hirst et al. (2013) and Krayzelova et al. (2014), Chapter 5 of this 

dissertation investigates Hybrid Adsorption and Biological Treatment Systems (HABiTS) for the 

removal of N in OWTS. HABiTS is composed of two biofilters in series employing IX and 

nitrification for removal of NH4
+ and tire scrap coupled with sulfur chips and oyster shells for both 

adsorption and SOD of NO3
-. This chapter aims to answer the following questions: 

1.! What IX/adsorption media best balances both ammonium removal and cost effectiveness for 

application in OWTS? 

2.! How is the BNR process within HABiTS affected by IX? 

3.! Does the proposed hybrid system enhance the removal of TIN in OWTS under transient loading 

conditions? 

The specific objectives for this chapter are as follows: 

•! Determine NH4
+ adsorption capacity, hydraulic properties, cost and availability of various 

IX media for application in HABiTS. 

•! Compare the performance of HABiTS enhanced OWTS with nitrification/denitrification 

biofilters without an adsorptive medium under transient loading conditions. 

•! Compare the hourly performance of HABiTS with nitrification/denitrification biofilters 

without an adsorptive medium under transient loading conditions.  
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CHAPTER 2:!LITERATURE REVIEW 
 
2.1 Non-Point Sources of Pollution 

A non-point source (NPS) of pollution is defined by the Unites States Environmental 

Protection Agency (USEPA, 2008) as a source that does not meet the legal definition of a point 

source. These sources are diffuse and non-discernable sources and are more difficult to control 

than point sources, and include agricultural and urban runoff and on-site wastewater treatment 

systems (OWTS). This dissertation will address problems with the control of Nitrogen (N) from 

two important NPS, recirculating aquaculture systems (RAS) and OWTS. The following 

subsections expand the literature review presented in the introduction to provide a more in depth 

background of the NPS and the efforts at mitigating those. Additional review of relevant literature 

can be found in the introductions of Chapters 3, 4 and 5. 

2.1.1 Recirculating Aquaculture Systems (RAS) 

Land based farmed fish production has increased as a response to the high demand for fish 

protein (Christianson and Summerfelt, 2014) and the decline of wild fish stocks due to over fishing 

and habitat elimination. Traditional fish farming involves outdoor fish ponds and constant fresh 

water inputs to account for water losses due to evaporation and seepage (Verdegem et al., 2006) 

as well as to improve the water quality within the pond. Recirculating aquaculture systems (RAS) 

provide a more controlled and water efficient process for fish farming (Hamlin et al., 2008; Martins 

et al., 2010; Gonçalves and Gagnon, 2011). In RAS, water is treated onsite and recirculated back 

to the fish tanks for reuse. Water savings in RAS varies depending on water exchange rates, which 

can range anywhere from 90 to 99% (van Rijn, 2006; Badiola et al., 2012). 
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Treatment processes within RAS vary greatly. The most common treatment unit is solids 

removal to remove any fish waste and uneaten food and reduce ammonium (NH4
+) production 

from decaying solids (Timmons et al., 2002). Fine particle removal is normally achieved using 

settling tanks, media filters, drum filters or foam fractionation (van Rijn, 2006; Martins et al. 2010, 

Timmons et al., 2002). Nitrification is another common treatment in RAS due to the toxicity of 

NH4
+ and nitrite (NO2

-) to aquatic species (Stickney et al., 2000; Timmons et al., 2002; Hamlin et 

al., 2008; Kuhn et al., 2010). Nitrification in RAS is often achieved using fluidized bed reactors, 

moving bed bioreactors (MBBR) or aerated media filters (Martins et al, 2010; van Rijn et al., 

Timmons et al., 2002) and requires high aeration rates to ensure complete nitrification.  

Denitrification in RAS is less common. In many systems nitrate (NO3
-) is managed through 

freshwater exchanges. In low water exchange systems, denitrification is achieved using reactors 

similar to those used for nitrification. Heterotrophic denitrification is most common in RAS and 

has been achieved in settling tanks due to anaerobic conditions in the sludge and utilizing the fish 

waste as the electron donor, fluidized media beds (Tsukuda et al., 2015, Kim et al., 2004) and 

upflow packed bed reactors (UPBRs) (Hamlin et al., 2008; Singer et al., 2008; Saliling et al., 2007).  

Fluidized media beds and UPBRs have been found to provide high denitrification 

efficiency with a small footprint when using media materials as carriers for denitrifying biomass 

(Tsukuda et al., 2015). Prior RAS denitrification studies with fluidized media beds and UPBRs 

involve the addition of an external carbon source since biologically available organic carbon is 

significantly removed in the sedimentation basin (Tsukuda et al., 2015) as well as the aerobic 

nitrification stage in RAS. Limited carbon availability can result in incomplete denitrification and 

release of NO2
- into the system causing toxicity. A variety of organic carbon sources and media 

materials have been studied. Saliling et al., (2007), for example, tested an UPBR with wood chips 
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and wheat straw and found NO3
--N removal rates of 1340 mg L-1d- with a flowrate of 15 mL min-

1 of synthetic aquaculture water. In the study by Hamlin et al., (2008) methanol, acetate and 

molasses were used as organic carbon sources in an UPBR with plastic carriers. Removal rates 

were found to be 670 mg NO3
--N L-1 d-1 for all three sources. Sulfur oxidizing denitrification 

(SOD) presents an alternative to heterotrophic denitrification by utilizing and inorganic solid phase 

electron donor, elemental sulfur (S0), and eliminating the need for an external organic carbon 

source. There have been limited studies investigating SOD in RAS. One example is the study by 

Christianson et al. (2015), where fluidized granular sulfur biofilters treating wastewater from a 

full-scale RAS achieved removal rates as high as 800 mg NO3
--N L-1-d-1 with a short empty bed 

contact time (EBCT) of 4 minutes. However, NO3
--N in the effluent remained high. Simard et al., 

(2015) on the other hand saw complete denitrification in sulfur granule columns connected in 

series with an EBCT of 640 minutes. Further research is needed for the application of SOD in 

RAS, with focus on optimization of EBCT and the effects of SOD as a denitrification unit within 

the RAS treatment loop.  

RAS systems often also employ disinfection processes. These processes aim to inactivate 

bacteria that could possibly be pathogenic to fish species. Conventional RAS disinfection 

processes include UV disinfection and ozonation (Timmons et al., 2002; Robertson et al. 2005). 

Other compounds of concern in RAS that have been the most reported issues are off-flavors 

(Badiola et al., 2012). These off-flavors impart and earthy musty odor and flavor to water and fish 

and can be detected in concentrations as low as 10 ng L-1 (Drikas et al., 2009). Off-flavors in RAS 

are typically managed by depuration which is achieved by placing the fish in clean water without 

or with very low levels of the off-flavor compounds so they can be purged from the fish. Although 

common, this practice is costly due to high water, chemical and energy usage as well as the loss 
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of fish biomass caused by starvation and stress during the depuration process (Burr et al., 2012). 

Advanced treatment technologies for off-flavor compound removal are discussed in Section 2.3.  

2.1.2 Conventional On-site Wastewater Treatment Systems (OWTS) 

Conventional OWTS typically refer to a septic system coupled with a subsurface drain 

field (Xuan et al, 2012). These systems are used rural and suburban areas with low population 

density where it is not economically feasible to construct the infrastructure needed to convey 

wastewater to centralized systems (Luostarinen et al., 2005; Gorman and Halvorsen, 2006). OWTS 

have the advantages of being low cost, simple to operate and maintain and providing in-situ 

treatment for domestic wastewater (USEPA, 1999). Regardless of these benefits there are still 

major challenges for OWTS applications. Factors that limit the location for application of OWTS 

include the depth to the water table (FDOH, 2013), which limits the use of the drain field and 

might require the use of a mound. A mound system results in increased construction costs and land 

use (USEPA, 2002). Space availability is another limitation, since OWTS require a considerable 

amount of land area for each residence. Local regulations may also limit OWTS applications by 

specifying distances between OWTS and water sources, such as drinking water wells (FDOH, 

2013). In Florida, for example, new OWTS cannot be installed within seventy five feet of a private 

potable well or a multi-family water well, one-hundred feet of a public drinking water well if such 

a well serves a facility with an estimated sewage flow of 2000 gallons or less per day and two-

hundred feet of a public drinking water well if such a well serves a facility with an estimated 

sewage flow of more than 2000 gallons per day (FDOH, 2013). 

The limited removal of nitrogen in OWTS is a critical challenge that needs to be addressed 

since it can limit applications of OWTS in sensitive ecosystems and cause overloading of N in 

both groundwater and surface water (Liu et al., 2009; Sahu et al., 2009). These issues are being 
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recognized and addressed in the state Florida, particularly for springsheds. For example, the 

Florida Department of Environmental Protection (FDEP) has determined the major contributors to 

nitrogen pollution in the Kings Bay springshed (Figure 2.1) and OWTS are recognized as the 

highest contributor to N pollution.  

 

Figure 2.1: Nitrogen inputs into the Kings Bay springshed in the state of Florida (data from 
FDEP, 2015). 

 
The treatment train in OWTS has two main components: the septic tank and the subsurface 

wastewater infiltration system or drain field (Figure 2.2). The primary purpose of the septic tank 

is for solids separation, anaerobic biodegradation of organics and ammonification of the organic 

N. The drain field acts as a media filter and intercepts solids while providing surface area for 

biofilm growth. Depending on the soil type, surface area and loading rate it may also promote 

other physical processes such as adsorption and/or ion exchange while also degrading organics 

and inactivating pathogens (USEPA, 2002). Distribution of the septic tank effluent to the drain 

field typically employs a perforated pipe, with either gravity or pumped distribution of the 
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wastewater. Nitrification can take place due to the presence of oxygen in the voids of the drain 

field soil media (USEPA, 2002). As mentioned previously, NO3
- is highly mobile and can travel 

through soil and eventually reach the groundwater or surface water causing eutrophication and/or 

contamination of drinking water sources. Denitrification can occur within the soil if saturated 

conditions persist and oxygen is depleted (Gill et al., 2009).  

 
Figure 2.2: Conventional on-site wastewater treatment system. 

 
A number of technologies have been developed to provide enhanced treatment in OWTS. 

These technologies vary from enhancement of the septic tank or the drainfield up to addition of 

new treatment units. An example of septic tank enhancement is the use of multi-chambered settling 

tanks that greatly improve solids removal. Another example was investigated by Moussavi et al. 

(2010) involving an upflow septic tank as opposed to the conventional horizontal flow system. 

Improved removal of total suspended solids (TSS) and chemical oxygen demand (COD) was 

observed at retention times as low as 24 hours. However, these modifications had little effect on 

N removal. Oh et al. (2014) studied the use of recycled rubber particles as filter media for the 

treatment of septic tank effluent and observed 93% removal of TSS and 90% removal of NH4
+-N. 

Chang et al. (2010) studied a modification of the conventional drainfield design that included a 
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vertical flow area for nitrification and a horizontal flow area with a combination of sand, tire 

crumbs and sawdust for denitrification. Greater removal of total N (TN) was observed in the 

modified drainfield (70%) compared with a conventional drainfield (50%).  

Passive N removal OWTS that incorporate biological nitrogen removal (BNR) in media 

filters after the septic tank have also been studied (Weiss et al., 2008; Smith, 2012; Tait et al., 

2013; Hirst et al., 2013). Unsaturated nitrifying biofilters with sand media have been found to 

improve TSS and TKN removal (Anderson et al., 1998, USEPA, 2002). Expanded clay materials 

have also been used in a variety of studies resulting in high TKN removal (Smith, 2012; Hirst et 

al., 2013) due to passive aeration as the wastewater flows through the unsaturated layer. This 

passive aeration through the biofilter has been shown to provide sufficient dissolved oxygen (DO) 

for nitrification; however, transient loadings can result in variable N concentrations in the effluent 

(Petitjean et al., 2016). These transient loading rates are predominant in these systems due to 

temporal variations in water use within the household (USEPA, 2002; Henze, 2002). Peak flows 

occur in the morning and afternoon (NSF International, 2005) and are limited during the day and 

night time, resulting in inconsistent substrate for the microbial community in the biofilters. This is 

especially problematic for slow growing microorganisms such as nitrifyers. The quality of the 

wastewater also varies temporally and depending on the number of people living in the residence, 

eating and cleaning HABiTS and health conditions (USEPA, 1999). Cleaning HABiTS, such as 

use of bleach, can kill the bacteria necessary for biological processes in the systems (USEPA, 

2002). Overcoming these challenges would require a robust treatment that could provide control 

of peak flows while promoting biological nitrogen removal in OWTS. More details on OWTS and 

biofilters is provided in Chapter 5. 
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2.2 Nutrient Mitigation  

Nutrients, most specifically nitrogen (N) and phosphorus (P), are key elements needed for 

biological growth.  However, when nutrients are discharged in excess to surface and groundwater 

they can have detrimental effects on the environment, including eutrophication (overgrowth of 

algae), which results in seagrass mortality, the release of toxins, death of aquatic species and 

hypoxia. Nitrate (NO3
-), an oxidized form of N, can cause impairment of drinking water supplies 

due to health effects on humans such as methaemoglobinemia, which reduces the ability of the 

blood to carry oxygen.  This disease is commonly referred to as “blue baby syndrome” since it 

mostly affects infants resulting in a bluish tint around the mouth, hands and feet (WHO, 1998). 

Other effects of NO3
--N in drinking water include possible cancers and adverse effects on the 

reproductive system (Gill et al., 2009). 

2.2.1 Biological Nitrogen Removal Processes 

N is usually removed from wastewater by biological nitrogen removal (BNR) processes. 

In sewage and septic tank effluents the most prevalent species of N is NH4
+, which is introduced 

in wastewater by the hydrolyzation of urea present in urine and feces. Nitrification is the aerobic 

oxidation of NH4
+ to NO2

- and NO2
- to NO3

- (Madigan et al., 2010). Nitrification occurs in a series 

of reactions requiring specific microorganisms, substrates and enzymes. The nitrification reaction 

as well as examples of the microoganisms and required substrates are described in Table 2.1. 

Recently, however, a bacterium from the Nitrospira genus was identified as a microorganism that 

can oxidize both NH4
+ and NO2

-, resulting in complete nitrification (Daims et al, 2015). This 

process, identified as comammox, results in a lower energy yield than the traditional two-step 

process described below. Although significant, this process was not investigated in this 

dissertation. 
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Table 2.1: Nitrification pathway reactions (Madigan et al., 2010). 

Bacterium Substrate Enzyme  
 NH3

+  
Nitrosomas � Ammonia Monooxygenase 
 NH2OH  
 � Hydroxylamine oxidoreductase 
 NO2

-  
Nitrospira/ 
Nitrobacter 

� Nitrite oxidoreductase 

 NO3
-  

 
In wastewater with pH values below 9.25 (pKa), the NH4

+ species is more prevalent than 

the ammonia (NH3) species (Equation 1).  

    !"#
$ ↔ !"& + "$(    Equation 2.1 

The overall wo-step nitrification process is shown in Equation 2.2, assuming a yield 

coefficient of 0.15 g volatile suspended solids per gram of substrate (Ahuja, 2014).   

((!"#
$ + 1.44,- + 0.3161,- + 0.081"1,&

3 → 0.08115"6,-! 

+0.919!,&
3 + 0.846"-, + 1.83"$   Equation 2.2 

The nitrification process can be limited by many factors. First, because the process is 

aerobic, an external supply of oxygen is normally needed to fully nitrify NH4
+ to NO3

-. To satisfy 

the stoichiometric relation, 3.3 g of O2 required for the complete oxidation of 1 g of NH4
+-N. Lack 

of oxygen can result in incomplete nitrification and can result in accumulation of NO2
-, which 

increases the toxicity of the wastewater further hindering the process by inhibition of NO2
- 

oxidizing bacteria (NOB). Lack of alkalinity is another factor that can hinder nitrification. As 

described in Equation 2.2, alkalinity is consumed during nitrification at a ratio of 0.35 g HCO3
- g 

-1 NH4
+-N, which may require addition of an external alkalinity source in areas with low alkalinity 

water. High organic content in the wastewater can also hinder the nitrification process since 

heterotrophic oxidizing bacteria can out compete nitrifiers for the available oxygen. 
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In wastewater treatment, nitrification is achieved using both suspended and attached 

growth processes (Metcalf and Eddy, 1979). Suspended growth processes are more typical in 

centralized wastewater treatment facilities and are designed similar to the activated sludge process. 

In suspended growth nitrification, however, aeration and mixing are used to maintain the microbes 

in a suspended state in the wastewater (Ahuja, 2014). For these systems, provision of an oxygen 

supply and mixing can be very energy intensive, expensive and complex. In attached growth 

processes, a high surface area medium is supplied to promote attachment and growth of nitrifying 

biofilm (Metcalf and Eddy, 1979) and forcer aeration may be supplied. Attached growth 

nitrification has been carried out in trickling filters (Metcalf and Eddy, 1979), similarly, by 

percolation of water through the drainfield soil in conventional OWTS (USEPA, 2002), in media 

bio-filters (Hirst et al., 2013), moving bed bioreactors (Luostarinen et al., 2006), constructed 

wetlands and bioretention cells (Ergas et al., 2010). 

Denitrification occurs when lack of oxygen (<0.5 mg L-1) causes facultative 

microorganisms to utilize NO3
- as an alternate electron acceptor (Nazaroff and Cohen, 2001). 

Denitrification is a step-wise process that reduces NO3
- to nitrogen gas (N2). The denitrification 

pathway and an example of the microorganism, enzymes and substrates in this pathway are 

described in Table 2.2. Denitrifying bacteria also require an electron donor, which for 

heterotrophic denitrification is a source of organic carbon. Heterotrophic denitrification utilizing 

the organic carbon fraction available in wastewater and assuming a yield coefficient of 0.18 g 

volatile suspended solids per gram of substrate (Ahuja, 2014) is shown in Equation 2.4.  
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Table 2.2: Denitrification pathway 

Bacterium Substrate Enzyme  
 NO3

-  
Escherichia Coli, Pseudomonas stutzeri, Paracoccus 
denitrificants, 

� Nitrate reductase 

 NO2
-  

Pseudomonas stutzeri/ Paracoccus denitrificants � Nitrite reductase 
 NO  
Pseudomonas stutzeri/ Paracoccus denitrificants � Nitric oxide 

reductase 
 N2O  
Pseudomonas stutzeri/ Paracoccus denitrificants � Nitrous oxide reductase 
 N2  

 

(!,&
3 + 0.1271:;":<,&! + "$ → 0.05815"6,-! + 0.468!- + 0.8481,- 

+0.127!"#
$ + 1.84"-, + 0.127"1,&

3   Equation 2.3 

The process of heterotrophic denitrification generates alkalinity at a ratio of 0.12 g HCO3
- 

g -1 NO3
-, which can be useful when pre-anoxic zones are combined with nitrification processes. 

However, this process can be limited by the presence of oxygen or lack of electron donor, and 

result in incomplete denitrification and the production of some of the N compounds in the 

denitrification pathway. For example, incomplete denitrification can result in the increase of NO2
- 

concentrations that have toxic effects to aquatic species (Timmons et al., 2002; Hamlin et al., 

2008). Incomplete denitrification can also result in N2O(g) emission, which is important since 

N2O(g) is a potent greenhouse gas (Lashof & Ahuja, 1990). Furthermore, the organic carbon 

requirement can be a limiting factor since bioavailable organic carbon is typically removed in the 

aerobic stage of BNR processes. The addition of external sources of organic carbon, such as 

methanol or acetate, can be costly and complex (Park and Yoo, 2009; Hamlin et al, 2008) requiring 

close monitoring of C/N ratios to ensure complete denitrification and reduce carry-over of organic 
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carbon to the effluent, which result in permit violations or hinder other treatment processes 

(Metcalf and Eddy, 1979). 

Autotrophic denitrification is an alternative metabolic process, where inorganic electron 

donors, such as elemental sulfur (S0), H2 or pyrite, are utilized (Sengupta et al.,2007; Ergas and 

Reuss, 2001; Tong et al., 2017). The use of S0 is advantageous due its high NO3
- removal rates and 

lower costs when compared to other electron donor sources (Sengupta et al., 2007). Thiobacillus 

denitrificans utilize NO3
- as the electron acceptor and oxidize S0 to SO4

2- (Kelly, 1999). A 

stoichiometric equation S0 oxidizing denitrification (SOD) is shown in Equation 2.4 (Sengupta et 

al., 2007). There are some disadvantages associated with SOD such as the low solubility of S0 

(Park and Yoo, 2009) that can potentially limit denitrification rates. In addition, the consumption 

of alkalinity (Equation 2.4) could require the addition of an external alkalinity source such as oyster 

shells or limestone (Oh et al, 2001). Furthermore, the production of high SO4
2- concentrations 

could potentially limit applications, particularly for drinking water processes where a maximum 

SO4
2- level of 250 mg L-1 is recommended under the National Secondary Drinking Water 

Regulations (USEPA, 2009) 

!,&
3 + 1.1>; + 0.41,- + 0.76"-, + 0.08!"#

$ → (0.0815"6,-! 

+1.1>,#
-3 + 0.5!- + 1.28"$   Equation 2.4 

Like nitrification, denitrification can be achieved using either suspended or attached 

growth treatment processes (Metcalfe and Eddy, 1979) only under anoxic conditions as described 

above. Suspended growth processes, like the Bardenpho process, are typically used in wastewater 

treatment plants (Metcalfe and Eddy, 1979). Attached growth processes for denitrification can 

utilize the same type of media utilized in nitrification but maintained under saturated conditions to 

ensure oxygen depletion and an anaerobic environment. Other media utilized for denitrification 
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includes wood chips (Ergas et al., 2010), sulfur powder (Christianson et al., 2015), sulfur pellets 

mixed with tire scraps (Krayzelova et al., 2014), pyrite (Tong et al., 2017). In all cases mentioned 

above, the media serves as both biofilm carrier and source of electron donor. 

Other BNR processes have been studied. Simultaneous nitrification and denitrification 

(SND) can often occur in water/wastewater treatment in the same bioreactor without distinct 

aerobic or anoxic zone (Daigger and Littleton, 2000). This could potentially occur in aerobic media 

filters for example, where oxygen depletion along the length of the filter could result in anoxic 

conditions that are favorable for denitrification. On the other hand, SND can also occur within the 

layers of the biofilm in both suspended and attached processes. Thick biofilms would limit oxygen 

diffusion creating and anoxic zones within the biofilm even under aerobic conditions (Rittman and 

Langeland, 1985). This would result in SND within the biofilm and effectively reduce TN. Overall, 

the SND process reduces aeration requirements and the need for external organic carbon sources 

(Metcalf and Eddy, 1979; Rittman and Langeland, 1985). 

Shortcut N removal processes have gained popularity in recent years. These processes, also 

known as nitrite shunt, are carried out by oxidizing NH4
+ to NO2

- and reducing it to N2. This 

process results in energy savings, lower oxygen and organic carbon source demand (Schmidt et 

al., 2003). This process, however, requires carefully controlled DO conditions and short SRTs to 

limit the activity of NOBs and to prevent the production of NO3
-. Anaerobic ammonium oxidation 

(Anammox) is another popular process where NH4
+ is partially nitrified to NO2

- and NO2
- is 

utilized as an oxidant in the denitrification process to remove the remaining NH4
+ (Van 

Loosdrecht, 2002). This process has no carbon source requirements but requires substantial oxygen 

and temperature control to allow for the partial nitrification required.  
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2.2.2 Ion Exchange and Adsorption 

Ion exchange (IX) is the physical process where ions in the aqueous phase are exchanged 

with ions in the solid phase (Howe et al, 2012). The type of ion exchanged in the process is 

dependent on the media utilized and the pre-saturated ion. Zeolites are hydrated alumino-silicate 

minerals with a porous structure.  They have an internal structure of channels and pores containing 

ions that can be exchanged with ions in solution (Wei et al., 2011). Zeolites are the most common 

media for cation exchange (Wang and Peng, 2010) and can also be used for anion exchange when 

chemically modified (Loganathan et al., 2013). The adsorption capacity of zeolites is dependent 

on the application, type of zeolite, the ion for exchange and presence of other competing ions. 

Wang and Peng (2010) determined that zeolites have a selected affinity for K+ and NH4
+ ions over 

Na+ ions. Ames et al. (1960) reported that the cation selectivity of zeolites follows the order of: 

1?$ > AB$ > C$ > !"#
$ > DE-$ > !E$ > 1E-$ > FG&$ > HI-$. This selectivity explains 

why typical modifications of zeolites include supersaturation of the IX sites with sodium (Na+) 

using a highly-concentrated NaCl solution. This supersaturation or pretreatment can enhance 

adsorption of the desired cation but results in an effluent brine solution that will require further 

treatment or special disposal.  

Other studies have shown the potential for biological regeneration of the NH4
+ saturated 

zeolite by utilizing the medium as a carrier for nitrifying biofilms (Lahav and Green, 1997; Aponte-

Morales et al, 2016). During nitrification, nitrifying bacteria utilize the NH4
+ in solution, lowering 

the bulk liquid concentration, which in turn drives desorption of the NH4
+ ion from the exchanger 

resulting in bioregeneration. An advantage of bioregeneration is that it provides reuse without 

requiring post treatment of brine solutions. A summary of prior studies of IX with zeolites, their 

applications, adsorption capacities and regeneration methods is provided in Table 2.4. Additional 
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media for ion exchange and nutrient adsorption include purolite for PO4
3- removal (Kauspediene 

and Snukiskis, 2010), tire scraps for NO3
- (Krayzelova et al., 2014; Chang et al., 2010; Lisi et al., 

2004) and dried or pyrolized agricultural residues for NH4
+ removal (Liu et al., 2010). Hybrid 

treatments combining IX and BNR are discussed further in Chapter 5. 

Table 2.3: Applications of zeolite materials for ion exchange of nutrients 

Zeolite 
Compound 

Particle 
size 

(mm) 
Reactor Target 

ion 
Surface 

modification 

Adsorption 
capacity (mg 

g-1) 
Regeneration  

Clinoptilolite 
<0.25 Batch 

 
NH4

+ 
 

1 M Na+ 5.232 
 

Nitrification in 
SBR (NH4

+-N 
< 5 mg L-1) 

Wei et al. 
(2011) 

 Modernite None 7.586 

Clinoptilolite 0.5-1 Column NH4
+ 1 M Na+ 10.4 None Alkas et al. 

(2013) 

Chabazite 2-4 Batch NH4
+ None 4.5 

 None Cyrus and 
Reddy (2011) 

Chabazite 1 Batch NH4
+ Groundwater 40.46 

Nitrification in 
SBR (NH4

+-N 
~ 800 mg L-1) 

Aponte-
Morales  et 
al., (2016) 

Clinoptilolite 
<0.09 Batch Pb2+ None 

276 
None Inglezakis et 

al. (2010) Bentonite 276 
Vermiculite 205 

 
2.3 Off-Flavor Compound Mitigation 

Off-flavor compounds plague both drinking and wastewater treatment. Geosmin (GSM) 

and 2-methylisoborneol (MIB) are secondary metabolites of cyanobacteria and actinomycetes 

(Guttman and van Rijn, 2008). These metabolites are released when cells lyse together with other 

microtoxins, particularly during algae blooms. Although GSM and MIB are not toxic they are 

problematic due to their low odor threshold at concentrations as low as 10 ng L-1 (Drikas et al., 

2009). Additionally, they accumulate in the lipid-rich tissue of fish and can affect taste and quality 

of the filet (Howgate, 2004), particularly in freshwater farm raised catfish, salmon and sturgeon. 

The current removal approach for these compounds is to purge them from the fish prior to 
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harvesting, which requires large amounts of fresh or highly treated water (Burr et al., 2012) and 

results in high cost.  

Prior studies have identified the persistence of off-flavor compounds in highly aerobic and 

environments with high organic carbon content (Guttman and van Rijn, 2008; Schrader and 

Summerfelt, 2010), particularly in biofilters utilized in RAS (Schrader et al., 2005). Biological 

treatment has been used for removal of off-flavor compounds. Guttman and van Rijn (2009) 

indicated that anaerobic sludge from RAS has the potential to both absorb and biodegrade GSM 

and MIB. Hsieh et al. (2010), on the other hand, observed degradation of 93% and 63.7% of GSM 

and MIB, respectively, in aerobic slow sand filters with an empty bed contact time (EBCT) of 173 

mins. The findings of Hamlin et al., (2008) supported Hsieh et al., (2010) where no significant 

difference of GSM and MIB was observed in the effluent of heterotrophic UPBRs with varying 

carbon sources. 

A common process for GSM and MIB removal is the use of adsorbents, such as activated 

carbon, for the physical chemical removal of GSM and MIB. Activated carbon, both in powder or 

granular form, has been studied extensively and the capacity for GSM and MIB adsorption has 

been shown to be dependent on the base material of the carbon (Yu, et al., 2007; Cook et al., 2000) 

and interactions with natural organic matter (Matsui et al., 2013; Newcombe et al., 2002; Elhadi 

et al., 2006). Enhanced off-flavor removal has also been attributed to decreasing particle size as 

observed by Matsui et al., (2013). In batch test studies, Yu et al., 2007 investigated powdered 

activated carbons and found higher adsorption capacity of GSM and MIB in fruit shell-based 

carbon than wood and bituminous coal carbon. This high capacity was attributed to larger 

micropore volumes, rather than total pore volume or surface area. In batch studies by Lalezary et 



 25 

al., (1986) a dose of 20 mg L-1 of powdered activated carbon was sufficient to remove over 90% 

of GSM and MIB with a contact time of 180 mins.  

Combined activated carbon and biological degradation of GSM and MIB in biofilters has 

also been studied. Drikas et al., (2009) studied a variety of pre-treated granular activated carbons 

and found 20 mins EBCT in virgin carbon biofilters was sufficient to remove GSM and MIB in 

the presence of dissolved organic carbon varying from 2 to 4 mg L-1. Combined biodegradation an 

adsorption processes were also observed by Drikas et al., (2009) resulting in reduced MIB removal 

in autoclaved granular activated carbon but no significant change in GSM removal. Preferential 

removal of GSM over MIB has been seen in studies with both powdered and granular activated 

carbon (Lalezary et al., 1986; Chen et al., 1997; Summers et al., 2013). Factors such as seasonal 

water temperatures, EBCT, hydraulic loading (HLR) and the transient nature of off-flavors can 

also affect removal of these compounds in granular activated carbon biofilters (Elhadi et al., 2006). 

The use of activated carbon, however, is limited by the potential high dose necessary for removal 

of GSM and MIB to below under threshold levels (Matsui et al., 2013), resulting in high capital 

and operational costs (Bamuza-Pemu and Chirwa, 2012). Alternative adsorbents for GSM and 

MIB were studied by Kelly et al. (2006) including polystyrene, polyethylene and natural rubber 

and found removals of 19.4 % and 30.1% of GSM and MIB, respectively with a dose of 1.43 g L-

1 and 8 hr contact time. However, further studies into the application of alternative low cost 

adsorbents for the removal of GSM and MIB are needed. 

Oxidation processes have also been used for GSM and MIB removal in RAS and drinking 

water. These processes rely on highly reactive hydroxyl radicals, which are non-selective and able 

to oxidize electron-rich organic compounds (Howe et al., 2012). Oxidation processes are more 

common for treatment of drinking water due to the importance of the public’s perception of safe 
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drinking water and the need for a highly-treated product water. Oxidation processes include 

ultraviolet radiation (UV), ozonation and advanced oxidation processes (AOPs) with different 

catalysts (Srinivasan & Sorial, 2011) or a combination of two or more of the above. Photolysis by 

UV achieves limited removal of GSM and MIB but performance is enhanced when combined with 

a Vacuum UV process (Kutschera et al., 2009). Ozonation, which is conventionally used for 

disinfection purposes, can also oxidize off-flavor compounds (Gonçalves and Gagnon, 2011). 

Ozone, however, possess the threat of disinfection by-product formation requiring strict dosage 

control.  

Photocatalysis is an AOP process that involves light activation of a catalyst for production 

of hydroxyl radicals. Titanium dioxide (TiO2) is a common catalyst that has been studied for 

oxidation of trace organic compounds in both air and water applications (Obee and Brown, 1995; 

McCullagh et al. 2011). The slurry application of TiO2 under UV light has been found extremely 

effective for GSM and MIB (Lawton et al., 2003). This application, however, is limited by the 

need for removal of the fine TiO2 particles. Application of TiO2 in pelletized form has shown high 

removal of GSM and MIB (Pestana et al., 2014) but results in very high catalyst dosage that could 

have detrimental effects of fish health. Prior studies have investigated immobilization of TiO2 onto 

glass plates (Zhao et al., 2015) with significant removal of GSM and MIB under low catalyst 

dosage (Pettit et al., 2014). Immobilized UV-TiO2 shows great promise for applications in RAS 

but further research is required to identify the operational parameters as well as the potential effects 

of the UV-TiO2 reactor on the water quality conditions of RAS. 

Due to the highly reactive and non-selective nature of the hydroxyl radicals, the removal 

of GSM and MIB in AOPs can be limited by competition of natural organic matter and carbonate 

scavengers (Bamuza-Pemu and Chirwa, 2012). AOPs with UV can also be limited in the treatment 
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of turbid waters due to lack of light penetration and reduced activation of the catalyst. These 

processes also have the potential to produce NO2
- as a consequence of NO3

- photolysis (Kutschera 

et al., 2009). Limitations in the full-scale application of AOP process are mostly due to the high 

cost, dominated by the energy requirements of the UV irradiation (Zoschke et al., 2012). 

  



 28 

 
 
 
 
 

CHAPTER 3:!OXIDATION OF OFF FLAVOR COMPOUNDS IN RECIRCULATING 

AQUACULTURE SYSTEMS USING UV-TiO2 PHOTOCATALYSIS 

3.1 Introduction 

In most conventional aquaculture systems, fish are raised in tanks or ponds that require 

constant fresh water inputs and have high wastewater production (Hamlin et al., 2009). 

Recirculating aquaculture systems (RAS) are gaining popularity due to their water savings 

compared with conventional aquaculture. In RAS, the water is treated and recirculated, reducing 

fresh water inputs and wastewater discharges (Gonçalves and Gagnon, 2011). In addition, RAS 

provide environmental controls that can allow higher production rates (Gonçalves and Gagnon, 

2011). A disadvantage of RAS is that conditions are created for the production of off-flavor 

compounds. These compounds, such as (-)-Geosmin (GSM) and 2-methylisoborneol (MIB), are 

secondary metabolites of cyanobacteria and some actinomycetes (Guttman and van Rijn, 2008) 

that cause an earthy musty flavor that can be detected in water at extremely low concentrations 

(between 10 and 20 ng L-1 in water; Drikas et al., 2009). Additionally, they accumulate in the lipid-

rich tissue of fish and can affect taste and quality of the filet (Howgate, 2004), particularly in 

freshwater farm raised catfish, salmon and sturgeon. The current removal approach for these 

compounds is to purge them from the fish prior to harvesting, which requires large amounts of 

fresh or highly treated water (Burr et al., 2012).  

Advanced treatment technologies are required for removal of GSM and MIB from RAS. 

Use of adsorbents, such as activated carbon, has been studied extensively and removal of GSM 

and MIB. Adsorbent capacity has been shown to be dependent on the base material of the carbon 
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(Yu, et al., 2007; Cook et al., 2000) and interactions with natural organic matter in the wastewater 

(Matsui et al., 2013; Newcombe et al., 2002). However, removal of GSM and MIB to below the 

detection threshold requires large dosages of activated carbon (Matsui et al., 2013), resulting in 

high capital and operational costs (Bamuza-Pemu and Chirwa, 2012). Other treatments for GSM 

and MIB include ultraviolet radiation (UV), ozonation and advanced oxidation processes (AOPs) 

using different catalysts (Srinivasan & Sorial, 2011) or a combination of two or more oxidation 

processes. AOPs rely on highly reactive hydroxyl radicals, which are non-selective and able to 

oxidize electron-rich organic compounds (Howe et al., 2012). These processes are more common 

for treatment of drinking water due to the importance of the public’s perception of safe drinking 

water and the need for a highly-treated product water. In aquaculture, oxidation processes are 

commonly used for pathogen control but the dosing has been found insufficient for GSM and MIB 

removal (Schrader et al., 2010).  

An AOP involving UV photocatalysis with titanium dioxide (UV-TiO2) has been studied 

for oxidation of trace organic compounds in both air and water applications (Obee and Brown, 

1995; McCullagh et al. 2011).  When light waves of sufficient energy activate the catalyst, an 

electron is excited from the valence band to the conducting band as described by Equation 3.1. 

    JK,- + ℎM → G3 + ℎ$    Equation 3.1 

The resulting hole in the valence band (h+) has sufficient reduction potential to oxidize 

water molecules to hydroxyl radicals (Equation 3.2).  The hydroxyl radicals in turn oxidize 

organics, eventually leading to carbon dioxide and mineral acid formation (Equation 

3.3).  Depending upon concentration levels, pH and surface charge of the catalyst (Pettit et al., 

2014) some organics may be directly oxidized by the valence band holes (Equation 3.4).     

ℎ$ + "-, → ,"∙ + "$    Equation 3.2 
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,"∙ + ,OIEPKQ → 1,-    Equation 3.3 

ℎ$ + ,OIEPKQ → 1,-    Equation 3.4 

Previous studies have shown that UV-TiO2 photocatalysis has the capacity to oxidize up to 

99% of GSM and MIB (Lawton et al., 2003) when applied as a slurry. In these applications, after 

the reaction step the catalyst was removed by centrifugation or filtration. The application of this 

method; however, is problematic in aquaculture (Pestana et al., 2014) because filtration or 

centrifugation are unable to remove very fine particles and the effect of the TiO2 particles on fish 

health is unknown. The TiO2 catalyst has also been applied in pelletized form, resulting in high 

removal rates for GSM and MIB, but requiring a high catalyst load (Pestana et al., 2014). An 

alternative for application of the UV-TiO2 treatment process that can be adapted to RAS is the 

immobilization of the catalyst onto a solid substrate. This application has been studied for 

degradation of trace organics, such as neonicotinoid insecticides, alachlor, methylene blue and 

pentachlorophenol (Zabar et al., 2012; Ryn et al., 2003; Nawi and Zain, 2012; Gunzalazuardi and 

Lindu, 2005). A number of catalyst immobilization methods have been used including sol-gel 

applications (Gunzalazuardi and Lindu, 2005), dip coating (Nawi and Zain, 2012) and spray 

coating (Pettit et al., 2014; Zhao et al., 2015). Likewise, there are a number of solid substrates for 

the immobilization, including glass (Nawi and Zain, 2012; Rubio et al., 2013), metals 

(Gunzalazuardi and Lindu, 2005) and carbon nano tubes (Yao et al., 2008). 

In prior studies in our laboratory an AOP treatment was developed involving a UV reactor 

with TiO2 immobilized on glass plates (Pettit et al., 2014; Zhao et al., 2015). High removal rates 

of GSM and MIB were observed with spiked de-ionized water and RAS wastewater in under 8-

hours in batch studies. This study builds on the above-mentioned research by investigating the 

application of the UV-TiO2 as a treatment unit for RAS. The specific objectives of this study were 
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to (1) investigate the performance of the UV-TiO2 treatment under batch and continuous flow 

reactor configurations for the removal of GSM and MIB in RAS; and (2) evaluate and discuss the 

effect of the UV-TiO2 treatment on water quality parameters and the possible impacts on biological 

wastewater treatment processes in RAS. 

3.2 Materials and Methods 

3.2.1 UV-TiO2 AOP Reactor 

A description of the bench-scale UV-TiO2 reactor used in this study has been published 

elsewhere (Pettit et al., 2014). Briefly, the UV-TiO2 reactor is an aluminum container with 

dimensions of 38.1 cm (l) x 5.08 cm (w) x 2.54 cm (h) that houses the TiO2 coated glass plates and 

two T5 8-watt fluorescent GE Blacklight Blue bulbs (F8T5BLB), which provided irradiance in the 

UVA spectral range of 350 to 400 nm. The reactor was operated at a flow rate of approximately 

200 mL min-1 using a Masterflex L/S peristaltic pump (Cole Palmer; Vernon Hills, IL). This flow 

rate results in a water height above the glass plates of approximately 2 cm.  

3.2.2 Batch Reactor Application 

Batch experiments were carried out at Healthy Earth Sarasota (HES) facility located within 

the MOTE Aquaculture Research Park where Siberian Sturgeon are raised in RAS. The sturgeon 

are fed at a rate of 70 kg d-1 and the dissolved oxygen (DO) concentrations are maintained at or 

near saturation to ensure fish health. Each RAS treats the wastewater from four 70 m3 growout 

tanks. A common trough collects the wastewater, which flows through a series of treatments 

(Figure 3.1) and is later recirculated back to the tanks. The first treatment unit is a rotating 60 mm 

drum screen filter (PR Aqua Rotofilter Model 4872, Nanaimo, BC, Canada) for solids separation. 

The concentrate is routed to a settling pond while the filtered water flows to a Moving Bed 

Bioreactor (MBBR) for organic carbon removal and nitrification of ammonium (NH4
+) to nitrite 



 32 

(NO2
-) and nitrate (NO3

-). The MBBR is a 45 m3 mechanically aerated tank with approximately 

55% of the volume occupied by plastic carriers (AMB™ media, EEC North America LLC, Blue 

Bell, PA) that provide the superficial area for the growth of microorganisms. A portion of the 

wastewater (the side stream in Figure 3.1) is denitrified in two parallel 1.89 m3 upflow packed bed 

reactors (UPBRs), with approximately 1 m3 of the volume occupied by plastic carriers (AMB™ 

media, EEC North America LLC, Blue Bell, PA). Molasses (C12H22O11), a locally available 

byproduct of sugar cane processing, is used as an electron donor and carbon source for the 

denitrification process at a carbon to NO3
- ratio of 2:1 (Hamlin, 2008). The low NO3

- effluent from 

the UPBR is pumped back to the main line prior to the drum filter. After the MBBR, the water 

enters a degassing basin where air is injected to remove CO2 and restore the DO concentrations. 

The water is then subjected to UV disinfection and enhanced with pure oxygen before returning it 

to the fish tanks. Alkalinity is monitored in this same basin and controlled with the addition of 

sodium bicarbonate. This treatment scheme lowers nitrogen (N) concentrations and makes possible 

the reuse of approximately 88% of the treated water, reducing both the amount of freshwater inputs 

and wastewater production (the other 12% is replaced with groundwater). The UV-TiO2 reactor 

was placed after the MBBR prior to the oxygenation basin and sodium bicarbonate addition for 

alkalinity control. Nitrified RAS effluent (2 L) was pumped to a glass retention tank and treated 

by recirculating through the reactor for six hours. The total treatment cycle (fill, react, decant) was 

about 8 hours and was repeated 3 times each day. A ChonTrol four-circuit programmable timer 

(Cole Palmer; Vernon Hills, IL) was used to control the cycles. 
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Figure 3.1: Treatment scheme at HES. Main line, return and side stream flow are shown using 

different line styles. 
 
3.2.3 Continuous Flow Application 

A laboratory scale RAS (Figure 3.2) was designed based on a 0.004% scale down of HES’s 

RAS shown in Figure 3.1. Feeding rates were calculated based on a scale down of HES’s feeding 

rates and equations for typical RAS Total Ammonia Nitrogen (TAN) loading rates from Timmons 

et al. (2002). Synthetic wastewater was pumped from a 2 L glass container into the system at a 

flow rate of 1.3 L d-1 using a Masterflex C/L Dual Channel Pump (Cole Palmer; Vernon Hills, IL). 

The synthetic wastewater consisted of a solution of 0.25 g L-1 NH4Cl and 0.4 g L-1 NaHCO3 and 

dissolved fish feed pellets (1.58 g L-1) from the feeders at HES. Water was recirculated through 

the main line at a rate of 360 L d-1 using a Masterflex L/S peristaltic pump (Cole Palmer; Vernon 

Hills, IL). Two Cole-Parmer Valved Variable Area Acrylic flow meters were used for flow 
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measurement and control into the MBBR and UPBR. The MBBR consisted of a glass bottle with 

a working volume of 3 liters, with 55% filled with plastic carriers collected from the MBBR in 

MAP’s RAS described in 2.1. A compressor and air diffuser (Tetra Whisper®, Blacksburg, VA) 

provided the DO needed for nitrification. A side stream was connected after the MBBR where 10.8 

L d-1 were pumped to an UPBR consisting of an acrylic column (Koflo; Cary, IL) of approximately 

0.75 L with 53% of its volume filled with plastic carriers from HES’s UPBR described in 2.1. 

Plastic carriers were collected from HES since they provided biofilms acclimated to RAS 

conditions, which allowed for rapid start-up times for the bench-scale system. The bench-scale 

RAS was initially filled with aquaculture water from the growout tanks at HES. A single-syringe 

infusion pump (Cole Palmer; Vernon Hills, IL) was connected to the side stream to provide 

molasses (Hamlin, 2008) at a flow rate of 4 µL hr-1. The effluent from the UPBR was pumped 

back to the main line and recirculated to the MBBR. A small glass reservoir (working volume less 

than 500 mL) was added to facilitate the installation of the photocatalytic reactor as a side treatment 

unit and to add an outlet stream for control of liquid build up.  

Two different strategies were used to test the UV-TiO2 reactor in the bench-scale RAS.  A 

preliminary experiment was carried out where the UV-TiO2 reactor was placed within the mainline 

of the RAS, just upstream of the MBBR (not shown).  Due to problems with nitrification inhibition 

(described below), a second loop was added, and the UV-TiO2 reactor was added as a side stream 

treatment (Figure 3.2). Samples were collected two to three times each week prior to installation 

of the UV-TiO2 reactor (25 days), one hour after installation and two to three times each week 

after installation of UV-TiO2.  



 35 

 
Figure 3.2: Bench scale RAS. Mainline and side stream flows for UPBR and UV-TiO2 reactor 

are shown in different line styles (Not to scale). 
 
3.2.4 Analytical Methods 

Samples collected from the full and bench scale RAS were analyzed according to Standard 

Methods (APHA et al., 2012). pH and dissolved oxygen (DO) were measured using an Oakton 

Acorn Series meter (Orion 5 Star ThermoScientific) and calibrated electrodes. A portion of the 

samples was filtered through a 0.45 µm mixed Cellulose Esters filter (FisherScientific, Waltham, 

MA). Chemical oxygen demand (COD) was measured for unfiltered and filtered samples with the 

Vario Tube Test (Loveland Co) COD LR test kits ([5220]; MDL: 0-150 mg L-1). During Phase I, 

ammonium was determined by the colorimetric method (Willis et al., 1996) and the resorcinol 

method was used for nitrate (Zhang and Fisher, 2006). NO2
- was determined according to Standard 

Methods [4500]. The concentrations of all three N species were determined by absorbency in a 

HACH 4000 Spectrophotometer (Loveland, CO). During Phase II, concentrations of anions (NO2
-



 36 

, NO3, PO4
-3, SO4

-2) and cations (NH4
+) were measured in the filtered samples using a Metrohm 

881 Compact IC Pro (Herisau, Switzerland) ion chromatography system. MDLs for NO3
-, NO2

-, 

SO4
2-, PO4

3- and NH4
+ were 0.01, 0.04, 0.01, 0.02 and 0.07 mg L-1, respectively. 

3.2.5 Trace Analyses 

GSM and MIB analysis where performed by Solid Phase Micro-extraction (SPME) and 

GC/MS.  Samples were prepared using a modification of method 6040D (APHA et al., 2012). 

Preparation consisted of adding 9 g of salt, previously calcinated for 5 hours at 550°C, 30 mL 

sample and 3 µL of the IBMP solution to a 45 mL glass vial containing a PTFE stirrer and PTFE 

septa cap. The vial was placed in a water bath with temperature range of 60-65°C to ensure 

volatilization of the desired compounds. A divinylbenzene/ carboxen/ polydimethylsiloxane 

(DVB/CAR/PDMS) fiber was injected into the vial with 0.8 cm exposed to the headspace for 30 

minutes. After retraction the fiber was fully exposed in the GC/MS injector for 3 minutes. Samples 

were diluted when necessary to ensure readings within the detection range of 1ng L-1 to 40 ng L-1. 

Stock solutions of 100 mg L-1 for both GSM and MIB were purchased from Sigma Aldrich (St. 

Louis, MO). A 1ug L-1 3-isobutyl-2-methoxypyrazine (IBMP) (Sigma Aldrich,) solution was used 

as an internal standard. Compound separation and detection was performed using a Perkin Elmer 

(Waltham, MS) Clarus 580 GC/MS equipped with a 30 m x 0.25 mm x 0.25 µm HP-5MS Agilent 

column (Santa Clara, CA). The injector temperature was set to 250°C. The initial oven temperature 

was set at 50°C, with a ramp of 15°C min-1 and a maximum temperature of 280°. For the first 2 

minutes split-less mode was activated, and for the remaining 15 minutes the split was set at 50 

ml/min He with 1mL min-1 carrier flow. The MS method used a solvent delay of 3 minutes and 

selected ion recording for 124/151 (IBMP), 95/107/135 (MIB) and 112/116 m z-1 (GSM).  
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3.2.6 Statistical Analysis 

Statistical analyses were performed to compare the performance of RAS with and without 

the UV-TiO2 treatment. A paired t-test assuming equal variances was performed in Excel 2011 for 

GSM, MIB and N species results from both phases with !=0.05.  

3.3 Results 

3.3.1 Batch Reactor Applications 

Average water quality data for all HES’s treatment units and UV-TiO2 reactor performance 

during treatment cycles 1 to 13 are shown in Table 3.1. pH remained neutral in all treatment units 

including the UV-TiO2. DO concentrations were highest in the fish tank, as expected, due to the 

pure oxygen injection prior to the recirculation. In the UPBR, DO concentrations were higher than 

expected since denitrification is an anaerobic treatment process. This could have hindered 

denitrification as evident by the high NO2
--N concentrations in the effluent of the UPBR and the 

low removal of nitrate (25%). In the effluent of the UV-TiO2, slightly significant increases were 

observed in NO2
--N concentrations when compared to the MBBR effluent, but concentrations 

remained lower than 1 mg L-1. No significant changes were observed in NH4
+-N and NO3

--N 

concentrations. 

The highest GSM and MIB concentrations were found in the drum filter effluent (solids 

slurry), reaching average concentrations of 101 and 235 ng L-1, respectively (Figure 3.3). 

Concentrations in the fish tank averaged 29 and 41 ng L-1 for GSM and MIB, respectively, and 

were not significantly different than those in the MBBR.  Concentrations detected in HES’s RAS 

were somewhat lower than expected since previous monitoring by HES had shown concentrations 

as high as 50 ng L-1. The UPBR achieves some removal of the compounds, as shown by the 

significantly lower concentrations in the UPBR effluent compared to the MBBR effluent. For both 
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GSM and MIB the UV-TiO2 reactor showed significant removal resulting in concentrations as low 

as 10 and 20 ng L-1, respectively. On average, 72% of GSM and 62.6% of MIB were removed after 

6 hours of contact time.  

Table 3.1: Average water quality for HES’s RAS and UV-TiO2 reactor. 

 Ground 
water 

Fish tank Drum filter UPBR MBBR UV-TiO2 

pH 7.62 
±0.065 

6.59 
±0.15 

6.76 
±0.074 

6.57 
±0.095 

6.65 
±0.055 

7.88 
±0.175 

DO 
(mg L-1) 

7.07 
±0.255 

10.23 
±0.65 

8.19 
±0.554 

2.53 
±0.335 

7.22 
±0.345 

7.66 
±0.245 

Conductivity 
(mS cm-1) 

1.3 
±0.065 

1.62 
±0.165 

1.64 
±0.14 

1.56 
±0.015 

1.41 
±0.325 

1.68 
±0.124 

NH4
+-N  

(mg L-1) 
0.25 

±0.075 
0.48 

±0.265 
1.88 

±0.634 
0.88 

±0.595 
0.21 

±0.145 
0.39 

±0.124 
NO2

--N 
(mg L-1) 

0.05 
±05 

0.09 
±0.005 

0.46 
±0.224 

3.11 
±0.355 

0.08 
±0.015 

0.11 
±0.014 

NO3
--N  

(mg L-1) 
0.82 

±0.065 
30.3 

±2.445 
29.7 
±4.34 

22.78 
±6.195 

29.55 
±6.645 

34.95 
±28.494 

Alkalinity 
(CaCO3 mg L-1) 

145.53 
±1.523 

94 
±6.413 

216.48 
±24.462 

174.77 
±6.673 

78.13 
±20.933 

77.28 
±21.762 

 

 
Figure 3.3: GSM and MIB concentrations in RAS treatment units and the effluent of the UV-

TiO2 batch reactor. 
 

UV-TiO2 reactor performance over time was investigated by collecting a final sample 

corresponding to Cycle 311. At this point the UV-TiO2 reactor had been in operation for 104 days. 
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A comparison of percent reductions between several cycles are shown Figure 3.4. Highest 

performance was observed during cycle 8, where GSM and MIB concentrations reached 40 ng L-

1and 57 ng L-1 for GSM and MIB, respectively. A 10% reduction in removal performance was 

observed from cycle 1 to 311. 

 
Figure 3.4: UV-TiO2 percent degradation performance for Cycles 1, 2, 5, 8, 11 and 311. 

 
3.3.2 Continuous Flow Application 

Preliminary experiments showed that the production of GSM and MIB within the bench-

scale RAS were greatly reduced with operation times longer than 2 months. An initial short-term 

experiment was performed by injecting a GSM and MIB solution into the bench-scale RAS (data 

not shown). After stabilization for 100 minutes (HRT of UPBR) concentrations were still very 

low, at approximately 10 ng L-1.  Immediately after stabilization the UV-TiO2 reactor was installed 

in the main line as described in section 3.2.3. Within 48 hours of run time, MIB concentrations in 

the UV-TiO2 effluent were below detection limits (1ng L-1) while GSM decreased to 3 ng L-1. 

After 72 hours of continuous treatment, GSM and MIB concentrations remained constant 

throughout the RAS. GSM concentrations were higher than MIB, differing from Phase I. Although 

GSM and MIB removal was excellent in this configuration, nitrification inhibition was observed 

with the application of the UV-TiO2 system in the main line resulting in high NH4
+-N 
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concentrations (>10 mg L-1; not shown). Average NO2
--N concentrations were negligible for all 

treatment units, including UPBR effluent differing from conditions in Phase I. Alkalinity increases 

in the UV-TiO2 were slight, around 2 mg L-1, but increases in alkalinity were another indication 

that nitrification was limited. 

To overcome nitrification inhibition, the UV-TiO2 reactor was reduced to half its size and 

applied as a side stream treatment (Q= 90 mL min-1). During this period the HES wastewater added 

to the system had a higher concentration of GSM and MIB and did not require additional injections. 

Average results for an observation period of 25 days prior to installation of UV-TiO2 and 15 days 

after installation are shown in Table 3.2 and Figure 3.5. The pH for RAS remained neutral for all 

treatments with and without the UV-TiO2 reactor. DO concentrations were above 4 mg L-1 after 

the MBBR and decreased by about 0.5 mg L-1 with the UV-TiO2 treatment. The main N species in 

the bench scale RAS was NO3
--N, and no significant changes were observed with the addition of 

UV-TiO2. Similar results were observed for NO2
--N in the MBBR, although the NO2

--N 

concentration in the UPBR increased considerably with UV-TiO2 indicating incomplete 

denitrification. NH4
+-N concentrations remained below 1 mg L-1 for the MBBR with and without 

the UV-TiO2 treatment showing no inhibition of nitrification. Some production of NH4
+-N was 

observed in the UPBR. Although averages show decreased GSM and MIB concentrations, due to 

the high variability statistical analysis revealed no significant differences when the RAS was 

operated with or without the UV-TiO2 treatment.  
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Figure 3.5: UV-TiO2 concentrations in continuous flow applications on the bench-scale RAS 

 
Table 3.2: Average water quality for the bench scale RAS with and without the influence of UV-

TiO2. 
 FEED MBBR MBBR+ 

UV-TiO2 
DENIT DENIT+ 

UV-TiO2 
UV-TiO2 

pH 7.45 
±0.3410 

7.42 
±0.2710 

7.31 
±0.087 

7.06 
±0.2310 

6.79 
±0.187 

7.34 
±0.107 

DO 
(mg L-1) 

0.87 
±1.1516 

4.35 
±1.3210 

3.75 
±0.437 

1.65 
±0.8510 

1.01 
±0.187 

3.67 
±0.667 

Conductivity 
(mS cm-1) 

1.42 
±0.0416 

1.41 
±0.1710 

1.44 
±0.127 

1.40 
±0.1610 

1.44 
±0.137 

1.43 
±0.14 

NH4
+-N 

(mg L-1) 
76.83 

±7.7414 
0.20 

±0.097 
0.14 

±0.047 
3.02 

±3.127 
0.80 

±0.787 
0.16 

±0.108 

NO2
--N 

(mg L-1) 
2.20 

±1.2614 
0.26 

±0.267 
0.37 

±0.257 
0.40 

±0.267 
1.63 

±1.887 
0.38 

±0.358 

NO3
--N 

(mg L-1) 
0.02 

±0.0613 
33.07 
±8.668 

28.93 
±4.467 

13.45 
±12.407 

14.78 
±13.807 

29.10 
±4.648 

Alkalinity 
(CaCO3 mg L-1) 

201.75 
±23.9916 

74.90 
±21.4310 

64.31 
±18.547 

105.53 
±27.4310 

87.57 
±27.287 

59.04 
±11.296 

* Number of samples are shown as subscripts. 

The possible detrimental effect of bacterial growth and age on the activity of the TiO2 plate 

was investigated by comparing removal performance in batch mode between plates utilized for 30 

days and a freshly coated plate (Figure 3.6). Reactor conditions were similar to continuous flow 
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applications with the exception of total recirculation of the water treated. Treatment consisted of 

recirculation of 2 L of a 50 ng/L solution of GSM and MIB in di-ionized water for 6 hours within 

the UV-TiO2 reactor. GSM and MIB concentrations in the bulk liquid versus treatment time are 

shown in Figure 3.6 for both plates. Both the fresh and used plates showed good removal, with 

approximately 70% removal for GSM and 40% removal for MIB. The results were surprising due 

to the visible growth of biofilms in parts of the used plates, which were expected to interfere with 

UV irradiation. No significant differences were observed between the two plates. 

a)!  

b)!  
 

Figure 3.6: Comparison between fresh and used UV-TiO2 plates for degradation of GSM and 
MIB 
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3.4 Discussion 

3.4.1 GSM and MIB Removal 

GSM and MIB are a hindrance in the aquaculture industry due to their negative effect on 

fish quality and the complex and expensive methods needed for their removal. Studies have shown 

the production of these compounds under high organic and aerobic conditions (Guttman and van 

Rijn, 2009), which are predominant in RAS. At HES, the highest GSM and MIB concentrations 

were found in the slurry from the drum filter (Figure 3.3), where high organic conditions exist due 

to the concentrated waste. Furthermore, the solids in the filter are removed by spraying the 

wastewater onto the drum, oxygenating the water and increasing DO concentrations. MIB 

concentrations in the fish tank and MBBR, were somewhat lower than expected. Previous 

monitoring by HES had encountered concentrations as high as 50 ng L-1 (unpublished data). 

Hamlin et al. (2008) studied the same aquaculture systems and saw concentrations as high as 10 

ng L-1 for GSM and 70 ng L-1 for MIB. Lower concentrations were also observed in the effluent 

of the UPBR, which differs from the results in the above mentioned study. Removal of the off-

flavor compounds is possible through uptake into the anaerobic sludge within the UPBR. Guttman 

and van Rijn (2009) saw similar results in a marine RAS where the anaerobic sludge could both 

absorb and biodegrade GSM and MIB by 71% and 89%, respectively. 

The UV-TiO2 reactor in HES showed significant removal for both GSM and MIB (Figure 

3.3). On average, 72% of GSM and 62.6% of MIB were removed after 6 hours of contact time. 

This removal was higher than that observed in previous laboratory studies with de-ionized water 

spiked with the off-flavor compounds (Pettit et al., 2014) where 60% of GSM and 50% MIB were 

removed after 8 hours of contact time. The water quality in the location of reactor placement could 

have been a factor in improved performance (Table 3.1). The UV-TiO2 reactor was placed after 
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the MBBR, where nitrification takes place and alkalinity is consumed. Lower alkalinity positively 

impacts degradation by limiting scavenging of hydroxyl radicals by carbonates present in the 

wastewater (Kutschera et al., 2009). In addition, the high DO in the wastewater provides desired 

conditions for degradation as observed by Pettit et al. (2014), where improved degradation was 

achieved when an aerator was added to the synthetic solution. Furthermore the pH levels in HES’s 

RAS at the location of UV-TiO2 were favorable for GSM degradation according to a study by 

Kutschera et al. (2009), where the highest degradation rate constant was observed at pH levels 

close to 7. 

Comparison between different cycles of the UV-TiO2 treatment (Figure 3.4) gives a 

snapshot of the resilience of the treatment. Cycle 1 showed the best performance, with over 72% 

and 62% removal of GSM and MIB, respectively. The performance was slightly reduced in Cycle 

11 and was reduced further in Cycle 311. The difference between the first and following cycles 

could be attributed to adsorption of the off-flavor compounds to the catalyst that occurs at the 

startup of the reactor. This phenomenon was also observed in previous laboratory studies with de-

ionized water spiked with the off-flavor compounds (Pettit et al., 2014). Adsorption to other 

surfaces within the reactor, such as tubing, connectors and the glass bottle could have also occurred 

and resulted in an improved performance for Cycle 1. A study by Elhadi et al. (2004) showed that 

significant losses of GSM and MIB can occur on glass and non-Teflon surfaces. In this study, 40 

and 30% losses for GSM and MIB, respectively, occurred in a glass column with Teflon tubing 

within a 20 day period. Surprisingly, samples taken within the glass feed bottles had 8% loss of 

the compounds within 4 days (Elhadi et al., 2004). Similar mechanisms could have occurred in the 

first cycle of the UV-TiO2 reactor to a smaller extent. Decreased performance over time could also 

be caused by bacterial growth on the plates that may limit UV penetration and diminished UV 
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intensity. Loss of the catalyst could be an alternate explanation for the decrease in performance; 

however, previous studies on the TiO2 coated plates showed negligible loss of the catalyst when 

submitted to 7 day de-ionized water flush at a rate of 2.5 mL s-1 (Zhao et al., 2015). The comparison 

between freshly coated TiO2 plates and plates utilized for a 30 day period with visible growth 

showed no difference in performance but it is unknown how this value would change with longer 

periods of operation. 

In the bench-scale RAS, GSM and MIB concentrations were lower than those at HES 

possibly due to differences in microbial diversity due to the synthetic aquaculture wastewater feed 

and lack of fish fecal waste. This was apparent in the low concentrations observed in preliminary 

studies. Preliminary studies with the UV-TiO2 reactor in the main line and spikes of GSM and MIB 

to increase baseline concentrations resulted in nitrification inhibition.  A possible cause of 

inhibition was the inactivation of nitrifying bacteria by carry-over of oxidants produced in the UV-

TiO2 reactor to the MBBR. Robertson et al. (2005) studied the effect of UV and UV-TiO2 slurry 

for inactivation of pathogens. Utilizing a UV lamp with 330 to 450 nm spectra, 4 log removal of 

pathogens was achieved by both UV and UV-TiO2 treatment. Although nitrifiers are not 

pathogenic, due to their sensitivity to water quality changes and slow growth, there could have 

been some inactivation effects. 

The results for the bench-scale RAS with side stream UV-TiO2 treatment showed 

insignificant reduction of GSM and MIB (Figure 3.5). The limited performance compared with 

the batch process could have been due to multiple factors. First, the reduction of the reactor size 

reduced UV irradiation and catalyst surface, which can affect mass transfer between the 

contaminants and the catalyst (Pestana et al., 2014; McCullagh et al., 2011). The reduction of the 

flowrate to achieve the same HRT (within the reactor) as the batch reactor application reduced the 
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turbulence within the reactor, also affecting mass transfer and oxygenation of the liquid (Zhang et 

al., 2013). The higher pH in the system (Table 3.2), when compared to HES’s RAS, could have 

also affected the degradation performance of the UV-TiO2 reactor as observed by Kutschera et al. 

(2009) where the degradation rate constants of both GSM and MIB decreased when pH increased 

from 7 to 9. Furthermore, the lower concentrations of GSM and MIB possibly affected UV-TiO2 

performance, which is expected to increase with increasing concentration due to concentration 

dependent reaction rates (Pettit et al, 2014; Lawton et al. 2013). 

3.4.2 Effects of UV-TiO2 on Water Quality 

Aside from the removal of solids, the major concern in RAS is the removal of N compounds 

NH4
+-N and NO2

--N due to high toxicity for aquatic species at concentrations above 1 mg L-1 and 

0.3 mg L-1, respectively (Timmons et al., 2002; Hamlin et al., 2008). At HES, NH4
+-N 

concentrations were well below 1 mg L-1 for the fish tank, MBBR and UV-TiO2 effluent. Higher 

NH4
+-N concentrations were observed in the effluent of the UPBR, possibly due to dissimilatory 

nitrate reduction to NH4
+-N and the ammonification of organic N in the molasses. High NO2

--N 

concentrations in the effluent of the UPBR indicated incomplete denitrification. The slight, but 

significant increase of NO2
--N concentrations in the effluent of the UV-TiO2 was not unexpected. 

NO3
--N photolysis has been found by many authors to occur in treatments utilizing UV/VUV, 

which result in increased NO2
--N concentrations (Kutschera et al., 2009; Gonzalez and Braun, 

1995). On the other hand, NO3
--N can be produced as well since hydroxyl radicals produced in 

UV-TiO2 reactor can oxidize NO2
--N to NO3

--N (Gonzalez and Braun, 1995). An unexpected result 

was the slight increase in alkalinity. It is known that carbonates are scavengers of hydroxyl radicals 

and can affect GSM and MIB reduction rates (Kutschera et al., 2009). In any case, the differences 

observed are not expected to affect fish health nor biological processes in the RAS. 
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3.4.3 Reactor Configuration and Applications 

An obstacle to the implementation of full-scale UV-TiO2 can be the impracticality of a 

batch reactor (Pestana et al., 2014) as well as the possible high cost of land, construction and 

operation of an additional treatment process that would allow the desired contact time. A 

continuous flow application would be possible at HES by replacing the UV lamps used for 

disinfection in the oxygenation basin prior to recirculation (Figure 3.1) with lamps that allow for 

a spectra range sufficient for catalyst activation and a TiO2.  Coated glass could be placed above 

(and/or below) the UV lamps, potentially reducing the energy cost for UV treatment. Further 

research would be needed to determine whether this strategy effectively reduces off flavor 

compound concentrations in the RAS.  

An alternative for the location of the UV-TiO2 reactor is application as a batch process at 

the depuration stage prior to harvesting. Depuration of mature fish occurs in high clarity and 

quality water (Burr et al., 2012) that is only partially recirculated and treated by ozonation and 

activated carbon. Depuration can require anywhere from 2-8 weeks depending on the gender of 

the fish as well as the degree of GSM and MIB taint. Application of the UV-TiO2 at this stage 

could allow for greater water recirculation rates, reducing or even eliminating freshwater inputs.  

Improved results are expected with this operational strategy due to batch operation and more 

favorable pH and DO concentrations.  

3.5 Conclusions 

An immobilized TiO2 and UV reactor was applied as a batch reactor in an operating RAS 

(Phase I) and as a continuous reactor in a bench-scale RAS (Phase II). Improved performance on 

the removal of GSM and MIB was observed as a batch reactor since it allowed longer treatment 

without the effect of constant production of the compounds in the biological treatment processes. 
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No harmful effects were observed on other water quality parameters when the UV-TiO2 reactor 

was operated as a batch or side stream process. Treatment performance of UV-TiO2 was affected 

by GSM and MIB concentrations and dissolved oxygen. Due to the possible production of NO2
--

N and scavenging of carbonates, location of the UV-TiO2 reactor is suggested at a point where 

NO3
--N is low and prior to any addition of chemicals for alkalinity control. By lowering 

concentrations in the RAS, depuration times are expected to be reduced resulting in lower demand 

for highly treated water, improved product quality and cost savings. 
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CHAPTER 4:!SIMULTANEOUS DENITRIFICATION AND OFF-FLAVOR 

COMPOUND REMOVAL IN A TIRE SULFUR HYBRID ADSORPTION 

DENITRIFICATION (T-SHAD) REACTOR 

4.1 Introduction 

Recirculating Aquaculture Systems (RAS) present an alternative for high fish production 

rates with reduced ecological impacts (i.e lower freshwater inputs and wastewater outputs) that are 

associated with traditional fish farming (Hamlin et al., 2008; Martins et al., 2010; Gonçalves and 

Gagnon, 2011). Typical RAS treatment is focused on the removal of suspended solids and NH4
+ 

that result from fish feces, biomass and uneaten food (Timmons et al., 2002).  The removal of 

NH4
+ is of particular importance due to the high toxicity for aquatic species at levels above 1 mg 

L-1 (Timmons et al., 2002; Hamlin et al., 2008, reference 2). In RAS, NH4
+ is primarily removed 

by aerobic biological oxidation to NO2
- and subsequently to NO3

-. Due to the toxicity of NO2
- at 

levels above 0.3 mg L-1 (Timmons et al., 2002; Hamlin et al., 2008), enough oxygen is provided 

to achieve complete nitrification to NO3
-. The accumulation of NO3

- often occurs, particularly in 

low water exchanges environments (3-10%) characteristic of many RAS (van Rijn, 2008). Prior 

studies indicate a relationship between chronic health effects and NO3
--N concentrations above 

100 mg L-1 in RAS water. These effects, which range from abnormal behavior to increased 

mortality, (Hamlin, 2006; Davidson et al., 2014) as well as the potential for eutrophication of RAS 

waste receiving waters, highlight the importance of the mitigation of all inorganic N species in 

RAS. 



 50 

The most common NO3
- removal technique in the aquaculture industry is heterotrophic 

denitrification where NO3
- is utilized as an electron acceptor and is reduced to inert N2 gas and 

released to the environment. This biological process requires a source of organic carbon as an 

electron donor, which can be a limiting factor in RAS (Eq 4.1). Biologically available organic 

carbon is significantly removed in the sedimentation basin (Tsukuda et al., 2015) as well as the 

aerobic stage for nitrification in RAS. Limited organic carbon availability can result in incomplete 

denitrification and release of NO2
- into the system causing toxicity. In such case, the addition of 

external sources of organic carbon, such as methanol, acetate or sucrose would be required and 

can be costly (Park and Yoo, 2009; Hamlin et al., 2008). Furthermore, the addition of external 

carbon sources has to be closely monitored to achieve the desired C/N ratio and avoid carry-over 

that could hinder other biological processes within RAS. 

(!,&
3 + 0.1321:-"--,:: + 1.0"$ → 

0.05815"6,-! + 0.471!- + 1.2931,- + 1.748"-, Equation 4.1 

An alternative to heterotrophic denitrification is autotrophic denitrification, where an 

inorganic electron donor, such as H2 or elemental sulfur, is utilized. Sulfur oxidizing denitrification 

(SOD; Eq. 4.2) is particularly popular due its high nitrate removal rates and lower biomass 

production compared to heterotrophic denitrification (Sengupta et al., 2007). This metabolic 

process results in SO4
2- production as well as alkalinity destruction and requires an alkalinity 

source to ensure that the pH remains within the optimal range of treatment (Park and Yoo, 2009; 

Oh et al., 2001).  

!,&
3 + 1.1>; + 0.41,- + 0.76"-, + 0.08!"#

$ → 

0.0815"6,-! + 1.1>,#
-3 + 0.5!- + 1.28"$  Equation 4.2 
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The majority of the studies on denitrification in RAS have employed heterotrophic 

denitrification in fluidized media beds (Tsukuda et al., 2015, Kim et al., 2004) and upflow packed 

bed reactors (UPBRs) (Hamlin et al., 2008; Singer et al., 2008; Saliling et al., 2007). Fluidized 

media beds and UPBRs have been found to provide high treatment efficiency with a small footprint 

when using media materials as carriers for denitrifying biomass (Tsukuda et al., 2015). A variety 

of carbon sources and media materials have been studied. Saliling et al., (2007), for example, tested 

an UPBR with wood chips and wheat straw and found high removal rates of synthetic aquaculture 

water with flowrate of 15 mL min-1. Hamlin et al., (2008) studied the denitrification rates of three 

different carbon sources in an UPBR with plastic carriers. Removal rates were found to be 670 mg 

L-1 d-1 for methanol, acetate and molasses.  

Most studies of SOD applications have been for treatment of domestic wastewater and 

NO3
- contaminated groundwater and have proven successful under varying concentration ranges 

(Sengupta et al., 2007; Krayzelova et al., 2014; Tong et al., 2016). Limited research has been done 

on SOD for RAS applications. Particularly promising is the study by Christianson et al. (2015), 

where granular sulfur packed fluidized biofilters achieved removal rates as high as 800 mg NO3
--

N L-1-d-1. Studies investigating the effects of SOD on RAS water quality as well as the removal of 

off-flavor compounds are lacking. 

Off-flavor compounds Geosmin (GSM) and 2-methylisoborneol (MIB) are non-toxic 

secondary metabolites of cyanobacteria and some actinomycetes (Guttman and van Rijn, 2008) 

that cause an earthy musty flavor that can be detected in water at concentrations as low as 10 ng 

L-1 (Drikas et al., 2009).  In aquaculture systems, GSM and MIB are problematic due to their 

accumulation in the lipid-rich tissue that cause an off-flavor in the fish, particularly catfish, salmon 

and sturgeon (Howgate, 2004). The current removal approach for these compounds is to purge 
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them from the fish prior to harvesting, which requires large amounts of highly treated water (Burr 

et al., 2012). Advanced treatment technologies are required for removal of GSM and MIB from 

RAS. Powdered and granular adsorbents, such as activated carbon, are the most common removal 

technology for GSM and MIB, with varying results due to the variability in the base material, 

adsorption capacity of the media (Yu, et al., 2007; Cook et al., 2000) and interactions with natural 

organic matter (Matsui et al., 2013; Newcombe et al., 2002). However, removal of GSM and MIB 

to below the detection threshold requires large dosages of activated carbon (Matsui et al., 2013), 

resulting in high capital and operational costs (Bamuza-Pemu and Chirwa, 2012). 

The overall goal of this study is to investigate the performance of a novel UPBR for RAS 

treatment. The Tire Sulfur Hybrid Adsorption Denitrification (T-SHAD) process was developed 

by Krayzelova et al. (2014) and found effective for removal of NO3
- from wastewater. T-SHAD 

utilizes recycled tire mulch that serves as both a biofilm carrier as well as an adsorbent due to its 

high capacity for NO3
- (Lisi et al., 2004). The combination of SOD and adsorption processes allows 

for consistent performance under variable loadings and concentrations (Krayzelova et al., 2014). 

The specific objectives of this study were to (1) determine the adsorption capacity of tire mulch 

for GSM and MIB, (2) assess denitrification and off-flavor compound removal performance of T-

SHAD in different reactor configurations in a bench-scale RAS and (3) compare T-SHAD to 

heterotrophic denitrification utilizing molasses as an organic electron donor and carbon source. 

4.2 Materials and Methods 

4.2.1 Materials 

The materials utilized in the study were previously presented by Krayzelova et al. (2014). 

Scrap tire mulch were obtained from Liberty Tire Recycling (Rockledge, Florida) and hand-sorted 

to obtain a particle size between 1.0 and 1.5 cm. The tire mulch was rinsed with de-ionized water 
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and dried for 4 hours at 105°C. Elemental sulfur pastilles (0.4-0.6 cm) were obtained from Martin 

Midstream Partners (Seneca, Illinois). Crushed oyster shells were added as an alkalinity source 

and were purchased from Myco Supply (Pittsburgh, Pennsylvania) and sieved to remove fines 

smaller than 0.6 cm. 

4.2.2 Adsorption Studies 

Adsorption isotherms were performed on the tire mulch to determine off-flavor adsorption 

capacity. The tire mulch was further pre-treated and placed in a vial with 200 mL di-ionized water 

for a minimum of 24 hrs at 100 rpm to reduce leachates that were interfering with off-flavor 

detection. Varying amounts of pre-treated tire mulch (0-12 g) were added to 50 mL amber glass 

vials filled with 30 mL of approximately 100 ng L-1 GSM and MIB solution. Kinetic studies were 

performed with a tire mass of 2 g and vials were sacrificed after 15, 30, 60, 120, 480 and 1440 

mins. The vials were placed in a Labquake™ tube shaker rotator and samples were collected after 

varying contact times. Samples were stored in amber vials at 4°C and analyzed according to section 

4.2.5. 

Two models were fit to the data and used to predict maximum adsorption capacity. The 

Langmuir model follows Equation 4.3: 

qS =
UV∙W∙XY
:$W∙XY

     Equation 4.3 

where qe is the milliequivalents (meq) of adsorbate per grams of adsorbent, Ce is the equilibrium 

concentration in meq L-1, b is the Langmuir adsorption constant (L meq-1) and ZT is the maximum 

adsorption capacity of the adsorbent (meq g-1). The Freundlich model follows Equation 4.4: 

qS = k[ ∙ CS
: ]    Equation 4.4 
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where kL is the Freundlich constant for adsorption capacity ((meq g-1)(L mg-1)n-1) and 1/n is an 

exponent related to surface heterogeneity (dimensionless). In both cases qe can be calculated using 

Equation 4.5. 

qS =
^_3^Y `

a
     Equation 4.5 

where Ci is the initial concentration of the adsorbate (meq L-1), V is the volume (L) and W is the 

mass of the adsorbent (g). For all models, the least squares method was used to optimize the fit 

using the Solver function in Excel (Brown, 2001). 

4.2.3 Bench-Scale RAS 

The laboratory scale RAS (Figure 4.1) was presented previously in Chapter 3. Briefly, the 

system was composed of a 2 L glass feed container with synthetic wastewater, a moving bed 

bioreactor (MBBR) and a heterotrophic UPBR. The wastewater was pumped into the system at a 

flow rate of 1.3 L d-1 using a Masterflex C/L Dual Channel Pump (Cole Palmer; Vernon Hills, IL). 

The synthetic wastewater consisted of a solution of 0.25 g L-1 NH4Cl and 0.4 g L-1 NaHCO3 and 

dissolved fish feed pellets (1.58 g L-1) from the feeders at Healthy Earth’s RAS in Sarasota, 

Florida. The main line recirculated water at a rate of 360 L d-1 using a Masterflex L/S peristaltic 

pump (Cole Palmer; Vernon Hills, IL). Two Cole-Parmer Valved Variable Area Acrylic flow 

meters were used for flow measurement and control into the MBBR and UPBR. The MBBR 

consisted of a glass bottle with a working volume of 3 L, with 55% filled with plastic media 

collected from the MBBR in Healthy Earth’s RAS. A compressor and air diffuser (Tetra Whisper®, 

Blacksburg, VA) provided the DO needed for nitrification. A side-stream was connected after the 

MBBR where 10.8 L d-1 were pumped to an UPBR consisting of an acrylic column (Koflo; Cary, 

IL) of approximately 0.75 L with 53% of its volume filled with plastic media from Healthy Earth’s 

UPBR. A single-syringe infusion pump (Cole Palmer; Vernon Hills, IL) was connected to the side 
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stream to provide molasses (C12H22O11; Hamlin et al., 2009) at a flow rate of 4 µL hr-1. The effluent 

from this column was pumped back to the mainline and recirculated to the MBBR.  

4.2.4 T-SHAD Column 

The T-SHAD column utilized was constructed and studied previously by Krayzelova et al. 

(2014). A 0.75 L acrylic column (KOFLO; Cary, IL) was packed with a mixture of tire (250 g), 

sulfur pastilles (40 g) and oyster shells (13 g). The T-SHAD column was tested in two operational 

phases within RAS. During Phase I (Figure 4.1a) the T-SHAD column served as a polishing 

treatment for the bench-scale RAS described in Chapter 3. The T-SHAD column was fed from a 

reservoir that collected both the MBBR (nitrified) and the heterotrophic UPBR (denitrified) 

effluent. The T-SHAD column was operated for 44 days under this configuration and treated RAS 

water both with and without the addition of the photocatalysis treatment described in Chapter 3, 

section 3.2.3). The flowrate into the T-SHAD column was 1.3 L d-1 with empty bed contact time 

(EBCT) of 12hrs. For Phase II (Figure 4.1b), the T-SHAD column replaced the heterotrophic 

UPBR as the denitrification side treatment in the RAS (EBCT=3.1 hrs). The addition of the 

external electron donor (molasses) was eliminated since it was needed. Prior to Phase II, the T-

SHAD column had been in intermittent operation for close to two years, and was amended with 

oyster shells (13 g) due to low observed pH in the effluent. 

4.2.5 Analytical Methods 

Approximately 50 mL samples were collected from bench scale RAS and T-SHAD to 

determine water quality parameters. pH (Oakton Acorn Series pH/ion/C, Orion 5 Star 

ThermoScientific), Conductivity (Orion 5 Star ThermoScientific), DO (Hach HQ40d Portable, 

Orion 5 Star ThermoScientific) were measured using calibrated electrodes. A portion of the 

samples was filtered through a 0.45 µm mixed Cellulose Esters filter (FisherScientific, Waltham, 
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MA). Concentrations of anions (NO2
-, NO3, PO4

-3, SO4
-2) and cations (NH4

+) were measured in 

the filtrate using a Metrohm 881 Compact IC Pro (Herisau, Switzerland) ion chromatography 

system. MDLs for NO3
-, NO2

-, SO4
2-, PO4

3- and NH4
+ were 0.01, 0.04, 0.01, 0.02 and 0.07 mg L-

1, respectively. Chemical oxygen demand (COD) was measured for filtered samples with the Vario 

Tube Test (Loveland Co) COD LR test kits (MDL: 0-150 mg L-1), according to the Standard 

Methods (APHA et al., 2012).  

4.2.6 Trace Analyses 

Off flavor compounds GSM and MIB analysis was performed by Solid Phase Micro-

extraction (SPME) with Divinylbenzene/ carboxen/ polydimethylsiloxane (DVB/CAR/PDMS) 

fibers and GC/MS detection. Samples were prepared using a modification of method 6040D 

(APHA et al., 2012). Briefly, 9 g of salt, previously calcinated for 5 hours at 550°C, 30 mL sample 

and 3 µL of the 3-isobutyl-2-methoxypyrazine (IBMP) solution where added to a 45 mL glass vial 

containing a PTFE stirrer and PTFE septa cap. The vial was placed in a water bath with temperature 

range of 60-65°C to ensure volatilization of the desired compounds. The fiber was injected into 

the vial with 0.8 cm exposed to the headspace for 30 minutes. After retraction the fiber was fully 

exposed in the GC/MS injector for 3 minutes. Samples were diluted when necessary to ensure 

readings within the detection range of 1ng L-1 to 40 ng L-1. Stock solutions of 100 mg L-1 of the 

off-flavor compounds and IBMP were purchased from Sigma Aldrich (St. Louis, MO). The IBMP 

stock was diluted in methanol to achieve a 1µg L-1 solution that was utilized as an internal standard. 

Compound separation and detection was performed using a Perkin Elmer (Waltham, MS) Clarus 

580 GC/MS equipped with a 30 m x 0.25 mm x 0.25 µm HP-5MS Agilent column (Santa Clara, 

CA). The injector temperature was set to 250°C for the GC method. The initial oven temperature 

was set at 50°C, with a ramp of 15°C min-1 and a maximum temperature of 280°. For the first 2 
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minutes split-less mode was activated, and for the remaining 15 minutes the split was set at 50 mL 

min-1 He with 1 mL min-1 carrier flow. The MS method used a solvent delay of 3 minutes and 

selected ion recording for 124/151 (IBMP), 95/107/135 (MIB) and 112/116 m/z (GSM).  

a)  

b)  
Figure 4.1: Bench scale RAS with T-SHAD for effluent NO3

- polishing (a) and T-SHAD as 
denitrification side stream treatment (b). Mainline and side stream flows are showed in different 

line styles (Not to scale). 
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4.2.7 Statistical Analysis 

Statistical analyses were performed to evaluate the performance of the T-SHAD column. 

A paired t-test assuming equal variances was performed in Excel 2011 for the concentrations and 

removal rates of GSM, MIB and N species results from both phases with !=0.05.  

4.3 Results 

4.3.1 Off-Flavor Compound Adsorption  

The results for the tire adsorption isotherms, kinetics and Freundlich and Langmuir 

isotherm model fits to the average data are shown in Figure 4.2. High GSM removal was achieved 

with tire doses above 2 g (Figure 4.2a). From the Langmuir model (Figure 4.2c), maximum 

adsorption capacity for tire mulch is 2982 and 27.106 ng g-1 for GSM and MIB, respectively. The 

model provided a good fit to the data, with R2 values of 1.0 and 0.98 for GSM and MIB, 

respectively. The Freundlich model (Figure 4.2d) also provided a good fit, with R2 values of 0.99 

for GSM and 0.98 for MIB. Adsorption kinetic results are shown in Figure 4.2b. For GSM, 94% 

of the removal occurred within 8 hours of contact time while only 76% of MIB removal was 

observed even after 24 hrs. 

4.3.2 T-SHAD Application in RAS 

4.3.2.1 Phase I-T-SHAD Effluent Polish 

Water quality results for all treatment units within the bench-scale RAS are shown in Table 

4.1. pH in the system remained neutral and showed no significant difference when compared to 

the influent. As expected, DO was significantly lower after the T-SHAD, due to anoxic conditions 

that developed in the reactor. NH4
+-N concentrations were on average 0.19±0.09 mg L-1 in the 

influent of Phase I and increased significantly in the effluent of T-SHAD to 0.85± 0.57 mg L-1. No 
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significant differences were observed between the influent and effluent of T-SHAD for NO2
--N, 

with concentrations at approximately 0.32 ±0.26 mg L-1.  

NO3
--N concentrations were significantly different, with T-SHAD removing on average 

97% of NO3
--N in the systems effluent. No significant differences were observed for PO4

3--P 

concentrations in any of the phases, whereas SO4
2- increased significantly in the effluent of T-

SHAD. On average, NO3
--N removal rates for Phase I were 51.93 ±9.03 mg NO3

--N L-1d-1 with a 

production of 133.77 ±138.14 mg SO4
2 L-1d-1. 

4.3.2.2 Phase II-T-SHAD Denitrification Side-Treatment 

Water quality results for Phase II for all treatment units within the bench-scale RAS are 

also shown in Table 4.1. Similar to Phase I, pH in the system remained neutral and showed no 

significant difference when compared to the influent. DO was significantly lower in the T-SHAD 

column effluent were higher than Phase I possibly due to the high DO concentrations from the 

MBBR and lower EBCT. Levels of NH4
+-N and NO2

--N were higher during Phase II when 

compared to Phase I, but overall no significant difference was observed from the influent and 

concentrations in the RAS remained low. On average, only 21% of NO3
--N was removed in T-

SHAD for Phase II. No significant differences were observed for PO4
3--P but significantly higher 

concentrations of SO4
2 were observed in the T-SHAD effluent.  

Removal and production rates for T-SHAD during Phase II are also shown in Table 4.2. 

The production rates during this phase were compared to those of the heterotrophic UPBR in Phase 

I due to similar operating conditions within the RAS. In both T-SHAD and the heterotrophic UPBR 

some production of COD was observed, however, due to high variability this was not significantly 

different from the influent. The variability in the effluent COD concentrations of the UPBR could 

be influenced by overload of the carbon source (molasses) as can often occur in heterotrophic 
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denitrification reactors (Metcalf and Eddy, 1979). The high variability of COD in T-SHAD Phase 

II was possibly influenced by the high COD released when the column was repacked with oyster 

shells, as some biomass was removed. Eliminating this data point results in a production rate of 

only 2.56 ±88, similar, albeit much more variable, to the effluent of the T-SHAD column in Phase 

I. The average NO3
--N removal rate for this phase was 96.26 ±124.48 mg L-1d-1, significantly 

higher and more variable than the NO3
--N removal rate during Phase I (Table 4.3).  

Table 4.1: Average water quality results for the influent and T-SHAD for Phase I and Phase II. 

 Phase I-Effluent polish  
(EBCT=12 hrs) 

Phase II-Side treatment 
(EBCT=3.08 hrs) 

 RAS 
FEED 

INFLUENT 
(MBBR+H-UPBR) T-SHAD RAS 

FEED MBBR T-SHAD 

pH 7.45 
±0.34 

7.37 
±0.22 

6.24 
±0.97 

7.64 
±0.28 

6.04 
±0.48 

6.14 
±0.55 

DO 
(mg L-1) 

0.82 
±1.15 

4.10 
±1.07 

1.21 
±0.40 

1.97 
±2.10 

5.31 
±0.41 

2.46 
±1.29 

COD 
(mg L-1) 

114 
±94.3 

32.94 
±17.37 

34.55 
±16.52 

93.50 
±67.61 

51.50 
±32.67 

67.50 
±52.00 

NH4
+-N 

(mg L-1) 
60.72 

±16.72 
0.19 

±0.09 
0.85 

±0.57 
47.34 

±18.76 
0.31 

±0.85 
1.51 

±2.75 

NO2
—N 

(mg L-1) 
0.76 

±0.41 
0.29 

±0.22 
0.28 

±0.31 
0.37 

±0.35 
0.32 

±0.26 
0.78 

±1.07 

NO3
—N 

(mg L-1) 0 30.96 
±6.81 

1.38 
±2.50 

0.01 
±0.02 

56.96 
±7.07 

44.42 
±16.01 

PO4
3- P 

(mg L-1) 0 4.96 
±1.67 

4.25 
±1.25 

0.62 
±1.00 

4.68 
±1.74 

4.73 
±1.89 

SO4
2- 

(mg L-1) 
54.10 

±25.86 
188.32 

±119.20 
265.49 

±106.40 
15.85 

±10.34 
206.45 

±134.31 
271.67 

±172.49 
GSM 

(ng L-1) - 26.70  
±19.97 

5.45  
±1.78 - 5.13 

±4.95 
6.34 

±2.02 

MIB 
(ng L-1) - 28.22  

±13.86 
21.84 
±6.22 - 9.91 

±9.48 
9.40 

±5.06 
*Values in bold represent significant difference compared to the influent 
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a)     b)   

c)   d)     
Figure 4.2: Off-flavor adsorption isotherm (a), kinetics (b) and models for GSM (c) and MIB (d).
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Table 4.2: Removal and production rates (+) for T-SHAD and H-UPBR in Phase I and T-SHAD 
in Phase II. 

 T-SHAD 
(EBCT=12 hrs) 

T-SHAD 
(EBCT=3.08 hrs) 

H-DENIT UPBR 
(EBCT=3.08 hrs) 

COD 
(mg L-1d-1) (+)2.55 ±16.29 (+)138.24 ±367.89 (+)148.89 ±282.94 

NH4
+-N 

(mg L-1d-1) (+)1.14 ±1.02 (+)12.26 ±24.26 (+)16.64 ±19.36 

NO2
—N 

(mg L-1d-1) (+)0.02 ±0.51 (+)3.47 ±9.77 (+)3.62 ±5.47 

NO3
—N 

(mg L-1d-1) 51.93 ±9.03 96.26 ±124.48 138.16 ±112.42 

PO4
3- P 

(mg L-1d-1) 1.23 ±2.79 (+)0.43 ±13.68 (+)9.71 ±18.06 

SO4
2- 

(mg L-1d-1) (+)133.77 ±138.14 (+)500.91 ±0.49 45.15 ±264.33 

MIB 
(ng L-1d-1) 15.80 ±25.35 3.83 ±54.02 (+)63.29 ±165.03 

GSM 
(ng L-1d-1) 38.03 ±34.44 (+)8.55 ±47.11 (+)21.16 ±149.54 

*Values in bold represent significant difference compared to the influent 
*Removal rate calculated by: !"#$%&"'()##$%&"' ∙+,  

The high variability of NO3
--N removal rate in Phase II corresponded with higher NO3

--N 

concentrations in the influent as well as higher and more variable DO in the effluent. These factors 

could have influenced denitrification within T-SHAD. No significant difference was observed in 

the removal or production of N species and PO4
3--P between the heterotrophic UPBR and T-SHAD 

in Phase II. On the other hand, SO4
2- concentrations were significantly higher for T-SHAD than 

the heterotrophic UPBR as it is produced during SOD. 

The results for off-flavor compounds in the influent (MBBR) and effluent of the T-SHAD 

during Phase II are shown Figure 4.3.  GSM and MIB concentrations in the RAS system climbed 

steadily to around 10 and 30 ng L-1, respectively, within 7 days of startup. Also during this time, 
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lower GSM and MIB were observed for the T-SHAD effluent. The lower effluent T-SHAD 

concentrations possibly influenced concentrations in the RAS and after 7 days of installation, the 

concentrations started to decrease to 5 ng L-1 and remained at those levels until the end of the 

experiment. However, average GSM and MIB concentrations for the whole study period showed 

no significant differences from the influent.  

a)  

b)  
Figure 4.3: Off-flavor compound concentrations vs time in T-SHAD effluent polish (a) and T-

SHAD side stream (b).  
 
4.4 Discussion 

4.4.1 Adsorption of Off-Flavor Compounds 

Adsorption of GSM and MIB is often achieved with powdered or granular activated carbon 

(Matsui et al., 2012; Summers et al., 2013; Elhadi et al., 2006). The adsorption capacity of the 



 64 

carbons is very variable and dependent on the base material of the carbon, surface area, dose, 

contact time and presence of competing adsorbates, such as dissolved organic matter (Matsui et 

al., 2013; Elhadi et al., 2006, Cook et al., 2000). The results of the adsorption isotherms for GSM 

and MIB with the tire mulch are promising. A dose of approximately 66.7 g L-1 achieved removal 

of 94% and 64% of GSM and MIB, respectively within 480 hours of contact time. From the 

Langmuir model, maximum adsorption capacity for GSM and MIB was 3.42 and 10.13 ng g-1 tire 

(Figure 4.2a and 4.2b). Although the model showed a good fit to the data for MIB but was not able 

to capture the significant removal achieved with 1 g of tire as shown in Figure 4.2a. The Freundlich 

model provided a better fit with K and n-1 constants of 0.379 and 0.674 for GSM and 0.016 and 

1.16 for MIB. The preferential removal of GSM over MIB has also been seen in studies with 

powdered activated carbon (Lalezary et al., 1986) due to it higher hydrophobicity. 

Although no other studies have looked at the adsorption of off-flavor compounds on tire 

mulch, Kelly et al., (2006) investigated the reduction of off-flavor compounds with natural rubber 

and found removals of 19.4 % and 30.1% for GSM and MIB, respectively, with a dose of 1.43 g 

L-1 and an 8 hr contact time. Normalizing the removal efficiency by dose results in ten times as 

much removal in the natural rubber when compared to the recycled tire mulch utilized in this study. 

In comparison, a dose of 20 mg L-1 of powdered activated carbon removed over 90% of GSM and 

MIB with a contact time of 3 hrs (Lalezary et al., 1986). It is important to note that the same tire 

mulch utilized in the column experiments, with sizes varying from 1-1.5 cm, was used for the 

adsorption isotherm. This variation in size, as well as the presence of fibers within the tire pieces, 

could have caused the high variations observed (Figure 4.2) and possibly affected removal 

performance. Studies with powdered and granular activated carbons have shown enhanced 
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treatment with decreasing particle size (Matsui et al., 2013). The impact of the fibers on adsorption 

capacity was not investigated in this study. 

4.4.2 T-SHAD in RAS 

4.4.2.1 Effect on Water Quality and N Removal 

The removal of N species is in RAS essential to ensure fish health in high density systems. 

Treatment systems within RAS would usually include a solids removal process and aerobic 

treatment to oxidize NH4
+-N and subsequently NO2

--N in the water. These processes result in high 

NO3
--N concentrations that must be addressed. The control of other system parameters, such as 

pH and DO, are crucial for the removal of N species. In this study, a novel hybrid treatment process 

combining commercially available tire mulch, sulfur pellets and oyster shells was used to remove 

NO3
--N and off-flavor compounds, GSM and MIB, in RAS. The T-SHAD column effects on the 

water quality were minimal (Table 4.1). The slight decrease in pH occurring at Phase I (EBCT = 

400 min) is not unexpected due to the H+ producing nature of the SOD process when compared to 

other heterotrophic denitrification processes (Park and Yoo, 2009; Oh et al., 2001). The prior use 

of the T-SHAD column for synthetic wastewater treatment (Krayzelova et al., 2014) and the 

intermittent use thereafter within RAS could have also influenced pH and alkalinity as noted before 

the start of Phase II (not shown) when the column was repacked with fresh oyster shells. The 

addition of the fresh oyster shells caused slight increases in the pH of the RAS in Phase II, making 

up for the acidic conditions before the startup. Regardless of the effluent pH of the T-SHAD 

column, the pH of the bench scale RAS was within the optimum pH for sulfur-oxidizing bacteria 

(6-8), Thiobacillus denitrificans as suggested by Holt et al. (1994). 

DO concentrations in the effluent of T-SHAD were relatively high, particularly for an 

anaerobic process. This high DO concentration probably affected denitrification performance. 
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Moreover, aerobic elemental sulfur oxidation may have occurred resulting in increased SO4
2- in 

the effluent of T-SHAD. This phenomenon is discussed later together with SO4
2--S productivity. 

No significant difference were observed in COD in the influent and effluent of the T-SHAD 

column showed in both phases. This indicates SOD was the predominant NO3
--N removal process 

in T-SHAD. The previous study with T-SHAD (Krayzelova et al., 2014) indicated high COD 

leaching by the tires that can be utilized as the electron donor in heterotrophic denitrification. The 

study also showed this COD leaching decreased considerably with time under flow through 

conditions. Because of the long and intermittent use of the T-SHAD column, COD leaching from 

the tire is expected to be insignificant.  

The slight increase in NH4
+-N in both phases was unexpected since according to Eq. 2, 

NH4
+ is consumed in the SOD process. This increase could potentially be attributed to 

dissimilatory NO3
- reduction to NH4

+. In contrast, a similar study that employed SOD in a UPBR 

with sulfur granules, sand and oyster shells showed significant removal of 7 mg L-1 NH4
+-N (Tong 

et al., 2016). Regardless of this significant increase in T-SHAD effluent, NH4
+-N concentrations 

in the RAS remained below the 1mg L-1 level recommended by Timmons et al., (2002). NO2
--N 

remained low for RAS and T-SHAD during both phases and close to the recommended threshold 

of 0.3 mg L-1 (Timmons et al., 2002; Hamlin et al., 2008). NO3
--N removal rates seemed to have 

increased with decreasing contact time, the opposite is true for removal efficiency (Table 4.1) 

when it dropped from 96% to 22% in Phase I and II respectively. The increase in NO3
--N removal 

rates corresponded to an increase in SO4
2--S concentrations and productivity in the effluent of T-

SHAD. Productivity for Phase I was approximately 0.86 mg SO4
2--S mg-1 NO3

--N while it 

considerably increased to 1.74 during Phase II. For Phase II, the productivity was higher than the 

stoichiometric relationship shown in Equation 4.2. This phenomenon has been encountered in prior 
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SOD studies and has been mostly attributed to the aerobic oxidation of elemental sulfur (Tong et 

al., 2016; Boles et al., 2012).  

The high productivity of SO4
2--S in T-SHAD presents concerns due to possible 

accumulation in low exchange RAS. Although SO4
2- concentrations were as high as 600 mg L-1 at 

the beginning of the study they tapered down to approximately 110 mg L-1 at the end of the study. 

This decrease was influenced by the variability of DO, NO3
--N removal as well as the dilution by 

the low SO4
2- RAS feed supplied at 1.3 L d-1. Another concern with T-SHAD would be the 

possibility of heavy metal leachates that could affect fish health. In the T-SHAD study by 

Krayzelova et al. (2014) metal concentrations in the leachate after 72 hours of treatment were 0.82, 

0.11, 0.013, 0.064 and 0.021 mg L-1 of Zn, Se, Sb, Mn and Co, respectively. Other metals, such as 

Pb, Fe and As were below detection limits (Krayzelova et al., 2014). The release of Zn from the 

tires could be of concern due to high toxicity to some aquatic species (Skidmore, 1964). Zn 

concentration was not measured in this study but it was expected to be lower than 0.82 mg L-1 due 

to the length of operation of the T-SHAD column. 

Table 4.3 summarizes the data from this study and select studies comparable to the T-

SHAD column. NO3
--N removal rates for T-SHAD were on the lower range for both SOD and 

heterotrophic denitrification applications. This low removal can be attributed to the significantly 

higher DO concentrations in this study, particularly for Phase II. The acidic conditions prior to 

Phase II as well as the repacking of the column with oyster shells may have also caused loss of 

denitrifying biomass decreasing NO3
--N removal rates. The comparison between removal rates of 

the T-SHAD column in Phase II and the heterotrophic UPBR showed few significant differences. 

Significantly lower pH in T-SHAD versus the heterotrophic UPBR is easily explained by Eq. 4.1 

and 4.2, where H+ is consumed in the first and produced in the second. The significantly higher 



 68 

SO4
2- production was also expected from Eq. 2. The effluent of the heterotrophic UPBR showed 

significant increases in NH4
+-N and NO2

--N when compared to the influent showing incomplete 

denitrification possibly due to DO concentrations and dissimilatory NO3
- reduction to NH4

+. 

Increased NO2
--N concentrations were also observed in the study by Sailing et al., (2007) but with 

much higher NO3
--N removal rates of 1340 mg L-1d-1. 

4.4.2.2 Off-Flavor Compound Removal 

GSM and MIB are a hindrance in RAS systems due to their presence at trace concentrations 

and their accumulation in the lipid tissue of fish (Howgate, 2004) resulting in off-flavor. The 

removal of these compounds is often complex and expensive, requiring advanced treatment 

technologies (Ho et al., 2012) not within RAS. Studies have found production of GSM and MIB 

under the high organic and aerobic conditions that are common in RAS (Guttman and van Rijn, 

2009; Schrader and Summerfelt, 2010). Biological removal of these compounds has been 

attributed to anaerobic sludge chemical and physical uptake where 93% and 79% removal of GSM 

and MIB, respectively, was achieved in 12 day batch tests with sludge from a mariculture digestion 

basin (Guttman and van Rijn, 2009). In this study, significant removal of GSM (79.6%) was 

achieved during Phase I (Table 4.1, Figure 4.2a) with EBCT of 720 min in low DO conditions, 

while no significant removal of MIB was observed. Little variation in GSM concentrations were 

also observed in the effluent of the T-SHAD during this phase.  

The application of T-SHAD in the bench scale RAS resulted in a significant decrease of 

the EBCT (185 min) and no significant differences in the concentrations of the off-flavor 

compounds. Similar results were observed in the heterotrophic UPBR installed in the bench-scale 

RAS during Phase I. This result is also supported by the findings of Hamlin et al., (2008) were no 

significant difference of GSM and MIB was observed in the effluent of heterotrophic UPBRs with 
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varying carbon sources. The high removal rates of T-SHAD under high EBCT possibly indicate 

adsorption to the tire as seen in the adsorption isotherm results. The EBCT of 720 min in Phase I 

should have resulted in higher removal of GSM and MIB than that seen in the adsorption studies 

due to higher dosing of the tire (333 g L-1). The decreased removal of GSM and MIB during Phase 

I in T-SHAD could have been attributed to effects of competing dissolved organic matter as 

observed in studies with powder and granular activated carbon by Summers et al., ( 2015); 

Newcombe et al. (2002) and Chen et al. (1997). This could have also had an effect on off-flavor 

removal in T-SHAD during Phase II when the EBCT was reduced to 185 min. Other factors, such 

as temperature changes, hydraulic loading rates and the transient nature of the compounds could 

have also affected removal of the off-flavor compounds (Elhadi et al., 2006) in the bench-scale 

RAS.  

4.5 Conclusions 

A novel UPBR employing Tire Sulfur Hybrid Adsorption Denitrification (T-SHAD) was 

applied in a bench-scale RAS for the removal of NO3
--N and off flavor compounds, GSM and 

MIB. When applied as a polishing step and operated under high EBCT (720 min) removal of 

96.6% of NO3
--N and 69.6% of GSM was achieved with no significant removal of MIB. The 

application of T-SHAD within RAS as denitrification side treatment for NO3
--N removal at a lower 

EBCT (185 min) resulted in limited NO3
--N removal (21%) and showed no significant difference 

for off-flavor compounds. The results for T-SHAD within RAS under 185 min EBCT were not 

significantly different than a RAS with a molasses fed heterotrophic UPBR, with the exception of 

high productivity of SO4
2- that resulted from SOD processes. Adsorption studies showed the tire 

has significant adsorption capacity for the off-flavor compounds but can be limited by EBCT and, 

possibly, the presence of competing organic matter in RAS. Further studies are required to assess 
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toxicity of the tire mulch to aquatic species for the successful application of T-SHAD in full scale 

RAS.  
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Table 4.3: Summary of selected studies of SOD and off-flavor compound removal technologies. 

Influent 
NO3

--N 
(mg L-1) 

Reactor Media Application Volume 
(L) 

EBCT 
(min) 

NO3
--N 

removal 
(mg L-1 d-1) 

SO4
2--S 

Productivity(m
g mg-1 NO3

--N) 

Off-flavor 
removal Study 

30 UPBR Tire,S, 
oyster shells 

Bench-scale 
RAS 0.75 720 51.9 0.86 69.6 % GSM 

NSD MIB 
This study 

Phase I 

50 UPBR Tire, S, 
oyster shells 

Bench-scale 
RAS 0.75 185 96.3 1.74 NSD This study 

Phase II 

50 UPBR Tire, S, 
oyster shells 

Bench-scale 
synthetic 

wastewater 
0.75 375 177 1 NA Krayzelova 

et al. (2014) 

7.6-17 FBR S grains Full-scale 
RAS 206 3.2-4.8 800 NSD NA Christianson 

et al. (2015) 

14.42 FBR Sand RAS 285 15 270 NSD NA Tsukuda et 
al., (2015) 

50 UPBR S, oyster 
shell, sand 

Bench-scale 
synthetic 

wastewater 
0.75 210 158.4 1.66 NA Tong et al., 

(2016) 

30 UPBR 
Plastic 

carriers, 
molasses 

Bench-scale 
RAS 0.75 100 138.2 NSD NSD This study 

Phase I 

28 UPBR S granules RAS 
seawater 30 640 48 3.1 NA Simard et 

al., (2015) 

55 UPBR 
Plastic 

carriers, 
molasses 

RAS 1000 185 670 NA NSD Hamlin et 
al., (2008) 

NA Aerobic 
PBR Sand Bench-scale 

lake water 0.6 173 NA NA 93.3% GSM 
63.7% MIB 

Hsieh et al., 
(2010) 

*NA-Not applicable 
*NSD-No significant difference 
*Removal rate calculated by: !"#$%&"'()##$%&"' ∙+,
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CHAPTER 5:!PASSIVE ENHANCEMENT OF ONSITE WASTEWATER TREATMENT 

FOR TOTAL INORGANIC NITROGEN REMOVAL WITH HYBRID ADSORPTION 

AND BIOLOGICAL TREATMENT SYSTEMS (HABiTS) 

5.1 Introduction 

Centralized wastewater treatment involves collecting and conveying sewage from 

individual residences to large wastewater treatment systems. However, in many rural and suburban 

areas, where there are low population densities and large distances between households, the cost 

of centralized treatment is prohibitive. Onsite wastewater treatment systems (OWTS) are an 

alternative to centralized systems that have been used for centuries worldwide.  In the United 

States, for example, OWTS treat close to a third of the wastewater produced (USEPA, 2002). 

Similar numbers are reported for other developed countries, such as France (20%), and OWTS are 

even more prevalent in developing countries (Petitjean et al., 2016; Libralato et al., 2012). The 

cost effectiveness of OWTS is attributed to their simple operation, low energy and maintenance 

requirements and little to no chemical use (USEPA, 1999).  Regardless of these benefits, there are 

still major challenges in OWT application, including limitations due to high water table elevations 

and proximity to drinking water supplies and environmentally sensitive areas (FDOH, 2013) with 

stringent regulations. In particular, the limited nitrogen (N) removal in conventional OWTS 

(USEPA, 1999) can result in nutrient contamination of ground and surface water (Liu et al, 2009). 

Furthermore, variable water usage and long idle times (e.g. during vacations) result in highly 

variable loading rates, which can negatively affect biological treatment process within OWTS 

(USEPA, 2002).  
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Conventional OWTS consist of a septic tank for primary treatment and solids separation 

and a soil infiltration system for additional biological treatment and pathogen removal. A number 

of technologies have been developed to provide enhanced treatment in OWTS. Moussavi et al. 

(2010) investigated an upflow septic tank as opposed to the conventional horizontal flow system. 

Improved removal of total suspended solids (TSS) and chemical oxygen demand (COD) was 

observed at retention times as low as 24 hours. However, these modifications had little effect on 

N removal.  Oh et al. (2014) studied the use of recycled rubber particles as filter media for the 

treatment of septic tank effluent and observed 93% removal of TSS and 90% removal of NH4
+-N. 

Chang et al. (2010) studied a modification of the conventional drainfield design that included a 

vertical flow area for nitrification and a horizontal flow area with a combination of sand, tire 

crumbs and sawdust for denitrification. Greater removal of total N (TN) was observed in the 

modified drainfield (70%) compared with a conventional drainfield (50%). Passive N removal 

systems that are incorporated into the conventional OWTS treatment train have also been studied. 

Conventional nitrifying biofilters with sand media have been shown to improve TSS and TKN 

removal (Anderson et al., 1998, USEPA, 2002). Passive aeration through the biofilter has been 

shown to provide sufficient dissolved oxygen (DO) for nitrification; however, transient loadings 

can result in variable N concentrations in the effluent (Petitjean et al., 2016).  

This study investigated a Hybrid Adsorption and Biological Treatment System (HABiTS), 

which is a modification of passive N removal OWTS (Figure 5.1). HABiTS employs a 

combination of ion exchange (IX) and biological N removal (BNR) to enhance the performance 

of OWTS.  HABiTS has the potential to overcome variable loading rates by adsorbing N loads in 

excess of the system biodegradation capacity during high loading rate periods.  During low loading 
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rate periods, N-containing ions (NH4
+ or NO3

-) are desorbed and can be subsequently utilized by 

the microbial population.   

Zeolite materials have the ability to adsorb positively charged ions, such as NH4
+ (Wen et 

al., 2006; Rodriguez-Gonzalez et al. 2015; Smith & Smith, 2015).  Lahav and Green (1999) used 

zeolite as an adsorbent in a two-stage nitrification system, where adsorption of NH4
+ took place in 

one stage and bioregeneration of NH4
+ laden regenerant brine took place in a second stage.  In a 

prior study in our laboratory, the zeolite material, chabazite, was added to a sequencing batch 

reactor (Zeo-SBR) treating high NH4
+ strength wastewater from anaerobic digestion of swine 

manure (Aponte-Morales et al., 2016). Addition of chabazite reduced the inhibition of free 

ammonia to nitrifying bacteria and allowed for complete N removal with the addition of an electron 

donor during the denitrification stage. Clinoptilolite, a lower cost zeolite material, has also been 

studied for the enhancement of N removal in passive N removing OWTS (Hirst et al. 2013; 

Rodriguez-Gonzalez et al., 2015; Smith & Smith, 2015 ); however, no prior studies have compared 

HABiTS with conventional packed bed nitrification reactors under transient loading conditions. 

It has been shown that tire mulch has the ability to remove NO3
--N from water (Lisi et al., 

2004). In prior research, Krayzelova et al. (2014) demonstrated the HABiTS concept using scrap 

tire chips as an NO3
- IX medium in sulfur oxidizing denitrification (SOD) bioreactors. Batch 

studies with the tire show a maximum adsorption capacity of 0.66 mg NO3
--N g-1 tire but 

adsorption kinetics were slow and only 80% of the initial NO3
--N was removed within 30 days 

with a 200 g L-1 dose. Combining the tire and SOD in column experiments resulted in improved 

NO3
--N removal under transient loadings. Furthermore, the tire mulch was found to leach carbon 

that can be utilized as an electron donor for denitrification. The combination of heterotrophic 

denitrification and SOD, or mixotrophic denitrification, has potential benefits of COD removal, 
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reduced SO4
2- production, and reduced requirements for external alkalinity source for SOD (Oh et 

al., 2001; Sengupta et al., 2007; Sahinkaya and Dursun, 2012; Krayzelova et al., 2014). 

Parting from the studies by Hirst et al. (2013) and Krayzelova et al. (2014), this study’s 

innovation is the application of a two-stage HABiTS for the removal of total inorganic N (TIN) 

from transient loads of OWTS. The specific objectives of this work include (1) determine NH4
+ 

adsorption capacity, hydraulic properties, cost and availability of various IX media for application 

in HABiTS, (2) compare the performance of HABiTS enhanced OWTS with 

nitrification/denitrification biofilters without an adsorptive medium under transient loading 

conditions, and (3) compare the hourly performance of HABiTS with nitrification/denitrification 

biofilters without an adsorptive medium under transient loading conditions.  

 

Figure 5.1: HABiTS enhanced OWTS 

5.2 Materials and Methods 

5.2.1 Abiotic Batch Adsorption Studies 

  Batch NH4
+ adsorption studies for Stage 1 HABiTS nitrification were performed on a 

variety of materials utilized in OWTS and BNR applications (Table 5.1) using USEPA protocols 

(USEPA, 1992).  Flasks were filled with 100 mL of synthetic septic tank effluent and 2 g of media 

and set in a shaker at 100 rpm at room temperature (22-25°C). The synthetic septic tank effluent 

simulated cation and anion concentrations based on Hirst et al. (2013) and was prepared with 
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NH4Cl 0.16 g L-1, NH4SO4 0.235 g L-1, MgCl2 0.142 g L-1, KHCO3 0.013 g L-1, Na2CO3 0.15 g L-

1, CaCO3 0.132 g L-1, KH2PO4 0.28 g L-1 and 15 mL of 0.2 N H2SO4 to achieve a pH of about 6.7. 

The adsorption studies were performed in triplicate and samples were collected after 24 hrs. The 

best performing medium was subsequently utilized for adsorption isotherm and kinetic studies 

with an NH4Cl solution and synthetic septic tank effluent with approximately 100 mg L-1 NH4
+-

N. Adsorption studies on the selected material were performed with and without presence of 

competing cations. The kinetic studies were performed with 2g of the selected material and the 

synthetic septic tank effluent solution described previously. 

Table 5.1: Characterization of media used for initial batch reactor experiments 

Media Particle 
size (mm) 

Surface area 
(m2 g-1) Provider Cost  

($ m-3) Material pictures 

Sand 1-2 0.1* Seffner Rock & 
Gravel 23.92 

 

Vermiculite 1-2 0.901 
Therm-O-Rock 

West Inc., 
Chandler, AZ. 

374.64 

 

Lava rock 1-2 5.863 Vergolo 275 

 

Expanded Clay 1-2 0.662 Big River, 
Alpharetta, GA. 46.79 

 

Clinoptilolite 1-2 40* 
Zeox Mineral 

Materials Corp, 
Cortaro, AZ. 

392.86 

 

Extruded 
Plastic Media 14.5 >252.7 

Pentaire 
Aquatic 

Ecosystems, 
Apopka, FL. 

1,255 

 
*Value from similar product (NV-Na Ash Meadows Clinoptilolite) offered from St. Cloud 

Mining. 
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Three models were fit to the isotherm data and used to predict maximum adsorption 

capacity. The Langmuir model follows Equation 5.1: 

q" =
$%∙'∙()
*+'∙()

     Equation 5.1 

where qe is the milliequivalents (meq) of adsorbate per grams of adsorbent, Ce is the equilibrium 

concentration in meq L-1, b is the Langmuir adsorption constant (L meq-1) and ZT is the maximum 

adsorption capacity of the adsorbent (meq g-1). The Freundlich model follows Equation 5.2: 

q" = k- ∙ C"
* /    Equation 5.2 

where kL is the Freundlich constant for adsorption capacity ((meq g-1)(L mg-1)n-1) and 1/n is an 

exponent related to surface heterogeneity (dimensionless). In both cases qe can be calculated using 

Equation 3. 

q" =
0120) 3

4
     Equation 5.3 

where Ci is the initial concentration of the adsorbate (meq L-1), V is the liquid volume (L) and W 

is the mass of the adsorbent (g). Finally, the IX model follows Equation 5.4: 

  56 =
78∙9∙:;
:<+9∙:;

      Equation 5.4 

where qe is expressed in meq g-1, Ce is the liquid phase equilibrium concentration (meq L-1), k is 

the ion exchange affinity (dimensionless), Cx is the concentration of the exchanged ion (meq L-1) 

and ZT is the adsorption capacity of the adsorbent (meq g-1). To simplify the equation, Cx can be 

related to Ce as described in Equation 5.5: 

 => = =?@ + =6@ − =6    Equation 5.5 

where Cxi and Cei are the initial concentrations for the exchanged ion and the equilibrium 

concentration of the target ion (meq L-1). For all models, the least squares method was used to 

optimize the fit using the Solver function in Excel (Brown, 2001). 



 78 

5.2.2 HABiTS and Control Biofilter Studies 

5.2.2.1 Materials 

 Zeolitic material clinoptilolite was acquired from Zeox Mineral Materials Corp (Cortaro, 

AZ) and sieved to desired particle size range (1-2.38mm). Expanded clay was obtained from 

Trinity Lightweight (Riverlite, Big River, Alpharetta, GA) and sieved to desired particle size range 

(1-2.38mm). Both materials were pre-treated prior to use. Pre-treatment consisted of 15 min 

deionized (DI) water rinses and 24 hr drying at 105°C ± 3. Scrap tire mulch was obtained from 

Liberty Tire Recycling (Rockledge, Florida) and hand-sorted to obtain a particle size between 1.0 

and 1.5 cm. The tire mulch was rinsed with DI water and dried for 4 hours at 105°C (Krayzelova 

et al., 2014). Elemental sulfur pastilles (0.4-0.6 cm) were obtained from Southern Ag (Palmetto, 

FL). Crushed oyster shells were purchased form a local agricultural supplier (Shells, Tampa, FL) 

and sieved to remove fines (1-2 mm).  

5.2.2.2 Influent Wastewater 

 Effluent from a 30 L bench-scale septic tank (hereafter referred to as influent) was used to 

feed the columns described below. The influent was applied at varying rates according to the 

National Sanitation Foundation Standard 40 for variable loading, where 35%, 25% and 45% of the 

daily volume was distributed between the morning period (6 to 8am), afternoon period (11 to 2pm), 

and evening period (6 to 8pm), respectively. The variable loading was achieved with a Masterflex 

L/S peristaltic pump (Cole Palmer, Vernon Hills, IL) connected to a ChonTrol four-circuit 

programmable timer (Cole Palmer; Vernon Hills, IL). The timer was programmed to allow a single 

dose every hour of the dosing periods described above. The HRT in the tank varied from 3 to 14 

days depending on the operational phase (See section 5.2.2.3) The septic tank was fed with 

screened raw sewage from the Falkenburg Advanced Wastewater Treatment plant in Tampa, FL. 
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Due to the low concentration (~30 mg L-1) of NH4
+-N in the sewage during the initial part of the 

study that coincided with the wet season in Florida, urea was added to the sewage to increase 

NH4
+-N to a target concentration of 100 mg L-1, which lies in the high end of the range of septic 

tank effluent concentrations recorded by Lowe et al. (2009). Due to the variability of the 

wastewater collected from the treatment plant there was significant variability in the influent 

composition, similar to real OWTS. Due to high pH conditions which developed in the septic tank 

after 120 days of operation, the septic tank was modified on day 170 to an 8 L bottle resulting in 

an average HRT of 3 days. 

5.2.2.3 HABiTS and Control Biofilter Column Operation 

 Two side-by-side biofilter systems were constructed (Figure 5.2). One was designated as 

the control column and the second was HABiTS. The first stage of treatment occurred in 

unsaturated packed acrylic columns (88.9 mm diameter, 609.6 mm length; KOFLO, Cary, IL) to 

allow for aerobic conditions that favored nitrification. Packing materials for both columns are 

described in Table 5.2. The clinoptilolite dose in HABiTS Stage 1 was calculated to be able to 

withstand typical NH4
+ loads over a 14 day period with no nitrification (e.g. due to biofilm die-off 

after a long idle period or after shock loading of a toxicant) based on the measured adsorption 

capacity. The materials used in the control treatment were based on its low cost and prior research 

using these materials in OWTS (Smith, 2012; Hirst et al., 2013) as well as its low capacity for 

NH4
+ adsorption (Rodriguez-Gonzalez et al. 2015). The materials were mixed prior to packing in 

the column to ensure even distribution along the length of the biofilter. An expanded clay layer of 

41 mm was included at the end of both columns for drainage purposes. A porous 30 micron nylon 

mesh fabric (SEFAR NITEX®, Heiden, Switzerland) was installed between the mixed layer and 

the expanded clay underdrain to avoid settling of the smaller media.   
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 Stage 1 biofilters were constructed and operated prior to the installation of Stage 2. The 

columns were flushed with deionized water to remove fines and then flushed with 15 L of local 

groundwater to reduce some of the Na+ loads from the clinoptilolite that could hinder nitrification 

(Aponte-Morales et al., 2016). At the end of the groundwater flush, effluent Na+ concentrations 

from the columns were 100.36 and 22.4 mg L-1 for HABiTS and control columns, respectively. 

 The second stage biofilters were upflow packed bed reactors (60.35 mm diameter, 406 

mm length; KOFLO, Cary, IL) containing an inorganic electron donor (S0) to allow for anoxic 

conditions and denitrification. The media packed into each Stage 2 column are also described in 

Table 5.2. Both Stage 2 columns were packed with S0 and oyster shells to support SOD and provide 

an alkalinity control. The adsorptive medium in Stage 2 HABiTS (tire mulch) was selected based 

on the results of Krayzelova et al. (2014). The plastic carriers used in Stage 2 control did not have 

an adsorptive capacity for NO3
--N (data not shown). 

Table 5.2: Media distribution in HABiTS and control biofilter treatments. 

 Stage 1-Nitrification Stage 2- Denitrification 
HABiTS Expanded Clay 

(2-2.38mm) 
528 g Tire 

(10-15cm) 
250 g 

Expanded Clay 
(1-1.38mm) 

352 g S0 pastilles 
(0.4-0.6 cm) 

40 g 

Clinoptilolite 
(2-2.38mm) 

220 g Oyster shells 
(1-2 mm) 

10 g 

CONTROL Expanded clay 
(2-2.38 mm) 

660 g Plastic Carriers 
(14.5 mm) 

110 g 

Expanded clay 
(1-1.38 mm) 

440 g S0 pastilles 
(0.4-0.6 cm) 

40 g 

  Oyster shells 
(1-2 mm) 

10 g 

  
 During column operation, the influent was distributed over the top of the unsaturated 

columns with a Masterflex L/S peristaltic pump (Cole Palmer, Vernon Hills, IL) connected to a 

timer and dosed as described in section 5.2.2.2.  according to the NSF Standard 40 described above. 
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The columns were studied in four different phases described in Table 5.3 as follows. In the first 

phase the columns were fed at a rate of 2.1 L d-1 resulting in a hydraulic loading rate (HLR) of 

0.34 m3 m-2 d-1. In this phase the biofilters were monitored to observe the effect of IX and the 

length of time required for nitrification start-up. Phase II began several weeks after Phase I at the 

same loading rate. Phase III began after Phase II when a lower flowrate was applied, 1.3 L d-1 

(HLR = 0.21 m3 m-2 d-1) to improve nitrification. At this point, Stage 2 denitrification columns 

were also installed. During Phase IV, urea spiking in the sewage was discontinued and NH4
+-N 

concentrations were allowed to return to natural levels. 

 Backwashing of Stage 1 columns for both control and HABiTS treatment was performed 

on day 37 during the Phase II study period to improve column hydraulics. Backwashing was 

performed with a mixture of groundwater and septic tank effluent to avoid any major desorption 

of NH4
+ from the HABiTS columns that would give an advantage over the control column. The 

columns were filled from the bottom, drained twice, overflowed for 5 minutes at a rate of 250 mL 

min-1, drained again, and then immediately connected back to the influent pumps. During Phase 

III the nylon mesh described above was removed to reduce clogging and the Stage 1 column media 

were re-distributed on day 87. The columns were backwashed again on day 140 using the protocol 

described above. All backwashes were performed on Stage 1 columns. At the beginning of Phase 

IV Stage 2 columns were inverted to redistribute biomass along the column. No other maintenance 

was performed until the end of the experiment. 

 Hourly sampling studies were performed in triplicate during Phases III and Phase IV of 

biofilter operation. Studies were conducted for each stage on different days and samples were 

collected at every dosing, while influent samples were only collected at the beginning of every 

period. Idle studies were performed periodically to determine biofilter performance recovery after 
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short or long periods without any influent. Two major idle studies were performed, a 56-day idle 

study between Phase I and II, and a 31-day idle study after Phase IV. 

Table 5.3: Operational phases for HABiTS and control biofilter studies. 

Phase Operational Phase HLR 
m3 m-2 d-1 

Target NH4
+-N 

mg L-1 
EBCT (hrs) Length of 

study (d) Stage 1 Stage 2 

I Startup- Stage 1 0.34  100 43.2 - 31 
II High Loading –Stage 

1 
0.34 100 43.2 - 52 

III Moderate Loading- 
Two-Stage treatment 

0.21 100 69.84 13.92 252 

IV Low loading-Two-
stage treatment 

0.21 40 69.84 13.92 117 

 
 

  
Figure 5.2: Experimental setup schematic for HABiTS and control treatment. 
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5.2.3 Analytical Methods 

 Samples were collected at least three times per week during the noon dosing period. 

During the hourly studies samples were collected during every dosing period. A portion of the 

samples was filtered through a 0.45 µm mixed cellulose esters filter (FisherScientific, Waltham, 

MA). Concentrations of anions (NO2
-, NO3, Cl-, PO4

-3, SO4
-2) and cations (NH4

+, Ca2+, Mg2+, Na+, 

K+) were measured in the filtered samples using a Metrohm 881 Compact IC Pro (Herisau, 

Switzerland) ion chromatography system. Method detection limits (MDLs) for NO3
-, NO2

-, SO4
2- 

and PO4
3- were 0.01, 0.04, 0.01, and 0.02 mg L-1, respectively. MDLs for Na+, K+, Mg2+, Ca2+ and 

NH4
+ were 18.50, 0.07, 0.09, 0.27. 0.20 mg L-1, respectively. pH and dissolved oxygen (DO) were 

measured using an Oakton Acorn Series meter (Orion 5 Star ThermoScientific) and calibrated 

electrodes. Total Nitrogen (TN) and Chemical oxygen demand (COD) were measured periodically 

for filtered and less frequently in unfiltered samples. COD was measured with the Vario Tube Test 

(Loveland, Co) COD LR test kits (MDL: 0-150 mg L-1), according to the Standard Methods (5220 

C; APHA et al., 2012;). TN was measured with HACH TNT test tubes, method 10071 DR80 

(HACH, Loveland, Colorado). 

5.2.4 Statistical Analysis 

 Statistical analyses were performed to compare the performance of the two studied 

columns. A two-sample t-test assuming equal variances was performed in Excel 2011 for N species 

results from both columns with !=0.05.  

5.3 Results and Discussion 

5.3.1 Abiotic Adsorption Studies 

Percentage of cation concentrations in the synthetic septic tank effluent as well as in the 

bulk liquid after 24 hr adsorption for each candidate material tested are shown in Figure 5.3. 
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Clinoptilolite removed 83% of the NH4
+. Removal of K+ (36%) and Ca2+ (53%) was also observed. 

The removal of K+ was expected as zeolites have shown a higher affinity to K+ than NH4
+ (Ames 

et al., 1960). The order of affinity for zeolites as described by Ames et al., is as follows: Cs+ >

Rb+ > K+ > NHJ
+ > BaM+ > Na+ > CaM+ > FeP+ > MgM+. Although there is a higher 

selectivity for Na+ than Ca2+, the clinoptilolite is naturally loaded with Na+ and significant 

exchange will occur due to the high concentration of Ca2+ in the synthetic wastewater. Vermiculite 

achieved 42% removal of NH4
+, while also removing Ca2+ (29%) and very little K+ (2%). 

Vermiculite has been found to remove about 55% of NH4
+ in absence of competing cations (Lv et 

al., 2013). Cations exchanged within clinoptilolite and vermiculite were Na+ (260% and 74% 

increase, respectively) and Mg+ (5% and 41% increase, respectively). Other materials tested 

showed low removal of cations (<1%), while none of the materials showed significant removal of 

anions (not shown).  Based on its distinctive IX performance, ease of handling, availability and 

moderate price, clinoptilolite was selected for further study. 

 
Figure 5.3: Cation concentrations in the bulk liquid after 24 hrs of adsorption with varying media 

materials. 
 

The results from the adsorption isotherm studies with and without competing cations are 

shown in Figure 5.4. A dose of 20 g L-1 of clinoptilolite removed 94% of NH4
+ in the absence of 
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competing ions. In the presence of competing cations, the removal of NH4
+ with the same dose 

was reduced to 87.8%. The results for both experiments show the major ion exchanged is Na+ 

(Figure 5.4) and was used as Cx for the IX model fit. The fit for the Langmuir, Freundlich and IX 

model is shown in Figure 5.5 and Table 5.4. Based on the correlation coefficients, the Langmuir 

and IX model provided a better fit (0.97) than the Freundlich (0.94) for the studies without 

competing anions. Maximum adsorption capacity was calculated at 25.58 and 19.52 mg NH4
+-N 

g-1 clinoptilolite for the Langmuir and IX model.  

A better fit for all models (R2= 0.99) was observed for the adsorption isotherms with 

competing cations. The maximum adsorption capacity was reduced to 14.35 and 11.69 mg NH4
+-

N g-1 clinoptilolite for the Langmuir and IX model respectively. The reduced capacity is possibly 

due to exchange of other cations present in the synthetic septic tank effluent. With a dose of 20 g 

L-1 of clinoptilolite, removal of K+ (40.34%), Ca2+ (58.77%) and Mg2+ (30.89%) was achieved (not 

shown). The reduced capacity is important to consider when designing the Stage 1 biofilter to 

withstand NH4
+-N loads during periods without significant biological removal. During regular 

operation, however, nitrification would be a significant process in the removal of NH4
+ from the 

bulk liquid and would be the limiting factor for IX. This was also observed by Aponte-Morales et 

al. (2016) with the zeolite material chabazite. The results from the kinetic study (Figure 5.6) show 

that the majority of the IX occurs within the first 2 hours of contact time removing around 64.49% 

of NH4
+-N. At this contact time removal of K+ (13.12%) is observed while Ca2+ and Mg2+ are 

released. Maximum removal of NH4
+-N (81.6%) was observed at 16 hr contact time. This contact 

time resulted in 20.16 % and 15.81% removal of K+ and Ca2+, respectively (not shown). 

 



 86 

a)  

b)  
 

Figure 5.4: NH4
+ concentrations in the bulk liquid after 24 hr adsorption with varying 

clinoptilolite doses without (a) and with (b) the influence of competing cations 
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a)  

b)  
Figure 5.5: Langmuir, Freundlich and IX models for the clinoptilolite adsorption isotherms 

without (a) and with (b) the influence of competing cations. 
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Table 5.4: Langmuir, Freundlich and IX model fit for clinoptilolite adsorption isotherms in the 
absence and presence of competing cations. 

 
Solution Model Equation R2 

NH4Cl in DI 

Langmuir q" =
1.827 ∙ 0.593 ∙ c"
1 + 0.593 ∙ c"

 0.97 

Freundlich q" = 0.595 ∙ C"
].^_^ 0.94 

IX 56 =
1.394 ∙ 4.225 ∙ =6
=> + 4.225 ∙ =6

 0.97 

Synthetic septic 
tank effluent 

Langmuir q" =
1.025 ∙ 0.471 ∙ c"
1 + 0.471 ∙ c"

 0.99 

Freundlich q" = 0.311 ∙ C"
].^M_ 0.99 

IX 56 =
0.835 ∙ 5.411 ∙ =6
=> + 5.411 ∙ =6

 0.99 

*qe expressed in milliequivalent g-1 clinoptilolite 
*Ce expressed in milliequivalents L-1 

 

 

Figure 5.6: Adsorption kinetics for clinoptilolite with the influence of competing cations. 
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5.3.2 HABiTS and Control Biofilter Studies 

5.3.2.1 Phase I-Startup Stage 1 Biofilter under High NH4
+-N Loading Rates 

 Influent and effluent NH4
+-N, Na+, NO2

--N, and NO3
--N concentrations during Phase I for 

the nitrification stage of HABiTS and the control treatment are shown in Figure 5.7. During the 

start-up phase, removal of NH4
+-N in HABiTS ranged from 75 to 85%, which was significantly 

greater than the control. As shown in Figure 5.7b, the ion exchanged with NH4
+ was Na+; however, 

the effluent Na+ concentration only reached a maximum of 210 mg L-1 on day 2 and decreased to 

the influent value within 12 days. High Na+ concentrations are of concern due to the inhibitory 

effect of Na+ on nitrifying bacteria.  However, Na+ concentrations observed in this study were 

much lower than the value of 8,000 mg L-1 reported by Sanchez et al. (2004) to inhibit nitrification.  

The groundwater flush prior to Phase I reduced the load of Na+ from the clinoptilolite, as was 

observed by Aponte-Morales et al., (2016). Other cations present, such as Mg2+, Ca2+ and K+ 

showed little difference from influent (not shown). In contrast, in the control effluent NH4
+-N 

concentrations only started to decrease after day 7 (Figure 5.7a), which coincided with increases 

in effluent NO2
--N concentrations (Figure 5.7c). Some NO2

--N was also observed in HABiTS but 

to a lesser extent. Start-up of nitrification within both biofilters occurred much faster than in 

gravel/sand filters studied by Petitjean et al. (2016), where nitrification was observed after 12 days 

at a HLR of 0.117 m3 m-2-d-1. It is important to note that neither of the columns was seeded with 

active nitrifying biomass, indicating that some nitrifying microorganisms were likely present in 

the influent feed. Transient accumulation of NO2
--N during start-up was consistent with literature 

showing that NH4
+-N oxidation kinetics are faster than NO2

--N oxidation (Almutairi & 

Weatherley, 2015).  
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a) b)  

c)  d)  
  
 
Figure 5.7: NH4

+-N (a), Na+ (b), NO2
--N (c), and NO3

--N (d) daily variation in the influent, control and HABiTS columns effluent for 
Phase I under HLR of 0.34 m3 m-2-d-1 (Rodriguez-Gonzalez et al. 2016). 

0

20

40

60

80

100

0 4 8 12 16 20 24 28 32

N
H

4+
-N

 [m
g 

L
-1

]

0

50

100

150

200

250

300

0 4 8 12 16 20 24 28 32

N
a+

[m
g 

L
-1

]

0

5

10

15

20

25

30

0 4 8 12 16 20 24 28 32

N
O

2-
-N

 [m
g 

L
-1

]

Time [days]

0

0.5

1

1.5

2

2.5

3

0 4 8 12 16 20 24 28 32

N
O

3-
-N

 [m
g 

L
-1

]

Time [days]

0
20
40
60
80

100
120
140
160

0 50 100 150 200 250 300 350 400 450

N
O

3-
-N

 [m
g 

L
-1

]

Time [days]

INFLUENT CONTROL 1 CONTROL 2 HABiTS 1 HABiTS 2

Phase II Phase III Phase IV

0
20
40
60
80

100
120
140
160

0 50 100 150 200 250 300 350 400 450

N
O

3-
-N

 [m
g 

L
-1

]

Time [days]

INFLUENT CONTROL 1 CONTROL 2 HABiTS 1 HABiTS 2

Phase II Phase III Phase IV



 91 

Table 5.5: Average N species results for influent, control and HABiTS Stage 1 biofilters during 
Phase I. 

 Phase I 

 Influent Control HABiTS 
NH4

+-N 
(mg L-1) 

65.39±13.83 41.09±21.79 13.48±5.43 

NO2
--N 

(mg L-1) 
0.96±0.90 11.59±8.88 4.54±5.01 

NO3
--N 

(mg L-1) 
0.03±0.03 0.59±0.50 0.28±0.54 

 

 Based on the amount of clinoptilolite added, saturation of the HABiTS media and 

breakthrough should have occurred within 15 days of start-up. The low effluent NH4
+-N 

concentrations in HABiTS after 14 days showed that nitrifying biofilms were bio-regenerating the 

clinoptilolite. Meladonic & Weatherley (2008) also saw considerable retardation of NH4
+-N 

breakthrough due to nitrification in clinoptilolite columns treating synthetic wastewater. In the 

case of HABiTS Stage 1, however, little production NO2
--N and NO3

--N was observed. Based on 

the average effluent NO2
--N and NO3

--N concentrations, only 7.4 % and 44% of the NH4
+-N 

removed was due to nitrification in the Stage 1 of HABiTS and control treatment, respectively. 

Simultaneous nitrification/denitrification in anoxic zones within the columns could have possibly 

occurred, resulting in lower NO2
--N and NO3

--N in the effluent. This phenomenon, however, was 

not observed in Phases II and III and was not studied further. Significantly lower concentrations 

of NH4
+-N and NO2

--N (p-value <0.05), were observed for HABiTS during start-up phase when 

compared to the control treatment. This result also highlights the efficiency of HABiTS to reduce 

start-up periods by maintaining low N concentrations while nitrifying biofilms are being 

established. Almutairi &Weatherly (2015) observed similar results when testing multiple IX 

columns, with and without the addition of external aeration and nitrifying biomass. Huang et al. 

(2015) tested clinoptilolite for NH4
+-N removal in groundwater and also reported on the robustness 
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of the treatment in the case of insufficient biological activity. Increasing the clinoptilolite 

percentage in the HABiTS column would likely have resulted in greater removal of NH4
+ and 

longer periods of sustained IX but would have defeated the goal of keeping these systems cost-

effective and promoting hybrid IX and biological treatment. For example, although high NH4
+-N 

removal was observed in pilot scale nitrifying biofilters with 100% clinoptilolite media, the 

material was not selected for full scale tests due to cost constraints and comparable performance 

to conventional media biofilters. (FOSNRS, 2015).  

5.3.2.2 Phase II-Stage 1 Nitrification Biofilter under High NH4
+-N Loading Rates 

 Influent and effluent N species concentrations during Phase II are shown in Figure 5.8. A 

summary of the N results and water quality parameters measured in Phase II are shown in Table 

5.6. During Phase II, NH4
+-N concentrations (Figure 5.8a, Table 5.6) in the influent were highly 

variable (57.49 ±19.78), which affected the variability of the effluent of the control column 

(15.78±9.24). However, the average HABiTS effluent NH4
+-N concentration was less than 15 mg 

L-1, with little variation (11.03±3.45) and was significantly lower than effluent concentrations in 

the control column (p-value <0.05). Hirst et al. (2013) reported that little effluent NH4
+-N 

variability was observed in a nitrifying biofilter with a clinoptilolite medium. No significant 

differences were observed in NO2
--N and NO3

--N effluent concentrations from the columns 

(Figure 5.8b-c). This indicated that IX continued to occur in the HABiTS column and possibly 

bio-regeneration of the clinoptilolite. Another indication of the effect of IX in HABiTS was the 

high NO3
- concentrations recovered from HABiTS when compared to the control column within 

the first flush (day 0) due to nitrification of stored concentrations of NH4
+ during Phase I. No 

significant difference was observed in the other cations and anions from both biofilter treatments 

(Table 5.5). 
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a)  

b)  

c)  

 
Figure 5.8: NH4

+-N, NO2
--N, and NO3

--N daily variation in the influent, control and HABiTS 
columns effluent for Phase II under variable HLR. 
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the columns possibly due to the high HLR.  Based on NH4
+-N removal, there was no significant 

impact on the treatment performance due to backwashing for either column, with the exception in 

variability in TSS/VSS concentrations (not shown), most likely due to release of biomass during 

the first flush after backwash. Although not desirable, backwashing after over two months of 

intermittent treatment is not uncommon. In studies by Petitjean et al. (2016) clogging of a sand 

column was observed within 45 days of operation under varying HLR (0.07-0.117 m3 m-2- d-1). In 

this study the particle size was about half that of Petitjean et al. (2016) and the HLR during Phase 

I was about three times higher. Increasing particle size can reduce clogging but could potentially 

affect treatment within the biofilter due to reduced surface area. Reducing the HLR could also 

reduce clogging potential and was investigated in Phase III. 

Table 5.6: Average water quality results for influent, control and HABiTS Stage 1 biofilters 
during Phase II. 

 PHASE II (HLR = 0.34 m3 m-2-d-1) 
 Influent Control Stage 1 HABiTS Stage 1 

pH 7.20 ±0.40 6.68 ±0.38 6.59 ±0.41 
DO (mg L-1) 0.81 ±0.39 4.06 ±0.65 4.36 ±0.57 

NH4
+-N (mg L-1) 57.49 ±19.78 15.78 ±9.24 11.03 ±3.45* 

NO2
--N (mg L-1) 2.60 ±8.36 7.72 ±5.42 5.10 ±4.60 

NO3
--N (mg L-1) 0.10 ±0.23 32.78 ±17.43 38.53 ±24.40 

Org. N (mg L-1) 11.52 ±19.24 4.86 ±2.11 7.79 ±4.70 
Na+ (mg L-1) 79.62 ±3.19 77.78 ±6.37 84.09 ±13.16 
K+ (mg L-1) 22.07 ±5.16 21.70 ±5.62 30.32 ±4.98 

Ca2+ (mg L-1) 138.74 ±6.48 128.00 ±14.29 127.81 ±24.52 
Mg2+ (mg L-1) 40.19 ±5.33 35.32 ±5.10 33.87 ±4.89 
Cl- (mg L-1) 87.19 ±4.61 85.41 ±6.72 85.77 ±6.95 

PO4
3--P (mg L-1) 19.85 ±4.05 13.66 ±3.41 13.24 ±4.13 

SO4
2--S (mg L-1) 82.12 ±39.10 130.23 ±13.10 133.00 ±16.61 

COD (mg L-1) 122.50 ±68.85 43.50 ±11.99 42.29 ±6.05 
*Values in bold are significantly different from the comparing treatment. 
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5.3.2.3 Phase III- Two-Stage Treatment under Moderate NH4
+-N Loading Rate 

 Phase III (Figure 5.9, Table 5.7) commenced after 52 days of treatment and included a 

reduction of the HLR to 0.21 m3 m-2- d-1 to enhance nitrification and reduce clogging. Similar 

NH4
+-N removal performance was observed in both columns for Stage 1 nitrification under the 

lower HLR condition where effluent NH4
+-N concentrations were comparable to that of Phase II 

(Figure 5.9a). This result was different from that of Luo et al. (2014) where decreased NH4
+-N 

removal was observed with increasing HLR in a system that combined soil and clinoptilolite. The 

increased effluent NH4
+-N concentration was most likely due to an increase in influent NH4

+-N 

concentrations (+30 mg L-1) around day 90. In this phase, nitrification completely dominated the 

removal processes of NH4
+ for both control and HABiTS biofilters as opposed to the IX treatment. 

This was supported by the observed reduction in effluent pH as well as high effluent NO3
--N 

concentrations (Figure 5.9c). Although some heterotrophic degradation occurred in the columns 

based on more than 50% removal of COD (Table 5.7), average effluent DO concentrations were 

> 4 mg L-1 showing that lack of oxygen was probably not the cause for incomplete nitrification. 

The integration of Stage 2 denitrification for both biofilters was done on day 95, during 

Phase III. Acclimation of Stage 2 was observed between day 95 and 113. Transient NO2
--N 

production was observed for the effluent of HABiTS Stage 2 but not for the control Stage 2 column 

during this period. In HABiTS, leaching of carbon from the tire mulch, as reported by Krayzelova 

et al. (2014), could have allowed partial heterotrophic denitrification to occur resulting in high 

NO2
--N production. In time and due to the high availability of S0, SOD startup was observed and 

NO2
--N concentrations dropped to below 1 mg L-1. Samples collected on day 113 showed that 

HABiTS Stage 2 removed 97% of the NO3
--N while only 64% of it was removed in the control 

Stage 2 column, indicating faster denitrification in HABiTS possibly due to the partial 
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heterotrophic denitrification as discussed previously. The high removal of NO3
--N correlated with 

increase SO4
2--S in the effluent resulting in a productivity of 2.30 mg SO4

2--S mg-1 NO3
--N. This 

calculated productivity is higher than that from the stoichiometric value of 1.6 mg SO4
2--S mg-1 

NO3
--N reported by Sengupta et al., (2007) and could indicate aerobic oxidation of elemental sulfur 

which has been reported in several studies of SOD (Tong et al., 2016; Boles et al., 2012). This is 

also supported by the high and variable DO concentration in the effluent of Stage 2 (3.34 ±1.68 

mg L-1). The productivity for control column Stage 2 was only 0.79 mg SO4
2--S mg-1 NO3

--N and 

could be caused by slow SOD startup and possibly SO4
2--S reduction within the column (Boles et 

al., 2012). The averages of all N species and SO4
2--S were not significantly different between 

biofilters during this period.  

Another notable period during Phase III occurred between days 140 and 170. The long 

HRT in the septic tank resulted in high pH and volatilization of NH3 effectively reducing the NH4
+-

N concentration in the influent to approximately 16.5±4.7 mg L-1. During this period NH4
+-N 

concentrations decreased to 2.46±1.79 and 0.03±0.06 mg L-1 for HABiTS and control Stage 1, 

respectively, and were significantly higher for the HABiTS biofilter. Significantly higher 

concentrations of NH4
+-N were also observed for Stage 2 HABiTS compared to Stage 2 in the 

control column. NO3
--N was also significantly higher for HABiTS Stage 1 (43.45±7.20) than the 

control (28.9±3.18). These results indicate desorption of the stored NH4
+-N in the clinoptilolite 

and subsequent nitrification due to the previous high loading. Similar results were observed by 

Miladonic & Weatherly (2008) when testing clinoptilolite columns at varying loading rates. 

Effluent NO3
--N concentrations from HABiTS Stage 2 were significantly lower (0.88± 1.90) than 

those in the control column (6.42 ± 4.15). This resulted in a productivity of 0.55 mg SO4
2--S mg-1 

NO3
--N for HABiTS Stage 2 and 0.87 mg SO4

2--S mg-1 NO3
--N for Stage 2 of the control treatment. 
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a)  

b)  

c)  

 
 

Figure 5.9: NH4
+-N, NO2

--N, and NO3
--N daily variation in the influent, control and HABiTS 

columns effluent for Phase III under variable HLR. 
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 Recovery after the low influent concentrations occurred between day 177 and 201. During 

this period the septic tank was modified (as described in section 5.3.1) and NH4
+-N in the influent 

increased to an average of 80.56 ±30.66 mg L-1. Average Stage 1 effluent NH4
+-N concentrations 

were 5.80±4.4 mg L-1 and 10.76 ±5.17 mg L-1 for HABiTS and control, respectively, and were 

significantly different (p<0.05). Significantly lower concentrations of NH4
+-N were also observed 

for HABiTS Stage 2 whereas a significant increase in NO2
--N concentrations was observed. No 

significant difference was observed for NO3
--N production. These results indicate that IX 

continued to be a significant removal mechanism within HABiTS, particularly when a high rate 

loading period occurs after a low loading rate period. For Stage 2, significant differences were 

observed for NO3
--N removal, where HABiTS removed 89.55% compared to 67.84% in the 

control treatment. Productivity of SO4
2--S, on the other hand, was significantly lower for HABiTS 

(0.6 mg SO4
2--S mg-1 NO3

--N) than the control treatment (1.1 mg SO4
2--S mg-1 NO3

--N). This 

lower productivity indicates that another NO3
--N removal mechanism was occurring in HABiTS 

Stage 2, possibly heterotrophic denitrification using the COD from the carbon leachate or 

adsorption to the tire (Krayzelova et al., 2014). Although the effects of NO3
--N adsorption to the 

tire mulch in the HABiTS Stage 2 was not observed in other periods of Phase III, it was observed 

in the study by Krayzelova et al., (2014) in both batch experiments and column experiments with 

synthetic wastewater. However, the contact time required for adsorption in Krayzelova’s study 

was much higher than that in this study. The limited contact time could have reduced the removal 

of NO3
--N by adsorption. 

In terms of overall performance, nitrification in both treatments was not significantly 

different, while significantly lower NO3
--N concentrations were found in HABiTS Stage 2. Overall 

TIN removal for HABiTS was 53.54%, versus 40.97% for the control treatment. The overall 
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performance of HABiTS could have been affected by slow desorption of the retained NH4
+ during 

the previous high loading period in Phase II. Regardless, nitrification in this phase (Phase III) was 

improved when compared to Phase II resulting in lower NO2
--N (< 2 mg L-1) and higher production 

of NO3
--N.  

5.3.2.4 Phase IV- Two Stage Biofilter Treatment under Low NH4
+-N Loading Rate 

N species and water quality parameters for Phase IV are shown in Figure 5.10 and Table 

5.7. During this phase, addition of urea to the sewage was discontinued and the influent NH4
+-N 

concentration decreased. Although no backwash was performed during this phase, Stage 2 

biofilters were inverted several times to re-distribute the solids within the layers of the column and 

reduce the accumulation of the solids in the biofilter inlet. NH4
+-N concentrations in the Stage 1 

of control treatment dropped rapidly and reached levels below 1 mg L-1 within 11 days (Figure 

5.10a). In HABiTS, however, the rate of NH4
+-N removal was much slower and only decreased to 

2.41 mg L-1, 35 days after the beginning of Phase IV. Average results for N species show 

significantly higher NH4
+-N concentrations for both stages of HABiTS. This is also true for NO3

-

-N production, where HABiTS produced 46.78 ±11.83 mg L-1 while the control column only 

reached 37.40 ±12.40.  

High NO3
--N concentrations were observed in the Stage 2 effluent of both treatments during 

the first 10 days of Phase IV (day 339 to 350) possibly due to washout of denitrifying biomass 

after redistribution of the solids. Due to the higher load into HABiTS Stage 2, significantly higher 

NO3
--N concentrations in the effluent were also observed. Overall, HABiTS was able to remove 

only 28.7 % of TIN while the control treatment was able to remove 62%.  
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a)  

b)  

c)  

 
 

Figure 5.10: NH4
+-N, NO2

--N, and NO3
--N daily variation in the influent, control and HABiTS 

columns effluent for Phase IV under variable HLR. 
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Table 5.7: Average water quality results for influent, control and HABiTS column during Phases III and VI. 

 PHASE III (HLR = 0.21 m3 m-2-d-1) PHASE IV (HLR = 0.21 m3 m-2-d-1) 
 Influent Control 

Stage 1 
Control 
Stage 2 

HABiTS 
Stage 1 

HABiTS 
Stage 2 

Influent Control 
Stage 1 

Control 
Stage 2 

HABiTS 
Stage 1 

HABiTS 
Stage 2 

pH 7.52 
±0.41 

6.21 
±0.77 

6.54 
±0.32 

5.91 
±1.29 

6.64 
±0.33 

6.98 
±1.36 

5.87 
±2.06 

6.10 
±1.74 

5.87 
±0.94 

6.37 
±0.39 

DO  
(mg L-1) 

0.85 
±0.49 

5.06 
±1.06 

3.53 
±1.45 

4.87 
±1.51 

3.34 
±1.68 

0.58 
±0.37 

4.56 
±1.77 

3.30 
±1.63 

4.92 
±0.86 

3.05 
±1.55 

NH4
+-N 

(mg L-1) 
80.56 

±30.66 
19.79 

±17.07 
21.82 

±16.08 
21.51 

±13.99 
20.25 

±12.90  
45.65 
±8.42 

1.69 
±3.41 

3.38 
±4.26 

8.42 
±8.05* 

8.76 
±7.95* 

NO2
--N 

(mg L-1) 
0.97 

±0.91 
0.50 

±0.54 
0.67 

±0.74 
0.57 

±0.75 
1.49 

±2.98 
0.28 

±0.21 
0.15 

±0.72 
0.33 

±1.06 
0.33 

±1.28 
0.95 

±2.81* 
NO3

--N 
(mg L-1) 

0.07 
±0.17 

58.96 
±21.86 

25.68 
±15.12 

58.60 
±23.47 

16.17 
±15.96* 

0.00 
±0.00 

37.40 
±12.40 

13.70 
±6.06 

46.78 
±11.83* 

23.04 
±8.26* 

Na+  
(mg L-1) 

88.65 
±12.47 

90.19 
±11.44 

89.06 
±11.39 

88.53 
±10.68 

88.39 
±6.26  

104.22 
±10.99 

102.80 
±11.36 

99.50 
±15.61 

97.17 
±11.88 

97.02 
±11.99 

K+    
(mg L-1) 

29.13 
±10.32 

28.85 
±9.60 

29.74 
±10.24 

33.68 
±6.66 

35.11 
±6.92  

30.76 
±26.73 

30.48 
±26.59 

29.43 
±26.39 

21.55 
±6.90 

23.94 
±6.31 

Ca2+ 
(mg L-1) 

138.03 
±35.20 

109.12 
±27.73 

132.34 
±27.43 

112.88 
±35.33 

132.50 
±30.40  

152.12 
±13.51 

110.56 
±11.33 

118.81 
±18.12 

90.17 
±15.61 

111.70 
±13.98 

Mg2+ 
(mg L-1) 

36.82 
±10.25 

31.22 
±9.80 

31.76 
±9.64 

29.79 
±6.37 

31.60 
±8.97  

35.43 
±4.91 

27.99 
±3.29 

27.45 
±4.04 

24.92 
±3.43 

26.67 
±3.29 

Cl-  
(mg L-1) 

91.73 
±30.53 

90.48 
±28.98 

93.20 
±30.93 

90.27 
±29.69 

91.88 
±30.36  

111.05 
±25.42 

91.39 
±41.00 

105.52 
±27.10 

97.78 
±32.94 

109.47 
±25.54 

PO4
3--P 

(mg L-1) 
3.24 

±1.81 
1.70 

±1.40 
1.57 

±1.75 
2.05 

±1.52 
1.16 

±1.08 
2.21 

±1.51 
0.00 

±1.08 
0.67 

±0.92 
0.81 

±1.16 
0.56 

±0.86 
SO4

2--S 
(mg L-1) 

22.48 
±16.22 

42.31 
±16.79 

74.14 
±23.62 

43.48 
±9.02 

70.90 
±22.48 

22.95 
±18.61 

46.79 
±24.46 

87.67 
±19.91 

51.82 
±14.64 

73.98 
±26.10 

COD 
(mg L-1) 

88.75 
±33.50 

22.00 
±14.79 

42.59 
±26.42 

28.40 
±7.27 

45.44 
±24.06 

74.50 
±54.42 

- 23.00 
±32.53 

- 34.00 
±29.70 

*Values in bold are significantly different from the comparing treatment.
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5.3.2.5 Hourly and Idle Studies 

Average N species for the three dosing periods as well as the daily average for hourly 

studies during Phase III are shown in Figure 5.11 and 5.12. The results supported the overall 

findings for Phase III. No significant differences were observed for Stage 1 (Figure 5.11a, 5.11b, 

5.11c) overall or at any of the dosing periods during the day. For Stage 2 (Figure 5.12c), NH4
+-N 

concentrations were significantly higher in HABiTS (27.07±0.31 mg L-1) than the control 

treatment (23.96±0.35 mg L-1) during the evening dosing, possibly due to the higher loading during 

the morning period. NO2
--N concentrations were approximately 1.09±0.17 mg L-1 significantly 

higher for HABiTS Stage 2 overall, and at the morning and evening period. No significant removal 

was observed for NO3
--N while SO4

2--S was significantly lower for HABiTS during the evening 

dose (80.08±3.64 mg L-1), indicating limited denitrification. 

Phase IV hourly studies results for average N species for the three dosing periods as well 

as the daily average are shown in Figure 5.13 and 5.14. Significantly higher daily NO3
--N 

concentrations were observed in HABiTS Stage 1 (Figure 5.13d; 49.99±6.32 mg L-1) when 

compared to the control (Figure 5.13d; 41.46±4.28 mg L-1). This was also true for the averages of 

the morning and noon periods (Figure 5.13a, 5.13b). For the morning period, about 10 hrs had 

passed from the last dose allowing for desorption of NH4
+-N and subsequent nitrification. The 

noon dosing is the lowest loading of the day and would allow desorption of the exchanged NH4
+-

N as supported by the significantly higher NH4
+-N concentrations during this dosing period (Figure 

5.13a; 2.36±0.13 mg L-1). Stage 2 results (Figure 5.14d) showed significantly higher daily NO3
--

N concentrations for HABiTS when compared to the control treatment. This could have been 

caused by the higher loading received from Stage 1, as discussed previously. Significantly lower 

daily productivity of SO4
2--S was observed for HABiTS Stage 2 when compared to 1.21 mg SO4

2-



 103 

-S mg-1 NO3
--N produced from the control treatment. This result supports the lower NO3

--N 

removal of HABiTS (45.7%) compared to the control treatment (53.6%). 

The hourly studies show limited performance of HABiTS during continuous operation and 

reduction of NH4
+-N loads. Enhanced removal within HABiTS is expected during continuous 

operation with increasing loading rates as discussed in the recovery from a low loading period 

during Phase III. The results for the idle studies also support this conclusion (Figure 5.15). After 

the first flush of an idle period of 30 days (Figure 5.15a), HABiTS Stage 1 was able to remove 39 

mg d-1 of NH4
+-N while producing 0.99 mg d-1 of NO2

--N and releasing 220.1 mg d-1 of NO3
--N. 

Similar results were observed for NH4
+-N removal in the control column (44 mg d-1) while much 

less NO2
--N (0.06 mg d-1) and NO3

--N (111 mg d-1) were produced showing the small amount of 

clinoptilolite in HABiTS is able to store 2.7 times as much TIN as the control biofilter. A similar 

trend was observed for the 56-day idle study (Figure 5.15b) were HABiTS produced about 2.1 

times as much TIN as the control. These results highlight the effect of desorption and subsequent 

nitrification during no loads within the HABiTS Stage 1 biofilter. It is expected that biofilms 

should be sustained longer within the HABiTS column due to the availability of N stored in the 

clinoptilolite. However, long idle periods could limit this effect to an extent since the Stage 1 

biofilter would eventually dry out and possibly result in the desiccation of the biofilms. Biofilter 

dryness and its effect on performance was not monitored in this study, but the reduced sample 

volume (about one fifth of the volume expected under continuous operation) collected after the 

31-day idle stud, could be an indicator of dry conditions within both biofilters. Results for Stage 2 

showed complete denitrification for both treatments during the idle period of 31 days.
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a)   b)   

c)   d)  

 
Figure 5.11: N species concentrations for 6am (a), 12pm (b), 6pm (c) and daily average (d) for Phase III hourly studies for Stage 1 for 

both Control and HABiTS biofilter treatments. 
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a) b)  

c) d)  

 
Figure 5.12: N species concentrations for 6am (a), 12pm (b), 6pm (c) and daily average (d) for Phase III hourly studies for Stage 2 for 

both Control and HABiTS biofilter treatments. 
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a) b)  

c) d)  

 
Figure 5.13: N species concentrations for 6am (a), 12pm (b), 6pm (c) and daily average (d) for Phase IV hourly studies for Stage 1 for 

both Control and HABiTS biofilter treatments. 
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a) b)  

c) d)  

 
Figure 5.14: N species concentrations for 6am (a), 12pm (b), 6pm (c) and daily average (d) for Phase IV hourly studies for Stage 2 for 

both Control and HABiTS biofilter treatments. 
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a)  

b)  
Figure 5.15: Stage 1 TIN concentrations at first flush after 31 days idle (a) and 56 days idle (b) 

periods. 
 

5.3.2.6 Overall Performance of HABiTS and Control Column 

The results for the cumulative removal (compared to the septic tank effluent) of N species 

and TIN for all phases are shown in Table 5.8. For Stage 1, the HABiTS control column showed 

higher removal of NH4
+-N, lower production of NO2

--N and higher production of NO3
--N when 

compared to the control column. These results indicate enhanced nitrification possibly due to the 

incorporation of the IX media.  The results for Stage 2 show similar NH4
+-N removal for both 

columns, while higher NO2
--N production and lower NO3

--N production was observed for 

HABiTS when compared to the control. Evaluating the treatments in terms of overall TIN removal 
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shows better performance was achieved for HABiTS removing approximately 1.41 g of N more 

than the control treatment. Under the current operation of 1.3 L d-1 and average concentrations of 

50 mg L-1 NH4
+-N in the influent, this difference results in approximately 22 days of loads over 

the 487 day study period  that where mitigated by HABiTS and not the control treatment.  

Table 5.8: Cumulative removal of N species and TIN during all phases for HABiTS and control 
treatment. 

 Phase Control Stage 1 HABiTS Stage 1 Control Stage 2 HABiTS Stage 2 

N
H

4+ -N
  

(g
) 

I 1.58 3.38     
II 4.56 5.07     
III 21.58 21.21 18.13 18.81 
IV 6.37 5.43 6.23 5.45 

Total 34.09 35.09 24.36 24.25 

N
O

2- -N
 

 (g
) 

I -0.69 -0.23     
II -0.56 -0.27     
III 0.10 0.14 0.10 -0.17 
IV 0.01 -0.01 -0.01 -0.10 

Total -1.14 -0.38 0.09 -0.27 

N
O

3- -N
 

 (g
) 

I -0.04 -0.02     
II -3.57 -4.20     
III -20.32 -20.30 -8.39 -5.27 
IV -5.78 -6.62 -2.07 -3.32 

Total -29.70 -31.13 -10.46 -8.59 

TI
N

 
(g

) 

I 0.85 3.13     
II 0.43 0.60     
III 1.36 1.04 9.84 13.37 
IV 0.60 -1.20 4.15 2.03 

Total 3.25 3.58 13.99 15.40 
*Removal rate calculated by:! "#$%&'#( − *$$%&'#( ∙ , ∙ - 

*- represent production of the compounds 
 

5.4 Conclusions 

Hybrid Adsorption and Biological Treatment System (HABiTS) are promising alternative 

for passive N removal in OWTS. Clinoptilolite was found to be the best medium for the 

nitrification stage of HABiTS due to its high IX capacity for NH4
+. Langmuir, Freundlich, and IX 
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models showed a good fit for clinoptilolite adsorption isotherms. From the IX model it was found 

that clinoptilolite has a 11.69 mg g-1 NH4
+-N exchange capacity even when in competition with 

other cations present in septic tank effluents. Results from the biofilter studies showed that the 

combined IX and nitrification in HABiTS can allow for faster startup, sustain variable loading, 

and achieve over 80% removal of NH4
+ concentrations at loading rates higher than 0.34 m3 m-2-d-

1 when compared to the conventional media column with 73% removal. Continuous operation 

under this loading rate, however, can result in clogging and will require more frequent 

backwashing than is generally considered practical for homeowners. Under lower loading rate 

conditions the biological treatment was enhanced and dominated the NH4
+ removal processes in 

both columns. The addition of a denitrification stage decreased TIN by 53.54% and 40.97% under 

moderate loading rates 0.21 m3 m-2-d-1. Further decrease in NH4
+-N loading rates resulted in high 

desorption of exchanged NH4
+ in the clinoptilolite, resulting in lower TIN removal efficiencies 

(28.7%) when compared to the conventional control treatment (62%). The combined results for all 

phases show enhanced TIN removal in HABiTS, which was able to mitigate approximately 22 

days of loads over the control treatment. 

 Based on these results the application of HABiTS for the enhancement of OWTS is 

expected to: 

•! Buffer transient loading into the system, where N is adsorbed during high loading rates, 

slowly released during low loading rates 

•! Sustain longer periods of idle time due to the slow release of N 

•! Allow for faster startup and potentially faster recovery from idle periods that result in 

bioregeneration of the clinoptilolite and restore the high adsorption capacity 
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CHAPTER 6:!CONCLUSIONS AND RECOMMENDATIONS 

Non-point sources (NPS) of pollution, are non-discernable, diffuse sources of pollution 

that are often difficult to localize and in turn mitigate. NPS can include stormwater runoff, 

agricultural/aquaculture wastes and wastes from small decentralized wastewater treatment systems 

such as conventional septic systems. In some watersheds, the mitigation of these NPS is imperative 

to reduce their detrimental effects on the water environment. This dissertation focused on two of 

the above mentioned NPS, aquaculture wastes and conventional septic systems and addressed 

novel treatment technologies for the mitigation of nutrients and trace organics produced by these 

sources. The research was divided in three chapters; their corresponding research questions, 

objectives and major findings and recommendations were: 

1.! Chapter 3: Can the application of a UV-TiO2 reactor reduce off-flavor compounds in RAS? 

•! Investigate the performance of the UV-TiO2 treatment under batch and continuous flow 

reactor configurations for the removal of GSM and MIB in RAS. 

An immobilized TiO2 and UV reactor was applied as a batch reactor in an operating RAS 

and as a continuous reactor in a bench-scale RAS. Improved performance on the removal of GSM 

and MIB was observed in the batch reactor since it allowed longer treatment time without the effect 

of constant production of the compounds in the biological treatment processes. Treatment 

performance of UV-TiO2 was affected by GSM, MIB and dissolved oxygen concentrations.  

•! Evaluate and discuss the effect of the UV-TiO2 treatment on water quality parameters and 

the possible impacts on biological wastewater treatment processes in RAS. 
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No harmful effects were observed on other water quality parameters when the UV-TiO2 

reactor was operated as a batch or side stream process.  

•! Recommendations 

Due to the possible production of NO2
--N and scavenging of carbonates, full-scale 

application of the UV-TiO2 reactor is suggested at a point where NO3
--N is low and prior to any 

addition of chemicals for alkalinity control. Furthermore the application of the UV-TiO2 in an 

oxygen saturated area would positively affect the performance. The full-scale application of UV-

TiO2 is expected to reduce GSM and MIB in RAS, and in turn reduce depuration times resulting 

in lower demand for highly treated water, improved farmed fish product quality and cost savings. 

For successful application as a full-scale system in RAS, research into the intermediates produced 

in the degradation of GSM and MIB as well as their effect on fish health needs to be performed. 

2.! Chapter 4: Does the application of T-SHAD in RAS improve nutrient and off-flavor compound 

removal when compared to conventional heterotrophic denitrification? 

•! Determine the adsorption capacity of tire mulch for GSM and MIB. 

Adsorption studies showed that the tire mulch has significant adsorption capacity for the 

off-flavor compounds but can be reduced by the presence of competing organic matter in RAS. A 

minimum EBCT of 8 hours is needed for removal of over 90% and 60% of GSM and MIB, 

respectively. 

•! Assess denitrification and off-flavor compound removal performance of T-SHAD in 

different reactor configurations in a bench-scale RAS. 

When applied as a polishing step and operated under high EBCT (720 min) removal of 

96.6% of NO3
--N, 69.6% of GSM and no removal of MIB was achieved. The application of T-

SHAD within RAS as denitrification side treatment for NO3
--N removal at a lower EBCT (185 
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min) resulted in reduced NO3
--N removal to 21% and showed no significant removal for off-flavor 

compounds. 

•! Compare T-SHAD to heterotrophic denitrification utilizing molasses as an organic electron 

donor and carbon source. 

The T-SHAD results under 185 min EBCT showed no significant differences to the 

molasses fed heterotrophic UPBR with the exception of high productivity of SO4
2- that resulted 

from SOD processes.  

•! Recommendations 

High EBCT are recommended for T-SHAD to ensure both denitrification and removal of 

GSM and MIB. Due to the production and the possible impact of the accumulation of SO4
2--S, it 

is recommended that T-SHAD be combined with other heterotrophic denitrification treatments, 

possibly with treatment utilizing fish waste was electron donor. This combination could allow for 

increased EBCT in T-SHAD to remove GSM and MIB, reduced COD in RAS, low NO3
--N 

concentrations and limit the SO4
2--S production. Further studies are required to assess toxicity of 

the tire mulch to aquatic species for the successful application of T-SHAD in full scale RAS. 

3.! Chapter 5: What IX/adsorption medium best balances both NH4
+ removal and cost 

effectiveness for application in OWTS? 

•! Determine NH4
+ adsorption capacity, hydraulic properties, cost and availability of various 

IX media for application in HABiTS. 

Clinoptilolite was found to be the best medium for the nitrification stage of HABiTS due 

to its high IX capacity for NH4
+. Langmuir, Freundlich and IX models showed a good fit for 

clinoptilolite adsorption isotherms. From the IX model it was found that clinoptilolite has a 11.69 

mg g-1 NH4
+-N exchange capacity even when in competition with other cations present in septic 
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tank effluents. The cost of clinoptilolite can be high, compared to other materials such as sand or 

expanded clay. However, due to the high exchange capacity only a fraction of the total mass of the 

biofilter would need to be filled with clinoptilolite, enough to withstand a 2 week OWTS loading 

while keeping concentrations of NH4
+-N low. 

4.! Chapter 5: How is the BNR process within HABiTS affected by IX? 

•! Compare the performance of HABiTS enhanced OWTS with nitrification/denitrification 

biofilters without an adsorptive medium under transient loading conditions. 

Results from the biofilter studies showed that the combined IX and nitrification in HABiTS 

can allow for faster startup, sustain treatment under variable loadings, and achieve over 80% 

removal of NH4
+ concentrations at loading rates higher than 0.34 m3 m-2-d-1 when compared to the 

conventional media column with 73% removal. However, clogging can occur under constant 

operation under this loading rate. Under lower loading rates the biological treatment was not 

limited and dominated the NH4
+ removal processes in both columns.  The addition of a 

denitrification stage decreased TIN by 53.54% and 40.97%, for the HABiTS and control treatment, 

respectively, under moderate loading rates 0.21 m3 m-2-d-1. Further decrease of NH4
+-N loading 

rates results in high desorption of exchanged NH4
+ in the clinoptilolite, resulting in lower TIN 

removal efficiencies (28.7%) when compared to the conventional control treatment (62%). 

5.! Chapter 5: Does the proposed hybrid system enhance the removal of TIN in OWTS under 

transient loading conditions? 

•! Compare the hourly performance of HABiTS with nitrification/denitrification biofilters 

without an adsorptive medium under transient loading conditions. 

It was found that the performance of HABiTS varies with daily and hourly loads, 

particularly when recovering from periods of very low loading to high loadings and vice versa. 
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When recovering from low N loading periods, IX was observed for HABiTS and the biofilter out 

performed the conventional treatment in overall TIN removal. However, recovery from a high 

loading period resulted in release of NH4
+-N stored in the clinoptilolite and increased production 

of NO3
--N that could affect the performance of the denitrification stage. 

•! Recommendations 

For full-scale applications, larger particle size for both the clinoptilolite and expanded clay 

would reduce the frequency of clogging observed at the beginning of this study. The addition of 

an alkalinity source in the nitrification stage of HABiTS, particularly in areas with low alkalinity 

water, is also recommended to reduce the consumption of the alkalinity source in the denitrification 

stage that could require replacement of the alkalinity source sooner than expected. Moreover, 

higher EBCT is recommended for the denitrification stage of HABiTS to mitigate the higher NO3
-

-N loading from the enhanced nitrification in Stage 1. 
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APPENDIX A LIST OF ACRONYMS 
 
BNR- Biological Nitrogen Removal 

DWTS- Decentralized Water Treatment Systems 

EBCT- Empty Bed Contact Time 

FDAC- Florida Department of Agriculture and Consumer Services 

FDOH- Florida Department of Health 

GSM- Geosmin 

HABiTS- Hybrid Adsorption and Biological Treatment Systems 

HES-Healthy Earth Systems 

H-UPBR- Heterotrophic Upflow Packed Bed Reactor 

IX- Ion Exchange 

MIB- 2-methylisoborneol 

MBBR- Moving Bed Bioreactor 

N-Nitrogen 

NPDES- National Pollution Discharge Elimination System 

NPS- Non-point sources of pollution 

OWTS- Onsite Wastewater Treatment Systems 

P-Phosphorus 

RAS- Recirculating Aquaculture Systems 

SOD- sulfur oxidizing denitrification 

TIN-Total Inorganic Nitrogen 
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TKN- Total Kedhjal Nitrogen 

T-SHAD- Tire Sulfur Hybrid Adsorption Denitrification 

USDA- United States Department of Aquaculture 

USEPA- United States Environmental Protection Agency 

UV- Ultra-violet  
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APPENDIX B SUPPLEMENTARY DATA FOR CHAPTER 5 
 

The following sections include an additional experiment (B.1) and supplementary data for 

Chapter 5. The daily data showed in sections B.2, B.3, B.4 and B.5 was used to calculate average 

concentrations presented in Chapter 5. 

B.1 Abiotic Column Adsorption Studies 

An additional experiment was performed for the characterization of the clinoptilolite 

material to be utilized in HABiTS. The purpose of this experiment was to determine NH4
+ 

breaktrough in an unsaturated clinoptilolite layered column. A 60 mm diameter column (KOFLO, 

Cary, Illinois) was packed with clinoptilolite (h= 6 cm) and expanded clay (h=5 cm). Synthetic 

septic tank effluent was distributed over the surface at a rate of 4 mL min-1. After breakthrough, 

NH4
+ was removed from synthetic septic tank effluent and flowed through to the column to observe 

desorption. Samples were collected periodically to determine adsorption capacity of the media 

layer.  Average retention time within the column was determined by monitoring Cl- concentrations 

in the effluent. 

Effluent variation of cation concentrations from the abiotic clinoptilolite packed column 

during NH4
+ adsorption are shown in Figure B.1. Even after 48 hrs NH4

+ concentrations in the 

effluent were below 10 mg L-1. Breakthrough was observed after 6 days of column run resulting 

in a total adsorption of over 3 g of NH4
+. It is expected that accounting for biological processes in 

the model will likely retard the breakthrough of NH4
+ when real septic tank effluent is used. 

Desorption kinetics were slower than adsorption (Figure B.2). After 24 hrs NH4
+ concentrations 

where still > 80 mg L-1.  The desorption rate of NH4
+ from clinoptilolite is expected to increase 
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due to BNR regeneration (Lahav and Green, 1997; Aponte-Morales et al., 2016).The average 

retention within the column was 51 mins. 

 
Figure B.1: Synthetic septic tank effluent initial concentration and variation of cations 

concentration in the effluent of the clinoptilolite-expanded clay column until breakthrough of 
NH4

+. 

 
Figure B.2: Synthetic septic tank effluent initial concentration and variation of cations 

concentration in the effluent of the clinoptilolite-expanded clay column for desorption of NH4
+. 
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B.2 Phase I Data 

Table B.1: Phase I daily water quality data for the influent of HABiTS and control column. 

Day 
Na+  

(mg L-1) 
NH4

+-N 
(mg L-1) 

K+ 
(mg L-1) 

Ca2+ 
(mg L-1) 

Mg2+ 
(mg L-1) 

Cl- 
(mg L-1) 

NO2
--N 

(mg L-1) 
NO3

--N 
(mg L-1) 

PO4
3--P 

(mg L-1) 
SO4

2--S 
(mg L-1) 

0 103.56 88.43 20.78 184.44 30.97 120.10 2.64 0.09 3.76 29.21 
1 101.61 89.85 19.47 185.05 30.60 117.99 2.14 0.09 3.97 34.39 
2 104.44 85.08 21.35 189.98 33.31 117.93 2.30 0.08 3.91 35.27 
3 100.85 82.64 19.55 182.59 31.81 110.70 3.08 0.08 3.51 28.43 
4 100.05 82.70 19.14 173.28 31.04 117.21 1.99 0.08 3.01 33.18 
5 98.40 75.74 19.31 164.66 31.94 113.89 1.49 0.06 4.22 33.96 
6 119.79 71.20 19.72 155.80 31.86 73.26 0.61 0.03 1.41 17.06 
7 100.60 71.37 19.55 177.05 33.02 74.33 1.03 0.02 1.88 19.50 
8 97.13 68.83 17.24 111.39 32.50 73.84 0.53 0.02 1.87 16.89 
9 94.10 65.31 17.90 117.71 34.74 70.62 0.55 0.03 1.77 16.98 
10 94.99 61.47 17.57 99.22 33.39 71.17 0.55 0.02 1.89 19.09 
11 92.17 55.80 16.83 87.05 30.93 67.26 0.76 0.00 1.84 18.49 
12 96.08 51.48 17.08 132.98 30.06 68.35 0.46 0.04 1.50 19.99 
13 92.08 48.61 15.61 138.18 26.18 65.17 0.41 0.00 1.45 16.85 
14 88.92 58.28 17.73 149.14 33.59 62.07 1.01 0.04 1.61 20.29 
15 88.33 47.62 15.69 121.97 30.99 60.42 0.46 0.04 1.42 11.54 
17 78.10 49.60 15.39 139.59 31.10 52.07 0.49 0.00 1.94 12.91 
20 81.29 46.45 15.47 128.20 33.84 53.00 0.32 0.00 1.77 18.44 
22 77.40 57.33 22.20 122.43 36.35 55.35 0.08 0.01 1.72 24.15 
27 82.57 59.49 34.67 148.04 39.15 53.73 0.07 0.02 1.33 19.23 
29 87.91 58.50 35.65 155.84 36.95 55.78 0.07 0.00 1.75 21.50 
31 84.72 62.70 42.94 168.19 36.20 57.00 0.11 0.02 2.46 27.02 
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Table B.2: Phase I daily water quality data for the effluent of the control column Stage 1. 

Day 
Na+  

(mg L-1) 
NH4

+-N 
(mg L-1) 

K+ 
(mg L-1) 

Ca2+ 
(mg L-1) 

Mg2+ 
(mg L-1) 

Cl- 
(mg L-1) 

NO2
--N 

(mg L-1) 
NO3

--N 
(mg L-1) 

PO4
3--P 

(mg L-1) 
SO4

2--S 
(mg L-1) 

0 79.55 47.52 21.35 210.95 21.78 97.60 2.24 2.12 2.47 35.38 
1 94.55 73.42 21.52 197.65 27.80 114.84 1.79 0.38 3.18 33.93 
2 100.72 79.24 21.19 191.33 29.87 118.37 1.74 0.08 3.36 34.19 
3 102.37 77.82 20.62 176.85 29.12 115.08 0.68 0.05 3.05  
4 98.99 75.01 19.72 169.87 28.79 117.44 0.68 0.05 3.07  
5 98.36 66.97 21.44 165.07 29.41 118.16 5.70 0.13 1.85  
6 100.51 61.95 19.80 165.24 30.25 118.85 7.23 0.23 1.80 31.17 
7 101.49 51.10 20.37 157.60 29.12 119.63 10.41 0.29 1.84 31.62 
8 96.63 41.75 18.47 138.95 26.10 114.54 9.25 0.36 1.88 29.55 
9 95.11 32.27 18.55 135.54 27.29 112.29 3.35 0.13 1.42 29.24 
10 95.20 27.14 23.62 127.40 25.92 110.40 27.38 1.15 1.71 30.85 
11 92.92 23.08 17.57 128.41 25.32 111.95 22.97 0.87 1.92 30.70 
12 89.68 31.51 18.14 136.08 26.41      
13 91.16 16.70 17.16 130.15 25.42 105.12 25.03 1.00 1.61 32.80 
14 87.20 30.81 17.98 128.76 28.00 97.14 13.49 0.75 1.86 29.46 
15 88.33 27.48 18.39 135.77 28.44 99.05 20.68 0.85 1.77 30.39 
17 82.53 21.02 16.20 138.79 29.53 61.07 16.43 0.67 1.63 23.29 
20 83.11 12.86 15.07 138.79 29.88 88.29 14.52 0.43 1.60 33.83 
22 83.07 18.11 19.44 139.79 28.81 80.71 27.17 1.23 2.40 35.72 
27 78.80 28.93 33.30 145.21 32.52 83.23 12.97 0.66 2.10 43.57 
29 82.69 27.44 34.03 158.36 34.74 81.65 8.43 0.34 1.95 41.87 
31 78.18 31.90 39.37 159.43 32.60 86.18 11.28 0.63 2.55 45.99 
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Table B.3: Phase I daily water quality data for the effluent of the HABiTS column Stage 1. 

Day 
Na+  

(mg L-1) 
NH4

+-N 
(mg L-1) 

K+ 
(mg L-1) 

Ca2+ 
(mg L-1) 

Mg2+ 
(mg L-1) 

Cl- 
(mg L-1) 

NO2
--N 

(mg L-1) 
NO3

--N 
(mg L-1) 

PO4
3--P 

(mg L-1) 
SO4

2--S 
(mg L-1) 

0 207.66 10.65 18.82 117.84 19.69 90.03 1.84 2.56 2.72 35.07 
1 240.72 12.12 22.34 159.61 24.21 115.60 1.47 0.45 3.43 33.69 
2 214.09 16.78 16.85 153.42 25.48 113.12 1.02 0.08 3.28 32.77 
3 206.23 21.26 25.28 157.89 26.43 124.08 0.48 0.07 3.61 45.33 
4 191.30 22.60 26.67 160.11 27.49 115.95 1.83 0.09 2.53 32.84 
5 171.48 20.84 27.57 148.21 26.54 110.29 3.74 0.13 2.97 31.15 
6 158.34 22.20 29.04 148.78 27.18 113.67 8.77 0.23 1.65 30.11 
7 157.45 21.46 29.13 150.55 28.55 118.82 11.46 0.32 1.96 31.87 
8 145.55 15.66 22.96 132.59 24.35 109.73 5.53 0.24 1.82 27.56 
9 148.59 9.90 25.01 122.48 25.92 112.55 2.93 0.06 1.55 28.90 
10 137.43 10.07 24.19 118.95 24.73 111.40 8.15 0.18 1.80 31.13 
11 127.20 9.99 22.96 112.75 23.56 109.79 17.14 0.62 1.88 30.07 
12 116.75 7.48 23.04 114.03 22.75 100.32 16.51 0.62 1.65 32.14 
13 134.23 6.66 21.57 124.45 20.33 106.18 0.79 0.03 1.34 33.17 
14 129.43 6.60 23.86 119.45 26.65 100.52 4.73 0.05 1.44 30.35 
15 117.09 10.01 22.06 124.76 27.05 98.50 3.98 0.02 1.59 31.61 
17 103.51 11.20 23.49 131.18 30.74 80.36 0.26 0.00 2.10 32.94 
20 105.42 6.77 25.19 145.02 29.88 82.72 0.43 0.00 1.88 30.06 
22 88.32 12.66 20.98 123.96 27.68 68.77 5.57 0.19 2.30 29.10 
27 96.56 9.77 31.76 133.86 29.42 96.63 2.69 0.12 2.10 49.37 
29 116.80 15.66 30.78 152.28 33.63 81.31 0.49 0.00 2.93 38.43 
31 101.77 16.21 29.00 154.39 31.62 83.84 0.18 0.02 2.05 41.52 
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B.3 Phase II Data 

B.3.1 Phase II Data for the Influent of HABiTS and Control Column 

Table B.4: Influent daily nutrient concentrations for Phase II. 

Day 
NH4

+-N 
(mg L-1) 

NO2
--N 

(mg L-1) 
NO3

--N  
(mg L-1) 

TIN  
(mg L-1) 

Org. N 
(mg L-1) 

TN  
(mg L-1) 

PO4
3--P 

(mg L-1) 
TP 

(mg L-1) 
0 42.93 0.86 0.00 43.79 50.66 94.46 3.02 3.84 
2 108.93 0.87 0.04 109.84  49.88 2.96 3.75 
4 44.55 0.85 0.05 45.46   2.86  
7 43.30 0.82 0.03 44.15   2.44  
9 52.61 0.12 0.13 52.86 3.82 56.67 3.02 3.37 
11 60.29 0.69 0.03 61.01   2.89  
14 62.90 0.03 0.03 62.96   3.06  
16 71.01 0.72 0.02 71.76 1.90 73.65 3.25 3.77 
18 72.52 0.00 0.04 72.56   3.70  
21 63.38 0.06 0.04 63.48   3.00  
23 69.39 0.06 0.04 69.48 2.05 71.53 3.55 3.51 
28 67.85 0.06 0.06 67.97   3.47  
30 54.04 2.10 0.10 56.24   2.87  
37 7.83 37.73 1.07 46.63   3.97  
40 33.22 5.51 0.07 38.80   2.32  
42 46.49 0.04 0.02 46.55   2.54  
44 51.96 0.13 0.03 52.12 5.40 57.52 4.11 4.42 
46 60.87 0.94 0.06 61.88   4.51  
49 66.22 0.06 0.07 66.35   4.62  
52 69.59 0.40 0.09 70.08 5.27 75.35 2.56 4.00 
54 67.84 0.96 0.02 68.82   2.93  
57 58.80 0.50 0.03 59.32   3.16  
59 53.42 0.63 0.03 54.08   3.25  
61 45.55 0.09 0.03 45.66   3.00  
64 46.61 0.93 0.03 47.57   3.49  
66 46.48 0.40 0.03 46.91   2.25  
68 53.13 0.65 0.09 53.86 1.96 55.82 2.76 4.42 
71 58.04 0.64 0.03 58.71   4.00  
73 61.35 0.93 0.00 62.27 6.67 68.94 4.30 4.71 
76 68.46 0.95 0.04 69.45   4.24  
78 66.17   66.17     
80 69.98 1.28 0.02 71.28  57.48 4.68 4.71 
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Table B.5: Influent daily cations and anions concentrations for Phase II. 

Day 
Na+  

(mg L-1) 
K+ 

(mg L-1) 
Ca2+ 

(mg L-1) 
Mg2+ 

(mg L-1) 
Cl- 

(mg L-1) 
SO4

2--S 
(mg L-1) 

0 86.33 36.74 142.47 37.29 98.08 135.60 
2 79.29 26.46 144.39 37.43 91.99 134.12 
4 83.68 28.61 144.18 37.53 92.25 94.64 
7 83.46 28.61 140.04 37.30 92.86 28.89 
9 84.46 25.23 144.96 38.59 91.34 61.91 
11 83.30 24.47 148.42 39.52 90.68 64.08 
14 81.41 21.88 139.59 36.56 88.66 50.68 
16 79.01 23.11 140.87 37.54 87.29 44.67 
18 78.55 22.68 145.33 38.88 85.02 104.02 
21 74.57 21.20 141.20 37.31 81.11 20.09 
23 77.74 19.78 142.34 37.91 84.07 22.52 
28 76.34 18.18 135.00 36.34 83.32 18.72 
30 77.80 18.30 135.54 37.46 81.40 112.15 
37 76.34 19.91 121.77 33.10 85.23 108.84 
40 80.01 20.59 129.20 39.55 88.96 110.59 
42 79.95 18.37 131.56 43.02 88.16 111.99 
44 76.41 16.44 138.13 46.60 83.78 107.12 
46 78.85 16.50 137.71 46.98 84.53 106.64 
49 78.26 17.30 131.11 53.14 83.75 96.35 
52 76.72 16.93 141.06 51.75 81.35 108.87 
54 80.79 16.69 139.55 45.66 85.23 107.46 
57 85.73 17.18 138.53 42.08 91.15 81.54 
59 87.61 17.61 146.54 41.41 93.02 108.72 
61 84.08 31.52 134.13 36.13 90.88 132.14 
64 88.76 57.38 145.75 35.94 94.70 140.45 
66 88.79 64.51 146.52 34.82 96.32 171.18 
68 90.10 74.89 152.15 35.24 96.89 149.67 
71 90.51 80.72 150.58 33.50 97.25 145.31 
73 83.30 66.47 145.69 31.04 89.88 63.80 
76 86.67 63.77 149.28 32.67 92.44 116.64 
78 84.99 55.23 147.94 33.61   
80 83.83 49.45 149.36 35.16 88.79 35.47 
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B.3.2 Phase II Data for the Effluent of the Control Column Stage 1 

Table B.6: Control column Stage 1 daily effluent nutrient concentrations for Phase II. 

Day 
NH4

+-N 
(mg L-1) 

NO2
--N 

(mg L-1) 
NO3

--N 
(mg L-1) 

TIN 
(mg L-1) 

Org. N 
(mg L-1) 

TN 
(mg L-1) 

PO4
3--P 

(mg L-1) 
TP 

(mg L-1) 
0 16.14 0.21 65.70 82.05 3.06 85.12 1.07 1.71 
2 29.61 2.79 12.13 44.53 2.80 47.33 1.81 2.28 
4 26.24 10.10 4.98 41.32   2.08  
7 14.85 14.71 7.50 37.05   1.96  
9 16.54 14.73 11.65 42.92  40.33 2.32 2.26 
11 18.75 11.90 14.79 45.44   1.97  
14 18.99 13.50 22.91 55.41   2.18  
16 27.33 13.78 22.30 63.41 4.30 67.71 2.38 2.82 
18 26.47 12.39 28.87 67.73   2.68  
21 17.90 10.28 38.46 66.64   2.72  
23 18.27 9.70 38.68 66.65 6.58 73.23 2.57 2.58 
25         
28 9.25 3.59 53.48 66.33   2.20  
30 3.47 0.82 56.53 60.82   1.54  
32         
35         
37 1.67 15.65 24.64 41.96   1.32  
40 2.63 2.75 44.21 49.58   2.35  
42 2.26 1.64 48.30 52.20   2.11  
44 6.70 1.54 39.20 47.44 7.53 54.98 2.43 1.75 
46 15.37 4.55 38.68 58.60   3.30  
49 13.13 4.08 49.68 66.90   3.27  
52 30.03 5.71 32.84 68.58  57.95 2.31 3.37 
54 28.17 7.08 28.82 64.08   2.50  
57 18.73 0.62 31.11 50.46   2.26  
59 3.01 1.99 46.22 51.21   2.26  
61 5.95 0.67 32.34 38.96   2.22  
64 1.72 1.48 36.14 39.34   2.07  
66 0.97 0.20 39.93 41.10   1.77  
68 0.09 0.19 45.26 45.53  36.34 1.90 3.11 
71 5.37 0.21 38.21 43.80   2.88  
73 2.84 0.27 47.11 50.22 5.50 55.72 3.08 3.53 
76 7.60 0.30 41.41 49.31   2.98  
78 8.55   8.55     
80 6.12 0.33 49.41 55.86 25.87 81.73 3.24 3.32 
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Table B.7: Control column Stage 1 daily effluent cation and anion concentrations for Phase II 

Day 
Na+  

(mg L-1) 
K+ 

(mg L-1) 
Ca2+ 

(mg L-1) 
Mg2+ 

(mg L-1) 
Cl- 

(mg L-1) 
SO4

2--S 
(mg L-1) 

0 78.26 28.18 170.00 36.60 82.01 55.18 
2 82.47 29.11 147.25 35.42 91.45 45.56 
4 83.40 28.06 141.36 35.83 92.38 46.55 
7 83.03 26.58 132.79 34.16 90.15 47.84 
9 83.99 29.66 133.69 35.05 91.19 46.42 
11 72.73 25.02 126.71 32.76 80.73 42.86 
14 82.43 25.89 132.46 35.17 89.97 44.22 
16 80.35 26.63 133.60 34.90 87.19 48.17 
18 77.55 24.59 133.90 34.81 84.60 45.13 
21 78.67 23.11 127.25 34.28 86.29 45.96 
23 77.89 22.43 126.86 33.62 84.35 42.31 
25       
28 76.24 18.24 121.62 32.25 84.10 39.50 
30 75.84 17.44 117.07 31.39 83.81 43.31 
32       
35       
37 54.60 12.20 118.96 23.86 62.09 40.00 
40 79.32 17.07 110.60 31.69 89.59 39.73 
42 79.01 15.41 110.99 34.55 88.88 39.79 
44 72.00 14.78 106.84 34.72 78.02 35.46 
46 77.32 15.70 120.89 41.33 85.65 39.41 
49 81.45 16.87 118.60 46.76 90.39 42.36 
52 78.95 16.93 128.49 47.26 85.32 39.72 
54 80.32 16.50 126.44 43.13 84.33 39.00 
57 85.08 16.50 126.50 40.15 90.34 39.50 
59 85.30 14.28 124.33 37.14 91.28 39.40 
61 84.96 21.75 122.92 33.90 89.91 42.83 
64 87.42 44.60 125.47 32.11 93.13 52.78 
66 87.36 56.95 130.80 30.88 94.87 57.99 
68 88.95 62.11 128.67 30.30 95.44 61.56 
71 89.88 76.92 130.51 29.46 97.34 62.98 
73 85.99 72.37 126.77 28.39 92.51 59.55 
76 83.33 61.80 122.95 27.40 88.64 54.63 
78 87.61 59.35 131.55 30.11   
80 84.39 54.37 122.80 28.50 88.42 52.67 
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B.3.3 Phase II Data for the Effluent of the HABiTS Column Stage 1 

Table B.8: HABiTS column Stage 1 daily effluent nutrient concentrations for Phase II. 

Day 
NH4

+-N 
(mg L-1) 

NO2
--N 

(mg L-1) 
NO3

--N 
(mg L-1) 

TIN 
(mg L-1) 

Org. N 
(mg L-1) 

TN 
(mg L-1) 

PO4
3--P 

(mg L-1) 
TP 

(mg L-1) 
0 15.07 0.47 111.72 127.26 7.10 134.36 1.18 1.61 
2 17.85 1.71 13.25 32.81 0.94 33.75 1.72 2.21 
4 17.11 4.73 5.27 27.11   1.62  
7 12.84 9.44 8.98 31.25   2.20  
9 12.00 11.91 14.64 38.55  33.88 2.25 2.36 
11 11.60 12.78 19.52 43.90   2.14  
14 12.17 10.88 22.07 45.12   1.90  
16 13.95 7.44 19.98 41.37 6.39 47.76 2.76 3.00 
18 12.43 9.06 25.78 47.28   2.74  
21 7.00 3.07 56.42 66.48   2.03  
23 5.59 3.19 59.71 68.49 6.86 75.35 2.03 2.09 
25         
28 10.48 5.18 34.97 50.64   1.97  
30 7.04 0.85 50.28 58.17   1.65  
32         
35         
37 9.63 13.66 39.30 62.59   1.00  
40 6.27 2.61 43.40 52.28   2.13  
42 8.66 0.55 54.51 63.73   1.84  
44 8.29 1.02 43.49 52.81 10.24 63.04 2.62 2.15 
46 9.40 1.95 45.22 56.56   2.97  
49 9.77 1.38 55.64 66.79   4.08  
52 13.53 0.20 46.47 60.20 15.15 75.35 2.36 3.35 
54 11.32 0.82 52.96 65.11   2.60  
57 11.30 0.11 48.06 59.47   2.14  
59 5.66 0.38 65.56 71.60   1.88  
61 7.80 0.33 44.44 52.57   1.17  
64 7.31 0.54 47.12 54.97   2.01  
66 6.56 0.13 44.91 51.60   1.27  
68 9.76 0.23 29.66 39.65 4.72 44.36 1.81 3.03 
71 6.15 0.20 48.91 55.26   1.88  
73 10.90 0.36 11.50 22.76   2.28 3.05 
76 7.62 0.35 34.24 42.21   2.34  
78 14.08        
80 13.79 2.10 2.95 18.84 22.07 40.91 3.76 4.15 
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Table B.9: HABiTS column Stage 1daily effluent concentrations of cations and anions for Phase 
II. 

Day 
Na+  

(mg L-1) 
K+ 

(mg L-1) 
Ca2+ 

(mg L-1) 
Mg2+ 

(mg L-1) 
Cl- 

(mg L-1) 
SO4

2--S 
(mg L-1) 

0 122.41 34.95 208.11 39.37 89.26 59.31 
2 99.76 32.92 146.59 31.67 90.80 49.26 
4 96.02 30.21 144.81 33.40 92.64 47.99 
7 88.04 31.20 133.39 32.52 87.89 48.57 
9 87.89 31.57 129.67 32.53 89.02 47.98 
11 90.77 33.84 138.24 34.89 91.11 50.75 
14 89.55 35.99 136.65 33.91 92.59 48.94 
16 90.36 37.60 141.92 34.50 88.13 47.44 
18 87.69 40.31 143.84 34.82 85.97 45.43 
21 80.07 31.62 117.52 30.70 85.94 43.32 
23 78.73 30.01 112.61 29.87 84.89 41.41 
25       
28 80.50 33.53 122.07 31.69 83.54 37.96 
30 75.41 29.40 114.97 30.36 80.68 39.23 
32       
35       
37 57.37 22.50 101.05 23.41 59.92 41.30 
40 72.14 25.21 96.77 31.18 87.29 39.47 
42 73.48 23.48 103.84 30.41 88.83 40.38 
44 74.16 23.89 104.01 34.56 81.14 38.01 
46 78.60 25.74 115.55 39.44 85.50 39.55 
49 79.70 25.98 115.52 43.74 86.61 42.48 
52 79.07 26.41 129.09 44.47 83.58 39.16 
54 79.26 25.49 120.32 39.57 87.13 40.39 
57 77.63 25.06 114.23 36.82 90.18 39.15 
59 76.38 22.23 97.04 33.43 91.47 40.20 
61 77.53 24.82 106.67 33.23 90.70 38.38 
64 84.08 26.23 111.71 31.58 94.53 55.62 
66 85.58 27.58 120.61 31.01 94.44 57.55 
68 85.58 26.54 133.56 31.09 92.93 55.70 
71 89.32 27.52 132.47 30.11 86.25 56.77 
73 91.38 27.58 149.90 29.11 89.01 56.66 
76 91.07 29.49 143.26 27.54 88.18 54.20 
78 99.30 34.77 167.78 31.42   
80 95.97 33.73 171.33 31.07 90.11 52.21 
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B.4 Phase III Data 

B.4.1 Phase III Data for the Influent of HABiTS and Control Column 

Table B.10a: Influent daily nutrient concentrations for Phase III (day 87 to day 163)  

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

87 89.69 0.81 0.00 90.49 17.69 108.18 4.49 9.75 
89 76.99 0.57 0.00 77.57   3.53  
92 90.97 0.60 0.00 91.56   4.76  
94 90.00 0.76 0.03 90.78  83.93 4.05 5.12 
95 94.05 0.78 0.00 94.84 5.41 100.24 4.57 5.22 
96 99.14 1.29 0.09 100.52   5.60  
97 93.13 1.34 0.04 94.50   4.91  
98 93.70 1.60 0.00 95.30   4.22  
100 90.48 0.65 0.00 91.13   3.78  
102 92.15 0.49 0.00 92.64 8.49 101.13 4.78 4.98 
106 91.23 0.80 0.00 92.02  73.79 8.57 5.10 
109         
112 85.18 0.03 0.08 85.29   6.33  
114 81.65 0.78 0.00 82.43 13.40 95.84 2.31 5.02 
117         
119 74.16 0.81 0.00 74.97   4.57  
121 60.75 0.55 0.00 61.30   3.74  
123         
126 55.69 0.37 0.00 56.06   4.98  
128 34.84 1.07 0.03 35.94   3.84  
130 40.65 0.48 0.02 41.15   3.28  
133         
135         
137         
140         
142 15.98 2.82 0.00 18.81 6.10 24.90 2.73 3.05 
144 10.58 2.50 0.54 13.61   2.11  
147 12.70 2.95 0.11 15.76   2.55  
149 11.87 2.51 0.09 14.47   2.94  
151 16.68 0.59 0.08 17.35   1.06  
154 15.41 0.35 0.00 15.76   3.25  
156     24.73 24.73  4.64 
158         
161 22.30 0.00 0.00 22.30   4.04  
163         
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Table B.10b: Influent daily nutrient concentrations for Phase III (day 165 to day 248)  

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

165 25.31 0.00 0.00 25.31   3.37  
168 19.97 0.00 0.00 19.97   3.98  
170 14.24 0.00 0.00 14.24 5.72 19.97 3.53 4.42 
172         
175         
177 98.72 0.28 0.00 99.00   2.41  
179 96.18   96.18     
181         
183 96.52 0.42 0.00 96.94 0.66 97.60 4.10 4.00 
185         
187         
189 96.51 0.00 0.00 96.51   5.48  
191 96.24 4.78 0.00 101.02   2.34  
193 93.02 0.78 0.00 93.80   2.21  
195 94.56 0.91 0.00 95.47   1.52  
197 97.54 1.19 0.04 98.78   3.56  
199         
201 99.74 0.66 0.00 100.41  99.80 6.07 3.96 
203         
206 97.95   97.95     
208 90.92 0.50 0.00 91.42   5.29  
210 88.99 0.51 0.04 89.54   5.14  
213 87.60 1.32 0.09 89.02   5.14  
215 87.06 1.32 0.00 88.38  84.81 0.00 4.25 
217 83.17 1.19 0.10 84.47   0.00  
220 85.44 1.59 0.00 87.03   0.00  
222 87.96 1.58 0.00 89.54   0.00  
224 96.32 1.39 0.12 97.84   0.00  
227         
229         
231         
234         
236         
238 71.11   71.11     
241 91.01 2.68 0.00 93.69   1.91  
243 99.66 1.46 0.00 101.12   2.09  
245 97.97 2.46 0.00 100.43   1.28  
248 93.62 0.35 0.00 93.97   2.68  
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Table B.10c: Influent daily nutrient concentrations for Phase III (day 250 to day 336)  

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

250 101.48 0.58 0.07 102.12   4.56  
254 102.14 1.40 0.72 104.25   4.00  
256 101.48 0.42 0.81 102.70   0.00  
260 99.16 1.92 0.00 101.08   1.28  
267 111.58 2.14 0.07 113.79   1.77  
270 102.81 1.59 0.64 105.04   1.59  
273 100.84 2.34 0.00 103.18   3.91  
277 101.76 2.34 0.00 104.10   2.38  
280 102.95 0.48 0.00 103.43   3.88  
284 107.46 0.42 0.00 107.89   2.03  
287 100.66 0.42 0.00 101.08   4.58  
291 103.43 0.32 0.00 103.75   2.14  
292 105.03 0.00 0.15 105.18   4.90  
293         
294         
298 107.11 0.22 0.04 107.38   5.27  
299         
301 103.75 0.30 0.10 104.15   5.00  
305         
306 106.78 0.96 0.09 107.83   5.73  
308 0.00 0.00 0.00    0.00  
313 92.07 0.00 0.00 92.07   2.59  
321 87.47 0.33 0.00 87.79   2.37  
329 101.57 0.30 0.65 102.52 12.72 115.23 0.00 4.65 
332 90.24 0.45 0.00 90.69   2.07  
333 104.74 0.41 0.00 105.14   3.35  
336         
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B.4.2 Phase III Data for the Effluent of the Control Column Stage 1 

Table B.11a: Control column Stage 1 daily effluent nutrient concentrations for Phase III (day 87 
to day 163).  

 

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

87 24.00 0.23 82.55 106.78 20.36 127.14 1.01 1.43 
89 25.10 0.24 70.65 95.98   2.57  
92 22.45 1.64 80.83 104.92   2.37  
94 22.26 0.18 67.80 90.24 13.53 103.77 2.57 3.07 
95 26.60 0.36 69.51 96.48  84.81 2.10 2.54 
96         
97         
98 17.34 0.59 66.67 84.60   2.39  
100         
102 10.43 0.16 72.91 83.50   2.51  
106 15.80 0.34 63.65 79.78   4.82  
109         
112 14.52 1.12 74.10 89.74   7.01  
114 10.97 0.39 78.71 90.07   2.06  
117         
119 3.07 0.60 76.43 80.10   2.85  
121 0.66 0.65 73.99 75.30   3.03  
123         
126 0.08 0.02 65.19 65.29   2.76  
128 0.17 0.02 61.36 61.55   1.89  
130 0.12 0.02 55.33 55.47   3.05  
133         
135         
137         
140         
142 0.00 0.47 34.40 34.87   2.74  
144 0.00 0.46 28.38 28.84   2.04  
147 0.00 0.34 30.35 30.69   3.24  
149 0.00 0.40 29.20 29.60   2.97  
151 0.00 0.12 29.67 29.79   1.92  
154 0.00 0.08 28.57 28.65   3.41  
156         
158         
161 0.00 0.18 27.96 28.14   3.75  
163         
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Table B.11b: Control column Stage 1 daily effluent nutrient concentrations for Phase III (day 
165 to day 248). 

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

165 0.15 0.26 28.46 28.86   1.01 1.43 
168 0.00 0.09 30.52 30.61   2.57  
170 0.12 0.00 21.54 21.67   2.37  
172       2.57 3.07 
175       2.10 2.54 
177 7.60 0.27 77.69 85.56     
179 7.18   7.18     
181       2.39  
183 6.01 0.00 90.12 96.13     
185       2.51  
187       4.82  
189 16.08 0.03 78.99 95.11     
191 9.12 0.00 84.83 93.95   7.01  
193 7.89 0.43 78.45 86.77   2.06  
195 7.06 0.30 82.72 90.08     
197 15.40 0.76 77.81 93.98   2.85  
199       3.03  
201 20.48 0.00 75.91 96.39     
203       2.76  
206 22.81   22.81   1.89  
208 12.41 0.41 84.54 97.36   3.05  
210  0.00 29.55 29.55     
213 10.08 0.00 76.65 86.74     
215 21.23 0.69 64.25 86.17     
217 38.88 0.60 52.13 91.60     
220 41.64 0.37 44.93 86.94   2.74  
222 37.10 0.38 51.38 88.85   2.04  
224 39.64 0.27 52.55 92.45   3.24  
227       2.97  
229       1.92  
231       3.41  
234         
236         
238 30.87 2.18 90.81 123.86   3.75  
241 45.51 0.27 32.71 78.49     
243 49.89 0.35 38.37 88.61   1.01 1.43 
245 40.77 0.31 48.82 89.90   2.57  
248 28.70 0.89 65.06 94.65   2.37  
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Table B.11c: Control column Stage 1 daily effluent nutrient concentrations for Phase III (day 
250 to day 336).  

 

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

250 28.96 1.67 66.75 97.38   1.23  
254 28.78 1.03 63.11 92.92   0.00  
256 25.85 0.13 30.03 56.02   0.00  
260 24.80 0.00 73.40 98.20   1.43  
267 29.62 1.55 63.76 94.94   2.67  
270 38.66 0.78 50.42 89.86   0.00  
273 17.35 2.33 75.54 95.22   1.93  
277 22.86 1.31 68.46 92.62   0.95  
280 27.97 1.22 69.55 98.74   1.45  
284 49.94 0.32 9.26 59.52   1.32  
287 25.39 0.00 74.06 99.45   2.39  
291 26.33 1.20 79.30 106.83   0.00  
292         
293         
294         
298 91.92 1.08 3.41 96.41   1.55  
299         
301 27.25 0.89 78.21 106.35   0.00  
305         
306 12.10 0.43 68.23 80.76   1.55  
308         
313 10.51 0.08 79.51 90.09   0.00  
321 12.78 0.00 86.18 98.96   2.94  
329 28.28 1.27 40.65 70.21   0.00  
332         
333 42.23 0.10 53.37 95.71   1.90  
336         
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B.4.3 Phase III Data for the Effluent of the Control Column Stage 2 

Table B.12a: Control column Stage 2 daily effluent nutrient concentrations for Phase III (day 87 
to day 163). 

 

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

87         
89         
92         
94         
95 22.48 0.64 65.24 88.35   7.56  
96 26.02 0.51 61.19 87.72   6.80  
97 24.42 0.38 55.82 80.61   4.92  
98 22.96 0.64 54.27 77.87   5.03  
100 16.17 0.24 47.48 63.90   2.30  
102 12.49 0.16 38.99 51.64 16.42 68.06 2.76 2.91 
106 22.82   22.82 25.84 48.67  2.87 
109 18.56   18.56     
112 13.67 0.15 32.93 46.75   2.76  
114 29.27 0.25 28.35 57.86  51.75 2.21 2.70 
117 29.27 0.30 16.25 45.81   2.36  
119 7.54 0.65 30.27 38.46   1.82  
121 2.30 0.50 25.68 28.48   1.54  
123         
126 0.66 0.00 18.82 19.49   2.60  
128 0.32 0.03 16.07 16.42   2.15  
130 7.81 0.14 14.72 22.67   0.78  
133         
135         
137         
140         
142 0.00 0.00 13.78 13.78  20.63 2.80 3.03 
144 0.00 0.00 5.70 5.70   2.12  
147 0.00 0.36 7.02 7.38   2.98  
149 0.00 0.00 3.53 3.53   3.38  
151 0.00 0.23 4.37 4.59   2.65  
154 0.07 0.27 4.51 4.86   3.15  
156        4.19 
158         
161 0.37 0.00 0.00 0.37   2.88  
163         
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Table B.12b: Control column Stage 2 daily effluent nutrient concentrations for Phase III (day 
165 to day 248). 

 

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

165 1.04 0.00 6.67 7.71   3.22  
168 0.10 0.54 12.91 13.55   3.52  
170 0.00 0.39 5.70 6.09 2.55 8.64 3.27 4.15 
172         
175         
177 14.08 0.24 26.27 40.59   1.74  
179 12.24        
181         
183 15.06 0.58 26.31 41.94 4.96 46.90 1.45 1.71 
185 23.25 0.10 25.84 49.19   1.21  
187         
189 22.22 0.00 26.50 48.72   0.80  
191 17.76 0.00 26.89 44.65   0.84  
193 13.89 0.00 29.60 43.50   0.00  
195 12.04 0.11 23.53 35.69   0.00  
197 13.49 0.26 20.27 34.02   0.00  
199         
201 24.70 0.03 27.94 52.67 9.66 62.33 1.79 1.60 
203         
206 31.53        
208 23.15 0.14 22.63 45.92   0.00  
210 15.09 0.00 29.55 44.63   0.00  
213 16.74 0.60 21.19 38.53   0.00  
215 16.85 0.51 28.02 45.38  44.26 0.00  
217 39.80 0.85 22.32 62.96   0.00  
220 53.97 0.75 43.06 97.78   0.00  
222 38.86 0.56 16.75 56.17   0.00  
224 41.79 0.87 17.86 60.53   0.00  
227         
229         
231         
234         
236         
238 8.05 1.88 0.00 9.93   1.76  
241 43.27 1.20 10.49 54.96   0.00  
243 47.12 3.08 7.16 57.36   0.78  
245 44.29 3.52 13.66 61.48   1.25  
248 32.98 2.35 26.40 61.73   0.00  
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Table B.12c: Control column Stage 2 daily effluent nutrient concentrations for Phase III (day 
250 to day 336). 

 

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

250 30.94 0.96 29.68 61.58   0.00  
254 29.99 0.95 32.19 63.13   0.00  
256 32.20 0.27 0.00 32.47   0.00  
260 28.47 2.25 34.10 64.83   0.00  
267 31.06 1.59 36.02 68.66   0.00  
270 36.59 1.79 27.96 66.34   0.00  
273 23.98 1.55 41.88 67.42   2.13  
277 25.64 1.06 35.91 62.61   1.15  
280 27.44 1.21 29.90 58.55   0.00  
284 32.67 1.33 30.22 64.22   1.59  
287 29.77 1.17 32.11 63.05   0.00  
291 24.27 1.19 34.98 60.44   0.00  
292 27.63 1.16 35.46 64.24   0.00  
293         
294         
298 90.29 0.29 0.04 90.61   5.79  
299         
301 46.73 0.89 30.21 77.84   2.08  
305         
306         
308         
313 18.36 0.51 37.92 56.79   0.00  
321 17.36 0.74 47.38 65.48   0.00  
329 30.22 1.08 44.46 75.76  75.56 0.00 4.73 
332 28.20 0.00 40.27 68.47   2.23  
333         
336         
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B.4.4 Phase III Data for the Effluent of the HABiTS Column Stage 1 

Table B.13a: HABiTS column Stage 1 daily effluent nutrient concentrations for Phase III (day 
87 to day 163).  

 

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

87 39.64 0.34 100.53 140.52 8.22 148.74 0.98 1.24 
89 23.23 0.23 74.22 97.68   2.26  
92 18.80 0.18 99.70 118.68   2.93  
94 19.55 0.18 73.13 92.85  77.32 2.19 2.68 
95 24.24 0.42 71.19 95.84 1.67 97.51 1.81 2.35 
96         
97         
98 16.46 0.39 66.03 82.87   3.00  
100         
102 16.80 0.14 62.15 79.09   3.66  
106 20.29 0.26 67.83 88.39   8.21  
109         
112 18.28 0.34 71.25 89.86   5.11  
114 19.96 0.25 83.60 103.81   1.70  
117         
119 14.70 0.72 72.83 88.25   2.54  
121 13.37 0.76 72.25 86.37   3.36  
123         
126 9.99 0.04 70.90 80.94   4.57  
128 11.28 0.04 68.49 79.81   4.22  
130 9.35 0.03 68.85 78.23   3.39  
133         
135         
137         
140         
142 5.74 0.00 49.96 55.70   1.40  
144 4.67 0.72 47.93 53.32   1.81  
147 2.42 0.00 49.18 51.60   4.40  
149 1.51 0.00 46.53 48.04   2.45  
151 1.21 0.00 26.65 27.87   0.91  
154 1.36 0.00 45.78 47.14   1.65  
156         
158         
161         
163         
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Table B.13b: HABiTS column Stage 1 daily effluent nutrient concentrations for Phase III (day 
165 to day 248).  

 

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

165 3.46 0.07 44.54 48.08   0.55  
168 1.31 0.00 41.01 42.32   0.69  
170 0.47 0.00 39.50 39.97   1.44  
172         
175         
177 3.36 0.73 38.87 42.96   0.89  
179 6.06 0.24 84.15 90.44     
181         
183 1.94 0.00 71.61 73.56   2.90  
185         
187         
189 5.03 0.00 82.73 87.75   3.14  
191 2.65 0.15 85.62 88.42   1.73  
193 2.89 0.43 87.40 90.72   1.61  
195 5.95 0.23 85.68 91.87   3.14  
197 8.04 0.48 75.30 83.82   1.79  
199         
201 16.29 0.05 72.80 89.15   0.00  
203         
206 10.90        
208 21.16 0.07 62.69 83.92   3.32  
210 20.22 0.06 47.65 67.93   0.00  
213 21.79 0.28 50.61 72.67   0.00  
215 19.18 0.30 60.75 80.24     
217 16.28 0.49 77.77 94.55     
220 35.10 0.17 31.39 66.67     
222 27.96 0.23 48.46 76.64     
224 30.48 0.43 30.46 61.37     
227         
229         
231         
234         
236         
238 37.48 3.01 148.90 189.40   0.00  
241 25.21 3.40 10.82 39.43   0.95  
243 43.79 0.42 14.35 58.56   1.76  
245 44.36 0.27 22.14 66.78   1.15  
248 36.36 1.13 20.90 58.40   0.00  
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Table B.13c: HABiTS column Stage 1 daily effluent nutrient concentrations for Phase III (day 
250 to day 336).  

 

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

250 42.20 0.83 45.28 88.31   3.04  
254 39.63 1.11 51.56 92.30   0.00  
256 40.73 0.21 21.97 62.91   0.00  
260 31.97 1.02 51.89 84.88   0.00  
267 29.20 1.59 64.94 95.73   1.61  
270 31.30 0.99 53.24 85.52   2.16  
273 34.76 0.79 58.00 93.55   3.82  
277 42.96 1.59 39.34 83.90   2.71  
280 32.98 1.24 58.41 92.63   1.72  
284 33.51 3.47 62.98 99.95   1.39  
287 30.27 1.72 29.45 61.44   1.42  
291 31.32 0.00 79.15 110.47   2.41  
292         
293         
294         
298 37.60 0.87 45.38 83.86   3.02  
299         
301 29.33 0.83 74.43 104.60   3.40  
305         
306 24.64 0.15 57.35 82.14   0.91  
308         
313 40.34 0.39 39.55 80.28   0.00  
321 36.77 0.89 55.86 93.52   1.49  
329 23.64 0.00 63.11 86.75   2.36  
332         
333 42.70 0.49 69.36 112.55   1.78  
336         
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B.4.5 Phase III Data for the Effluent of the HABiTS Column Stage 2 

Table B.14a: HABiTS column Stage 2 daily effluent nutrient concentrations for Phase III (day 
87 to day 163). 

 

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

87         
89         
92         
94         
95 18.38 0.61 68.97 87.96   1.10  
96 21.51 0.75 64.13 86.39   2.10  
97 19.57 0.65 51.92 72.13   2.28  
98 17.87 20.06 32.43 70.36   1.95  
100 13.64 12.86 28.16 54.66   1.75  
102 15.20 0.19 31.08 46.47 14.53 61.01 2.33 2.39 
106 23.18 5.01 16.42 44.61 11.55 56.16 2.97 3.34 
109 18.58        
112 12.06 0.39 14.32 26.77   3.63  
114 12.58 0.50 2.78 15.86   1.88 2.31 
117 12.58 0.34 1.39 14.30   1.73  
119 13.96 0.38 16.66 31.00   1.88  
121 12.19 0.43 17.67 30.29   2.00  
123         
126 9.35 0.60 20.14 30.10   1.67  
128 7.39 0.30 16.82 24.51   0.80  
130 0.45 0.18 12.04 12.66   2.51  
133         
135         
137         
140         
142 4.67 1.71 5.91 12.29 7.19 19.48 0.00 0.75 
144 2.03 0.23 0.62 2.88   0.00  
147 2.42 0.30 0.74 3.47   0.91  
149 1.31 0.51 0.61 2.43   0.87  
151 1.16 0.00 0.07 1.24   0.00  
154 1.36 0.00 0.00 1.36   1.03  
156     6.26 6.26  1.86 
158         
161 0.15 0.00 0.00 0.15   1.21  
163         
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Table B.14b: HABiTS column Stage 2 daily effluent nutrient concentrations for Phase III (day 
165 to day 248).  

 

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

165         
168 1.90 0.00 0.00 1.90   0.00  
170 1.21 0.00 0.00 1.21 5.62 6.83 0.00 1.38 
172         
175         
177 6.53 0.00 0.00 6.53   0.00  
179         
181         
183 7.70 5.25 6.23 19.18 6.70 25.87 2.41 2.48 
185 6.84 3.81 15.27 25.92   0.00  
187         
189 6.06 2.55 8.77 17.38   0.00  
191 7.17 2.22 18.19 27.57   1.29  
193 6.99 2.00 21.61 30.60   0.00  
195 8.76 0.83 13.70 23.30   0.00  
197 11.26 0.26 1.92 13.45   0.00  
199         
201 18.31 0.83 7.42 26.57 5.13 31.69 0.00 0.48 
203         
206 25.20        
208 23.18 0.04 15.92 39.14   0.00  
210 17.23 0.51 11.95 29.69   0.00  
213 21.71 0.18 15.70 37.59   0.00  
215 22.10 0.42 18.18 40.70 7.96 48.67  2.08 
217 19.39 0.67 7.93 27.99     
220 24.53 0.90 17.98 43.41     
222 28.35 0.52 16.62 45.49     
224 25.99 0.49 2.90 29.38     
227         
229         
231         
234         
236         
238 22.07 2.96 0.00 25.02   4.63  
241 26.82 3.13 0.00 29.95   0.68  
243 36.52 3.82 0.00 40.35   1.45  
245 42.08 0.95 0.15 43.18   1.22  
248 39.85 0.56 0.29 40.70   2.04  
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Table B.14c: HABiTS column Stage 2 daily effluent nutrient concentrations for Phase III (day 
250 to day 336).  

 

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

250 45.84 1.46 9.11 56.42   1.05  
254 35.33 0.93 19.31 55.58   0.00  
256 29.99 0.12 0.00 30.10   0.00  
260 26.47 0.87 48.21 75.54   0.00  
267 25.79 1.27 38.82 65.88   2.57  
270 29.59 0.67 21.61 51.88   0.00  
273 33.47 1.73 15.01 50.22   1.29  
277 39.53 1.07 16.62 57.23   1.15  
280 36.44 0.78 25.08 62.29   2.37  
284 43.17 3.20 0.00 46.37   1.49  
287 31.39 1.09 30.98 63.46   1.97  
291 30.15 1.29 25.83 57.27   0.00  
292 29.59 0.68 39.01 69.28   1.60  
293         
294         
298 35.03 0.21 16.79 52.03   1.50  
299         
301 34.22 0.86 38.74 73.82   0.00  
305         
306         
308         
313 39.77 0.34 0.26 40.37   1.46  
321 41.65 0.80 26.27 68.73   1.46  
329 28.63 1.40 32.89 62.92 11.75 74.68 2.05 6.21 
332 24.67 0.28 37.28 62.23   0.00  
333         
336         
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B.5 Phase IV Data 

B.5.1 Phase IV Data for the Influent of HABiTS and Control Column 

Table B.15: Daily influent nutrient concentrations for Phase IV (day 339 to day 456).  
 

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

339 99.63 0.35 0.00 99.99 3.79 103.77 3.81 9.58 
341 76.95 0.00 0.00 76.95 7.87 84.81 3.83 8.57 
344 60.79 0.46 0.00 61.24   0.00  
346 52.07 0.00 0.00 52.07 12.47 64.54 3.79  
348         
350 49.72 0.31 0.00 50.02   3.46  
353 41.59 0.00 0.00 41.59   3.99  
355 32.02 0.20 0.00 32.22   2.20  
357 34.15 0.29 0.00 34.43   2.50  
360 34.43 0.00 0.00 34.43   0.00  
362 34.53 0.52 0.00 35.06   0.00  
364 37.38 0.35 0.00 37.73   1.92  
368 37.11 0.00 0.00 37.11   2.48  
371 40.93 0.51 0.00 41.43   3.67  
374 42.38 0.00 0.00 42.38   3.83  
378 44.94 0.00 0.00 44.94   0.00  
382 45.36 0.00 0.00 45.36   4.36  
385 48.08 0.20 0.00 48.28 1.93 50.21 0.00 9.50 
389 45.68 0.17 0.00 45.85   0.00  
394 43.32 0.58 0.00 43.90   0.00  
397 46.59 0.63 0.00 47.22   2.09  
400 46.73 0.35 0.00 47.08   0.00  
408 45.46 0.21 0.00 45.67   2.01  
414 47.29 0.25 0.00 47.54   4.82  
431 50.69 0.17 0.00 50.86   2.59  
434 49.80 0.20 0.00 50.00   2.26  
436 50.36 0.24 0.00 50.61   2.66  
438 49.05 0.46 0.00 49.51   3.07  
442 45.53 0.52 0.00 46.04   2.50  
443 43.81 0.38 0.00 44.19   2.15  
446         
449         
450 45.55 0.46 0.00 46.01   3.26  
451 45.44 0.58 0.00 46.02   2.23  
456 47.48 0.59 0.00 48.07   2.96  
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B.5.2 Phase IV Data for the Effluent of the Control Column Stage 1  

Table B.16: Control column Stage 1 daily effluent nutrient concentrations for Phase III (day 339 
to day 456). 

 

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

339 43.96 0.37 31.19 75.53   0.00  
341 16.23 0.00 42.23 58.45   0.00  
344 7.05 0.00 38.21 45.26   1.37  
346 2.35 0.32 37.02 39.69   0.00  
348         
350 0.13 0.00 32.68 32.81   0.00  
353 0.40 0.16 31.27 31.82   0.00  
355 0.18 0.00 27.22 27.40   0.00  
357 0.15 0.06 27.53 27.74   0.00  
360 0.09 0.20 28.27 28.56   0.00  
362 0.00        
364 0.20        
368 0.35 0.00 36.73 37.09   0.00  
371 0.35 0.00 39.55 39.91   2.35  
374 0.29 0.14 42.89 43.32   0.00  
378         
382 0.97 0.26 44.10 45.33   0.00  
385 0.76 0.00 44.23 44.98   0.00 7.29 
389 0.52 0.32 43.59 44.43   0.00  
394 0.53 1.07 44.89 46.50   0.00  
397 0.10 0.27 45.01 45.38   0.00  
400 0.00 0.27 48.78 49.05   1.30  
408 0.26 0.10 45.17 45.52   1.54  
414 0.16 0.00 47.45 47.61   1.70  
431 5.13 0.00 41.44 46.57   3.39  
434 4.40 0.06 43.15 47.60   2.09  
436         
438         
442 0.54 0.23 44.11 44.89   1.80  
443 0.32 0.17 43.93 44.42   2.08  
446         
449         
450         
451 0.90 0.24 46.87 48.01   2.36  
456 3.29 0.25 43.40 46.95   2.33  
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B.5.3 Phase IV Data for the Effluent of the Control Column Stage 2  

Table B.17: Control column Stage 2 daily effluent nutrient concentrations for Phase IV (day 339 
to day 456). 

 

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

339 35.25 0.28 31.82 67.34   1.41  
341 21.30 0.12 26.46 47.88   1.91  
344 9.75 0.00 25.98 35.73   2.35  
346 3.84 0.62 26.32 30.78   1.59  
348         
350 0.97 0.18 17.90 19.05   1.59  
353  0.00 21.32 21.32   0.00  
355 2.85 0.08 14.49 17.43   0.00  
357 2.50 0.14 16.64 19.28   1.79  
360 1.27 0.00 11.76 13.03   0.00  
362 0.86 0.23 10.16 11.25   2.02  
364 0.73 0.46 9.92 11.11   0.00  
368 1.69 0.00 7.95 9.64   0.00  
371 1.82 0.86 10.17 12.85   0.00  
374 1.92 0.72 10.33 12.97   0.00  
378 1.88 0.32 8.54 10.74   0.00  
382 0.79 0.00 5.76 6.55   0.00  
385 2.54 0.69 7.10 10.33 9.06 19.39 0.00 6.79 
389 3.07 0.74 10.22 14.04   0.00  
394 1.63 0.47 9.29 11.40   0.00  
397 2.14 1.03 10.73 13.90   0.00  
400 3.50 0.93 10.62 15.05   0.00  
408 1.99 0.32 8.98 11.29   1.50  
414 1.16 0.02 9.12 10.30   2.16  
431 6.83 0.03 10.59 17.45   0.00  
434         
436 5.00 0.10 20.50 25.60 -26.31 -0.71 1.76 0.04 
438 6.49 0.23 17.81 24.53   0.00  
442         
443         
446         
449         
450 1.13 0.23 17.09 18.45     
451         
456 0.33 0.48 14.10 14.90     
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B.5.4 Phase IV Data for the Effluent of the HABiTS Column Stage 1  

Table B.18: HABiTS column Stage 1 daily effluent nutrient concentrations for Phase III (day 
339 to day 456). 

 

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

339 44.56 1.67 21.42 67.65   2.06  
341 28.13 1.40 37.93 67.46   1.32  
344 26.51 1.10 59.39 87.00   0.00  
346 22.73 0.80 23.43 46.96   0.00  
348         
350 14.34 0.00 29.71 44.05   0.00  
353 14.05 0.84 34.87 49.76   0.00  
355 20.99 0.22 19.42 40.64   0.00  
357 16.82 0.00 40.20 57.03   0.00  
360 9.18 0.12 44.59 53.89   0.00  
362 8.68 0.00 33.92 42.60   0.00  
364 6.99        
368 3.82 0.15 42.97 46.93   0.00  
371 3.48 0.14 49.75 53.37   1.21  
374 2.41 0.48 54.07 56.96   0.00  
378         
382 2.72 0.00 59.08 61.80   3.24  
385 3.27 0.12 52.73 56.11 2.69 58.81 0.00 6.56 
389 2.33 0.00 52.29 54.62   0.00  
394 2.66 0.27 51.89 54.82   0.00  
397 2.69 0.18 46.24 49.11   0.00  
400 3.24 0.09 47.62 50.95   0.00  
408 6.11 0.10 49.69 55.90   1.44  
414 6.07 1.08 38.59 45.74   0.00  
431 7.48 0.11 57.13 64.71   3.29  
434 4.43 0.18 67.56 72.16   1.89  
436         
438         
442 3.77 0.21 51.98 55.96   1.80  
443 2.61 0.12 52.91 55.65   1.69  
446         
449         
450         
451 0.64 0.32 56.85 57.82   1.86  
456 1.16 0.47 61.56 63.19   3.36  
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B.5.5 Phase IV Data for the Effluent of the HABiTS Column Stage 2 

Table B.19: HABiTS column Stage 2 daily effluent nutrient concentrations for Phase IV (day 
339 to day 456). 

 

Day NH4
+-N 

(mg L-1) 
NO2

--N 
(mg L-1) 

NO3
--N 

(mg L-1) 
TIN 

(mg L-1) 
Org. N 

(mg L-1) 
TN 

(mg L-1) 
PO4

3--P 
(mg L-1) 

TP 
(mg L-1) 

339 36.78 0.39 21.65 58.83   2.57  
341 31.60 0.00 21.06 52.66   2.24  
344 22.97 0.00 16.94 39.91   2.13  
346 23.72 0.00 20.55 44.26   0.70  
348         
350 17.04 1.75 33.31 52.10   0.00  
353 19.24 0.22 8.67 28.13 9.34 37.47 2.30 7.41 
355 13.94 0.00 6.28 20.22   0.00  
357 15.00 0.00 25.23 40.23   0.00  
360 7.64 2.00 33.53 43.17 9.46 52.63 0.00 3.72 
362 5.71 1.94 18.06 25.71   0.00  
364 5.53 1.09 18.63 25.25   0.00  
368 3.16 0.85 14.91 18.92 8.46 27.37 0.00 5.36 
371 3.25 1.93 24.50 29.68   0.00  
374 2.34 1.28 24.08 27.70   1.30  
378 3.17 1.23 29.13 33.53   0.00  
382 3.70 1.57 34.65 39.92   0.00  
385 4.35 1.73 27.52 33.60   0.00  
389 2.29 2.43 29.55 34.26 4.92 39.19 0.00 5.32 
394 3.06 2.24 29.68 34.98   0.00  
397 2.98 2.24 21.90 27.12   0.00  
400 6.03 0.55 28.57 35.15   0.00  
408 4.43 0.01 17.94 22.38   0.00  
414 9.37 0.68 15.91 25.96   0.00  
431 8.85 0.10 7.64 16.60   2.03  
434         
436 8.57 0.15 20.79 29.51   1.53 0.04 
438 5.79 0.13 23.64 29.55   1.66  
442         
443         
446         
449         
450 1.38 0.36 33.95 35.68   0.00  
451         
456 1.49 1.26 35.53 38.28   1.33  
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B.6 Data for Hourly Studies 

a)  

b)  
Figure B.3: N loading for Phase III hourly studies for Stage 1 (a) and Stage 2 (b) for both Control and HABiTS biofilter treatments 
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a)  

b)  
 

Figure B.4: N loading for Phase IV hourly studies for Stage 1 (a) and Stage 2 (b) for both Control and HABiTS biofilter treatment  
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