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ABSTRACT 
 

The use of supplementary cementitious materials (SCMs) in commercial construction have 

been increasing over the last several decades as climate change and sustainability has been gaining 

global attention.  Incorporation of SCMs into concrete mixtures provides several environmental 

benefits.  Since most SCMs are waste by-products of other industries, their use in concrete reduces 

waste disposal.  Additionally, cements substitution with SCMs reduces the carbon footprint of the 

construction industry.  Cement production generates large amounts of CO2 emissions; the use of 

SCMs reduces the amount of cement in a concrete mixture thereby reducing emissions from its 

production.   

In addition to SCMs, modern concretes typically incorporate a combination of chemical 

admixtures.  Adverse interaction of admixtures with cement, with or without the SCMs, or with 

each other is one of the most common reasons for early-age concrete issues.  Since the possible 

combinations of admixtures are numerous and there is a variety of cements on the market, testing 

all possible chemical/mineral/cement admixture combinations is impractical.    

The aim of this research was to cover a broad base of admixture-related issues, each 

addressing a specific need of the construction industry.  There is currently no explanation for why 

calcium chloride-based accelerator is not always effective when used with high tricalcium 

aluminate (C3A) cements.  It was determined that increasing C3A or gypsum content alone did not 

appear to significantly affect acceleration; however, the presence of alkalis reduced the 

effectiveness of CaCl2 accelerator. 



x 
 

When CaCl2-based accelerators are used in concrete, they are typically used in combination 

with other chemical admixtures, such as water-reducing and retarding admixtures (WRRA) to 

allow for the use of a low water-cementitious material ratio.  In order to avoid premature hardening, 

CaCl2 accelerator is most often added onsite, rather than at the concrete batching plant.  Onsite 

addition can lead to accidental overdose of accelerator.  It was found that increasing dosages of 

calcium chloride-containing accelerating admixtures in the presence of WRRA has a non-linear 

effect on the pore size distribution and consequently a non-linear increase on the autogenous 

shrinkage, which can contribute to early-age concrete cracking. 

Water-reducing admixtures and superplasticizers are added to concrete to improve 

workability, which decreases not only with a decrease in water-cementitious material ratio, but 

also with addition of some SCMs.  Silica fume and metakaolin are known to decrease workability; 

fly ash and slag addition improve it.  The effect of SCM combinations on workability is typically 

assumed to be additive.  However, this investigation revealed that combining SCMs does not have 

an additive effect on workability, measured in terms of apparent yield stress and plastic viscosity; 

consequently, these parameters cannot be estimated from their respective values. 

Cement replacement with SCMs affects not only workability, but also heat of hydration, 

and is commonly used to reduce concrete temperature rise in concrete.  Prediction and control of 

concrete temperature rise due to cement hydration is of great significance for mass concrete 

structures since large temperature gradients between the surface and the core of the structure can 

lead to cracking thus reducing durability of the structure.  A number of equations have been 

proposed to predict the heat of hydration of cement and cement/SCM blends.  However, these 

equations do not include metakaolin, which is a relatively new mineral admixture.  Based on 

statistical experimental design, an equation was developed to predict the reduction of total 
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hydration heat at 24, 48 and 72 hours with addition of SCMs compared to a plain ordinary portland 

cement (OPC)-water mixture.  The developed equation allows the evaluation of the contribution 

of Class F fly ash (FA), blast furnace slag (BFS), silica fume (SF) and metakaolin (MK) as well 

as their combinations. 

Since metakaolin has been on the market for only about 10 years, the current knowledge 

on its effect on hydration products and paste microstructure remains incomplete.  The effect of 

MK on the nature of hydration products was evaluated through x-ray diffraction. Its effect on the 

microstructure was assessed by measuring porosity with nitrogen adsorption and determining 

nanoindentation modulus as well as the volume fraction of calcium silicate hydrates (C-S-H) with 

variable packing densities.  No significant effect was observed on the nature of hydration products 

with MK or BFS addition.  However, nitrogen-accessible porosity increased with MK and BFS 

addition, the increase being larger with BFS.  The average indentation modulus for the hydration 

products decreased with addition of MK and BFS, which corresponded to increasing nitrogen 

accessible pores. The results of this study indicate that phase quantification by quantitative x-ray 

diffraction (QXRD) of the hydrated paste may not be sufficient to assess the impact of metakaolin 

or BFS addition on the hydrating cementitious systems, and a multi-technique approach that 

provides information not only on the amount of hydration products, but also their morphology is 

preferable. 
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CHAPTER 1:  INTRODUCTION 
 

The cement and concrete industry has experienced several drastic changes in the last 100 

years.  Cement fineness has increased dramatically from typical values of approximately 1600 

cm2/g in 1917 [1] to values of 6000 cm2/g not being uncommon today.  Invention of chemical 

admixtures was a technological break-through that resulted in acceleration of typical construction 

schedules and production of such “exotic” concrete mixes as high-strength high-performance 

concrete and self-compacting concrete to name a few.  Chemical admixtures are able to modify 

fresh and hardened concrete properties, such as acceleration of setting time and strength 

development, increasing workability to allow the use of very low water to cement (w/c) ratios 

resulting in very high early compressive strengths as in high-strength high-performance concrete, 

and producing flowable concrete with normal compressive strength while preventing segregation 

of the mixture.  In addition to chemical admixtures, supplementary cementitious materials (SCMs) 

have gained popularity and are now widely used by the construction industry.  Most of the SCMs, 

except for metakaolin, are waste by-products from other industries, and their incorporation in 

concrete reduces the amount of cement needed, thus reducing the carbon footprint of the 

construction industry in addition to lowering the cost of concrete in most cases.  Addition of SCMs 

also improves durability thus resulting in fewer repairs and lower maintenance costs for the 

structure. 

Since the introduction of chemical admixtures to the market, a number of cases of negative 

interactions between chemical admixture and cement/SCMs combination have been reported [2]–
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[4].  Although the use of combinations of mineral and chemical admixtures is very wide-spread in 

modern construction, current standards or practice guidelines do not necessarily provide adequate 

guidance, if any, on predicting negative interactions between the admixtures.  Wang et al. [4] point 

out that “the certification processes for mineral admixtures, chemical admixtures and cement do 

not require consideration of combination of these components.”  There are a great number of 

possible combinations of admixtures, and it is impractical if not impossible for admixture 

manufacturers or cement producers to test all the different combinations of chemical admixtures 

and mineral admixtures with cements of different chemistries. 

Chemical or mineral admixtures are incorporated in concrete mixtures to enhance or 

improve concrete fresh and hardened properties.  Two main properties of interest are the heat 

generated during hydration and fresh mixtures workability.   Chemical reactions occurring when 

cement comes in contact with water are exothermic; the total heat evolution during the cement 

hydration process is referred to as heat of hydration (HOH).  The HOH can serve as an indication 

of setting and compressive strength development and can be used to measure the degree of 

hydration of a cementitious system [5], [6], [7].  Additionally, the total amount of heat evolved 

affects the temperature rise in concrete, which can be a serious issue in mass concrete structures.  

Since concrete is a poor conductor of heat, large temperature gradients can develop between the 

core and the surface of the structure leading to thermal cracking and consequently reduced 

durability and service life of the structure.  With respect to fresh concrete properties, the parameters 

that are of most importance during construction are adequate workability that allows concrete to 

be properly placed and consolidated and setting time that occurs during the expected period of 

time.  Addition of chemical and mineral admixtures is known to modify workability and setting 

time of concrete.  With the use of low w/c ratio concrete mixtures, below 0.4, autogenous shrinkage 
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becomes a practical concern.  Autogenous shrinkage is the bulk volume change that occurs without 

moisture loss to the environment or temperature change [16]–[18]. This volume change results 

from the consumption of pore water and chemical shrinkage during hydration.  Although there is 

no clear agreement in the literature on which mechanism is responsible for autogenous shrinkage, 

it is clear that changes in porosity or in C-S-H morphology are likely to affect autogenous 

shrinkage. 

This research focused on identifying potential negative or significant interactions between 

cements of different mineralogy and commonly used admixture combinations on properties of 

cementitious systems.  The emphasis of this study was placed on HOH of the mixtures due to its 

implications on temperature rise and thermal stresses, which are a major durability issue and 

rheology as a measure of workability.  Additionally, this study examined the effect of SCMs and 

chemical admixtures on microstructure development due to its implications on durability and 

service life of concrete structures.  This study had five objectives with the first two objectives 

focusing on calcium chloride (CaCl2), which is used to accelerate the setting and strength gain of 

concrete. 

CaCl2 is the oldest and arguably the most studied chemical admixture.  CaCl2 is an 

accelerator that reduces setting time and increases early strength gain of concrete and is the most 

widely used accelerator for non-reinforced concrete due to its low cost and high effectiveness.  The 

accelerating effect of CaCl2 on cement hydration has been primarily studied in terms of its effect 

on tricalcium silicate (C3S) hydration.  However, the exact mechanism by which CaCl2 modifies 

cement hydration is still not well established.  As such, it is difficult to extend the conclusions of 

existing phenomenological studies to cements of varying physical and chemical characteristics.  

There have been reports in the literature that CaCl2 does not have the same effect on cements of 
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different mineralogy, typically cements with high C3A content [5], [13]–[16], although this topic 

has not received much attention and the studies did not produce a unified theory explaining the 

variation in CaCl2 performance with different cements.  The first part examined the effect of 

chemical admixture (CaCl2) on heat of hydration (HOH) of cements with different mineralogical 

composition that will include a variation in C3A content.  An article based on this work has been 

submitted to Elsevier and is currently under review for the Cement and Concrete Composites 

Journal. 

Since most of the research on CaCl2 has been conducted in the 1970s, prior to concrete 

mixtures with low w/c ratios and prior to autogenous shrinkage being recognized as being of 

practical concern, there is a lack of information in the literature regarding the effects of variable 

dosages of CaCl2-based accelerating admixture on concrete autogenous shrinkage.  CaCl2 has been 

shown to affect porosity [16]–[19], particularly in the range of fine pores [20]–[22]; however, this 

has not been related to autogenous shrinkage even though there are several proposed mechanisms 

in the literature that relate autogenous shrinkage to porosity [8]–[12].  It has been recently shown 

that accelerator dosage had a non-linear effect on autogenous shrinkage [23], although this study 

did not  investigate the relationship between accelerator dosage and microstructural modifications 

of concrete.  The second part focused on explaining the effect of CaCl2 on concrete properties, 

specifically autogenous shrinkage. The findings have been published in the Journal of the 

American Ceramic Society [24]. 

Structural concrete mixtures used in Florida typically contain not only chemical 

admixtures, but also SCMs, which themselves modify the binder mineralogy and consequently 

cement hydration reactions.  The SCMs typically used in Florida are Class F fly ash (FA), 

granulated blast furnace slag (SL), silica fume (SF) and metakaolin (MK).  Cement replacement 
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with SCMs is not only beneficial in terms of reducing the carbon footprint of cement production, 

but each of the SCMs can result in improvement in certain concrete qualities.  As mentioned 

previously, heat release during hydration of a cementitious system can be a serious issue as it can 

lead to thermal cracking.  In Florida, due to the warmer climate, thermal gradients can lead to 

cracking even in structures, such as concrete pavement [25], that would not normally be considered 

mass concrete.  Several models have been proposed in the literature to predict the hydration 

behavior of OPC/SCM systems [26]–[28]; however, these models did not include metakaolin.  The 

only guidance regarding the HOH of MK comes from Gajda [29] who states that it can be 

approximated as “100% to 125% that of Portland cement.”  This, however, applies only to 

OPC/MK mixtures, and it is unclear how the total heat evolution of ternary or quaternary systems 

will be modified by addition of MK with chemical admixtures.   This part of the research evaluated 

the effect of combinations of chemical admixtures and SCMs on heat of hydration in order to 

identify significant interactions between SCMs and/or chemical admixtures in terms of HOH.  A 

model was constructed in order to predict the total heat of hydration reduction for 

OPC/SCM/chemical admixture combinations including MK compared to a plain OPC mixture.  

An article has been submitted to the Journal of Thermal Analysis and Calorimetry for publication 

consideration. 

As mentioned previously, workability and setting time are the most important fresh 

concrete properties.  Loss of workability, rapid or prolonged setting can be indicative of admixture 

incompatibilities. Although some mineral admixtures can improve workability, it is not clear what 

specifically is responsible for this improvement.  As Ferraris et al. [30] point out, currently testing 

is the only way to evaluate the effect of mineral admixtures on concrete workability.  Typical tests 

used to assess the compatibility of different chemical and mineral admixtures are setting time and 
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rheological measurements.  A manuscript based on the findings of this portion of the study have 

been submitted to Elsevier and is currently under review by the Construction and Building 

Materials Journal. The next part of the study investigated the effect of SCM and chemical 

admixture combinations. 

Microstructural changes can have a significant effect on hardened concrete properties.  

Addition of SCMs and chemical admixtures is expected to affect both the chemical composition 

and the morphology of the hydration products.  For example, addition of superplasticizer has been 

shown to change the morphology of ettringite. In most cases, the effect of SCMs and chemical 

admixtures on hydration is studied using a “one admixture at a time” approach [31]–[35].  This 

approach does not represent complex interactions between the binder mineralogy, which  has been 

modified by addition of one or more SCMs, and chemical admixtures.  This portion of the research 

evaluated the effect of SCMs with chemical admixtures on microstructure development by 

evaluating the effect of these combinations on hydration kinetics using HOH, formation of 

hydration phases through x-ray diffraction (XRD), microstructural changes by studying pore 

structure modification with nitrogen adsorption and examining the changes elastic modulus of 

hydration products of select mixtures through nanoindentation.  A manuscript based on the 

findings of this portion of the research have been submitted to the Applied Clay Science Journal 

and are currently under review. 

This work was conducted as part of funded studies by the US Department of Transportation 

and the Florida Department of Transportation under contract numbers BDV25-977-01 and 

BDV25-977-02.   
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CHAPTER 2:  INTERACTION OF CEMENT MINERALOGY  
 

AND CALCIUM CHLORIDE-BASED ACCELERATOR1 
 

2.1  Introduction 

 Calcium chloride has been used for decades to accelerate cement hydration.  Although its 

effect on setting and strength development has been studied at length, the mechanism of 

acceleration of cement hydration by CaCl2 is still not well-established.  As such, it is difficult to 

extend the conclusions of existing phenomenological studies to cements of varying physical and 

chemical characteristics.  Since it was concluded early on that the main effect of CaCl2 is due to 

the acceleration of C3S hydration, a number of studies have been conducted on pure C3S pastes, 

which does not take into account the complex interactions between different ionic species 

occurring during cement hydration as have been pointed out by Jupe et al. [13].   

There are indications in the literature that CaCl2 does not have the same effect on cements 

of different mineralogy, although this topic has not received much attention.  Shideler [14] reported 

in 1952 that CaCl2 is considerably less effective in accelerating Type III cement hydration 

compared to other cement types.  Price also stated that CaCl2 “reacts differently with different 

cements” [15].  Oey et al. [5] observed that generally CaCl2 is “more efficient at accelerating set 

in the Type II/V OPC compared to the Type I/II OPC.”  Suryavanshi et al. [16] compared the effect 

of CaCl2 on OPC and sulfate resistant portland cement (SRPC) mortars.  The authors attributed 

greater effect of chlorides on SRPC mortars to lower chloride-binding capacity of SRPC due to its 

                                                 
1 This chapter has been submitted as a manuscript to the Cement and Concrete Composites Journal and is currently 
under review. 
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lower C3A content.  Jupe et al. [13] compared performance of CaCl2 on two oil well cements, Class 

H and A, of similar C3S content and variable C3A/C4AF composition (0.65/17.00 % and 11.00/7.00 

% respectively) and observed that the accelerating effect was greater for cement with low C3A 

content.  The authors attributed this to the possible formation of “ferrihydrite gel” in the Class H 

slurries, as CaCl2 has been reported to accelerate the reaction of C4AF with gypsum [36].  This 

study points to a more complex interaction between phases in the presence of CaCl2 rather than 

merely acceleration of C3S hydration.  Although it was not remarked on by the authors, another 

major difference between the two cements investigated by Jupe et al. [13] was their alkali, more 

specifically K2O, content, which for Class A cement was almost double that of Class H.  Alkalis 

are known to modify cement hydration [37], and their impact on CaCl2 efficiency deserves 

attention. 

The purpose of this portion of the study was to investigate the influence of cement 

mineralogy, more specifically C3A and alkali content, on the accelerating efficiency of pure CaCl2 

and commercial chloride-based accelerator.  Identification of specific cement compounds affecting 

CaCl2 performance can enable the engineers to make informed decisions on the appropriate 

materials selection for concrete mixtures in different construction applications. 

2.2  Experimental Procedures 

2.2.1  Materials  

Three cements of similar fineness (in terms of Blaine fineness and mean particle size) and 

similar C3S content, but variable C3A, C4AF composition and variable alkali content were selected 

for this study.  Their density was determined following ASTM C188, while the fineness was 

measured using a Blaine air-permeability apparatus in accordance with ASTM C204.  Particle size 

distribution was determined using the LA-950 laser scattering particle size analyzer manufactured 
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by Horiba, which was then used to calculate the mean particle size (MPS).  MPS has been shown 

to have a better correlation with heat of hydration of Portland cements compared to Blain fineness 

at 1, 3 and 7 days [38].   

The chemical oxide composition was determined by x-ray fluorescence (XRF) in 

accordance with ASTM C114, and mineralogical composition was obtained from Rietveld 

refinement performed with HighScore Plus software 3.0 from Panalytical.  X-ray diffraction scans 

for Rietveld refinement were collected on X’Pert 3040Pro diffractometer with Cu K radiation 

manufactured by Panalytical.  The tension and current were set to 45 kV and 40 mA respectively.  

The following optics settings were used: 1 divergence slit, 0.2 mm receiving slit and 1 anti-

scatter slit. Rietveld analysis was carried out using the HighScore Plus 3.0 software by Panalytical.   

Two accelerators were used in this study: a pure reagent grade CaCl2 and a commercial 

CaCl2-based Type E accelerating admixture (ASTM C494).  The composition of the Type E 

admixture was obtained from the materials safety data sheet provided by the manufacturer and is 

listed in Table 2.1.  A 4% volumetric solution was prepared with pure CaCl2 and was used in place 

of the mixing water.  This corresponded to 2% CaCl2 addition by mass of cement.  The commercial 

accelerator was used at the dosage that is typically used for rapid-repair concrete mixtures for 

jointed plain concrete pavement.  This dosage corresponded to 1-2% CaCl2 addition by mass of 

cement based on the ranges listed in Table 2.1.  

Table 2.1.  Commercial accelerator composition 

Component Percentage 

Calcium Chloride 25-50 

Potassium Chloride 1-10 

Sodium Chloride 1-10 

Triethanolamine 1-10 
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2.2.2  Methodology 

Acceleration of early-age hydration by CaCl2 and commercial accelerator was evaluated 

by measuring the heat of hydration (HOH) for each cement with and without addition of 

CaCl2/accelerator.  TAMAIR isothermal conduction calorimeter manufactured by TA Instruments 

was used to measure the heat flow and the total heat evolved following ASTM C1702, Method A, 

internal mixing.   

The degree of hydration α(t) was calculated based on the total heat evolution measured by 

isothermal calorimetry according to:  

ሻݐሺ	ߙ ൌ ுሺ௧ሻ

ுೠ
              Equation 2.1 

where H(t) is the total heat released at time t and Hu is the ultimate heat of the mixture, which is 

calculated based on the cementitious content of the mixture  [26], [39].  Since the mixtures in this 

study did not contain any supplementary cementitious materials (SCMs), Hu was equal to the total 

heat of hydration of cement Hcem , which is a function of cement composition. 

Hcem=500PC3S+260PC2S+866PC3A+420PC4AF+624PSO3+1186PFreeCaO+850PMgO            Equation 2.2 

where P  is the mass of ith component to total cement content ratio. 

Compressive strength testing for as-received cements was performed on mortar mixes 

prepared in accordance with ASTM C109.  50 mm mortar cubes were tested at the ages of 4, 8, 12 

and 24 hours, and 3 and 7 days following ASTM C305. 

As-received Cement 2 was doped with C3A, gypsum and alkali sulfates and alkali 

hydroxides to the levels of Cement 3 in order to identify the compounds responsible for the reduced 

acceleration with addition of CaCl2/Type E admixture.  C3A (purity of 97.6% cubic based on 

Rietveld refinement) was obtained from CTL.  C3A was weighed out, added to Cement 2 and 

mixed by hand to a homogeneous appearance prior to conducting isothermal calorimetry 
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measurements.  The rest of the doping compounds were reagent-grade chemicals.  Gypsum and 

alkalis were also added to cement in the form of dry powder and mixed by hand.  When cement 

was doped with more than one compound, the same procedure was adopted.  

The accelerating ability of CaCl2 and commercial accelerator was evaluated by comparing 

the time of occurrence and the magnitude of the main hydration peak of the accelerated sample to 

its counterpart with no accelerator.  For example, time and peak magnitude of Cement 2+K2SO4 

sample was subtracted respectively from time and peak magnitude of Cement 2+K2SO4+CaCl2 

sample in order to evaluate the accelerating ability of CaCl2 with increasing potassium content. 

2.3  Results and Discussion 

2.3.1  As-Received Cements 

The elemental oxide composition, mineralogical composition and physical properties of 

the as-received cements are depicted in Tables 2.2 and 2.3 where it can be seen that all cements 

had similar Blaine fineness, MPS and C3S content.  The density for all three cements was similar 

as well.   

It is also noted that cements had variable C3A and alkali contents which increased from 

2.5% and 0.58% respectively for Cement 1 to 9.3% and 1.13% for Cement 3.  The ferrite phase 

content and SO3/Al2O3 ratio were very similar for Cements 1 and 2. Cement 3 had the highest C3A, 

highest alkali content, highest SO3/Al2O3 ratio, and lowest C4AF.  Although the total Al2O3 content 

of all cements was similar, the Al2O3 present in C4AF is expected to be less reactive than Al2O3 

present in C3A, and therefore is not expected to have a major effect on the heat of hydration during 

the first 24 hours. 
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Table 2.2.  Chemical oxide composition of as-received cements 

Analyte Cement 1 Cement 2 Cement 3 

SiO2 (wt. %) 20.74 20.01 18.67 

Al2O3 (wt. %) 4.45 5.15 5.7 

Fe2O3 (wt. %) 4.07 3.86 2.63 

CaO (wt. %) 64.83 63.52 60.15 

MgO (wt. %) 0.92 0.92 2.92 

SO3 (wt. %) 2.58 3.18 4.83 

Na2O (wt. %) 0.07 0.12 0.41 

K2O (wt. %) 0.28 0.42 1.1 

TiO2 (wt. %) 0.26 0.26 0.25 

P2O5 (wt. %) 0.1 0.13 0.26 

Mn2O3 (wt. %) 0.08 0.01 0.07 

SrO (wt. %) 0.04 0.06 0.28 

Cr2O3 (wt. %) 0.01 0.01 0.01 

ZnO (wt. %) 0.05 0.01 0.06 

L.O.I(950°C) 1.22 2.4 2.58 

Total (wt. %) 99.72 100.07 99.91 

Alkalis as Na2Oeq (wt. %) 0.25 0.40 1.13 

SO3/Al2O3 0.58 0.62 0.85 
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Table 2.3.  Mineralogical composition and physical properties of as-received cements 

Cement Phase/Property Cement 1 Cement 2 Cement 3 

Alite (%) 58.9 61.9 59.5 

Belite (%) 19.6 13.9 13.7 

Brownmillerite (%) 10.1 9.7 5.5 

C3A cubic (%) 2.5 5.8 9.3 

C3A orthorhombic (%) 0.0 1.0 0.0 

Periclase (%) 0.0 0.0 1.6 

Arcanite (%) 0.0 0.1 0.0 

Syngenite (%) 0.9 1.5 2.1 

Aphthitalite (%) 0.0 0.0 0.3 

Portlandite (%) 1.3 0.1 0.5 

Calcite (%) 3.5 1.7 1.6 

Gypsum (%) 0.3 4.2 4.4 

Hemihydrate (%) 0.6 0.0 1.5 

Anhydrite (%) 1.9 0.0 0.0 

Blaine Fineness (m²/kg) 414 417 405 

Mean Particle Size (µm) 13.15 12.9 14.35 

Density (Mg/m3) 3.16 3.14 3.14 
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2.3.1.1  Isothermal Calorimetry 

2.3.1.1.1  As-Received Cements 

Heat of hydration curves for Cements 1, 2 and 3 are presented in Figures 2.1-2.3.  

Isothermal calorimetry of cement pastes typically shows three peaks on the heat flow curves.  The 

first peak is due to rapid initial dissolution of cement phases.  The second, or main hydration peak, 

is typically associated with the hydration of silicates, while the following peak, which can be seen 

as a shoulder on the right side of the main hydration peak, is attributed to the reaction of aluminates 

[40].  This shoulder is also referred to as the sulfate depletion point.  In a properly sulfated cement, 

the sulfate depletion point is expected to occur after the main hydration peak [41].  Appearance of 

the aluminate peak on the left side of the main hydration peak is an indication that the system does 

not contain enough sulfate to adequately control the aluminate reaction, which can have a retarding 

effect on C3S hydration [42].   

The heat flow curve for Cement 1 non-accelerated sample showed a shoulder occurring on 

the left side of the main hydration peak suggesting that this cement was undersulfated (Figure 2.1).  

Addition of both CaCl2 and Type E admixture significantly accelerated Cement 1 hydration as 

evidenced by the increased heat flow rate, increased magnitude of the main hydration peak and 

reduced timing of its occurrence.  Only two peaks are present in these samples with no discernable 

aluminate peak.  CaCl2 is known to accelerate the C3S hydration [43]–[45].  It has also been shown 

to accelerate the reaction of C3A with gypsum [36], [46], [47].  The accelerating effect of pure 

CaCl2 and commercial accelerator on Cement 1 hydration appears to be very similar; only minor 

differences are observed in the timing and magnitude of the main hydration peaks in these samples.   
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Figure 2.1.  Heat of hydration curves for as-received Cement 1 pastes 

The sulfate depletion point in Cement 2 non-accelerated sample appears on the right side 

of the main hydration peak indicating that this cement was properly sulfated (Figure 2.2).  For the 

Cement 2 sample with pure CaCl2, only two peaks are visible similar to the Cement 1+CaCl2 

sample.  However, for the sample with commercial accelerator, a third peak appears after the main 

hydration peak, which is most likely due to the reaction of aluminates.  While the main hydration 

peak shifted to shorter times, from 10 hours to 5 hours after mixing with addition of accelerator, 

the sulfate depletion point only moved by 2 hours, from 14 hours to 12 hours.  It appears that, at 

least in this case, the commercial accelerator has a much greater effect on the silicate hydration 
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compared to the aluminates.  In contrast to Cement 1 samples, there is a clear difference in the 

magnitudes of the main hydration peaks in Cement 2+CaCl2 and Cement 2+accelerator samples.    

 

Figure 2.2.  Heat of hydration curves for as-received Cement 2 pastes 

Cement 3 also appeared to be properly sulfated (Figure 2.3).  Additions of pure CaCl2 or 

Type E admixture produced main hydration peaks of equal magnitude, however, they were not 

significantly higher than the main hydration peak of the non-accelerated sample indicating a 

significant reduction in CaCl2 accelerator efficiency with this cement.  Only two hydration peaks 

were discernable with either addition of pure CaCl2 or commercial accelerator. 
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Figure 2.3.  Heat of hydration curves for as-received Cement 3 pastes 

Based on these results, it seems that pure CaCl2 is not sensitive to the mineralogical 

differences between Cements 1 and 2, as the timing and magnitude of the main hydration peak 

were very similar, but is sensitive to the differences between these two cements and Cement 3.  

However, for the commercial accelerator, the heat of hydration measurements show sensitivity to 

mineralogical and chemical oxide composition between Cements 1 and 2 as well as Cement 3.   

First, considering Cements 1 and 2, the chemical oxide content of these cements is very 

similar (Table 2.2), although there are differences in their mineralogical composition (Table 2.3).  

While Cement 1 had 2.5% C3A present in the cubic form, Cement 2 had cubic and orthorhombic 

C3A (5.8% cubic and 1.0% orthorhombic).  Their reactivity is known to be different with the latter 

being more reactive.  Although the SO3/Al2O3 ratio of these cements was very similar, the majority 

of sulfates in Cement 1 were present as natural anhydrite, while Cement 2 contained gypsum.  

While solubility of anhydrite obtained through dehydration of gypsum during the grinding process 
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(also referred to as soluble anhydrite) is higher than solubility of gypsum [48], solubility of natural 

anhydrite is lower than that of gypsum [49], which explains why the sulfate depletion point occurs 

on the left side of the main hydration peak for Cement 1 despite a seemingly adequate SO3/Al2O3 

ratio.  Therefore, it appears that for a C3A content in the range of 2.5 to 6.8%, the availability of 

sulfate ions or the presence of a small amount of orthorhombic C3A has no significant effect on 

the accelerating efficiency of pure CaCl2.   

Comparing the composition of Cements 2 and 3 can help identify the phases or oxides that 

may be responsible for the reduced performance of pure CaCl2 observed with Cement 3.  Cement 

3 had a high C3A (cubic) content of 9.3%, high alkali content (1.13% as Na2Oeq), mostly due to 

high K2O, and higher SO3/Al2O3 ratio (0.85), which is expected since high-alkali cements require 

higher sulfate amounts to adequately control the aluminate reaction [41].  Cement 3 also had lower 

ferrite phase content.  While C4AF is generally considered to have a much lower reactivity 

compared to C3A, Wang et al. [50] recently showed that hydration of ferrites in industrial clinkers 

can contribute notable amounts of heat during early-age cement hydration. Additionally, CaCl2 

has been shown to accelerate C4AF reaction with gypsum [36].   

As for the variation in performance of the commercial accelerator, it can possibly be 

attributed to increasing C3A content, increasing the amount of readily-available sulfates, and 

increasing alkali content.  Since the C4AF content of Cement 1 and Cement 2 was very similar, it 

does not seem likely to be responsible for reduced acceleration of Cement 2 with commercial 

accelerator addition compared to Cement 1.   

2.3.1.1.2  Doped Cements 

In order to test the hypothesis that high C3A content, or increased sulfate or alkali content 

of Portland cements may be responsible for reduced effectiveness of pure CaCl2 and chloride-
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based commercial accelerator, Cement 2 was doped with these compounds to the levels of Cement 

3.  Cement 2 was selected over Cement 1 for the following reasons: it was properly sulfated, its 

C3A content was more typical of a Type I/II cement than that of Cement 1, and the heat flow curve 

of the non-accelerated Cement 2 sample was very similar to that of Cement 3. 

First, Cement 2 was doped with C3A to 9.3%.  Addition of C3A is expected to increase the 

aluminate peak and shift the sulfate depletion point to an earlier time, which can be seen in Figure 

2.4 for the non-accelerated sample.  A slight reduction in the main hydration peak is also expected 

as increasing amounts of aluminate ions in solution reduces the reactivity of the silicates [51].  The 

same effects were observed for the sample containing commercial accelerator, although the effect 

on the aluminate peak was more pronounced.  However, the heat flow rate during the acceleration 

period as well as the timing and magnitude of the main hydration peak remained unaffected.  

Increasing the C3A content did not have a significant effect in the presence of pure CaCl2.  Increase 

in the C3A content does not appear to result in reduced accelerating effect of either pure CaCl2 or 

commercial accelerator. 

Cement 2 was also doped with gypsum to increase its SO3 content from 3.18% to the level 

of Cement 3 cement (4.83%).  Addition of gypsum delayed the sulfate depletion point in the non-

accelerated paste sample and increased the rate of the silicate reaction as evidenced by the 

increased rate of heat flow during the acceleration period and a higher magnitude of the main 

hydration peak (Figure 2.5).  This was consistent with the previous observations that in a properly 

sulfated system, C3S hydration is accelerated by the presence of gypsum [41], [42].  The aluminate 

peak was significantly decreased in the doped sample with commercial accelerator, while no 

change in the main hydration peak was observed.  However, addition of gypsum in the presence 
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of pure CaCl2 slightly decreased the rate of heat flow during the acceleration period and the 

magnitude of the main hydration peak. 

 

Figure 2.4.  Effect of increased C3A content on heat of hydration with pure CaCl2 and 

commercial accelerator 

Figures 2.6- 2.9 show the heat flow profiles for Cement 2 doped with alkalis.  Alkalis can 

be present in cement in the form of sulfates or as oxides incorporated into the crystal structure of 

cement phases [48].  Although the main difference in the equivalent alkali content of the cements 

used in this study was due to the presence of potassium, addition of both sodium and potassium 

was evaluated to determine if the possible reduction of acceleration due to an increase in the alkali 

content was cation-specific.  Both alkali hydroxides and alkali sulfates were used for the doping.  

Potassium compounds were added to increase the K2O content of Cement 2 cement to the level of 
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Cement 3; sodium compounds were added to increase the equivalent alkali content (Na2Oeq) to the 

level of Cement 3 since the Na2O content of all three cements were not significantly different. 

 

Figure 2.5.  Effect of SO3 content on heat of hydration with pure CaCl2 and commercial 

accelerator 

Addition of NaOH increased both reactions of silicates and aluminates in the non-

accelerated sample, although this increase appeared to be more significant for the aluminate 

hydration (Figure 2.6).  Acceleration of C3S [52], [53] and cement hydration [54], [55] with NaOH 

addition has been previously reported.   Bu and Weiss [54] attributed the increase in the hydration 

rate to the decrease in the solubility of CH with NaOH addition, which causes finer CH crystals to 

precipitate thus increasing the nucleation rate.  As for the C3A hydration, increased dissolution of 

C3A has been reported with increase in alkali content [56].  It has also been well established that 
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high-alkali cements require higher sulfate amounts to properly control the reaction of aluminates 

[41], possibly due to the increase aluminate dissolution.  The increase in the aluminate peak, 

therefore, can be explained by the reduced ability of the sulfate present in the Cement 2 to control 

the aluminate reaction with increased alkali content.  In the presence of commercial accelerator, a 

slight reduction in the magnitude of the main hydration peak was observed, while in the presence 

of pure CaCl2, the magnitude of the main hydration peak was reduced by half.  Since commercial 

accelerator contains NaCl, further addition of sodium ions did not appear to compromise 

accelerator effectiveness.   

 

Figure 2.6.  Effect of NaOH on heat of hydration with pure CaCl2 and commercial 

accelerator 
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KOH addition to the non-accelerated sample also increased the aluminate peak and shifted 

the sulfate depletion point to the left, but it did not affect the main hydration peak (Figure 2.7).  In 

the presence of pure CaCl2, the main hydration peak was reduced as in the case of NaOH, however, 

the decrease in its magnitude was not as drastic.  Additionally, the time of occurrence of the peak 

maximum was delayed by approximately one hour, while no shift was observed with the addition 

of NaOH.   

 

Figure 2.7.  Effect of KOH on heat of hydration with pure CaCl2  

Na2SO4 added to the non-accelerated sample acted as an accelerator.  It increased the rate 

of heat flow during the acceleration period, the magnitude of the main hydration peak, and shifted 

the timing of its occurrence to the left by approximately one hour (Figure 2.8).  This is consistent 

with previous reports that alkali sulfates accelerate hydration [57].  However, in the presence of 
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pure CaCl2, Na2SO4 decreased both the rate of heat flow during the acceleration period and the 

magnitude of the main hydration peak and delayed its time of occurrence by approximately 0.5 

hours.   

 

Figure 2.8.  Effect Na2SO4 on heat of hydration with pure CaCl2  

K2SO4 addition produced similar effects to Na2SO4 (Figure 2.9).  In the non-accelerated 

sample, both the silicate and aluminate reactions were accelerated, although very slightly and to a 

much lesser degree than in the presence of Na2SO4.  In the presence of pure CaCl2, K2SO4 addition 

retarded the main hydration peak, same as Na2SO4 addition, although the decrease in its magnitude 

was greater than with Na2SO4.  In the presence of commercial accelerator, K2SO4 addition also 

reduced the heat flow rate and the magnitude of the main hydration peak, although its timing was 

unaffected. 

Cement 2+CaCl2 
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Figure 2.9.  Effect of K2SO4 on heat of hydration with pure CaCl2 and commercial 

accelerator 

The findings indicate that for non-accelerated pastes, both alkali sulfates and hydroxides 

have an accelerating effect on cement hydration, with sodium salts being more effective than 

potassium salts.  With accelerator addition, both pure CaCl2 and commercial Type E admixture, 

the reverse effect is observed: increasing the alkali content reduces the magnitude of the main 

hydration peak.   

After the examining the effect of individual factors, the effect of C3A/gypsum/K2SO4 

combinations was examined by doping the Cement 2 cement with two of these phases at a time in 

order to identify any synergistic interactions between these phases.  Figure 2.10 shows the 

combined effect of C3A and K2SO4 on heat flow.  In the non-accelerated sample both the silicate 



26 
 

and aluminate hydration is accelerated compared not only to the as-received Cement 2 sample, but 

also with respect to Cement 2+C3A and Cement 2+K2SO4 pastes.  In the presence of commercial 

accelerator, increased C3A and increased alkali content translated to a greater reduction of the main 

hydration peak compared to Cement 2, Cement 2+C3A and Cement 2+K2SO4 samples and a greater 

shift to the right in its timing.   

 

Figure 2.10.  Effect of C3A and K2SO4 on heat of hydration with commercial accelerator 

Figure 2.11 shows the effect of K2SO4 and gypsum addition on heat flow.  In the non-

accelerated sample there was no significant effect on the main hydration peak compared to the as-

received Cement 2; however, the aluminate peak was suppressed with no visible sulfate depletion 

point.  In the sample with pure CaCl2, greater reduction in the magnitude of the main peak is 

observed compared to the Cement 2, Cement 2+gypsum and Cement 2+K2SO4; in this case the 
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effect appears to be additive.  The reduction in the maximum heat flow is approximately the same 

as the sum of the reductions achieved with K2SO4 and gypsum additions separately.  This is in 

contrast to the C3A and K2SO4 combination, where the reduction in the maximum heat flow was 

greater than the combined sum, which suggests an interaction between C3A and K2SO4 and no 

significant interaction between K2SO4 and gypsum.  This is further confirmed by the timing of the 

main hydration peak, which was the same as for the Cement 2+K2SO4 sample with pure CaCl2. 

 

Figure 2.11.  Effect of K2SO4 and gypsum on heat of hydration with pure CaCl2  

A combined effect of high C3A, high alkali content and high sulfate content was examined 

as well (Figure 2.12).  In the non-accelerated sample, the main hydration peak is similar to that of 

the Cement 2+C3A+K2SO4 sample, except the aluminate peak is suppressed by the addition of 

gypsum.  In the presence of pure CaCl2, the magnitude and timing of the main hydration peak are 

very similar to those of the Cement 2+K2SO4+gypsum, although the peak shape is broader, most 
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likely due to the reaction of aluminates.  In the case of commercial accelerator, the main hydration 

peak is very similar to that of the Cement 2+C3A+K2SO4 sample, except in the Cement 2 

+C3A+K2SO4 with accelerator sample the peak is broader than in Cement 2+C3A+K2SO4 +gypsum 

sample with accelerator due to the lower sulfate content of Cement 2+C3A+K2SO4.   

 

Figure 2.12.  Combined effect of C3A, K2SO4 and gypsum on heat of hydration with pure 

CaCl2 and commercial accelerator 

In summary, in the case of pure CaCl2, increasing C3A did not have an effect on the rate of 

heat flow, the magnitude of the main hydration peak or the timing of its occurrence.  Increasing 

gypsum content slightly decreased the magnitude of the peak, but the rest of the parameters were 

unaffected.  Addition of alkalis, both as sulfate salts and as hydroxides decreased the magnitude 

of the hydration peak and delayed the time of its occurrence by approximately an hour, except in 
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the case of NaOH where the timing was unaffected despite a significant reduction in the peak 

magnitude.   

In the presence of commercial accelerator, increasing C3A, gypsum content and addition 

of NaOH did not have an effect on the rate of heat flow during the acceleration period, the 

magnitude of the main hydration peak or the time of its occurrence.  Addition of K2SO4 alone 

reduced the magnitude of the main peak, but its timing was unaffected.  A further reduction in the 

peak magnitude and a slight delay in its timing were observed when both C3A and K2SO4 were 

added to Cement 2.  No further changes in the timing or the magnitude of the main hydration peak 

were achieved by adding C3A+K2SO4+gypsum. 

2.3.1.2 Compressive Strength 

While isothermal calorimetry is an excellent tool for following the progress of cement 

hydration through heat released, it is the early-age compressive strength which in often the 

parameter of interest in practice, especially with addition of accelerators.   

Compressive strength measured for the as-received cements is shown in Figures 2.13-2.15.  

Significant increase in compressive strength at all ages was observed for Cement 1 with pure CaCl2 

addition (Figure 2.13).  Increase in the early-age strength with commercial accelerator was slight, 

somewhat increasing after 24 hours, although the 7-day strength showed a slight decrease when 

compared to the mixture with no accelerator. 

Pure CaCl2 significantly increased compressive strengths of Cement 2 as well (Figure 

2.14.).  Commercial accelerator produced higher strengths at early ages (up to 24 hours) compared 

to Cement 1, although the strength drop at 7 day was more pronounced. 
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Figure 2.13.  Compressive strength development for Cement 1 

 

Figure 2.14.  Compressive strength development for Cement 2 
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For Cement 3, addition of pure CaCl2 increased early strengths only slightly (Figure 2.15), 

although after 24 hours strength gain began to improve and at 7 days exceeded that of the non-

accelerated sample by almost 7 MPa, which is comparable to the other cements at this age.  

Commercial accelerator had minimal effect on early-age strength, although at 72 and 168 hours an 

increase was observed compared to the non-accelerated sample. 

 

Figure 2.15.  Compressive strength development for Cement 3 

For mixtures with constant w/c ratio, curing temperature and similar cement fineness, the 

early-age compressive strength is primarily a function of the C3S content of cement.  It is not 

surprising, therefore, that compressive strengths of non-accelerated samples were generally similar 

at all ages except at 7 days, when Cement 3 mortar showed a decrease in compressive strength 

compared to the other samples.  Odler and Wonnemann [58] reported a significant decrease in 
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compressive strength in the presence of alkali sulfates at all ages up to 28 days, so the decrease in 

Cement 3 strength at 7 days could be due to its higher syngenite content .     

Similar to isothermal calorimetry results, higher strengths were observed with addition of 

CaCl2 than commercial accelerator for Cements 1 and 2.  When CaCl2 was added to the samples, 

compressive strengths of Cement 1 and Cement 2 samples were very similar, while compressive 

strength of Cement 3 was lower at all ages.  Addition of commercial accelerator, on the other hand, 

produced similar compressive strengths for all cements during the first 24 hours, after which time 

Cement 3 had the highest compressive strength. 

Bentz et al. [6] showed that compressive strength of mortar mixtures prepared at different 

w/cm ratios is a linear function of H(t) normalized by the amount of water present in the mixture.  

Oey et al. [5] applied this concept to OPC+SCM mixtures containing accelerator.  Since all the 

mixtures in this study had the same w/c ratio, H(t) was normalized per gram of cement.  To further 

eliminate the between-cement variability, compressive strength data for all the mixes was plotted 

against the degree of hydration calculated from isothermal calorimetry using Equations 2.1 and 

2.2 (Figure 2.16).  The majority of the data falls in the ±20% error bounds (indicated by the dashed 

lines in Figure 2.16) with a few outliers which is consistent with the results reported by Bentz et 

al. [6] and Oey et al. [5].   

Although a good coefficient of determination was obtained when all the dataset were 

combined (Figure 2.16), the fit was improved when the mixtures were plotted separately based on 

the accelerator used (Figures 2.17-2.19).  Figures 2.17-2.19 show that the scatter in the data in 

Figure 2.16 was mostly due to the presence of accelerator/CaCl2 and not the differences in the 

mineralogical composition of cements.  It is recognized that while the degree of hydration is a 

measure of the progress of chemical processes occurring during cement hydration, compressive 
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strength is a result of both chemical and physical changes.  Nonetheless, Figures 2.17-2.19 provide 

a good correlation between these two parameters at a w/c ratio of 0.5.   

 

Figure 2.16.  Compressive strength development as a function of degree of hydration.  Data 

includes non-accelerated samples, samples with pure CaCl2 and with commercial 

accelerator 
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Figure 2.17.  Compressive strength development for non-accelerated mortars 

 

Figure 2.18.  Compressive strength development for mortars with pure CaCl2 
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Figure 2.19.  Compressive strength development for mortars with commercial accelerator 

It is interesting to note that when pure CaCl2 or a commercial CaCl2-based accelerator were 

added, the minimum degree of hydration at which mortar begins to gain finite strength increased 

from 0.072 to 0.131 and 0.124, respectively.  Bentz et al. [59], [60] had previously demonstrated 

that the degree of hydration at which setting occurs increases with increase in cement fineness 

even though setting time is decreased.  The authors explained that when cement fineness increases, 

hydration products have to form an increased number of “particle-to-particle bridges” in order to 

develop a connected microstructure that is able to resist a force.  Calcium chloride increases the 

number of hydration product nuclei [5], which explains the increase in the degree of hydration at  

which a connected microstructure is formed and strength developments begins.  It can also be seen 

in Figures 2.17-2.18 that addition of pure CaCl2 increased the rate of strength gain as expected.  

The rate of strength gain was essentially unchanged with the Type E accelerator addition compared 
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to the non-accelerated mixtures, which is consistent with observations by Oey et al. [5].  Although 

compressive strengths were not measured for the doped cements, it is expected that samples 

showing lower heat release will have lower compressive strengths. 

2.3.1.3  X-ray Diffraction 

Chloride ions are known to substitute for sulfate in the reaction of aluminates [61], [62].  It 

has been suggested that this abstraction of chlorides from the pore solution may be responsible for 

decreased effectiveness of CaCl2 in high-C3A cements [16].  XRD measurements were conducted 

on pastes of as-received cements with and without the addition of CaCl2/accelerator in order to 

identify any hydration products that may possibly be responsible for decreased effectiveness of 

chlorides.   

X-ray diffraction patterns for the as-received cements were collected at 4 and 24 hours.  

For the non-accelerated samples, 4 hours corresponded to the beginning of acceleration period and 

low degree of hydration calculated from isothermal calorimetry (0.07 for Cement 1, 0.04 for 

Cement 2 and 0.05 for Cement 3).  With addition of pure CaCl2 or commercial accelerator, the 

degree of hydration of Cements 1 and 2 more than doubled, although only a slight effect was 

observed for Cement 3.  A comparison at equal age was selected rather than equal degree of 

hydration as it is of more practical importance since accelerators are added to shorten setting and 

strength gain.   

The 24-hour testing age was selected based on Shideler’s work [14] which states that 

“CaCl2 is only active during the first 24 hours.”  Twenty-four hours was selected as a second point 

of comparison.  If CaCl2 is ineffective beyond this time, it was expected that XRD measurements 

may show evidence of removal of chloride ions from solution through formation of Cl-containing 

phases. 
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Figure 2.20.  XRD scan of Cement 1 samples at 4 hours.  Notation: E= ettringite, F=ferrite, 

A=alite 

Figures 2.20 through 2.25 show diffractograms in the 2θ angular range of 7-17°, which is 

the region of the strongest diffraction peaks for chloroaluminate hydrates.  Figures 2.20 and 2.21 

show collected diffractograms for Cement 1 samples at 4 and 24 hours respectively.  No significant 

differences in hydration phases were observed at 4 hours (Figure 2.20) between the accelerated 

and non-accelerated sample apart from the decrease in the alite peak, which is consistent with 

isothermal calorimetry results.   

At 24 hours (Figure 2.21), formation of Friedel’s salt is observed in the samples with CaCl2 

or commercial accelerator.  Only a slight decrease is observed in the peak of the ferrite phase, 

bringing into question the hypothesis proposed by Jupe et al. [13] that greater accelerating effect 

of CaCl2 on low-C3A oilwell cements is due to formation of “ferrihydrite gel.” 
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Figure 2.21.  XRD scan of Cement 1 samples at 24 hours.  Notation: E= ettringite, 

F=ferrite, A=alite, FS=Friedel’s salt 

As for Cement 2 diffractograms, the most notable differences at 4 hours (Figure 2.22) are 

observed in the magnitudes of the ettringite and gypsum peaks for samples with pure CaCl2 or 

commercial accelerator, which is consistent with findings by Tenoutasse [63], who reported that 

CaCl2 accelerates the reaction of C3A with gypsum.  There is a clear increase in the magnitude of 

the ettringite peak with the addition of calcium chloride or commercial accelerator and a 

corresponding decrease in the magnitude of the gypsum peak. 
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Figure 2.22.  XRD scan of Cement 2 samples at 4 hours.  Notation: E= ettringite, 

G=gypsum, F=ferrite, A=alite 

At 24 hours (Figure 2.23), similar to Cement 1, Cement 2 samples had similar ferrite peaks.  

Also, accelerated samples showed the presence of Friedel’s salt.  This identification of Friedel’s 

salt in Cement 1 and 2 accelerated samples is consistent with findings by Suryavanshi et al. [62] 

who measured the chloride ion concentration at 9 hours and 3 days.  They showed that chloride 

binding is minimal at 9 hours, less than 2% of the total Cl- ions.   By 3 days, however, the 

percentage of bound chlorides increased to 38%.  It appears that chloride binding did not occur 

during the early hydration stages, whether chlorides are added in the form of NaCl [62] or CaCl2. 
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Figure 2.23.  XRD scan of Cement 2 samples at 24 hours.  Notation: E= ettringite, 

G=gypsum, F=ferrite, A=alite, FS=Friedel’s salt 

The most notable feature of Cement 3 diffractograms at 4 hours is the increase in the 

magnitude of the gypsum peak with CaCl2 or commercial accelerator addition (note the difference 

in scales in Figure 2.24).  Although gypsum structure is subject to preferred orientation [64], it 

may be possible for gypsum to precipitate from the reaction of CaCl2 solution with K2SO4 [65].  

However, by 24 hours, the gypsum is consumed in all the Cement 3 samples, similar to what was 

observed for Cement 2 at this age. 
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Figure 2.24.  XRD scan of Cement 3 samples at 4 hours.  Notation: E= ettringite, 

G=gypsum, F=ferrite, A=alite 

Additionally, ettringite peaks in Cement 3 samples are similar regardless of the presence 

of accelerator as with the other cements.  What is notable, however, is the absence of Friedel’s salt 

in any of the Cement 3 samples (Figure 2.25).  Therefore, it does not appear that the greater effect 

of chlorides on low-C3A mixtures is due to their lower chloride-binding capacity through Friedel’s 

salt formation.  It is not clear what happened to the chlorides in Cement 3 samples as no other 

significant differences in mineralogy were detected at 24 hours.      
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Figure 2.25.  XRD scan of Cement 3 samples at 24 hours.  Notation: E= ettringite, 

F=ferrite, A=alite 

The reduced accelerating efficiency may possibly be explained by the increased adsorption 

of chloride ions by the C-S-H surface in high-alkali cements.  pH is increased in the presence of 

alkalis.  An increase in the pH corresponds to an increase in the negative surface charge of C-S-H, 

which in turn leads to an accumulation of positively charged calcium ions [66].  Labbez et al. [66] 

state that a larger amount of calcium ions are adsorbed than what is required to neutralize the 

surface charge, which makes the apparent charge of the C-S-H positive.  Negatively charged 

chloride ions are in turn attracted to the now positively charged C-S-H surface in order to achieve 

charge neutrality.  Several studies have previously reported adsorption of chlorides by C-S-H [67]–

[69].  Although the chloride ions are not chemically bound to C-S-H [66], the attractive forces may 
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be sufficient to make these ions unavailable for acceleration of further hydration. This hypothesis 

is in agreement with the absence chloride-containing crystalline hydration products in Cement 2 

samples with CaCl2 or commercial accelerator.  However, further study, such as pore solution 

analysis at various ages would be required to confirm this hypothesis. 

2.4 Conclusions 

It is clear that alkalis, specifically K2SO4, have a significant effect on chloride-based 

accelerators performance whether pure CaCl2 or Type E commercial admixture.  Increased C3A or 

gypsum content of cement alone did not appear to reduce accelerator performance; however, in 

combination with high alkali content, these phases can have a notable effect on chloride-based 

accelerator efficiency in terms of heat release as measured by isothermal calorimetry. Further 

investigation is needed to determine the cause of this reduction in the accelerating efficiency in the 

presence of alkalis.  Cement alkali content needs to be taken into account prior to accelerator 

selection as reduced heat release in high-alkali cements with chloride-based accelerator is expected 

to correlate with reduced compressive strength. 
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CHAPTER 3:  EFFECT OF CHLORIDE-BASED ACCELERATOR IN THE PRESENCE 
 

OF WATER-REDUCING AND RETARDING ADMIXTURE 
 

ON AUTOGENOUS SHRINKAGE2 
 

3.1 Introduction 

Modern construction often requires concrete to achieve high strengths at early ages.  In 

order to meet this requirement, mixtures are proportioned with low w/c ratio and large amount of 

accelerator.  To maintain workability, water-reducing admixtures (WRA) are added as well.  

Autogenous shrinkage is a known cause of early-age concrete cracking for mixtures with water-

cementitious (w/cm) ratios below 0.4.  The effect of w/c ratio, supplementary cementitious 

materials (SCMs), and shrinkage-reducing admixtures (SRAs) on autogenous shrinkage has been 

extensively studied [70]–[80].  Oliviera et al. [81] showed the advantages of using a combination 

of SRA and expansive admixture in reducing autogenous shrinkage in concrete.  The effect of 

other admixtures or their combinations, however, has not received much attention.   

Recently, Meagher et al. [82] measured free shrinkage deformation in concretes containing 

an accelerator, as well as air-entraining admixture (AEA) and WRA.  However, since the authors 

compared the performance of two types of accelerator, chloride-based and chloride-free, in 

combination with AEA and WRA, only one accelerator dosage was evaluated in this study.  

Additionally, free shrinkage measurements were performed under variable temperature profiles 

                                                 
2 This chapter was published in the Journal of the American Ceramic Society [24].  The citation style and numbering 
was modified from the published version to match the rest of the dissertation chapters.  Permission is included in 
Appendix A. 
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meant to simulate the initial concrete temperature rise due to hydration as well as temperature 

variation due to the diurnal temperature cycles.  Since addition of accelerator increases the rate of 

hydration and therefore the peak concrete temperature, resulting in higher thermal expansion with 

addition of accelerator, it is difficult to draw conclusions regarding the effect of accelerator on 

autogenous shrinkage specifically, as it cannot be separated from the effect of thermal dilation 

under these conditions.  Meagher et al. [82] were only able to comparatively assess the effect of 

accelerator on autogenous shrinkage after the first 20 hours when the temperature profiles of 

different concrete mixtures became similar. 

Calcium chloride-based accelerators are frequently used in rapid repair concrete mixtures 

for jointed plain concrete pavement (JPCP) [83].  In addition to large amounts of accelerator, these 

mixtures have low w/c ratios and high cement contents to ensure that pavement can be quickly 

opened to traffic.  Consequently, autogenous shrinkage and its contribution to microcracking is a 

concern [83].  Accelerators are most often used in conjunction with water-reducing admixtures, 

especially in rapid-repair concrete mixtures.  Lignosulfonate water reducing admixtures have been 

shown to reduce autogenous shrinkage when used as the only admixture [84], but it is unknown 

how much they contribute when used in combination with accelerating admixtures.  The use of 

accelerators has been suggested as one of the practical measures of reducing early-age autogenous 

shrinkage caused by other admixtures [85]; however, this suggestion has not been evaluated for 

the calcium chloride-based accelerators.  Additionally, when accelerators are added at the job site, 

erroneous dosages can be introduced by mistake, which may possibly affect autogenous shrinkage.   

Since most of the research on calcium chloride has been conducted in the 1970s, prior to 

autogenous shrinkage being recognized as a practical concern, there is a need to examine the 
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effects of large dosages of calcium chloride-based accelerating admixtures in combination with 

water-reducing admixtures on concrete autogenous shrinkage.     

Autogenous shrinkage is the bulk volume change that occurs without moisture loss to the 

environment or temperature change. This volume change results from the consumption of pore 

water and chemical shrinkage during hydration.  Drying shrinkage is the change in concrete 

volume due to loss of moisture to the environment that occurs after final setting.  The underlying 

mechanism for autogenous and drying shrinkage is essentially the same – removal and 

redistribution of water in the concrete pore structure.  Several mechanisms have been discussed in 

the literature as responsible for concrete shrinkage: tension of capillary water, disjoining pressure 

and surface tension of colloidal particles also referred to as surface free energy [8]–[12].  Although 

there is no clear agreement in the literature on which of these mechanisms is ultimately responsible 

for autogenous shrinkage, it is clear that changes in porosity or in C-S-H morphology are likely to 

affect autogenous shrinkage. 

It has been established that calcium chloride addition modifies C-S-H morphology and that 

this modification is dosage-dependent[86].  As for porosity, there are conflicting reports in the 

literature regarding the effect of CaCl2 on porosity.  Some authors reported that addition of CaCl2 

resulted in the coarsening of the pore structure or decrease in total porosity [16]–[19], while others 

observed an increase in the pore volume, specifically in the range of nitrogen-accessible porosity 

[20], [22].  Gouda et al. [20] showed an increase in the volume of pores with radii of 1-6 nm (which 

was the extent of reported data) with 2% CaCl2 addition, while Juenger and Jennings [22] observed 

that the addition of 1% CaCl2 increases the volume of pores with radii of 1-40 nm.  The 

disagreement regarding the effect of CaCl2 on total porosity can be reconciled by the work of 

Ramachandran and Feldman [86] who showed that this effect is dosage dependent. They observed 
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that 1% CaCl2 addition resulted in lowest total porosity, and total porosity began to increase with 

calcium chloride dosage.  However, they did not measure pore size distribution, and it is not clear 

how varying CaCl2 dosages affect different pore size ranges.  Li et al. [75] determined that the 

amount of pores in the 5-50 nm diameter range is strongly correlated to the amount of autogenous 

shrinkage.  Therefore, it appears that addition of CaCl2-based accelerator is likely to increase 

autogenous shrinkage, however, the dosage-dependency of the admixtures remains unclear, 

especially in the presence of other admixtures such as water-reducing admixtures.   

3.2 Experimental Procedures 

3.2.1 Materials 

Materials and concrete mixture designs used in this study have been previously described 

in [25].  Table 3.1 shows the cement mineralogical composition and physical properties.  

Table 3.1.  Cement composition and physical properties 

Cement Phase/ Property Type I/II 

Tricalcium Silicate, C3S (%) 52.0 

Dicalcium Silicate, C2S (%) 20.7 

Tricalcium Aluminate, C3A (%) 10.2 

Tetracalcium Aluminoferrite, C4AF (%) 5.7 

Gypsum 4.4 

Hemihydrate 1.6 

Anhydrite 0.2 

Calcite 2.1 

Lime 0.1 

Portlandite 2.0 

Quartz 0.9 

ASTM C204-Blaine Fineness (m²/kg) 442 
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Cement mineralogical composition was determined by x-ray diffraction (XRD).  XRD 

scans were collected using X’Pert 3040Pro diffractometer manufactured by Panalytical, and Cu 

K radiation.  The following settings were used: 1 divergence slit, 0.2 mm receiving slit, 1 anti-

scatter slit, 45 kV tension and 40 mA current.  Cement mineralogy was determined by Rietveld 

refinement, using Panalytical HighScore Plus 3.0 software.  Cement Blaine fineness was measured 

following ASTM C204.  

The coarse aggregate used in this study was #57 limestone, and silica sand was used as fine 

aggregate.  Their respective gradations are plotted in Figures 3.1 and 3.2 against the limits defined 

in ASTM C33.  Table 3.2 shows the concrete mixture proportions used in this study.  

 

Figure 3.1.  Coarse aggregate grading curve 
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Figure 3.2.  Fine aggregate grading curve 

Table 3.2.  Concrete mixture proportions 

Mix 
ID 

Cement 
(kg/m3) 

Coarse 
Aggregate 
(SSD) 
(kg/m3) 

Fine 
Aggregate 
(SSD) 
(kg/m3) 

Air-
Ent. 
(ml/m3)

Water- 
reducer 
(ml/m3) 

Water 
(kg/m3)

Accelerator 
(ml/m3) 

CaCl2 
Content 
(%) 

C 534 997 493 0 0 205 0 0 

CNA 534 997 493 116 1741 205 0 0 

CHA 534 997 493 116 1741 199 7427 0.5-1 

CA 534 997 493 116 1741 193 14853 1-2 

CDA 534 997 493 116 1741 181 29707 2-4 

 
Dosage of commercial calcium chloride-based accelerator was varied from no accelerator 

(CNA mixture) to 1375 ml/100 kg of cement (CHA mixture), which is in the middle of 

manufacturer’s recommended dosage range, to the upper limit of the recommended range at 2750 

ml/100 kg (CA mixture), which is the actual dosage used in Florida for rapid repair concrete 
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pavement mixtures, to well above the recommended dosage at 5500 ml/100 kg (CDA mixture) 

representing the accidental overdose.  Accelerator is added on-site to JPCP rapid repair mixtures; 

several instances of an accidental overdose have been reported in Florida.  With the exception of 

the control mixture (C), all mixtures studied here contained the same amounts of air-entraining 

admixture (AEA) and lignosulfonate water-reducing and retarding admixture (WRRA).  In 

addition to calcium chloride, the accelerator contained small amounts of potassium and sodium 

chloride and triethanolamine.  Water-to-cement ratio was maintained constant at 0.384.  The 

mixing water was adjusted by the water contained in the accelerating admixture, in order to 

maintain a constant w/c.  CaCl2 amounts were approximated for each mixture based on the CaCl2 

percentage range listed in the material safety data sheet for the accelerator and are also included 

in Table 3.2. 

3.2.2 Methodology 

Isothermal calorimetry measurements were performed on paste samples at 23°C following 

the ASTM C1702 Method A, internal mixing and using TAM Air 8-twin channel calorimeter 

manufactured by TA Instruments.  The mass of cement was 3.98 g and a constant w/c ratio was 

maintained at 0.384.  Since accelerator dosage varied depending on the mixture, the water present 

in the accelerator was included in the calculation of the w/c ratio.  The total mass of each sample 

varied from 5.51 g for C mixture to 5.67 g for CDA due to specific gravity of accelerating 

admixture (1.35).  Two samples were tested for each mixture.     

Isothermal calorimetry was used to calculate the degree of hydration α(t) for each mixture 

as a function of time to compare the mechanical property development and autogenous shrinkage 

on a degree of hydration basis, instead of age.  The degree of hydration was calculated by dividing 
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the total heat H(t) released by each mixture at time (t) by the total available heat Hu that can be 

generated by the cementitious components of the mixture: 

ሻݐሺ	ߙ ൌ ுሺ௧ሻ

ுೠ
              Equation 3.1 

Hu is quantified as a function of cement composition, the amount of the phase, and type of 

supplementary cementing materials present in the system[26]. 

Hu = Hcem Pcem + 461 Pslag + 1800 PFA-CaO PFA        Equation 3.2 

where 

Pslag = Slag mass to total cementitious content ratio, 

PFA = Fly ash mass to total cementitious content 

PFA-CaO = Fly ash-CaO mass to total fly ash content ratio,  

Pcem = Cement mass to total cementitious content ratio, 

Hcem = Heat of hydration of the cement (J/gram). 

Since the mixtures in this study only contained cement as a binder, Hu was equal to Hcem.  

Hcem was calculated as follows: 

Hcem=500PC3S+260PC2S+866PC3A+420PC4AF+624PSO3+1186PFreeCaO+850PMgO        Equation 3.3  

where  

Hcem = Total heat of hydration of Portland cement as describe above (J/gram)  

P = Mass of ith component to total cement content ratio.  

Concrete mixtures were prepared following ASTM C192, except that the accelerator was 

added at the end of the mixing period specified by the standard after which concrete was mixed 

for an additional 30 seconds.  As recommended by the manufacturer, the AEA was placed on the 

sand and WRRA was added to the mixing water.  Tensile strength and elastic modulus of 100x200 
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mm concrete cylinders were measured following ASTM C496 and C469.  Two specimens were 

tested in each case and their average value is reported. 

Free shrinkage frame (FSF) was used to measure autogenous deformations of the concrete 

mixtures under isothermal conditions (23°C) during the first 72 hours.  A detailed description of 

the FSF set-up used in this study can be found in [23].  Concrete was kept under isothermal 

conditions by circulating cooling water through the copper piping and sealed to prevent any 

moisture loss to the environment.  Initial readings were taken at final setting after the movable 

steel plates were backed off (Figure 3.3). 

 

Figure 3.3.  Free shrinkage frame 

The setting time for each mixture was determined according to ASTM C403 prior to the 

FSF experiments.  Linear deformation and concrete temperature readings were taken every minute 

for the duration of the free shrinkage test.  

In conjunction with free shrinkage testing, paste samples were prepared for XRD analysis 

and porosity determination through nitrogen adsorption.  Paste samples were sealed after mixing 

and cured for 3 days under isothermal conditions (23°C) to match the free shrinkage samples.  For 

XRD measurements, samples were demolded at 72 hours and immediately crushed by hand with 
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mortar and pestle.  XRD scans were collected immediately after powdering the samples using the 

settings described previously.   

For nitrogen adsorption measurements, samples were crushed, sieved to separate the 

fraction with the size of 1-3 mm, and dried at 105°C under vacuum using the outgasser built into 

Autosorb-1 manufactured by Quantachrome Instruments.  The paste drying procedure has been 

shown to have a significant effect on porosity determined by nitrogen adsorption [87], [88].  In 

this study, oven-drying at 105°C was combined with vacuum-drying.  Drying time for each sample 

was in the range of 2-3 hours as suggested by Beaudoin [89].  Moreover, pastes were dried to a 

constant pressure, which ensures that the same pore size range was emptied for all the samples.  

After completion of drying, nitrogen adsorption/desportion isotherms were collected using 

Autosorb-1.  Total pore volume and pore size distribution were calculated using the Barrett, 

Joyner, Hallenda (BJH) method.  Both adsorption [90], [91] and desorption [87], [92] branches of 

the nitrogen adsorption isotherm have been used for BJH analysis of cement pastes.  The 

adsorption branch of the isotherm was used for the BJH porosity calculation since it measures the 

size of the interior of the pore, while the desorption branch measures the pore entry size [93], [94].  

Since pores in cement paste are expected to be bottle-necked, and autogenous shrinkage is affected 

by the size of the pore, not the size of the pore entry, adsorption branch was selected.  Additionally, 

the adsorption branch is not influenced by the pore network effects to the same degree as the 

desorption branch [93], [95].   

Porosity measurements were also performed on concrete samples for all mixtures using 

mercury intrusion porosimetry (MIP).  MIP was selected for concrete analysis since nitrogen 

sorption is typically only used on pastes.  Concrete cylinders, 100x200 mm, were prepared and 

cured for 3 days for all mixtures. For MIP measurements, a 5 cm long sample was saw-cut from 
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the middle of each cylinder.  Samples were cut to fit the 5 cm diameter macro-cell used for MIP 

measurements.  Prior to analysis, concrete samples were dried in the oven at 105°C for 14 hours.  

MIP measurements were carried out using the Quantachrome Poremaster mercury intrusion 

porosimeter.  First, mercury was introduced into the sample at low pressure, up to 0.3 MPa, after 

which the analysis was continued in high pressure mode, where intrusion pressure was increased 

up to 414 MPa.  Washburn equation was used for data analysis with a mercury contact angle of 

140° and mercury tension of 0.48 N/m.    

3.3 Results and Discussion 

3.3.1 Isothermal Calorimetry and Setting Time 

Isothermal calorimetry showed a reduction in the length of the dormant period and an 

increase in the rate of heat evolution during the acceleration period with increasing the accelerator 

dosage (Figure 3.4).  

 

Figure 3.4.  Heat flow of cement pastes normalized per gram of cement 
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It is interesting to note that although total heat evolved initially increases with accelerator 

dosage, after the first 24 hours there was a cross-over between CDA and CA total heat curves, and 

CDA total heat remained slightly below that of CA until 72 hours (Figure 3.5). 

 

Figure 3.5.  Total heat evolved of cement pastes normalized per gram of cement 

Therefore, its degree of hydration at 72 hours was also slightly lower than that of CA.  As 

expected, setting times followed the same trend as the heat flow curves with the CDA mixture 

having the shortest final setting and CNA the longest (Figure 3.6).  

 

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160 180

C

CNA

CHA

CA

CDA

Age (hours)

T
ot

al
 H

ea
t 

(J
/g

 o
f 

ce
m

en
t)



56 
 

 

Figure 3.6.  Setting time curves 

3.3.2 Autogenous Shrinkage Measurements 

Addition of WRRA did not significantly affect the amount of total shrinkage experienced 

by concrete at 3 days compared to the control sample C with no admixtures (Figure 3.7).  Although 

water-reducer addition is expected to result in finer pores due to improved dispersion of cement 

particles, it is speculated that this effect was not significant enough to affect total shrinkage.  

However, the rate of initial autogenous shrinkage increased with addition of WRRA from 8 µε/hr 

for C mixture to 12.5 µε/hr for CNA. Shrinkage rates were calculated from the linear portion of 

the curves based on the time it takes each mix to reach -100 µε.  The value of -100 µε was chosen 

for convenience, since beyond this point some of the curves begin to deviate from linearity (CHA, 

CA, CDA).  Retarders are known to accelerate hydration after the concrete does finally set, so the 

increased shrinkage rate of the CNA mixture may be due to the increased rate of hydration. 
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Figure 3.7.  Free shrinkage measurements under isothermal conditions at 23°C as a 

function of time 

It is interesting to note that there was no significant difference either in the total amount of 

autogenous shrinkage or in the rate of shrinkage (20 µε/hr) for the CHA and CA mixtures even 

though both isothermal calorimetry and setting time measurements clearly showed increased 

acceleration of cement hydration with increase in the accelerator dosage (Figures 3.4 and 3.6).  

However, increasing accelerator to CDA dosage increased both the rate (50 µε/hr) and the amount 

of total shrinkage. Since CHA and CA mixes show similar shrinkage values up to 3 days while 

CDA values are significantly higher, it appears that there may be a “critical dosage” of accelerator 
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chloride-based accelerator as additions of the accelerator increased autogenous shrinkage despite 

reducing setting time. 

Since accelerators increase the rate of hydration (α), it has been suggested that it is more 

appropriate to compare properties of accelerated and non-accelerated mixes on the basis of α rather 

than time [86].  Increase in hydration rate with accelerator addition would also mean that the pore 

water is consumed faster leading to a higher rate of autogenous shrinkage.  It was not surprising 

that shrinkage rates increased with accelerator addition (Figure 3.7).  However, Bentz et al. [59] 

showed that the differences in shrinkage rates can be eliminated by  plotting autogenous shrinkage 

versus α.  Nevertheless, Figure 3.8 shows that even when plotted against the degree of hydration, 

the shrinkage rate for CDA paste was still higher than that of the CNA, CHA and CA pastes 

pointing to a much different pore structure of this mixture.  It appears that in addition to the 

accelerating effect on hydration reactions, accelerator may cause microstructural changes that can 

result in increased autogenous shrinkage independent of the degree of hydration. 

It can also be noticed from Figure 3.8 that an increase in the accelerator dosage increased 

the degree of hydration at which setting occurred and autogenous shrinkage began.  Bentz et al. 

[59] reported that decreasing cement particle size increases the degree of hydration at which setting 

occurs even though the time to achieve set is decreased because “more particle-to-particle bridges” 

have to be formed to achieve setting.  Addition of CaCl2-based accelerator may have an effect on 

setting time akin to that of decreasing cement particle size.  Oey et al. [96] state that as CaCl2 

dosage is increased, the number of nuclei of precipitated hydration products increases.  If a large 

number of fine nuclei are formed rather than fewer nuclei that are larger in size due to the continued 

deposition of hydration products, a higher degree of hydration may be required to form particle-
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to-particle connections and achieve setting.  Higher degree of hydration of the CNA mixture is 

attributed to the retarding effect of the WRRA. 

 

Figure 3.8.  Free shrinkage measurements under isothermal conditions at 23°C as a 

function of degree of hydration   
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In order for capillary tension stresses to generate variable autogenous shrinkage as 

observed in this study, the tensile strength of the mixtures would have to be different.  Figure 3.9 

shows a plot of autogenous shrinkage versus tensile strength. 

 

Figure 3.9.  Relationship between free shrinkage and tensile strength development 

For the same amount of shrinkage, tensile strength of CDA mixture was markedly lower 

compared to the other mixtures containing chemical admixtures and compared to the C mixture 

with no chemical admixtures.  The same was observed for elastic modulus (Figure 3.10).  
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Figure 3.10.  Relationship between free shrinkage and elastic modulus development 

Several studies [86], [97], [98] demonstrated that addition of high CaCl2 dosages increases 

the C/S ratio of C-S-H.  Recently molecular simulations showed that increase in the C/S ratio of 

C-S-H results in the decrease in its mechanical properties [99]–[101].   

3.3.4 X-ray Diffraction Measurements 

Figure 3.11 shows XRD scans of CHA and CDA mixtures at 3 days.  The two extreme 

accelerator dosages were selected to evaluate the effect of accelerator dosage on cement hydration 

products.  The age of 3 days was selected in order to minimize differences in the degree of 

hydration between the mixtures – at this age the degree of hydration calculated using Equation 1 

was approximately 0.6.  Generally, the XRD patterns are very similar with comparable C3S peak 

areas, which points to the similar degree of reaction of this phase in both mixtures.  The main 

notable difference is the consistently lower calcium hydroxide (CH) peaks in the CDA mixture, 
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which is in agreement with previous studies [86], [97], [98].  These studies attributed the decrease 

in the CH peak to the increase in the C/S ratio of C-S-H with CaCl2 addition.  Apart from the effect 

on CH, increasing accelerator dosage to CDA level increased the amount of Friedel’s salt formed, 

as expected, as well as increased dissolution of the ferrite phase.  

 

Figure 3.11.  X-ray diffraction scans of the CHA and CDA mixtures at 3 days.  

E=ettringite, FS=Friedel’s salt, CH=calcium hydroxide, C=calcium carbonate, Q=quartz, 

A=alite, B=belite, Al=C3A, F=C4AF 

3.3.5 Mercury Intrusion Porosimetry 

Although MIP has several known limitations, it is still widely used to analyze concrete 

porosity [75], [102], [103].  MIP measurements were performed on concrete samples for all 

mixtures at 3 days to determine if a particular pore size range could be related to the measured 
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autogenous deformation.  Pore size distribution (Figure 3.12) indicates that pore volume in the 10-

20 nm diameter range show the same trend as the autogenous deformation measurements. 

 

Figure 3.12.  Pore size distribution of concrete samples determined by mercury intrusion 

porosimetry at 3 days 

Intruded pore volumes for pores smaller than 50 nm were also plotted on a bar chart (Figure 

3.13).  Only this pore range was considered as pores below 50 nm diameter are known to be 

responsible for concrete shrinkage [7].   Figure 3.13 clearly shows that for 10-20 nm pores, pore 

volumes are the same for C and CNA mixtures and they are also the same for CHA and CA, which 

is consistent with the measured autogenous deformation (Figure 3.7).  Additionally, increase in 

the intruded pore volume in this range corresponds to increased autogenous deformation, with 

CDA mixture having the largest pore volume and the largest deformation.  For samples containing 
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accelerator, the increase in the 10-20 nm pore volume does not appear until the dosage of the CA 

mixture is exceeded, further supporting the hypothesis of a non-linear dosage-autogenous 

shrinkage response. 

 

Figure 3.13.  Effect of accelerator addition on pore size distribution of concrete determined 

by MIP at 3 days 

3.3.6 Nitrogen Adsorption Porosity Measurements 

In addition to MIP measurements, which predominantly measure large and medium 

capillary pores, nitrogen adsorption measurements were performed on selected paste samples 

(CNA, CHA and CDA) at 3 days in order to assess the effect of accelerator dosage on gel porosity.  

XRD results discussed in section 3.4 indicated a possibility of increasing C/S ratio with increasing 

accelerator dosage, which can result in a change in C-S-H morphology and gel porosity.  The 

change in C-S-H morphology with CaCl2 addition has been reported previously [21], [86].  Since 
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autogenous shrinkage profiles of C and CNA mixtures and CHA and CA mixtures were very 

similar, only one was selected for analysis from each pair.   

Although MIP and nitrogen adsorption measure different pore size ranges, they do overlap 

in the 3.5-40 nm range.  The same trend of increasing porosity with accelerator dosage in the 10-

20 nm range was observed in Figure 3.14 as with MIP measurements.  

 

Figure 3.14.  Pore size distribution of cement paste calculated from nitrogen adsorption at 

the age of 3 days 

Additionally, there was a significant increase in the pores in the 1.5-10 nm range with 
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It is interesting to note that porosity of CHA and CNA pastes was very similar up to 

approximately 3 nm, while for CDA it was notably higher.  According to the CM-II C-S-H model 

proposed by Jennings [104], these are small gel pores (SGP) which represent the space between 

C-S-H particles or globules.  Between 3 and 10 nm, CHA pore volumes increased compared to 

CNA.  According to the CM-II model, these are large gel pores (LGP) that exist between C-S-H 

globules [104].  Jennings [104] estimated their size as 3-12 nm.   

One possible explanation for the increase in the SGP volume is that there is more C-S-H 

in the CDA sample, although this should be unlikely considering that all the samples had a similar 

degree of hydration.  A more plausible explanation may be a significant change in the C-S-H 

morphology at the CDA accelerator dosage.  It appears that addition of CaCl2-based accelerator at 

the CDA dosage increased the ratio of low density (LD) to high density (HD) C-S-H, while at the 

CHA dosage LD/HD ratio may not have been affected.  LD C-S-H has a more open morphology, 

and, according to Jennings[105], it forms only during the early hydration period.  Juenger and 

Jennings[22] have previously proposed that increase in the LD/HD ratio corresponds to an increase 

in drying shrinkage.   It appears that an increase in the LD/HD ratio may also correspond to an 

increase in autogenous shrinkage and decrease in mechanical properties. 

Although MIP measurements (section 3.5) and the mechanism of capillary tension can 

explain the differences in autogenous deformation between the mixtures when plotted against 

concrete age (Figure 3.7), capillary tension cannot explain the differences in autogenous shrinkage 

observed between CDA, CHA and CNA mixtures when plotted against the degree of hydration 

which eliminates differences in RH (Figure 3.8).   Although the significantly lower tensile strength 

development of the CDA mixture (Figure 3.9) discussed in section 3.3 can be the cause of its 

higher deformation in Figure 3.8, tensile strength development for CNA and CHA mixtures was 
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fairly similar, which indicates that there may be another mechanism contributing to autogenous 

shrinkage.   

Disjoining pressure has been cited as a mechanism of concrete shrinkage at high relative 

humidities (RH) [8], [106]–[108].  Although internal RH of concrete was not measured in this 

study, it can be reasonably assumed that the RH remained above 80% throughout the duration of 

the free shrinkage measurements with the low degree of hydration seen during the testing.  A 

number of studies reported internal RH of concrete confirming this assumption [79], [109], [110].  

It should be noted that all concrete samples were sealed during shrinkage measurements to prevent 

any moisture loss to the environment, so only the drop in RH due to self-desiccation is considered. 

Although disjoining pressure has been reported to be constant in the range of 80-100% RH 

[9], Beltzung et al. [111] showed that it varies with the amounts of calcium and alkali ions in the 

pore solution.  Since the addition of the accelerator increased both the amount of Ca2+ as well as 

Na+ and K+ in the pore solution (in addition to CaCl2 accelerator contained small amounts of NaCl 

and KCl), an increase in autogenous shrinkage with accelerator addition may possibly be due to 

the variation in disjoining pressure due to modification in the pore solution chemistry.   

Regardless of the specific mechanism, the volume of pores in the 1.5-3 nm range appears 

to correlate well with the shrinkage rates during the first 24 hours as a function of the degree of 

hydration, while the volume of 3-10 nm pores correlates with the total shrinkage observed at the 

end of 72 hours for CNA, CHA and CDA mixtures.  Both autogenous shrinkage rates and pore 

size distribution determined by nitrogen adsorption indicate that an accidental overdose that 

doubles the intended amount of accelerator can result in significant microstructural changes of 

hydrated phases.   
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Since CDA experienced shrinkage strains that are significantly higher for a given tensile 

strength, when compared to the other mixtures, it is expected that the CDA mixture may have a 

higher cracking tendency. However, creep has to be taken into account, as CaCl2 has been reported 

to increase creep [7], [14], [112]–[114], before definite conclusions can be made regarding the 

effect of increasing accelerator dosage on cracking tendency.  Stress measurements on restrained 

specimens, using for example cracking frame testing, under isothermal conditions would be 

required to compare stresses generated by autogenous shrinkage in these concretes.   

3.4  Conclusions 

The addition of lignosulfonate-based water-reducing and retarding admixture changed 

little the autogenous shrinkage rate of concrete when the rate was compared on a degree of 

hydration basis.  However, addition of CaCl2-based accelerator increased autogenous shrinkage in 

concretes containing water-reducing and air-entraining admixtures, when compared on a degree 

of hydration basis.   

There was good agreement between autogenous deformation at 3 days and pore volume in 

the 10-20 nm range as determined by MIP on concrete and by nitrogen adsorption on paste 

samples.  This increase in porosity appears to be dosage dependent; porosity increases with initial 

accelerator addition, however, it remains constant until a “critical” dosage is reached that results 

in a further porosity increase. This large increase in autogenous shrinkage with the larger dosages 

of accelerator highlights the importance of controlling accelerator additions on field sites for rapid 

repair concrete mixtures to reduce the risk of cracking.   
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CHAPTER 4:  INFLUENCE OF SCMs ON RHEOLOGY OF PASTE AND ITS  
 

DEPENDENCE ON PARTICLE CHARACTERISTICS OF THE MIXTURE3 
 

4.1 Introduction 

Increased emphasis on sustainability and reducing the environmental impact of cement 

production have led to increased incorporation of mineral admixtures/supplementary cementitious 

materials (SCMs) into concrete on cement-replacement basis.  Since most SCMs are waste by-

products of other industries, with the exception of metakaolin, their utilization in concrete provides 

two-fold environmental benefits.  It reduces the need for waste disposal and provides waste 

valorization and, at the same time, reduces cement content thus reducing CO2 emission associated 

with its production.  Even incorporation of metakaolin, which is a material produced by calcination 

of kaolin clay, has environmental benefits as calcination temperatures during its production are 

significantly lower than that of the clinkering process, so cement substitution with metakaolin 

reduces the carbon foot print of the construction industry as well.  Additionally, it should not be 

overlooked that incorporation of SCMs typically increases durability concrete structures, thus 

reducing the need for repairs and extending their design life, which is also environmentally 

beneficial.   

Most commonly used SCMs are fly ash, slag, silica fume and metakaolin.  Each of these 

materials has different effects on setting time, compressive strength development, and other 

hardened properties.  Recently, investigations into ternary and quaternary blends of these materials 

                                                 
3 This chapter has been submitted as a manuscript to the Construction and Building Materials Journal and is 
currently under review. 
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with ordinary portland cement (OPC) have been undertaken in order to optimize concrete fresh 

and hardened properties [115]–[127].  Typical fresh properties considered in these investigations 

are water demand [116] and superplasticizer dosage [115], [116], [127], setting time [116], [118], 

[123], [127], and slump [122], [123].   

Although SCMs are typical used for modification of concrete hardened properties, their 

effect on workability of concrete cannot be overlooked.  Workability issues can include 

honeycombing, voids inside the concrete, excessive bleeding and segregation [128], [129].  

Depending on the type of concrete and method of placement, slump test, which is the most 

common measure of concrete workability used on site, may not provide adequate information 

about concrete flow behavior [30].  Ferraris et al. [30] state that rheological measurements are 

much better suited for this purpose.  Although there are a number of equations that are used to 

describe concrete rheology, the most frequently used is the Bingham model [130]: 

߬ ൌ 	 ߬଴ ൅  Equation 4.1              ߛ	ߤ	

where τ is the shear stress, τ0 is the yield stress, µ is the plastic viscosity and γ is the shear rate.  In 

terms of the practical meaning of these parameters, τ0 is a yield stress that has to be applied to 

initiate flow.  Roussel [131] relates the yield stress to formwork filling and “generally whether or 

not concrete will flow or stop flowing under an applied stress”, which for most concrete 

applications is due to gravity.  Yield stress has been related to slump [30], [132], [133] and can 

also be thought of as the amount of stress needed for concrete mixing.  Viscosity is related to the 

rate of concrete flow [128].  The specific target values of yield strength and plastic viscosity vary 

not only from one type of concrete to another but also with the method of placement [134].  

Although in some applications, like self-consolidating concrete, a low yield stress is desirable, a 

yield stress and/or viscosity that are too low can result in segregation [130], [135].  High yield 



71 
 

stress and viscosity values can be problematic as well; high yield stress will require greater amount 

of energy to be imparted in order to adequately mix the concrete, while high viscosity will result 

in workability reduction [135].   

From the rheological point of view, both concrete, mortar and cement paste can be treated 

as concentrated suspensions.  Although the ranges of values for τ0 and µ are very different [130], 

concrete rheology is influenced by the rheology of paste, and a relationship between the yield 

stress of the paste and that of concrete has been suggested [128].  Additionally, even when it is 

considered as a constituent of concrete, the importance of paste rheology itself should not be 

underestimated as low yield stress of paste can lead to concrete segregation [128].   

Rheology of the paste is dominated by interparticle interactions.  A number of studies have 

identified solid volume fraction, particle size and distribution, surface average diameter of 

particles, particle separation distance, and a ratio of actual to maximum packing density (packing 

fraction) as having a major effect on rheology of concentrated suspensions including cement paste 

as well as other particles suspended in solution [128], [133], [136]–[140].  Cement replacement 

with SCMs is likely to affect most, if not all of these parameters.   

Banfill [130] states that the trends in concrete rheology with varying mixture parameters, 

including introduction of chemical and mineral admixtures, are “generally additive.”  At the same 

time, he also notes that inter-particle interactions in concrete are diluted by the presence of 

aggregates.  With increasing research into ternary and quaternary combination of OPC/SCMs, the 

question remains if the effect of SCM combinations on rheology is indeed additive and if so, can 

the rheology of ternary and quaternary blends be predicted based on results obtained from their 

respective binary combinations.  The objective of this part of the study was to evaluate the effect 

of OPC/SCM combinations on paste rheology, compare them to binary mixtures in order to 
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evaluate if the effects on rheology are additive and to relate the obtained results to the particle 

characteristics of the blends.  

4.2 Experimental Procedures 

A commercially available (Type I/II) portland cement, four SCMs (Class F FA, BFS, SF 

and MK) and four chemical admixtures, air-entraining admixture (AEA), water-reducing and 

retarding admixture (WRRA) and two superplasticizers (SP), that are commonly used in structural 

concrete mixtures in the state of Florida were selected for this study.  Both superplasticizers, SP1 

and SP2, were polyacrylate-based with SP1 being more concentrated according to manufacturer’s 

safety data sheets.  SP1 is used in the field in concrete mixtures containing metakaolin while all 

other mixtures use SP2.  Same SP1 and SP2 usage was followed in this study.  Cement and SCMs 

were characterized in terms of their oxide chemical composition, specific gravity, particle size 

distribution (PSD) and fineness.  The oxide chemical composition was determined using X-ray 

fluorescence spectroscopy (XRF) according to ASTM C114 and specific gravity was measured 

following ASTM C188.  PSD was determined using an LA-950 laser scattering particle size 

analyzer manufactured by HORIBA Instruments using the dry method.  Triplicate tests were 

conducted on all of the as-received materials and the averages of the 3 tests are reported here.  For 

silica fume, the PSD was measured using the wet method as well. 

Fineness of cement and mineral admixtures was determined by nitrogen adsorption using 

Autosorb-1 analyzer manufactured by Quantachrome Instruments.  The samples were outgassed 

under vacuum at 80C immediately prior to analysis in order to remove any moisture or 

contaminants from the sample surface.  The Brunauer-Emmett-Teller (BET) method [141] was 

used for the specific surface area (SSA) calculations.  Multipoint BET was selected over the single 

point BET for greater accuracy [142]. 
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Based on the measured MPS and BET SSA values for each of the materials, MPS and BET 

surface area were calculated for all the OPC/SCM combinations as well using the following 

relationship: 

௕ݕ ൌ 	∑ ௜ݔ௜ݕ
௡
௜ୀ଴             Equation 4.2 

where yb is the property of interest for the OPC/SCM mixture, yi is the measured value for the 

property of ith component of the mixture, xi is the volumetric fraction of the ith component, and n 

is the total number of components in the mixture.  For a binary mixture n=2, for a ternary mixture 

n=3 and for a quaternary mixture n=4. 

Rheology and normal consistency were determined for binary, ternary and quaternary 

cement-mineral admixture combinations prepared with chemical admixtures.  Chemical admixture 

dosages were maintained constant and are listed in Table 4.1.   

Table 4.1.  Chemical admixture addition rates 

Chemical Admixture Addition Rate  

(ml/100 kg cementitious) 

AEA 2.5 

WRRA 110 

SP1 155 

SP2 110 

 

Binary OPC/SCM combinations were tested without chemical admixtures as well.  A fixed 

w/cm ratio of 0.485 was used for all pastes, taking into account the water present in the chemical 

admixtures.  Cement replacement levels by SCMs for binary, ternary, and quaternary mixtures are 

listed in Table 4.2. 
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Table 4.2.  Cement replacement levels for binary, ternary and quaternary mixtures 

Fly Ash 
(weight %) 

Slag  
(weight %) 

Silica Fume 
(weight %) 

Metakaolin 
(weight %) 

Binary Mixtures 

10 10 10 10 

21 21 21 21 

30 30 - - 

- 52 - - 

Ternary Mixtures 

21 21 - - 

21 30 - - 

21 40 - - 

21 - 10 - 

10 - - 10 

40 - - 10 

- 52 - 10 

Quaternary Mixture 

- 20 10 10 

 

Rheology measurements were performed using TA Instruments AR 2000ex rheometer with 

a helical ribbon impeller.  Strain rate sweep was used in this study to assess the effect of mineral 

and chemical admixtures on rheological properties in the first several minutes after mixing.  Since 

concrete is subjected to various shearing conditions between mixing and placement, no single test 

can characterize all the rheological properties of cement paste [143].  Strain rate sweep is typically 

used to measure cement paste properties under conditions that concrete is subjected to during 

mixing and transport to site.  Helical ribbon geometry was selected as it simulates the mixing 

action of a commercial impeller and is therefore most suitable to evaluate rheological changes 
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during the mixing process. Helical ribbon impellers have also been recognized as one of the best 

systems for homogenizing non-Newtonian fluids [144].  All measurements were performed at an 

isothermal temperature of 23°C.  Pastes were mixed in an IKA-Werke RW16 low shear mixer 

manufactured by IKA Werke for 3 minutes, after which they were transferred into a rheometer 

cup.  Pastes were sheared in the rheometer for 2 minutes at a constant shear rate of 50 Hz followed 

by a 2 minute equilibration period.  After the equilibration period, a shear rate sweep was 

performed from 0.5 to 50 Hz.  Shear rate sweep was performed under steady state flow conditions.  

Normal consistency for pastes was determined following ASTM C187. Normal 

consistency in this case refers to the amount of water needed to make a standard paste of similar 

workability. The paste is considered to be at normal consistency when after the dropping of the 

rod it settles at 10±1 mm below the original paste surface.  The paste was mixed using the 

procedure in ASTM C305.  

4.3 Results and Discussion 

4.3.1 Materials Characterization 

Table 4.3 lists the results of the chemical oxide analysis.  Cement selected for this study 

had a low equivalent alkali content (Na2Oeq) and so did the mineral admixtures, except for fly ash. 

Cement and mineral admixture densities (Table 4.4) are in agreement with those published 

in the literature [145], except for metakaolin.  The metakaolin density of 2.23 Mg/m3 is below the 

typical values reported in the literature, which is generally around 2.50 Mg/m3 [145]–[147].  This 

could be attributed to the lower Fe2O3 content of metakaolin used in this study compared to the 

published values [145]–[147].  The oxide chemical composition of the rest of the mineral 

admixtures is in agreement with the published values [145].  Fly ash used in the study complied 
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with the ASTM C618 Class F classification, slag satisfied ASTM C989, silica fume complied with 

ASTM C1240, while metakaolin met the requirements of Class N pozzolan. 

Table 4.3.  Oxide chemical analysis for as-received cement and mineral admixtures 

Analyte Cement (w/o) MK (w/o)  SF (w/o) SL (w/o)  FA (w/o) 

SiO2 20.40 51.29 92.90 35.15 55.48 

Al2O3 5.20 44.16 0.31 14.25 27.46 

Fe2O3 3.20 0.49 0.10 0.48 6.70 

CaO 63.10 <0.01 0.78 41.45 0.99 

MgO 0.80 0.14 0.18 5.21 0.88 

SO3 3.60 <0.01 <0.01 1.86 0.05 

Na2O 0.10 0.26 0.10 0.22 0.29 

K2O 0.38 0.27 0.52 0.32 2.28 

Total 100.10 99.22 99.63 99.83 99.93 

 Na2Oeq 0.35 0.44 0.44 0.43 1.80 

 

Table 4.4.  Cement and mineral admixture densities 

Material Density (Mg/m3) 

Cement 3.14 

Class F Fly Ash 2.25 

Metakaolin 2.23 

Slag 2.91 

Silica Fume 2.22 

 

Table 4.5 shows the mean particle sizes (MPS) for cement and SCMs used in this study.  It 

can be seen that the MPS of slag and fly ash were very similar to that of cement, while MPS of 

metakaolin was finer.  However, MPS of silica fume was significantly coarser compared to other 

materials.  Typically, over 95% of the silica fume particles are reported to be finer than 1 µm [145].  
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Since the silica fume used in this study is densified, it appears that the dry process of particle size 

analysis is unable to provide sufficient dispersion of the silica fume particles.  SF was analyzed 

using the wet method as well; however, the wet method results (not shown here) were very similar 

to those obtained by the dry method.  It is believed that the true fineness of SF, once completely 

dispersed, is significantly higher than what was indicated by the particle size analysis, which is 

supported by the BET results (Table 4.5).  This was previously observed by Yajun and Cahyadi 

[148] with densified silica fume.  They concluded “the laser diffraction measures the 

agglomeration size while nitrogen measures the original size.”   Since the BET method is based 

on the physical adsorption of nitrogen gas molecules on the sample surface, it is not affected by 

agglomeration and is able to measure the true SF fineness.  BET results confirm the similar 

fineness of cement, fly ash and slag.   

Table 4.5.  Particle size analysis of as-received cement and mineral admixtures 

Physical Properties Cement FA  MK SL SF 

Mean size (MPS) (µm) 15.1 14.1 6.2 12.6 79.4 

Multipoint BET SSA 
(m²/kg) 

2,140 2,270 14,970 3,700 21,410 

 

4.4 Rheology Measurements 

 As mentioned previously, both the apparent yield stress and plastic viscosity need to be 

considered during concrete mixture design, and the optimum values will vary depending on the 

application.  The best way to assess the effect of various mixture constituents on yield stress and 

plastic viscosity is by the use of rheographs [134].  Figures 4.1 through 4.4 present rheographs for 

the binary OPC/SCM combinations with and without chemical admixtures.  Note the difference in 

the scale of the y-axis in these figures. 
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Figure 4.1.  Effect of Class F fly ash on rheology of non-plasticized (Ref) and plasticized 

pastes 

In the absence of chemical admixtures, cement replacement by 10% fly ash slightly 

decreases both the yield stress (τ0) and plastic viscosity (µ) (Figure 4.1).  Further increase in the 

fly ash content up to 30% does not have an effect on τ0, while plastic viscosity returns to the value 

of the reference paste.  Addition of chemical admixtures significantly reduces both τ0 and µ.  

Addition of fly ash to the plasticized paste further reduces τ0, with the amount of fly ash resulting 

in only minor variation in the values.  There is a slight variation in µ between 0.1-0.2 Pa·s, which 

is notably lower than 0.5-0.6 Pa·s observed for the non-plasticized pastes. 
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Typically, an increase in fly ash content is reported to decrease the yield stress [145], [149], 

[150].  However, Park et al. [151] observed an initial decrease in yield stress with fly ash addition 

compared to control mix, but the values increased, although slightly, with increasing fly ash 

content.  As for plastic viscosity, some researchers observed no change with fly ash incorporation 

[149], while others reported a decrease [150], [151].  However, an increase in viscosity with the 

introduction of fly ash has also been reported [145], [152].  The findings in this study for pastes 

with chemical admixtures are consistent with those reported by Park et al. [151].  In the absence 

of chemical admixtures the yield stress decreases compared to the reference paste; however, the 

yield stress value is not affected by the quantity of fly ash in the mixture in the range of 10-30%.   

 

Figure 4.2.  Effect of slag on rheology of non-plasticized (Ref) and plasticized pastes 
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Similar to fly ash, addition of slag to the reference paste, without chemical admixtures, has 

only a slight effect on µ at 10% cement replacement, while τ0 remains unchanged up to 52% slag 

content (Figure 4.2).  In the presence of chemical admixtures, µ decreases from 0.2 to 0.1 Pa·s at 

cement replacement levels over 10% while τ0 gradually decreases with increasing slag content.  

Similar to the findings in this study, Zhang and Han [153] did not observe changes in yield stress 

with slag addition.  Palacios et al. [154], on the other hand, reported an increase in yield stress with 

increasing slag content above 10%. However, similar to this study, they did not observe an effect 

on plastic viscosity. 

 

Figure 4.3.  Effect of silica fume on rheology of non-plasticized (Ref) and plasticized pastes 
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Addition of silica fume to the reference paste increases τ0, with a significant increase at 

21% cements replacement (Figure 4.3).  In the presence of chemical admixtures, the increase in τ0 

with increase in SF content from 0 to 21% is less pronounced, although further increase in SF 

content results in a significant increase in τ0.  This indicates that at the w/cm ratio used in this 

study, the fixed dosages of chemical admixtures were insufficient to maintain workability in 

increasing cement replacement level by silica fume.   

 

Figure 4.4.  Effect of metakaolin on rheology of non-plasticized (Ref) and plasticized pastes 
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Increased yield stress with silica fume addition has been observed previously and is 

commonly attributed to increased water demand as SF has a high surface area [30].  Shi et al. [155] 

observed a decrease in yield stress compared to the control mix with addition of up to 9% silica 

fume.  However, the yield stress increased with increasing SF content and exceeded that of the 

control mix at 12% SF.   

Similar effect was observed with metakaolin addition (Figure 4.4).  There was a dramatic 

increase in τ0 with 10% MK compared to the reference paste; µ also increased slightly from 0.6 to 

0.7.  Addition of chemical admixtures lowered both τ0 and µ and was sufficient to maintain 

workability at 10% cement replacement by metakaolin.  Viscosity of this mixture was identical to 

that of the reference cement paste with chemical admixtures and the yield stress was only slightly 

higher.  Further increase in MK content of the plasticized mixture did not affect plastic viscosity; 

the yield stress, however, increased by approximately 150 Pa.  The increase in the yield stress 

points to insufficient SP dosage and a consequent flocculation of particles in the system.  Decrease 

in the workability with MK addition has been noted previously as well as its increased water 

demand [116], [156], which is consistent with the results of the current study.   

Since both fly ash and slag decreased the yield strength while silica fume and metakaolin 

increased it, the effect of mineral admixture combinations was examined in order to assess the 

effect of SCM combinations on yield stress.  If the effect is additive, as suggested by Banfill [130], 

combining slag or fly ash with silica fume or metakaolin should result in lower yield stress 

compared to binary mixtures of OPC/SF or OPC/MK.  Addition of fly ash to the binary OPC/10% 

SF paste did, in fact, improve both the yield stress and viscosity (Figure 4.5); however, the effect 

was not simply additive.  Both of these parameters were lowered beyond simply adding the 

individual effects of these two SCMs, suggesting a synergistic interaction between SF and FA.  
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These findings are in agreement with Gesoglu and Ozbay [123], who reported that incorporation 

of slag or FA in conjunction with SF and OPC resulted in improved rheology. 

 

Figure 4.5.  Effect of fly ash/silica fume combination on rheology of plasticized paste 

 The opposite effect was observed when fly ash was added to OPC/MK paste (Figure 4.6).  

Not only did τ0 and µ not improve, as would be expected if the effects were additive, but they both 

increased by 10% fly ash addition from 11 Pa to 25 Pa.  Further increase in fly ash content did not 

affect the yield stress; however, µ increased further. 
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Figure 4.6.  Effect of fly ash/metakaolin combination on rheology of plasticized paste 

Addition of slag to the OPC/MK mixture also results in an increase in τ0 and µ, similar to 

fly ash, although this increase is lower (Figure 4.7).  This is contrary to Li and Ding [116], who 

observed that addition of slag to OPC/MK blends reduces water demand and superplasticizer 

dosage of the mixtures, which implies improved workability.  MK used in their study was very 

coarse, similar Blaine fineness and median particle size to that of cement, while slag was 

significantly finer.  Workability was measured in terms of slump.  Workability reduction cannot 

be attributed to the increased fineness as of the OPC/MK blend.  The authors state that metakaolin 

“tends to absorb water” [116].  This does not explain improvement of workability with slag 

addition as MK amounts were maintained constant (10%) in all the mixtures containing slag and 

no OPC/slag mixtures were tested. 
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Figure 4.7.  Effect of slag/metakaolin combination on rheology of plasticized paste 

A quaternary combination of cement, metakaolin, silica fume and slag was also 

investigated (Figure 4.8).  Compared to the binary combinations, both the yield stress and viscosity 

of this quaternary combination are higher.  While the viscosity for the binary combinations of 

cement with metakaolin or slag or silica fume ranged from 0.1 to 0.3 Pa·s, the viscosity of the 

quaternary mixture is 0.5 Pa·s.  As for the yield stress, it ranged from 6 to 32 Pa for the binary 

mixtures, while in the quaternary it increased to 57 Pa.   
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Figure 4.8.  Effect of metakaolin/silica fume/slag combination on rheology of plasticized 

paste 

Flocculation has been identified as one of the main parameters affecting the yield stress 

[130], [156].  Figures 4.9 and 4.10 illustrate the relationship between MPS, which should represent 

the average size of the flocs, calculated based on Equation 4.2, for each combination and the 

apparent yield strength (τ0).  In the case where OPC/SCM blends were mixed with water only, 

(Figure 4.9), there is an exponential relationship between MPS and τ0 for the binary blends of OPC 

with FA, SL and SF.  However, the apparent yield stress of the OPC/MK blend, which was only 

measured at 10% cement replacement, does not follow this relationship.  Moulin et al. [156] 

observed a significant increase in the yield stress of OPC/MK pastes mixed with water compared 
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to the plain OPC paste at w/cm ratio of 0.4, although no other SCMs were examined and no 

explanation was offered by the authors for this behavior. 

 

Figure 4.9.  Relationship between mean particle size of the OPC and OPC/SCM binary 

blends and apparent yield stress in the absence of chemical admixtures 

In the presence of chemical admixtures, however, the relationship between τ0 and MPS 

changes and appears to be linear, (Figure 4.10).  This is not surprising, as additions of WRRA and 

SPs result in deflocculation of cement particles [130], [133], [137].  It should be noted that at 10% 

cement replacement, the binary OPC/MK blend follows the same trend as the rest of the binary 

mixtures.  However, the paste with 21% cement replacement does not follow this trend, most likely 

due to insufficient amount of SP, as discussed previously.  The ternary combinations of 

OPC/SL/FA follow the same trend as well.  It is interesting to note that the OPC/SF/FA ternary 

y = 12.773e0.052x

R² = 0.9359

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40

A
p

p
ar

en
t Y

ie
ld

 S
tr

es
s 

(P
a)

Mean Particle Size (µm)

MK without chemical admixtures FA, SL, SF without chemical admixtures



88 
 

blend appears to be an outlier.  It is possible that addition of FA improved the dispersion of 

densified silica fume and that the calculated MPS is not representative of the average floc size in 

this particular paste (OPC/SF/FA).  It should also be noted that although the ternary and quaternary 

blends containing MK (Table 4.2) also show a linear relationship between MPS and τ0, it is 

different from that of the other blends.   

 

Figure 4.10.  Relationship between mean particle size of the OPC/SCM binary, ternary and 

quaternary blends and apparent yield stress in the presence of chemical admixtures 

Since deflocculation is expected to occur with addition of chemical admixtures, the effect 

of fineness, expressed in terms of the calculated BET specific surface area of the blends on the 

apparent yield stress was evaluated as well.  As BET fineness is not affected by the presence of 
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chemical admixtures, it was expected to provide a more universal relationship with τ0 in the 

presence of AEA, WRRA and SPs.  Yamada et al. [157] reported a direct linear relationship 

between concrete slump and the amount of adsorbed polycarboxyate-based SP per area of 

hydration products measured by one-point BET method.  As the amount of adsorbed SP increased, 

so did the slump.  This parameter had a direct linear relationship with mortar flow as well [157].   

First, the relationship between BET specific surface area and τ0 was evaluated in the 

absence of chemical admixtures.  Figure 4.11 shows that it is very similar to that of MPS and τ0 

for pastes only containing water.  Again, the OPC+10MK paste was an outlier and did not follow 

the general trend. 

 

Figure 4.11.  Relationship between BET specific surface area of the OPC and OPC/SCM 

binary blends and apparent yield stress in the absence of chemical admixtures 
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Figure 4.12 presents the relationship between BET SSA and τ0 in the presence of WRRA, 

AEA and SP.  Again, there is a single trend between BET SSA and τ0 for all the mixtures including 

OPC+10MK, except for OPC+21MK, most likely due to the insufficient dosage of SP to provide 

complete defloculation as discussed previously.  It is hypothesized that increasing SP dosage for 

the OPC+21MK mixture would have likely decreased τ0 making this mixture part of the trend as 

well; however, the intent of the study was to measure rheology changes with SCM addition at 

constant w/cm ratio and constant chemical admixture dosages.   

 

Figure 4.12.  Relationship between BET specific surface area of the OPC/SCM binary, 

ternary and quaternary blends and apparent yield stress in the presence of chemical 

admixtures 
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Since a fixed dosage of SP was used in this study, and the amount of SP adsorbed per unit 

area is expected to decrease with increasing the surface area of the cementitious materials in the 

mixture, the apparent yield stress was expected to increase with increasing BET SSA.  This was 

confirmed by the experimental results (Figure 4.12).  It appears that BET SSA is a better predictor 

of the apparent yield stress of a mixture than MPS, especially in the presence of chemical 

admixtures. 

 Although BET SSA provided more generalized trends with τ0, both with and without 

chemical admixtures, compared to MPS, it still did not provide a unified trend that included all the 

metakaolin mixtures.  The trends themselves are expected to be different for pastes with and 

without chemical admixtures due to the different interparticle interactions, which are dominated 

by van der Waals forces in the absence of chemical admixtures [158] and by steric repulsion in the 

presence of PC-based superplasticizers [159], [160].  While the non-conformance of the 

OPC+21MK mixture with WRRA, AEA and SP1 to the general trend (Figure 4.12) is attributed 

to insufficient SP dosage, the non-conformance of OPC+10MK to the general trend (Figure 4.11) 

in the absence of chemical admixtures is puzzling.  Recently, Knop and Peled [161] observed that 

the setting behavior of the OPC/limestone blends of various fineness was dependent not only of 

the surface area of blend, but also on the packing density.  To this effect, the formula in Equation 

4.3 [162] was used to calculate packing density (Φ) for the OPC/SCM combinations: 

Φ ൌ	
ଵ

ଵାఘ೛
ೢ
೛

             Equation 4.3 

where ρp is the density of the dry powder calculated based on the measured density for each 

material (Table 4.4) divided by the density of water and using their respective weighted fractions, 

w is the volume of water required to obtain normal consistency and p is the mass of cementitious 

materials.  When τ0 was plotted against Φ (Figure 4.13), a single trend was obtained for all the 
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non-plasticized pastes, including OPC+10MK with no outliers.  The high apparent yield stress of 

the OPC+10MK mixture was due to its low packing density, which appears to be the best predictor 

of the apparent yield stress for pastes in the absence of chemical admixtures.  It appears that around 

Φ=0.55 the yield stress diverges to 25-28 Pa.  This low value of Φ at divergence indicates a 

flocculated system [128], which was as expected.  There was no definitive relationship between Φ 

and yield stress in the presence of chemical admixtures.   

 

Figure 4.13.  Relationship between packing density of the OPC and OPC/SCM binary 

blends and apparent yield stress in the absence of chemical admixtures 

 Sabir et al. [163] state that “no detailed examinations have been reported to-date on the 

water demand of MK and its influence on the flow properties.”  Figures 4.14 and 4.15 show the 

water demand as a function of total cement replacement as well as BET surface area.  It should be 
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noted that the spread in the normal consistency values of cement observed in these figures is due 

to the addition of chemical admixtures and their combinations.   

He et al. [164] observed that w/c ratio had a “broad linear correlation” with BET surface 

area.  Although they examined a variety of calcined clays, only one metakaolin was used at a fixed 

cement replacement of 30%.  Even though MK was calcined at different temperatures, its BET 

fineness was very similar, and the specific relationship between BET SSA of OPC/MK mixtures 

could not be established in that study. 

Water demand increases with increasing percentage of metakaolin and silica fume as well 

as with increasing BET surface area of cementitious mixtures.  As for FA and slag, as well as their 

combinations, their water demand does not appear to be affected by the total cement replacement 

percentage.  It should be noted that the increase in water demand is notably higher for mixtures 

containing MK compared to SF.  Based on Figure 4.13, this can be attributed to their lower packing 

densities.   

It appears that the effect of combining MK with FA or slag or combining SF with FA has 

an additive effect on water demand; that is, the water demand remains at the level of the binary 

OPC/MK or OPC/SF paste and is not affected by further cement replacement with slag or FA.  In 

addition to particle-type effects, such as surface area and packing density discussed previously, it 

is possible that addition of SCMs modifies the initial dissolution and precipitation reactions 

affecting rheology.  Talero et al. [165] compared the water demand of two portland cement pastes 

of similar fineness and suggested that the higher water demand was due to the higher C3A content 

of one of the cements and consequently increased formation of hydration products of C3A.  The 

researchers also observed that the setting time for the high-C3A cement was shorter.  Again, this 

was attributed to the hydration reaction of this compound.   Talero [166], [167] also demonstrated 
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that Al2O3 present in metakaolin is not only reactive at early ages, but that it is even more reactive 

than C3A present in cement.  This is in line with the increased water demand of the OPC/MK 

blends (Figure 4.14). 

 

Figure 4.14.  Relationship between percent cement replacement and normal consistency for 

all the pastes 
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Figure 4.15.  Relationship between BET surface area and normal consistency for all the 

pastes 

4.5 Conclusions 

The results of this study show that there is a synergistic effect of SCM combinations on 

yield stress of pastes for ternary and quaternary OPC/SCM blends.  It is clear that the effect of 

SCM combinations on paste rheology is not additive and cannot be predicted from the results 

obtained for their respective binary combinations.   
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At a fixed w/cm ratio and a fixed dosage of chemical admixtures, a linear relationship was 

observed between apparent yield stress and BET surface area of the mixtures.  Only binary 

mixtures were tested without chemical admixtures; in this case, the packing density determined 

based on normal consistency measurements appeared to be the best predictor of the apparent yield 

stress.  The high yield stress of the OPC/MK paste without chemical admixtures was explained by 

its lower packing density.   

It was also observed that for fly ash and slag binary and ternary mixtures, with and without 

chemical admixtures, there was no significant change in water demand with increasing cement 

replacement.  This was not the case with metakaolin and silica fume, for which normal consistency 

was measured at 10, 20 and 30% cement replacement levels.  For these mixtures the water demand 

increased with increasing cement replacement level.  Binary OPC/MK pastes had the highest water 

demand regardless of the presence of chemical admixtures.  The water demand of the ternary and 

quaternary mixtures remained at the level of the binary OPC/MK or OPC/SF mixtures and was not 

affected by further cement replacement with fly ash or slag.  In this case, the effect of SCM 

combinations appears to be additive.   

Since only one source was used for each of the SCMs, further work is needed to confirm 

the observed trends between yield stress and packing density as well as surface area.  When SCMs 

from different sources with different chemistries, densities and surface areas are analyzed, these 

conclusions can be extended to SCMs as a whole.  
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CHAPTER 5:  MODELING HEAT OF HYDRATION REDUCTION 
 

FOR CEMENT REPLACEMENT BY SCMs4 
 

5.1  Introduction 

 Considerable amounts of heat liberated during cement hydration lead to an increase in 

temperature which typically occurs several hours after concrete placement.  Since thermal 

conductivity of concrete is low, large temperature gradients can develop between the surface 

exposed to ambient temperature conditions and the core of the structure.  These temperature 

gradients are of particular concern for mass concrete structures, where thermal stresses can lead to 

early-age cracking.  In Florida, due to the warmer climate, thermal gradients can lead to cracking 

even in structures which would not normally be considered mass concrete, such as concrete 

pavement [25].  Reduction of early-age cracking risk is typically achieved by reducing the heat of 

hydration and, therefore concrete temperature rise.  The recommended strategies for reducing the 

amount of heat generated during cement hydration include the use of low-heat portland cements, 

blended cements and partial cement replacement with supplementary cementitious materials 

(SCMs) [168].   

Prediction and control of concrete temperature rise due to cement hydration is of great 

significance for mass concrete structures since large temperature gradients between the surface 

and the core of the structure can lead to cracking thus reducing durability of the structure.  A 

                                                 
4 This chapter has been submitted as a manuscript to the Journal of Thermal Analysis and Calorimetry. 
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number of models have been proposed to predict heat evolution from cement hydration reactions 

[38], [169]–[171].   

However, it has been well established that incorporation of SCMs affects the heat evolution 

concrete and temperature development [12], [26], [172].  This effect depends not only on the total 

amount of cement replacement, but also on the type of SCM used.  Both fly ash (FA) and blast 

furnace slag (SL) have low reactivity at early hydration ages, although slag is believed to be more 

reactive than fly ash [173].  Therefore, addition of both of these SCMs is expected to decrease the 

heat of hydration at early ages and concrete temperature rise [11], [12], [174]–[176].  Nevertheless, 

Pane and Hansen [176] noted that although both FA and SL at 25% cement replacement result in 

lower total heat evolution during early ages compared to the plain cement sample, the total heat 

generated by BSF samples appears to exceed that of the control mixture beyond 3 days.   

Silica fume (SF) and metakaolin (MK) are generally believed to increase the heat 

evolution.  However, contradictory reports can be found in the literature regarding the effect of 

both of these materials on heat of hydration and temperature rise.  Kadri and Duval [177] observed 

an increase in the total heat with SF addition up to 30% in the first 24 hours.  This increase was 

more pronounced at low w/cm ratios.  On the contrary, Mostafa and Brown [178] reported a slight 

reduction in the total heat during the first 24 hours with 10, 20 and 30% SF addition.  After this 

time, there was a slight increase in the total heat for the mixture containing 10% SF, while the 

others continued to exhibit total heat below that of the plain cement sample.  Pane and Hansen 

[176] confirmed that the effect of SF is dependent on the w/cm ratio of the mixture. 

Frias et al. [179] reported a slight increase in the heat of hydration with MK addition 

compared to OPC.  Kadri et al. [180] recorded a more notable increase in the heat of hydration and 

temperature rise with 10% MK.  Increase in heat flow and temperature rise in 10% cement 



99 
 

replacement with MK was also observed by Williams et al. [181].  Ambroise et al. [182] and Bai 

and Wild [183] observed an increase in the maximum temperature rise during hydration with up 

to 20% MK addition, while Kim et al. [184] reported a slight decrease in the maximum adiabatic 

temperature with addition of 10% MK.  Jiang et al. [185] found the effect of cement replacement 

with MK on heat evolution to be dosage-dependent.  At 6% MK addition, the total heat was 

significantly increased compared to the OPC mixture up to approximately 48 hours, while at 10 

and 14% cement replacement a decrease in total heat was observed.  Bai and Wild [183] reported 

that an increase in temperature rise with MK addition can be counteracted by incorporation equal 

amounts of pulverized-fuel ash (PFA).  The idea of combining several mineral admixtures in order 

to reduce heat evolution and concrete temperature rise is attractive, especially in the case of MK, 

as its addition can improve the low early-age compressive strengths typically associated with 

cement replacement by SL or FA [116], [117]. 

 Several models have been proposed for predicting heat release by blended cements.  Most 

of these models have been developed for binary combinations of OPC and slag [186]–[190].  A 

model incorporating SF and superplasticizer has been proposed as well [191].  Wang et al. [192] 

proposed an equation for total heat release for mixtures incorporating both slag and fly ash.  

Schindler and Folliard [26] also proposed a model incorporating the effects of slag and fly ash, 

which was later modified to incorporate silica fume as well [193].  Poole et al. [194] and Riding 

et al. [172] demonstrated that chemical admixtures can impact hydration as well and should be 

taken into account when modeling hydration processes.  However, none of the models to date 

address the effect of MK on heat evolution.  The only guidance regarding the heat of hydration 

(HOH) of MK comes from Gajda [29] who states that it can be approximated as “100% to 125% 

that of Portland cement.”  This, however, applies only to OPC/MK mixtures, and it is unclear how 
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the total heat evolution of a ternary or quaternary system will be modified by the addition of MK 

with chemical admixtures.    

Additionally, all of the above models consider the effects of each SCM and each chemical 

admixture on hydration to be additive.  However, there are indications in the literature that there 

may be more complex interactions between SCMs and also possibly chemical admixtures.  Han et 

al. [195] investigated the effect of cement replacement with slag and cement replacement with 

low-CaO fly ash (binary combinations of OPC and each SCM) on heat release.  Although the 

authors did not model the heat release of these binary systems, they observed that the heat 

reduction is “not proportional to the dosage of mineral admixtures.”  Palou et al. [196] also 

observed in the OPC-SL-SF-MK systems that the total heat of hydration is not proportional to 

cement content reduction.   

The absence of a predictive equation for heat evolution incorporating MK as well as the 

possibility of interactions between certain SCM and/or chemical admixture combinations served 

as a motivation for this study.  The goal was to assess the effect of commonly used SCMs and 

chemical admixtures as well as their potential interactions on the cumulative heat evolution and to 

develop a set of equations that will allow engineers to estimate the potential heat reduction 

resulting from the incorporation of different SCMs and chemical admixtures combinations into a 

concrete mixture.   

5.2  Experimental Procedures 

Type I/II commercial portland cement, four mineral admixtures (FA, SL, SF and MK) and 

three chemical admixtures, air-entraining admixture (AEA), water-reducing and retarding 

admixture (WRRA) and superplasticizer (SP), that are typically used in structural concrete in 

Florida were selected for this study.  X-ray fluorescence spectroscopy (XRF) was used to 
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determine the chemical oxide composition of cement and mineral admixtures following ASTM 

C114.  Mineralogical composition of cement was determined from x-ray diffraction (XRD) 

measurements in accordance with ASTM C1365.   Prior to XRD measurements, cement was wet-

ground in ethanol in a McCrone micronizing mill to a particle size between 1 and 10 µm. The wet 

grinding method was used to avoid the effect of temperature on gypsum and its possible phase 

transformation to hemihydrate or anhydrite. The samples were then dried in an oven at 43°C. XRD 

scans were collected using the Phillips X’Pert PW3040 Pro diffractometer equipped with the 

X’Celerator Scientific detector and a Cu-Kα x-ray source.  Tension and current were set to 45 kV 

and 40 mA respectively; 5 mm divergence and anti-scatter slits were used in the automatic mode.  

Phase quantification was performed using the Rietveld refinement functionality of the Panalytical 

HighScore Plus 3.0 software.   

Factorial design was used to evaluate the effect of the selected SCMs and chemical 

admixtures on heat evolution.  Factorial designs are commonly used in screening experiments to 

identify significant factors (mineral and chemical admixtures in this study) using the smallest 

number of experiments [197].  In concrete research, factorial designs have been previously used 

for mix design optimization [198]–[205].  The advantage of factorial designs is not only they allow 

reducing the number of experiments compared to “one factor at a time” approach, they also are 

able to evaluate the potential for factors interactions.   

Seven admixtures (factors) were identified for this study: Class F FA, SL, SF, MK, AEA, 

WRRA, and SP.  At first, a fractional factorial design was performed (design matrix is listed in 

Table 5.2).  Fractional factorial designs are commonly used in screening experiments to identify 

significant factors using the smallest number of experiments [197].. The fractional factorial design 
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was a resolution III design, which means that the effect of each factor could not be separated from 

the effect of two-factor interactions. 

 

Figure 5.1.  Two-dimensional central composite design (CCD) representation 

In order to improve the resolution, axial points and a center point were added to create 

central composite design (CCD) with α = 2, where α is the distance from the center point for each 

factor.  A 2D graphical illustration of CCD is presented in Figure 5.1.  Both experimental designs 

were created using JMP software from SAS.  One run was performed for each mixture, except for 

the center point, where two runs were performed to assess the error associated with experimental 

results.   CCD was a resolution IV design, in which the main effects were not compounded with 

any two-factor interactions, but the two-factor interactions were compounded with each other.  

Additionally, since the CCD used five levels of each factor, it can be used to assess whether or not 

the response changed linearly with changing factor level.   

Coded values for each factor were used in the experimental design, which were calculated 

using the following general equation [197]: 
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        Equation 5.1 

Therefore, individual coded values for each variable were calculated as follows: 

௖௢ௗ௘ௗܣܨ ൌ ௖௢ௗ௘ௗܮܵ ൌ
௔௖௧௨௔௟	௩௔௟௨௘ି଴.ଶ଴

଴.ଵ଴
        Equation 5.2 

௖௢ௗ௘ௗܨܵ ൌ ௖௢ௗ௘ௗܭܯ ൌ
௔௖௧௨௔௟	௩௔௟௨௘ି଴.ଵ଴

଴.଴ହ
        Equation 5.3 

௖௢ௗ௘ௗܣܧܣ ൌ
௔௖௧௨௔௟	௩௔௟௨௘ିଶଷ

ଵଵ.ହ
          Equation 5.4 

௖௢ௗ௘ௗܣܴܴܹ ൌ
௔௖௧௨௔௟	௩௔௟௨௘ିଶ଴଴

ଵ଴଴
          Equation 5.5 

ܵ ௖ܲ௢ௗ௘ௗ ൌ
௔௖௧௨௔௟	௩௔௟௨௘ିଵ଴଴

ହ଴
          Equation 5.6 

The dosages of each chemical and mineral admixture corresponding to each coded design 

value are listed in Table 5.1.  A constant w/cm ratio of 0.485 was maintained for all the mixtures. 

The use of coded variables is preferable in the initial analysis over actual (natural) values.  

Since the levels of each factor can differ greatly from each other, converting natural values to 

coded values allows the relative effect of each factor to be evaluated [197].  Additionally, the use 

of coded variables ensures that the root mean square error (RMSE) is the same for all the variables. 

Table 5.1.  Experimental design addition levels 

Design Level 2 1 0 -1 -2 
FA (fraction of total cementitious content) 0.40 0.30 0.20 0.10 0.00 

SF (fraction of total cementitious content) 0.20 0.15 0.10 0.05 0.00 

MK (fraction of total cementitious content) 0.20 0.15 0.10 0.05 0.00 

SL (fraction of total cementitious content) 0.40 0.30 0.20 0.10 0.00 

AEA (ml/100 kg cementitious) 46 34.5 23 11.5 0 

WRRA (ml/100 kg cementitious) 400 300 200 100 0 

SP (ml/100 kg cementitious) 200 150 100 50 0 
 



104 
 

Table 5.2.  Fractional factorial design matrix 

Mix # FA SF MK SL AEA WRRA  SP 
1 1 -1 -1 -1 -1 1 1
2 -1 -1 1 -1 1 1 -1
3 1 1 -1 -1 1 1 -1
4 -1 1 -1 -1 1 -1 1
5 -1 1 1 1 1 -1 -1
6 -1 -1 -1 -1 -1 -1 -1
7 1 -1 1 -1 1 -1 1
8 1 1 1 -1 -1 -1 -1
9 1 -1 -1 1 1 -1 -1

10 -1 -1 -1 1 1 1 1
11 -1 1 -1 1 -1 1 -1
12 1 1 -1 1 -1 -1 1
13 1 1 1 1 1 1 1
14 -1 -1 1 1 -1 -1 1
15 1 -1 1 1 -1 1 -1
16 -1 1 1 -1 -1 1 1

 
Table 5.3.  Additional axial points design matrix 

Mix # FA SF MK SL AEA WRRA  SP 
17 2 0 0 0 0 0 0
18 -2 0 0 0 0 0 0
19 0 2 0 0 0 0 0
20 0 -2 0 0 0 0 0
21 0 0 2 0 0 0 0
22 0 0 -2 0 0 0 0
23 0 0 0 2 0 0 0
24 0 0 0 -2 0 0 0
25 0 0 0 0 2 0 0
26 0 0 0 0 -2 0 0
27 0 0 0 0 0 2 0
28 0 0 0 0 0 -2 0
29 0 0 0 0 0 0 2
30 0 0 0 0 0 0 -2
31 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0
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Heat flow measurements were performed following external mixing protocol, Method B 

of ASTM C1702.  All measurements were carried out at an isothermal temperature of 23°C.  Pastes 

were mixed with an IKA WERKE  mixer for a total of 7 min following the procedure described in 

[206].  WRRA was added to the mixing water.  After combining water and cementitious materials, 

the paste was mixed for 1 minute prior to the addition of AEA, after which it was mixed for an 

additional 2 minutes. The mixture was then rested for 2 minutes. After the rest period, SP was 

added to the mixture, and the sample was mixed for an additional 2 minutes at 1200 rpm rather 

than 2000 rpm as reported by Muller et al. [206].  Upon completion of mixing, samples were 

immediately placed into the iCal-8000 Calmetrix isothermal calorimeter.     

The cumulative heat values at 12, 24, 48 and 72 hours were extracted from the collected 

data for each mixture.  Since only one cement was used in this study, reduction of the total heat 

compared to the plain cement-water paste (∆Q/QOPC, where ∆Q is the difference between 

cumulative heat of the plain OPC-water mixture, QOPC, and the mixture modified by addition of 

SCM and/or chemical admixtures) was selected as a response variable rather than the total heat.  

Several studies demonstrated that the total heat evolution depends on cement fineness and mineral 

composition [38], [169], [207], [208].  Therefore, it is expected that equations that model total heat 

reduction with SCM incorporation compared to the plain cement mixture would be more useful 

than those modeling the total heat based only on one OPC composition. 

∆Q/QOPC values calculated for each mixture were analyzed with JMP software to identify 

significant factors.  A significance level of 95% was used in this study.   In addition to the 32 

mixtures that were used to generate the models, 35 additional mixtures were prepared for 

validation of these models.  Admixture addition rates and their corresponding coded levels for the 

validation mixtures are listed in Tables 5.4 and 5.5 respectively.    
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Table 5.4.  Admixture addition rates for validation mixtures  

Mix# FA SF MK SL AEA WRRA SP 

 (fraction of total cementitious content) (ml/100 kg cementitious) 
1 0.10 0.15 0.05 0.30 11.5 100 150 
2 0.10 0.05 0.05 0.30 34.5 100 50 
3 0.30 0.15 0.15 0.10 11.5 300 150 
4 0.20 0.10 0.10 0.20 0 200 0 
5 0.20 0.10 0.10 0.20 23 0 0 
6 0.20 0.10 0.10 0.20 0 0 100 
7 0.20 0.10 0.00 0.20 0 0 0 
8 0.20 0.10 0.10 0.20 0 0 0 
9 0.20 0.00 0.10 0.20 0 0 0 

10 0.20 0.00 0.10 0.00 0 0 0 
11 0.40 0.00 0.10 0.00 0 0 0 
12 0.40 0.00 0.20 0.00 0 0 0 
13 0.20 0.00 0.10 0.00 0 0 0 
14 0.40 0.00 0.10 0.00 0 0 0 
15 0.40 0.00 0.20 0.00 0 0 0 
16 0.00 0.00 0.10 0.20 0 0 0 
17 0.00 0.00 0.10 0.40 0 0 0 
18 0.20 0.20 0.00 0.00 0 0 0 
19 0.20 0.00 0.00 0.20 0 0 0 
20 0.20 0.00 0.00 0.40 0 0 0 
21 0.00 0.00 0.10 0.30 0 0 0 
22 0.00 0.00 0.20 0.30 0 0 0 
23 0.30 0.20 0.00 0.00 0 0 0 
24 0.21 0.08 0.00 0.00 0 0 0 
25 0.21 0.08 0.00 0.00 0 0 0 
26 0.21 0.08 0.00 0.00 0 0 0 
27 0.21 0.00 0.10 0.00 0 0 0 
28 0.21 0.00 0.10 0.00 0 0 0 
29 0.21 0.00 0.00 0.30 0 0 0 
30 0.21 0.00 0.00 0.30 0 0 0 
31 0.21 0.00 0.00 0.30 0 0 0 
32 0.00 0.00 0.00 0.00 23 200 100 
33 0.00 0.00 0.00 0.00 0 0 100 
34 0.00 0.00 0.00 0.00 0 0 200 
35 0.00 0.00 0.00 0.00 46 300  

 



107 
 

Table 5.5.  Validation mixtures coded levels for each factor 

Mix # FA SF MK SL AEA WRRA SP 
1 -1 1 -1 1 -1 -1 1 
2 -1 -1 -1 1 1 -1 -1 
3 1 1 1 -1 -1 1 1 
4 0 0 0 0 -2 0 -2 
5 0 0 0 0 0 -2 -2 
6 0 0 0 0 -2 -2 0 
7 0 0 -2 0 -2 -2 -2 
8 0 0 0 0 -2 -2 -2 
9 0 -2 0 0 -2 -2 -2 

10 0 -2 0 -2 -2 -2 -2 
11 2 -2 0 -2 -2 -2 -2 
12 2 -2 2 -2 -2 -2 -2 
13 0 -2 0 -2 -2 -2 -2 
14 2 -2 0 -2 -2 -2 -2 
15 2 -2 2 -2 -2 -2 -2 
16 -2 -2 0 0 -2 -2 -2 
17 -2 -2 0 2 -2 -2 -2 
18 0 2 -2 -2 -2 -2 -2 
19 0 -2 -2 0 -2 -2 -2 
20 0 -2 -2 2 -2 -2 -2 
21 -2 -2 0 1 -2 -2 -2 
22 -2 -2 2 1 -2 -2 -2 
23 1 2 -2 -2 -2 -2 -2 
24 0.1 -0.4 -2 -2 -2 -2 -2 
25 0.1 -0.4 -2 -2 -2 -2 -2 
26 0.1 -0.4 -2 -2 -2 -2 -2 
27 0.1 -2 0 -2 -2 -2 -2 
28 0.1 -2 0 -2 -2 -2 -2 
29 0.1 -2 -2 1 -2 -2 -2 
30 0.1 -2 -2 1 -2 -2 -2 
31 0.1 -2 -2 1 -2 -2 -2 
32 -2 -2 -2 -2 0 0 0 
33 -2 -2 -2 -2 -2 -2 0 
34 -2 -2 -2 -2 -2 -2 2 
35 -2 -2 -2 -2 2 1 -2 
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5.3  Results and Discussion 

5.3.1  Model Development  

Based on the fractional factorial design, only FA and SL were identified as significant 

factors at 12 and 24 hours.  SF had a p-value of 0.0502 at 24 hours, so its significance was very 

close to 95%.  All three of these factors had p-values below 0.05 at 48 and 72 hours.  However, 

each of these individual factors was aliased with a number of factor combinations.  Additionally, 

coefficients of determination (R2 values) for the linear models varied from 0.72 to 0.83 depending 

on the hydration age, indicating that the fit could possibly be improved by addition of factor 

interactions or quadratic terms. 

Addition of axial points and a center point increased the resolution of the design so that 

individual factors were no longer aliased with factor combinations and allowed quadratic effects 

to be evaluated as well.  Statistical analysis showed that significant factors and factor combinations 

varied depending on the age of paste (Tables 5.6 and 5.7).   

Response surface methodology with least squares fitting was used to obtain coefficients 

(listed in Estimates columns of Tables 5.6 and 5.7) for the significant factors and factor 

interactions.  R2 values for the models at each hydration age were significantly improved compared 

to those obtained from linear models based on the fractional factorial design.   

The analysis was first performed using coded variables (Table 5.6).  Since the modeled 

response was the reduction of total heat with addition of different admixtures, positive coefficients 

in Table 5.6 indicate that an increase in those factors will result in a further decrease in the total 

heat.  Negative coefficients, on the other hand, signify an increase in total heat with an increase in 

the factor level. 
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Table 5.6.  Parameter estimates of the statistical models based on coded values 

 12 hrs / R2=0.96 24 hrs / R2=0.93 48 hrs / R2=0.93 72 hrs / R2=0.92 
 Estimate Prob. >│t│ Estimate Prob. >│t│ Estimate Prob. >│t│ Estimate Prob. >│t│
β0 Intercept 0.407 0.000 0.421 0.000 0.396 0.000 0.376 0.000 
β1 FA 0.117 0.000 0.109 0.000 0.105 0.000 0.104 0.000 
β2 SL 0.114 0.000 0.106 0.000 0.089 0.000 0.083 0.000 
β3 SF 0.052 0.000 0.056 0.000 0.055 0.000 0.055 0.000 
β4 MK 0.037 0.000 0.050 0.000 0.044 0.000 0.043 0.000 
β5 SL2 0.023 0.003 0.018 0.041 0.017 0.042 0.017 0.035 
β6 FA*SL 0.027 0.008 0.027 0.031 0.024 0.039 0.024 0.039 
Β7 MK*SL 0.031 0.004 - - - - - - 
β8 WRRA 0.020 0.015 - - - - - - 
β9 AEA -0.020 0.015 - - - - - - 
β10 SF*MK 0.024 0.017 - - - - - - 

 
Table 5.7.  Parameter estimates of the statistical models based on natural values 

 12 hrs / R2=0.97 24 hrs / R2=0.93 48 hrs / R2=0.93 72 hrs / R2=0.92 
 Estimate Prob. >│t│ Estimate Prob. >│t│ Estimate Prob. >│t│ Estimate Prob. >│t│ 
β0 Intercept -0.231 0.000 -0.226 0.000 -0.191 0.000 -0.196 0.000 
β1 FA 1.166 0.000 1.095 0.000 1.053 0.000 1.045 0.000 
β2 SL 1.135 0.000 1.061 0.000 0.888 0.000 0.827 0.000 
β3 SF 1.047 0.000 1.130 0.000 1.103 0.000 1.109 0.000 
β4 MK 0.730 0.000 1.002 0.000 0.887 0.000 0.863 0.000 
β5 (SL-0.2)2 2.299 0.002 1.846 0.041 1.712 0.035 1.758 0.000 
β6 (FA-0.2)*(SL-0.2) 2.734 0.005 2.683 0.031 2.385 0.039 2.358 0.001 
Β7 (MK-0.1)*(SL-0.2) 6.140 0.002 - - - - - - 
β8 WRRA 0.0002 0.009 - - - - - - 
β9 AEA -0.002 0.010 - - - - - - 
β10 (SF-0.1)*(MK-0.1) 9.750 0.011 - - - - - - 
β11 (FA-0.2)*(AEA-23) -0.016 0.043 - - - - - - 
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While significant factors at 12 hours included both mineral and chemical admixtures, the 

contribution of chemical admixtures was determined to be insignificant after this age.  The lack of 

significant effect of chemical admixtures on heat evolution after 12 hour has been previously 

reported by [209].  At all ages, the largest reduction in the total heat is achieved by increasing FA 

and SL content.  At 12 and 24 hours, their coefficients are approximately the same, while at 48 

and 72 hours the coefficient for BFS begins to decrease.  This decrease in the slag coefficient may 

possibly indicate that at these ages the hydration reaction of slag starts to contribute to the total 

heat evolution, therefore lowering the total heat reduction compared to the plain OPC mixture.   

It is of interest that the statistical analysis identified SL2 as a significant factor.  The non-

linear effect of slag on total heat is in line with the results reported by Han et al. [188], [195], who 

also observed a non-linear reduction in heat with increasing cement replacement by SL.  As for 

the other SCMs, their effect on the total heat evolution was linear.   

Same factors and factor interactions, namely FA, SL, SF, MK, SL2 and the interaction of 

FA and SL, were identified as significant at 24, 48, and 72 hours.  Since the model coefficients 

were similar at these ages, a combined model for predicting total heat reduction at 24, 48 or 72 

hours was created as well: 

∆Q/QOPC coded = 0.398 + 0.106 · CFA + 0.092 · CSL + 0.056 · CSF + 0.046 · CMK + 0.018 · C2
SL

  + 

0.025·CFA·CSL               Equation 5.7 

where Ci is the ith coded level of each factor.  It should be noted that the significance of all the 

coefficients in the combined model was 99% or greater. 

Although the use of coded variable is very helpful for statistical analysis, an equation based 

on natural values of each factor is more convenient, practically.  In addition to the coded variables, 
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the analysis was also carried out based on the natural variables (Table 5.7).  Again, a combined 

equation for the 24, 48 and 72 hours total heat reduction was calculated as well: 

∆Q/QOPC = - 0.034 + 0.569 · PFA  – 0.279 · PSL +1.114 · PSF + 0.917 · PMK + 1.772 · P2
SL  + 2.475 

· PFA · PSL              Equation 5.8 

Figures 5.2 and 5.3 show the relationship between the BSF and FA content of the mixture 

and the total heat reduction.  These figures clearly illustrate the non-linear effect of SL on heat 

reduction.  It is interesting to note that at small cement replacement levels, below 3% for FA and 

below 22% for SL, there is no reduction in cumulative heat. 

 

 

Figure 5.2.  Response surface plot for the change in FA and SL content using Equation 5.8 

SL Fraction
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Figure 5.3.  Contour plot of the total heat reduction with the change in FA and SL content 

 Since it is not possible to generate a response surface plot for an equation with more than 

three variables, Figures 5.4-5.6 present three-dimensional contour plots for combinations of 3 

SCMs resulting in a specified cumulative heat reduction.  These figures illustrate that there are 

multiple SCM combinations that can produce the required reduction in heat evolution.  Therefore, 

a lower hydration heat need not be the only consideration when selecting supplementary 

cementitious materials for cement replacement, and other concrete fresh and hardened properties 

can be taken into account in order to select the optimum SCM combination.   
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Figure 5.4.  Contour plot for the change in FA, SL and SF content using Equation 5.8. a) no 

change in cumulative heat evolved compared to the pain OPC-water mixture, b) 20% 

cumulative heat reduction, c) 40% cumulative heat reduction, d) 60% cumulative heat 

reduction 

 It is interesting to note that Figures 5.4a illustrates there are certain FA-SL-SF 

combinations that will not result in cumulative heat reduction at 24, 48 or 72 hours.   Essentially 

the same plots are generated for the FA-SL-MK combinations, since the coefficients for MK and 

SL Fraction 
SL Fraction 

SL Fraction SL Fraction 
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SF in Equation 5.8 are very similar.  Figures 5.5a and 5.6a also show regions of 0% heat reduction 

with addition of small amounts of SCMs. 

 

Figure 5.5.  Contour plot of the total heat reduction with the change in MK, SL and SF 

content using Equation 5.8. a) no change in cumulative heat evolved compared to the pain 

OPC-water mixture, b) 20% cumulative heat reduction, c) 40% cumulative heat reduction, 

d) 50% cumulative heat reduction. 

   

SL Fraction 
SL Fraction 

SL Fraction SL Fraction 



115 
 

 

 

Figure 5.6.  Contour plot of the total heat reduction with the change in MK, FA and SF 

content using Equation 5.8. a) no change in cumulative heat evolved compared to the pain 

OPC-water mixture, b) 20% cumulative heat reduction, c) 30% cumulative heat reduction, 

d) 50% cumulative heat reduction. 

5.3.2  Model Validation 

The model presented in Equation 5.8 was validated by comparing heat reduction measured 

experimentally against the predicted values.  The majority of the values lie within the 95% 

confidence interval (Figure 5.7).  Additionally, the data is evenly distributed around the line of fit, 

which indicates that there is no consistent bias in the model.  Identical plot was obtained for 
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Equation 5.7 as this equation can be converted to Equation 5.8 by substituting Equations 5.2 and 

5.3 for the appropriated coded variables. 

 

Figure 5.7.  Measured versus predicted total heat reduction calculated using Equation 5.8 

5.4  Conclusions 

Statistical analysis of isothermal calorimetry data indicated that chemical admixtures do 

not have a significant effect on heat evolution beyond the hydration age of 12 hours.  SCMs 

investigated in this study (FA, SL, SF and MK), on the other hand, were found to have a significant 

effect at hydration ages of 12, 24, 48 and 72 hours.  While the effect of FA, SF and MK on the 

total heat reduction with increasing cement replacement appeared to be linear, the effect of SL was 

quadratic.  The models proposed in this study were successful in predicting the total heat reduction 

with incorporation of chemical admixtures and SCMs compared to a plain OPC mixture.  Since 

the proposed models predict the fraction of cumulative heat reduction compared to a plain OPC-
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water mixture, only one isothermal calorimetry measurement needs to be carried out.  These 

models will allow practitioners to estimate heat reduction with the use of different SCM/chemical 

admixture combinations while avoiding multiple experimental testing.  
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CHAPTER 6:  MULTI-TECHNIQUE INVESTIGATION OF METAKAOLIN AND  
 

SLAG BLENDED PORTLAND CEMENT PASTES5 
 

6.1  Introduction 

 Metakaolin (MK) is a relatively new supplementary cementitious material (SCM) that has 

been introduced in the 1990s [210].  MK is a pozzolanic material obtained by subjecting kaolin 

clay to heat treatment (calcination) at 500-800°C.  Upon heating, kaolinite (SiO2·2Al2O3·2H2O) is 

dehydroxylated and transformed into a more disordered metakaolin phase [211].  MK generally 

consists of 50% SiO2 and 40% Al2O3, although its exact composition varies depending on the 

source of kaolin clay [211]–[214].  Incorporation of MK into concrete has been gaining popularity 

due to the increase in early compressive strength and reduced permeability [215]–[218].  MK is 

typically added to concrete at cement replacement level of 10% in order to maximize compressive 

strength [182], [219], [220].  It has been established that maximum contribution of MK to 

compressive strength occurs at approximately 14 days, after which the pozzolanic reaction of MK 

slows down [210], [221].  Therefore, early-age properties of the OPC/MK mixtures are of 

particular interest in studying the effect of MK.     

While the effect of metakaolin on hardened concrete properties has been the topic of a large 

number of studies, its effect on paste microstructure has not been explored in as much detail. 

Incorporation of MK is known to alter the chemical composition of C-S-H [182], [222], which is 

the main hydration product and is primarily responsible for concrete compressive strength.  This 

                                                 
5 This chapter has been submitted as a manuscript to the Applied Clay Science Journal and is currently under 
review. 
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change in C-S-H composition implies a possible change in its microstructure and mechanical 

response.  Recently, Rodriguez et al. [223] demonstrated that C-S-H morphology changes from 

fibrillar to foil-like as Ca/Si ratio decreased from 1.63 to 1.33.  Several molecular simulations 

showed a change in mechanical properties of C-S-H with the change in Ca/Si ratio [99]–[101].   

Nanoindentation has been extensively used to ascertain mechanical properties of C-S-H, 

which is the main hydration product and is primarily responsible for concrete compressive 

strength.  It has been established that the mechanical response of C-S-H depends on the packing 

density of C-S-H globules [224]–[227].  Values of elastic moduli have been published for a number 

of C-S-H morphologies, which are summarized in Table 6.1.  It can be seen that there exists a very 

porous phase, the elastic modulus of which is affected by capillary porosity [224], [228], [229], 

with a modulus of approximately 8-13 GPa, low-density or outer product C-S-H with an elastic 

modulus ≈ 21 GPa, high-density or inner product C-S-H with a modulus ≈ 30 GPa, and CH or a 

mixture of C-S-H and CH also referred to as ultra-high-density C-S-H with a modulus 36-40 GPa. 

While nanoindentation has been applied to C3S and OPC pastes, there are few studies on 

nanoindentation of OPC/MK samples.  He et al. [230] investigated the effect of SCMs, including 

MK, on the elastic moduli of the hydration products and the volume fractions of LD and HD C-S-

H.  Samples containing SCMs were prepared with a water to binder (w/b) ratio of 0.3, while the 

control sample had a w/b ratio of 0.35 in order to obtain similar 28-day compressive strengths.  

The authors reported that at the age of 60 days the control sample had the smallest fraction of HD 

C-S-H, while for the samples containing SCMs the HD C-S-H fraction appeared to increase with 

an increase in the molar fraction of (Al+Si)/Ca in the OPC-SCM blend.  However, the control 

sample did not fit this relationship, possibly due to a difference in the w/b ratio.  The authors 

concluded that the (Al+Si)/Ca ratio can be used in place of nanoindentation tests for cementitious 
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mixtures with the same w/b ratio and similar 28-day compressive strengths in order to predict the 

fraction of HD C-S-H.  Only two types of C-S-H, LD and HD, were observed in this study, with 

no significant difference in their values regardless of SCM addition.  

Barbhuiya and Chow [231] reported nanoindentation modulus and hardness values for PC 

and PC+10%MK pastes.  The calculated volume fractions of LD and HD C-S-H (≈36% each) in 

the PC+10%MK sample were only slightly higher than those of the PC sample (≈33% for each).  

However, the age or degree of hydration of the samples was not reported, and it remains unclear 

whether these results are indicative of early-age or later-age characteristics on the MK-containing 

pastes. 

Table 6.1.  Summary of published elastic moduli values for C-S-H and CH 

Phase Mean ± Standard Deviation (GPa) Reference 
Low stiffness phase 8.1 [224] 
Porous phase 9.4 ± 3.4 [228] 
Very porous (VP) C-S-H 13.6 ± 1.0 [229] 

Low stiffness C-S-H 
16.5 ± 4.7 [228] 
22.89 ± 0.76 [232] 

Low-density (LD) C-S-H 

18.2 ± 4.2 [224] 
21.7 ± 2.2 [233] 
22.39 ± 4.84 [234] 
22.5 ± 5.0 [235] 

Outer product (OP) C-S-H 20.8 ± 3.2 [229] 
Medium stiffness C-S-H 31.16 ± 2.51 [232] 

High stiffness C-S-H 
27.1 ± 3.5 [228] 
41.45 ± 1.75 [232] 

High-density (HD) C-S-H 

29.1 ± 4.0 [224] 
29.4 ± 2.4 [233] 
30.4 ± 2.9 [235] 
34.82 ± 5.25 [234] 

Inner product (IP) C-S-H 31.0 ± 3.1 [229] 
Ultra-high-density (UHD) C-S-H 40.9 ± 7.7 [235] 

CH 

40.3 ± 4.2 [224] 
36.9 ± 3.5 [228] 
38 ± 5.0 [233] 
39.77-44.89 [236] 
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In addition to a change in C-S-H composition, a change in porosity with MK addition has 

been reported as well.  Ambroise et al. [182] reported an increased amount of pores in the 6-20 nm 

range with 20-30% MK addition.  Poon et al. [220] also reported that addition of metakaolin at a 

constant w/cm ratio decreases the average pore diameter for any age and at any cement 

replacement level up to 20%.     

The effect of chemical and mineral admixtures on pore size distribution is of great interest 

as pores of different sizes will have an impact on different concrete properties.   Juenger and 

Jennings [22] observed that an increase in the nitrogen accessible pore volume and surface area 

corresponded to increased drying shrinkage.  Jennings et al. [237] also state that creep is affected 

by gel porosity. 

 Porosity of the OPC/MK mixtures has been predominantly studied using mercury intrusion 

porosimetry (MIP) [182], [215], [216], [220], [238], [239].  Although MIP can measure a wide 

range of pore sizes from approximately 2 nm to 100 μm [142], this technique measures the pore 

entry sizes rather than actual pore diameters.  Nitrogen (N2) adsorption is another technique that 

can be used to measure porosity although it is limited to the 1.5-40 nm range.  However, unlike 

MIP, it is not affected by pore network effects when the adsorption branch is used [142].  Only 

one study [240] to date has been published that utilized nitrogen adsorption to measure porosity of 

the OPC/MK samples.  However, the authors reported only percent of total pore volume for pores 

less than 10 nm, 10-20 nm and greater than 20 nm diameters, which provides limited information 

on how pore size distributions compare between plain OPC samples and those containing MK.  No 

information was found on the effect of SL incorporation on porosity as measured by N2 adsorption. 

The goal of this study was to investigate the effect of cement replacement with 10%MK 

on hydration products, nanoindentation characteristics and porosity at the age of 7 days and 
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compare the effect of MK to that of SL as well as to the plain OPC paste at ambient temperature.  

Additionally, since nanoindentation modulus depends on C-S-H packing density and packing 

density determines C-S-H porosity, a possible relationship between nanoindentation modulus and 

porosity was investigated as well. 

6.2  Experimental Procedures 

6.2.1  Materials  

A Type I/II commercial Portland cement and two SCMs, metakaolin (MK) and blast 

furnace slag (SL) were selected for this study.  Additionally, four chemical admixtures that are 

commonly used in structural concrete mixtures, air-entraining admixture (AEA), water-reducing 

and retarding admixture (WRRA) and two superplasticizers (SP), were used.  According to the 

manufacturer’s safety data sheets, WRRA was lignosulfonate-based and both SP1 and SP2 were 

polyacrylate-based with SP1 being more concentrated.  In the field, SP1 is used in concrete 

containing MK, while SP2 is used with SL.  Since MK is expected to be finer than SL, a more 

concentrated SP is needed to achieve proper particle dispersion with the incorporation of MK.   

6.2.2 Methodology 

6.2.2.1 Isothermal Calorimetry 

Table 6.2 lists mixture designs used in this study.  A constant w/cm ratio of 0.485 was used 

for all the mixtures taking into account the water added as part of the chemical admixtures.    Heat 

of hydration of the mixtures was measured using TAM Air 8-twin channel isothermal calorimeter 

manufactured by TA Instruments.  The measurements were performed at 23°C following the 

ASTM C1702 Method A, internal mixing.   
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Table 6.2.  Mixture proportions  

Sample  Mineral Admixture Mineral 
Admixture (% 
Cement 
Replacement) 

WRA 
Dosage 

AEA 
Dosage 

SP2 
Dosage 

SP1  
Dosage 

(ml/100 kg cementitious) 

CN+SP1 None 0 110 2.5 0 155 
10MK Metakaolin 10 110 2.5 0 155 
52SL Blast Furnace Slag 52 110 2.5 110 0 

 

The degree of hydration, α(t), for each mixture was calculated based on isothermal 

calorimetry measurements.  α(t) was calculated following Equation 6.1: 

ሻݐሺ	ߙ ൌ ுሺ௧ሻ

ுೠ
              Equation 6.1 

where H(t) is the total heat released by each mixture at time (t) and Hu is the total available heat 

that can be generated by the cementitious components of the mixture.  For pastes without SCMs, 

Hu=Hcem. 

Hcem = 500PC3S+260PC2S+866PC3A+420PC4AF +624PSO3+1186PFreeCaO+850PMgO     Equation 6.2 

where Hcem is the total heat of hydration of portland cement and Pi is the mass of ith component to 

total cement content ratio.  For the 52SL sample, Hu was calculated using the equation provided 

by [26], but eliminating the fly ash contribution: 

Hu = Hcem Pcem + 461 Pslag           Equation 6.3 

The current models proposed in the literature to predict hydration behavior of OPC/SCM 

systems [26]–[28] do not include metakaolin.  The only guidance regarding the HOH of MK 

mixtures comes from Gajda [29] who states that it can be approximated as “100% to 125% that of 

Portland cement.”  For the 10MK mix, Hu was calculated using the upper limit proposed by Gajda 

[29]: 

Hu = Hcem Pcem + 1.25 Hcem PMK          Equation 6.4 
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There is no mention of the effect of chemical admixtures on Hu in [26].  Therefore, it was assumed 

in this study that chemical admixtures do not affect the ultimate heat of hydration. 

6.2.2.2 Sample Preparation for X-Ray Diffraction, Nanoindentation and Nitrogen 

Adsorption  

Samples were mixed using the IKA WERKE mixer.  The WRRA was added to the mixing 

water; AEA was introduced after mixing for 1 minute at 300 rpm, which was followed by 30 

seconds of mixing at 600 rpm.  Superplasticizer (SP1 or SP2) was added after a 90 second rest 

period, after which the paste was mixed for an additional 60 seconds at 600 rpm.  After mixing, 

paste samples were sealed and cured under isothermal conditions at 23°C.   

6.2.2.3 X-Ray Diffraction and Rietveld Analysis 

For x-ray diffraction (XRD), demolded samples were ground by hand with an agate mortar 

and pestle.  Paste samples were mixed with a standard reference material, (SRM) 676a, obtained 

from the National Institute of Standards and Technology (NIST).  SRM 676a was used as an 

internal standard (IS) at  20% replacement in order to determine the amorphous unidentified 

content of each sample [241], [242].  SRM 676a was mixed with the paste by hand with the mortar 

and pestle to in order to avoid increasing the amorphous content of paste during grinding [243]–

[245].  No specific technique was used to stop the hydration, as samples were prepared 

immediately after demolding and loaded into the diffractometer. 

XRD measurements were performed using the Phillips X’Pert PW3040 Pro diffractometer 

equipped with the X’Celerator Scientific detector and a Cu-Kα x-ray source (λ=1.540598 Å).  

Tension and current were set to 45 kV and 40 mA respectively.  Scans were performed in the range 

of 7 - 70° 2θ, with a step size of 0.0167° 2θ and counting time per step was 130.2.  5 mm divergence 

and anti-scatter slits were used in the automatic mode.  Samples were loaded into the sample holder 
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using a back-loading technique in order to minimize preferred orientation, and placed onto a 

spinner stage that was rotating at 30 rpm in order to improve counting statistics [246].    

Mineralogical analysis of the collected diffraction patterns was carried out using Panalytical 

HighScore Plus 3.0 software.  Quantification was performed using the Rietveld refinement 

functionality built into the software. 

6.2.2.4 Nitrogen Adsorption 

Samples for porosity measurement by nitrogen adsorption were mixed and cured as 

described in section 2.2.2 until the age of 7 days at 23˚C.  Immediately after demolding, the 

samples were crushed and sieved to separate the particles in the range of 1-3 mm, and dried at 

105°C under vacuum for 2 hours using the outgasser built into Autosorb-1 analyzer manufactured 

by Quantachrome Instruments.  This drying procedure was selected as drying at a lower 

temperature may accelerate the hydration process [88] and is not suitable at early ages.  Slow 

removal of water by procedures such as D-drying does not quickly arrest the hydration [142].  

Drying at 105°C was limited to 2 hours to avoid damaging the C-S-H microstructure, which is 

typically a concern with drying at this temperature for 24 hours [247].  Beaudoin [89] suggests 

that limiting oven-drying at 105°C to 2-3 hours results in a microstructure that is similar to D-

drying, which would be most suitable for nitrogen adsorption.  In this work, samples were dried 

for 2 hours, after which nitrogen isotherms were collected using Autosorb-1. 

Pore size distribution calculations were performed using the Barrett, Joyner, Halenda 

(BJH) method [248], adsorption branch.  Since the adsorption branch measures the size of the 

interior of the pore it was selected over the desorption branch, which measures the pore entry size 

[93], [94].  Additionally, the adsorption branch is not influenced by the pore network effects to the 
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same degree as the desorption branch [93], [95].  Brunauer, Emmett, Teller (BET) method [141] 

was used to calculated specific surface area, which is typically attributed to C-S-H [249].     

6.2.2.5 Nanoindentation 

Nanoindenation samples were demolded at the age of 7 days, crushed and placed in 

isopropanol for 48 hours to stop hydration.  After 48 hours, the samples were dried under vacuum 

and cast in SPECIFIX-40 two part epoxy from Struers.  Samples were polished using MD-Piano 

series polishing discs #200, 500, 1200, followed by diamond suspensions of 3, 1, and 0.25 µm.  

The diamond suspensions were used with MD-Dur polishing cloths. As a final step, the samples 

were polished with 0.5 alumina powder suspension on an MD-Nap polishing cloth.  Samples were 

washed in ethanol in an ultrasonic bath for 10 minutes between each polishing step.   

Indentation measurements were performed using the Hysitron Ti 900 Triboindenter with a 

Berkovich tip.  A trapezoidal loading function was used with a 5 second loading time, 3 second 

hold period and a 5 second unloading period and a maximum load (Pmax) of 2 mN.  Instrument 

compliance and tip area function calibrations were performed using a fused quartz standard prior 

to sample measurements.  A minimum of 50 points were indented for each sample.  Constantinides 

and Ulm [224] showed that 50 nanoindentation points were sufficient to identify correct volume 

fractions of HD and LD C-S-H and no further improvement was achieved by increasing the number 

of indentations.  Points were indented in a grid of 10x10 points, spaced 20 µm apart.  

The data were analyzed based on the Oliver and Pharr method [250] using the TriboScan 

6.0 software.  After analyzing the indentation results, the data was normalized by the number of 

indents in each sample and deconvoluted to obtain the modulus of individual phases as described 

in [251].    

 



127 
 

6.3 Results and Discussion 

6.3.1 Isothermal Calorimetry 

The degree of hydration for each of the paste samples obtained from isothermal calorimetry 

was calculated at the age of 7 days using Equations 6.1-6.4 and is listed in Table 6.3.  Total heat 

evolution used for calculating the degree of hydration are presented in Figure 6.1. As expected, 

the higher substitution of cement by slag shows the lowest total heat at 7 days of hydration while 

the total heat for 10MK and CN are similar. 

Table 6.3.  Degree of hydration calculated from isothermal calorimetry at 7 days 

Mix ID Degree of Hydration 
CN+ SP1 0.72 
10MK 0.68 
52SL 0.46 

 

 

Figure 6.1.  Total heat of hydration  
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6.3.2 Hydration Products 

The main hydration phases identified in the control sample at the age of 7 days were CH, 

ettringite and hemicarboaluminate (Table 6.4).  The presence of hemicarboaluminate is attributed 

to the reaction of C3A and CH with limestone, which was present in the cement used in this study.  

Examination of the as-received cement revealed the presence of 2.0% calcite, which is consistent 

with the limestone addition reported on the mill certificate for this cement.  Limestone powder has 

been reported to react with C3A during cement hydration forming hemicarboaluminate 

(C4AC0.5H12) and with C3A and CH forming monocarboaluminate (C4ACH11) as shown by [252].   

Table 6.4.  Rietveld analysis of the pastes at the age of 7 days 

Phase ICSD # CN+SP1 10MK 52SL 
Alite 94742 2.0 1.4 0.1 
Belite 81096 13.9 13.3 6.0 
C3A 1841 1.6 1.3 0.0 
C4AF 9197 3.0 1.7 0.0 
Portlandite 15471 12.9 8.0 4.2 
Quartz 41414 0.8 0.4 0.8 
Calcite 80869 1.0 0.9 0.6 
Ettringite 155395 8.6 6.6 3.1 
Tobermorite 9A 87689 1.0 1.5 2.8 
Hemicarboaluminate 263124 2.8 4.0 3.8 
Monocarboaluminate 59327 0.4   
0.8-Carboaluminate 263123 0.2   
Amorphous/Unidentified  51.8 61.1 78.3 

 

There are a number of publications detailing the hydration products in the OPC/MK 

systems [253]–[256].  However, these studies have not attempted to quantify hydration phases, 

therefore, our results can only be compared qualitatively.  In the current study, only 

hemicarboaliminate was identified in the 10MK sample as opposed to the results obtained by 

Antoni et al. [253], who reported the presense of both hemi- and monocarboaluminate, most likely 

due to significantly lower CaCO3 content in the as-received cement (2.1%) compared to that used 
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by [253] (15%).  Strätlingite was not present in 10MK sample, which is more in line with Antoni’s 

[253] results for the 30%MK with no limestone.  The broad diffused peak observed by [253] in 

the 30%MK with no LS sample was also present in the 9-10° 2θ region in the 10MK sample in 

this study and was followed by a hemicarboaluminate peak.  A small tobermorite peak was also 

found in this area.  The fitted pattern generated by Rietveld refinement with the inclusion of these 

phases (ettringite, tobermorite, monosulfoaluminate and hemicarboaluminate) did not completely 

fit the collected XRD pattern.  It is possible that inclusion of some other calcium aluminate hydrate 

as suggested by Cassagnabère et al. [255] would improve the fit in this region. 

Addition of mineral admixtures did not appear to change the main hydration products.  

Generally, no significant effect on phase consumption (Table 6.5) was observed with addition of 

mineral admixtures, except in the case of 52SL, where consumption of all phases was increased, 

likely due to the small amount of cement present in this mixture and a much higher effective w/c 

ratio. 

Table 6.5.  Consumption of individual clinker phases at the age of 7 days 

Phase CN+SP1 10MK 52SL 
C3S 0.94 0.95 0.99 
C3A 0.75 0.78 1 
C4AF 0.44 0.65 1 

 

6.3.3 Porosity Measurement with Nitrogen Adsorption 

Nitrogen-accessible porosity increased with addition of MK and SL (Figures 6.2 and 6.3).  

This can be attributed to two factors: lower degree of hydration and changes in porosity of C-S-H.  

While the degree of hydration (Table 6.3) of the 52SL sample is significantly lower than that of 

CN+SP1 and a higher amount of LD C-S-H is expected at lower degrees of hydration, the degree 

of hydration of 10MK and CN+SP1 are similar, so the observed differences in the pore size 
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distributions in the 1.5-10 nm range of CN+SP1 and 10MK samples are likely due to the changes 

in the porosity of C-S-H, possibly due to the changes in its chemical composition. 

 

Figure 6.2.  BJH pore size distribution at 7 days 

It is difficult to compare these results to previous studies, as the study by Justice and Kurtis 

[240], who used N2 adsorption to measure porosity, reported % pore volumes rather than actual 

volumes for pore diameters below 10 nm, 10-20 nm and above 20 nm at 1 and 28 days.  The rest 

of the studies utilized MIP, reporting the total pore volume and break through diameters, which 

cannot be related to the N2 adsorption data.  Even so, the results are contradictory.  Poon [215], 

[220] and Duan et al. [216] reported lower total porosity compared to the control in 10%MK 

mixtures at 7 days, while Khatib and Wild [238] observed an increase in the total pore volume at 

7 days with 10% cement replacement with MK.  Additionally, Khatib and Wild [238] reported that 

the percentage of pores with radii less than 20nm was greater in the 10%MK sample than in the 
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control at all ages, while the amount of pores with radii greater than 20 nm was always lower.  

Since N2 adsorption is limited to the 1.5-40 nm diameter range, the higher total pore volume of the 

10MK sample compared to the control is in agreement with the findings by [238].   

Several pore size classifications have been proposed for concrete [142].  In this study, CM-

II model [104] was predominantly used to separate pore size distribution into specific pore 

volumes.   The CM-II model distinguishes two types of C-S-H pores: small gel pores (SGP) 

representing the space within C-S-H particles and large gel pores (LGP) between the C-S-H 

particles.  It estimates the size of SGPs to be below 3 nm, and the size of LGPs to be in the range 

of 3-12 nm.  Recent NMR study reported 10 nm pores between C-S-H particles [257].  Others 

[258] report clustering of pores around the following average values: 1.8, 7, 50 and 600 nm. The 

authors attributed 1.8 nm pores to the pores inside C-S-H (SGP pores proposed by Jennings [104]) 

and 7 nm pores to the pores between C-S-H particles.  Reconciling these studies as well as the pore 

size classification proposed by Mindess et al. [7], pore size distributions of the samples analyzed 

in this study were compared for the following pore ranges: < 3nm (SGP pores), 3-10 nm (LGP 

pores) and > 10 nm (fraction of capillary pores measured by N2 sorption) (Figure 6.3).   

No significant differences were observed in the SGP pore volumes of the samples (Figure 

6.3). The LGP porosity, however, increased with addition of SCMs and was the highest for the 

52SL sample.  This indicates that 52SL paste had the highest LD/HD C-S-H ratio, which could be 

attributed to the lower degree of hydration of this sample.  Although lower than that of 52SL, the 

LD/HD ratio for the 10MK sample was also notably higher than that of the control paste, in spite 

of their similar degree of hydration.     
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Figure 6.3.  BJH pore volumes for each paste sample at 7 days 

BET predominantly measures porosity of C-S-H, and there is a general agreement in the 

literature that N2 molecules can enter the pores of low-density (LD) C-S-H, but only a small 

fraction of the high-density (HD) C-S-H porosity, while water can enter the pores of both LD and 

HD C-S-H [104], [259], [260].  Jennings and Thomas [260] state that because of this, N2 BET 

surface areas are much more sensitive to the microstructural differences than those obtained with 

water vapor.  As with the pore size distribution, the highest BET surface area was observed for the 

52SL sample followed by 10MK (Table 6.6).  Surface area of the control sample was significantly 

lower implying a presence of less porous C-S-H.   The ration of LD/HD C-S-H is known to affect 

shrinkage and creep of concrete [70].  

Table 6.6.  BET surface areas at 7 days 

Mix ID 5-point BET Surface Area (m2/g) 
CN+ SP1 53.35 
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6.3.4 Nanoindentation 

The results obtained from grid indentation were used to calculate the average elastic 

modulus, hardness and average maximum depth of penetration (hmax) for each sample.  First, the 

average E, H and hmax were calculated based on the data obtained from all the indents, which would 

include both the hydration products and the unhydrated clinker phases (Table 6.7). The average 

maximum penetrations depths are very similar and indicate that the majority of the indents were 

made in the C-S-H phase [225].  However, large differences can be observed between the average 

elastic moduli and average hardness values for these samples.  The CN+SP1 sample had the 

highest elastic modulus, followed by 52SL, and 10MK sample had the lowest.  The average 

hardness of the 10MK sample was also significantly lower than that of the other samples.  

The elastic modulus of individual clinker phases is known to be significantly higher than 

that of hydration products [261].  Despite a large difference in the degree of hydration of 10MK 

and 52SL samples (Table 6.3), their average elastic moduli are similar, while there is a large 

difference in the E values for 10MK and CN+SP1 samples in spite of their similar degree of 

hydration.  This indicates that the average E values in Table 6.7 are heavily influenced by the 

presence of unhydrated clinker phases and may not be the best way to evaluate the mechanical 

properties of the hydrated paste. 

Table 6.7.  Average nanoindentation values 

Sample Average E (GPa) Average H (GPa) Average hmax (nm) 
10MK 19.7 0.5 323 
CN+SP1 30.1 1.2 294 
52SL 23.0 1.4 323 

 

In order to evaluate the influence of MK and SL addition on the average mechanical 

properties of the hydration products and eliminate the effect of the large difference in the degree 

of hydration, the average E, H, and hmax values were recalculated excluding indents with E greater 
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than 40 GPa (Table 6.8).  A number of E and H values for C-S-H and CH have been reported in 

the literature by  [229], [233], [236], [262]–[265].  Němeček et al. [266] reported a modulus of 

approximately 44 GPa for unreacted MK and 26 GPa for unreacted SL.  Therefore, 40 GPa was 

selected as a cutoff point to ensure that all the possible C-S-H packing arrangements were included 

in the adjusted average values, but the unreacted MK, if any may be present in the 10MK sample, 

was excluded.  Since the expected value for unreacted SL modulus was between those reported for 

LD and HP C-S-H, it could not be excluded.  However, based on Figure 6.6 it appears that minimal 

number of indents were made in the unreacted SL particles and they are not expected to have a 

significant effect on the values calculated for the 52SL sample in Table 6.8. 

Table 6.8.  Adjusted average values after excluding indentations with E above 40 GPa 

Sample Average E (GPa) Average H (GPa) Average hmax (nm) 
CN+SP1 21.6 0.5 327 
10MK 19.7 0.5 323 
52SL 14.7 0.5 370 

 

 

Figure 6.4.  Relationship between compressive strength and average nanoindentation 

modulus of hydration products at 7 days 
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Figure 6.5.  Relationship between a) LGP pore volume and b) BET surface area and 

average nanoindentation modulus of hydration products at 7 days 

The adjusted average E values in Table 6.8 correlate with compressive strength results 

(Figure 6.4); compressive strength appears to increase with an increase in average elastic modulus 

computed for values below 40 GPa.  Additionally, there is good agreement between the adjusted 

average E values and porosity results, specifically LGP pore volume; as the LGP volume 

increased, the adjusted average E decreased (Figure 6.5a).  Same trend was observed with the BET 

surface area as well (Figure 6.5b). 
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Further analysis of nanoindentation data was carried out by plotting the probability 

distributions of the elastic moduli (below 40 GPa) for each sample as depicted in Figure 6.6.  The 

results of the deconvolution analysis and the volume fractions of each phase are listed in Table 

6.9.  The obtained values of elastic moduli are in general agreement with the published literature 

(see Table 6.1). 

 The probability plot for the 10MK sample (Figure 6.6b) is significantly different from that 

of CN+SP1 (Figure 6.6a).  While the control sample is showing presence of low stiffness, LD and 

HD C-S-H, the microstructure of the 10MK sample appears to be dominated by low stiffness C-

S-H.  A presence of a porous phase has also been identified in the 10MK sample.  52SL sample 

contained a significantly higher amount of the porous phase (Figure 6.6c), and C-S-H morphology 

was dominated by low stiffness C-S-H with very small amount of HD C-S-H present.  Vandamme 

et al. [235] illustrated a relationship between w/c ratio and relative volumes of LD, HD and UHD 

C-S-H; as w/c ratio increases, so does the volume of LD C-S-H at the expense of HD C-S-H.  The 

volumes fractions of low stiffness-LD C-S-H observed in this study appears to be affected by the 

effective w/c ratios of the mixtures.  Although the w/b ratio was maintained constant, the w/c ratio 

of the 52SL mixture was significantly higher, especially taking into account the low reactivity of 

SL compared to MK at 7 days.   

There are no indents with elastic moduli in the CH range for the 52SL sample.  The absence 

of clear indication of CH presence by nanoindentation is not surprising, as Rietveld refinement 

identified minimal amounts of CH compared to the other samples.  Generally, the volume fraction 

of CH is in agreement with the XRD results (Figure 6.7).  It appears that at 4 weight percent 

measured by XRD analysis, CH is difficult to detect with grid nanoindentation. 
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Figure 6.6.  Probability density functions of a) control, b) 10MK and c) 52SL paste at 7 

days 
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Table 6.9.  Results of the deconvolution analysis 

Sample Phase Mean ± Standard 
Deviation (GPa) 

Volume Fraction 

CN+SP1 

Low stiffness C-S-H 16.1 ± 1.9 0.31 
LD C-S-H 21.1 ± 0.6 0.17 
HD C-S-H 27.4 ± 3.9 0.48 
CH 37.3 ± 0.7 0.04 

10MK 

Porous phase 12.3 ± 1.8 0.10 
Low stiffness C-S-H 18.5 ± 1.6 0.48 
LD C-S-H 23.0 ± 0.6 0.28 
HD C-S-H 27.4 ± 2.5 0.12 
CH 38.3 ± 0.1 0.02 

52SL 
Porous phase 11.1 ± 1.3 0.39 
Low stiffness C-S-H 15.8 ± 2.1 0.52 
HD C-S-H 28.00 ± 1.2 0.09 

 

 

Figure 6.7.  Relationship between volume fraction of CH obtained from nanoindentation 

and weight percent of CH calculated from XRD measurements 
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6.4 Conclusions 

The following conclusions can be made based on the findings of this study: 

 Generally, addition of chemical and mineral admixtures did not change the main hydration 

products for mixtures cured at 23°C.  No significant differences in phase consumption were 

observed with addition of 10% metakaolin or 52% SL compared to the control paste at 7 

days. 

 Despite the similarity in phase consumption and the hydration products formed, nitrogen 

adsorption measurements indicated an increase in LGP volume with addition of 10% MK 

and 52% SL as well as increase in the fraction of capillary pores accessible by nitrogen 

adsorption technique.   

 Nanoindentation measurements also indicated an increase in C-S-H porosity with 10% MK 

and 52% SL addition, the highest increase resulting from SL incorporation which is in 

agreement with nitrogen adsorption measurements. 

 Additionally, a linear relationship was observed between the average elastic modulus of 

hydration products obtained from nanoindentation and the volume of LGP from N2 

adsorption.  A linear relationship was also observed between the average elastic modulus 

and compressive strength.  

The results indicate that phase quantification by QXRD of hydrated pastes may not be 

sufficient to assess the impact of metakaolin or SL addition on hydrating cementitious systems, 

and a multi-technique approach that provides information not only on the amount of hydration 

products, but also their morphology is preferable. 
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CHAPTER 7:  CONCLUSIONS  
 

 The undertaken research investigated a broad range of interactions than can occur between 

chemical admixtures and cements of variable mineralogy, between chemical admixtures and 

cement containing different SCMs.  The following conclusions can be drawn based on the 

presented results. 

Analysis of the heat flow measurements for three different cements and the doped samples 

accelerated with pure CaCl2 or commercial accelerator it can be concluded that pure CaCl2 showed 

a slight sensitivity to the variation in C3A and gypsum content of cement, while this variation had 

no effect on the performance of commercial CaCl2-based accelerator.  However, the presence of 

alkalis resulted in a reduced magnitude of the main hydration peak of the accelerated samples, 

whether with pure CaCl2 or Type E commercial admixture, and a shift in the position of the peak 

to a later age.  Further investigation is needed to determine the cause of this reduction in the 

accelerating efficiency in the presence of alkalis.   

Cement alkali content needs to be taken into account prior to accelerator selection as 

reduced heat release in high-alkali cements with chloride-based accelerator is expected to correlate 

with reduced compressive strength. 

The addition of lignosulfonate-based water-reducing and retarding admixture changed 

little the autogenous shrinkage rate of concrete when the rate was compared on a degree of 

hydration basis.  However, addition of CaCl2-based accelerator increased autogenous shrinkage in 

concretes containing water-reducing and air-entraining admixtures, when compared on a degree 

of hydration basis.   
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There was good agreement between autogenous deformation at 3 days and pore volume in 

the 10-20 nm range as determined by MIP on concrete and by nitrogen adsorption on paste 

samples.  This increase in porosity appears to be dosage dependent; porosity increases with initial 

accelerator addition, however, it remains constant until a “critical” dosage is reached that results 

in a further porosity increase. This large increase in autogenous shrinkage with the larger dosages 

of accelerator highlights the importance of controlling accelerator additions on field sites for rapid 

repair concrete mixtures to reduce the risk of cracking. 

The results of this study show that there is a synergistic effect of SCM combinations on 

yield stress and plastic viscosity of pastes for ternary and quaternary OPC/SCM blends.  It is clear 

that the effect of SCM combinations on paste rheology is not additive and cannot be predicted 

from the results obtained for their respective binary combinations.   

At a fixed w/cm ratio and a fixed dosage of chemical admixtures, a linear relationship was 

observed between apparent yield stress and BET surface area of the mixtures.  Only binary 

mixtures were tested without chemical admixtures; in this case, the packing density determined 

based on normal consistency measurements appeared to be the best predictor of the apparent yield 

stress.  The high yield stress of the OPC/MK paste without chemical admixtures was explained by 

its lower packing density.   

It was also observed that for fly ash and slag binary and ternary mixtures, with and without 

chemical admixtures, there was no significant change in water demand with increasing cement 

replacement.  This was not the case with metakaolin and silica fume, for which the water demand 

increased with increasing cement replacement.  Binary OPC/MK pastes had the highest water 

demand regardless of the presence of chemical admixtures.  The water demand of the ternary and 

quaternary mixtures remained at the level of the binary OPC/MK or OPC/SF mixtures and was not 
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affected by further cement replacement with fly ash or slag.  In this case, the effect of SCM 

combinations appears to be additive.   

Since only one source was used for each of the SCMs, further work is needed to confirm 

the observed trends between yield stress and packing density as well as surface area.  When SCMs 

from different sources with different chemistries, densities and surface areas are analyzed, these 

conclusions can be extended to SCMs as a whole. 

Statistical analysis of isothermal calorimetry data indicated that chemical admixtures do 

not have a significant effect on heat evolution beyond the hydration age of 12 hours.  SCMs 

investigated in this study (Class F FA, BFS, SF and MK), on the other hand, were found to have a 

significant effect at all ages.  While the effect of FA, SF and MK on the total heat reduction with 

increasing cement replacement appeared to be linear, the effect of BFS was quadratic.  The models 

proposed in this study were successful in predicting the total heat reduction with incorporation of 

chemical admixtures and SCMs compared to a plain OPC mixture. 

Generally, addition of metakaolin and slag with chemical admixtures did not change the 

main hydration products for mixtures cured at 23°C.  No significant differences in phase 

consumption were observed with addition of 10% metakaolin or 52% SL compared to the control 

paste at 7 days. 

Despite the similarity in phase consumption and the hydration products formed, nitrogen 

adsorption measurements indicated an increase in LGP volume with addition of 10% MK and 52% 

SL as well as increase in the fraction of capillary pores accessible by nitrogen adsorption technique.   

Nanoindentation measurements also indicated an increase in C-S-H porosity with 10% MK 

and 52% SL addition, the highest increase resulting from SL incorporation which is in agreement 

with nitrogen adsorption measurements. 
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Additionally, a linear relationship was observed between the average elastic modulus of 

hydration products obtained from nanoindentation and the volume of LGP from N2 adsorption.  A 

linear relationship was also observed between the average elastic modulus and compressive 

strength.  

Phase quantification by QXRD of hydrated pastes may not be sufficient to assess the 

impact of metakaolin or SL addition on hydrating cementitious systems, and a multi-technique 

approach that provides information not only on the amount of hydration products, but also their 

morphology is preferable. 

  



144 
 

 
 
 
 
 

REFERENCES 
 

[1] F. Jackson, “The durability of concrete in service,” ACI J. Proc., vol. 43, no. 165, pp. 
165–180, 1946. 

[2] L. Tuthill, R. Adams, S. N. Bailey, and R. W. Smith, “A Case of Abnormally Slow 
Hardening Concrete for Tunnel Lining,” J. Am. Concr. Inst., vol. 57, no. March, pp. 
1091–1110, 1961. 

[3] L. Roberts and P. Taylor, “Understanding cement-SCM-admixture interaction issues,” 
Concr. Int., pp. 33–41, 2007. 

[4] H. Wang, C. Qi, H. Farzam, and J. I. M. Turici, “Interaction of Materials Used in 
Concrete,” Concr. Int., vol. 28, no. 4, pp. 47–52, 2006. 

[5] T. Oey, J. Stoian, J. Li, C. Vong, M. Balonis, A. Kumar, W. Franke, and G. Sant, 
“Comparison of Ca(NO3)2 and CaCl2 Admixtures on Reaction, Setting, and Strength 
Evolutions in Plain and Blended Cementing Formulations,” J. Mater. Civ. Eng., vol. 27, 
no. 10, p. 04014267, Oct. 2015. 

[6] D. P. Bentz, T. Barrett, I. De la Varga, and W. J. Weiss, “Relating Compressive Strength 
to Heat Release in Mortars,” Adv. Civ. Eng. Mater., vol. 1, no. 1, p. 20120002, 2012. 

[7] S. Mindess, J. F. Young, and D. Darwin, Concrete, 2nd ed. Upper Saddle River, NJ: 
Prentice Hall, 2003. 

[8] P. Lura, O. M. Jensen, and K. van Breugel, “Autogenous shrinkage in high-performance 
cement paste: An evaluation of basic mechanisms,” Cem. Concr. Res., vol. 33, no. 2, pp. 
223–232, Feb. 2003. 

[9] C. Hua, P. Acker, and A. Ehrlacher, “Analyses and models of the autogenous shrinkage of 
hardening cement paste I. Modelling at macroscopic scale,” Cem. Concr. Res., vol. 25, no. 
7, pp. 1457–1468, 1995. 

[10] C. Hua, A. Ehrlacher, and P. Acker, “Analyses and models of the autogenous shrinkage of 
hardening cement paste II. Modelling at scale of hydrating grains,” Cem. Concr. Res., vol. 
27, no. 2, pp. 245–258, 1997. 

[11] P. K. Mehta and P. J. M. Monteiro, Concrete: Microstructure, Properties and Materials, 
3rd ed. New York, NY: McGraw-Hill, 2006. 

[12] D. P. Bentz, “A review of early-age properties of cement-based materials,” Cem. Concr. 
Res., vol. 38, no. 2, pp. 196–204, Feb. 2008. 



145 
 

[13] A. C. Jupe, A. P. Wilkinson, K. Luke, and G. P. Funkhouser, “Slurry Consistency and In 
Situ Synchrotron X-Ray Diffraction During the Early Hydration of Portland Cements 
With Calcium Chloride,” J. Am. Ceram. Soc., vol. 90, no. 8, pp. 2595–2602, Aug. 2007. 

[14] J. J. Shideler, “Calcium Chloride in Concrete,” J. Am. Concr. Inst., vol. 23, no. 7, pp. 537–
559, 1952. 

[15] W. Price, “Factors influencing concrete strength,” ACI J. Proc., vol. 47, no. 2, pp. 417–
432, 1951. 

[16] A. Suryavanshi, J. Scantlebury, and S. Lyon, “Pore Size Distribution of OPC & SRPC 
Mortars in Presence of Chlorides,” Cem. Concr. Res., vol. 25, no. 5, pp. 980–988, 1995. 

[17] C. M. Hansson, T. Frolund, and J. Markussen, “The Effect of Chloride Cation Type on the 
Corrosion of Steel in Concrete by Chloride Salts,” Cem. Concr. Res., vol. 15, no. 1, pp. 
65–73, 1985. 

[18] E. A. Kishar, D. A. Ahmed, M. R. Mohammed, and R. Noury, “Effect of calcium chloride 
on the hydration characteristics of ground clay bricks cement pastes,” Beni-Suef Univ. J. 
Basic Appl. Sci., vol. 2, no. 1, pp. 20–30, Mar. 2013. 

[19] J. Young, “Capillary Porosity in Hydrated Tricalcium Silicate Pastes,” Powder Technol., 
vol. 9, no. 4, pp. 173–179, 1974. 

[20] V. Gouda, W. Mourad, and R. Mikhail, “Additives to Cement Pastes: Simutaneous Effects 
on Pore Structure and Corrosion of Steel Reinforcement,” J. Colloid Interface Sci., vol. 
43, no. 2, pp. 294–302, 1973. 

[21] M. C. G. Juenger, P. J. M. Monteiro, E. M. Gartner, and G. P. Denbeaux, “A Soft X-ray 
Microscope Investigation into the Effects of Calcium Chloride on Tricalcium Silicate 
Hydration,” Cem. Concr. Res., vol. 35, no. 1, pp. 19–25, Jan. 2005. 

[22] M. C. G. Juenger and H. M. Jennings, “Examining the relationship between the 
microstructure of calcium silicate hydrate and drying shrinkage of cement pastes,” Cem. 
Concr. Res., vol. 32, no. 2, pp. 289–296, Feb. 2002. 

[23] D. A. Buidens, “Effects of Mix Design Using Chloride-Based Accelerator on Concrete 
Pavement Cracking Potential,” University of South Florida, Tampa, FL, Mater’s thesis, 
2014. 

[24] N. Shanahan, D. Buidens, K. Riding, and A. Zayed, “Effect of Chloride-Based 
Accelerator in the Presence of Water-Reducing and Retarding Admixture on Autogenous 
Shrinkage,” J. Am. Ceram. Soc., pp. 1–12, Mar. 2016. 

[25] A. Zayed, K. A. Riding, C. Ferraro, A. J. Bien-Aime, N. Shanahan, D. Buidens, T. 
Meagher, V. Tran, J. Henika, J. Paris, C. Tibbetts, and B. Watts, “Long-Life Slab 
Replacement Concrete,” University of South Florida, Tampa, FL, 2015. 



146 
 

[26] A. K. Schindler and K. J. Folliard, “Heat of hydration models for cementitious materials,” 
ACI Mater. J., vol. 102, no. 1, pp. 24–33, 2005. 

[27] J. Poole, K. Riding, K. Folliard, M. C. G. Juenger, and A. K. Schindler, “Hydration study 
of cementitious materials using semi-adiabatic calorimetry,” ACI Spec. Publ. SP-241-5, 
pp. 59–76, 2007. 

[28] K. Riding, J. Poole, K. J. Folliard, M. C. G. Juenger, and A. K. Schindler, “Modeling 
Hydration of Cementitious Systems,” ACI Mater. J., vol. 109, no. 2, pp. 225–234, 2012. 

[29] J. Gajda, Mass Concrete for Buildings and Bridges. Skokie, IL: Portland Cement 
Association, 2007. 

[30] C. F. Ferraris, K. H. Obla, and R. Hill, “The influence of mineral admixtures on the 
rheology of cement paste and concrete,” Cem. Concr. Res., vol. 31, no. 2, pp. 245–255, 
Feb. 2001. 

[31] T. Danner, H. Justnes, M. Geiker, and R. Andreas, “Phase changes during the early 
hydration of Portland cement with Ca-lignosulfonates,” Cem. Concr. Res., vol. 69, pp. 50–
60, Mar. 2015. 

[32] A. Zingg, L. Holzer, A. Kaech, F. Winnefeld, J. Pakusch, S. Becker, and L. Gauckler, 
“The microstructure of dispersed and non-dispersed fresh cement pastes — New insight 
by cryo-microscopy,” Cem. Concr. Res., vol. 38, no. 4, pp. 522–529, Apr. 2008. 

[33] M. Whittaker, M. Zajac, M. Ben Haha, F. Bullerjahn, and L. Black, “The role of the 
alumina content of slag, plus the presence of additional sulfate on the hydration and 
microstructure of Portland cement-slag blends,” Cem. Concr. Res., vol. 66, pp. 91–101, 
Dec. 2014. 

[34] V. Tydlitát, A. Trník, L. Scheinherrová, R. Podoba, and R. Černý, “Application of 
isothermal calorimetry and thermal analysis for the investigation of calcined gypsum–
lime–metakaolin–water system,” J. Therm. Anal. Calorim., 2015. 

[35] J. Cabrera and M. F. Rojas, “Mechanism of hydration of the metakaolin–lime–water 
system,” Cem. Concr. Res., vol. 31, no. 2, pp. 177–182, Feb. 2001. 

[36] V. Ramachandran, “Accelerators,” in Concrete Admixtures Handbook: Properties, 
Science and Technology, 2nd ed., V. Ramachandran, Ed. Park Ridge, NJ: Noyes 
Publications, 1995, pp. 185–285. 

[37] O. Mendoza, C. Giraldo, S. S. Camargo, and J. I. Tobón, “Structural and nano-mechanical 
properties of Calcium Silicate Hydrate (C-S-H) formed from alite hydration in the 
presence of sodium and potassium hydroxide,” Cem. Concr. Res., vol. 74, pp. 88–94, 
2015. 

 



147 
 

[38] A. Sedaghat, N. Shanahan, and A. Zayed, “Predicting One-Day, Three-Day, and Seven-
Day Heat of Hydration of Portland Cement,” J. Mater. Civ. Eng., vol. 27, no. 9, p. 
04014257, Dec. 2015. 

[39] J. L. Poole, K. A. Riding, K. J. Folliard, M. C. G. Juenger, and A. K. Schindler, “Methods 
for Calculating Activation Energy for Portland Cement,” ACI Mater. J., vol. 104, no. 1, 
pp. 303–311, 2007. 

[40] I. Odler, “Hydration, Setting and Hardening of Portland Cement,” in Lea’s Chemistry of 
Cement and Concrete, 4th ed., P. C. Hewlett, Ed. New York, NY: Arnold, 1998, pp. 241–
297. 

[41] W. Lerch, The Influence of Gypsum on the Hydration and Properties of Portland Cement 
Pastes. Chicago, IL: Research Laboratory of the Portland Cement Association, 1946. 

[42] A. Quennoz and K. L. Scrivener, “Interactions between alite and C3A-gypsum hydrations 
in model cements,” Cem. Concr. Res., vol. 44, pp. 46–54, Feb. 2013. 

[43] V. Peterson and M. Juenger, “Hydration of tricalcium silicate: effects of CaCl2 and 
sucrose on reaction kinetics and product formation,” Chem. Mater., vol. 18, no. 24, pp. 
5798–5804, 2006. 

[44] V. K. Peterson and M. C. Garci Juenger, “Time-resolved quasielastic neutron scattering 
study of the hydration of tricalcium silicate: Effects of CaCl2 and sucrose,” Phys. B 
Condens. Matter, vol. 385–386, pp. 222–224, Nov. 2006. 

[45] J. Thomas, A. Allen, and H. Jennings, “Hydration kinetics and microstructure 
development of normal and CaCl2-accelerated tricalcium silicate pastes,” J. Phys. Chem., 
vol. 113, no. 46, pp. 19836–19844, 2009. 

[46] A. Traetteberg and P. Sereda, “Strength of C3A paste containing gypsum and CaCl2,” 
Cem. Concr. Res., vol. 6, no. 4, pp. 461–474, 1976. 

[47] I. Odler and S. Abdul-Maula, “Effect of Chemical Admixtures on Portland Cement 
Hydration,” Cem. Concr. Aggregates, vol. 9, no. 1, pp. 38–43, 1987. 

[48] H. F. W. Taylor, Cement Chemistry, 2nd ed. London, UK: Thomas Telford Publishing, 
1997. 

[49] C. Bedard and N. Mailvaganam, “The Use of Chemical Admixtures in Concrete. Part I: 
Admixture-Cement Compatibility,” J. Perform. Constr. Facil., vol. 19, no. 4, pp. 263–
267, 2005. 

[50] H. Wang, D. De Leon, and H. Farzam, “C4AF Reactivity—Chemistry and Hydration of 
Industrial Cement,” ACI Mater. J., vol. 111, no. 2, pp. 201–210, 2014. 

 



148 
 

[51] C. Hesse, F. Goetz-Neunhoeffer, and J. Neubauer, “A new approach in quantitative in-situ 
XRD of cement pastes: Correlation of heat flow curves with early hydration reactions,” 
Cem. Concr. Res., vol. 41, no. 1, pp. 123–128, Jan. 2011. 

[52] V. K. Peterson, D. Neumann, and R. Livingston, “Effect of NaOH on the kinetics of 
tricalcium silicate hydration: A quasielastic neutron scattering study,” Chem. Phys. Lett., 
vol. 419, no. 1–3, pp. 16–20, Feb. 2006. 

[53] V. Ramachandran, J. Beaudoin, S. Sarkar, and X. Aimin, “Physico-Chemical and 
Microstructural Investigations of the Effect of NaOH on the Hydration of 3CaO.SiO2,” 
Cem., vol. 90, no. 2, pp. 73–84, 1993. 

[54] Y. Bu and J. Weiss, “The Influence of Alkali Content on the Electrical Resistivity and 
Transport Properties of Cementitious Materials,” Cem. Concr. Compos., vol. 51, pp. 49–
58, Mar. 2014. 

[55] M. C. G. Juenger and H. M. Jennings, “Effects of high alkalinity on cement pastes,” ACI 
Mater. J., vol. 98, no. 3, pp. 251–255, 2001. 

[56] I. Jawed and J. Skalny, “Alkalies in Cement: A Review II. Effect of alkalies on hydration 
and performance of portland cement,” Cem. Concr. Res., vol. 8, no. 1, pp. 37–51, 1978. 

[57] B. Samet and S. L. Sarkar, “The influence of calcium sulfate form on the initial hydration 
of clinkers containing different alkali combinations,” Cem. Concr. Res., vol. 27, no. 3, pp. 
369–380, 1997. 

[58] I. Odler and R. Wonnemann, “Effect of alkalies on portland cement hydration II. Alkalies 
present in the form of sulfates,” Cem. Concr. Res., vol. 13, no. 6, pp. 771–777, 1983. 

[59] D. P. Bentz, E. J. Garboczi, C. J. Haecker, and O. M. Jensen, “Effects of cement particle 
size distribution on performance properties of Portland cement-based materials,” Cem. 
Concr. Res., vol. 29, pp. 1663–1671, 1999. 

[60] D. D. P. Bentz, G. Sant, and J. Weiss, “Early-age properties of cement-based materials. I: 
Influence of cement fineness,” J. Mater. Civ. Eng., vol. 20, no. 7, pp. 502–508, 2008. 

[61] M. Balonis, B. Lothenbach, G. Le Saout, and F. P. Glasser, “Impact of chloride on the 
mineralogy of hydrated Portland cement systems,” Cem. Concr. Res., vol. 40, no. 7, pp. 
1009–1022, Jul. 2010. 

[62] A. Suryavanshi, J. Scantlebury, and S. Lyon, “Mechanism of Friedel’s Salt Formation in 
Cements Rich in Tri-Calcium Aluminate,” Cem. Concr. Res., vol. 26, no. 5, pp. 717–727, 
1996. 

[63] N. Tenoutasse, “The Hydratation Mechanism of C3A and C3S in the Presence of Calcium 
Chloride and Calcium Sulphate,” in V International Symposium of Chemistry of Cement, 
1968, pp. 372–378. 



149 
 

[64] M. A. G. Aranda, A. G. De la Torre, and L. Leon-Reina, “Rietveld Quantitative Phase 
Analysis of OPC Clinkers, Cements and Hydration Products,” Reviews in Mineralogy and 
Geochemistry, vol. 74, no. 1. pp. 169–209, 2012. 

[65] C. Peng, F. Zhang, and Z. Guo, “Gypsum crystallization and potassium chloride 
regeneration by reaction of calcium chloride solution with potassium sulfate solution or 
solid,” Trans. Nonferrous Met. Soc. China, vol. 20, no. 4, pp. 712–720, 2010. 

[66] C. Labbez, I. Pochard, B. Jönsson, and A. Nonat, “C-S-H/solution interface: Experimental 
and Monte Carlo studies,” Cem. Concr. Res., vol. 41, no. 2, pp. 161–168, 2011. 

[67] J. J. Beaudoin, V. S. Ramachandran, and R. Feldman, “Interaction of chloride and C-S-
H,” Cem. Concr. Res., vol. 20, no. 6, pp. 875–883, 1990. 

[68] G. Plusquellec, A. Nonat, and I. Pochard, “Anion uptake by calcium silicate hydrate,” 
32nd Cem. Concr. Sci. Conf., p. 4, 2012. 

[69] H. Viallis, P. Faucon, J. C. Petit, and A. Nonat, “Interaction between salts (NaCl, CsCl) 
and calcium silicate hydrates (C-S-H),” J. Phys. Chem. B, vol. 103, no. 25, pp. 5212–
5219, 1999. 

[70] M. . Zhang, C. . Tam, and M. . Leow, “Effect of water-to-cementitious materials ratio and 
silica fume on the autogenous shrinkage of concrete,” Cem. Concr. Res., vol. 33, no. 10, 
pp. 1687–1694, Oct. 2003. 

[71] V. Baroghel-Bouny, P. Mounanga, A. Khelidj, A. Loukili, and N. Rafaï, “Autogenous 
deformations of cement pastes,” Cem. Concr. Res., vol. 36, no. 1, pp. 123–136, Jan. 2006. 

[72] T. Aly and J. G. Sanjayan, “Effect of Pore-Size Distribution on Shrinkage of Concretes,” 
J. Mater. Civ. Eng., vol. 22, no. 5, pp. 525–532, 2010. 

[73] S. Slatnick, K. Riding, K. J. Folliard, M. C. G. Juenger, and A. K. Schindler, “Evaluation 
of Autogenous Deformation of Concrete at Early Ages.,” ACI Mater. J., vol. 108, no. 1, 
pp. 21–28, 2011. 

[74] J. Brooks and M. Johari, “Effect of metakaolin on creep and shrinkage of concrete,” Cem. 
Concr. Compos., vol. 23, pp. 495–502, 2001. 

[75] Y. Li, J. Bao, and Y. Guo, “The relationship between autogenous shrinkage and pore 
structure of cement paste with mineral admixtures,” Constr. Build. Mater., vol. 24, no. 10, 
pp. 1855–1860, Oct. 2010. 

[76] S. W. Yoo, S.-J. Kwon, and S. H. Jung, “Analysis technique for autogenous shrinkage in 
high performance concrete with mineral and chemical admixtures,” Constr. Build. Mater., 
vol. 34, pp. 1–10, Sep. 2012. 

[77] E. Tazawa and S. Miyazawa, “Influence of cement and admixture on autogenous 
shrinkage of cement paste,” Cem. Concr. Res., vol. 25, no. 2, pp. 281–287, 1995. 



150 
 

[78] A. N. M. Lopes, E. F. Silva, D. C. C. D. Molin, and R. D. T. Filho, “Shrinkage-Reducing 
Admixture : Effects on Durability of High-Strength Concrete,” no. 110, pp. 365–374, 
2014. 

[79] J. Weiss, P. Lura, F. Rajabipour, and G. Sant, “Performance of Shrinkage-Reducing 
Admixtures at Different Humidities and at Early Ages,” no. 105, 2009. 

[80] G. Sant, “The Influence of Temperature on Autogenous Volume Changes in Cementitious 
Materials Containing Shrinkage Reducing Admixtures,” Cem. Concr. Compos., vol. 34, 
no. 7, pp. 855–865, Aug. 2012. 

[81] M. José Oliveira, A. B. Ribeiro, and F. G. Branco, “Combined effect of expansive and 
shrinkage reducing admixtures to control autogenous shrinkage in self-compacting 
concrete,” Constr. Build. Mater., vol. 52, pp. 267–275, 2014. 

[82] T. Meagher, N. Shanahan, D. Buidens, K. A. Riding, and A. Zayed, “Effects of chloride 
and chloride-free accelerators combined with typical admixtures on the early-age cracking 
risk of concrete repair slabs,” Constr. Build. Mater., vol. 94, pp. 270–279, 2015. 

[83] T. J. VanDam, K. R. Peterson, L. L. Sutter, A. Panguluri, and J. Sytsma, “Guidelines for 
Early-Opening to Traffic Portland Cement Concrete for Pavement Rehabilitation, NCHRP 
Report 540,” Washington, DC, 2005. 

[84] G. B. Wallace and E. L. Ore, “Structural and Lean Mass Concrete as Affected by Water-
Reducing, Set-Retarding Agents,” ASTM Spec. Tech. Publ. 266, pp. 38–94, 1960. 

[85] E. Holt, “Contribution of mixture design to chemical and autogenous shrinkage of 
concrete at early ages,” Cem. Concr. Res., vol. 35, no. 3, pp. 464–472, 2005. 

[86] V. Ramachandran and R. Feldman, “Time-Dependent and Intrinsic Characteristics of 
Portland Cement Hydrated in the Presence of Calcium Chloride,” Cem., vol. 75, no. 3, pp. 
311–322, 1978. 

[87] M. C. G. Juenger and H. M. Jennings, “The use of nitrogen adsorption to assess the 
microstructure of cement paste,” Cem. Concr. Res., vol. 31, no. 6, pp. 883–892, May 
2001. 

[88] A. Korpa and R. Trettin, “The influence of different drying methods on cement paste 
microstructures as reflected by gas adsorption: Comparison between freeze-drying (F-
drying), D-drying, P-drying and oven-drying methods,” Cem. Concr. Res., vol. 36, no. 4, 
pp. 634–649, Apr. 2006. 

[89] J. Beaudoin, “A discussion on,‘ The use of nitrogen adsorption to assess the 
microstructure of cement paste’ by MCG Juenger and HM Jennings,” Cem. Concr. Res., 
vol. 32, pp. 831–832, 2002. 

 



151 
 

[90] R. Mikhail, L. E. Copeland, and S. Brunauer, “Pore structures and surface areas of 
hardened Portland cement pastes by nitrogen adsorption,” Can. J. Chem., vol. 42, pp. 
426–438, 1964. 

[91] I. Maruyama, Y. Nishioka, G. Igarashi, and K. Matsui, “Microstructural and bulk property 
changes in hardened cement paste during the first drying process,” Cem. Concr. Res., vol. 
58, pp. 20–34, 2014. 

[92] J. M. Justice, “Evaluation of Metakaolins for Use as Supplementary Cementitious 
Materials,” Georgia Institute of Technology, 2005. 

[93] E. Bodor, J. Skalny, S. Brunauer, J. Massy, and M. Yudenfreund, “Pore structures of 
hydrated calcium silicates and Portland cements by nitrogen adsorption,” J. Colloid 
Interface Sci., vol. 34, no. 4, pp. 560–570, 1970. 

[94] G. W. Scherer, “Drying, Shrinkage, and Cracking of Cementitious Materials,” Transp. 
Porous Media, vol. 110, no. 2, pp. 311–331, Nov. 2015. 

[95] J. C. Groen, L. A. A. Peffer, and J. Pérez-Ramírez, “Pore size determination in modified 
micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis,” 
Microporous Mesoporous Mater., vol. 60, pp. 1–17, 2003. 

[96] T. Oey, J. Stoian, J. Li, and C. Vong, “Comparison of Ca (NO 3) 2 and CaCl 2 
Admixtures on Reaction, Setting, and Strength Evolutions in Plain and Blended 
Cementing Formulations,” J. Mater. …, no. 3, pp. 1–12, 2014. 

[97] V. S. Ramachandran, “Kinetics of hydration of tricalcium silicate in presence of calcium 
chloride by thermal methods,” Thermochim. Acta, vol. 2, no. 1, pp. 41–55, 1971. 

[98] K. De Weerdt,  a. Colombo, L. Coppola, H. Justnes, and M. R. Geiker, “Impact of the 
associated cation on chloride binding of Portland cement paste,” Cem. Concr. Res., vol. 
68, pp. 196–202, Feb. 2015. 

[99] D. Hou, T. Zhao, H. Ma, and Z. Li, “Reactive Molecular Simulation on Water Confined in 
the Nanopores of the Calcium Silicate Hydrate Gel: Structure, Reactivity, and Mechanical 
Properties,” J. Phys. Chem. C, vol. 119, pp. 1346–1358, 2015. 

[100] M. Bauchy, M. J. Abdolhosseini Qomi, C. Bichara, F. J. Ulm, and R. J. M. Pellenq, 
“Nanoscale structure of cement: Viewpoint of rigidity theory,” J. Phys. Chem. C, vol. 118, 
pp. 12485–12493, 2014. 

[101] M. J. Abdolhosseini Qomi, K. J. Krakowiak, M. Bauchy, K. L. Stewart, R. Shahsavari, D. 
Jagannathan, D. B. Brommer, A. Baronnet, M. J. Buehler, S. Yip, F.-J. Ulm, K. J. Van 
Vliet, and R. .-. M. Pellenq, “Combinatorial molecular optimization of cement hydrates,” 
Nat. Commun., vol. 5, pp. 1–9, Sep. 2014. 

 



152 
 

[102] H. Chen, M. Wyrzykowski, K. Scrivener, and P. Lura, “Prediction of self-desiccation in 
low water-to-cement ratio pastes based on pore structure evolution,” Cem. Concr. Res., 
vol. 49, pp. 38–47, Jul. 2013. 

[103] J. Lai, L. Zhang, X. Qian, C. Shen, and J. Zhang, “Influence of superplasticizers on early 
age drying shrinkage of cement paste with the same consistency,” J. Wuhan Univ. 
Technol. Sci. Ed., vol. 29, no. 6, pp. 1201–1207, Dec. 2014. 

[104] H. M. Jennings, “Refinements to colloid model of C-S-H in cement: CM-II,” Cem. Concr. 
Res., vol. 38, no. 3, pp. 275–289, Mar. 2008. 

[105] H. M. Jennings, “A model for the microstructure of calcium silicate hydrate in cement 
paste,” Cem. Concr. Res., vol. 30, pp. 101–116, 2000. 

[106] I. Maruyama, G. Igarashi, and Y. Nishioka, “Bimodal behavior of C-S-H interpreted from 
short-term length change and water vapor sorption isotherms of hardened cement paste,” 
Cem. Concr. Res., vol. 73, pp. 158–168, 2015. 

[107] I. Maruyama, “Origin of Drying Shrinkage of Hardened Cement Paste: Hydration 
Pressure,” J. Adv. Concr. Technol., vol. 8, no. 2, pp. 187–200, 2010. 

[108] F. Beltzung and F. H. Wittmann, “Role of disjoining pressure in cement based materials,” 
Cem. Concr. Res., vol. 35, no. 12, pp. 2364–2370, 2005. 

[109] O. M. Jensen and P. F. Hansen, “Influence of temperature on autogenous deformation and 
relative humidity change in hardening cement paste,” Cem. Concr. Res., vol. 29, no. 4, pp. 
567–575, 1999. 

[110] Z. Jiang, Z. Sun, and P. Wang, “Autogenous relative humidity change and autogenous 
shrinkage of high-performance cement pastes,” Cem. Concr. Res., vol. 35, no. 8, pp. 
1539–1545, Aug. 2005. 

[111] F. Beltzung, F. Wittmann, and L. Holzer, “Influence of composition of pore solution on 
drying shrinkage,” in Creep, Shrinkage and Durability Mechanics of Concrete and Other 
Quasi-Brittle Materials, Proceedings of the Sixth International Conference, CONCREEP-
6@MIT, 2001, pp. 39–48. 

[112] R. Rixom and N. Mailvaganam, Chemical Admixtures for Concrete, 3rd ed. New York, 
NY: Routledge, 1999. 

[113] W. Kurdowski, Cement and Concrete Chemistry. Dordrecht: Springer Netherlands, 2014. 

[114] B. Hope and D. Manning, “Creep of Concrete Influenced by Accelerators,” ACI J. Proc., 
vol. 68, no. 5, pp. 361–365, 1971. 

[115] M. Alexander and B. Magee, “Durability performance of concrete containing condensed 
silica fume,” Cem. Concr. Res., vol. 29, no. 6, pp. 917–922, 1999. 



153 
 

[116] Z. Li and Z. Ding, “Property improvement of Portland cement by incorporating with 
metakaolin and slag,” Cem. Concr. Res., vol. 33, no. 4, pp. 579–584, Apr. 2003. 

[117] J. M. Khatib and J. J. Hibbert, “Selected engineering properties of concrete incorporating 
slag and metakaolin,” Constr. Build. Mater., vol. 19, no. 6, pp. 460–472, Jul. 2005. 

[118] B. W. Langan, K. Weng, and M. A. Ward, “Effect of silica fume and fly ash on heat of 
hydration of Portland cement,” Cem. Concr. Res., vol. 32, pp. 1045–1051, 2002. 

[119] M. I. Khan and C. J. Lynsdale, “Strength, permeability, and carbonation of high-
performance concrete,” Cem. Concr. Res., vol. 32, no. 1, pp. 123–131, Jan. 2002. 

[120] M. Codina, C. Cau-dit-Coumes, P. Le Bescop, J. Verdier, and J. P. Ollivier, “Design and 
characterization of low-heat and low-alkalinity cements,” Cem. Concr. Res., vol. 38, no. 4, 
pp. 437–448, Apr. 2008. 

[121] E. Güneyisi, M. Gesoğlu, and E. Özbay, “Strength and drying shrinkage properties of self-
compacting concretes incorporating multi-system blended mineral admixtures,” Constr. 
Build. Mater., vol. 24, no. 10, pp. 1878–1887, Oct. 2010. 

[122] P. A. M. Basheer, P. R. V. Gilleece, A. E. Long, and W. J. Mc Carter, “Monitoring 
Electrical Resistance of Concretes Containing Alternative Cementitious Materials to 
Assess Their Resistance to Chloride Penetration,” Cem. Concr. Compos., vol. 24, no. 5, 
pp. 437–449, Oct. 2002. 

[123] M. Gesoğlu, E. Güneyisi, and E. Özbay, “Properties of self-compacting concretes made 
with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and 
silica fume,” Constr. Build. Mater., vol. 23, no. 5, pp. 1847–1854, May 2009. 

[124] R. Bleszynski and R. Hooton, “Durability of ternary blend concrete with silica fume and 
blast-furnace slag: laboratory and outdoor exposure site studies,” ACI Mater. J., vol. 99, 
pp. 499–508, 2002. 

[125] M. D. A. Thomas, M. H. Shehata, S. G. Shashiprakash, D. S. Hopkins, and K. Cail, “Use 
of ternary cementitious systems containing silica fume and fly ash in concrete,” Cem. 
Concr. Res., vol. 29, no. 8, pp. 1207–1214, Aug. 1999. 

[126] T. K. Erdem and Ö. Kırca, “Use of binary and ternary blends in high strength concrete,” 
Constr. Build. Mater., vol. 22, no. 7, pp. 1477–1483, Jul. 2008. 

[127] N. Bouzoubaâ, A. Bilodeau, V. Sivasundaram, B. Fournier, and D. M. Golden, 
“Development of Ternary Blends for High- Performance Concrete,” ACI Mater. J., vol. 
101, no. 1, pp. 19–29, 2004. 

[128] N. Roussel, A. Lemaître, R. J. Flatt, and P. Coussot, “Steady state flow of cement 
suspensions: A micromechanical state of the art,” Cem. Concr. Res., vol. 40, no. 1, pp. 
77–84, 2010. 



154 
 

[129] B. Patzák and Z. Bittnar, “Modeling of fresh concrete flow,” Comput. Struct., vol. 87, no. 
15–16, pp. 962–969, 2009. 

[130] P. Banfill, “Rheology of fresh cement and concrete,” Rheol. Rev., pp. 61–130, 2006. 

[131] N. Roussel, “Rheology of fresh concrete: from measurements to predictions of casting 
processes,” Mater. Struct., vol. 40, no. 10, pp. 1001–1012, 2007. 

[132] S. Hanehara and K. Yamada, “Rheology and early age properties of cement systems,” 
Cem. Concr. Res., vol. 38, no. 2, pp. 175–195, 2008. 

[133] R. Flatt, “Towards a prediction of superplasticized concrete rheology,” Mater. Struct., vol. 
37, no. June, pp. 289–300, 2004. 

[134] O. H. Wallevik and J. E. Wallevik, “Rheology as a tool in concrete science: The use of 
rheographs and workability boxes,” Cem. Concr. Res., vol. 41, no. 12, pp. 1279–1288, 
Dec. 2011. 

[135] R. S. Ahari, T. K. Erdem, and K. Ramyar, “Effect of various supplementary cementitious 
materials on rheological properties of self-consolidating concrete,” Constr. Build. Mater., 
vol. 75, pp. 89–98, 2015. 

[136] C. Ferraris and F. de Larrard, Testing and modelling of fresh concrete rheology. 1998. 

[137] R. J. Flatt and P. Bowen, “Yodel: A Yield Stress Model for Suspensions,” J. Am. Ceram. 
Soc., vol. 89, no. 4, pp. 1244–1256, Apr. 2006. 

[138] R. J. Flatt and P. Bowen, “Yield Stress of Multimodal Powder Suspensions: An Extension 
of the YODEL (Yield Stress mODEL),” J. Am. Ceram. Soc., vol. 90, no. 4, pp. 1038–
1044, Apr. 2007. 

[139] J. Z. Q. Zhou, P. H. T. Uhlherr, and F. T. Luo, “Yield stress and maximum packing 
fraction of concentrated suspensions,” Rheol. Acta, vol. 34, no. 6, pp. 544–561, 1995. 

[140] Z. Zhou, M. J. Solomon, P. J. Scales, and D. V. Boger, “The yield stress of concentrated 
flocculated suspensions of size distributed particles,” J. Rheol. (N. Y. N. Y)., vol. 43, no. 3, 
p. 651, 1999. 

[141] S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of Gases in Multimolecular 
Layers,” J. Am. Chem. Soc., vol. 60, no. 1, pp. 309–319, 1938. 

[142] K. K. Aligizaki, Pore Structure of Cement-Based Materials: Testing, Interpretation and 
Requirements. New York, NY: Taylor & Francis, 2006. 

[143] R. Pileggi, A. Betioli, F. Cardoso, and V. John, “Entended rheological chracterization of 
cement pastes: squeeze flow plus rotational rheometry,” in Proceedings of the 12th 
International Congress on the Chemistry of Cement, 2007. 



155 
 

[144] E. Brito-de La Fuente, L. Choplin, and P. A. Tanguy, “Mixing with Helical Ribbon 
Impellers : Effect of Highly Shear Thinning Behaviour and Impeller Geometry,” no. 1. 

[145] R. Siddique and M. I. Khan, Supplementary Cementing Materials, vol. 37. Berlin, 
Germany: Springer, 2011. 

[146] A. Buchwald, R. Tatarin, and D. Stephan, “Reaction progress of alkaline-activated 
metakaolin-ground granulated blast furnace slag blends,” J. Mater. Sci., vol. 44, no. 20, 
pp. 5609–5617, Aug. 2009. 

[147] F. Curcio, B. . DeAngelis, and S. Pagliolico, “Metakaolin as a pozzolanic microfiller for 
high-performance mortars,” Cem. Concr. Res., vol. 28, no. 6, pp. 803–809, Jun. 1998. 

[148] J. Yajun and J. H. Cahyadi, “Effects of densified silica fume on microstructure and 
compressive strength of blended cement pastes,” Cem. Concr. Res., vol. 33, no. 10, pp. 
1543–1548, Oct. 2003. 

[149] E. P. Koehler and D. W. Fowler, “Development of a Portable Rheometer for Fresh 
Portland Cement Concrete,” Washington, DC, 2004. 

[150] A. K. H. Kwan and Y. Li, “Effects of fly ash microsphere on rheology, adhesiveness and 
strength of mortar,” Constr. Build. Mater., vol. 42, pp. 137–145, May 2013. 

[151] C. K. Park, M. H. Noh, and T. H. Park, “Rheological properties of cementitious materials 
containing mineral admixtures,” Cem. Concr. Res., vol. 35, no. 5, pp. 842–849, May 2005. 

[152] L. Rudzinski, “The effect of fly ashes on the rheological behaviour of cement pastes,” 
Matériaux Constr., vol. 17, no. 5, pp. 369–373, 1984. 

[153] X. Zhang and J. Han, “The effect of ultra-fine admixture on the rheological property of 
cement paste,” Cem. Concr. Res., vol. 30, no. 5, pp. 827–830, May 2000. 

[154] M. Palacios, F. Puertas, P. Bowen, and Y. F. Houst, “Effect of PCs superplasticizers on 
the rheological properties and hydration process of slag-blended cement pastes,” J. Mater. 
Sci., vol. 44, no. 10, pp. 2714–2723, Mar. 2009. 

[155] Y. Shi, I. Matsui, and N. Feng, “Effect of compound mineral powders on workability and 
rheological property of HPC,” Cem. Concr. Res., vol. 32, no. 1, pp. 71–78, Jan. 2002. 

[156] E. Moulin, P. Blanc, and D. Sorrentino, “Influence of key cement chemical parameters on 
the properties of metakaolin blended cements,” Cem. Concr. Compos., vol. 23, pp. 463–
469, 2001. 

[157] K. Yamada, T. Sugamata, and H. Nakanishi, “Fluidity Performance Evaluation of Cement 
and Superplasticizer,” J. Adv. Concr. Technol., vol. 4, no. 2, pp. 241–249, 2006. 

 



156 
 

[158] T. Tadros, “Interparticle interactions in concentrated suspensions and their bulk 
(rheological) properties.,” Adv. Colloid Interface Sci., vol. 168, no. 1–2, pp. 263–77, Oct. 
2011. 

[159] L. Ferrari, J. Kaufmann, F. Winnefeld, and J. Plank, “Interaction of cement model systems 
with superplasticizers investigated by atomic force microscopy, zeta potential, and 
adsorption measurements,” J. Colloid Interface Sci., vol. 347, no. 1, pp. 15–24, Jul. 2010. 

[160] S. Hanehara and K. Yamada, “Interaction between Cement and Chemical Admixture from 
the Point of Cement Hydration, Absorption Behaviour of Admixture, and Paste 
Rheology,” Cem. Concr. Res., vol. 29, no. 8, pp. 1159–1165, Aug. 1999. 

[161] Y. Knop and A. Peled, “Setting behavior of blended cement with limestone: influence of 
particle size and content,” Mater. Struct., vol. 49, no. 1–2, pp. 439–452, Jan. 2016. 

[162] A. Lecomte, J. M. Mechling, and C. Diliberto, “Compaction index of cement paste of 
normal consistency,” Constr. Build. Mater., vol. 23, no. 10, pp. 3279–3286, 2009. 

[163] B. Sabir, S. Wild, and J. Bai, “Metakaolin and calcined clays as pozzolans for concrete: a 
review,” Cem. Concr. Compos., vol. 23, no. 6, pp. 441–454, Dec. 2001. 

[164] C. He, B. Osbaeck, and E. Makovicky, “Pozzolanic Reactions of Six Principal Clay 
Minerals: Activation, Reactivity Assessments and Technological Effects,” Cem. Concr. 
Res., vol. 25, no. 8, pp. 1691–1702, 1995. 

[165] R. Talero, C. Pedrajas, and V. Rahhal, “Performance of Fresh Portland Cement Pastes - 
Determination of Some Specific Rheological Parameters,” in Rheology - New Concepts, 
Applications and Methods, R. Durairaj, Ed. InTech, 2013, pp. 57–79. 

[166] R. Talero, “Kinetic and morphological differentiation of Ettringites in plain and blended 
Portland cements using Metakaolin and the ASTM C 452-68 test. Part I : kinetic 
differentiation,” Mater. Construcción, vol. 58, no. 292, pp. 45–66, 2008. 

[167] R. Talero, “Kinetic and morphological differentiation of ettringites in plain and blended 
Portland cements with metakaolin and the ASTM C 452-68 test. Part II : Morphological 
differentiation by SEM and XRD analysis,” Mater. Construcción, vol. 59, no. 293, pp. 
35–51, 2009. 

[168] ACI Committee 207, ACI 207.2R-07 Report on Thermal and Volume Change Effects on 
Cracking of Mass Concrete. Farmington Hills, MI: American Concrete Institute, 2007. 

[169] T. Poole, “Predicting Seven-Day Heat of Hydration of Hydraulic Cement from Standard 
Test Properties,” J. ASTM Int., vol. 6, no. 6, pp. 1–10, 2009. 

[170] T. Kishi and K. Maekawa, “Multi-Component Model for Hydration Heat of Portland 
Cement,” Concr. Libr. JSCE, vol. 28, no. 1, pp. 97–115, 1996. 

 



157 
 

[171] S. Swaddiwudhipong, D. Chen, and M. H. Zhang, “Simulation of the exothermic 
hydration process of Portland cement,” Adv. Cem. Res., vol. 14, no. 2, pp. 61–69, 2002. 

[172] K. A. Riding, J. L. Poole, K. J. Folliard, M. C. G. Juenger, and A. K. Schindler, 
“Modeling Hydration of Cementitious Systems,” ACI Mater. J., vol. 109, no. 2, pp. 225–
234, 2012. 

[173] B. Lothenbach, K. Scrivener, and R. D. Hooton, “Supplementary cementitious materials,” 
Cem. Concr. Res., vol. 41, no. 12, pp. 1244–1256, Dec. 2011. 

[174] A. M. Neville, Properties of Concrete, 4th ed. Harlow, England: Pearson Education 
Limited, 2006. 

[175] G. Osborne, “Durability of Portland blast-furnace slag cement concrete,” Cem. Concr. 
Compos., vol. 21, pp. 11–21, 1999. 

[176] I. Pane and W. Hansen, “Investigation of blended cement hydration by isothermal 
calorimetry and thermal analysis,” Cem. Concr. Res., vol. 35, no. 6, pp. 1155–1164, Jun. 
2005. 

[177] E.-H. Kadri and R. Duval, “Hydration heat kinetics of concrete with silica fume,” Constr. 
Build. Mater., vol. 23, no. 11, pp. 3388–3392, Nov. 2009. 

[178] N. Y. Mostafa and P. W. Brown, “Heat of hydration of high reactive pozzolans in blended 
cements: Isothermal conduction calorimetry,” Thermochim. Acta, vol. 435, no. 2, pp. 162–
167, 2005. 

[179] M. Frías, M. S. de Rojas, and J. Cabrera, “The effect that the pozzolanic reaction of 
metakaolin has on the heat evolution in metakaolin-cement mortars,” Cem. Concr. Res., 
vol. 30, pp. 209–216, 2000. 

[180] E.-H. Kadri, S. Kenai, K. Ezziane, R. Siddique, and G. De Schutter, “Influence of 
metakaolin and silica fume on the heat of hydration and compressive strength 
development of mortar,” Appl. Clay Sci., vol. 53, no. 4, pp. 704–708, Oct. 2011. 

[181] A. Williams, A. Markandeya, Y. Stetsko, K. Riding, and A. Zayed, “Cracking potential 
and temperature sensitivity of metakaolin concrete,” Constr. Build. Mater., vol. 120, pp. 
172–180, 2016. 

[182] J. Ambroise, S. Maximilien, and J. Pera, “Properties of metakaolin blended cements,” 
Adv. Cem. Based Mater., vol. 1, no. 4, pp. 161–168, 1994. 

[183] J. Bai and S. Wild, “Investigation of the temperature change and heat evolution of mortar 
incorporating PFA and metakaolin,” Cem. Concr. Compos., vol. 24, no. 2, pp. 201–209, 
2002. 

 



158 
 

[184] H.-S. Kim, S.-H. Lee, and H.-Y. Moon, “Strength properties and durability aspects of high 
strength concrete using Korean metakaolin,” Constr. Build. Mater., vol. 21, no. 6, pp. 
1229–1237, Jun. 2007. 

[185] G. Jiang, Z. Rong, and W. Sun, “Effects of metakaolin on mechanical properties, pore 
structure and hydration heat of mortars at 0.17 w/b ratio,” Constr. Build. Mater., vol. 93, 
pp. 564–572, 2015. 

[186] K. Meinhard and R. Lackner, “Multi-phase hydration model for prediction of hydration-
heat release of blended cements,” Cem. Concr. Res., vol. 38, no. 6, pp. 794–802, 2008. 

[187] G. De Schutter and L. Taerwe, “General hydration model for portland cement and blast 
furnace slag cement,” Cem. Concr. Res., vol. 25, no. 3, pp. 593–604, 1995. 

[188] F. Han, Z. Zhang, D. Wang, and P. Yan, “Hydration kinetics of composite binder 
containing slag at different temperatures,” J. Therm. Anal. Calorim., vol. 121, no. 2, pp. 
815–827, 2015. 

[189] B. Kolani, L. Buffo-Lacarrière, A. Sellier, G. Escadeillas, L. Boutillon, and L. Linger, 
“Hydration of slag-blended cements,” Cem. Concr. Compos., vol. 34, no. 9, pp. 1009–
1018, 2012. 

[190] Y. Luan, T. Ishida, T. Nawa, and T. Sagawa, “Enhanced Model and Simulation of 
Hydration Process of Blast Furnace Slag in Blended Cement,” J. Adv. Concr. Technol., 
vol. 10, no. 1, pp. 1–13, 2012. 

[191] S. Swaddiwudhipong, H. Wu, and M. H. Zhang, “Numerical simulation of temperature 
rise of highstrength concrete incorporating silica fume and superplasticiser,” Adv. Cem. 
Res., vol. 15, no. 4, pp. 161–169, 2003. 

[192] X. Y. Wang, H. K. Cho, and H. S. Lee, “Prediction of temperature distribution in concrete 
incorporating fly ash or slag using a hydration model,” Compos. Part B Eng., vol. 42, no. 
1, pp. 27–40, 2011. 

[193] K. J. Folliard, M. Juenger, A. Schindler, K. A. Riding, J. L. Poole, L. Kallivokas, S. 
Slatnick, J. Whigham, and J. L. Meadows, “Prediction Model for Concrete Behavior - 
Final Report,” Center for Transportation Research, the University of Texas at Austin, 
Austin, TX, 2008. 

[194] J. J. L. Poole, K. A. K. Riding, M. C. G. Juenger, K. J. Folliard, and A. K. Schindler, 
“Effect of Chemical Admixtures on Apparent Activation Energy of Cementitious 
Systems,” J. Mater. Civ. Eng., vol. 23, no. 12, pp. 1654–1662, Dec. 2011. 

[195] F. Han, R. Liu, D. Wang, and P. Yan, “Characteristics of the hydration heat evolution of 
composite binder at different hydrating temperature,” Thermochim. Acta, vol. 586, pp. 52–
57, Jun. 2014. 

 



159 
 

[196] M. T. Palou, E. Kuzielová, R. Novotný, F. Šoukal, and M. Žemlička, “Blended cements 
consisting of Portland cement–slag–silica fume–metakaolin system,” J. Therm. Anal. 
Calorim., Mar. 2016. 

[197] D. C. Montgomery, Design and Analysis of Experiments, 6th ed. Hoboken, NJ: John 
Wiley & Sons, Inc., 2005. 

[198] M. Sonebi, L. Svermova, and P. J. M. Bartos, “Factorial Design of Cement Slurries 
Containing Limestone Powder for Self-Consolidating Slurry-Infiltrated Fiber Concrete,” 
ACI Mater. J., vol. 101, no. 2, pp. 136–145, 2005. 

[199] A. Ghezal and K. H. Khayat, “Optimizing Self-Consolidating Concrete with Limestone 
Filler by using Statistical Factorial Design Methods,” ACI Mater. J., vol. 99, no. 3, pp. 
264–272, 2002. 

[200] K. H. Khayat, A. Ghezal, and M. S. Hadriche, “Factorial design models for proportioning 
self- consolidating concrete,” Mater. Struct., vol. 32, no. 9, pp. 679–686, 1999. 

[201] K. Soudki, E. F. El-Salakawy, and N. Elkum, “Full factorial optimization of concrete mix 
design for hot climates,” J. Mater. Civ. Eng., vol. 13, no. 6, pp. 427–433, 2001. 

[202] R. Patel, K. Hossain, and M. Shehata, “Development of statistical models for mixture 
design of high-volume fly ash self-consolidating concrete,” ACI Mater. J., vol. 101, no. 4, 
pp. 294–302, 2004. 

[203] L. Ferrara, Y.-D. Park, and S. P. Shah, “A method for mix-design of fiber-reinforced self-
compacting concrete,” Cem. Concr. Res., vol. 37, no. 6, pp. 957–971, Jun. 2007. 

[204] C. B. Srinivasan, N. L. Narasimhan, and S. V. Ilango, “Development of rapid-set high-
strength cement using statistical experimental design,” Cem. Concr. Res., vol. 33, no. 9, 
pp. 1287–1292, Sep. 2003. 

[205] M. Sonebi, “Factorial design modelling of mix proportion parameters of underwater 
composite cement grouts,” Cem. Concr. Res., vol. 31, no. 11, pp. 1553–1560, Nov. 2001. 

[206] A. C. A. Muller, K. L. Scrivener, A. M. Gajewicz, and P. J. McDonald, “Use of bench-top 
NMR to measure the density, composition and desorption isotherm of C-S-H in cement 
paste,” Microporous Mesoporous Mater., vol. 178, pp. 99–103, 2013. 

[207] G. Verbeck and C. Foster, “Long-time study of cement performance in concrete: The 
heats of hydration of the cements,” in Proceedings f the American Society for Testing 
Materials, vol. 50, Philadelphia, PA, 1950, pp. 1235–1262. 

[208] A. Zayed, A. Sedaghat, A. J. Bien-Aime, and N. Shanahan, “Effects of portland cement 
particle size on heat of hydration,” University of South Florida, Tampa, FL, 2013. 

 



160 
 

[209] C. Medina, I. F. Sáez del Bosque, E. Asensio, M. Frías, and M. I. Sánchez de Rojas, “New 
additions for eco-efficient cement design. Impact on calorimetric behaviour and 
comparison of test methods,” Mater. Struct., Jan. 2016. 

[210] A. A. Ramezanianpour, “Metakaolin,” in Cement Replacement Materials, Berlin, 
Germany: Springer-Verlag Berlin Heidelberg, 2014, p. 336. 

[211] A. Shvarzman, K. Kovler, G. . Grader, and G. . Shter, “The effect of 
dehydroxylation/amorphization degree on pozzolanic activity of kaolinite,” Cem. Concr. 
Res., vol. 33, no. 3, pp. 405–416, Mar. 2003. 

[212] C. Bich, J. Ambroise, and J. Péra, “Influence of degree of dehydroxylation on the 
pozzolanic activity of metakaolin,” Appl. Clay Sci., vol. 44, no. 3–4, pp. 194–200, May 
2009. 

[213] G. Kakali, T. Perraki, S. Tsivilis, and E. Badogiannis, “Thermal treatment of kaolin: the 
effect of mineralogy on the pozzolanic activity,” Appl. Clay Sci., vol. 20, no. 1–2, pp. 73–
80, Sep. 2001. 

[214] T. Ramlochan, M. Thomas, and K. a Gruber, “The effect of metakaolin on alkali–silica 
reaction in concrete,” Cem. Concr. Res., vol. 30, no. 3, pp. 339–344, Mar. 2000. 

[215] C. S. Poon, S. C. Kou, and L. Lam, “Compressive strength, chloride diffusivity and pore 
structure of high performance metakaolin and silica fume concrete,” Constr. Build. 
Mater., vol. 20, no. 10, pp. 858–865, 2006. 

[216] P. Duan, Z. Shui, W. Chen, and C. Shen, “Effects of metakaolin, silica fume and slag on 
pore structure, interfacial transition zone and compressive strength of concrete,” Constr. 
Build. Mater., vol. 44, pp. 1–6, 2013. 

[217] J. M. Justice, L. H. Kennison, B. J. Mohr, S. L. Beckwith, L. E. Mccormick, B. Wiggins, 
Z. Z. Zhang, and K. E. Kurtis, “Comparison of Two Metakaolins and a Silica Fume Used 
as Supplementary Cementitious Materials,” in Proceedings of the ACI 7th International 
Symposium on Utilization of High- Strength/High-Performance Concrete, 2005, pp. 213–
236. 

[218] K. A. Gruber, T. Ramlochan, A. Boddy, R. . Hooton, and M. D. A. Thomas, “Increasing 
concrete durability with high-reactivity metakaolin,” Cem. Concr. Compos., vol. 23, no. 6, 
pp. 479–484, Dec. 2001. 

[219] G. Batis, P. Pantazopoulou, S. Tsivilis, and E. Badogiannis, “The effect of metakaolin on 
the corrosion behavior of cement mortars,” Cem. Concr. Compos., vol. 27, no. 1, pp. 125–
130, Jan. 2005. 

[220] C.-S. Poon, L. Lam, S. . Kou, Y.-L. Wong, and R. Wong, “Rate of pozzolanic reaction of 
metakaolin in high-performance cement pastes,” Cem. Concr. Res., vol. 31, no. 9, pp. 
1301–1306, Sep. 2001. 



161 
 

[221] S. Wild, J. M. Khatib, and A. Jones, “Relative strength, pozzolanic activity and cement 
hydration in superplasticised metakaolin concrete,” Cem. Concr. Res., vol. 26, no. 10, pp. 
1537–1544, 1996. 

[222] I. G. Richardson, “Tobermorite/jennite- and tobermorite/calcium hydroxide-based models 
for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-
dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, 
metakaol,” Cem. Concr. Res., vol. 34, no. 9, pp. 1733–1777, 2004. 

[223] E. T. Rodriguez, I. G. Richardson, L. Black, E. Boehm-Courjault, A. Nonat, and J. 
Skibsted, “Composition, silicate anion structure and morphology of calcium silicate 
hydrates (C-S-H) synthesised by silica-lime reaction and by controlled hydration of 
tricalcium silicate (C3S),” Adv. Appl. Ceram., vol. 114, no. 7, pp. 362–371, 2015. 

[224] G. Constantinides and F. J. Ulm, “The nanogranular nature of C-S-H,” J. Mech. Phys. 
Solids, vol. 55, no. 1, pp. 64–90, 2007. 

[225] F.-J. Ulm, M. Vandamme, H. M. Jennings, J. Vanzo, M. Bentivegna, K. J. Krakowiak, G. 
Constantinides, C. P. Bobko, and K. J. Van Vliet, “Does microstructure matter for 
statistical nanoindentation techniques?,” Cem. Concr. Compos., vol. 32, no. 1, pp. 92–99, 
Jan. 2010. 

[226] F. J. Ulm, M. Vandamme, C. Bobko, J. Alberto Ortega, K. Tai, and C. Ortiz, “Statistical 
indentation techniques for hydrated nanocomposites: Concrete, bone, and shale,” J. Am. 
Ceram. Soc., vol. 90, no. 9, pp. 2677–2692, 2007. 

[227] K. Ioannidou, K. J. Krakowiak, M. Bauchy, C. G. Hoover, E. Masoero, S. Yip, F. J. Ulm, 
P. Levitz, R. J.-M. Pellenq, and E. Del Gado, “Mesoscale texture of cement hydrates,” 
Proc. Natl. Acad. Sci., vol. 113, no. 8, pp. 2029–2034, 2016. 

[228] P. Mondal, S. P. Shah, L. D. Marks, and J. J. Gaitero, “Comparative Study of the Effects 
of Microsilica and Nanosilica in Concrete,” Transp. Res. Rec. J. Transp. Res. Board, vol. 
2141, no. -1, pp. 6–9, 2010. 

[229] C. Hu, Y. Han, Y. Gao, Y. Zhang, and Z. Li, “Property investigation of calcium-silicate-
hydrate (C-S-H) gel in cementitious composites,” Mater. Charact., vol. 95, pp. 129–139, 
2014. 

[230] Z. He, C. Qian, Y. Zhang, F. Zhao, and Y. Hu, “Nanoindentation characteristics of cement 
with different mineral admixtures,” Sci. China Technol. Sci., vol. 56, no. 5, pp. 1119–
1123, 2013. 

[231] S. Barbhuiya and P. Chow, “Effects of Metakaolin on Nanomechanical Properties of 
Cement Paste,” in Calcined Clays for Sustainable Concrete, Proceedings of the 1st 
International Conference on Calcined Clays for Sustainable Concrete, 2015, pp. 459–466. 

 



162 
 

[232] P. Mondal, S. P. Shah, and L. Marks, “A reliable technique to determine the local 
mechanical properties at the nanoscale for cementitious materials,” Cem. Concr. Res., vol. 
37, no. 10, pp. 1440–1444, Oct. 2007. 

[233] G. Constantinides and F.-J. Ulm, “The effect of two types of C-S-H on the elasticity of 
cement-based materials: Results from nanoindentation and micromechanical modeling,” 
Cem. Concr. Res., vol. 34, no. 1, pp. 67–80, Jan. 2004. 

[234] M. Vandamme and F. J. Ulm, “Nanoindentation investigation of creep properties of 
calcium silicate hydrates,” Cem. Concr. Res., vol. 52, pp. 38–52, 2013. 

[235] M. Vandamme, F. J. Ulm, and P. Fonollosa, “Nanogranular packing of C-S-H at 
substochiometric conditions,” Cem. Concr. Res., vol. 40, no. 1, pp. 14–26, 2010. 

[236] P. J. M. Monteiro and C. T. Chang, “The elastic moduli of calcium hydroxide,” Cem. 
Concr. Res., vol. 25, no. 8, pp. 1605–1609, 1995. 

[237] H. M. Jennings, J. W. Bullard, J. J. Thomas, J. E. Andrade, J. J. Chen, and G. W. Scherer, 
“Characterization and Modeling of Pores and Surfaces in Cement Paste: Correlations to 
Processing and Properties,” J. Adv. Concr. Technol., vol. 6, no. 1, pp. 5–29, 2008. 

[238] J. Khatib and S. Wild, “Pore size distribution of metakaolin paste,” Cem. Concr. Res., vol. 
26, no. 10, pp. 1545–1553, 1996. 

[239] P. Duan, Z. Shui, W. Chen, and C. Shen, “Influence of metakaolin on pore structure-
related properties and thermodynamic stability of hydrate phases of concrete in seawater 
environment,” Constr. Build. Mater., vol. 36, pp. 947–953, 2012. 

[240] J. M. Justice and K. E. Kurtis, “Influence of Metakaolin Surface Area on Properties of 
Cement-Based Materials,” J. Mater. Civ. Eng., vol. 19, no. 9, pp. 762–771, 2007. 

[241] R. Snellings, A. Bazzoni, and K. Scrivener, “The existence of amorphous phase in 
Portland cements: Physical factors affecting Rietveld quantitative phase analysis,” Cem. 
Concr. Res., vol. 59, pp. 139–146, 2014. 

[242] I. C. Madsen, N. V. Y. Scarlett, and A. Kern, “Description and survey of methodologies 
for the determination of amorphous content via X-ray powder diffraction,” Zeitschrift für 
Krist., vol. 226, no. 12, pp. 944–955, Dec. 2011. 

[243] D. Jansen, F. Goetz-Neunhoeffer, C. Stabler, and J. Neubauer, “A remastered external 
standard method applied to the quantification of early OPC hydration,” Cem. Concr. Res., 
vol. 41, no. 6, pp. 602–608, Jun. 2011. 

[244] D. Jansen, S. T. Bergold, F. Goetz-Neunhoeffer, and J. Neubauer, “The hydration of alite: 
A time-resolved quantitative XRD approach using the G-factor method compared with 
heat release,” J. Appl. Crystallogr., vol. 44, pp. 895–901, 2011. 

 



163 
 

[245] D. Jansen, C. Stabler, F. Goetz-Neunhoeffer, S. Dittrich, and J. Neubauer, “Does Ordinary 
Portland Cement Contain Amorphous Phase? A Quantitative Study Using an External 
Standard Method,” Powder Diffr., vol. 26, no. 01, pp. 31–38, Mar. 2012. 

[246] D. Bish and R. J. Reynolds, “Sample Preparation for X-Ray Diffraction,” in Modern 
Powder Diffraction, D. Bish and J. Post, Eds. Washington, DC: The Mineralogical Society 
of America, 1989, pp. 73–99. 

[247] R. Detwiler, L. Powers, U. Jakobsen, W. U. Ahmed, K. L. Scrivener, and K. O. Kjellsen, 
“Preparing specimens for microscopy,” Concr. Int., vol. 23, no. 11, pp. 51–58, 2001. 

[248] E. P. Barrett, L. G. Joyner, and P. P. Halenda, “The Determination of Pore Volume and 
Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms,” J. 
Am. Ceram. Soc., vol. 73, no. 1, pp. 373–380, 1951. 

[249] G. J. G. Gluth and B. Hillemeier, “Pore structure and permeability of hardened calcium 
aluminate cement pastes of low w/c ratio,” Mater. Struct., vol. 46, no. 9, pp. 1497–1506, 
Dec. 2012. 

[250] W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and 
Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments,” J. 
Mater. Res., vol. 7, no. 6, pp. 1564–1583, 1992. 

[251] G. Constantinides, K. S. Ravi Chandran, F.-J. Ulm, and K. J. Van Vliet, “Grid indentation 
analysis of composite microstructure and mechanics: Principles and validation,” Mater. 
Sci. Eng. A, vol. 430, no. 1–2, pp. 189–202, 2006. 

[252] K. De Weerdt, M. Ben Haha, G. Le Saout, K. O. Kjellsen, H. Justnes, and B. Lothenbach, 
“Hydration mechanisms of ternary Portland cements containing limestone powder and fly 
ash,” Cem. Concr. Res., vol. 41, no. 3, pp. 279–291, 2011. 

[253] M. Antoni, J. Rossen, F. Martirena, and K. Scrivener, “Cement substitution by a 
combination of metakaolin and limestone,” Cem. Concr. Res., vol. 42, no. 12, pp. 1579–
1589, Dec. 2012. 

[254] R. Snellings,  a. Salze, and K. L. Scrivener, “Use of X-ray diffraction to quantify 
amorphous supplementary cementitious materials in anhydrous and hydrated blended 
cements,” Cem. Concr. Res., vol. 64, pp. 89–98, 2014. 

[255] F. Cassagnabère, G. Escadeillas, and M. Mouret, “Study of the reactivity of 
cement/metakaolin binders at early age for specific use in steam cured precast concrete,” 
Constr. Build. Mater., vol. 23, no. 2, pp. 775–784, 2009. 

[256] M. Boháč, M. Palou, R. Novotný, J. Másilko, D. Všianský, and T. Staněk, “Investigation 
on early hydration of ternary Portland cement-blast-furnace slag–metakaolin blends,” 
Constr. Build. Mater., vol. 64, pp. 333–341, Aug. 2014. 

 



164 
 

[257] A. Valori, P. J. McDonald, and K. L. Scrivener, “The morphology of C–S–H: Lessons 
from 1H nuclear magnetic resonance relaxometry,” Cem. Concr. Res., vol. 49, pp. 65–81, 
Jul. 2013. 

[258] J. P. Korb, L. Monteilhet, P. J. McDonald, and J. Mitchell, “Microstructure and texture of 
hydrated cement-based materials: A proton field cycling relaxometry approach,” Cem. 
Concr. Res., vol. 37, no. 3, pp. 295–302, 2007. 

[259] I. Odler, “The BET-specific surface area of hydrated Portland cement and related 
materials,” Cem. Concr. Res., vol. 33, no. 12, pp. 2049–2056, Dec. 2003. 

[260] H. M. Jennings and J. J. Thomas, “A discussion of the paper ‘The BET-specific surface 
area of hydrated Portland cement and related materials’ by Ivan Odler,” Cem. Concr. Res., 
vol. 34, no. 10, pp. 1959–1960, Oct. 2004. 

[261] K. Velez, S. Maximilien, D. Damidot, G. Fantozzi, and F. Sorrentino, “Determination by 
nanoindentation of elastic modulus and hardness of pure constituents of Portland cement 
clinker,” Cem. Concr. Res., vol. 31, no. 4, pp. 555–561, Apr. 2001. 

[262] J. J. Hughes and P. Trtik, “Micro-mechanical properties of cement paste measured by 
depth-sensing nanoindentation: a preliminary correlation of physical properties with phase 
type,” Mater. Charact., vol. 53, no. 2–4, pp. 223–231, Nov. 2004. 

[263] F. Pelisser, P. J. P. Gleize, and A. Mikowski, “Effect of the Ca/Si molar ratio on the 
micro/nanomechanical properties of synthetic C-S-H measured by nanoindentation,” J. 
Phys. Chem. C, vol. 116, no. 32, pp. 17219–17227, 2012. 

[264] C. Hu and Z. Li, “Property investigation of individual phases in cementitious composites 
containing silica fume and fly ash,” Cem. Concr. Compos., Dec. 2014. 

[265] H. M. Jennings, J. J. Thomas, J. S. Gevrenov, G. Constantinides, and F.-J. Ulm, “A multi-
technique investigation of the nanoporosity of cement paste,” Cem. Concr. Res., vol. 37, 
no. 3, pp. 329–336, Mar. 2007. 

[266] J. Němeček, V. Šmilauer, and L. Kopecký, “Nanoindentation characteristics of alkali-
activated aluminosilicate materials,” Cem. Concr. Compos., vol. 33, no. 2, pp. 163–170, 
2011. 

 

  



165 
 

 
 
 
 
 

APPENDIX A:  COPYRIGHT PERMISSIONS 
 

 Below is permission from the Florida Department of Transportation to use the material 

presented in this dissertation.  This refers to the data presented in Chapters 3 through 6. 

 



166 
 

Below is permission for use of the article published in the Journal of the American Ceramic 

Society included as Chapter 3.  The relevant section is circled in red. 

 


	University of South Florida
	Scholar Commons
	6-23-2016

	Interaction of Cementitious Systems with Chemical Admixtures
	Natallia Shanahan
	Scholar Commons Citation


	Microsoft Word - Shanahan Dissertation 06202016.docx

