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ABSTRACT 

Heat of hydration is a property of Portland cement and a direct result of the chemical 

reaction between cement and water. The amount of heat released is dependent upon the cement 

mineralogical composition, curing temperature, water to cement ratio, and cement fineness. High 

temperature resulting from heat of hydration (thereon referred to as HOH) of cement can affect 

the hydration process, and consequently the kinetics of development of the mechanical properties 

of concrete. One of the main reasons triggering the interest in HOH of cement is its implication 

in thermal cracking of concrete. The high temperature gradient between the inner core and the 

outer surface of a concrete element is known to result in large tensile stresses that may exceed 

tensile strength, thus leading to early–age thermal cracking in mass concrete.  

 This dissertation initially addresses accurately predicting the heat of HOH of Portland 

cement at seven days based on the heat flow data collected from isothermal calorimetry for a 

time interval of 0-84 h. This approach drastically reduces the time required to identify the seven-

day HOH of Portland cement.  

 The second part of this study focuses on cement fineness and its critical role on the heat 

generated by Portland cement during hydration. Using a matrix of four commercially available 

Portland cements, representing a wide range of mineralogical composition, and subjecting each 

of the as-received cements to several grinding increments, a linear relationship was established 

between cement fineness and heat of hydration. The effect of cement fineness and mineralogical 

composition on HOH of Portland cement was then related through a mathematical expression to 

predict the HOH of Portland cement based on its mineralogical composition and fineness. Three 
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expressions were proposed for the 1, 3 and 7 day HOH.  The findings indicate that the equations 

developed, based on cement main phase composition and fineness, can be used to identify 

cements with high heat of HOH that may cause thermal cracking in mass concrete elements. 

Also, the equations can be used to correlate the HOH with the other properties of Portland 

cement for quality control and prediction of chemical and physical properties of manufactured 

Portland cement and concrete. 

 Restrained shrinkage experiments results on mortar specimens prepared with cements of 

variable phase composition and fineness indicate that interaction of C3A and sulfate source is the 

prime phenomenon followed by cement fineness as the second main factor influencing concrete 

cracking. In order to minimize this effect, the third part of this study focused on studying 

alternatives that can lower the heat generated by concrete on hydration through the incorporation 

of nanomaterials; namely, graphene nanoparticles. The results indicate that incorporation of 

graphene a as replacement for Portland cement improves thermal diffusivity and electrical 

conductivity of the cement paste. Consequently, the use of graphene can trigger improvement of 

the thermal conductivity of concrete elements thus reducing the cracking potential of concrete.  

 Measurements of HOH of graphene-cement paste, at w/c=0.5, using isothermal 

conduction calorimetry, indicate that incorporation of graphene up to 10%  increases the length 

of the induction period while reduces the magnitude of the alite main hydration peak due to the 

filler effect. Furthermore, increasing the w/c ratio from 0.5 to 0.6 and graphene content from 1 % 

to 10% (as a partial replacement of cement) increases the 7 day HOH of Portland cement by 50 

J/g. Isothermal conduction calorimetry heat flow curves show that incorporation of graphene 

particles up to 10% does not have significant effect on interaction of aluminates and sulfates 
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sources since the time of occurrence of the C3A sulfate depletion peak is not affected by 

graphene substitution up to 10%.  

 Full factorial statistical design and analysis conducted on compressive strength data of 

mortar specimens prepared at two w/c ratios, using cements of different finenesses and graphene 

content indicates that the quantity of graphene and the physical interaction due to variable w/c, 

graphene and cement fineness, have the smallest P-value among all the samples, representing the 

most significant impact on compressive strength of mortar samples. It appears that in graphene-

cement paste composites, addition of 1% graphene results in 21% reduction of Young’s 

modulus. Increasing the graphene content from 1% to 5% and/or 10% does not show significant 

effect on Young’s modulus. Similar trends can be observed in the hardness of graphene cement 

paste samples. 

 In conclusion, partial replacement of Portland cement with graphene nanoparticles in 

concrete mixtures is a good alternative to lower the cracking potential in mass concrete elements.  
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CHAPTER 1: INTRODUCTION 
 

Heat of hydration is a property of Portland cement and a direct result of the chemical 

reactions between cement and water. The amount of heat released is dependent upon the cement 

composition, curing temperature, water to cement ratio, and cement fineness.  The phases mainly 

responsible for heat generation are tricalcium silicate (C3S), dicalcium silicate (C2S), tricalcium 

aluminate (C3A) and tetracalcium aluminoferrite (C4AF) [1, 2]. Portland cement oxide and 

chemical composition abbreviations are outlined in Table 1.1 Bogue equations, as outlined in 

ASTM C150 [3], are used to estimate the potential compound composition of Portland cement.  

Table 1.1 Abbreviations of oxide and chemical composition of Portland cement 
 

 

The main chemical reactions associated with C3S and C2S hydration are outlined in 

Equations (1.1) and (1.2). Both reactions are exothermic, which means they release heat to the 

surroundings. Calcium silicate hydrate is the compound of interest due to its critical role and 

contribution to concrete strength [4].  

2C3S +11H2O              C3S2H8 +3CH                                                                                  Eq. (1.1) 
 
2C2S + 9H2O               C3S2H8 + CH                                                                                   Eq. (1.2) 
 
Another significant reaction in the hydration of Portland cement is the interaction of C3A with  

Oxide Abbreviation Compound Abbreviation 
CaO C 3CaO.SiO2 C3S 
SiO2 S 2CaO.SiO2 C2S 
Al2O3 A 3CaO.Al2O3 C3A 
Fe2O3 F 4CaO.Al2O3.Fe2O3 C4AF 
MgO M 4CaO.3Al2O3.SO3 C4A3Ŝ 
SO3 Ŝ 3CaO.2SiO2.3H2O C3S2H3 
H2O H CaSO4.2H2O CŜH2 
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gypsum in the hydrating cement paste system.  The reaction is summarized in Equation (1.3). 
 
C3A + 3CŜH2 + 26H              26H2O + C6AŜ3H32                                                                         Eq. (1.3) 

 If the sulfates present are not adequate, a lower sulfate form of aluminate hydrate, namely; 

monosulfoaluminate, can also form. 

 C4AF forms similar hydration products as C3A. Gypsum retards C4AF reaction even more 

drastically than C3A. C4AF hydration reaction is summarized in Equation (1.4): 

C4AF + 3CŜH2 + 21H2O              C6(A,F)Ŝ3H32 + (F,A)H3                                                                         Eq. (1.4) 

Portland cement hydration stages are typically identified by five main stages outlined as follows 

[1]:  

1.1 Initial Stage 
 

Hydration of Portland cement consists of a series of reactions between cement minerals, 

calcium sulfates and water (See Figure 1.1). The initial heat release that occurs once water is added 

to cement relies on the rate of dissolution of the main cement phases and the available sulfates. 

Upon contact of water with cement, the alkali sulfates would dissolve rapidly and release 

K , Na and	SO 	ions into solution. Calcium sulfates dissolve until saturation. Tricalcium silicate 

dissolves rapidly and C-S-H starts to precipitate on the surface of anhydrous cement particles. The 

hydration process is accompanied by the release of Ca and	OH  in the liquid phase.  Silicate ions 

also dissolve in liquid phase. The amount of tricalcium silicate dissolved in the initial stage is 

estimated to be between 2 to 10 percent [1]. It is understood that with the increase in the amount 

of C3S dissolution and C-S-H formation, Ca(OH)2 concentration would increase. An increase in 

Ca(OH)2 retards C3S hydration. One theory explains this effect that Ca(OH)2 would not precipitate 

in the liquid phase even after reaching its saturation point due to the incorporation of silicate ions 

in its nuclei. As the Ca(OH)₂ concentration increases, it then can cope with the poisoning effect of 
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silicate and starts to precipitate and acts as a sink for Ca  ions. This process would result in an 

opportunity for C-S-H formation and a renewed increase in C₃S hydration [1]. From solubility 

standpoint, when the concentration of calcium hydroxide is between 0 and 36 mmol/L, which 

corresponds to the maximum amount of supersaturation in regards to calcium hydroxide 

(Portlandite), C₃S is more soluble than C-S-H so C₃S always hydrates [5]. It is evident from the 

chemical analysis of the solution phases that C₃S dissolves congruently and quite rapidly in the 

first minute on contact with water. C₃S would continue to dissolve up until reaching the 

equilibrium of silicate and calcium concentration in solution of several hundred mmol/L [6]. 

Tricalcium aluminate would also dissolve in water and reacts with the Ca and	SO 	ions 

provided by the dissolution of calcium sulfate phases to yield ettringite (Aft) and subsequently 

precipitate on the surface of cement particles [1]. C₃A is estimated to hydrate between 5 to 25 

percent during the initial stage of hydration.  Gypsum has been used as a retarder to reduce the 

intense reaction of C₃A with water and to avoid flash set [7]. Ettringite is the main product of 

reaction of C₃A and Gypsum. Some researchers evaluated the effect of gypsum and hemihydrate 

at initial stage of hydration and concluded that the initial reaction of C₃A was much greater in 

presence of gypsum compared to hemihydrate [8, 9]. In contrast, some researchers show that at 

the beginning of heat evolution curve, the amount of gypsum does not have any effect on the heat 

of hydration [10]. Ferrite phase also reacts in the same manner as tricalcium aluminate and yield 

ettringite (Aft).  

Only very small fraction of C₂S would react in the initial period releasing C-S-H phase and 

contributing to the Ca 	and	OH  release in the liquid phase [1]. It is important to note that 

although C₃S and C₂S are more soluble than C-S-H in liquid phase; however, C₂S cannot dissolve 

as long as C₃S hydrates since the ionic concentration maintained during C₃S hydration are higher 
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than the solubility of C₂S [5]. Intense liberation of heat in the initial stage is mainly the result of 

C₃S and C₃A hydration. It is noteworthy that C₃S and C₃A hydration is also dependent on the 

dopant ions incorporated into their lattice structures [1]. 

1.2 Induction and Acceleration Stages 

Fast reaction kinetics during the initial stage of hydration is followed by a dormant period 

as shown in Figure 1.1 Julliard et al. concluded from SEM work of Makars that during alite 

hydration in the induction period there is not enough evidence showing that there is a complete 

layer of hydration products forming around anhydrous particles to protect alite surface from 

continued rapid hydration. In fact, the reactive sites, noted at the edges, indicate the coverage by 

reaction products. Lack of reaction of the other parts of the grain is attributed to rapid ions 

concentration built up in solution in a way that there was insufficient undersaturation to overcome 

the free energy barrier to etch pitting [8, 11]. Some researchers including Stein indicated that the 

induction period is the effect of rapid formation of a metastable layer of a calcium silicate hydrate 

phase passivating the surface by limiting access to water or diffusion of detaching ions away from 

the surface of the cement grains. This metastable layer is interpreted to be permeable to calcium 

and water but not to silicates. For the metastable hypothesis to be correct a fairly dense layer must 

cover the great majority of C3S surface; however, evidence of a continuous layer has not been 

found using different direct methods of surface examination [6]. Nonat et al. [12] has developed a 

mechanistic explanation for the slow reaction of C3S during the induction period. He expressed 

that the superficially hydroxylated C3S formed after the initial stage has much lower solubility 

compared to the one calculated for C3S and that its dissolution decreases very rapidly while 

calcium hydroxide concentration increases. When C-S-H concentration exceeds maximum 

supersaturation, C-S-H shall nucleate rapidly on C3S surface.  



5 
 

Based on some research on post thermal annealing treatment at 650 °C, surface defects 

control the rate of dissolution and consequently affect the length of induction period [6]. The rate 

of hydration in the acceleration period is based on the rate of formation of the hydration products, 

primarily C-S-H. It is perceived from the experiments that the rate controlling step of the reaction 

is due to heterogeneous nucleation and growth of C-S-H on alite surface and likely on other mineral 

surfaces. Thomas performed some experiments by seeding C3S pastes with C-S-H at the time of 

mixing. The results indicated that the induction period was almost eliminated and the hydration 

process progressed immediately and at higher rate compared to unseeded C₃S pastes [13].  

The findings indicate that the start of the acceleration stage depends on the existence of 

growing regions of C-S-H to give considerable hydration rate. Without the seeding process, more 

time is required to facilitate natural nucleation and growth processes to provide sufficient C-S-H 

surface area to revive the hydration rate during the acceleration stage [6]. Gartner listed four 

mechanisms for shifting from induction to acceleration periods.  Two of his proposed mechanism 

models including metastable barrier hypothesis and slow dissolution step hypothesis support this 

theory that the rate of C3S dissolution is controlled by the rate of C-S-H nucleation and growth [6, 

14]. Juilland et al. [11] realized that small addition of free lime to alite would prolong the induction 

period while higher amounts may shorten it. It can be perceived that rapid dissolution of free lime 

increases the amount of calcium ions in solution.  This phenomenon may restrict the dissolution 

of alite and etch pit formation and increases the induction period as a consequence. At higher 

addition of free lime, the free lime may act as a nucleation site for the precipitation of the hydration 

products and consequently decreases the duration of the induction period. Tricalcium aluminate 

would harden fast when in contact with water. To delay the time of setting, a calcium sulfate source 

can be added to the cement to control the chemical reaction between water and aluminate and to 
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delay the initial and final time of setting. In presence of calcium sulfate, the pattern of reaction 

between water and aluminate would change.  

 Bullard et al. [6] mentioned that Scrivener and Pratt discovered a disorganized layer 

covering C3A. They consider this gel like layer to be accountable for the slow reaction period of 

C3A.  Minard et al. [10] showed by scanning electron micrograph that at the initial C3A hydration 

in presence of gypsum, the grain would be covered with two types of hydrates with diverse 

morphologies, sheets of AFm phase and ettringite needles.  He thought adsorption of calcium 

and/or sulfate ions on the surface of C3A particles block the dissolution sites of C3A and results in 

retardation of C3A hydration. Rapid hydration reaction of C3A, after depletion of sulfate source, is 

a strong evidence to prove this theory [10]. 

1.3 Deceleration and Steady State Stages 

Deceleration and steady state stages of hydration starts with formation and thickening of 

hydration products primarily C-S-H around anhydrous phases. As hydration progresses, the layer 

gets thicker and the hydration process moves toward ionic diffusion through the thickening layer. 

It is noteworthy that an increase in this layer thickness diminishes the amount of ions passing 

through and as a result decreases the rate of heat flow.  Costoya [15] work showed that the 

hydration product C-S-H forms thicker diffusion controlled layer around smaller anhydrous C3S 

particles. 

The interest in heat of hydration (thereon referred to as HOH) of cement is due to its effect 

on inducing thermal cracking in concrete elements. The high temperature gradient between the 

inner core and the outer surface of the concrete element is known to result in large tensile stresses 

that may exceed the tensile strength of concrete, thus leading to early–age thermal cracking in 

massive concrete elements [16]. The thermal cracking can result in degradation of the concrete 
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structure including problems in serviceability, loss of water tightness, reduction in durability of 

structures and increase in probability of corrosion or carbonation of contained steel in concrete 

[17-21]. 

 

Figure 1.1 Mechanism of heat of hydration of Portland cement 
 

The high temperature resulting from the heat generated by cement on hydration can also 

affect the hydration process, and consequently the kinetics of the development of the mechanical 

properties of concrete [22].  Higher hydration temperature can be beneficial in cold weather 

concrete placement due to its accelerating effect on the hydration process [23]. Cement fineness is 

a critical component affecting the HOH of Portland cement. The primary reason for contractors to 

resort to finer cement is its higher early strength and consequently faster construction operations 

[24]. Higher fineness provides higher surface area for cement to react with water, therefore 

resulting in an increase in rate of heat liberation at early ages and higher early internal temperature 

in concrete elements [25]. 

ASTM C1702 (isothermal conduction calorimetry) [26] and ASTM C186 (heat of solution 

calorimetry) [27] are the two available ASTM standard methods for HOH measurements of 
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hydraulic Portland cements. Heat of solution calorimtery measures the temperature rise of the 

acidic solution resulting from the decomposition of the anhydrous and partially hydrated cement 

separately. The difference between the heat of solution of the anhydrous and partially hydrated 

cement can be calculated as the heat evolved during the hydration period. Considering the 

experimental procedure, this method is labor intensive and requires the use of hazardous acidic 

substances [28]. 

 Isothermal conduction calorimetry has the advantage of measuring the HOH instantly from 

the time of mixing of cement with water. It is a useful technique in studying the effects of 

admixtures on cement hydration. This method can be executed with low labor input and with better 

precision as compared to the heat of solution method [29]. Isothermal conduction calorimetry can 

typically operate at a wide range of temperature and using different water to cement ratios. The 

major advantage of isothermal conduction calorimetry is that it not only measures the total heat 

but also records the thermal power or “heat flow” at different ages. The calorimeter provides the 

user the ability to study the hydration stages from the recorded heat flow curve at the desired 

hydration age. Sample preparation and operation of the instrument are fairly easy, though its use 

requires some basic training. The cumulative heat, at any age, can be calculated by the integration 

of the area under the heat flow curve versus time [30-32]. Isothermal calorimetry performs well 

with blended cements while the solution calorimetry is less suited [33]. Isothermal calorimetry 

shows improved precision if compared with the heat of solution method as shown in Table 1.2 

[34]. Additionally, the former offers simplicity in procedure and the availability of commercial 

equipment to conduct the test. Long term studies by Wadso [35] indicate that the calibration 

coefficients are remarkably stable over time as long as there is no hardware or bath temperature 

change. It is noteworthy that ASTM C1702 method is not dependent on the knowledge of 
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compound composition, which makes it much more useful for the analysis of non-Portland 

cements. 

Table 1.2 Comparison of precisions for isothermal conduction calorimetry and solution 
calorimetry (per ASTM C1702-09) 

 

Standard 
Deviation 

ASTM C186 
ASTMC1702       

(Wadso et al.’s Data) 
[35-37] 

ASTM C1702 

(VDZ 2006) [38] 

Within lab 14.8 KJ/Kg 
(7 days) 

Not available 4.6 KJ/Kg (7 days) 

Between lab 16.9 KJ/Kg    
(7 days) 

10.5 KJ/Kg           
(3 days) 

13.6 KJ/Kg (7 days) 

  

 To control the HOH of Types II (MH) and Type II (MH)A portland cements, ASTM C150-

12 defines a heat index parameter (HI), per its standard chemical composition requirements, as the 

sum of C3S + 4.75C3A. An HI limit of 100 and a Blaine fineness limit of 2600-4300 cm2/g are 

assigned to the Types II (MH) and II (MH)A portland cements to control the seven day HOH under 

335 J/g [80 Cal/g] as measured conforming to ASTM C186. ASTM C150 specifies that the Blaine 

fineness limit of 2,600-4,300 cm2/g does not apply to the Types II (MH) and II (MH)A cements if 

the HI limit is maintained below 90. It is therefore implied that the effect of cement fineness on 

HOH of Portland cements with HI of 90 or less is not significant. This criterion shall permit 

cements with HI of less than 90 to be used or categorized as a Type II (MH) Portland cement 

regardless of their fineness. This criterion may not be very accurate as Portland cement fineness 

has significant effect on HOH. The proposed HI limit was originally developed from the statistical 

analysis conducted by Toy Poole on the seven day HOH of hydraulic Portland cements [39]. The 

HOH data were obtained from the CCRL samples and U.S. army corps of engineers research and 

development center. The HOH data were collected using ASTM C186 (heat of solution 

calorimetry) method. The potential phase composition of the cements were calculated using Bogue 
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formulas. The Blaine fineness of the cements used in this study ranged from 2,640 to 4,360 cm2/g. 

Based on Poole’s analysis, Figure 1.2, it was shown that the measured HOH of 80 Cal/g on the 

trend line corresponds to HI of 100.  

 

Figure 1.2 Heat of hydration of 38 as-received cements versus H.I. [40] 
(No copyright permission required as the image obtained from the public domain)  

To evaluate the efficiency of the HI in predicting and controlling the HOH, nine Portland 

cements were selected. The potential phase composition, HI, Blaine fineness and 7-day HOH 

(using ASTM C186) were determined as outlined in Table 1.3 As shown in Table 1.3, Cements 2, 

3, 6, 7 and 8 have a HI of less than 90 while their seven day HOH exceeds 335 J/g. Specifically, 

cements 3, 6 and 8 with high finenesses also have high HOH (366-370 J/g). It is well perceived 

that cement fineness has significant effect on HOH and dismissing the placement of limit on the 

fineness of cements with HI <90 cannot provide an appropriate means to control the HOH of 

Portland cements. 

Based on HI definition, cements (1) through (8) can be classified as Type II (MH) Portland 

cements. However, with the exception of cement 1, all the other seven cements have the seven day 
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HOH exceeding 335 J/g indicating the deficiency of the HI to be used as an appropriate control or 

identifier for the potential of a given cement to generate heat, which is basically the main purpose 

of including HI in the specifications. There are two major factors that may contribute to the 

deficiency of the HI to appropriately mark or control the HOH of Portland cements. Firstly, the 

Blaine fineness for all the cements used to establish the HI (38 cements obtained from the CCRL 

sample results and U.S. army corps of engineers research and development center) were in a 

narrow range of 2,640 to 4,360 cm2/g thus resulting in limiting its use to investigate the effect of 

cement fineness on HOH of portland cement and effectively incorporating the cement fineness 

into the HI expression while not specifying a limit on cement fineness in the event that the heat 

index is less than 90. Secondly, the quantification of the major cement phases (C3S, C3A, C2S, and 

C4AF), as used in establishing the HI, was done through the calculation of the potential phases 

composition. Additionally, it is well established that the Bogue equations may cause erroneous 

results when quantifying the major phases in Portland cements [41-42]. It is therefore proposed 

that direct quantification methods; namely, quantitative X-ray diffraction (QXRD) and microscopy 

which are better tools in quantifying the phase composition of Portland cements, be included in 

any expressions used to identify the potential of a portland cement to generate heat.  

Table 1.3 Cements characterization, potential phase composition, H.I., Blaine fineness and heat 
of solution of 9 as-received Portland cements 

 

Property 1 2 3 4 5 6 7 8 9 

C3S (w/o) 61 63 59 65 57 53 56 52 47 
C2S (w/o) 14 12 15 7 14 17 17 20 18 
C3A (w/o) 5 5 5 6 7 8 7 7 11 

C4AF (w/o) 13 12 12 9 12 12 11 11 8 
C3S+4.75C3A 85 87 83 95 91 89 88 85 99 

Blaine fineness 
(cm2/g) 

3250 4140 5750 4260 4170 6120 4020 5900 4050 

ASTM C186-7 
day HOH (J/g) 

312 340 366 362 349 370 337 367 361 
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Several researchers attempted to formulate the HOH of cements. Woods et al. [43] 

developed equations predicting the HOH of cements at the ages of 3, 7, 28, 90 and 180 days based 

on the measured HOH of 13 cements using solution calorimetry. The proposed HOH equations 

were based on linear regression analysis of the heat generated by the major cement phases; namely, 

C3S, C3A, C2S, and C4AF. The fineness of cements used in calibration were within the range of 

1,390 to 1,670 cm2/g as determined by a sedimentation device. It was concluded that the fineness 

of cements, within the studied range, does not have substantial effect on the generated heat. Good 

linear correlations were indicated between the HOH at the ages of 3 days, 180 days, and 1 year 

ages and C3S+2.1C3A [43-44]. Comparison of measured and predicted (based on equations 

developed in terms of cement oxide composition) HOH for four commercial cements indicates 

that the equations can overestimate the HOH by 11 Cal/g at the ages of 3, 7 and 28 days and by 5 

Cal/g at the age of 180 days [43]. Lerch, et al.’s [45] work on HOH shows a significant effect of 

cement fineness on HOH at the ages of one, three and seven days while it is less drastic at the ages 

of 28 days and up.  

Verbeck et al. [46] established relationships between the HOH of cements and their 

composition at several ages ranging from three days up to 6.5 years. The least squares method was 

implemented in fitting the experimental data while assuming linear and independent relationship 

between the hydration reaction of C3S, C3A, C2S, C4AF, and SO3 . Significant discrepancy between 

measured and the predicted heat could be observed for Types III and IIIA cements at ages of three 

and seven days. Although the relationships were established based on the main cement phases at 

various ages, fineness was not incorporated into the equations as a significant factor affecting the 

HOH. Fineness of the cements range from 1,630 -2,795 cm2/g measured in conforming to ASTM 

C115 (determination of cement fineness using turbidimeter). 
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Poole [39] developed several equations based on the values of HOH of the individual 

compounds as outlined in lea’s chemistry of cement, and using the data provided by CCRL, US 

army corps of engineers, and Verbeck and Foster research study. Seven relationships were 

examined and analyzed.  Five of the relationships incorporated cement potential phase 

composition, with two of the five expressions incorporating fineness. The last two expressions, 

analyzed in this work, were based on mortar cube strength at three and seven days with the former 

showing better random error and no apparent bias. The three developed equations that were 

established based on the potential phase composition and Blaine fineness are  as follows:  

 Equation (1.5) is assembled based on the HOH of the individual compounds. The phases 

are expressed on a weight percent basis: 

7 Day HOH=15.55C₃A+2.21C₃S+0.42C₂S+5.82C4AF                                                        Eq. (1.5) 

Equation (1.6) was develeopd by Poole using stepwise linear regression on the data provided by 

CCRL and US army corps of engineers (data on 38 cements). The Blaine fineness for those 

cements ranged from 2,640- 4,360 cm2/g :  

7 Day HOH= 133.9+ 9.36(C₃A)+2.13(C₃S)                                                                       Eq. (1.6) 

Equation (1.7) is a linear regression equation assembled by Poole based on the data taken from 

Verbeck and Foster. Blaine fineness of the cements used in this study ranged from 2,850-4,900 

cm2/g.  As it is evident from the formula, cement fineness has significant effect on the 7 day HOH. 

However, the formula does not take into account the effect of C2S and C4AF on HOH. 

7 Day HOH=1.98+11.44(C₃A)+1.53(C₃S)+0.04(Blaine (cm2/g))                                      Eq. (1.7) 

 There are several ways to control the cracking potential of concrete; one way is to identify 

the cements generating high HOH (whether through experimental work or equations predicting 

the HOH) as explained above and limit their use or partially replace them with supplementary 
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cementitious materials. Another approach in alleviating the problem is to reduce the temperature 

gradient in concrete elements, which is primarily due to the high HOH of Portland cements. It is 

plausible to use nanomaterials to improve concrete thermal conductivity thus reducing the 

temperature gradient. Graphene was selected as a nanomaterial due to its excellent thermal 

properties. Graphene is a nanomaterial that has the potential of improving the thermal conductivity 

of cementitious materials. Graphene, a 2-D π-conjugation, has several extraordinary physical 

properties such as high thermal conductivity, high electrical conductivity, high surface area (2,630 

m2/g), high elastic modulus and ampi-polar electric field effect [47-49]. 

1.4 Statement of Objectives  

Based on the thorough literature review and in absence of accurate methods of predicting 

the heat generated by Portland cements on hydration, the following are the main objectives of this 

study: 

1. Accurately predicting the HOH generated by Portland cements at seven days through: 

1.1 Minimizing data collection time 

1.2 Minimizing additional tests to determine HOH and assess the potential use of tests    

that are commonly conducted in characterizing Portland cement to predict HOH. 

2. Explore the use of nanomaterials, specifically graphene nanoparticles, in minimizing the 

cracking potential of concrete elements through improving concrete thermal conductivity and heat 

dissipation properties. 

3. Assess the effects of incorporating graphene nanoparticles on the physical, electrical and 

chemical properties of cementitious mixtures.  
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CHAPTER 21: MEASUREMENT AND PREDICTION OF HEAT OF HYDRATION OF  
 

PORTLAND CEMENT USING ISOTHERMAL CONDUCTION CALORIMETRY 
 

2.1   Introduction 

Heat of hydration measurement is important for assessing the cement hydration rate as well as 

assessing the potential temperature rise/fall in concrete elements. Temperature rise that occurs due to 

mixing of cement with water is caused by the exothermic nature of the interaction of anhydrous 

cement with water [1]. The interest in cement heat of hydration is primarily due to its contribution 

to massive concrete elements cracking [2]. It is well established that there is a large temperature 

rise that occurs within a few days of concrete placement, typically within first 24 to 72 hours. In 

structural elements, temperature rise and the subsequent cooling results in shrinkage strains that 

have been implicated in concrete cracking. The resulting tensile stress is partly a function of the 

temperature rise experienced by the concrete element [2]. The latter is a strong function of the heat 

of hydration of Portland cement, which is primarily affected by the mineralogy and fineness of the 

cement.  

Experimental measurements and calculations for the heat of hydration (thereon referred to 

as HOH) of different types of Portland cement have been extensively published in the literature. 

For several decades, Portland cement specifications adopted ASTM C186 [3] for HOH 

measurements, which is the heat of solution method. Although the ASTM C186 method has been 

                                                            
1 Note. “Measurement and Prediction of Heat of Hydration of Portland Cement Using Isothermal Conduction 

Calorimetry,” A. Sedaghat, A. Zayed and P. Sandberg, 2013, Journal of Testing and Evaluation, Vol. 41, No. 6, 
Copyright © 2013 by ASTM International. Reprinted with permission. 
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reported to cause difficulties during implementation, [3, 4, 5] but it has the advantage of not 

requiring the instrument to be occupied for the whole period of experiment. In fact, several tests 

can be run on overlapping schedules using only one instrument. The test can be used for long test 

ages as it measures the HOH indirectly instead of adding up the heat for a long period of time [5].  

Recently, a new standard method for HOH determination was adopted by ASTM under 

test method C1702-09 [6]. The method, isothermal conduction calorimetry, indicates two possible 

mixing routines, namely, internal and external mixing. However, the use of this method has not 

been incorporated into cement specification ASTM C150 [7]. For Type II (MH) and Type IV, a 

maximum HOH is indicated for seven days, also, for Type IV, for 28 days in accordance with 

optional physical requirements of ASTM C150/C150M-09. Besides, ASTM C595 [8] and C1157 

[9] have set limits for HOH in accordance with physical requirements while ASTM C1600 [10] 

has set limits per optional physical requirements. The ASTM specification identifies ASTM C186 

for HOH measurements in spite of the availability of ASTM C1702-09. 

The isothermal conduction calorimetry has the advantage of measuring the HOH instantly 

from the time of mixing of water with cement. It is therefore a useful instrument in analyzing the 

effects of admixtures on cement hydration. This method can be executed with low labor input and 

with better precision as compared to the heat of solution method [11]. Isothermal conduction 

calorimetries typically operate at a range of temperatures and with different water to cement ratios. 

The major advantage of the isothermal conduction calorimetry is that it not only measures the total 

heat but also records the thermal power “heat flow” at different times. This instrument can perform 

well with blended cements while the solution calorimetry is less suited [12]. The isothermal 

conduction calorimetry shows improved precision if compared with the heat of solution method 

as shown in Table 2.1 [6]. Additionally, the isothermal conduction calorimetry offers simplicity in 
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the procedure and availability of commercial equipment to conduct the test. Long term studies by 

Wadso [13] indicate that the calibration coefficients are remarkably stable over time as long as 

there is no hardware or bath temperature change. It is noteworthy that the ASTM C1702 method 

is not dependent on knowledge of compound composition, which makes it much more useful for 

analysis of non-Portland cement. 

Table 2.1 Comparison of precisions for isothermal conduction calorimetry and solution 
calorimetry (per ASTM C1702-09) [6] 

Standard Deviation ASTM C186 
ASTMC1702       

(Wadso et al.’s Data)     
[22,23] 

ASTM C1702 
(VDZ 2006)    

[24] 

Within lab 14.8 KJ/Kg        
(7 days) 

Not available 4.6 KJ/Kg        
(7 days) 

Between lab 16.9 KJ/Kg        
(7 days) 

10.5 KJ/Kg            
(3 days) 

13.6 KJ/Kg       
(7 days) 

 

The prediction of Portland cement HOH had been proposed earlier using several 

relationships. Poole [4] has summarized the different approaches that were proposed in the 

literature.  Primarily, the relationships rely on other standard test properties of Portland cement 

known to relate to HOH. Seven relationships were analyzed for Portland cement, with five of them 

incorporating cement potential phase composition; two of the five expressions incorporated 

fineness. The other two expressions analyzed in this work were based on mortar cube strength at 

three and seven days with the former showing better random error and no apparent bias, a finding 

that has been confirmed by others [11].  Based on this work [4], ASTM C150 has adopted a heat 

index expression that would ensure a seven day HOH for Type II MH of 80 cal/g or less.  Ferraro, 

et al.’s [14] analysis indicates that the expression needs to be modified in order to ensure 

appropriate prediction of HOH using the heat index concept.  A concern about the heat index is 

the fact that it relies on the potential phase composition of Portland cement, namely, tricalcium 
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silicate and tricalcium aluminate. Previous research has indicated that the potential compound 

composition for those two phases can be considerably different from direct quantification 

techniques such as petrography or X-ray diffraction techniques [15]. 

An alternative method, as described in this research, proposes an empirical relationship by 

which 84 hours HOH can be used to predict accurately the seven days value. The proposed 

empirical S-shaped function is given in Equation (2.1). The general exponential function has been 

used previously by Schindler [16] to quantify the degree of hydration development based on the 

equivalent age concept. It has also been used by Freiesleben Hansen and Pederson to model 

strength development [17]. Initially, an effort was made to model HOH data from the time cement 

was mixed with water up to seven days; however, using a single exponential function to fit all 

different stages of hydration did not seem to work very well. It is well established in the literature 

that the hydration process is primarily diffusion controlled once the hydration process is well into 

the steady state stage [18]. Implementing the proposed S-function to the HOH data between 24 

and 84 hours was therefore considered, where the HOH profile can be used successfully to predict 

HOH at seven days.  

]1β)
1t
1τ

[(

.eC1H t




                  Eq. (2.1) 

[24< t1 (hour) ≤72 or 84] 
Ht = Total heat at given age, J/g                                      
C1= Constant, J/g 
t1= Time from mixing cement with water, Hours    
τ1 and 1= Constants defined by the curve shape 

2.2 Experimental  

Table 2.2 (a&b) depicts the oxide chemical composition and potential phase composition 

of as received cements (labeled A-J) used in this study as determined by X-ray fluorescence 
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spectrometry. The ten cements studied are typical industrial Portland cements with Blaine fineness 

in the range of 325- 612 m²/kg, while C3S and C3A are in the range of 52- 65% and 5-11%, 

respectively. Each cement sample was tested in duplicate runs for HOH for up to seven days in 

accordance with ASTM C1702 (Method A, internal mixing) [6] using a TAMAIR isothermal 

conduction calorimetry manufactured by TA instruments. Cement A was also tested in accordance 

with ASTM C1702 (Method B, external mixing) using the same instrument. The experimental 

matrix is summarized in Table 2.3.  

Table 2.2(a) Chemical oxide composition of as-received cements 
 

 

Analyte A  B      C  D  E  F  G  H  I  J 

% (SiO2) 20.01 20.02 20.51 20.85 20.83 20.74 20.86 18.67 19.01 19.67 

% (Al2O3) 5.15 5.32 4.91 4.9 4.61 4.45 4.42 5.7 5.66 4.17

% (Fe2O3) 3.86 3.88 3.70 3.62 4.2 4.07 3.86 2.63 2.55 2.89

% (CaO) 63.52 63.43 63.54 63.5 64.33 64.83 64.02 60.15 60.89 62.94

% (MgO) 0.92 0.93 0.63 0.64 0.83 0.92 1.12 2.92 2.76 2.58

% (SO3) 3.18 3.99 3.03 3.33 2.06 2.58 2.82 4.83 4.6 3.23

%(Na₂O) 0.12 0.12 0.09 0.09 0.07 0.07 0.11 0.41 0.37 0.25

%(K₂O) 0.42 0.43 0.45 0.45 0.29 0.28 0.28 1.1 1.02 1.07

%(TIO₂) 0.26 0.27 0.31 0.29 0.29 0.28 0.26 0.25 0.26 0.22

%(P₂O₅) 0.13 0.13 0.12 0.11 0.11 0.1 0.1 0.26 0.25 0.05

%(Mn₂O₃) 0.01 0.01 0.04 0.03 0.08 0.08 0.08 0.07 0.08 0.05 

%(SRO) 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.28 0.28 0.04

%(CR₂O₃) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <0.01 <0.01 0.01

%(ZnO) 0.01 <0.01 0.05 0.05 0.05 0.05 0.05 0.06 0.07 0.03

% LOI 2.4 1.68 2.7 2.3 1.36 1.22 1.44 2.58 2.54 2.77 
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Table 2.2(b) Potential phase composition, Blaine fineness, measured and predicted 7 day heat 
of hydration of as received cements 

 

 
Table 2.3 Experimental matrix, isothermal conduction calorimetry tests at 23 °C 

Cement ID Cement A, B, C, 
D, E, F, G, H, I, J 

Cement A 

ASTM C 1702 Internal Mixing External Mixing 1 External Mixing 2 

Cement, g 3.30 9.81 3.38 

Water, g 1.65 4.90 1.69 

Sand reference, g 12.33 37.37 12.61 

Test duration, h 168 168 168 

 

Potential Phase 
Compositions 

A 
 

B 
 

 
C 
 

 
D 

 

 
E 
 

 
F 
 

 
G 
 

 
H 
 

I 
 

J 
 

%(C3S) 57 53 56 52 61   63  59 47 49 65  
%(C2S) 14 17 17 20  14  12  15 18 18  7 
%(C3A) 7 8 7 7  5 5   5 11 11 6  

%(C4AF) 12 12 11 11 13   12 12  8 8 9  
C3S + 4.75*C3A 91 89 88 85 85   87  83 99 101  94 

C4AF+2*C3A 26 28 25 25 23   22  22 30 30  21 
Fineness (Blaine)m²/kg 417 612 402 590 325 414 575 405 530 426 

Measured 7-day HOH, J/g 
(cal/g)                   

ASTM C1702 Isothermal 
conduction calorimetry 

(Internal mixing) 

348 
(83) 

387 
(93) 

332 
(79) 

356 
(85) 

296 
(71) 

322 
(77) 

371 
(89) 

386 
(92) 

406 
(97) 

344 
(82) 

Predicted 7-day HOH, J/g 
(cal/g) 

based on 
Equation (2.1)& 

24-72h data fitted 

340 
(81) 

390 
(93) 

326 
(78) 

354 
(85) 

283 
(68) 

307 
(73) 

384 
(92) 

401 
(96) 

408 
(98) 

347 
(83) 

Predicted 7 -day HOH, J/g 
(cal/g) 

based on 
Equation (2.1) & 
24-84h data fitted 

347 
(83) 

389 
(93) 

330 
(79) 

356 
(85) 

291 
(70) 

314 
(75) 

382 
(91) 

394 
(94) 

406 
(97) 

344 
(82) 

Measured 7day HOH, J/g 
(cal/g)                   

ASTM C186 Heat of 
Solution 

349   
(83) 

370   
(88) 

337   
(80) 

367   
(88) 

312   
(75) 

340   
(81) 

366   
(87) 

361   
(86) 

391   
(93) 

362  
(86) 
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The admixer and 20 ml glass vial, as shown in Figure 2.1, were used for the internal mixing 

procedure. Internal mixing was conducted by preconditioning the cement and distilled water at 

23±0.2°C. The specified mass of cement was weighed in the glass vial and later was attached to 

the bottom of the admixer. The admixer syringe was filled with the required mass of water and a 

small amount of vacuum grease was placed at the tip of the needle to avoid evaporation of water 

and reaction with cement in the vial. It is noteworthy that a small amount of air between the tip of 

the needle and the water in the syringe can successfully avoid the evaporation of water and 

undesired reaction with the cement. The prepared admixer was inserted into the calorimetry cell 

for 90 minutes to achieve baseline stabilization of ±2 µW. Afterwards, the TAMAIR Assistant 

software was set to record the heat flow at 10 second intervals, and the water was injected into the 

vial over the period of 10 seconds before 60 seconds of manual internal mixing. 

The external mixing procedure was conducted by preconditioning the cement and distilled 

water at 23±0.2 °C. The specified mass of cement and distilled water were weighed in two separate 

glass vials. At the time of mixing, the distilled water was added to the cement and manual mixing 

over the period of 45 seconds with a toothpick inside the vial followed. Afterwards, the toothpick 

was left in the vial, and the vial was immediately sealed and placed into the calorimetry cell. The 

data logging was initiated one minute before placing the vial into the calorimetry. The baseline 

stabilized at ±2 μW before logging. This method of external mixing has the advantage of taking 

less than one minute and has minimal thermal effect due to mixing and handling. It appeared that 

external mixing corrections, as outlined in ASTM C1702, can be avoided for both mixing 

&handling and lost HOH data at early ages. 

The isothermal conduction calorimetry used in this study has eight twin channels that 

partially share the same heat-sink; therefore, there is a possibility that thermal power in one channel 
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might affect the power in neighboring channels (crosstalk). This case may occur when two adjacent 

channels have a significant difference in thermal power or if a sample, with significantly different 

temperature than the calorimetry, is inserted into the calorimetry [13]. 

 

Figure 2.1 Admixer and vial for internal mixing (isothermal conduction calorimetry) 



27 
 

To minimize noise due to cross talk, only two out of the eight channels were simultaneously 

used, with the two active cells positioned diagonally to each other and all other sample cells 

charged with Ottawa sand. The w/c ratio was fixed at 0.5 for all samples. The sand reference mass 

had heat capacity matching the cement paste. The isothermal temperature used was 23 °C.  

Performance calibration was conducted in accordance with the manufacturer specifications [19]. 

The highest overall heat flow measured from the cells charged with sand in the period of seven 

days was used as a measure of the baseline level during the HOH test. The baseline level was used 

to assess the signal to baseline ratio at different measurement times. The baseline noise level was 

examined for conformance to the instrument stability criteria, as specified in ASTM C1702, for all 

the cells used for HOH measurements [16]. 

2.3 Results and Discussion 

2.3.1 Signal to Maximum Baseline Deviation Ratio 

Figure 2.2(a) shows the heat flow measured from the sample cell charged with sand that 

displayed the highest overall heat flow. This was taken as a measure of baseline deviation for the 

purpose of this study. Figure 2.2(b) also compares the signal from a 3.30 g cement sample relative 

to the signal from the sand sample (baseline deviation), plotted from four days (96 h) and onwards. 

The data displayed in Figure 2.2(a) indicate that, for a measurement age of up to seven days, the 

maximum baseline deviation was at 0.023 mW while the heat flow signal from the cement paste 

was an order of magnitude higher. This indicates that, for the current system, the signal strength is 

significantly higher than the maximum baseline deviation even at seven days of hydration. 

However, for longer hydration times, such as 28 days, that might not necessarily be the case. It is 

plausible that, rather than specifying the baseline noise level and drift as defined in ASTM C1702, 

it would be intuitive and practical to define a minimum signal to maximum baseline deviation ratio 
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of five in addition to specifying the baseline deviation limit of±20 μW to define the criteria for 

valid HOH measurement for a given system or instrument. A convenient way to define the baseline 

deviation would be to measure the signal for the period of seven days from an inert reference 

sample such as sand with the mass matching the heat capacity of the targeted sample and establish 

the maximum baseline deviation. 

2.3.2 Heat Flow and Heat of Hydration Data from Cement Samples 

Figures 2.3 & 2.4 present the HOH or the cumulative heat and heat flow over a period of 

seven days for the Cement A using internal and external mixing methods. The results indicate that 

the method of mixing (internal versus external) has an effect on the amount of heat measured by 

isothermal conduction calorimetry; however, differences might not be that significant, as seen in 

Figure 2.3 & 2.4 The internal mixing method registers the cement and water interaction instantly 

while external mixing, depending on the time of mixing, might result in missing the dissolution 

stage and most of the dormant stage of hydration. Internal mixing is expected to yield a more 

accurate measurement of the heat evolution initially (Figure 2.4(a)), since some heat is either lost 

or gained from the environment during the external mixing procedure. Furthermore, non-

isothermal disturbances are expected to occur during external mixing, which in turn would result 

in a longer time to reach isothermal condition in the sample and calorimetry. However, the external 

mixing procedure generates a higher total heat compared to internal mixing, supporting a concern 

that internal mixing may not result in as efficient mixing as is easily achieved with external mixing. 

The higher heat values captured for external mixing methods might also reflect differences in the 

mixing methodology and might not necessarily duplicate the actual concrete mixing methodology.  
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Figure 2.2 (a) Heat flow from sand sample, 0-7 days (b) Heat flow from sand sample compared 
to the heat flow from a 3.30 g Portland cement sample towards the end of the 7 days test period. 

 
2.3.3 Extrapolation of Total Heat After 24 to 84 Hours of Hydration   

All experimental HOH data measurements (isothermal conduction calorimetry) from 24 

hours up to 72 or 84 hours of hydration were fitted to the S-shaped analytical function presented 

in Equation (2.1). Fitting parameters for Equation (2.1) were obtained by using the Solver 

command, executable in Excel (2010) software.  The Microsoft Office Excel Solver tool uses the 

Generalized Reduced Gradient (GRG2) nonlinear optimization code [20]. The total heat was then 

extrapolated for up to seven days and was compared to the seven day HOH, experimentally 

measured by isothermal conduction calorimetry as shown in Figure 2.5, for Cement A. Table 2.4 

shows the measured and predicted seven day HOH of Cements A and C based on the internal 

mixing method (isothermal conduction calorimetry) in addition to HOH prediction results based 

on the external mixing method (isothermal conduction calorimetry) for cement A. The results 

indicate that the proposed equation could predict the seven day HOH of cement accurately for both 

internal and external mixing methods. It is further indicated that fitting the 24-84 hours 

experimental HOH data to the proposed equation can more accurately predict the seven day HOH 

than 24-72 hours data fitting. 
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Table 2.4 Measured and predicted 7 day heat of hydration by isothermal calorimeter 
 

Cement ID cement A    
internal mixing 

cement A 
external mixing 

cement C 
internal mixing 

Time at maximum heat flow, h 8.8 8.8 8.9 
Measured heat after 7 days, J/g 348 360 332 
Measured heat after 7 days, J/g 352 358 329 

Average 350 359 331 
Stdev (measured duplicate runs) 2.83 1.41 2.12 
Extrapolated from 24 h to 72 h 340 355 326 

Error, J/g -10 -4 -5 
Error, % -2.8 -1.1 -1.5 

Extrapolated from 24 h to 84 h 347 362 330 
Error, J/g -3 3 -1 
Error, % -0.8 0.8 -0.1 

 

 

Figure 2.3 (a) Heat of hydration of cement A (internal and external mixing), 
(b) - Heat flow of cement A (internal and external mixing) 
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Figure 2.4 (a&b) Heat of hydration for cement A, external vs. internal mixing 
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Figure 2.5 Measured and extrapolated 7 day heat of hydration of cement A 
 

To evaluate the hypothesis, eight industrial Portland cements (Labeled B&D-K) were 

selected and their HOH was measured using the internal mixing method (isothermal conduction 

calorimetry) as tabulated in Table 2.2(b). The measured and predicted (using Equation (2.1)) seven 

day HOH were compared to each other to determine the suitability of Equation (2.1) to predict the 

seven day HOH. Fitting parameters for Equation (2.1) (based on isothermal conduction 

calorimetry method measurements) for all the cements (A-J) are tabulated in Table 2.5.  

Table 2.5 S-shaped analytical function constants 
 

Cement ID Constants for data fitting 24-72 h Constants for data fitting 24-84 h 
C1 τ1 1 C1 τ1 1 

Cement A(Internal mixing) 409.0 13.3 0.66 454.1 15.0 0.54
Cement A(External mixing) 457.2 15.3 0.57 519.4 19.0 0.47
Cement B (Internal mixing) 485.1 11.4 0.56 478.9 11.2 0.58
Cement C (Internal mixing) 390.7 11.9 0.64 414.9 12.6 0.57
Cement D (Internal mixing) 457.1 10.3 0.49 470.1 10.8 0.47
Cement E (Internal mixing) 452.9 21.9 0.37 732.3 117.8 0.23
Cement F (Internal mixing) 377.1 9.8 0.55 441.1 12.4 0.41
Cement G (Internal mixing) 625.5 17.5 0.32 594.4 15.1 0.34
Cement H (Internal mixing) 440.4 17.9 1.06 423.1 17.7 1.17
Cement I (Internal mixing) 421.1 11.7 1.30 416.7 11.9 1.37
Cement J (Internal mixing) 376.5 12.5 0.96 369.1 12.6 1.02
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Figure 2.6 shows the difference between the measured HOH (internal mixing, isothermal 

conduction calorimetry) and the predicted HOH (Equation (2.1)) at seven days. The mean and 

standard deviation of errors were calculated as -0.8 and 10J/g (24-72 hours data fitted) and 0.5 and 

5.6J/g (24-84 hours data fitted), respectively.  

 

Figure 2.6 (a&b) - 7 Day heat of hydration difference “Predicted & Measured”  
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The results indicate that fitting 24-84 hours of experimental data measurements generates 

less difference between the predicted and actual HOH measurements for seven days. The 

difference between the predicted and measured seven day HOH ranges from -8 J/g to about 11 J/g 

resulting from the 24-84 hours experimental data fitted. To better analyze the data, the measured 

seven day HOH was plotted versus the predicted at seven days as shown in Figure 2.7. 

 

Figure 2.7 (a&b) Measured versus predicted 7 day heat of hydration of cements                        
(Internal mixing) 
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The results indicate that the relationship is linear with a high coefficient of determination 

(R2), exceeding 0.97 for both cases of 24-72 and 24-84 hours experimental data fitted. Comparing 

this value to values reported earlier in the literature, it appears that the proposed equation shows 

less random error than Bogue dependent relationships for the seven day HOH predictions. The line 

of equivalency indicates minimal bias especially for the predicted seven day HOH resulted from 

fitting the 24-84 hours experimental data.  

The confidence interval based on two sample t-test hypothesis are also calculated and 

shown in Figure 2.7. In general, the 95% confidence interval is dependent on the sample size 

incorporated into the calculation of means and standard deviations [21]. It is recognized that two 

data sets with the same means and standard deviations but different sample sizes shall create 

different confidence intervals. As a simple example, a data set with 10 pairs of determination 

sample size (measured and predicted seven day HOH) has a confidence interval about three times 

larger than a data set with 30 pairs of determination even if both data sets have similar means and 

standard deviations [21]. In this study, the confidence intervals on seven day HOH were calculated 

as ±36 J/g (24-72 hours experimental data fitted) and ±34 J/g (24-84 hours experimental data 

fitted). It is believed that the confidence intervals (Figure 2.7) are large as a result of small sample 

size (10 pairs of determination for each data set).  

Statistically, a smaller sample size shall result in a larger confidence interval.  This measure 

cannot accurately evaluate the proposed equation due to the small sample size but can be used as 

a suitable means in future works where data sets with larger sample size is implemented to validate 

the model. It is understood that the comparison of different models can be obtained by determining 

the confidence interval for each model with the same sample size as used for all the models; then, 

the model with the smallest confidence interval is the most suitable for prediction purposes.  
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Considering the mean and standard deviation of errors for the predicted seven day HOH 

resulted from fitting the 24-72 and 24-84 hours measured HOH data, and smaller confidence 

interval of ±34 J/g (24-84 hours data fitted) compared to ±36 J/g (24-72 hours data fitted), seven 

day HOH can be predicted with better accuracy if 24-84 hours experimental data is fitted to 

Equation (2.1). 

Due to the low systematic bias and random error observed on working with 10 cements, it 

is proposed that a larger matrix of cements be examined to further verify the usefulness of the 

proposed method for specification consideration. It is expected that if the sample size is increased 

to 30 cements, with the same means and standard deviations as the sample size of 10 cements, the 

confidence limits of approximately ±12 J/g resulted from 24-72 hours fitted data and ±11 for 24-

84 hours fitted data can be observed for seven day HOH. 

2.4 Conclusions 

A careful study on the HOH of Portland cement using isothermal conduction calorimetry 

indicates that the total heat generated at seven days can be predicted based on heat measurements 

for only 84 hours and using an S-curve function, with acceptable accuracy when compared to the 

heat measured using isothermal conduction calorimetry (ASTM C1702). The authors suggest that 

a wider sample matrix (larger sample size) be examined to validate the proposed function as an 

alternative method of predicting the HOH of Portland cement at seven days. It is also suggested 

that the proposed function be examined for its suitability in predicting the 28 day HOH of Portland 

cement.  
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CHAPTER 32 : PREDICTION OF ONE, THREE AND SEVEN DAY HEAT OF  
 

HYDRATION OF PORTLAND CEMENT 
 

3.1 Introduction 

Heat of hydration is a property of Portland cement and a direct result of chemical reactions 

between cement and water. The amount of heat released is dependent upon the cement 

composition, curing temperature, water to cement ratio, and cement fineness.  The phases mainly 

responsible for heat generation are tricalcium silicate (C3S), dicalcium silicate (C2S), tricalcium 

aluminate (C3A) and tetracalcium aluminoferrite [1-4]. 

 High temperature resulting from heat of hydration (thereon referred to as HOH) of cement 

can affect the hydration process, and consequently the kinetics of development of the mechanical 

properties of concrete [5]. While the current research correlates the heat of hydration with the 

cement fineness and mineralogical composition, others related the same property to the strength 

development in cement paste. Kumar et al. correlated the HOH with the compressive strength of 

the cement paste and developed a linear relationship for the strength prediction based on the heat 

release [6]. One of the main reasons triggering the interest in HOH of cement is its implication in 

thermal cracking in concrete. The high temperature gradient between the inner core and the outer 

surface of a concrete element is known to result in large tensile stresses that may exceed tensile 

strength, thus leading to early–age thermal cracking in mass concrete [7]. Cement fineness is a 

                                                            
2 Note. “Prediction of One, Three & Seven Day Heat of Hydration of Portland Cement,” A. Sedaghat, N. Shanahan 

and A. Zayed, 2014, Journal of Materials in Civil Engineering, p. 04014257, Copyright © 2014 by ASCE copyright 
Clearance Centre. Inc. Reprinted with permission. 
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critical component affecting the HOH of Portland cement; the primary reason for contractors to 

resort to finer cement is its high early strength and faster construction operations [8]. Higher 

cement fineness provides higher surface area for cement to react with water, therefore resulting in 

an increase in rate of heat liberation at early ages and higher internal temperature in the concrete 

elements [9]. Additionally, small particles can serve as nucleation sites for precipitation of 

hydration products. This effect has also been illustrated with the addition of mineral admixtures, 

such as fine limestone, to Portland cements. Chemical composition and interfacial properties of 

the mineral admixture may determine its tendency to serve as an efficient nucleant and/or 

participation of its dissociated ions in chemical reaction with the calcium silicate hydrate product 

[10]. Kumar et al. noted that smaller particles have higher nucleation rates possibly due to 

experiencing higher grinding action and consequent highly damaged surface [11]. Adjustment of 

cement or mineral fineness interground or blended together may provide a solution to maintain the 

early age properties similar to Portland cement while providing the desired strength and reducing 

the clinker factor of Portland cements [12].  

ASTM C1702, Isothermal conduction calorimetry, [13] and ASTM 186, heat of solution 

calorimetry, [14] are two available methods under ASTM standard specifications to measure the 

HOH of cements. Heat of solution calorimetry measures the temperature rise of the acidic solution 

resulting from the decomposition of the anhydrous and partially hydrated cement separately. The 

difference between the heat of solution of anhydrous and partially hydrated cement can be 

calculated as the heat evolved during the hydration period. Considering the experimental 

circumstances, this method is labor intensive and requires application of hazardous acidic 

substances [15]. 
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Isothermal conduction calorimetry has the ability to record the heat flow resulting from the 

cement hydration, immediately from the initiation of reaction of water with cement. The 

calorimetry provides the user the ability to study the hydration stages from the recorded heat flow 

curve at the desired hydration age. Isothermal conduction calorimtery maintains the bath 

temperature constant, therefore, avoiding the effect of temperature change on HOH development 

mechanism, contrary to the systems in adiabatic conditions in which the temperature change due 

to cement hydration process may affect the HOH development mechanism. Sample preparation 

and operation of the instrument are fairly easy, though it requires some basic training. The 

cumulative heat at any age can be calculated by the integration of the area under the heat flow 

curve versus time [16-19]. 

Effect of cement phase composition on HOH has been extensively studied by several 

researchers. Woods, et al. [20] developed equations predicting the HOH of cements at the ages of 

3, 7, 28, 90 and 180 days based on the measured HOH of 13 cements using solution calorimetry. 

The HOH equations were defined as a linear regression of major phases of C3S, C3A, C2S, and 

C4AF. The fineness of cements used to calibrate the equations falls within the range of 1390 to 

1670 cm2/g determined by a sedimentation device. The study concluded that fineness of cement 

does not have substantial effect on the generated heat. Good linear correlations were indicated 

between the HOH at 3 days, 180 days, and 1 year ages and the amount of C3S+2.1C3A, separately 

[21]. Comparison of measured and predicted HOH in terms of oxide composition for four 

commercial cements indicates that the equations can overestimate the HOH by 11 Cal/g at the ages 

of 3, 7 and 28 days and by 5 Cal/g at the age of 180 days [20]. 

Lerch et al.’s [22] work on HOH shows a significant effect of cement fineness on HOH at 

the ages of one, three, and seven days while it is less drastic at the ages of 28 days and up. 
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Verbeck, et al. [23] established relationships between the HOH of cements and their 

composition at several ages ranging from three days up to 6.5 years. The least squares method was 

implemented to fit the experimental data to the proposed equations assuming linear and 

independent relationship between cement phases of C3S, C3A, C2S, C4AF, SO3 and HOH. 

Significant discrepancy between measured and predicted heat by his methods can be observed for 

type III and type IIIA cements at ages of three and seven days. Although the relationships were 

established based on the main phases of cements affecting the heat at varied ages, the fineness was 

not incorporated into the proposed equations as a significant factor affecting the HOH. 

Poole [24] developed several equations based on the values of HOH of individual 

compounds as outlined in the Lea’s chemistry of cement [1], data provided by CCRL and US 

Army corps of engineers, and the data taken from the Verbeck and Foster’s [23] research study. 

One of the equations predicting the seven day HOH was developed as a linear function of C3S, 

C3A, C2S, C4AF and Blaine fineness based on the data taken from the Verbeck and Foster’s 

research study. It should be noted that these cements have variable phase compositions with the 

Blaine fineness in the range of 285 to 490 m2/kg. Poole’s analysis indicates approximately 0.4 J/g 

increase/decrease in seven day HOH per unit m2/kg change (increase/decrease) of Blaine fineness. 

Poole concluded that Blaine fineness has an effect on seven day HOH, but a relatively large change 

in cement fineness is required to make  a change in the seven day HOH of cements. Bentz [25] 

studied the change in seven day HOH of a cement with three finenesses of 302, 387 and 613 m2/kg. 

He reported 0.46 J/g of change in HOH when the Blaine fineness changed from 302 to 387 m2/kg, 

however this change was 0.07 J/g when the Blaine fineness changed from 387 to 613 m2/kg. The 

change in seven day HOH, on average, occurred as 0.18 J/g when the Blaine fineness changed 

from 302 to 613 m2/kg. It is understood from these research studies that the effect of Blaine 
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fineness on seven day HOH is strongly dependent on the phase composition of the cements studied 

as well as the range of the Blaine fineness in which the cements HOH are examined. 

Bentz et al. [26] conducted several HOH experiments on type I/II Portland cement using 

isothermal conduction calorimetry at w/c’ s of 0.325, 0.35, 0.4 and 0.45. It can be observed that 

the pastes prepared at w/c of 0.35, 0.4 and 0.425 show similar HOH at one day while this heat is 

10% less for the mix prepared at w/c of 0.325. HOH of cement pastes prepared at w/c of 0.4 shows 

1.7% and 2.9 % slightly less HOH, respectively at three and seven days, relative to the pastes 

prepared at w/c of 0.425. The HOH of pastes prepared at w/c of 0.35 and 0.325 relative to the paste 

prepared at w/c of 0.425 shows respectively, 3.4% and 16.9% less HOH at three days and 

respectively 7.4% and 23.5% less HOH at seven days. As it is evident from the findings, HOH of 

cement paste is drastically influenced at w/c of 0.35 while this impact is gradually fading out as 

the w/c approaches 0.425. It is well established in the literature that the cement pastes prepared at 

lower w/c < 0.42 may undergo self-desiccation process since not sufficient water is available for 

continuation of hydration process [27]. Bentz et al.’s findings are consistent with the results 

provided by Pane et al. in regards to impact of w/c on HOH of cement paste [28]. 

This research aims to establish equations predicting one, three and seven day HOH of 

Portland cements using cement phase composition and fineness at constant water to cement ratio 

of 0.5 and constant isothermal bath temperature of 23 °C. Blaine fineness and particle size 

distribution of candidate cements (as-received and ground cements (1) through (4)) was measured, 

and their suitability as a measure of cement fineness to develop the HOH equations was studied. 

Validation of the proposed equations was conducted by comparing the HOH of eight as received 

Portland cements (cements A through H) measured by isothermal conduction calorimetry with the 

calculated heat using the proposed equations. The suitability of the proposed equations to predict 
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the HOH was examined using statistical analysis and by establishment of paired comparison t-test 

confidence intervals on the predicted and measured HOH. The proposed equations can be used to 

identify Portland cements with high HOH which have the potential to cause thermal cracking in 

mass concrete elements. Also the proposed equations can be implemented to correlate the HOH 

with other properties of Portland cement for the prediction of physical and chemical properties and 

quality control of manufactured Portland cement and concrete [29].  

3.2 Experimental 

Four ASTM Portland cements (cements (1) through (4)) with different mineralogical 

composition were selected. The cements were ground separately with ethanol 200 proof absolute 

99.5% pure in an air tight jar using McCrone micronizing mill [30] for 1.5, 3, 6 and 9 minutes to 

obtain varied finenesses. Ethanol was chosen as a slurry liquid to lessen the effect of grinding heat 

on temperature sensitive phases, including gypsum. Each grinding mix contained six grams of 

cement and ten grams of ethanol for optimum grinding efficiency. Wet grinding assists in 

homogeneity of the ground cement as well as reducing the oxidation and deformation of crystal 

lattice structure [30-31]. After the grinding operation, the slurry mix was vacuum filtered with an 

ultrafine Durapore membrane filter with 0.45µm mesh, and a Buchner funnel was used to extract 

the ethanol from the mix [32]. The ground cements were then oven dried at 43 °C for 90 minutes 

to remove as much ethanol as possible from the mix and then desiccated for 24 hours. It was 

understood that 43oC oven drying of ground cement does not have phase shifting effect, due to 

temperature, on gypsum since conversion from gypsum to hemihydrate or anhydrate occurs at 

higher temperatures [33]. At the time of removal of ground cements from desiccators, they were 

manually ground with spatula to a homogenous soft powder and stored in dry watertight plastic 

containers until testing. 
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 Blaine fineness of cements was measured by an air permeability apparatus conforming to 

ASTM C-204 [34]. Particle size distribution of cements was determined using a Horiba laser 

scattering particle size analyzer (LA-950) in triplicate runs on all the samples [35-36]. Describing 

the laser diffraction method, when light hits a cement particle, the diffracted light is generated 

from the particle. Based on the light scattering theory, the diameter of cement particle is 

determined based on the scattered light strength while the particle’s circumference length and the 

incoming light’s wavelength are compared. Particle size diameter parameter α (α=πD/λ) and 

particle refractive index dictate the scattered light strength. Before conducting the measurements, 

HORIBA instrument was adjusted to obtain 5000 data measurements per second with 15 iterations. 

Refractive index of 1.7-1.0i was specified for the diffraction measurements of cement particles.  

This value was obtained from the “Certification of SRM 114q: Part II (Particle size distribution), 

NIST Special Publication 260-166” conforming to the HORIBA LA-950 user’s manual. The 

particle size distribution measurements were conducted in automatic mode and on dry cement 

powder, implementing a small nozzle at 0.3 (MPa) of air pressure. Maximum standard deviation 

(on cumulative volume (%)) on difference of average of three runs and each run of laser diffraction  

measurement for each sample was calculated as 0.6% indicating very insignificant deviation and 

strong repeatability of the measurements.   

A TAMAIR isothermal conduction calorimetry manufactured by TA instruments was 

implemented to measure the HOH of cements in accordance with ASTM C-1702, method A, 

internal mixing, [13] at 23 ºC isothermal bath temperature. Internal mixing provides the user the 

ability to record the HOH of cements immediately from the time of mixing of water with cement. 

Internal mixing was conducted by 10 seconds of water injection into the admixer ampoule 

followed by 60 seconds of manual constant uniform internal mixing (13 full turns) using the 
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designated admixer. Further detailed information regarding this methodology is available in [2]. 

Room temperature was maintained close to the calorimetry bath temperature to avoid any 

interruption of heat exchange between the water in the admixer syringe and the surrounding 

environment at the time of lowering the admixer into calorimetry. Water to cement ratio of 0.5 

was selected to avoid self-desiccation of cement paste [27]. All the HOH measurements were 

performed in duplicate runs to ensure the precision of results. It is noteworthy that all the duplicate 

runs have less than 1% heat difference from the average of the two runs at one, three and seven 

day hydration ages. HOH measurements are interestingly repeatable and heat flow curve generated 

from the first and second runs, for each specimen, overlap throughout the complete hydration 

period with the maximum 30 (µW/g) heat flow deviation from each other at any hydration age 

(with the exception of the first 15-20 minutes of initial stage of hydration). It should be noted that 

shape of the heat flow curve at the initial stage of hydration may be affected by the speed of internal 

mixing using the designated admixer, though the cumulative heat shall merge for both first and 

second runs after approximately an hour from the hydration process initiation. Figure 3.1 clearly 

shows the repeatability of the HOH measurements as indicated by transparent overlapping of the 

first and second heat flow runs for two specimens used in this study.   

Mineralogy of cements was studied using X-ray diffraction.  The diffractometer used in 

this study was a PANalytical Cubix Pro coupled with PANalytical X’Pert Industry and HighScore 

Plus softwares for crystalline phase analysis. Softwares implement Rietveld refinement simulation 

for phase analysis and quantification. The instrument was equipped with accelerating detector, 

capable of collecting a suitable X-ray pattern scan for quantification purposes, in less than six 

minutes. The X-ray tube was operated at a current of 40 mA and a voltage of 45 KV. The 2θ	scan 

range was set for 5-60° using a step size of 0.012°. The X-ray pattern of each sample was obtained 
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in triplicate runs. For cements (1) through (4), the quantity of each crystal phase was determined 

as the average of the Rietveld refinement result of three runs of as received cements and 12 runs 

of ground cements, individually, for each cement. For cements A through H, the quantity of each 

crystal phase was determined as the average of the Rietveld refinement result of three runs of as 

received cement, individually, for each cement. 

 

Figure 3.1 Evaluation of the repeatability of the heat flow measurements 

3.3 Results and Discussion 

3.3.1 X-ray Diffraction and Phase Quantification of Cements (1) Through (4) 

X-ray patterns of cements (1) through (4) were measured and their crystal phase 

quantification (using Rietveld refinement simulation) were determined in our research lab. The X-

ray patterns are shown in Figure 3.2 Rietveld refinement simulation allows direct quantification of 
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Portland cement crystalline phases. Improved repeatability and reproducibility of the results can 

be observed from the method and prior research [37]. This method uses full profile fitting 

simulation to calculate the quantity of each phase associated with the peaks at specific 2θ locations. 

It is noteworthy that implementation of automatic softwares (PANalytical X’Pert Industry and 

HighScore Plus) eases the use of the Rietveld method by iteratively comparing the X-ray pattern 

of the Portland cement sample to the X-ray pattern of each reference phase in the data base (ICDD 

or ICSD) [38].  

 

Figure 3.2 X-ray patterns and Rietveld refinement quantification of as received and ground 
cements, (a) cement (1), (b) cement (2), (c) cement (3), (d) cement (4) 
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Figure 3.2 (Continued) 
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To quantify the crystal phases for each cement, 12 crystal phases of Alite (C3S), Belite 

(C2S), Ferrite (C4AF), Tricalcium aluminate (C3A), Periclase (MgO), Arcanite (K2SO4), Free lime 

(CaO), Portlandite (Ca(OH)2), Calcite (CaCO3), Gypsum (CaSO4·2H2O), Hemihydrate 

(CaSO4·0.5H2O) and Anhydrite (CaSO4) were specified. The peaks corresponding to major 

crystalline phases are labeled and the quantities are indicated accordingly. The quantities of major 

phases are ranging from 58.7- 68.9% (for C3S), 3.1- 10.3% (for C3A), 8.2- 19% (for C2S) and 6.9- 

13.3% (for C4AF) between cements (1) through (4) as outlined in Table 2.1. 

Table 3.1 Major phase composition of cements (1) through (4) 
 

Cement ID C₃S, % C₃A, % C₂S, % C₄AF, %
Cement (1) 60.6 6.5 14.2 11.8 
Cement (2) 58.7 10.3 13.7 6.9 
Cement (3) 68.9 5.0 8.2 7.9 
Cement (4) 59.8 3.1 19.0 13.3 

 

3.3.2 Particle Size Distribution of As-received and Ground Cements (1) Through (4) 

Particles size distribution of as-received and ground cements (1) through (4) used to 

establish the proposed HOH equations are shown in Figure 3.3 and summarized in Table 3.2. 

 The laser scattering particle size analyzer, implemented in this study, determines the 

cement mean particle size based on the Equation (3.1) [35]. 

Mean diameter = 



q(J)

X(J)) q(J).(
                                                                  Eq. (3.1) 

J: Particle diameter division number  
q (J): Frequency distribution value (%) 
X (J): Jth particle diameter range’s representative diameter (μm) 
 

Mean particle size for cement (1) is changing from 12.90µm to 5.53µm, for cement (2) 

from 14.35µm to 5.21µm, for cement (3) from 15µm to 3.82µm and for cement (4) from 13.15µm 

to 6.17µm. The span indicating the width of the particle size distribution curve can be calculated 
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based on the Equation (3.2) [36]. 

Span = 
50D

10D90D 
                                                                                  Eq. (3.2) 

D90, D50 and D10 refer to the diameters which 90%, 50% and 10% of the cement bulk (by volume), 

respectively, is smaller than that. 

 

Figure 3.3 Particle size distribution of as received and ground cements, 
(a) cement (1), (b) cement (2), (c) cement (3), (d) cement (4) 

 
As summarized in Table 3.2 and shown in Figure 3.3, the method of grinding implemented 

for this study narrowed the particle size distribution curve; therefore, the range of cements’ particle 

size becomes closer to the mean. It is observed that grinding has a distinguishing effect on D90 for 

cements ground for nine minutes as D90 appeared as 9.23μm, 8.92μm and 10.43μm for cements 

(1), (2) and (4), respectively, while it is 5.59μm for cement (3). Cement (3) contains the highest 

C3S amount of 68.9% and low C2S and C4AF amounts of 8.2% and 7.9%, respectively among all 
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the ground cements. Also, D10 for cements (2) and (3) ground for nine minutes is reported as 1.7µm 

and 1.8µm, while it is 2.25µm and 2.44µm for cements (1) and (4), respectively. Cements (2) and 

(3) have lower sum amount of C2S and C4AF compared to cements (1) and (4). It is understood 

that grindability of cement is related to packing density of each individual phase. C3S crystals show 

elongated habit; and are less densely packed compared to C2S crystals. Brittle index calculated 

from the measurements of the impression made in each phase by Vickers microindenter conducted 

by David Lawrence [39] indicates the highest brittle index of 4.7 for C3S followed by 2.9 for C3A 

and 2 for C2S and C4AF. Brittle index is defined as the ratio of elastic strain energy to irreversible 

strain energy, corresponding to the peak point of the σ-ϵ curve [40]. It is perceived that cements 

with high amount of C3S and low amounts of C2S and C4AF have higher grindability potential. 

Table 3.2 Particle size distribution of as-received and ground cements (1) through (4) 
 

ID Mean(µm) Median(µm) Span D10 (µm) D50 (µm) D90 (µm) 

Cement (1), as received 12.90 10.45 2.03 3.61 10.45 24.86 
Cement(1), 1.5mins ground 9.42 8.77 1.40 3.74 8.77 16.00 
Cement (1), 3mins ground 8.34 7.78 1.38 3.40 7.78 14.11 
Cement (1), 6mins ground 6.39 6.00 1.33 2.71 6.00 10.69 
Cement (1), 9mins ground 5.53 5.23 1.33 2.25 5.23 9.23 

Cement (2), as received 14.35 10.78 2.46 3.21 10.78 29.74 
Cement (2), 1.5mins ground 9.86 9.08 1.45 3.79 9.08 16.92 
Cement (2), 3mins ground 7.85 7.31 1.39 3.13 7.31 13.27 
Cement (2), 6mins ground 5.98 5.66 1.35 2.38 5.66 10.02 
Cement (2), 9mins ground 5.21 4.90 1.47 1.70 4.90 8.92 

Cement (3), as received 15.00 11.11 2.68 2.43 11.11 32.21 
Cement (3), 1.5mins ground 9.75 8.94 1.47 3.68 8.94 16.79 
Cement (3), 3mins ground 7.45 6.99 1.33 3.20 6.99 12.46 
Cement (3), 6mins ground 5.14 14.93 1.44 1.59 14.93 8.70 
Cement (3), 9mins ground 3.82 3.97 0.95 1.80 3.97 5.59 

Cement (4), as received 13.15 10.67 2.22 2.63 10.67 26.30 
Cement (4), 1.5mins ground 11.97 10.25 1.21 4.60 10.25 16.96 
Cement (4), 3mins ground 8.65 7.90 1.81 1.76 7.90 16.08 
Cement (4), 6mins ground 7.53 7.00 1.41 2.98 7.00 12.83 
Cement (4), 9mins ground 6.17 5.80 1.38 2.44 5.80 10.43 
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3.3.3 Development of Proposed Heat of Hydration Equations 

TAMAIR isothermal conduction calorimetry was implemented to measure the HOH of 

cements at w/c=0.5 and isothermal bath temperature of 23 °C. The heat flow pattern obtained from 

the calorimetry can be used to study the hydration stages of the Portland cement. Integration of the 

area under the heat flow curve can be specified as the cumulative heat at varying hydration ages 

and used to develop the equations predicting the HOH at one, three and seven day hydration ages.  

Initially, the effect of cement fineness on HOH was studied by measuring the Blaine 

fineness of cements (1) through (4) in the as received and ground forms in accordance with ASTM 

C204 specification. The HOH of cements (1) through (4) (in as received and ground forms) is 

plotted versus the Blaine fineness and is shown in Figure 3.4 and summarized in Table 3.3 Each 

line in the figure depicts different grinds of the same cement while the cement composition 

remained constant. Coefficients of determination (R2) based on linear regression theory are shown, 

for each cement, in the figure. Coefficients of determination (R2) are in the range of [0.75-0.94], 

[0.69-0.86], [0.64-0.83] for one, three and seven day hydration ages, respectively. Based on the 

(R2) provided, it is unlikely to find strong linear correlation between the HOH and the Blaine 

fineness. 

The cement mean particle also has the potential to correlate with the HOH to develop the 

equations predicting the HOH. In prior research, mean particle size was noted as an approximate 

average of D10, D50, and D90 [41]. To examine the implementation of mean particle size as a 

measure of cement fineness, the determined HOH of as received and ground cements (1) through 

(4) at one, three and seven day hydration ages is plotted versus mean particle size and is shown in 

Figure 3.5. Each line in the figure depicts the different grinds of the same cement while cement 

composition remained constant. Coefficients of determination (R2), based on the linear regression 
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theory, are shown in the figure for each cement. As it is evident from the figure, R2 ranges from 

0.92-0.99 for all the cements (1) through (4) at one, three and seven day hydration ages. The slope 

of the line is steeper for one day HOH relative to three and seven days indicating that cement 

fineness has more significant effect on one day HOH compared to three and seven days. It can be 

concluded from the calculated R2 that, in order to develop the equations, mean particle size is a 

better parameter compared to Blaine fineness to correlate with the HOH. Accordingly, equation 

(3.3) can be offered as a general linear regression equation predicting one, three and seven day 

HOH of Portland cements. 

Cumulative HOH (at 1, 3 or 7 days) = (HOH) Intercept + Slope *(mean particle size)     Eq. (3.3) 

 

Figure 3.4 Cement heat of hydration versus Blaine fineness,                                                      
(a) cement (1), (b) cement (2), (c) cement (3), (d) cement (4) 
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Table 3.3 Measured Blaine fineness, mean particle size, one; three and seven day heat of 
hydration for as-received and ground cements (1) through (4) 

 

ID 
Blaine 
fineness 
(m²/kg) 

Mean 
particle 

size 
(µm) 

Measured 
one day 

HOH (J/g) 

Measured 
three day 

HOH (J/g) 

 

Measured 
seven day 

HOH 
(J/g) 

Cement (1), as received 417 12.90 207 298 350 
Cement(1), 1.5mins 479 9.42 262 356 397 

Cement (1), 3mins 497 8.34 264 359 403 
Cement (1), 6mins 628 6.39 290 384 420 
Cement (1), 9mins 703 5.53 297 385 415 

Cement (2), as received 405 14.35 216 350 386 
Cement (2), 1.5mins 444 9.86 273 383 407 
Cement (2), 3mins 542 7.85 320 402 423 
Cement (2), 6mins 648 5.98 349 413 432 
Cement (2), 9mins 816 5.21 350 415 435 

Cement (3), as received 426 15 217 306 340 
Cement (3), 1.5mins 463 9.75 273 367 390 
Cement (3), 3mins 550 7.45 306 387 409 
Cement (3), 6mins 675 5.14 341 401 419 
Cement (3), 9mins 876 3.82 362 417 436 

Cement (4), as received 414 13.15 204 274 326 
Cement (4), 1.5mins 392 11.97 207 295 346 
Cement (4), 3mins 573 8.61 250 328 367 
Cement (4), 6mins 555 7.53 267 348 377 
Cement (4), 9mins 638 6.17 279 360 385 

 
The hydration of Portland cement consists of a series of reactions between cement phases 

and water. The HOH of cements is mainly controlled by the four major phases of C₃S, C₃A, C₂S 

and C₄AF [1]. As indicated in Figure 3.5, HOH of a specific cement is a linear function of mean 

particle size at ages of one, three or seven days, individually; also the change in slope and (HOH) 

intercept, for each cement, is the reflection of cement mineralogy. In this regard, the (HOH) 

intercept and slope for each cement can be defined as a linear regression of C₃S, C₃A, C₂S and 

C₄AF phases, for each hydration ages of one, three and seven days , as indicated in Equations (3.4) 
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and (3.5). In this regard, Solver command in Microsoft Excel 2010 and also the least squares 

method can be used to determine and optimize the coefficients (A1 through D1& A2 through D2) 

based on the actual intercepts and slopes results (as shown in Figure 3.5)  for cements (1) through 

(4) at three hydration ages of one, three and seven days. Solver command in Microsoft Excel 

functions based on the Generalized Reduced Gradient (GRG2) Algorithm for optimizing nonlinear 

problems code. 

           
 

        Figure 3.5 Cement heat of hydration versus mean particle size,                                               
  (a) cement (1), (b) cement (2), (c) cement (3), (d) cement (4) 

 
(HOH) Intercept= A1 (C₃S) +B1 (C₃A) +C1 (C₂S) +D1 (C₄AF)                                         .Eq. (3.4) 

Slope= A2 (C₃S) + B2 (C₃A) + C2 (C₂S) + D2 (C₄AF)                                                          Eq. (3.5) 
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 Coefficients of determination (R2) for actual versus calculated (based on optimized 

coefficients) intercepts and slopes, for cements (1) through (4) as indicated in Table 3.4, show an 

interesting fit (R2> 0.98) for cements (1) through (4) for hydration ages of three and seven days. 

 After determining the coefficients of A1 through D1& A2 through D2, Equations (3.4) and 

(3.5) can be inputted into Equation (3.3), to develop the HOH Equations of (3.6), (3.7) and (3.8) 

for one, three and seven day hydration ages. 

1Day HOH (J/g) = (476 -13.35MPS) C₃S+ (1290 -58.41MPS) C₃A+ (99 -6.94MPS) C₂S                                     

                    Eq. (3.6) 

3Day HOH (J/g) = (521 -6.84MPS) C₃S+ (933 -0.55MPS) C₃A+ (127 +20.04MPS) C₂S+ (534 -

88.55MPS) C₄AF                     Eq. (3.7) 

7Day HOH (J/g) = (517 -6.53MPS) C₃S+ (1099 -11.73MPS) C₃A+ (35.18MPS) C2S+ (722 -

78.59MPS) C₄AF                                    Eq. (3.8) 

Mean particle size should be noted as μm and the quantity of each phase must be inputted as a 

fraction. Validation of the proposed Equations (3.6), (3.7) and (3.8) is discussed in the following 

section. 

Table 3.4 Coefficients of determination (R2) for actual versus calculated intercepts and slopes for 
cements (1) through (4) 

Coefficients of determinations (R2) for actual 
versus calculated intercepts and slopes 

  Intercept Slope 
One day heat 0.88 0.85 
Three day 1 1 
Seven day 0.98 1 

 
Equations (3.6), (3.7) and (3.8) can be combined into a more general expression as presented in 

Equation (3.9). To develop Equation (3.9), each coefficient in Equations (3.6), (3.7) and (3.8) was 

plotted as a function of time and the corresponding second order polynomial equations was fitted 
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into the data points to define each coefficient as a function of time (day), subsequently, each 

coefficient was placed in the general format of Equation (3.6), (3.7) or (3.8) to develop Equation 

(3.9). 

HOHD = [(-3.92(D2) + 38.17(D) + 441.75) - (0.53(D2)-5.37(D) + 18.19)MPS]C3S + [(36.67(D2) - 
325.17(D) + 1578.5) - (5.29(D2) - 50.08(D) + 103.2)MPS]C3A + [(-7.63(D2) + 44.5(D) + 62.13) 
- (1.62(D2) - 19.96(D) + 25.28)MPS]C2S + [(-36.67(D2) + 413(D) - 377) - (-7.79(D2) + 75.45(D) 
- 67.66)MPS]C4AF                              Eq. (3.9) 

where “D” corresponds to the hydration age (1, 3 or 7 days) 
 
3.3.4 Validation of Proposed Heat of Hydration Equations 

Validation of the proposed Equations (3.6), (3.7) and (3.8) is conducted by comparing the 

measured HOH of eight as received commercial Portland cements (cements A through H) with the 

predicted heat by the proposed Equations (3.6), (3.7) and (3.8). The Blaine fineness, mean particle 

size, mineralogical composition and HOH of the cements were determined using the same 

experimental procedures and instruments used to characterize cements (1) through (4). The 

pertaining data are summarized in Table 3.5.  

Table 3.5 Measured Blaine fineness, mean particle size, X-ray Rietveld phase quantification, 
one; three and seven day heat of hydration of as received cements A through H 

 

 

Cement ID 

  

 

Blaine 
fineness
(m²/kg) 

 

Mean 
particle 

size 
(µm) 

 

C₃S 

 

C₃A 

 

C₂S 

 

C₄AF 

 

Measured 
one day 

HOH (J/g) 

 

Measured 
three day 

HOH  
(J/g) 

 

Measured 
seven day 

HOH  
(J/g) 

 

Expression % 

Cement A 612 10.05 61.7 6.9 14.0 12.7 252 341 385 

Cement B 530 10.27 58.8 11.2 13.3 5.9 286 383 407 

Cement C 575 8.65 58.6 2.9 20.1 13.4 252 329 368 

Cement D 494 10.41 61.9 5.2 15.8 9.6 252 342 384 

Cement E 389 14.45 57.4 4.5 11.4 13.2 177 234 278 

Cement F 392 13.01 61.3 6.1 11.3 10.4 211 297 345 

Cement G 414 13.69 68.3 4.3 8.9 9.6 206 303 343 

Cement H 405 15.59 63.5 5.6 13.7 12.6 189 270 328 
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The paired-comparison t-test hypothesis [42] was implemented to determine the 95% 

confidence interval on predicted (by Equations (3.6) through (3.8)) and measured HOH of cements 

A through H as outlined in Table 3.6 The difference between predicted and measured HOH of 

cements A through H, at hydration ages of one, three and seven days, is shown in Figure 3.6.  

Table 3.6 Statistical analysis on cements A through H for evaluation of proposed                                     
equations (3.6) through (3.8) 

 

Hydration 
age 

Average of 
“predicted 

minus 
measured” 
heat (J/g) 

Standard 
Deviation of 
“predicted 

minus 
measured” heat 

(J/g) 

(R2) of 
“predicted 

versus 
measured” 
heat(J/g) 

Paired 
comparison 
t-test lower 
confidence 

limit 

Paired 
comparison 
t-test upper 
confidence 

limit 

 One day 3 9 0.95 -5 10 
Three 1 3 1 -2 4 
Seven 1 6 0.98 -4 6 

 

 

Figure 3.6 Predicted and measured heat of hydration difference for as received cements A 
through H, using equations (3.6) through (3.8) 
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The proposed Equation (3.6) “one day HOH prediction”, Equation (3.7) “three day HOH 

prediction” and Equation (3.8) “seven day HOH prediction”, overestimate the HOH, on average, 

by +3, +1, +1 J/g, respectively. The standard deviation of “predicted minus measured heat” at 

hydration ages of one, three and seven days are calculated as 9, 3 and 6 J/g, respectively.  

 The 95% confidence interval on predicted and measured HOH were calculated as [-5, 10], 

[-2, 4] and [-4, 6] for hydration ages of one, three and seven days, respectively. It is understood 

that the smaller 95% confidnce interval shows the higher accuracy of the equation to predict the 

HOH [2, 42].  

 It appears that Equation (3.7) can more accurately predict the HOH (at three day hydration 

age), as it has smaller confidence interval, smaller standard deviation of “predicted minus 

measured heat” compared to Equations (3.6) and (3.8) implemented to predict the HOH at one and 

seven day hydration ages, respectively. 

 It is concluded that all the three proposed Equations (3.6), (3.7) and (3.8) show good 

accuracy to predict the HOH  at hydration ages of one, three and seven days, while Equation (3.7) 

occurs to be a better predictor of HOH relative to the other two proposed equations.  

3.3.5 Evaluation of the Equations Predicting the Seven Day HOH Proposed by the Authors  
 

 of This Paper and Also, Available in the Literature 
 

This section will discuss the equations developed by the authors of this paper and also by 

other researchers to predict the seven day HOH of Portland cements. Per ASTM standard 

specifications, ASTM C150 [43] and ASTM C1600 [44] have set limits per optional physical 

requirements on seven day HOH of cements while ASTM C595 [45] and ASTM C1157 [46] have 

set limits per physical requirements on seven day HOH of cements. ASTM standard specifications 

assigned the [14] as the procedure to measure the seven day HOH of Portland cement for standard 
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purposes. Following this statement, several researchers attempted to predict the seven day HOH 

of Portland cement based on the cement composition, cement fineness and/or physical properties 

of cement paste or mortar.  

Poole developed Equation (3.10) based on the HOH of individual compounds published in 

“Lea’s chemistry of cement” [24, 47]. Equation (3.10) consists of the four major phases of C3S, 

C3A, C2S and C4AF as the main contributors to the seven day HOH of cement. This equation does 

not include the effect of cement fineness as a variable affecting the seven day HOH of cements.  

Seven day HOH (J/g) = (15.55) C₃A + (2.21) C₃S + (0.42) C₂S + (5.82) C4AF              Eq. (3.10) 

Poole (Poole 2009 [24]) developed Equation (3.11) from a stepwise linear regression 

calculation on the seven day HOH, measured by heat of solution calorimetry [14], of 38 cements 

data that he obtained from the CCRL (16 cements) and U.S. Army Corps of Engineers Research 

and Development Center (22 cements). He noted that the variables were incorporated into the 

equation as long as they were statistically significant at a probability of 0.05. He concluded that 

only C3S and C3A were found to be statistically significant. This equation was the basis to establish 

the maximum limit of 100 on the quantity of (C3A + 4.75 C3A) in ASTM C150 to maintain the 

seven day HOH (measured based on ASTM C186) of type II (MH) and type II (MH)A under 335 

(J/g). The range of the Blaine fineness of the cements used to calibrate the equation falls within 

2640- 4360 cm2/g. The quantities of the major phases of cements (potential phase composition) 

were determined using Bogue equations [43]. 

Seven day HOH (J/g) = (133.9) + (9.36) C₃A + (2.13) C₃S                                              Eq. (3.11) 

Poole [24] developed Equation (3.12) from the linear regression analysis on seven day 

HOH data obtained from the Verbeck and Foster’s research study [23] The seven day HOH was 

determined using the heat of solution calorimetry. Water to cement ratio of 0.4 was chosen to 

prepare the cement pastes. The Blaine fineness of the cements used to calibrate the equation falls 
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within the range of 2850-4900 cm2/g. Poole incorporated Blaine fineness as a variable into the 

Equation (3.12) as he found it statistically significant varibale affecting the seven day HOH of 

cement. 

Seven day HOH = 1.98 + (11.44) C₃A + (1.53) C₃S + (0.4) Blaine fineness                   Eq. (3.12) 

 Poole’s equation indicates approximately 0.4 J/g increase/decrease in seven day HOH per 

unit m2/kg change (increase/decrease) of Blaine fineness. Mathematical analysis conducted by the 

authors of this paper on four cements with varied finenesses and mineralogical composition (HOH 

and Blaine fineness of the cements are outlined in Table 3.3) indicates approximately 0.23, 0.12, 

0.21 and 0.26 J/g change in seven day HOH, respectively for cements one through four, per unit 

m2/kg change of Blaine fineness. As it is evident from the results, change in seven day HOH per 

unit change of Blaine fineness is significant and influenced by the phase composition of the studied 

cements. The results indicate that change in seven day HOH per unit change in Blaine fineness is 

less significant for cements with higher amount of C3A (cement 2) and is substantial for cements 

with lower amount of C3A (cement 4).  

Taylor [48] developed Equation (3.13) from the linear regression analysis on seven day 

HOH and potential phase composition (determined based on the Bogue equations) of several 

cements. He did not mention the quantity of the phases of the cements and also their finenesses 

used to calibrate his equation. He noted that the seven day HOH of the cement pastes were 

measured using heat of solution calorimetry and at water to cement ratio of 0.4.  

Seven day HOH = (1556) C3A + (222) C3S + (42) C2S + (494) C4AF                            Eq. (3.13) 

The suitability of the proposed Equations (3.8), (3.10), (3.11), (3.12) and (3.13) to predict 

the seven day HOH of Portland cements was assessed by inputting the mineralogy and fineness of 

the cements A through H, as outlined in Table 3.5, in each equation and comparing the predicted 

HOH with the measured HOH of cements A through H. The difference between the predicted (by 
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the proposed equations) and measured seven day HOH of Portland cements of A through H is 

shown in Figure 3.7.  

 

Figure 3.7 Predicted and measured seven day heat of hydration difference for as-received 
cements A through H, using equations (3.8) through (3.13) 

 
For each proposed equation, predicting the seven day HOH, 95% confidence interval 

(based on the paired-comparison t-test hypothesis), [2, 42]) was determined on predicted and 

measured seven day HOH of cements A through H, as outlined in Table 3.7 Paired comparison t-

test greatly improves the precision by making comparisons within matched pairs (blocks of 

measured and predicted HOH) of experimental cements. This method eliminates the error 

associated with the differences of phase composition and fineness between cements, as an 

additional source of variability. The paired comparison t-test confidence interval can be calculated 

using the following equation: 

 d ± t0.025,n . Sd/Sqrt (n)                                                                         Eq. (3.14) 
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d: Average of the difference between predicted and measured HOH of studied cements 

t0.025,n: t-statistics corresponding to 95% confidence interval & (n) studied cements  

Sd: Standard deviation on difference between predicted and measured HOH of studied cements     

The average and standard deviation of “predicted minus measured seven day HOH” of 

cements A through H were calculated for each proposed equation and are outlined in Table 3.7. It 

appears that Equation (3.8) overstimate the seven day HOH, on average, by +1 J/g while Equations 

(3.10), (3.11), (3.12) and (3.13) underpredict it by -59, -35, -1, and -68 J/g, respectively. The 

standard deviations of the “predicted minus measured seven day HOH” were calcualted as 6, 37, 

34, 25 and 36 J/g for Equations (3.8), (3.10), (3.11), (3.12) and (3.13), respectively.  

Table 3.7 Statistical analysis on cements A through H for evaluation of proposed                                     
equations (3.8) through (3.13) 

 

Equation # 

Average of 
“predicted 

minus 
measured” 
heat (J/g) 

Standard 
Deviation of 
“predicted 

minus 
measured” heat 

(J/g) 

(R2) of 
“predicted 

versus 
measured” 
heat(J/g) 

Paired 
comparison 
t-test lower 
confidence 

limit 

Paired 
comparison 
t-test upper 
confidence 

limit 

Eq. (3.8) 1 6 0.98 -4 6 
Eq. (3.10) -59 37 0.22 -90 -28 
Eq. (3.11) -35 34 0.30 -64 -7 
Eq. (3.12) -1 25 0.74 -22 19 
Eq. (3.13) -68 36 0.25 -98 -38 

 
It appears that Equation (3.8) shows the smallest 95% confidence interval of [-4, 6] on 

predicted and measured seven day HOH of cements compared to Equations (3.10), (3.11), (3.12), 

and (3.13) with the confidence intervals of [-90, -28], [-64, -7], [-22, 19] and [-98, -38], 

respectively. It can be concluded that the following reasons may result in the Equation (3.8) to be 

a better predictor of seven HOH of Portland cements relative to other Equations (3.10), (3.11), 

(3.12) and (3.13). 
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 Equation (3.8) was developed based on the mineralogical composition (quantitative X-ray 

diffraction (QXRD), direct method) of the Portland cements while Equations (3.10), (3.11), 

(3.12) and (3.13) were established based on the potential phase composition (using Bogue 

equations) of the cements. It is well established in the literature that the Bogue equations may 

cause erroneous results when quantifying the major phases in Portland cement [32, 48]. 

 Cement mean particle size is incorporated into Equation (3.8) as a measure of cement fineness 

while Equations (3.10), (3.11) and (3.13) do not contain any measure of cement fineness as a 

variable factor affecting the seven day HOH of Portland cements. 

 HOH of Portland cements (1) through (4) (used to calibrate Equations (3.6), (3.7) and (3.8)) 

and also HOH of cements A through H were determined at water to cement ratio of 0.5 while 

the HOH of cements used to calibrate Equations (3.10) through (3.13) were determined at 

water to cement ratio of 0.4. Higher water to cement ratio may provide more available water 

for wetting and hydration of Portland cement, though the change of water to cement ratio from 

0.4 to 0.5 may not significantly affect the HOH of cement paste at seven day hydration age 

[26]. 

 HOH measurements using isothermal conduction calorimtery shows better precision compared 

to solution calorimetry for both within laboratory and between laboratory HOH results [13]. 

3.4 Conclusions and Proposed Future Work 

This paper addressed the development of empirical equations predicting the heat of 

hydration of Portland cement at one, three and seven day hydration ages. The main results are 

summarized as follows:  

 The proposed equations can be used to identify Portland cements with the potential to cause 

thermal cracking in mass concrete elements. Also, the equations can be used to correlate the 
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heat of hydration with other properties of Portland cement for quality control and prediction of 

physical and chemical properties of manufactured Portland cement and concrete. 

 Cement fineness plays critical role in the heat of hydration of Portland cements. 

 Mean particle size is a better measure of cement fineness relative to Blaine fineness to correlate 

with the heat of hydration of Portland cement to establish equations predicting the heat at one, 

three and seven day hydration ages.  

 Heat of hydration of Portland cement at one, three and seven day hydration ages is a linear 

function of cement mean particle size when the composition is maintained constant at constant 

isothermal bath temperature of 23 °C and water to cement ratio of 0.5. 

 Equations predicting one, three and seven day heat of hydration of Portland cement can be 

established based on the Portland cement major phases of C₃S, C₃A, C₂S, C₄AF and cement 

mean particle size. 

 The proposed Equations (3.6), (3.7) and (3.8) can predict the heat of hydration at one, three 

and seven day hydration ages with good accuracy for Portland cements for which major phases 

(C3S, C2S, C3A, C4AF) and mean particle size fall within the range of cements (1) through (4) 

used to calibrate the proposed equations.   

Proposed future work is outlined in the following. 

 The HOH equations developed in this paper can be modified to reflect the effect of 

combination of (w/c), temperature, cement fineness, cement composition and pozzolanic 

cementitious materials content on HOH. The following general equation can be proposed.  

HOH (X, Y, Z) = A.X + B.Y + C.Z 

X: (w/c), Y= Temperature (°C), Z= Cement fineness (m2/kg or mean particle size) 
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A= A1. (C3S) + B1. (C3A) + C1. (C2S) + D1. (C4AF) + E1. (CaO (fly ash or slag))+ F1. (SiO2 (fly ash or slag)) 

+ G1. (Silica fume) 

B= A2. (C3S) + B2. (C3A) + C2. (C2S) + D2. (C4AF) + E2. (CaO (fly ash or slag))+ F2. (SiO2 (fly ash or slag)) 

+ G2. (Silica fume) 

C= A3. (C3S) + B3. (C3A) + C3. (C2S) + D3. (C4AF) + E3. (CaO (fly ash or slag))+ F3. (SiO2 (fly ash or slag)) 

+ G3. (Silica fume) 

Quantity of each phase must be inputted as a fraction. 

 Significant number of HOH experiments need to be conducted to measure the HOH at 

varied “w/c= 0.3, 0.4 and 0.5”, “temperature= 23, 30 and 40 ºC”, “Cement fineness= at least 4 

different cement finenesses”, “four Portland cements covering high and low quantities of major 

phases of C3S, C3A, C2S, C4AF”, “Pozzolanic materials (slag, fly ash)) = pozzolanic materials with 

high and low CaO and SiO2 content”, “Silica Fume= high and low quantities”. For this instance, 

the number of HOH experiments in duplicate runs will be: N= 2 x 3 x 3 x 4 x 10 = 720.  Solver 

command in Microsoft Excel can be implemented to optimize the coefficients of A1 through G1, 

A2 through G2 and A3 through G3 based on the known cement composition, cement fineness, (w/c), 

temperature, pozzolanic cementitious materials content.  

 It is important to note that development of equations capable of predicting the HOH at 28 

days is a possible option which requires extension of the HOH measurements up to 28 days.  

  



68 
 

3.5 References 

[1] Odler, Ivan. "Hydration, setting and hardening of Portland cement." Lea’s Chemistry of 
Cement and Concrete 4 (1998): 241-297. 

 
[2] Zayed, A., Ahmadreza Sedaghat, and Paul Sandberg. "Measurement and prediction of heat 

of hydration of portland cement using isothermal conduction calorimetry." Journal of 
Testing and Evaluation 41.6 (2013): 1-8. 

 
[3] Sedaghat, Ahmadreza, et al. "Investigation of physical properties of graphene-cement 

composite for structural applications." Open Journal of Composite Materials 2014 (2014). 
 
[4] Zayed, Abla, et al. "Effects of portland cement particle size on heat of hydration." (2014). 
 
[5] Kaszyńska, Maria. "Early age properties of high-strength/high-performance concrete." 

Cement and Concrete Composites 24.2 (2002): 253-261. 
 
[6] Kumar, Aditya, et al. "Simple methods to estimate the influence of limestone fillers on 

reaction and property evolution in cementitious materials." Cement and Concrete 
Composites 42 (2013): 20-29. 

 
[7] Schindler, Anton Karel. "Concrete hydration, temperature development, and setting at 

early-ages." (2011). 
 
[8] Bentz, Dale P., Gaurav Sant, and Jason Weiss. "Early-age properties of cement-based 

materials. I: Influence of cement fineness." Journal of Materials in Civil Engineering 20.7 
(2008): 502-508. 

 
[9] Portland Cement Association. "Concrete Technology Today, vol. 18." (1997). 
 
[10] Oey, Tandré, et al. "The filler effect: the influence of filler content and surface area on 

cementitious reaction rates." Journal of the American Ceramic Society 96.6 (2013): 1978-
1990. 

 
[11] Kumar, Aditya, Shashank Bishnoi, and Karen L. Scrivener. "Modelling early age hydration 

kinetics of alite." Cement and Concrete Research 42.7 (2012): 903-918. 
 
[12] Kumar, Aditya, et al. "A comparison of intergrinding and blending limestone on reaction 

and strength evolution in cementitious materials." Construction and Building Materials 43 
(2013): 428-435. 

 
[13] ASTM C1702-09a. (2010). “Standard test method for measurement of heat of hydration of 

hydraulic cementitious materials using isothermal conduction calorimetry.” ASTM 
International, West Conshohocken, PA, USA. 

 
[14] ASTM C186-05. (2010). “Standard test method for heat of hydration of hydraulic   

cement.” ASTM International, West Conshohocken, PA, USA. 



69 
 

[15] Poole, Toy. Revision of test methods and specifications for controlling heat of hydration 
in hydraulic cement. No. PCA R&D Serial No. 2007. Portland Cement Association, (2007). 

 
[16] Wadsö, Ingemar. "Isothermal microcalorimetry near ambient temperature: an overview 

and discussion." Thermochimica Acta 294.1 (1997): 1-11. 
 
[17] Kumar, Mukesh, Sanjay K. Singh, and N. P. Singh. "Heat evolution during the hydration 

of Portland cement in the presence of fly ash, calcium hydroxide and super plasticizer." 
Thermochimica Acta 548 (2012): 27-32. 

 
[18] Xu, Qinwu, et al. "Modeling hydration properties and temperature developments of early-

age concrete pavement using calorimetry tests." Thermochimica Acta 512.1 (2011): 76-85. 
 
[19] Killoh, D. C. "A comparison of conduction calorimeter and heat of solution methods for 

measurement of the heat of hydration of cement." Advances in Cement Research 1.3 
(1988): 180-186. 

 
[20] Woods, Hubert, Harold H. Steinour, and Howard R. Starke. "Effect of composition of 

Portland cement on heat evolved during hardening." Industrial & Engineering Chemistry 
24.11 (1932): 1207-1214. 

 
[21] Woods, H., H. H. Steinour, and H. R. Starke. "Heat evolved by cement in relation to 

strength." Engineering News-Record 1933 (1933): 431-433. 
 
[22] Lerch, Wm, and Robert Herman Bogue. “The heat of hydration of Portland cement pastes.” 

Portland Cement Association Fellowship, (1934). 
 
[23] Verbeck, George J., and Cecil W. Foster. "Long-time study of cement performance in 

concrete: chapter 6. The heat of hydration of the cements." Proceeding of American Society 
of Testing and Materials. Vol. 50. (1950). 

 
[24] Poole, Toy S. "Predicting seven-day heat of hydration of hydraulic cement from standard 

test properties." Journal of ASTM International 6.6 (2009): 1-10. 
 
[25] Bentz, Dale P. "Blending different fineness cements to engineer the properties of cement-

based materials." Magazine of Concrete Research 62.5 (2010): 327-338. 
 
[26] Bentz, Dale P., Max A. Peltz, and John Winpigler. "Early-age properties of cement-based 

materials. II: Influence of water-to-cement ratio." Journal of Materials in Civil 
Engineering 21.9 (2009): 512-517. 

 
[27] Mindess, S., J. F. Young, and D. Darwin. "Concrete, 2nd Edition Prentice Hall." 

Englewood Cliffs, NJ (2002). 
 



70 
 

[28] Pane, Ivindra, and Will Hansen. "Investigation of blended cement hydration by isothermal 
calorimetry and thermal analysis." Cement and Concrete Research 35.6 (2005): 1155-
1164. 

 
[29] Ali, M. Memari, A. Kremer Paul, and A. Behr Richard. "Relating compressive strength to 

heat release in mortars." Advances in Civil Engineering Materials 1.1 (2012): 1-14. 
 
[30] "The McCrone Sample preparation kit." McCrone Microscope & Accessories. Web. 24 

Feb. (2014). 
 
[31] Hurst, Vernon J., Paul A. Schroeder, and Robert W. Styron. "Accurate quantification of 

quartz and other phases by powder X-ray diffractometry." Analytica Chimica Acta 337.3 
(1997): 233-252. 

 
[32] Stutzman, Paul E. “Guide for X-ray powder diffraction analysis of Portland cement and 

clinker.” US Department of Commerce, Technology Administration, National Institute of 
Standards and Technology, Office of Applied Economics, Building and Fire Research 
Laboratory, (1996). 

 
[33] Hudson-Lamb, D. L., C. A. Strydom, and J. H. Potgieter. "The thermal dehydration of 

natural gypsum and pure calcium sulphate dihydrate (gypsum)." Thermochimica Acta 282 
(1996): 483-492. 

 
[34] ASTM C204-07. (2010). “Standard test methods for fineness of hydraulic cement by air-

permeability apparatus.” ASTM International, West Conshohocken, PA. 
 
[35] Horiba Instruments Incorporated, “Laser Scattering Particle Size Distribution Analyzer   

LA 950 Instruction Manual.” <www.horibalab.com> (accessed 02/24/ 2014). 
 
[36] Horiba Scientific, “A guidebook to particle size analysis.”  

<http://www.horiba.com/fileadmin/uploads/Scientific/Documents/PSA/PSA_Guidebook.
pdf> (accessed 02/24/2014). 

 
[37] Le Saoût, Gwenn, Vanessa Kocaba, and Karen Scrivener. "Application of the Rietveld 

method to the analysis of anhydrous cement." Cement and Concrete Research 41.2 (2011): 
133-148. 

 
[38] Scrivener, K. L., et al. "Quantitative study of Portland cement hydration by X-ray 

diffraction/Rietveld analysis and independent methods." Cement and Concrete Research 
34.9 (2004): 1541-1547. 

 
[39] Lawrence, C. David. "The constitution and specification of Portland cements." Leas’s 

Chemistry of Cement and Concrete, 4th ed. Edited by PC Hewlett. Butterworth-
Heinemann, UK (1998): 131-193. 

 



71 
 

[40] Brandt, Andrzej M. Cement-based composites: materials, mechanical properties and 
performance. CRC Press, (2009).  

 
[41] Azari, Haleh. Statistical modeling of cement heat of hydration using phase and fineness 

variables. National Cooperative Highway Research Program, Transportation Research 
Board of the National Academies, (2010). 

 
[42] Montgomery, Douglas C. “Design and analysis of experiments.” John Wiley & Sons, 

(2008).  
 
[43] ASTM C150/C150M. (2009). “Standard specification for Portland cement.” ASTM 

International, West Conshohocken, PA. USA. 
 
[44] ASTM C1600/C1600M-08. (2008). “Standard specification for rapid hardening hydraulic 

cement.” ASTM International, West Conshohocken, PA. USA. 
 
[45] ASTM C595/C595M-10. (2010). “Standard specification for blended hydraulic cements.” 

ASTM International, West Conshohocken, PA. USA. 
 
[46] ASTM C1157/C1157-10. (2010). “Standard performance specification for hydraulic 

cement.” West Conshohocken,” ASTM International, PA. USA. 
 
[47] Lea, F. M. "The Chemistry of cement and concrete.” chemical Publishing Co." Inc., New 

York (1971). 
 
[48] Taylor, Harry FW. Cement chemistry. Thomas Telford, (1997).  

  



72 
 

 
 
 
 
 

CHAPTER 43: INVESTIGATION OF PHYSICAL PROPERTIES OF GRAPHENE- 
 

CEMENT COMPOSITE FOR STRUCTURAL APPLICATIONS 
 

4.1 Introduction  

Concrete is a composite material of aggregates and binders where binding materials are 

primarily a combination of portland cement, pozzolanic materials and water [1, 2]. Hydration of 

cement generates heat due to the exothermic nature of the hydration process. The phases mainly 

responsible for heat generation during the hydration process are tricalcium silicate (C3S), 

dicalcium silicate (C2S), tricalcium aluminate (C3A) and tetracalcium aluminoferrite (C4AF) [2, 

3]. The hydration process of portland cement depends on several factors or parameters such as 

cement mineralogical composition, particle size distribution, water to cement ratio and curing 

temperature. Due to the exothermic nature of the reaction combined with poor heat dissipation in 

massive concrete elements, the hydration process results in a temperature gradient between the 

inner core and the outer surface of the element [4]. The high temperature gradient is known to 

result in large tensile stresses that may exceed the tensile strength of concrete thus leading to 

thermal cracking. The temperature gradient minimization in an element could be achieved through 

lowering the temperature rise due to hydration and/or improving heat dissipation by increasing 

thermal conductivity of concrete. Improving the paste thermal conductivity reduces the 

temperature gradient in the concrete element, thus reducing the probability of concrete thermal 

cracking [5]. 

                                                            
3 Note. “Investigation of Physical Properties of Graphene-Cement Composite for Structural Applications” A. 
Sedaghat, M.K. Ram, A. Zayed, R. Kamal, N. Shanahan, 2014, Open Journal of Composite Materials, Vol.4 
No.1(2014), Article ID:41685, DOI:10.4236/ojcm.2014.41002. 
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Recent research indicates the possibility of using nanomaterials (carbon nanotube, 

graphene, titanium oxide, nanosilica, and nanoalumina) in civil infrastructure applications; 

however, costly process and low production of such materials may limit such applications [6]. 

Incorporation of nanomaterials changes the macroscopic properties of the main binder; namely, 

Portland cement paste [7]. Introduction of nanomaterials in cement paste reduces the porosity and 

rate of hydration leading to the development of stronger and more durable products [7]. The 

structure of the hydrated gel is also affected by the introduction of nanomaterials at a nano-level 

[8, 9]. The long term creep properties of cement paste are dependent on the density of calcium 

silicate hydrate which is the main hydration product. Introduction of nanomaterials in concrete 

using an electromutagenic process modifies the microstructure of high performance concrete 

without changing the dimensions or appearance [10]. High surface area of the nanomaterials makes 

them efficient in controlling the propagation of microcracks in cementitious composite materials. 

Defects present in the lattice structure of the carbon nanotubes, provide potential sites for 

formation of carboxyl (–COOH) and hydroxyl (–OH) species and creation of bonding to the 

hydrated cement [11]. It is demonstrated that graphene-oxide (GO) nanosheets may reduce the 

brittleness and enhance toughness, tensile and flexural strength of the hydrated cement composite. 

GO can regulate cement hydration and distinctly affect the mechanical properties of hydrated 

cement composite [12].  

In addition to increasing strength, preventing cracking and reducing porosity, 

nanomaterials are useful as anti-corrosive agents in reinforced concrete. Recently, it has been 

shown that titanium addition to cementitious binders results in triggering self-cleaning process in 

cement pastes [13]. Carbon nanotubes, nanoflakes or carbon block additions were used in 

electromagnetic shielding applications [14]. Carbon nanotubes, with  extremely high aspect ratios 
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(length to diameter ratio), are distributed in a much finer scale relative to other common fibers 

resulting in efficient bridging in hydrated cement composite and reduction of microcrack 

propagation [15]. The functionalized carbon nanotubes (F-CNT), showing hydrophilic behavior, 

can interfere with the cement hydration mechanism and may improve or reduce the performance 

of hydrated cement. The extent of this process is dependent upon the amount of F-CNT 

incorporated into the composite mix [16].   

Nanomaterials such as nanoalumina are found to improve the flexural strength of concrete 

[17, 18]. Titanium and nanosilica enhance abrasion resistance and flexural strength [19, 20]. 

Nanosilica has been effective in promoting early precipitation of calcium silicate hydrate thus 

shortening the induction period [21, 22]. Incorporation of nanomaterials affects the cement   

hydration process and the rate of formation of hydration products enhancing the quality 

performance of concrete. 

Graphene, a 2-D π-conjugation, has several extraordinary physical properties such as high 

thermal conductivity, high electrical conductivity, high surface area (2630 m2/g), high elastic 

modulus and ampi-polar electric field effect [23- 25]. Graphene forms a colloidal mixture and has 

also been used in making nanocomposites with conducting polymer for supercapacitor applications 

[26- 28]. In the current study, graphene was introduced as a partial replacement of Portland cement 

at various ratios to understand its effect on the heat dissipation in cementitious paste during the 

cement hydration. Thermal diffusivity and electrical conductivity of the hydrated cement paste 

incorporating different quantities of graphene were measured to understand thermal and electrical 

properties of the composite. SEM and X-ray diffraction methods were used to understand the 

physical and structural properties of the graphene-cement composite. 
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4.2 Experimental 

4.2.1 As-received Materials  

A commercially available portland cement and graphene platelets of 110x110x0.12 nm 

(Angstrom Materials,  N008-100-N) were used in this study. All other chemicals and materials 

were used as purchased without any modifications.  

4.2.2 Composite Materials Preparation  

Hydrated graphene-cement mixes were prepared using a commercial mixer (Speedmixer 

DAC 150.1 FVZ) with constant water to solid ratio of 0.5 and at ambient   temperature of 23±2 

ºC. Sufficient workability of the mix could be obtained at a water to solid ratio of 0.5. The 

composite was mixed for 3 minutes in the Speedmixer operated at 3500 RPM. The mixes were 

poured into small containers and wrapped with plastic tape to avoid evaporation of water and 

desiccation. The mixes were cured for 44 hours from the mixing time. This hydration time was 

selected as it corresponds to the approximate average time at which the concrete element 

experiences a large temperature gradient between its inner core and outer surface [5].  

4.2.3 Materials Characterization  

The main constituent responsible for temperature rise in a concrete element is Portland 

cement due to the exothermic nature of its reaction with water. In defining temperature rise in mass 

elements, equally important to the ability to dissipate the heat is the amount of heat generated by 

Portland cement hydration. Cement fineness and mineralogy are the main contributors to the total 

heat generated through the cement hydration process. In conducting the current research, it is 

therefore important to characterize the as-received cement properties that are of significance to 

temperature rise; namely, cement fineness and mineralogy. Mineralogical composition of Portland 

cement was studied using X-ray diffraction. The diffractometer used in this study was a 
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PANalytical Cubix Pro coupled with HighScore Plus software for crystalline phase analysis. The 

software uses Rietveld analysis for phase quantification. The tube was operated at a current of 40 

mA and a voltage of 45 KV. The scan range was set for 2θ of 8-70° using a step size of 0.014° 

with the time per step of 10 seconds.  For hydrated composites and powdered specimens, rutile 

was added as an internal standard at 10 % by weight of the sample for qualitative comparison. 

Additionally, heat of hydration measurements on Portland cement was conducted using TAMAIR 

isothermal conduction calorimeter instrument with 8-twin channels at a bath temperature of 23°C.  

The test was conducted in accordance with the internal mixing procedure as outlined in the ASTM 

C1702 [29]. A Horiba LA-950 laser scattering particle size analyzer was used to assess the particle 

size distribution of the as- received cement.  

The microstructure of the hydrated graphene-cement composites was examined using 

Hitachi SU-70 scanning electron microscope. For electrical conductivity measurements, 

cylindrical pellets of ground hydrated graphene-cement composites were prepared with a constant 

mass of 0.63 grams, a circular diameter of 13.07 mm and a thickness of 2.6±0.1mm. The pellets 

were oven dried at 105oC to eliminate the contribution of evaporable water to electrical 

conductivity. The pellets were gradually loaded up to 10 kips in a period of 3 minutes then 

unloaded for another 3 minutes before taking measurements. The electrical conductivity of the 

pellets was measured by setting them between two metal plates. The current was measured at 

different voltages using a Keithley electrometer 2400. The conductivity was calculated based on 

the current, voltage and the dimensions of the pellet samples.  

In examining the effectiveness of graphene to improve concrete heat dissipation, thermal 

diffusivity was also measured. Hydrated graphene-cement composite specimens with thickness of 

1.5±.05 mm and diameter of 10±0.1 mm were prepared and cured for 44 hours. Thermal diffusivity 
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was determined using Linseis (c) XFA500 instrument conforming to ASTM E-1461, DIN 30905 

and DIN EN 821 specifications. The instrument provides results with ±5% accuracy for most 

homogenous materials tested based on the flash method procedure [30]. 

 Figure 4.1 reveals the morphology of hydrated graphene-portland cement and possible 

nanocomposite structure using SEM technique. The emphasis is given to how the graphene is 

attached to the main Portland cement hydration products such as calcium silicate hydrate and 

calcium hydroxide. 

 
 

Figure 4.1 Schematic of hydrated graphene-cement composite and possible nanocomposite 
structure 
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4.3 Results and Discussion 

4.3.1 Cement Characterization 

The X-ray diffraction pattern of the as-received cement is presented in Figure 4.2. Rietveld 

analysis indicates that the amounts of the main crystalline phases are: alite=59.7%, belite=12.6%, 

tricalcium aluminate=11.2%, tetracalcium alumino-ferrite=6.0%, gypsum=3.6%, calcite=2.3%, 

periclase=1.7% and arkanite=1.6%. The amount of tricalcium aluminate (C3A) present in this 

cement is high and it is therefore expected that this cement would generate higher heat of hydration 

compared to moderate-heat cements. ASTM C-150 [31] sets a maximum of 8% on C3A for 

moderate-heat Portland cements. It is therefore anticipated that a concrete element incorporating 

this cement could generate a higher temperature gradient unless there is significant improvement 

in heat dissipation to counteract the effect of higher heat generation.  

 
Figure 4.2 Mineralogical analysis of as-received cement using XRD 

 



79 
 

The particle size distribution analysis presented in Figure 4.3 indicates that the cement has 

a mean, median, mode and standard deviation of 10.27µm, 9.08µm, 10.82µm and 6.97µm 

respectively, with 70.5% of the as-received cement particles laying within one standard deviation 

of the reported mean. The reported value of the mean is the equivalent spherical diameter of the 

cement particles measured on volume basis. It is noteworthy that advanced Horiba hardware and 

software do not require normal or Rosin-Rammler [32] distribution assumptions to establish the 

particle size distribution curve. 

 
Figure 4.3 Particle size distribution of as-received cement 

 
 Figure 4.4 shows the total heat generated at seven days of hydration for Portland cement 

paste to be 406 J/g. The data indicate that more than 75% of the seven-day heat of hydration is 

generated during the first 48 hours. This implies that the potential for temperature rise is more 

important during the first few days. It also indicates the significance of increasing thermal 

diffusivity during the first few days to reduce the cracking potential of a massive concrete element. 



80 
 

 
Figure 4.4 Cement paste (a) total heat & (b) heat flow 

 
4.3.2 X-ray Diffraction and Rietveld Analysis 

X-ray diffraction patterns of cement and graphene-cement composites are presented in 

Figure 4.5 for hydrated and anhydrous specimens. Rutile was added to the specimens as an internal 

standard at a 10% by weight of the solids. Figure 4.5(a) shows the XRD patterns of anhydrous 

graphene-cement composites and cement powder. The main diffraction peak for graphene occurs 

at a diffraction angle of 26.56°. The intensity ratio of graphene to titanium oxide (2θ=27.45°) 

increases with the increase of graphene content in the composite specimen. A hump can be 
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observed at 2θ of 42°-52° and is more prominent at 10% graphene content while absent in the 

cement powder specimen with no graphene. Figure 4.5(b) for hydrated samples shows fewer and 

shorter peaks between 15° to 30° due to the chemical reaction of water with cement phases and 

formation of poorly crystalline calcium silicate hydrate gel in addition to other hydration phases 

such as calcium hydroxide and ettringite [1]. The characteristic peak of Ca(OH)2 at 18° is also 

clearly visible. The presence of a sharp peak of graphene from (002) plane, due to incremental 

increase of graphene in hydrated graphene-cement composite, is clearly shown at 2θ=26.56°. 

4.3.3 Temperature Treatment of Hydrated Graphene-Cement Composites 

The effect of temperature on the hydrated graphene-cement samples is shown in Figure 

4.6. Mixes of different ratios of graphene to cement, hydrated for 44 hours, were treated at varying 

temperatures of 23, 100, 400, and 600 to 750 °C. The presence of graphene in composite was 

studied by capturing the images of the mix at different temperatures. Figure 4.6 (A-D) shows the 

composites containing 0%, 1%, 5%, 10% graphene at 23oC. Figure 4.6 (E-H) shows no apparent 

difference in composites containing 0%, 1%, 5%, 10% graphene heated at 100oC. The varying 

color intensity in the pictures at different ratios of graphene is due to the incremental increase of 

carbon material in the composites. Presence of water in the graphene-cement mixes at 23 °C is 

reflected in the images as extra transparency compared to other mixes heated at higher 

temperatures. Figure 4.6 (I-L) shows the images of same composition of graphene-cement heated 

at 400 °C. The smooth structure observed in the images is probably due to the evaporation of 

capillary pore water and decomposition of calcium silicate hydrate in the mixes. The mixes heated 

beyond 400 ºC are shown in Figure 4.6 (M-T). Interestingly, the graphene has been found to 

oxidize when heated to 600 and 750 °C. Also, calcium hydroxide decomposes in the temperature 

range of 400 – 500 °C.  



82 
 

 
Figure 4.5 XRD patterns of cement & graphene-cement composites (a) anhydrous & (b) hydrated 
 
 It appears that the elemental metallic oxides in cement act as catalysts contributing to 

graphene oxidation regardless of the percentage of graphene present in the cement based 

composites. The hydration process may cause temperature gradient of 30 to 90 ̊ C in massive 
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concrete elements [5]. In this study, the hydrated graphene cement composite was examined at 

higher temperatures to investigate the physical changes that may occur in the composite in the 

event that the concrete element is exposed to external high temperatures (including fire). 

4.3.4 Morphological Properties of Composite Materials in Hydration 

The SEM image of the hydrated cement is shown in Figure 4.7 (A-C). The structure of the 

hydrated cement shows the formation of the needle-like ettringite and the sheet-like habit of 

calcium hydroxide (Ca(OH)2) . Figure 4.7 (D-F) shows a mix of 1% graphene and 99% cement in 

the hydrated form. The structure of the 1% graphene and 99% cement mix shown in Figure 4.7 

(D-F) is found to be different from the hydrated cement samples. Figure 4.7 (G-I) showing the 

hydrated sample of 5% graphene and 95% cement mix is more compact, with less needle-like 

formations, grown in the hydrated samples. The increase of graphene may decrease the porosity 

of the hydrated product as the graphene nanoparticles fill the micro-size capillary pores. It is also 

possible that graphene has an effect on the morphology of the needle-shaped ettringite. Figure 4.7 

(J-L) depicts images of the hydrated 10% graphene and 90% cement mix which reveal no growth 

of needle-shaped structure, while the compact structure is predominant. Drastic reduction of 

porosity is anticipated for such a composite. 

4.3.5 Electrical Conductivity Properties of Composite Materials in Hydration          

Figure 4.8 and Table 4.1 show the effect of graphene content on the electrical resistivity of 

the hydrated graphene–cement samples. The conductivity of hydrated cement paste was 

approximately 10-8 S/m; however, incorporation of 1% of graphene changes the conductivity by 3 

orders of magnitude. Interestingly, the increase in conductivity is substantial when the composite 

contains 5% graphene. At a graphene content of 10%, the conductivity measured was at about 10-

2 S/m. The increase in conductivity with graphene content appears to be accompanied by a change 
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in electrical properties from insulating to semiconducting behavior. Such an increase in 

conductivity could bring about wide range of electrical applications for graphene-cement 

composites. The results indicate that low additions of graphene, even at 1%, could be sufficient 

for use in applications where electrostatic dissipation (ESD) is desirable. 

 
 
 

Figure 4.6 Temperature treatment of hydrated graphene-cement composites 
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Figure 4.7 Scanning electron microscopy image of hydrated graphene-cement composite 
 
4.3.6 Thermal Diffusivity Properties of Composite Materials in Hydration 

 Thermal diffusivity for the composite samples was determined using Parker’s formula 

[30]:  

                                           Eq. (4.1) 
where  
(α)  = thermal diffusivity in (m2/s) 
t (1/2) = time (s) to reach 50% of maximum temperature amplitude 
d = thickness of the material (m) across the direction of heat flow 
  

About three runs were taken at every temperature for a better estimation of the thermal 

diffusivity for the composite samples. The hydrated graphene-cement composites were tested 
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under a similar range of temperatures as shown in Figure 4.9. The general trend observed here is 

that there is a decrease in thermal diffusivity with an increase in temperature, from 25 °C to 400 

°C. It appears that the decrease in thermal diffusivity is about 35% for all the mixes, regardless of 

the graphene content. The data indicate that incorporation of 1% graphene did not have any 

significant effect on thermal diffusivity of the mix. Incorporation of 5% graphene, on the other 

hand, improved the thermal diffusivity by 25% at 25 °C and about 30% at 400 °C compared to the 

pure cement paste or the 1% graphene composite. The mix containing 10% graphene shows 

significant improvement in thermal diffusivity of about 75% at 25 °C and 60% at 400 °C. In 

general, it appears that incorporation of graphene in cement paste could significantly improve 

thermal diffusivity of the composite. Improvement of thermal diffusivity of cementitious pastes 

can reduce the temperature gradient (30- 90 ̊C) effect due to cement hydration in mass concrete 

structures. This can consequently reduce the potential of massive concrete elements to experience 

thermal cracking thus improving thermal integrity and durability of concrete structures. 

 
 

Figure 4.8 Electrical conductivity of hydrated graphene-cement composites 
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Table 4.1 Hydrated graphene-cement composite properties 

 
 
 
 
 

 
 

Figure 4.9 Thermal diffusivity of hydrated graphene-cement composites 
 

Mix characteristics 
Resistivity 

(Ω⋅m) 

Electrical 
Conductivity 

(S⋅m−1) 

Oven dried 
bulk density 

(g/cm3) 

Encapsulated 
bulk density 

(g/cm3) 

Hydrated (100% 
C )

112441765 8.89E-09 1.490 1.851 

Hydrated (99% Cement +  
1% Graphene) 

121820 
8.21E-06 

 
1.481 1.847 

Hydrated (95% Cement +  
5% Graphene) 

94659 1.06E-05 1.463 1.838 

Hydrated (90% Cement +  
10% Graphene) 

37 2.70E-02 1.436 1.827 
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4.4 Conclusions 
 

Incorporation of graphene nanoparticles in cement paste showed interesting modifications 

in microstructural, morphological, electrical and thermal properties of the paste. Thermal 

diffusivity and electrical conductivity were found to increase with increasing the graphene content 

in the composite. The increase in thermal diffusivity of the hydrated graphene cement composite 

is a clear indication of the heat sink capacity of graphene. This effect is of significant importance 

especially during the exothermic reactions taking place during the initial stages of hydration of 

Portland cement. The hydrated graphene-cement samples indicate the presence of graphitic plane 

in the composite structure. The rod or needle-shaped morphology of ettringite, which is typically 

observed in hydrated cement paste, was less prevalent in the graphene composites and appeared to 

be affected by graphene content. The metal oxides in   cement act as a catalyst for the oxidation of 

graphene at higher temperatures (600 to 750 °C), regardless of the quantity of graphene present in 

cement-based composite. The impact of the incremental increase of graphene on the electrical 

conductivity of the composites indicates the potential of using graphene in application where 

electrostatic dissipation (ESD) of charge is desirable. 
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CHAPTER 5: INVESTIGATION OF THE PHYSICAL PROPERTIES OF 
  

GRAPHENE NANOPLATELET CEMENT PASTE MATRIX IN CONCRETE  
 

ELEMENTS SUSCEPTIBLE TO CRACKING 
 

5.1 Introduction 

Concrete is a composite material consisting of cementitious materials (Portland cement, 

pozzolanic materials, nonreactive additives), water, fine and coarse aggregates in addition to 

chemical admixtures [1-2].  Graphene is a 2D crystal of sp2- hybridized carbon atoms organized in 

6 carbon atom rings. The long 2D π-conjugation in graphene results in very high specific area, 

high Young’s modulus and extraordinary thermal and electrical conductivity [3]. Concrete gain 

strength due to the chemical interaction and hydration of its cementitious constituents. The main 

phases in Portland cement contributing to the hydration process are tricalcium silicate (C3S), 

tricalcium aluminate (C3A), dicalcium silicate (C2S), and tetracalcium aluminoferrite (C4AF) in 

addition to calcium sulfates [4-5].  

Recent research indicates the possibility of implementing the use of nanomaterials 

including titanium oxide, graphene platelets, nano-alumina, nano-silica and carbon nanotube in 

several civil engineering applications [6]. The incorporation of nanomaterials in hydrated cement 

paste affect the microstructure of the resulting hydration products; specifically, the nanostructure 

of calcium silicate hydrate (C-S-H) which is the main network bonding component [7]. Du et al. 

[8] research study indicates that graphene nanoplatelets (GNP) can reduce the permeability and 

ionic diffusivity in cement mortars up to 70% by the addition of less than 5% graphene by weight 

of cement in the composite. This effect is ascribed to capillary pores refinement in the hydrated 
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cement network and the barrier effect of GNP resulting from tortuosity escalation against chloride 

ions and water penetration. The research also indicates that an increase of GNP over 5% by weight 

of cement may lead to agglomeration of GNP particles and as a result may compromise the 

impedance effects of GNP towards ionic diffusion. Sedaghat et al. [9] indicates that incorporation 

of 10% graphene nanoplatelets in cement paste improves the composite electrical conductivity by 

a factor of 107 and thermal diffusivity by 60% to 75% in the temperature range from 25 °C through 

400 °C, respectively. It is further indicated that the noted increase in thermal diffusivity of 

graphene cement paste is due to the heat sink capacity of graphene which can also have another 

potential application of reducing temperature gradient in concrete elements in which thermal 

cracking is an issue. Thermal diffusivity of graphene cement composite measured using Linseis 

(C) XFA500 is shown in Figure 5.1 for varied graphene content (0-10%) at different temperatures 

[9].  

 

Figure 5.1 Thermal diffusivity of graphene cement composite measured using Linseis 
(C) XFA500 
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 Konsta-Gdoutos et al. [10] findings on the effect of multiwalled carbon nanotubes 

concentration and their aspect ratio on flexural strength of cement paste indicates that 

incorporation of MWCNTs in the quantities of 0.025 to 0.1% as a cement replacement results in 

flexural strength improvement of the cement paste. It is also demonstrated that MWCNTs aspect 

ratio is a significant factor controlling the quantity of nanotubes required to achieve the optimum 

flexural strength. Shorter MWNTs earns higher degree of dispersion in the cement paste matrix; 

however, higher amounts are required to reduce the fiber-free area for subsequent reduction of 

nano-cracks [10-11].  Chaipanich et al. [12] demonstrated that fly ash-cementitious mixture 

reinforced with carbon nanotubes has a denser microstructure and higher strength due to the filler 

effect of nanotube particles within the larger pore structure of the hydrated cementitious matrix. 

Stronger network bonding of C-S-H/ettringite and carbon nanotubes was observed when examined 

by SEM and micrographs analysis. Lv et al. research study indicates that the use of graphene oxide 

(GO) with cement drastically affects the microstructure of hydrated cement composite and leads 

to the formation of flower-like hydration crystals, reduction of brittleness and enhancement of 

toughness. It is further indicated that incorporation of 0.03% GO at 29.5% oxygen content 

remarkably improves the flexural strength (60.7%), tensile strength (78.6%) and compressive 

strength (38.9%) relative to the plain mortar samples [13].  Gong et al. study indicates that 

incorporation of 0.03% of graphene oxide by weight of cement results in over 40% increase in the 

compressive and tensile strength and a drop of 13.5% in total porosity with more than 100% larger 

amount of gel pores and 27.7% lower capillary pores in graphene cement composite pastes at the 

age of 28 days compared to those for plain cement pastes. The effect was due to a higher degree 

of hydration, increase in nonevaporable water and calcium hydroxide content at different ages 

[14]. Le et al. indicated that incorporation of graphene nanoplatelets (GNP) up to 20% in cement 
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composites can be used to evaluate the structural health by monitoring the electric potential arising 

from the damage which is equivalent to the fractional change in elastic compliance [15].  

One of the problems or critical issues with the use of graphene nanoparticles is the potential 

of particle agglomeration. Agglomeration of nano particles in cement paste and concrete can occur 

due to the existence of strong van der Waal’s forces at the nano scale which can lead to less 

workable mixes. Incorporation of nano materials in cement paste matrix reduces the workability 

of concrete. Workability, however, can be improved by using mechanical techniques, sonication 

or through the additions of chemical admixtures.  Chuah et al. stated that incorporation of 

nanomaterials in mortar and concrete severely reduces the workability of mixtures since larger 

surface area of nanomaterials would naturally demand more water to wet the particles of higher 

surface area. This shall result in reduction of the amount of water available to wet cement particles. 

Proper dispersion techniques can result in better workability of the cementitious system, thus 

leading to a better contribution of nano materials to improve the physical properties of composite. 

Measurement of non-evaporable water and CH content using TGA analysis indicates that GO 

accelerates cement rate of hydration [16]. 

The current study aims to evaluate the effect of incorporating graphene in cement paste on 

the physical and chemical properties of the mixture. In order to address this effect, work was 

conducted first on unblended cements of different phase compositions and fineness. The cracking 

potential of the unblended cements were studied first on mortar mixtures at a constant w/c ratio of 

0.45. Subsequently, cements triggering higher cracking potential in mortar mixtures were selected 

to be further studied with different amounts of graphene as a partial replacement of cement to 

evaluate their physical properties including compressive strength, heat of hydration (HOH) 

mechanisms and modulus of elasticity. It was formerly indicated that incorporation of graphene 
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up 10%, as a partial replacement of cement, improves thermal diffusivity of the composite and as 

a result has the potential to reduce the temperature gradient and thermal cracking in concrete 

elements.  

5.2 Material and Methods 

Six industrial Portland cements (3 cements x 2 fineness levels = 6 cements) G (1) through 

G (6) with variable mineralogical composition and finenesses were selected. Mineralogical 

analysis was conducted using X-ray diffraction. The diffractometer used in this study was a 

PANalytical Cubix Pro and Cu K radiation. HighScore Plus software was used for phase 

identification and quantification. The scans were collected at a current of 40 mA and voltage of 45 

KV. The 2θ scan range was set for 5–60° at a step size of 0.012°.  X-ray scans were collected in 

triplicates for each cement. The averages for phase quantification of the six cements are reported 

in Table 5.1.   

Table 5.1 Quantification of crystal phase composition of cements G (1) through G (6) 
  

Crystal phase composition G (1) G (2) G (3) G (4) G (5) G (6) 
Tricalcium Silicate (C3S), (%) 61.4 61.7 56.9 56.8 57.3 58.8 
Dicalcium Silicate (C2S), (%) 13.0 14.0 16.1 19.7 12.9 13.3 
Tricalcium Aluminate (C3A), (%) 6.6 6.9 7.1 7.1 9.8 11.2 
Tetracalcium Aluminoferrite (C4AF), (%) 11.7 12.7 10.9 10.8 6.4 5.9 
Arcanite (K2SO4), (%) 1.3 1.1 0.9 0.9 2.0 1.8 
Free Lime (CaO), (%) 0.1 0.2 0.3 0.2 0.0 0.0 
Calcium Hydroxide (Ca (OH) 2), (%) 0.3 0.2 0.5 0.7 0.4 0.3 
Calcite (CaCO3), (%) 2.1 1.0 4.0 0.8 2.1 2.2 
Periclase (MgO), (%) 0.1 0.2 0.3 0.1 2.0 1.8 

Gypsum (CS 2), (%) 1.1 2.9 2.4 2.6 3.5 6.2 

Hemihydrate (CSH , (%) 0.6 1.0 0.5 0.5 1.0 1.1 

Anhydrite (CS , (%) 0.0 0.1 0.0 0.0 0.0 0.1 

 

 The Blaine fineness was measured in accordance to ASTM C-204 [17]. A Horiba laser 

scattering particle size analyzer (LA-950) was used to study the particle size distribution of the as-

received cements [18-19]. Prior to conducting the measurements, HORIBA instrument was set to 
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obtain 5000 data measurements per second with 15 iterations. Refractive index of 1.7-1.0i was 

selected for the diffraction measurements of cement particles based on “Certification of SRM 

114q: Part II (Particle size distribution) and NIST Special Publication 260-166”. The particle size 

distribution measurements were conducted on dry cement powder in the automatic mode and using 

a small nozzle at 0.3 (MPa) air pressure. A maximum standard deviation of 0.6% (cumulative 

volume basis) is noted on three runs per cement indicating a strong repeatability of the 

measurements. The particle size distribution of the cements studied here, G (1) through G (6), are 

presented in Figure 5.2 and the physical properties of cements are presented in Table 5.2.  

Table 5.2 Blaine fineness, measured seven day heat of hydration and particle size analysis data 
for cements G(1) through G(6) 

 
 
 

 
 

 

 

 

 

 

 

 

A TAMAIR isothermal conduction calorimetry (manufactured by TA instruments) was 

used to measure the heat of hydration (HOH) of cements, under isothermal conditions. The 

methodology adopted here was conforming to ASTM C-1702, method A for internal mixing, [20] 

at 23 ºC. HOH of cements was measured immediately from the time of water addition. Further 

Physical properties of cements G (1) G (2) G (3) G (4) G (5) G (6)
Blaine Fineness, (m²/kg) 417 612 402 590 405 530 

Measured 7-day HOH, J/g (cal/g),   
ASTM C1702 Isothermal 
conduction calorimetry 

(Internal mixing) 

348 
(83) 

387 
(93) 

332 
(79) 

356 
(85) 

386 
(92) 

406 
(97) 

Measured 7-day HOH, J/g (cal/g),   
ASTM C186 Heat of Solution 

calorimtery 

349 
(83) 

370    
(88) 

337    
(80) 

367    
(88) 

361    
(86) 

391    
(93) 

Mean (µm) 12.9 10.0 11.9 9.61 14.3 10.2
Median (µm) 10.4 8.23 9.85 7.65 10.7 9.08 

Span 2.03 2.26 2.12 2.32 2.46 1.83 
D10 (µm) 3.61 1.33 2.51 1.43 3.2 2.55 
D50 (µm) 10.4 8.23 9.85 7.64 10.7 9.08 
D90 (µm) 24.8 19.9 23.3 19.1 29.7 19.1
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detailed information regarding implementation of this methodology is outlined in [4]. A water to 

cement ratio of 0.5 was used to rule out self-desiccation [21]. HOH measurements were performed 

in duplicate runs to ensure repeatability and reproducibility of the collected data. It is notable that 

all duplicate runs have less than 1% heat deviation from the average of the two runs at seven day 

of hydration and the heat flow curves, generated from the first and second runs, overlap throughout 

the duration of the test, except within the initial 20 minutes, with a maximum deviation of 30 

(µW/g). It is important to note that shape of the heat flow curve at the initial stages of hydration is 

influenced by the speed used by the designated admixer and that the cumulative heat curves merge, 

from duplicate runs, after approximately an hour from the initiation of the hydration process [5].  

 
 

Figure 5.2 Particle size distribution of the cements studied here, G (1) through G (6) 
 

 The physical properties of cements G (1) through G (6) are outlined in Table 5.2. The 

cracking potential due to drying/autogenous shrinkage and HOH of the mortar specimens prepared 

with G (1) through G (6) cements were examined using restrained shrinkage rings conforming to 
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ASTM C1581-09 [22]. Each experiment includes preparation of three individual mortar rings 

placed around the structural steel rings as shown in Figure 5.3. The water to cement ratio was 

maintained constant at 0.45 to provide adequate water for the hydration of cements of variable 

finenesses. The curing process of the mortar specimens includes 24 hours of encapsulating and 

wet curing of the specimens using burlap. The mortar ring specimens were cured in a BLUE M 

CEO series environmental chamber (Thermal Product Solutions product) and at a constant 

temperature of 23 ± 2 ºC and relative humidity of 50% ± 4%. In this experiment, mortar specimens 

will experience drying and autogenous shrinkage thus inducing compressive stresses in the 

structural steel ring with the progress of hydration. Due to the high modulus of elasticity of the 

steel rings, the mortar specimens cannot shrink freely and therefore will experience induced tensile 

stresses due to the restraint imposed by the steel rings. Once the induced tensile stresses in the 

mortar specimens exceed the tensile strength of mortar, an abrupt cracking is expected to occur in 

the mortar specimens. The mixture proportions are: cement: 9(lbs), Ottawa sand: 24 (lbs); 

deionized water: 4.05(lbs).  

 

Figure 5.3 Restrained shrinkage ring specimens 
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 Compressive strength of graphene cement mortar samples prepared with G (5) and G (6) 

cements were measured using ToniPRAX compression testing machine conforming to ASTM 

C109 [23] and ASTM C305 [24]. Mortar samples were prepared at two levels of graphene content, 

Blaine fineness and water to cement ratio (hereon referred to (w/c)). Hysitron Ti 900 Triboindenter 

was used to determine the modulus of elasticity and hardness of graphene cement paste composites 

at 0, 1%, 5%, 10% graphene content.  

5.3 Results and Discussion 

5.3.1 Evaluation of Cracking Potential of Mortar Specimens under Restrained Shrinkage  

This section addresses the evaluation of the cracking potential of mortar specimens 

prepared with cements G (1) through G (6). Mineralogical phase composition and physical 

properties of the as-received cements are presented in Table 5.1 and 5.2. The age at cracking is 

considered a significant factor used to evaluate the effect of Portland cement fineness and phase 

composition on autogenous/drying shrinkage and thermal cracking. Restrained shrinkage results 

of mortar specimens are outlined in Table 5.3, while the induced strain in the steel rings are 

presented in Figure 5.4. From Table 5.3, the effect of fineness can be observed by comparing 

cements G(1) and G(3), with an average age at cracking of 6 days, versus cements G(2) and G(4) 

with an average age at cracking of 5 days.  

Table 5.3 Restrained shrinkage results of mortar specimens for cements G (1) through G (6) 
 

Specimen 
Average age 
at cracking 

(days) 

Average initial 
strain  

(micro strain) 

Average 
maximum 

strain 
(micro strain) 

Average stress 
rate at cracking 

(Mpa/day) 

Average net 
time to 

cracking 
(days) 

G(1) 6 6 -48 0.46 4.78 
G(2) 5 4 -42 0.43 4.15 
G(3) 6 3.8 -39 0.33 4.70 
G(4) 5 1.7 -43 0.44 3.63 
G(5) 3 18 -31 0.97 2.20 
G(6) 3 -5 -33 0.71 1.62 
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 Average age at cracking (days) is considered as age measured from the time of casting to 

the time when a sudden decrease in strain occurs. 

 Average initial strain (microstrain) is considered as initial strain at the age when drying is 

initiated (24 hours after mortar rings placement). 

 Average maximum strain (microstrain) is considered as strain at the age when cracking 

occurred or the age when the test is terminated.  

 Average stress rate at cracking (Mpa/day) is considered as stress rate at cracking or at the 

time the test is terminated calculated to the nearest 0.01 (MPa/day).  

 Average net time to cracking (days) is considered as time to cracking calculated as the 

difference between the age at cracking and the age drying was initiated.  

 

Figure 5.4 Restrained shrinkage results of mortar specimens for cements G (1) through G (6) 
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The effect of cement fineness on the net time to cracking is more significant for G (3) 

cement, 4.70 days, and G (4) cement, 3.63 days, when compared to G (1) cement, 4.78 days, and 

G (2) cement, 4.15 days. Cement fineness does not show any significant or justifiable effect on the 

average maximum strain experienced by cements G (1) through G (4). Among all 6 cements, G(5) 

and G(6) showed the shortest average age at cracking, three days, and the highest average stress 

rate at cracking of 0.97 MPa/day (for G(5))  and 0.71 MPa/day (for G(6)). These two cements 

contain the highest C3A content, 9.8% and 11.2% respectively, and the lowest C4AF content, 6.4% 

and 5.9%, respectively. The average net time to cracking is at 2.2 days for G (5) cement while it 

is 1.62 days for G (6) cement indicating that the increase in cement fineness decreases the net time 

to cracking for these cements. The average maximum strain was recorded as -31 µS and -33µS, 

respectively, for G (5) and G (6) cements, thus indicating insignificant effect of cement fineness 

on the average maximum strain for these cements. The experimental results indicate that increasing 

cement fineness, in general, may decrease the age at cracking while this effect may not be 

significant. On the other hand, the tricalcium aluminate content of cements appears to be more 

critical in affecting the cracking potential of Portland cement mixtures. Calcium sulfate in the form 

of gypsum, hemihydrate and anhydrite is added to Portland cement to control the quick reaction 

of tricalcium aluminate (C3A) with water. The corresponding reaction results in the formation of 

ettringite (Ca6Al2(SO4)3(OH)12.26H2O, C6AŜ3H32) [25]. Ettringite (AFt) is the main hydration 

product of the initial interaction between sulfate ions, alumina and calcium ions in solution and 

contributes to the initial mechanical strength of the complex cement systems [26]. The literature 

indicates that when the sulfuate/aluminate ratio falls below 3, ettringite becomes unstable and 

converts to monosulfate (AFm), (Ca4Al2O6(SO4).14H2O,C4AŜH14), liberating sulfates which later 

react with C3A to generate more monosulfates until all C3A or sulfates are consumed [25]. If the 
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sulfate content is too low, the main C3A reaction peak (AFt formation mechanism before AFm 

mechanism initiation) occurs before the main hydration peak, which interferes with proper 

hydration of C3S and cement setting and can result in delayed C3S peak occurrence as a 

consequence. It is demonstrated, that in general, sulfate ions accelerate the C3S reaction while 

alumina containing hydration phases decelerates the alite reaction in the cement matrix. This effect 

may be cancelled out since C3A and sulfate both react in the matrix solution to form ettringite. To 

clearly understand the hydration mechanism of cement and its effect on the cracking potential of 

mortars, heat of hydration of cements G (1) through G (6) was measured using isothermal 

calorimetry at water to cement ratio of 0.5. As it is demonstrated in Figure 5.5, sulfate depletion 

occurs after the main hydration peak for cements G (1) through G (4). This is indicative of adequate 

presence of sulfates to control the aluminate phase reaction. It appears that an increase in cement 

fineness reduces the occurrence time of the main hydration peak by approximately 2 hrs. for 

cements G (1) and G (3). On the other hand, the main peak for aluminate phase occurs before the 

silicate main peak for G (6) cement, indicating an undersulfated system. The main nucleation and 

growth peak (alite peak) is observed to be drastically delayed by 5 h for G (6) cement compared 

to G (2) and G (4) cements. It is indicated in the literature that thaumasite 

(CaCO3.CaSO4.CaSiO3.15H2O) is formed as a result of reaction between SO42- and C-S-H which 

has similar XRD pattern to that of ettringite. Thaumasite formation may be accompanied by 

formation of secondary gypsum and brucite which consumes C-S-H phase and degrades the 

structure and strength of the hydrated phase [27]. It is further indicated that an increase in gypsum 

content increases the amount of C-S-H while reducing the intrinsic strength of C-S-H and reducing 

the mechanical properties of C-S-H and hydrated cement paste [28]. When the cement sulfate 

content is too low, the cement hydration mechanism reacts in an undersulfated manner, meaning 



104 
 

that C3A main hydration peak to form monosulfate occurs before C3S main heat of evolution peak 

resulting in lower, broader and delayed main hydration peak. This effect can be the result of high 

concentration of aluminum ions in solution, which retards alite hydration process.  Generally, 

sulfate ions accelerate alite reaction while it decelerates C3A hydration. In presence of adequate 

supply of sulfates, ettringite forms which leads to reduction of alumina ions in solution and the 

acceleration of C3S hydration. Approximately 17% of the added gypsum can be absorbed in C-S-

H crystal structure (affinity of C-S-H and gypsum). After depletion of sulfates in the matrix, C3A 

starts absorbing sulfate ions embedded in C-S-H structure for further ettringite formation under 

proper pH and temperature conditions [29]. 

 

Figure 5.5 Heat and heat flow curves for cements G (1) through G (6) 

Further experiments were conducted to understand the effect of C3A and sulfate on the 

cracking potential of mortar samples. Calcium hydroxide (CH) content of G (1) through G (6) 
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hydrated paste was qualitatively measured using x-ray diffraction. In this regard, paste samples 

were prepared at w/c ratio of 0.5 and tested at hydration ages of 2, 4, 6, 9, 24 and 168 hours in 

triplicate runs. To stop the hydration, each sample (20 g) was immediately removed from the 

encapsulated container at the designated hydration age and was crushed for 10 min. to approx. 50-

100 micron particles using mortar and pestle and then immersed in container of ethanol 200 proof 

99.95% absolute for 24 hours to stop hydration. Before conducting x-ray diffraction experiments, 

each sample was removed from the ethanol container and was vacuum filtered with an ultrafine 

Durapore membrane filter (0.45µm mesh), and a Buchner funnel to extract the ethanol from the 

mix [30]. The filtered sample was then dried at 105 ºC for approx. 2 hours until reaching constant 

mass. The dried sample was then ground using mortar and pestles for 30 min. to reach very fine 

particles (at least 95% less than 25 µm for all samples). The samples were then mixed with 10% 

rutile (TiO2) as an internal standard and analyzed using x-ray diffraction. The ratio of the area 

under the peak for CH, (2ϴ = 18º), and TiO2, (2ϴ = 27.4º), were determined using HighScore Plus 

software. The (Ca (OH) 2/ TiO2) ratio versus hydration age is plotted in Figure 5.6 for each sample. 

It appears that for G (1), G (3), G (5) cements, (Ca (OH) 2/TiO2) increases with increase in 

hydration age without any significant change in pattern. On the other hand, (CH/TiO2) increases 

for cements G (2) and G (4) in the initial 10h, then decreases until mid-20th hour followed by a 

gradual increase up to 7 days of hydration. This trend is a little different for G (6) cement since 

(CH/TiO2) starts diminishing after 20 hours of hydration. It is speculated that the availability of 

sulfate ions plays critical role in the change of CH content of hydrated cement paste matrix. For 

cements G(1), G(3) and G(5), there is an ample supply of sulfate ions to adequately control the 

C3A reaction and therefore aluminate phase hydration products mostly include ettringite and 

monosulfate (Please see Equations (5.1) and (5.2)). For G (2), G (4) and G (6) cements, the sulfate 
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ions are not readily available during the early stages of hydration. The sulfate content may be 

adequate in cements G (2) and G (4), since the main C3A hydration peak occurs after alite main 

peak but the calcium sulfate particles may be larger than an optimized size to freely dissolve in 

hydration solution and supply adequate sulfate ions to react with C3A and monosulfate in 

nucleation and growth stage of hydration. Cement C (6) is understood to be undersulfated since 

the aluminate peak occurs before the main alite peak. Lack of availability of sulfate ions or 

inadequate supply of sulfate ions in solution kicks another mechanism in which monosulfate and 

C3A react with available CH to generate monosulfoaluminate solid solution (please see Equation 

(5.3)).  

C A 3CSH 26H	 → 	C AS H                                                     Eq. (5.1) 

2C A 	C AS H 4H	 → 3C ASH 	                                             Eq. (5.2) 

C ASH 	C A CH 12H	 → 2C A CS, CH H                                                             Eq. (5.3) 

It is understood that an increase in cement fineness enhances the potential for cracking in 

concrete structural elements [31]. Also, when C3A content of Portland cement exceeds 8%, higher 

sulfate content is required for proper control of C3A hydration. Higher sulfate content in cements 

results in higher sulfate adsorption in the crystal structure of C-S-H (due to the affinity of C-S-H 

and sulfate ions [29]) and as a consequence chemically bond weakening reaction occurring in C-

S-H crystal phase. In an undersulfated system, where C3A main peak occurs before alite main 

peak, C3A and monosulfate tend to react with calcium hydroxide and generate monosulfoaluminate 

solid solution when the sulfate source is depleted. This process additionally reduces the potential 

amount of ettringite that could otherwise be formed if the matrix was adequately supplied with 

sulfate source. Reduction of ettringite content reduces the strength that could potentially be 

contributed by ettringite phase during the initial stages of reaction and to the overall hydrated 
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cement paste strength. It is perceived that higher amount of C3A and gypsum content play the 

primary role while cement fineness comes second to affect the cracking potential in structural 

concrete elements.  

 

Figure 5.6 Calcium hydroxide determinations for cements G (1) through G (6) 

It is understood that graphene with its extraordinary thermal conductivity can be used as a 

potential additive to concrete structures to reduce cracking in elements susceptible to high 

temperature gradients resulting from cement heat of hydration. It was well demonstrated in prior 

publication by the author of this paper [9] that implementation of graphene with cement improves 

the thermal diffusivity of the composite and as a result could potentially reduce thermal gradients 

in concrete elements. In the next section, the physical properties of graphene-cement composites,  



108 
 

including compressive strength of mortar, HOH and modulus of elasticity of paste composites will 

be investigated. 

5.3.2 Investigation of Hydration Mechanism of Graphene Cement Paste 

Graphene cement paste samples were prepared at 0, 1%, 5% and 10% graphene content as 

a partial replacement of cement G(6). G (6) cement was identified previously as the cement with 

the highest HOH and therefore with higher potential to induce thermal cracking in concrete 

elements. HOH of graphene cement paste samples was measured using TAMAIR isothermal 

conduction calorimetry at a water to binder ratio (hereon referred to (w/b)) of 0.5 and 0.6 

conforming to ASTM C1702-09, internal mixing procedure [20]. The heat flow rate and the HOH 

curves are normalized relative to Portland cement content and are depicted in Figure 5.7. 

 

Figure 5.7 G (6) graphene cement heat flow and heat flow curves 
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 As indicated in Figure 5.7 (A), an increase in (w/b) results in longer induction period and 

a longer time to achieve undersaturation state (as a result of hydration products precipitation) with 

respect to dissolving phases in the solution [32]. Samples without graphene at w/b =0.5 show the 

shortest induction period (1.5 h) while an increase in graphene content gradually increases the 

induction period (2.2 h for sample with 10% graphene at w/b =0.6). This phenomena can be 

explained by the fact that graphene nanoplatelets have much larger surface area (over 4,000 times 

larger than cement particles) compared to cement grains [3] and as a result may attract significant 

amount of water that could otherwise participate in cement hydration and faster calcium hydroxide 

(hereon referred to CH) saturation and C-S-H precipitation in solution. The literature indicates that 

for cement pastes, the concentration of calcium ions in solution increases, eventually up to 35 to 

40 mmol at the end of the induction period, when precipitation of C-S-H and calcium hydroxide 

starts to occur [33, 34]. At w/b of 0.5 and in absence of graphene, the sample may reach the 

undersaturation state faster and C-S-H may precipitate in shorter period of time and as a result the 

acceleration period initiates earlier than the other samples. At w/b =0.6, adequate quantity of water 

is provided to wet the graphene nanoplatelets particles surface and at the same time 

regulates/balance the hydration of cement particles. Precipitation of CH until reaching the 

acceleration stage occurs at the same time for all the samples prepared at w/b =0.6 regardless of 

their graphene content. It appears that at lower w/b =0.5 an increase in graphene content increases 

the induction period and delays the onset of the rapid C–S–H growth while the effect is minimal 

at the higher w/b of 0.6.  

At the end of the induction period, C-S-H and Portlandite are growing rapidly [35]. As can 

be seen in Figure 5.7 (B), the samples prepared at lower w/b =0.5 show higher rate of heat flow 

compared to pastes of higher w/b =0.6. It is perceived that at lower w/b less particle interspace is 
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available and therefore the solution saturates faster with respect to the reacting ions hence 

precipitation of more C-S-H and Portlandite occur thus promoting the formation of more active 

sites for the nucleation and growth of C-S-H, Portlandite and other hydration products. For the 

graphene-free paste at w/b =0.5, the main peak shows the highest heat flow and is approximately 

15% higher than the paste prepared at a higher w/b ratio of 0.6. This finding is in agreement with 

Hu et al. [36]. It is noteworthy that sulfate depletion point occurs at around 9hr after initiation of 

hydration for all the samples regardless of their w/b or graphene content. This might be indicating 

that adjustments of the sulfate amount may not be necessary for samples prepared at varied 

quantities of graphene since graphene does not interfere with hydration mechanism of C3A and 

sulfate source. Graphene nanoplatelets have large theoretical surface area (2,630 m2/g) [3] that 

attracts the available water to its surface and as a result hydration products/ions saturate faster in 

the solution triggering quicker C-S-H precipitation and shifting of the hydration mechanism 

toward nucleation of more C-S-H and CH [35].  Among the samples prepared at w/b =0.6, the 

sample with 10% graphene shows the highest magnitude for the main heat flow peak. It is 

speculated that fine graphene particles attract remarkable portion of water and hence the solution 

saturates faster and the mechanism progress toward precipitation of more C-S-H and CH and 

nucleation of more hydration products.  

As the hydration mechanism reaches the deceleration period, (demonstrated in Figure 5.7 

(C)) the samples prepared at w/b =0.6 and higher graphene contents (5% to 10% cement 

replacement) show higher heat flow rate relative to the others. Both graphene, as a filler substance, 

and a higher amount of water create more interparticle space for the formation/nucleation of 

hydration products after the samples reached the final set [36]. Additionally, at a higher w/b, more 

water is available for further progress of hydration. In the steady state stage of hydration, as 
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demonstrated in Figure 5.7 (C), samples prepared with 5 and 10% graphene content at w/b=0.5 

show slightly lower heat flow compared to other samples. It is understood that the combination of 

low w/b and high graphene content may create denser composite which is more resistant to water 

diffusion mechanism and as a result lower heat flow can be observed in the heat flow curve.  

Investigation of HOH curve (Figure 5.7 (D)) indicates that an increase in graphene content 

and w/b in the samples may result in an increase in the total HOH at three and seven days while 

all the samples show similar HOH at the first 24 hours. As indicated earlier, an increase in w/b and 

graphene content (as a filler) increases the interparticle spacing between cement particles which 

provides more space for further hydration of cement grains at later ages. 

5.3.3 Investigation of Compressive Strength of Graphene Cement Mortars 

The three day compressive strength of graphene-cement mortar samples, prepared with G 

(5) and G (6) cements was measured using ToniPRAX mortar compression tester. Each sample 

was prepared and tested in triplicate runs conforming to ASTM C109 [23] and ASTM C305 [24]. 

A total of twenty four specimens (8 samples x 3 runs) were prepared at two levels of low and high 

Blaine fineness (BF= 4,000 and 6.000 (cm2/g)), water to cement ratio (w/c = 0.5 and 0.6) and 

graphene content (0 and 10% as a partial replacement of Portland cement). Graphene content, 

cement Blaine finenesses and water to binder ratio are considered significant factors affecting the 

compressive strength of the mortar specimens [2].  The compressive strength results in addition to 

analysis of variance (ANOVA) using full factorial design method are outlined in Table 5.4.  

Factorial design statistical method is most efficient for studies in which the effect of two 

or more factors are investigated. In this method, all possible combinations of different levels of 

the factors, in each complete replication or trial of experiments, are probed. The effect of the factor 

on the target is evaluated based on the change in response produced by the change in the level of 
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the factor. To determine the effect of the factor on the targeted response, the sum of squares of 

each factor and its combination in addition to the critical F distribution with 0.05 error (95% 

confidence limit) and the corresponding P-value are determined.  P-value is defined as the smallest 

level of significance that would result in rejection of the null hypothesis. P-value of less than or 

equal to 0.05 indicates the evident effect of the corresponding factor on the targeted response. 

Smaller P-value indicates the more significant effect of the factor on the targeted response [37].  

Table 5.4 Analysis of variance for compressive strength of graphene-cement mortars based on 
three factor model, full factorial design and analysis 

 
                       Graphene content as partial replacement of cement (%) 
                                  0 (%)                                                  10 (%) 
                        Blaine Fineness (cm2/g)                   Blaine Fineness (cm2/g) 
                  G (5) = 4,000          G (6) = 6,000        G (5) = 4,000       G (6) = 6,000 
 (W/C) ratio                                                                                                                                     Yi… 
                            4,770                         6,140                         4,720                     3,260 
       (0.5)             4,500                         6,130                         4,950                     3,320                56,780 
                            4,850                         6,260                         4,600                     3,280 
          
                            4,400                         4,880                         3,830                     4,490 
       (0.6)             4,650                         4,570                         3,500                     4,400                52,000 
                            4,700                         4,450                         3,620                     4,530 
 
       Y.jk.           27,870                       32,410                       25,230                   23,270                      
       Y.j..                            60,280                                                        48,500                     

        Compressive strength is rounded up to 10 (psi)                                                     Y…. = 108,780    

(w/c) ratio Yij.. Yi.k. 
Graphene        

content = (0%) 
Graphene         

content = (10%) 
Fineness = 

4,000 (cm2/g) 
Fineness = 

6,000 (cm2/g) 
0.5 32,650 24,130 28,400 28,400 
0.6 27,640 24,370 24,700 27,310 

 

As indicated in Table 5.4, in absence of graphene, increasing w/b from (0.5) to (0.6) results 

in 33% reduction in the average compressive strength of samples containing G (6) cement (BF= 

6,000 cm2/g) compared to 2% reduction for samples of G (5) cement (BF= 4,000 cm2/g). To justify 

this trend, several factors need to be brought into consideration. The compressive strength of 
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mortar is mainly controlled by the packing density of C-S-H, (hydration product of C3S and C2S), 

and capillary porosity. Capillary pores formation is the direct result of w/b and filler materials that 

do not participate in chemical reaction of cementitous materials. The degree of hydration of 

Portland cement is contingent upon several factors including water to cement ratio w/c, curing 

temperature, and cement fineness. Bullard et al. [38] indicated that at w/c = 0.4 or less, the capillary 

porosity in cement paste depercolates before full hydration can be achieved.   

Colak [39] noted that optimum quantity of water is required to have optimum compressive 

strength in concrete. It is understood that in absence of graphene at w/b = 0.5 sufficient water is 

provided for hydration of cement particles in samples prepared with G (5) cement. Increasing w/b 

to 0.6 does not show any significant effect on compressive strength and as a result capillary 

porosity in the sample. On the other hand, in absence of graphene at w/b = 0.5, the available water 

for the samples prepared with G (6) cement is nearly optimized to provide hydration and adequate 

workability in the samples while at the same time maintaining the capillary porosity to the 

minimum level which results in higher C-S-H packing density and higher compressive strength 

(average compressive strength of 6,180 psi). Increasing w/b to 0.6 results in increase of capillary 

porosity and reduction of compressive strength by 33%.  

For G (5) cement at w/b =0.5, 10% replacement of cement with graphene did not show any 

significant change in the compressive strength of mortar specimens. As it was indicated in the 

previous section, graphene does not show any chemical interaction with cement and water. It is 

anticipated that some portion of the water was consumed to wet the very fine graphene nanoplatelet 

particles surface. Although incorporation of graphene may reduce the quantity of cement per unit 

volume of the cube, there is no evidence of reduction in the compressive strength of the mortar 

cubes. It is speculated that at w/b =0.5, sufficient quantity of water is provided to wet the 
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nanoplatelet particles and at the same time hydrating cement particles while avoiding self-

desiccation of mortar sample with adequate space available for the hydration products. As a result, 

graphene nanoplatelets may reduce the interparticle spacing between hydrating cement particles 

capillary pores which makes up for the compressive strength that might be diminished otherwise 

due to the reduction of cement per unit volume. For G (5) cement at 10% graphene content, 

increasing w/b from 0.5 to 0.6 results in formation of larger capillary pores and a subsequent 30% 

reduction in the compressive strength.  

For G (6) cement at w/b =0.5, 10% replacement of cement with graphene results in 47% 

reduction of the average compressive strength of the mortar cubes. This phenomenon can be due 

to inadequacy of water to wet the nanoplatelet particles and hydration of cement grains. Deficient 

hydration of cement particles result in formation of less amount of C-S-H and as a consequence 

lower compressive strength of mortar cubes. For G (6) cement at w/b =0.6, 10% replacement of 

cement with graphene does not show remarkable impact on compressive strength. It is understood 

that for G (6) cement at w/b =0.6, sufficient quantity of water is provided to wet graphene 

nanoplatelet particles while properly hydrating cement particles. 10% graphene nanoplatelets may 

reduce the interparticle spacing which makes up for the compressive strength that might be 

otherwise diminished due to reduction of cement per unit volume of cubes. The same trend was 

observed in the compressive strength of mortar cubes prepared with G (5) cement at w/b = 0.5 

when graphene nanoplatelets of up to 10% was added to the composite mortar.   

 In summary, ANOVA statistical analysis of the compressive strength of mortar cubes at 

variable cement Blaine fineness, w/c and graphene content is outlined in Table 5.5.  

 Based on the full factorial design results, calculated using Equations (5.4) through (5.13) 

and provided in Table 5.5, it appears that all the factors constituting the sources of variation have 



115 
 

a P-value less than 0.05 which identifies their significance on the seven day compressive strength 

of the composite samples. It is noteworthy that the quantity of graphene (P-value=26.19561E-12) 

and also the combined effect of w/c, graphene content and fineness (P-value=1E-10) with the 

results in the lowest P-values; they are the therefore the most significant factors affecting the seven 

day compressive strength of graphene-cement mortar composites. It can therefore be concluded 

that where graphene is used as a partial replacement of cement, w/c and fineness of cement should 

be carefully considered to gain optimum compressive strength.    

Table 5.5 Analysis of variance for compressive strength of graphene cement mortar cubes 
 

Source of Variation 
Sum of 
Squares 

Degrees 
of 

Freedom 

Mean 
Square 

F0 Fcritical P-value 

(w/c) 948,830 1 948,830 43 4.49 71E-7 
graphene 5,789,870 1 5,789,870 259 4.49 26.19561E-12 
fineness 279,070 1 279,070 13 4.49 27.478E-4 

((w/c), (graphene) 1,147,560 1 1,147,560 51 4.49 22E-7 
((w/c), fineness) 286,890 1 286,890 13 4.49 24.766E-4 

(graphene, fineness) 1,758,250 1 1,758,250 79 4.49 1E-7 
((w/c), graphene, fineness) 5,181,960 1 5,181,960 232 4.49 1E-10 

Error 357,160 16 22,320    
Total 15,749,610 23 684,770    

SS= Sum of Squares 
SST = Sum of Squares of Total 
[a=2; b=2; c=2; n=3] 

	

SS ∑ ∑ ∑ ∑ y 	
…. 	                             SST = 15,749,610                     Eq. (5.4) 

 

SS ∑ y … 	 …. 	                                     SS (w/c) = 948,830                    Eq. (5.5) 

 

SS ∑ y. .. 	 …. 		                                    SS (graphene) = 5,789,870      Eq. (5.6) 

 

SS ∑ y.. . 	 …. 				                                  SS (fineness) = 279,070           Eq. (5.7) 

 

SS
,

∑ ∑ y ..
…. SS SS         

 
SS ((w/c), graphene) = 1,147,560                                                                                         Eq. (5.8) 
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SS
,			

∑ ∑ y . . 	 …. 	 SS 	SS                  

 
SS ((w/c), fineness) = 286,890                                                                                            Eq. (5.9) 
 

SS ,			 ∑ ∑ y. .
…. 	 SS SS    

 
SS (graphene, fineness): 1,758,250                  Eq. (5.10) 
 

SS
,			 ,			

1
n

y . 	
y….
abcn

	SS 	SS 	SS SS 																				 

 
SS 	SS             SS ((w/c), graphene, fineness): 5,181,960                                           Eq. (5.11) 
 

SS
,			 ,			

∑ ∑ ∑ y . 	 ….                     

                                 
SS (subtotal ((w/c), graphene, fineness)): 15,392,450                                                       Eq. (5.12)        
  
  SS 	 SS 	SS ,			 ,			                 SS (error): 357,160               Eq. (5.13) 

 
5.3.4 Determination of Hardness and Young’s Modulus of Graphene Cement Samples 
 

Hardness and Young’s modulus of graphene cement (G (6)) paste were determined using 

Hysitron Ti900 Triboindenter, based on Oliver and Pharr indentation method and using Berkovich 

tip with a radius of 150 nm [40]. Graphene cement paste samples were prepared at (w/c) of 0.5 

and graphene content of 0, 1%, 5%, 10% hydrated for 44 hours. The hydration process was stopped 

by grinding the hydrated samples at 44h ±0.5h and mixing with 99.95% ethanol 200 proof. Air 

and tip area function calibrations for Triboindenter were performed using a standard fused quartz. 

Implemented indentation parameters are indicated in Izadi et al. [41]. A trapezoidal loading profile 

with loading, hold and unloading times of 3, 2 and 3 (s), respectively, was used to perform 

nanoindentation with four different peak loads of 2.5, 5, 7.5 and 10 (mN). At least 30 different 

indents were performed at each load for each sample. A minimum of 25 µm was maintained to 

prevent any kind of interaction or mutual effect between adjacent indents. Considering the 
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indentation size effect and collected nanoindentation results [42], it was decided to use only the 

data from 7.5 and 10 mN peak loads in Table 5.6 which corresponds to relatively higher penetration 

depths. Samples thicknesses were in the scale of few millimeters which ensures that the maximum 

penetration depth does not exceed the 1/10 of total thickness and will not affect the final results 

[43]. Surface roughness was measured using DI AFM with a scan size of 3 µm × 3 µm, which is 

larger than the largest indentation mark at the highest load. The scan rate was adjusted at 1 Hz with 

a tip velocity of 6 µm/s covering 512 data points per line of scan. It was determined that the 

roughness for all the samples falls in the range of 34-44 nm as demonstrated in Figure 5.8. 

Considering roughness to penetration depth ratio of less than 6% for all the samples studied here, 

it can be assumed that smooth surfaces were used for nanoindentation measurements purposes. 

The average Young’s modulus (Er), hardness (H) and maximum penetration depth (hmax) of the 

indenter tip along with arithmetic surface roughness (Ra) of samples are reported in Figure 5.9. It 

appears that addition of 1% graphene results in 21% reduction of Young’s modulus. Increasing 

graphene form 1% to 5% does not show significant effect on Young’s modulus; however, 

increasing replacement levels to 10% increased the modulus by 4-5%. The same trend can be 

observed in the hardness of graphene cement paste samples.  

5.4 Conclusions 

Restrained shrinkage data indicates that mortar specimens prepared with cements of varied 

phase composition and finenesses indicate that interaction of C3A and sulfate source is the prime 

phenomenon followed by cement fineness as the second main factor influencing concrete cracking 

potential. Determination of thermal diffusivity of graphene cement paste indicates that samples 

prepared with graphene (up to 10% by weight) as a partial replacement of cement showed more 

than 70% improvement in thermal diffusivity. Improved thermal diffusivity results in better heat 
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dissipation and therefore potentially a reduction in the temperature gradient in concrete elements 

with consequences of lowering the potential of thermal cracking in mass concrete elements. 

Measurements of HOH of graphene cement paste, at w/c=0.5, using isothermal conduction 

calorimetry, indicates that incorporation of graphene up to 10% by weight increases the length of 

the induction period while reduces the intensity of the main hydration peak due to the filler effect 

of graphene particles in graphene-cement paste. Furthermore, increasing w/c from 0.5 to 0.6 and 

graphene content up to 10% (as a partial replacement of cement) increases the seven-day HOH of 

portland cement by up to 50 (J/g) in isothermal condition. Isothermal conduction calorimetry heat 

flow curves show that incorporation of graphene up to 10% does not have significant impact on 

the interaction of C3A and the sulfate source since the time of occurrence of the sulfate depletion 

peak did not show significant variation in the samples prepared with varied graphene contents.  

Full factorial statistical analysis conducted on the compressive strength of mortar prepared 

at two different w/c ratios, 2 levels of cement finenesses and variable graphene content indicates 

that 1- quantity of graphene and 2- physical interaction of w/c, graphene and cement fineness, have 

the smallest P-Value among all the samples, representing the most significant factors on mortar 

compressive strength.  It appears that in graphene-cement paste composites, addition of 1% 

graphene results in 21% reduction of Young’s modulus. Increasing graphene content from 1% to 

5% and 10% does not show significant effect on Young’s modulus. Same trend can be observed 

in the hardness of graphene cement paste samples. A lower elastic modulus can result in lowering 

the cracking potential of massive concrete elements subjected to a degree of restraint during early 

age deformation. 



119 
 

 

Figure 5.8 Surface roughness of G (6) graphene cement 

Figure 5.9 G (6) graphene-cement hardness and Young modulus for different quantities of 
graphene 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 
 

A careful study on the heat of hydration of Portland cement using isothermal conduction 

calorimetry indicates that the total heat generated at seven days can be predicted based on heat 

measurements for only 84 hours and using an S-curve function, with acceptable accuracy when 

compared to the heat measured using isothermal conduction calorimetry (ASTM C1702). The 

author suggest that a wider sample matrix (larger sample size) be examined to validate the 

proposed function as an alternative method of predicting the HOH of Portland cement at seven 

days. It is also suggested that the proposed function be examined for its suitability in predicting 

the 28 day HOH of Portland cement.  

Equations predicting one, three and seven day heat of hydration of Portland cement can be 

established based on the Portland cement major phases of C₃S, C₃A, C₂S, C₄AF and cement mean 

particle size. Heat of hydration of Portland cement at one, three and seven days of hydration is a 

linear function of cement mean particle size when the composition is maintained constant at 

constant isothermal temperature of 23 °C and water to cement ratio of 0.5. The proposed equations 

can be used to identify Portland cements with the potential to cause thermal cracking in mass 

concrete elements. Also, the equations can be used to correlate the heat of hydration with other 

properties of Portland cement for quality control and prediction of physical and chemical 

properties of manufactured Portland cement and concrete. 

Incorporation of graphene nanoparticles in cement pastes result in increasing thermal 

diffusivity and electrical conductivity; both properties increased with increasing graphene content 

in the composite mixture. The increase in thermal diffusivity of the hydrated graphene cement 
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composite is a clear indication of the heat sink capacity of graphene. This effect is of significant 

importance especially during the exothermic reactions taking place during the initial stages of 

hydration of Portland cement. 

Measurements of heat of hydration of graphene cement paste, at w/c =0.5, using isothermal 

conduction calorimetry, indicates that incorporation of graphene up to 10% by weight increases 

the length of the induction period and reduces the intensity of the main hydration peak, due to filler 

effect of graphene particles in graphene-cement paste. Furthermore, increasing w/c from 0.5 to 0.6 

and graphene content up to 10% (as a partial replacement of cement) increases the seven day heat 

of hydration of Portland cement by up to 50 J/g. Isothermal conduction calorimetry heat flow 

curves show that incorporation of graphene up to 10% does not have significant impact on 

interaction of C3A and sulfate source since the time of occurrence of the sulfate depletion peak is 

not significantly affected in the samples prepared with varied graphene contents. Full factorial 

statistical design, conducted on compressive strength of mortar samples prepared at varied (w/c), 

cement finenesses and graphene amounts, indicates that 1- quantity of graphene and 2- physical 

interaction of w/c, graphene and cement fineness, have the smallest P-value among all the samples, 

indicating their significance on blended mortar compressive strength.  

Modulus measurements on graphene-cement paste composites indicate that an addition of 

1% graphene results in 21% reduction in the composite Young’s modulus. Increasing graphene 

content from 1% to 5% and 10% does not show significant effect on Young’s modulus. Similar 

trends can be observed in the hardness values of the graphene-cement paste samples. The findings 

of this study indicate that graphene is potentially a beneficial blending material that can be used in 

a cementitous matrix to improve the thermal conductivity and diffusivity of concrete elements. It 

should be further explored for use in massive elements susceptible to early- age thermal cracking.  
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