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ABSTRACT 
 

In the early 1990s, the United Nations (UN) recognized water as a finite resource to the 

entire ecosystem with an economic value that should be developed and managed based on the 

participatory approach using the Integrated Water Resource Management (IWRM) strategy. 

Many studies on water management practices have thus emerged in the developing world. Of 

particular interest to this work is the management of water through metering, price-setting, and 

rule enforcement in the rural setting in piped, community-owned water systems. There is very 

little published information regarding metering, enforcement experiments, and experiences in 

these systems. This is because metering and enforcement mechanisms are not typically included 

in rural piped community-managed water supply system design and water committee training 

schemes. Along with an increase in population growth and changing climate patterns, there is a 

burgeoning interest to manage demand and reduce non-revenue water (NRW) in urban utilities in 

developing countries. Metering is often the demand management tool considered because it has 

been reported to increase customer payment rates as well as social equity. Rural, community-

managed systems often suffer high failure rates due to the lack of preventative maintenance, 

which maybe closely linked to customer dissatisfaction and non-payment of tariffs. The 

inclusion of a metering and enforcement program to such systems may help to address the 

problem of high rates of premature failure.  

An inclusion of a metering program for rural community-managed water supply systems 

is a non-trivial task in terms of cost as well as the system designer’s time, thus there is significant 
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interest in ensuring such a program’s success. Many field workers may have familiarity with 

water system design but not specifically in the area of water flow metering and currently no 

beginner-level resources are publicly available. This work is ultimately intended to facilitate the 

inclusion of metering into rural, piped, community-managed water supply systems through: 1) 

compilation of technical information regarding metering which would be accessible to field 

practitioners and relevant to the rural community-managed setting, 2) a proposed decision-

making tool to facilitate the selection of the most appropriate meter for the community, 3) 

proposed installation tips, and 4) suggested strategies for including metering into the community-

management model. Objectives 1, 3, and 4 were pursued via review of industry, peer-reviewed, 

and field literature along with the author’s personal experience. Multiple criteria decision 

analysis (MCDA) was the method proposed for aiding in the selection of the most appropriate 

meter type. It was determined that four types of meters are used for residential metering in 

developed and developing urban utility-managed systems: the nutating disc, oscillating piston, 

multi-jet, and single-jet. The nutating disc and oscillating piston meters operate through a 

volumetric or displacement mechanism, while the single- and multi-jet meters function through a 

velocity or non-displacement mechanism. While a lot of variation between models of meters 

exists, there are fewer characteristics that can be used to differentiate between mechanisms. After 

applying the multiple-criteria decision analysis to aid in the selection of the most appropriate 

meter for a rural, community-managed systems, the nutating disc and oscillating piston types of 

meters were most preferred under the set of criteria chosen by the author for the purpose of 

example in this analysis. It is recommended that meter selection be performed on a site-specific 

basis with local stakeholder involvement for criteria determination. Meter installation is similar 

for all four types of meters and whichever type of meter is chosen, it should be protected from 
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tampering. Increasing-block pricing is recommended to accompany metering in order to motivate 

water conservation. The size and price of the initial block of water should be determined 

according to the system’s operation and maintenance costs as well as users’ willingness to pay 

information. Field practitioners should prepare the community to take over the metering program 

by providing basic training to the users and selected meter readers/technicians.  

 



1 
 

 
 
 
 
 

CHAPTER 1 INTRODUCTION 
 

Partly thanks to the attention generated by the UN’s Millennium Development Goal 7, 

the number of people without access to improved drinking water has reduced and “of the 2.6 

billion people who have gained access since 1990, 1.9 billion use a piped drinking water supply 

on premises” (MDG Report, 2015). Admittedly, while some of this increase may be a statistical 

phenomenon attributed to the movement of rural peoples to urban areas with infrastructure, it is 

also true that the international aid community has taken a great interest in addressing this 

problem through “hydrophilanthropy” – donating time and resources to implement water 

improvement projects (Kreamer, 2010). Particularly in rural areas, the field development workers 

design and build small water supply and distribution systems in response to the lack of effective 

government locally. Once the construction is completed, ownership and management 

responsibilities are transferred the community itself, and this concept is known as the 

community-management model (Annis, 2006; Behailu et al., 2015; Hanson, 1985; Lockwood, 

2004; Okun & Ernst, 1987; Sy, 2011). While these projects often are popular with international 

donors and aid agencies, community-managed systems are characterized by high rates of tariff 

payment delinquency, lack of maintenance, and too often, even failure (Annis, 2006; Harvey & 

Reed, 2007; Schweitzer & Mihelcic, 2012). One of the contributing factors to failure is the lack 

of maintenance due to non-payment of tariffs by the users of the system. Although the 

community-management model stresses the need for capacity building of communities and one 

of the exercises is the codification of rules or statutes written by the water committee under the 
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guidance of the field worker. Such codes address the consequences of nonpayment and other 

violations of the committee rules, however, they are rarely enforced (Messenger, 2004). Too 

often the community’s abilities to impose sanctions through social means are glorified or 

“mythologized” by hydrophilanthropists (Cleaver & Toner, 2006; Johnson, 2002). Water system 

designs, therefore, do not include management mechanisms through which the community could 

pursue equity and enforcement once the external aid entity departs. Specifically, in developed 

countries the utilities that provide water services have an interest in keeping those services 

functional and this requires continued revenue collection. This is often achieved through 

universal metering, consumption-based pricing of water, and enforcement through suspension of 

service in return for non-payment. There are arguments that suspension of service in rural 

communities in the developing world is not only punitive but also presents a health risk (World 

Health Organization (WHO), 2000). However, there is also clearly a need for equitable demand 

management through metering in rural community water systems, and there is evidence that 

international aid agencies are already implementing such projects (Johnson, 2002; Water for 

People, no date; Wright, 2013), however, there is almost no publicly available information for 

how meters are evaluated or chosen for these systems. Metering has also been mentioned as 

being a possible solution by other field practitioners but without specific suggestions (Louise, 

2004; Sy, 2011). It was the author’s experience in the field that abundant industry information 

regarding metering exists, but is often geared for a utility or municipality audience assuming a 

certain level of knowledge. Figure 1 represents a general timeline of ongoing activities that the 

author experienced while serving as a water and sanitation Peace Corps Volunteer (PCV) in the 

Dominican Republic. The purpose of this chart is intended to illustrate that the development 

workers in developing projects and communities typically do not have a lot of free time for 
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independent research, especially when telecommunication services are seldom available. Thus, 

the goal of this thesis is to help development workers in incorporating metering into community-

managed systems by providing a practical guide. This thesis is not intended to address every 

aspect of metering, and there are many data and knowledge gaps that cannot be addressed 

without further studies.  

To achieve the goal, four specific objectives are proposed. Firstly, to compile information 

on residential metering technologies, terminology and summary of characteristics relevant to 

rural community-manages systems (Chapter 3). Secondly, to propose the multiple criteria 

decision analysis (MCDA) in aiding the selection of the most appropriate meter type (Chapter 4). 

Thirdly, to provide practical tips for meter sizing and installation in the field (Chapter 5). And, 

finally, to suggest strategies for incorporating metering into the community management model 

in Chapter 6. The methodology for pursuing all objectives is discussed in Chapter 2. Conclusions 

and recommendations follow in Chapter 7.  
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Figure 1 A timeline representation of the various activities that may take place during a field worker’s stay in a community. This is 
representative of the author’s experience as a United States Peace Corps Volunteer serving as a water and sanitation specialist in the 
Dominican Republic, 2012 to 2014.  
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CHAPTER 2 METHODOLOGY 
 

Objectives one, three, and four (compilation of technical information regarding metering, 

installation tips, and strategies for incorporating metering into community-management, 

respectively) were all pursued primarily through literature review and author’s personal 

experience. Almost all of the literature sources reviewed was in English with the exception of 

one water committee training manual being in Spanish.  

2.1 Methodology for Literature Review 

Literature sources reviewed for objectives one and three included industry documents. 

Primarily, the manual on metering compiled by the American Water Works Association 

(AWWA) was reviewed to identify meters most often used residentially in the United States 

(AWWA, 2012).  AWWA, a non-regulatory entity, is the primary organization in the United 

States which publishes recommended standards for cold-water, residential meters. AWWA’s 

materials are intended for entities such as private utilities or municipalities managing public 

water resources. Review of references in AWWA’s meter manual also led to the discovery of an 

extensive study published by the Water Research Foundation (WRF). This is the first study 

examining long-term performance of various sizes and types of meters which are produced by 

different manufacturers (Barfuss et al., 2011). Results relevant to residential meter performance 

were extracted and used in the indicator compilation for the decision-making tool. WRF is an 

organization that originated from AWWA, whose research is also geared for utilities, 

manufacturers and consultants in the drinking water supply field. The Engineering Village 
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(Compendex) database was used to search for peer-reviewed literature using the key words 

“water meter” and “developing country”. This yielded 200 articles; 9 were identified to be 

relevant because they addressed residential water metering in the developing world and provided 

sound background information, however, only 2 directly addressed water meter performance in 

an urban utility setting (Mutikanga et al., 2009, 2011). The references cited in these studies as 

well as references citing these studies were reviewed and additional five studies were identified 

examining meter selection and performance (Arregui et al., 2005; Mutikanga, 2014; Mutikanga 

et al., 2013; Richards et al., 2010; Shields et al., 2012). A search for “water metering” and 

“community-management” yielded only one source which was not directly relevant. Many 

product specification sheets provided by meter manufacturers online were examined and 

technical performance information was synthesized along with the information obtained from the 

peer-reviewed studies.  

Additionally, the term “metering in community-managed water systems” was searched in 

the Google search engine in order to locate any possible field reports which would not be found 

through the Engineering Village database. Several personal accounts were located in the form of 

blogs and reports testifying to the occurrence of metering projects in rural community managed 

systems by various international aid organizations (Davis, 2013; Johnson, 2002; Wright, 2013). 

Searching for guidance documents regarding selection of meters from the websites of the 

international aid organizations that reported the installation of metering projects in rural 

communities did not yield results.  

The first page of the Google search also yielded a study examining factors that affect 

sustainability of rural community-managed systems (Schweitzer & Mihelcic, 2012). The 

references cited in this study led to many peer-reviewed papers and field manuals concerning the 
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community management model as well as appropriate technology selection criteria. One of the 9 

peer-reviewed sources identified in the Engineering Village search, described successes of 

community-management in a small town (having 1000 connections) where 100% connections 

were metered (Dahanayake, 2007) and information relevant for rural settings was used for 

suggesting strategies for incorporating metering into the community-management model.   

2.2 Methodology for the Multiple Criteria Decision Analysis (MCDA) 

The process for carrying out the multiple criteria decision analysis (MCDA) has four 

general steps: summarizing the goal, identifying criteria, selecting indicators, and finding 

possible alternatives (Belton & Stewart, 2002; De Montis et al., 2004). A representation of a 

generic setup is depicted in Figure 2. Within MCDA there are many tools for deciding how to 

weight the importance of criteria and indicators for evaluating alternatives. While more 

computationally and cognitively intense tools tend to be more reflective of realistic decision-

making (for example, the Multiattribute Utility Theory (MAUT)), simpler tools are often 

preferred, especially for developing world settings (Cinelli et al., 2014; Hajkowicz & Higgins, 

2008; Olson, 2008). In this work, the Analytical Hierarchy Process (AHP) is used to determine 

the relative weights of criteria and indicators. The alternatives are scored directly for each 

indicator. The scores for each alternative are multiplied by the relative weights of the criteria 

(and indicators where applicable) and summed to determine the final weighted score. These steps 

are illustrated in the flowchart in Figure 3 and explained further in the following subsections.  

2.2.1 The Analytical Hierarchy Process (AHP) 

The method for the Analytical Hierarchy Process (AHP) is explained in the following 

subsections to obtain the final weights of example criteria. If a criterion contains more than one 

indicator, the weights should also be determined comparing the indicators within a given 
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criterion. The final step of the AHP is a consistency calculation which is performed when the 

number of criteria (or indicators) evaluated is greater than two. 

2.2.1.1 AHP Step 1: Evaluation Matrix 
 

In this step, an evaluation matrix (E) is set up where the identified criteria are listed in 

column and in row form (C1-C3 corresponds to Criterion 1-3) (Figure 4). This analysis was 

performed using Microsoft Excel software, but could be done with pen and paper. Each criterion 

in the column is compared to each criterion in the row in a pairwise fashion and a number is 

assigned in the corresponding cell representative of the evaluator’s relative preference, on a scale 

from 1 to 9 (Teknomo, 2006). On the preference scale, 1 represents equal importance and 9 

represents extreme importance of one criterion over another. The numbers in between 1 and 9 

represent various degrees of preference. The evaluator begins by deciding the relative 

importance of C1 over C1 and in this case the value assigned is 1, because the C1 is equally 

important to itself. Moving to the right, the importance of C1 is judged to be only slightly more 

important than C2, thus a value of 2 is assigned. This process is repeated row by row, until all the 

cells in the matrix are filled out. Where the criterion being evaluated is determined to be less 

important than the one it is compared to, an inverse number (rather than a whole number) is 

assigned (Eij = 1/Eji). For example, where in the first row of the Evaluation Matrix C1 was 

determined to be more important than C2 in the second column, it logically follows that in the 

second row, C2 should be less important than C1 in the first column, thus a value of ½ is 

assigned.   

2.2.1.2 AHP Step 2: Priority Matrix 
 

Once the Evaluation Matrix is completed, all numeric values are summed by column. A 

second matrix, the Priority Matrix (P), is set up similarly with the criteria in column and row 
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form, for determining the final weights of each criterion (Figure 5). Each value in the Evaluation 

Matrix is divided by the column total and entered in the Priority Matrix in the cell that 

corresponds to the same position ( 



n

i
ijijij EEP

1

/ , where n is the number of criteria). This is 

performed for each cell in the matrix, and the values are then summed by row. The row total is 

divided by the number of criteria considered to obtain the final weight vector W ( nPW
n

j
iji /

1



 ).  

2.2.1.3 AHP Step 3: Consistency Ratio Calculation  
 

After the weighting of criteria is completed, a final calculation is performed to determine 

whether the evaluator was consistent in rating the importance of criteria. This is done by 

calculating the Consistency Index (CI) and then comparing it to the Random Index (RI) which is 

obtained from literature (Teknomo, 2006). The CI is calculated using Equation 1 

1



n

nEigen
CI        (1) 

where Eigen is the Eigen value and calculated using Equation 2 

n

W
Ws

Eigen

n

i i
i












 1

1

      (2) 

where Ws is the cross product of the Evaluation Matrix E and the weight vector W                       

( 



n

j
jiji WEWs

1

) (Figure 6). Additionally, a value for the RI is selected from the AHP 

method’s list which corresponds to the number of criteria considered, in the case of 3 criteria, 

this value equals to 0.58 (Teknomo, 2006). Finally the Consistency Ratio (CR) is determined by 

dividing the CI by the RI. If the resulting number is smaller than 0.1, the consistency 
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requirement is thought to be met. If the CR is greater than 0.1, then the relative importance of 

criteria should be reevaluated and the calculations re-worked. 

2.2.2 Direct Scoring of Alternatives 

Once the indicators are selected and their relative weights (if any) determined, the 

acceptable ranges are set for each indicator by the evaluator (for example, the “Measure” column 

in Figure 7). The indicators can be evaluated numerically and categorically where numeric data 

are lacking (this is exemplified in the “Alternative – Score” column in Figure 7). Categorical 

values are then assigned a numeric value between 0 and 1, where 1 indicates highest preference 

and 0 indicates lowest preference. Numerical values must be rescaled because they are presented 

in different units (e.g., dollars and number of parts). This is done by applying the simple formula 

displayed in Equation 3 so that all values fall between 0 and 1 (shown in “Alternative – 

Rescaled” column in Figure 7).  

Rescaled Score	= |ሺscore of alternativeሻ	-	ሺleast preferred score in rangeሻ|

|ሺmost preferred score in rangeሻ	-ሺleast preferred scoreሻ|
  (3) 

2.2.3 Weighted Sum Approach 

Once the scoring of alternatives is completed, the final step in this MCDA method is to 

determine the final weighted scores of each alternative through the weighted sum approach. An 

example setup of an Excel spreadsheet for organizing the information on criteria and sub-criteria 

weights along with alternative scores is shown in Figure 8. The relative weights of criteria are 

multiplied by the relative weights of each indicator within that criterion (if any, and by 1 if only 

one indicator is present). The resulting final weight for each indicator is multiplied by the 

rescaled score for each alternative to determine the weighted score by indicator. To calculate 

total weighted score for each alternative, all of the weighted scores by indicator are added 
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together (Equation 4). The alternatives can be compared by total weighted score or by weighted 

score by indicator.   





n

j
ijjAi AWScore

1

        (4) 

 

 

 

Figure 2 Example of generic MCDA setup. The goal is set based on the main problem being 
addressed. Criteria are identified for evaluating the alternatives, in this case C1 – C3 refers to 
Criterion 1 - 3. Some criteria may need to be deconstructed further, thus indicators are chosen 
and are represented by I1-I5. Finally, alternatives being evaluated are represented by A1-A4. The 
lines connecting alternatives to criteria and criteria to the goal represent different tools that can 
be used for assigning value for final numeric comparison of alternatives. 
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Figure 3 General MCDA process.  Adapted from (Bardos, no date; Belton & Stewart, 2002; 
Bouyssou, 2000; Olson, 2008). 
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Figure 4 Step one in AHP: the evaluation matrix. C1-C3 represent criteria identified during the 
MCDA process. The numbers are assigned in row form, corresponding to the degree of 
preference. Even numbers may be used to indicate slight preference between two odd numbers.  
 

 
Figure 5 Step two in AHP: priority matrix. The Total value is the sum of values assigned to each 
criterion by row. The weight (W) is the Total value divided by n, the number of criteria 
evaluated (in this example, 3).  
 
 

 

Figure 6 Step three in AHP: consistency calculations. These calculations are performed with 
values derived from the previous two steps and ensure that the evaluator did not evaluate the 
importance of criteria inconsistently.  
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Figure 7 Direct scoring of alternatives for each indicator. Categorical values must be converted 
into numerical terms and numerical values must be rescaled so that all values are between 0 and 
1, where 1 indicates a most preferable outcome and 0 indicates the least preferable outcome.  
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Figure 8 Weighted sum approach to calculating the final score for alternative. A red box was 
added to demonstrate that the relative criterion weight should be multiplied by the relative 
subcriterion weight. The resulting final weight is then multiplied by the alternative’s score for 
that indicator and the result is the alternative’s weighted score for that indicator. All of the 
weighted indicator scores are summed for each alternative to determine the final weighted 
alternative score.  
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CHAPTER 3 COMPILATION OF METER INFORMATION 
 

3.1 Types of Meters Commonly Used for Residential Metering and How They Work 

Meters evolved in an unorganized environment, thus there are many variations (AWWA, 

2012). The selection of residential meters, however, may be narrowed to a choice of four types 

based on common application: single and multi-jet, nutating disc, and oscillating piston (Table 

1). Several manufacturers in different countries make meters that employ these mechanisms and 

each mechanism will be addressed individually with a general description of the components of a 

meter (Figure 9). All the meters considered by this work function via one of two mechanisms: 

displacement or non-displacement, but are all mechanical in nature (Figure 10).Some meters 

measure and record the water passing through them directly in terms of some pre-determined 

volume, while others do this indirectly by sensing the motion and converting it to a volumetric 

unit based on some internal calibration. As water flows through the device, either a volumetric 

(displacement) or inferential (non-displacement) mechanism senses the flow (located in the part 

of the meter that is often referred to as meter or sensor chamber), records, and displays it for the 

reader. These types of residential water meters are often called “in-line” meters, because they 

connect to the water service line on each end, much like a valve. Unlike valves which are 

intended to regulate flow, water meters are intended to allow water to pass through and there is 

no “on/off” position. Water meters are often called “water flow meters” to indicate that they 

measure the volume of water based on its movement through a pipe. It is worth to clarify, 

however, that technically, residential water meters are concerned with measuring the volume of 
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water (no data regarding the rate of volume, which is also known as flow, is gathered or stored). 

Specialized meters to monitor the rate of volume exist and are called flowrate meters. They may 

be inline or in some cases sophisticated remote sensing technologies may be used externally. In 

these cases, the meters may be equipped with the capability to measure flow rate but will need an 

additional electronic device to read and display it. In keeping with the convention, this work will 

continue referring to the metering devices as water flow meters.  

3.1.1 Displacement Meters 

These meters are also known as volumetric meters. They receive water into a chamber of 

known volume and record the number of those volumes needed to pass the water in terms of 

common volume units in the register for the reader to view. Yet another name that is commonly 

used is positive displacement meters, because originally these meters were fashioned after 

positive displacement pumps (AWWA, 2012). The two displacement meters used in residential 

metering are oscillating piston (OP) and nutating disk (ND). Early versions of these meters often 

leaked and suffered from inaccuracies because the movements of the metering chambers were 

not able to adjust to increased or decreased velocities. These meters also experienced slippage or 

an occurrence of unregistered water passing through the chamber. This is no longer a big concern 

because the seals of modern meters have improved. The materials used in the manufacturing of 

all modern meters vary. For instance, casing of the meter may be made of metal or plastic 

(typically each model by a manufacturer is offered in both materials with plastic being the 

“economy” option), while most internal parts are often plastic. Large pressure drops and 

sediment can cause premature failure of these types of meters (Barfuss et al., 2011; 

Flowmeters.com, no date; Mutikanga et al., 2011). This technology was predominantly 

developed in the United States, and the displacement type of meters are thought to be the most 
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common in residential metering (AWWA, 2012). Displacement meters often have the registering 

mechanism separated from the meter chamber and water never comes in contact with the 

register. These types of registers are known as “dry registers”. The display units vary (may be in 

meters cubed, gallons, or feet cubed) in the register and are moved either through magnets or 

through direct mechanisms. (A reminder that while AWWA publishes copyrighted standards for 

the manufacturing of water meters, there are no standards for which meters should be used under 

which conditions). The American standard for this technology may be found under 

ANSI/AWWA C700, Standard for Cold-Water Meters – Displacement Type (separate standards 

exist for Bronze Main Case and Plastic Main Case meters).  

3.1.1.1 Oscillating Piston Meters 

A cross-sectional image of the metering chamber in an oscillating piston type meter is 

presented in Figure 12. The water flows into the chamber of known volume, positioned 

horizontally, and continues to fill it until the piston is displaced, the inlet is momentarily blocked 

off and water is allowed to flow out. This happens repeatedly and each oscillation is recorded, 

added, and displayed in volumetric units such as gallons, cubed meters or feet, depending on 

where the meter is manufactured. The typical components of such meters are presented in Figure 

14. This particular example shows about 15 components that make up the meter. The moving 

parts of the metering mechanism are not typically disassembled for volumetric meters.  

3.1.1.2 Nutating Disc Meters 

A cross-sectional image of a nutating disk meter chamber is presented in Figure 13. 

Water enters through the inlet into a chamber of known volume while the outlet is blocked by a 

portion of a disc, which sits on top of a ball bearing, and rotates about a vertical axis. Water 

continues to fill the chamber until displacement of the disc positioned on a ball bearing occurs 
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and the outlet is opened for the water to flow out, temporarily blocking off the inlet. This action 

is repeated and the “packets” of water sent through the metering chamber are recorded and 

displayed in the register. A diagram of a plastic model of a nutating disc meter is provided in 

Figure 15. This model shows 14 parts (but a metal-case model from the same manufacturer had 

extra plates and rings, totaling 16 parts). The measuring mechanism of nutating disc meters is 

enclosed and is not typically disassembled.   

3.1.2 Non-Displacement Meters 

This category includes many more choices (see Table 2) but only two types, single jet 

(SJ) and multi-jet (MJ) are commonly used for residential metering (AWWA, 2012). Meters in 

this category may also be known as velocity or impeller meters. They employ a rotor which turns 

about a vertical shaft as water moves in and out of the meter chamber and the shaft drives a 

recorder device. The revolutions of the shaft are calibrated to volumetric units at the factory and 

require periodic recalibration. Multi-jet meters have been commonly used in the United States 

since the 1960s and the single jet technology originated and has been used most commonly in 

Europe (AWWA, 2012). Dry and wet registers for jet-style meters are common. A “wet register” 

is the one that is not sealed away from the metering chamber but immersed in water and the dials 

are moved directly rather than by magnets. A “semi-dry” register means that the reading device 

is completely immersed in water but the display dial is sealed away and dry (BMeters.com, no 

date). Reading meters is fairly intuitive because they resemble analog vehicle odometers in their 

simplest form, but some registers include additional dials that indicate volume measure, in some 

cases, to a hundredth of a gallon. Examples with instructions are shown in Figure 20, Figure 21, 

and Figure 22.  
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The impeller is easily moved by water and has been employed by other types of meters 

which should not be confused with single and multi-jet meters. In an attempt to disambiguate, 

following is a brief summary of meters which share jet meters impeller technology or may have 

similar names, but are based on different mechanisms:   

‐ Turbine meters also use impeller, but it is positioned to spin about a horizontal axis in the pipe 

and produces an electrical pulse which is recorded and converted into volumetric units.  

‐ Propeller meters are situated in a piped similar to turbine meters, but the vanes are designed 

differently.  

‐ Paddle-wheel meters (sometimes also called Pelton-wheel meters), which again employ an 

impeller but in this case only part of the paddle wheel is submerged in water at any time, 

similar to the paddle-wheel of a river-boat.  

‐ Vane-style meters are not impeller-style meters at all and only employ one vane which does not 

rotate but rather functions as a “flap” inside the pipe.  

3.1.2.1 Single-Jet Meters 

A top view of a cross section of a single jet meter is presented in Figure 16. It is 

estimated that only about 1 -2% of meters in the United States are of this type (Barfuss et al., 

2011) . This type of meter estimates the volume of flow passing through the chamber indirectly -  

an impeller is positioned inside the metering chamber and turns about a vertical shaft which 

when a single stream or “jet” of water hits the vanes of the impeller, this in turn drives the 

registering device which is calibrated to convert the revolutions to volumetric units. A dissected 

view of a single jet meter is presented in Figure 18 in order to show its components. This 

example shows the meter is composed of 12 parts. The American standard for single jet meters 
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can be found in ANSI/AWWA C712, Standard for Cold-water Meters – Singlejet Type 

(AWWA, 2012). 

3.1.2.2 Multi-Jet Meters 

A top view of a cross section of a multi-jet meter is presented in Figure 17. It is estimated 

that about 15% of meters in the United States are of this type (Barfuss et al., 2011). The multi-jet 

meter functions are very similar to the single jet meter, however the principle of a multi-jet meter 

is that multiple jets of water hit the vanes of the impeller as water entering the metering chamber 

is forced through a capsule with a series of openings. Figure 19 shows typical components of a 

multi-jet meter having a total of 21 parts; however the adjusting bolt should only be adjusted at 

the time of calibration. The American standard for multi-jet meters can be found in 

ANSI/AWWA C708, Standard for Cold-water Meters – Multijet Type (AWWA, 2012).  

3.2 Summary of Meter Characteristics and Their Implications for Rural Systems 

All of the four prevailing residential meter types are mechanical in their mechanisms and 

have moving parts. There is some variation in the characteristics of the mechanism that each 

meter employs and this has effects on the meter’s ability to measure water flow (for example, 

whether volume is measured inferentially or directly determines the accuracy of measurement). 

There is a lot more variation between meters produced by different manufacturers (Figure 11). 

For example, the material composition of meters can vary greatly among different models. There 

are also certain characteristics that vary by mechanism and model. For example, volumetric 

meters tend to be more expensive than velocity meters but there will still be variation among 

models. These characteristics are identified in order to target those which may be used to 

differentiate between meter mechanisms in the decision analysis. Many manufacturers advertise 

that their products are made to meet AWWA standards, however it has been shown that a 
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significant portion of those meters do not meet these standards when independent quality testing 

is performed (Barfuss et al., 2011). A brief summary of the four typical residential water meters 

is presented in Table 1 and one of the most important observations is that there is very little 

numeric data available for technical meter comparison. For example, effects of particulates on 

meter performance are not usually quantified; instead meters are classified only in relative terms 

(e.g., the nutating disc type of meter is more tolerant to passing particulates than the oscillating 

piston type). 

It should also be noted that meters are designed and manufactured with urban water 

supply systems in mind which tend to be characterized by many connections, large-diameter 

distribution lines and short, flows and pressures are often regulated and may be low in supply 

lines, and (especially in developing world urban systems) particulates are often a concern.  

Rural water systems tend to have different characteristics than urban systems which 

should not be overlooked when selecting a meter. There is a lot of variation among individual 

piped rural water supply systems when it comes to the number of connections, pumping 

mechanisms, storage tanks, etc. There is also very little centralized data because these systems 

are by their nature decentralized. There are, however, several features worth noting that 

distinguish these systems from typical urban or utility-managed systems. Primarily, community-

managed systems are usually small in terms of geographic extent and in terms of the user base, 

thus distribution and supply lines tend to have smaller diameters. The piping is usually plastic 

(specifically, of polyvinylchloride (PVC) pipe) and there is rarely water treatment between 

source and distribution except for sedimentation tanks in cases of highly turbid water. As 

discussed previously, because systems are managed by the community, proper and timely 

maintenance may not be carried out, resulting in leaks and pipe breaks. Additionally, there is 
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typically no treatment of water prior to distribution. In systems with good-quality water (e.g., a 

well or a spring) and few pipe breaks, particulates in pipe are not expected to be a concern. 

However, if the source tends towards high turbidity or sediment is sucked into pipes due to 

breaks, particulates should be considered in the selection of meter and a filter upstream of the 

meter should be installed regardless of type of meter. 

Due to the simple design of rural systems, flows are typically not regulated and pressures 

also tend to vary depending on the production of the source and user demand. (While the design 

minimum is at least 10 meters of head at each tap and no more than 70m of head under static 

conditions, these assumptions may not always be true). Typically, however, ultra-low flows that 

may be expected in urban systems (around 0.25 gallons per minute) are not a concern in rural 

systems, but the water supply may be intermittent. In many developing countries water services 

tend to be intermittent thus the practice of storing water tanks for later use at the household level 

is common. Storage tank filling may affect single jet meter accuracy, specifically it may result in 

significant under-registration of flow (Arregui et al., 2005). The effects of partial-pipe flow, 

intermittent flow or system pressure variations on meters’ long-term performance have not been 

well studied.  

Volumetric meters tend to be more accurate, especially at low flows, which is what 

makes them attractive to urban system managers. Accuracy is important in large systems because 

even small errors can mean significant losses of water and potential revenue when multiplied by 

many connections. But particulates in water and pressure drops as well as flows outside of the 

manufacturer’s specified range are especially dangerous to their mechanisms. Velocity meters 

tend to be more tolerant of particulates; however they are less accurate and should be re-
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calibrated after a long period of use. In rural systems, high accuracy may not be as important as 

long as relative accuracy is consistent. 

AWWA recommends that utilities test 95% of their meters periodically and that of those 

meters tested, 95% should conform to AWWA’s standards (2011).  Although AWWA 

recommends meter standards for manufacturers to voluntarily adopt, there is little independent 

quality testing.  Research has shown that many new meters advertised to meet AWWA’s quality 

and performance standards do not meet them, thus is likely that they will be even less reliable 

with time (Barfuss et al., 2011). All types of meters experience high failure rates (5.7 – 7%) 

(Barfuss et al., 2011). (Failure rates refer to the percentage of new meters that do not function 

directly after installation). Price of meters varies based on manufacturing quality and materials 

used, but volumetric meters tend to be more expensive than inferential meters. 

There is also little data regarding meters’ useful life. AWWA recommends replacing 

meters every 10 years. European standards are less conservative, recommending that inferential 

meters should be tested and recalibrated every ten years (BMeters.com, no date). Because 

monitoring programs are resource-intensive, there is currently no indication that meter testing is 

taking place regularly either for newly manufactured meters or those that have been installed at 

such high rates in developed countries. In the developing world, there are particular problems 

with waterworks infrastructure management and maintenance (Mutikanga et al., 2009). It is 

therefore unlikely that in the rural community-managed setting the monitoring and calibration of 

meters would happen more frequently. Additionally, high failure rates are particularly alarming 

because resources in rural communities are already scarce, thus the purchase of 7 unusable 

meters out of 100 is especially wasteful.  
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It has been previously suggested that developing world urban systems may need a 

specially-designed meter due to the characteristics that differentiate them from developed 

country systems (Jigabha, 1992; Mutikanga et al., 2009). Rural community water systems are 

differentiated by yet another set of characteristics and may therefore benefit from development 

of an alternative flow meter. Because no such alternative is currently available, it is important to 

consider the characteristics of existing meter types (and the characteristics of specific models 

based on availability) so as to maximize the benefits of the technology and minimize the risks of 

premature failure.  

Because systems are managed by the community which often lacks resources and 

technical skills, there is a strong argument for finding a meter that will be durable/last a long 

time, with minimal maintenance if a metering program is to be adopted. Multiple factors would 

affect a meter’s appropriateness for this setting, so a decision matrix will be used to aid the 

decision making. The information from Table 1 will be used in the decision analysis in an 

attempt to determine the most suitable meter for a rural community-managed water system.  

3.3 Meters Not Typically Used in Residential Applications 

Finally, there are meters that may be infrequently encountered in residential metering 

such as fluidic oscillator and compound meters (especially where a big range of flows is 

expected). There are also meters that should be avoided, especially those relying on electricity to 

function or record readings. Because many of these meters are used in different applications it is 

unlikely that they might be available for purchase in a developing country hardware store, 

however they are included in Table 2 so that the reader may be aware of their existence. 
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Figure 9 General components of residential flow meters. This is a photograph of Assured 
Automation’s multi-jet meter, however, the labels show the general components representative 
of all residential meters that are discussed in this work. Modified and reprinted with permission 
from www.flows.com.  

 

Figure 10 Four meters commonly used residentially grouped by mechanism. Both meter 
mechanism have one area of overlap – they all function mechanically.  
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Table 1 Summary of meters commonly used for residential metering. Organized by type of 
mechanism; adapted from AWWA’s M6 (2012) with performance data from (Barfuss et al., 
2011).  
 

*Accurate price estimates are difficult to obtain and prices may vary based on the number of meters ordered from the supplier or 
manufacturer and the location of purchase. In some regions, prices of jet meters may be as low as 20-25USD. The costs of the 
recommended valve box and the upstream filter are not included in these cost estimates. Additional costs may also be associated 
with meter transport after purchase.  

 

 

Category Type Price* 
(USD) 

Notes 

D
is

p
la

ce
m

en
t 

Nutating Disc 
(ND) 

90 • Particulates are a concern – recommend a filter upstream of meter 

• Pressure drops outside of the manufacturer’s specifications may 
damage the measuring device and seals 

• Not accurate in partially-full pipes 

• No maintenance or calibration required (except for upstream filter) 

• Good accuracy at low flows 

• Failure rates: OP - 7%; ND – 5.7% 

• Flow sensing mechanisms are not disassembled thus the total number 
of parts (around 15)  is low  

Oscillating Piston 
(OP) 

55 

N
on

-D
is

p
la

ce
m

en
t 

Multi-jet (MJ) 50  
• Accuracy degrades over time 

• Require periodic recalibration 

• Require internal filter to be cleaned (meter must be disconnected from 
line) 

• Multi-jet meter has many parts 

• If water is turbid, may also require a filter upstream 

• Failure rates: MJ – 7.5%; SJ – no data 

• Flow sensing mechanisms are easily accessible and the MJ meter 
tends to have many parts (more than 20)  

Single-jet (SJ) 45 
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Figure 11 Possible characteristics of water flow meters. The importance of these characteristics 
for community-managed systems may vary.  
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Figure 12 Cross-sectional view of the oscillating piston metering chamber.  Barfuss, S.L., M.C. 
Johnson, and M.A. Neilsen. 2011. Accuracy of In-Service Water Meters at Low and High Flow 
Rates. Denver, Colo: Water Research Foundation. Reprinted with permission. 
 

 

Figure 13 Cross-sectional view of a nutating disc metering chamber. Barfuss, S.L., M.C. 
Johnson, and M.A. Neilsen. 2011. Accuracy of In-Service Water Meters at Low and High Flow 
Rates. Denver, Colo: Water Research Foundation. Reprinted with permission. 
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Table 2 Meters used for water measurement not discussed in this work.  Adapted from AWWA’s 
M6 (2012). 

 

Category Group Type 

 

 

Non-

Displacement 

Velocity Fluidic oscillator 

Magnetic-pickup turbine 

Turbine 

Propeller 

proportional 

Differential 

Pressure 

Fixed opening, variable 

differential 

Orifice 

Vernturi, flow nozzle, flow tube 

Pitot Tube 

Variable opening; fixed 

differential 

Electronic Velocity Electromagnetic 

Ultrasonic 

Level Measurement Weir, Parhsall flume, etc. 

Compound Standard 

Compound 

Standard Compound 

Fire Service Fire Service 
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Figure 14 Exploded view of the oscillating piston meter. Reprinted with permission from Sensus. 
This particular meter model is shown to have an electronic register but for a developing world 
setting electronic parts are not recommended.  
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Figure 15 Exploded view of the nutating disc meter assembly. Reprinted with permission from 
Badger Meter.  
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Figure 16 Cross-sectional top view of single jet mechanism.Barfuss, S.L., M.C. Johnson, and 
M.A. Neilsen. 2011. Accuracy of In-Service Water Meters at Low and High Flow Rates. Denver, 
Colo: Water Research Foundation. Reprinted with permission. 
 
 

 

Figure 17 Cross-sectional top view of multi jet mechanism.Barfuss, S.L., M.C. Johnson, and 
M.A. Neilsen. 2011. Accuracy of In-Service Water Meters at Low and High Flow Rates. Denver, 
Colo: Water Research Foundation. Reprinted with permission. 
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Figure 18 Typical components of a single-jet meter. Reprinted with permission from BMeters.  
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Figure 19 Typical components of a multi-jet meter. Reprinted with permission from BMeters.  
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Figure 20 Instructions for reading dial and odometer style registers of meters. Reprinted with 
permission from www.flows.com, © Assured Automation 2015.  
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Figure 21 Another variation of meter register display and instructions for reading it.Reprinted 
with permission from www.flows.com, © Assured Automation 2015.  
 

 

Figure 22 Example of a plastic oscillating piston type of meter.Register is different from dial-
style displays and can be read from left to right, with the red digits indicating volume to the 
hundredth of a gallon. Reprinted with permission from www.flows.com, © Assured Automation 
2015.  
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CHAPTER 4 RESULTS OF MULTIPLE CRITERIA DECISION ANALYSIS (MCDA) 
 

4.1 Identifying Goal and Criteria for MCDA 

In order to identify the goal and criteria for choosing one of the four meter types 

identified in the previous chapter, appropriate technology (AT) literature was consulted. Recent 

AT studies have evolved from attempting to produce a single list of characteristics for all 

technologies, to considering appropriateness of a technology by field or discipline, and the goal 

is clear – sustainability of those technologies and the communities using them (Hazeltine & Bull, 

2003; Murphy et al., 2009; Sara & Katz, 1997; Sianipara et al., 2013). In particular, frameworks 

have been developed to determine which characteristics of a technology (or in some cases 

technology-related projects) affect how sustainable it will ultimately be (Aarras et al., 2014; 

Bauer & Brown, 2014; Gumbo et al., 2005; McConville & Mihelcic, 2007; Saeed, 1990; 

Schweitzer & Mihelcic, 2012). While many resources already exist and new studies are 

published every year, it is not the goal of this work to review the body of literature on AT but to 

adopt some of its best practices as they apply to water technologies and projects in the 

developing world. As such, sustainability for the purposes of this examination can be broadly 

thought of as the community’s ability to operate their water supply system independently and in 

the long-term and the broad characteristics of water technologies affecting that ability can be 

generally summarized as:  

‐ Social: community empowerment, capacity building, user acceptability and support 

‐ Technical: ease of use, reparability, durability, complexity 
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‐ Economic: affordability, generating income and employment opportunities 

‐ Environmental: impacts and the use of natural resources 

The study of Mutikanga (2014) in Kampala, Uganda (Mutikanga, 2014) laid the 

groundwork for this research. The goal of that study was to determine the most cost-effective 

type of residential meter for an urban utility managing a system characterized by low flows, in 

order to “maximize … revenue by reducing meter under-registration and failures…” (Mutikanga, 

2014). In order to evaluate the goal, the author considered only technical criteria and found that 

the most economical solution was not the most appropriate. Additionally, it has been suggested 

that the cheapest technological solution may not be the most appropriate when it comes to rural 

water and sanitation projects in developing countries. The decision-making criteria proposed for 

rural water projects in developing countries suggest considering social and management aspects 

along with local availability of materials (Garfì & Ferrer-Martí, 2011). Because the focus of this 

work is on a rural community-managed system, not a utility-managed system, a different 

analysis goal and criteria may be important. Based on the literature examining success of 

projects and technologies in the developing world and the author’s experience, the goal of this 

analysis is to select a meter that can be operated most independently in rural, community-

managed system.  

The Analytical Hierarchy Process (AHP) tool is customizable thus different criteria for 

different goals can be evaluated and the field practitioner is encouraged to include the 

community considering the metering project to elicit the goal and the criteria most important to 

them (Murphy et al., 2009). Criteria proposed here are only suggestions compiled from the 

author’s field experience and best practices recommended by appropriate technology literature. 

Thus, when examining the possibility of adoption of water meters into the design of rural water 
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systems, criteria in addition to meter’s performance and cost should be considered. Three of the 

four broad AT criteria are considered for this study so as to maximize the technology’s success 

and its intended benefits: “Durability” is the focus of the technical criterion, “Usability” is the 

focus of the social criterion, and “Affordability” is the focus of the economic criterion. The 

environmental criterion will not be considered; while solid waste disposal may be an issue at the 

end of useful life of meters, there is currently no data to indicate that environmental impacts on 

the community would differ based on meter types. Figure 23 represents the collection of 

parameters (goal, criteria, indicators and alternatives) for this multiple criteria decision making 

analysis (MCDA).  

4.2 Weighting Criteria, Indicators, and Scoring Alternatives 

4.2.1 Weighting Criteria 

The weights of criteria were determined using the methodology described in Chapter 2 

and the results are presented in Tables 3-5. The author evaluated the importance of selected 

criteria based on appropriate technology (AT) literature and personal experience. Usability of a 

technology has been cited as one of the most important factors in its success (Aarras et al., 2014; 

Garfì & Ferrer-Martí, 2011) however the author rated Durability to be slightly more important 

than Usability (value of 2). Usability of a meter can be improved through training, whereas 

Durability of a meter is a fixed quality. Durability was judged to be strongly more important than 

Affordability (assigned a value of 5) because a rural community would likely be receiving initial 

support from an external entity which would lessen the financial burden. Also, if meters are 

durable they are expected to last a long time so expenditures for replacement of meters should be 

infrequent. Because it has been shown that the most affordable alternative may not be the most 

appropriate, Usability was chosen as strongly more important than Affordability. The weights of 
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the criteria were calculated to be 0.56 for Durability, 0.35 for Usability, and 0.09 for 

Affordability. The consistency ratio for these evaluations was equal to 0.05, thus the final 

weights were accepted.  

Table 3 AHP Criteria evaluation matrix. 
Criteria Evaluation Matrix   

  Durability Usability Affordability 

Durability 1  2  5  

Usability  1/2 1  5  

Affordability  1/5  1/5 1  

        

Sum 1.70 3.20 11.00 
 

Table 4 AHP Criteria priority matrix. 
Criteria Priority Matrix     

  Durability Usability Affordability Total 
Weight 
(W)  

Durability 0.59 0.63 0.45 1.67 0.56

Usability 0.29 0.31 0.45 1.06 0.35

Affordability 0.12 0.06 0.09 0.27 0.09
 

Table 5 AHP Consistency evaluations for criteria weighting. 
Consistency Calculations      

Sum of 
(WxEvaluation 
Matrix) (Ws)   Ws*(1/W)   CI   CR=CI/RI

1.72  3.09 0.03  0.05
1.08  3.06     
0.27  3.01 RI for n=3   

     0.58    

  

 Eigen value 
(average of 
Ws*(1/W)) 3.05         

 

4.2.2 Identifying and Weighting Indicators 

Based on the types of residential meters used in the United States, Europe, and studies 

performed in Africa, four meters to be evaluated include the Nutating Disc (ND), Oscillating 
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Piston (OP), Multi-jet (MJ), and Single-jet (SJ). To evaluate each alternative, indicators were 

selected where the criteria were too broad to evaluate directly. The indicators were selected 

based on data available regarding the meter alternatives and weighted following the same 

methodology as for weighting criteria (explained in Chapter 2). Admittedly, data were limited, 

thus some of the indicators do not represent the criteria perfectly. 

 For the Durability criterion two indicators (or sub-criteria) were identified based on 

available data: tolerance of particulates and failure rates (Table 6). Ideally, data on meters’ useful 

life would be used for this criterion, however, no such data were available. A meter’s tolerance 

of particulates was evaluated as very strongly less important than the failure rates associated with 

that type of meter (assigned a value of 1/7) because if the meter fails to register flow upon 

installation, then its ability to pass particulates is irrelevant. The relative weights for each 

indicator were calculated as: 0.125 for tolerance of particulates and 0.875 for failure rates (Table 

7).  

Table 6 Evaluation matrix for the Durability criterion indicators. "SC" refers to "sub-criterion" in 
the column headings.  

Criterion 1: Durability  
Evaluation 
Matrix   

  
SC1: 
particulates SC2: failure rates 

SC1: 
particulates 1   1/7

SC2: failure 
rates 7  1  

      

sum 8  1.14
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Table 7 Priority matrix for the Durability criterion indicators. "SC" refers to "sub-criterion" in 
the column headings.  

Criterion 1: Durability    

Priority Matrix     

  

SC1: 
Tolerance of 
particulates 

SC2: Failure 
rates Total Weight 

SC1: 
Tolerance of 
particulates 0.13 0.13 0.25 0.125 

SC2: Failure 
rates 0.88 0.88 1.75 0.875 

 

For the Usability criterion two indicators were identified: maintenance requirement and 

the total number of parts (Table 8). Least amount of maintenance is preferred because 

technologies requiring frequent maintenance often fail, this indicator was therefore evaluated to 

be moderately more important than the total number of parts (assigned a value of 3). Ideally, data 

about either the performance of moving parts or availability of replacement parts would be 

included as a second indicator, however, no such data were available, thus the total number of 

parts was selected to represent the complexity of the meter type. The final weights were 

calculated for the indicators as: 0.75 for the maintenance requirement and 0.25 for the total 

number of parts (Table 9).   

Table 8 Evaluation matrix for the Durability criterion indicators."SC" refers to "sub-criterion" in 
the column headings.  

Criterion 2: Usability  
Evaluation 
Matrix   

  
SC1: 
maintenance 

SC2: total 
number of parts 

SC1: 
maintenance 1  3  

SC2: total 
number of 
parts  1/3 1  

      

sum 1.33 4.00
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Table 9 Priority matrix for the Usability criterion indicators. "SC" refers to "sub-criterion" in the 
column headings.  

Criterion 2: Usability    

Priority Matrix     

  
SC1: 
Maintenance 

SC2: Total 
number of parts Total Weight 

SC1: 
Maintenance 0.75 0.75 1.50 0.75 

SC2: Total 
number of 
parts 0.25 0.25 0.50 0.25 

 

Price of meter was identified as the indicator for the Affordability criterion and its weight 

is 1 by default because there are no other indicators in this criterion. To represent the 

Affordability criterion, data from a willingness- and ability-to-pay assessments of the community 

may be more appropriate but these will vary based on the community and no such data were 

available. The estimated price of meter was used which is expected to have comparable costs in 

different locations. 

No consistency ratio calculations were necessary for any of the indicator weighting 

because the number of sub-criteria considered was less than 3. The weights of criteria 

determined by an evaluator, who is a representative of an international aid organization, may not 

match the values of the local community (Bauer & Brown, 2014). This analysis is adaptable and 

simple, therefore user and expert participation should be considered.   

4.2.3 Scoring Alternatives 

Alternatives were scored directly for each of the indicators and scores were rescaled 

(following methodology described in Chapter 2) and the results are shown in Table 10. Numeric 

data could be obtained for the estimated failure rates, total number of parts, and estimated price 

indicators. Upper and lower range numbers were defined for each of the indicators based on the 

author’s experience. The lower range for estimated failure rates was set at 0% and the highest 
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failure rate accepted was set to 10%. Lower failure rates are preferred. More complex 

technologies are less desirable in the developing world context, thus the preference is for an 

alternative with fewest parts. The lowest number of parts may be expected to be around 10 and 

the highest acceptable was set at 30. A meter costing more than 100USD may not be acceptable 

to users in a developing community and any alternative costing less than 25USD may not be 

considered as a serious contender because its quality may also be much lower.  

Two indicators were evaluated categorically: tolerance of particulates and maintenance 

requirement. Preference was given to meters that are more likely to be tolerant to particulates 

with no preference given to those likely to be affected by particulates. Alternatives not requiring 

maintenance or calibration were were most preferred, whereas no preference was given to 

alternatives that require both.  

4.3 Weighted Scores of Alternatives 

The weighted scores of alternatives were calculated according to the weighted sum 

methodology described in Chapter 2 (Table 11). The nutating disc (ND) type of meter received 

the highest score of 0.63. The oscillating piston (OP) received the second-highest score of 0.53. 

Single-jet (SJ) and multi-jet (MJ) meters had similar scores of 0.31 and 0.29, respectively. The 

relative contributions of weighted scores by indicator are represented in Figure 24. The ND 

meter was most preferred because it scored relatively high for the least maintenance required and 

lowest failure rates. It received a relatively high value for the greatest tolerance of particulates 

and the lowest number of parts. It scored poorly in terms of lowest price. The OP meter scored 

similarly to the ND meter in all areas except for price and tolerance of particulates. The OP 

meter is less expensive than the ND, therefore it was preferred in the area of lowest price but 

received no preference for tolerance of particulates. The MJ and SJ meters received very similar 
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scores to each other, and scored well in areas of lowest price and lowest failure rates. The SJ 

meter was slightly preferred over MJ because it has less parts. The MJ meter received better 

score for tolerance of particulates. Neither the MJ nor the SJ meter received any preference in the 

area of maintenance because both require periodic maintenance and calibration.  

In the Mutikanga (2014) study, the multi-jet type of meter was selected as the best choice 

in terms of performance. This study preferred the MJ meter over other alternatives for its ability 

to pass particulates and to maintain a steady accuracy-degradation curve. It did not score highly 

in the area of low-flow accuracy. The nutating disc meter was the second choice because of its 

accuracy at low flows and relatively high ability to maintain a steady accuracy-degradation 

curve. The results of this study are not easily compared to the Mutikanga study because different 

criteria were considered. One noticeable similarity is that none of the alternatives in either study 

received high weighted scores. The highest-scoring alternative in this study received 0.63 out of 

1 and in Mutikanga’s study, the MJ received the highest weighted score of 0.42 out of 1.  

All meters examined in this work had similar failure rates, which indicates that this may 

not be a relevant indicator for future analyses. A limitation of the direct scoring method of 

alternatives is that for numeric indicators the allowable range set by the evaluator may affect the 

overall preference of certain indicators. Also, the values selected for the range must never equal 

the value of any of the alternatives. For categorical data, an assumption that preference of 

possibilities follows a linear model is assumed and this may not be reflective of reality 

(Bouyssou, 2000). Additionally, assumptions of the Analytic Hierarchy Process require that all 

possible alternatives be evaluated (regardless of their practicality) and that indicator or criteria 

correlation may be problematic (De Montis et al., 2004). In this study, there are indicators that 

are likely to co-vary. For example, there may be direct links between an alternative’s price and 
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quality. In spite of these well-known limitations, the AHP and direct scoring methods have 

remained popular due to their ease of use. These sort of methods are especially attractive to be 

used with stakeholders (Bauer & Brown, 2014; Garfì & Ferrer-Martí, 2011). This study could be 

improved by gathering input from decision analysis experts as well as other field practitioners 

and community stakeholders.  

 

 

 

Figure 23 A summary of MCDA inputs for this work. 
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Figure 24 MCDA results: relative contributions of weighted indicator scores.  
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Table 10 MCDA indicators and scoring of criteria. This table shows all indicators considered for each criterion. Each alternative is 
represented by its initials and “DS” means “direct score” assigned to that alternative. Rescaled values are represented by “R” next to 
the bolded alternative abbreviations.  

Indicator Measure OP - DS OP - R ND - DS ND - R SJ - DS SJ - R MJ - DS MJ - R 

C1: Indicator 1 -
Tolerance of 
Particulates 
(more is 
preferable) 

Not Likely affected = 1                 
No Data = 0.5 

Likely affected = 0 

Likely 
affected 0 

Not Likely 
affected 1 No Data 0.5 

Not Likely 
affected 1 

C1: Indicator 2 - 
Estimated 
Failure Rates 
(less is preferable) 

0 % - 10% 7% 0.30 5.70% 0.43 7%* 0.30 7.50% 0.25 

C3: Indicator 1 - 
Maintenance 
Required (less is 
preferable) 

Maintenance & Calibration required = 0 
Maintenance Required = 0.5 

No maintenance or calibration = 1 

No 
maintenance 

or 
calibration 

1 

No 
maintenance 

or 
calibration 

1 

Maintenance 
and 

Calibration 
required 

0 

Maintenance 
and 

Calibration 
required 

0 

C3: Indicator 2  - 
Total Number of 
Parts (less is 
preferable) 

10 – 30 15 0.75 14 0.80 16 0.70 21 0.45 

C2: Indicator  - 
Estimated Price 
(less is preferable) 

$25 – $100 55 0.60 90 0.13 45 0.73 50 0.67 

*No data were available for SJ failure rates therefore an average of the remaining three alternatives’ failure rates was used.  
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Table 11 Data for use in the weighted sum approach. 

Indicator 

Relative 
Criterion 
Weight 

Relative 
Sub-
criterion 
Weight 

Final 
Weight 

OP -
Score 

OP-
Weighted 
Score 

ND - 
Score 

ND-
Weighted 
Score SJ- Score 

SJ-
Weighted 
Score 

MJ - 
Score 

MJ-
Weighted 
Score 

C1: Indicator 1 -
Tolerance of 
Particulates 
(more is 
preferable) 0.56 0.13 0.07 0.00 0.00 1.00 0.07 0.50 0.03 1.00 0.07 

C1: Indicator 2 - 
Estimated Failure 
Rates (less is 
preferable) 0.56 0.88 0.49 0.30 0.15 0.43 0.21 0.30 0.15 0.25 0.12 

C3: Indicator 1 - 
Maintenance 
Required (less is 
preferable) 0.35 0.75 0.27 1.00 0.27 1.00 0.27 0.00 0.00 0.00 0.00 

C3: Indicator 2  - 
Total Number of 
Parts (less is 
preferable) 0.35 0.25 0.09 0.75 0.07 0.80 0.07 0.70 0.06 0.45 0.04 

C2: Indicator  - 
Estimated Price 
(less is preferable) 0.09 1.00 0.09 0.60 0.05 0.13 0.01 0.73 0.07 0.67 0.06 

     0.53  0.63  0.31  0.29 
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CHAPTER 5 PRACTICAL INSTALLATION TIPS 
 

5.1 Service Line Sizing for Meter Installation Example 

In pipe flow, there are also losses associated with friction created through the contact of 

flowing water with the surrounding pipe, fittings, and machines, such as meters, and a field 

practitioner designing a water supply system should be familiar with this concept and the 

calculation of the HGL (hydraulic grade line).  Typically, because the fittings used in rural water 

system design are simple, their effects on loss due to friction are considered negligible when 

compared to frictional losses of flow through pipes and machines. While a meter may not appear 

to be a machine in the typical sense that it does useful work, all of the meters discussed here 

function through mechanical mechanisms whereby the flow of water agitates a flow sensor, 

which turns the register dials, either directly via shaft in a wet-register design or by moving 

magnets, thus some of the energy from the movement of water in the pipe is “lost” before it 

continues toward its final destination. It is therefore important to consider the impact of meter 

installation on the final pressure at the tap.  

In cases where water pressure in the service line is already low, undersized meters can 

cause pressure drops in service lines affecting users’ satisfaction; oversized meters (which is a 

common occurrence because the intention is to preempt consumption demand) tend to 

significantly under-register the flow of water passing through them; however, despite these 

negative consequences, meters are often installed without properly analyzing for these 

possibilities (AWWA, 2012; Mutikanga et al., 2009).  In its manual for selecting and sizing 
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residential meters, AWWA recommends selecting meter size based on estimated household 

demand and pressure-loss data, rather than on the service-line pipe size alone (AWWA, 2012). 

Demand estimations are typically performed during the scoping and design phase of the water 

system project. The field worker typically performs a census of the community and the current 

household demand is estimated by multiplying the average number of household number by a 

about 80 liters per person per day in piped systems, although this number may be higher or lower 

(120 to 60 liters per person per day) (Nauges & Whittington, 2009). This figure will also depend 

on the daily production of the source which should meet at least the daily minimum demand of 

the community (Jordan Jr., 1984). Future population growth is predicted by equations and these 

figures can vary quite a bit based on location (Arnalich, 2010; Nauges & Whittington, 2009). 

After demand is considered, the system designer then plans the normal and peak flow rates for 

the branches and nodes of the distribution network. Considering the demand information is 

important in meter installation and most residential service lines can be accommodated by a 5/8’’ 

meter. While AWWA recommends against using 1/2’’ service lines, in rural water systems these 

are not uncommon. After household peak flows are determined, a meter’s pressure drop curve 

(Figure 25) can be examined to determine whether the resulting pressure drop is acceptable for 

the peak flow. Meter specification sheets also contain information about a specific model’s 

minimum detectable, normal, and maximum allowable flows (Figure 26). All meter types tend to 

under-register at very low flows, so the smallest allowable model should be installed, without 

compromising the pressure head available at the end of the line or exposing the meter to undue 

wear by installing one that is too small (i.e., the service line’s design flow exceeds the meter’s 

maximum flow rate). Following is an example that addresses the effects of meter installation on 

service line design.  
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Assume that the main water pipe is buried under a public road, 1 meter below the surface. 

From the main line, a ½ inch, schedule-40 PCV service line splits off to carry water to a single 

tap at the end of the line, about 30.5 meters away from the main connection which is also 2 

meters above grade at the main connection. The tap stand is about 1 meter tall. It is determined 

that the best location to place a water meter is 10 meters away from the main connection, in the 

direction of the house. The water meter installed will be a 5/8’’x1/2’’, plastic body, multi-jet 

meter. (For meters whose size is noted as 5/8’’x1/2’’ or 5/8’’x ¾’’, the first number – 5/8’’ – 

refers to the inside diameter of the meter’s inlet and outlet. The second number indicates what 

size pipe the meter will readily connect to with the included connectors). The service line must 

be elevated to 0.45 meters below the ground surface in order to connect the meter and install a 

valve box, which is approximately 0.5 meter long. (The service line is elevated to 0.45 meters 

because installing a meter at a lower depth will be uncomfortable to the technician and 

impractical for the meter reader). This is done by using 90-degree elbows and sections of pipe. 

Ball valves are placed before and after the meter and the service line is lowered down again to a 

depth of 1 meter below grade until it reaches the tap. The desired minimum pressure head at the 

tap is 10 meters and a flow of about 0.4 liters/second. The flow rate is a conservative estimate of 

discharge from a single bronze spigot. If more than one connection is present on the service line 

that will be metered, then the peak flow demand should be used for this calculation. The goal is 

to determine what minimum pressure head is required at the main connection in order to meet the 

minimum pressure requirement.   

The first step is to sketch a graphic representation of this problem and then gather data to 

estimate the head losses due to friction, height, and meter (Figure 27). While precise calculations 

can be done by solving Bernoulli’s energy equation, this will require more calculation and 
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conservative estimate calculations may be done in the field more quickly by hand using pressure 

drop estimations.  In this example, an Excel spreadsheet was used to record data and perform the 

calculations and AutoCAD software was used to produce the sketch.  

AWWA provides tables for residential meters by size (5/8 inch, ¾ inch, and 1 inch) to 

determine estimated pressure losses according to flow, similar to pipe Friction Factor tables. For 

a 5/8’’ meter at 6GPM flow, a loss of 0.89 psi is expected. If the field practitioner is not able to 

access these tables, however, the manufacturer’s sheet for any meter will have a graph with a 

pressure drop curve. Particular care should be taken to ensure that all of the data are in correct 

units (in this case, meters). If working with English units, they may be in gallons per minutes 

(GPM) for flow or Pounds per Square Inch (psi) for pressure. It is very common for gravity-fed 

system manuals to use metric units for everything except pipe diameter. Friction factor tables 

and pressure loss table are available either from manufacturers of pipe or in gravity-fed design 

texts which the field practitioner presumably has access to. Pressure losses to valves and fittings 

are not considered here because these are likely minimal.  

Figure 25 shows an example of pressure drop information attached with a 5/8’’ bronze-

body multi-jet meter and the pressure drop is estimated at 0.7 meters of head (after converting 

from psi). Pressure drops for all types of 5/8’’ and ¾’’ meters tend to be small at flows typically 

seen in rural community-managed systems. The biggest contribution to head loss is actually 

friction due to water movement in pipe. In this example, a ½’’ PVC pipe service line was used 

despite AWWA’s recommendation not to use service lines smaller than ¾’’. Due to high friction 

losses associated with small pipe diameter. In rural community systems, however, ½’’ lines may 

be quite common. Thus, at least 30 meters of head would have to be available at the main 

connection in this example. If less pressure head is available, it is recommended that the size of 
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the line be upgraded to ¾ inch. Pressure loss due to installation of meters tends to be very low as 

compared to other head losses at the flow conditions expected in rural, community-managed 

systems. However, this type of analysis is still recommended because it is quick and fairly 

simple, can be automated in an Excel spreadsheet and can help the practitioner avoid making 

mistakes, especially in situations where less than 10 meters of head will be available for the user.  

In some situations fire-flow conditions may need to be considered when installing meters 

on service lines, however, this consideration is beyond the scope of this work and other 

references are available for sizing service lines and meters to meet these demands (Arnalich, 

2010; AWWA, 2012). 

 

 

Figure 25 Example of a pressure drop curve for a multi-jet bronze-body meter. Reprinted with 
permission from www.flows.com.  
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Figure 26 An example of a flow rate table that appears in a meter's specifications sheet. This  
particular table corresponds to a multi-jet bronze-body meter from Assured Automation but all 
meters will have similar information in the accompanying specification sheet. Reprinted with 
permission from www.flows.com.  
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Figure 27 Sketch of example problem evaluating head loss due to installation of meter.Pmain and Qmain refer to pressure and flow at 
the main line connection, respectively, and will vary based on site.  
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5.2 Practical Tips for Meter Installation 

5.2.1 Size Notation 

Once the type of meter and size of the meter have been selected, the actual installation of 

the meter is quite simple and does not vary significantly between types of meters. There are a 

few important installation considerations that can affect the meter’s performance. Firstly, it 

should be noted that for typical residential meters, the size labeling convention is not 

straightforward. For meters whose size is noted as 5/8’’x1/2’’ or 5/8’’x ¾’’, the first number – 

5/8’’ – refers to the inside diameter of the meter’s inlet and outlet. The second number indicates 

what size pipe the meter will readily connect to with the included connectors. These are the two 

most prevalent sizes, however a 3/4’’x 3/4’’ meter also exists. It should be noted that 5/8’’ equals 

to 0.625’’ and this is the true inside diameter of the meter’s connections. The inside diameter of a 

½’’ Schedule -40 PCV pipe is about 0.602’’ and the inside diameter of  ¾’’ Schedule-40 PVC 

pipe is 0.804’’. The manufacturer’s sheet should be consulted to determine the appropriate flow 

ranges for the meter being considered to ensure that it is compatible with the designed service 

line flow and the associated pressure drop can be tolerated without resulting in service 

interruptions for the user. The only difference between volumetric and velocity meter installation 

is that the volumetric meters (especially the piston-type) are more susceptible to failure from 

particulates and may require an extra strainer to be installed upstream of the meter if the water is 

known to carry particulates and if the manufacturer’s specifications recommend it. The line 

upstream from the meter should be flushed to remove possible particulates. For jet-type meters, 

the technician should check to make sure that the in-line strainer included with the meter is 

installed in the meter inlet. There is an arrow on the body of the meter indicating the direction in 
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which water should flow through it. Another way to differentiate the inlet on all jet meters is by 

locating the bypass valve (used in calibration) which is always positioned above the inlet. 

5.2.2 Example Valve Box Design and Shutoff Valves 

A sample design of a meter’s valve box is included in Figure 28. The valve box should be 

long enough to accommodate the length of the meter, plus the length of associated connectors 

and slip coupling on each side of the meter. The actual installation of the meter between the pipe 

and the meter is depicted in Figure 28. A slip coupling accepts the threaded part of the meter 

connector and is then glued (slipped) into the open side of the pipe. The slip coupling should 

have straight threads rather than tapered because the use of a tapered coupling might increase the 

chance of leaking. Thread sealing tape should be used on the threads of the connector going into 

the slip coupling but not in the threads on the meter’s inlet or outlet going into the connector. 

There should be at least the length of three diameters of pipe that being used for the service line 

on each side of the slip coupling, before a ball valve. For example, if ¾’’ pipe is being used for 

the service line, then the distance of pipe between slip coupling and ball valve should be at least 

2.4’’ (inside diameter of ¾’’ pipe 0.804’’ multiplied by a factor of 3). While a gate valve is 

actually preferred because it can be opened and closed gradually, these are not commonly used in 

combination with plastic pipe, therefore ball valves should be opened and closed slowly so as to 

minimize the water hammer effects on the meter’s flow sensor.  

There should also be enough length of pipe on each side of the shutoff valves in case they 

need to be exchanged. A shutoff valve positioned prior to the meter allows the water coming in 

from the main line to be stopped when the meter is installed or uninstalled and is a must. 

Installing a shutoff valve after the meter is optional but highly recommended. If the meter ever 

needs to be serviced or replaced, this valve can be closed thus avoiding backflow of water into 
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the valve box pit once the meter is disconnected. If the valve is not present, most of the water 

could also be drained from the tap but there will still be some water left in the line. A bypass line 

is also optional but recommended in situations where water supply should be maintained even if 

the meter fails or needs to be disconnected (e.g., clinics or schools). It should be installed before 

the first shutoff valve on the inlet side of the meter and reconnected to the service line after the 

second shutoff valve on the outlet side of the meter (Figure 29).  

Materials available for valve box construction will vary depending on location, thus the 

design will need to be adapted. The design proposed in Figure 28, however, shows the 

components of a typical valve box and a basic materials list without the calculated quantities 

since the dimensions will also vary based on the materials and location. Valve box design 

specifications are based on recommendations from Satterfield & Bhardwaj (2004) and the 

author’s experience. A rectangular design is recommended, but depending on the available 

choice for lid, the box may also be square. The difference in height from the lid of the meter 

should be between 18 and 24 inches. The box lid should never touch the lid of the meter. 

Installing a meter at a depth of more than 24 inches is not recommended because depth lower 

than that will be awkward for the technician to work in. The meter itself should rest on a 

concrete paver or brick so that the line on either end of the meter is elevated off the bottom of the 

valve box and the meter itself is not dangling and causing undue stress on the connections or the 

line. A layer of 6 to 12 inches of gravel is recommended underneath the meter. Sides of the valve 

box may be constructed from block, brick, or stone, and mortar.  The valve box should also be 

wide enough for the technician to be able to use wrenches and pipe cutters comfortably inside of 

it. If a large increase in future water demand in the area is expected, it may also be wise to size 

up the valve box expecting the sizing up of the meter. The cost of the valve box materials and 
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labor in in the United States is estimated to be 60USD (Satterfield & Bhardwaj, 2004). This 

estimate does not include the costs of additional plumbing, such as shutoff vaalves, upstream 

filters, or pressure regulators. One of biggest contributors to meter accuracy degradation is the 

stress created on meters due to improper positioning and mounting (AWWA, 2012; Barfuss et 

al., 2011; Mutikanga et al., 2009, 2011). With a few exceptions, all meters are designed to be 

mounted horizontally, with the register pointing up (Figure 29). 

5.2.2.1 Location of Valve Box 
 

It is recommended that the lid for the valve box have a trustworthy locking mechanism, 

for example, sturdy eyelets for padlock. This is done to ensure protection of the meter from 

tampering or theft. The valve box that the meter will be located in should not be places in an area 

that floods. Generally, the valve box lid should be flush with the ground or just slightly raised, 

but not so much where it may create a tripping hazard if there is nearby traffic. The valve box 

should be accessible because the meter should be read on a regular basis, but out of the way of 

paths. While placing the meter valve box close to the tap may seem like an attractive option 

because the service line could be elevated once rather than twice, this is not recommended 

because the area around a tap outside of the house may get wet and messy. There is also a lot of 

activity centered around the tap so a valve box placed close by may be obtrusive or aesthetically 

unappealing for the users. The meter box should thus be placed considering stormwater runoff 

conditions, traffic patterns, and meter reader ease of access. If freezing temperatures are a 

concern, the meter may be placed in a location such as the basement of the user’s house. Access 

for meter readers should also be considered.  
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Figure 28 Side cross-section view of suggested design of valve box. The box dimensions will vary by site. If upstream filters are 
added, the valve box length may need to be extended. Meter image inside the valve box is that of an oscillating piston manufactured 
by Assured Automation and reprinted with permission from www.flows.com. 
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Figure 29 Top view of suggested valve box.The box design includes a bypass line. The box 
dimensions will vary by site. If upstream filters are added, the valve box length may need to be 
extended. Meter image inside the valve box is that of an oscillating piston manufactured by 
Assured Automation and reprinted with permission from www.flows.com.  
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CHAPTER 6 STRATEGIES FOR INCORPORATING METERING INTO THE 

COMMUNITY MANAGEMENT MODEL 

 
6.1 Rationale for Including Protection and Enforcement of Metering into Community-

Managed System Design  

Water metering is an accepted practice in developed countries to manage user demand 

through consumption-based pricing, aiding in revenue-recovery for the managing entity when 

accompanied by meter protection and rule enforcement (AWWA, 2012). As Integrated Water 

Resources Management is being globalized (Taylor et al., 2005), metering is becoming popular 

in the developing world in urban settings where systems are managed through public or private 

utilities (Amiraly & Kanniganti, 2011; Chambouleyron, 2003; Harutyunyan, 2013; Khawam et 

al., 2006; Mutikanga et al., 2011; Mutikanga et al., 2013). In rural community-managed systems 

private, for-profit entities have been brought in to manage metering and billing (Kamruzzaman et 

al., 2014; Kingdom et al., 2006; Pauw, 2003). There is also evidence that meters are being 

installed in rural community-managed systems in the developing world with the responsibility of 

management belonging directly to the community but these cases are poorly documented 

(Johnson, 2002; Water for People, no date). While it appears that hydrophilanthropic 

organizations have been operating programs in developing countries for years that deal with 

meter installation, to the best of the author’s knowledge no publicly-available guidance exists for 

selecting and installing meters and basic training for the respective water committees in 

community-managed, piped, rural water supply systems.  
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While little field-based literature is publicly-available regarding metering programs in 

developing countries, it does not mean that field workers have not considered demand 

management, equity, and enforcement when facilitating rural water supply systems. Louise, a 

student who worked to design a rural supply system in Madagascar, mentioned including meters 

on public taps in her design and recommended that the community install meters in the future for 

all individual taps (2004). Although this acknowledgement for the importance of metering water 

was made, no recommendations were provided for what meters should be included, how they 

should be selected, what models are locally available, their cost, and whether the users or the 

committee would be responsible for purchasing them. Enforcement is another component of the 

rural water supply that goes along with metering but is not typically included in system design. 

Enforcement refers to measures taken by the managing water committee to ensure compliance of 

users with the committee rules (most frequently of payment or uses). Often, however, while the 

water committee forms rules or statutes, there are no technological mechanisms (e.g., protected 

or locked shutoff valves) for it to actually enforce those rules and payment delinquency rates are 

often very high and have been linked to premature system failure (Annis, 2006; Schweitzer & 

Mihelcic, 2012). Once again, however, other field development workers have thought about this 

problem as evidenced in Figure 30. In this example, locking spigots were installed by a Peace 

Corps Volunteer (PCV) who designed and built a system in order to provide the community with 

a mechanism to enforce the payment of tariffs. While the design idea was novel and seemed to 

be a good alternative to constructing individual locking valve boxes, the author observed that 

within less than a year after the system’s completion (and the PCVs departure from the 

community) most of the locking handles had failed and users were using long skinny bolts to 

open and close the valves. Furthermore, this adaptation was not comfortable to operate when it 
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came to closing the valve all the way or opening it from the fully-closed position. To avoid 

discomfort, users were leaving the valves partially open. Not only did the intended technology 

fail to achieve the design goal, but created a new problem. Since water usage was not metered 

and users paid a flat monthly fee, there was no incentive for either the individual users or the 

water committee to spend roughly 5USD per spigot to switch to new, traditional-handle style 

spigots (for a village of about 56 households).  

 

 

Figure 30 An example of a good idea but faulty design. Picture 1: an example of a good design 
idea – locking spigot. This is a tapstand in a community-managed system designed and built by a 
Peace Corps Volunteer in the Dominican Republic. A. A non-traditional spigot was used in order 
to have the option to lock a user’s access to water in case of non-payment. B. The valve stem to 
which a handle is attached. C. Typically, a spigot may feature either a round or lever-type handle 
but in this case the handle is attached to the stem and there is a slot for an eyelet below. D. The 
eyelet is not a typical feature of a spigot and this is where a padlock would be placed to lock the 
tap. Picture 2: an example of a good design idea but faulty product - leaking spigot. This is a 
similar tapstand in the same community but with the handle broken off. C. The point where the 
handle should attach to the valve stem but is broken. B. The user loops a bolt through the eyelet 
of the valve stem to open and close the valve. C. Because it is difficult and uncomfortable for the 
user to open and close the valve using the bolt, users often leave the valve slightly open so as to 
minimize effort needed to fully close and open. As a result, water is perpetually leaking though 
the valve.  
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6.2 The Metering Decision Tree 

Perhaps the biggest mistake made by well-meaning field workers and donors in 

developing countries over the years has been to install technologies in communities where there 

is no social support for their use, technical expertise for their maintenance, or sufficient resources 

for their operation and replacement (Aarras et al., 2014; Hollick, 1982). Water metering for 

consumption-based billing is a universally-accepted concept in the developed world. Some 

communities in developing countries may be aware of the existence of meters and their use in 

urban settings or for other services (e.g., electricity). In many developing countries, however, 

people are still not accustomed to the idea of paying for water, much less monitoring the amount 

of water they use for basing the price of the service. Development of rural water supply systems 

via the community-management model takes time and in order for the system to be successful in 

the long term, it is necessary to prepare the community through building its capacities (Gumbo et 

al., 2005; Sianipara et al., 2013). There have also been strong arguments made that ongoing 

support from an external organization is key to the success of a community-managed system 

(Cleaver & Toner, 2006; Harvey & Reed, 2007; RWSN Executive Steering Committee, 2010) 

which may not always be a possibility. It is, thus, not recommended to include meters in rural, 

community-managed water supply systems without training, consensus-building, and an 

enforcement mechanism for their protection and the collection of revenue they are intended to 

generate.  

While this work proposes that including meters into rural system design will help 

increase the chances of systems being sustainable and presents MCDA for selection of meters to 

be used in rural, piped, community-managed systems, it should be noted that in keeping with the 

goal of water system sustainability and good practices recommended by literature, the 
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community should have choices between different levels of service (Sara & Katz, 1997). In some 

cases, this might mean the choice between several different meters as a result of MCDA but it 

may also mean that the community may choose to opt out of a metering program altogether. Care 

El Salvador, an NGO, that worked to build and support urban and rural water supply systems in 

El Salvador in the late 1990s and early 2000s was reported to also include meters as an option in 

some of the systems (Johnson, 2002). While no technical details are provided for choosing the 

meters themselves, the approach used by Care El Salvador to counsel communities regarding the 

option for a metering program has been adapted into a flow chart for practicality and to include 

MCDA as a concrete tool to aid in the selection of the most appropriate meter (see Figure 31).  

The first step in the metering decision tree is for the community to have solicited the 

services of a field worker, either because its members are interested in building a water supply 

system or already have one but require assistance with its maintenance. If there is already a water 

system in place with a flat tariff (i.e., the same price is charged no matter the volume of water 

consumed), the community may be experiencing problems with water quantity and high tariff 

delinquency. If the community is not experiencing problems or if no water scarcity issues are 

expected during the design of a new system, then, metering may not be appropriate. If a 

community is experiencing problems, a public meeting should be held to allow the community to 

explain the problems it is experiencing and to collect data about the system and the community. 

No discussion should be had at this point about metering or any other possible solution. If a field 

practitioner is working with a community on implementing a new water system and water 

scarcity is identified as an issue, the practitioner would follow the same process. Once the field 

worker has had a chance to analyze the data, another meeting should be held where three 

possible solutions may be proposed: 1) increase the current tariff so as to generate sufficient 
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revenue for development of an additional source or installation of enforcement measures for 

generation of revenue, 2) planning for intermittent supply – part of the system would have water 

during certain parts of the day or week, or 3) installing meters and basing pricing on the volume 

actually consumed. At this point, the community should understand the alternatives proposed, 

but these alternatives should not be discussed. The community should be given the chance to 

debate these internally and generate a list of questions. At the next meeting, the field technician 

should repeat the options proposed and answer the community’s questions regarding the three 

options. If metering is chosen as the preferred option, the field worker would gather any 

additional data about the system or community needed to plan a metering program. Metering is 

not appropriate in all situations, if there are shared taps or the water supply is intermittent, then 

metering should not be considered (Sohail, 2004). The field technician would also gather data 

about existing options and at the next public meeting the practitioner would facilitate an MCDA 

beginning with the community’s input on what type of meter is preferred (e.g., very accurate, 

most economical, longest-lasting, etc.).  Once the results are tallied, the details of such an 

undertaking would be explained and the level of support for the program judged.  

Prior to the installation of meters, a planning period should include the designation of the 

committee members who will be responsible for carrying out the program. This is very similar to 

the committee development process. Relative statutes should be formed – for example, who will 

own the meters and who will pay for the meters? Consumption-based pricing will be established 

during this stage of the process. This type of pricing is characterized by a period of time – how 

often will the meters be read and by whom? How will the information be recorded and stored? 

The field technician should assist the community in making these preparations and developing 

the materials needed, such as record-keeping sheets, calculations that will need to be performed, 
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planning reading routes, etc. To whom will the meter reader report? Will there be another person 

accompanying the meter reader (for increased transparency)? Should the user be present when 

the meter is read? Who will keep the keys to the meter boxes and how will they be secured? 

There are many questions to consider and the field worker should facilitate the elicitation of 

answers from the community rather than handing over a rigid list of rules prepared in a vacuum 

or copied from a different context. 

Even after a long planning period, it is possible that not every member of the water 

committee will be enthusiastic about this approach. In fact, there may be strong distrust. In this 

situation, a field worker should explain that one of the options is an informational metering 

program. This means that before the program would be fully enforceable, there would be a 

period where the meters would be read and the results publicly shared and displayed. This 

process should increase transparency and increase community support. There may be disputes 

regarding the water consumption numbers and this should be anticipated. For example, users 

who consume a much larger portion of water (e.g., wealthier households, households with 

animals, small businesses, etc.) may believe that they consume much less water than they 

actually do or may be opposed to paying more for their larger consumption and may attempt to 

discredit the metering program by claiming that the device is over-registering. In these cases, it 

would be useful to replace some of the meters and continue the informational metering project 

and the public sharing of results. It is unlikely that two (or even three) meters tested by the same 

user would be consistently faulty and only in one direction. By performing the informational 

metering first, a lot of community support may be garnered and the community would have time 

to prepare for a new pricing scheme based on consumption. It is recommended that all of the 

meters be purchased and owned by the water committee because this increases the sense of 
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ownership and the possibility of the metering project’s success (Johnson, 2002; Laredo, 1991). 

Additionally, because a lot of variation between meter models occurs, using the same type of 

meter should maximize consistency of quality and measurement accuracy. Meter reading can be 

a significant effort for a single person or even two people, thus it is also recommended that this 

person be compensated for their service by the water committee. Where employment 

opportunities are few, this may seem like a popular post for many members thus the best 

candidate should be decided fairly and transparently. The community water committee should 

make the final decision but the field worker may suggest that the meter reader have the following 

qualities: be dependable, be able to read and write (at least numbers), be honest, be able to walk 

(or have access to transportation) for long distances, and be respected in the community.  

6.3 Possible Pricing Schemes and Their Enforcement 

In a utility setting, water tariffs are set based on the costs of the system’s maintenance 

and operation, recovery of the cost of building the system, and in some cases profit. Due to 

philanthropic efforts, rural communities are able to receive a lot of financial help for the building 

costs which does not need to be re-payed. Typically, the water committee will also be a non-

profit entity because its members are also the users. Thus, only the cost of ongoing maintenance 

and operation needs to be addressed. These costs are also typically computed during the system 

design phase and may include costs of electricity for pumps, chlorination equipment, 

replacement of valves, pipes, etc. When a metering program is added, the cost of meter 

replacement should also be considered. While there is admittedly little data regarding the useful 

life of meters, AWWA recommends that meter replacement should be scheduled to take place 

every ten years (AWWA, 2012). There is currently no data regarding whether this 

recommendation is appropriate for the developing world setting.   
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Based on the author’s experience, a rough calculation was performed using an Excel 

spreadsheet to estimate the monthly cash flow of the water committee and is represented in 

Figure 32. With 28 families paying a monthly tariff of 1.2USD, the monthly income of the water 

committee should be 33.6 USD. With the monthly expenditures budgeted at 22 USD, there 

should be 11.6USD available for savings every month. Savings are important for community-

managed systems because eventually as systems get older additional and more expensive 

maintenance and replacements will be needed. Systems are designed with population increases in 

mind, thus savings are also needed for future expansion. There should also be an “emergency 

fund” in case a major component, such as a storage tank or a pump, breaks. With 11.6USD 

available for savings at the 100% collection rate, a meter replacement cost can also be calculated 

in. Through the MCDA analysis it was determined that the nutating disc meter would be the 

most preferred option costing around 90USD. With a 3% inflation rate, it is estimated that 10 

years from now this meter would cost about 121USD. This sum is multiplied by the estimated 

number of meters (28 based on the current number of households, but this may be higher if 

population grows) and divided by 120 months to obtain the monthly rate of replacement, 

28.2USD. At the 10 year replacement schedule, even if 100% of the users pay their tariffs, the 

community will not be able to afford the meter replacement nor have a savings fund. A less 

expensive meter may be considered, a staggered replacement program may be put in place, or the 

tariff may be raised. In reality, in the developing world, collection rates for community-managed 

systems are only at about 60% to 80% levels, whereas in the developed world they may be 94% 

to 99% (Sohail, 2004). With only 18 of the 28 families consistently paying the tariff, the 

community would be able to almost cover its monthly costs, but would not be able to have a 

savings fund. There may be several reasons for the low collection rates and an effort should be 
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made to examine at least some of these reasons (Laredo, 1991; Sohail, 2004). Are users not 

paying because they cannot afford the water, are they dissatisfied with the level of service, or is 

there another reason?  

Lack of enforcement could be a big reason for the high rates of tariff delinquency. For 

example, based on the author’s experience, it was not standard practice to include a protected 

shutoff valve in the design of community-managed systems. Although the water committee 

training program included activities for guiding the community to set up rules for non-payment 

and breaking of its rules, there was effectively no way to enforce any penalties possibly 

proposed. It is common for field practitioners to assist communities in setting rules such as “to 

impose sanctions against subscribers for violations of these statutes. When the sanction consists 

of the temporary suspension of service, the Treasurer shall authorize the plumber to carry out 

said suspension” (Messenger, 2004). However, no details are provided for how this would be 

done technically so that the suspension would be maintained. Many external entities carrying out 

hydrophilanthropy projects in developing countries naively assume that the communities will be 

able to undertake the action of enforcement on their own (Cleaver & Toner, 2006; Johnson, 

2002; Messenger, 2004). The practice of water service suspension is not without its critics as it 

could significantly affect the health not only of individual users but the wider community (Pauw, 

2003; World Health Organization (WHO), 2000). These criticisms, however, often arise in the 

context of private-public partnerships, where a private utility operates the water system. The 

water committee board loses credibility if it is unable or unwilling to carry out its own rules. It is 

also recognized that the failure to recover cost can lead to lack of maintenance and ultimately 

failure of the entire system, thus there is a need for tariffs that promote “fairness and equity, 

sensible incentives, [and] simplicity and comprehensibility” (World Health Organization 



74 
 

(WHO), 2000). It was the author’s experience that nearby communities with community-

managed systems were already experiencing significant problems due to lack of maintenance and 

water quality was significantly compromised (due to pipe breaks and illegal connections) in the 

systems that were less than ten-years-old. A community with a much younger system was also 

experiencing problems with tariff delinquency and without a way to temporarily suspend service 

to individual offenders, the water committee board would periodically shut off service to the 

entire system in order to prompt compliance. The entire community could be without water for 

several days, thus putting the bigger group’s health at risk. It is therefore preferable to include a 

design component, in the form of a simple, locking valve box to protect individual shutoff valves 

(and meters if a metering program is chosen). While including individual valve boxes represents 

an additional expense to the materials budget for the project, if this is done early in the design 

process, then the fundraising can proceed accordingly.  

When it comes to the setting of water tariffs, there are no straightforward formulas that 

could be used to solve for answers (Laredo, 1991; Sohail, 2004; World Health Organization 

(WHO), 2000). Basing tariffs for water to cover minimum system maintenance costs and savings 

is a start. Another option is to look at local government agency recommendations, if they exist, 

to determine what the recommended local tariff may be (Louise, 2004). There are five 

recognized tariff schemes described in Table 12 and their associated effects on water 

consumption. Flat rate schemes have no effect on water conservation, while increased block 

pricing (where consumption is priced in “blocks” of volumes that become more expensive with 

increased consumption) is thought to provide the best conservation incentives. Seasonal, 

uniform, and decreasing block pricing all have some effects on decreasing water consumption 

but are not thought to be very effective in promoting conservation. It is thus recommended to 
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associate an increasing block tariff scheme along with a metering program. Because reducing 

access to clean water for the poorest users through this approach is a concern, a sufficiently-high 

first block should be allowed, but not so high that the conservation incentive is lost. An average 

of 50 to 80 liters per person per day could be applied to the estimated number of individuals per 

household (provided that the system design can accommodate these numbers). If, for example, 

the household size on average is 5 people, the volume of the first block would be between 250 

and 480 liters per day (or between 7.5 and 14.4 cubed meters per month). The price of this first 

block could be set at the minimum household contribution needed to satisfy the maintenance and 

savings requirements. Applying the previously-discussed informational metering for a few 

months may be especially useful before restructuring a flat water tariff.  

6.4 Economic Considerations of Beginning a Metering Program 

There is no published guidance for choosing meters to be installed in rural systems, so it 

is not known exactly what the financial burden of including meters into a system design would 

be. The author compiled information regarding materials budgets from Peace Corps Volunteers 

who worked to implement rural water supply systems in the Dominican Republic along with 

Louise’s predicted costs from Madagascar (Table 13). Based on this example, the additional 

funding needed to include meters would have increased between seven and twenty-nine percent. 

This example is not intended to be rigorously accurate because the total material costs were 

provided as anticipated budgets (i.e., the total amount spent on materials may not have been 

exactly that which was reported here) and all of the Dominican Republic examples were 

provided in local currency, so the conversion to USD is an estimate based on the currency 

exchange rates during the times when the systems were being built. This example demonstrates 

the cost of meters relative to the total materials cost of the system and there is a lot of variation 
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since the percentage is affected by the total cost of materials and the number of household 

connections when the price of the meter is constant. There are likely significant regional effects 

on system design. The Madagascar example is the costliest with a relatively small number of 

connections, thus bringing down the relative cost of meters, whereas the Dominican Republic 

examples are less expensive in total, thus the relative cost of meters appears to be higher. 

Nonetheless, this example is intended to show that the inclusion of meters in rural water system 

design can have significant economic implications, which supports the rationale to develop an 

informed meter selection process and adequate protection of such an investment. 

Table 12 Summary of possible water pricing schemes typically used by utilities and their effects 
on user consumption.(Khawam et al., 2006; Sohail, 2004).  

 Type of Rate How it works Effect on Consumption 

L
ea

st
 Flat Charges a fixed amount 

regardless of amount 
used; may be tied to 
income level in a tiered 
approach 

Provides no incentive to conserve 
water 

C
om

pl
ex

it
y 

of
 S

ch
em

e 

C
on

se
rv

at
io

n 
In

ce
nt

iv
e 

Uniform Block  Charges a fixed amount 
per volume unit of water 

No incentive for really big users 
because the price does not increase 
after a certain volume is consumed 

Decreasing 
Block  

With increased 
consumption, price 
decreases per unit of 
volume 

Does no encourage conservation and 
is recommended for regions without 
water scarcity concerns; uncommonly 
used  

M
os

t 

Seasonal Increased fixed rate 
during dry season 

Because the rate is higher per unit 
volume, encourages some 
conservation during dry months 

Increasing 
Block  

With increased 
consumption, price 
increases per unit of 
volume 

Encourages conservation and is 
recommended for water-scarce 
regions 
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Figure 31 Metering decision tree. Adopted from (Johnson, 2002) with author’s contribution to include MCDA.  
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Figure 32 Example monthly small system O&M budget. 
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Table 13 Cost of meters relative to the total cost of project materials. 

System 
Designation* 

System A 
System B 
(Louise, 
2004) 

System C System D System E System F System G 

System 
Characteristics 

Gravity-fed 
from a 
spring. 

Pumped from 
a well, then 
gravity-fed. 

Pumped from 
a spring, then 
gravity-fed. 

Gravity-fed 
from a 
spring.  

Gravity-fed 
from a spring. 

Pumped 
from a 
spring, then 
gravity-fed. 

Gravity-fed 
from a 
spring.  

System Location 
Dominican 
Republic 

Madagascar 
Dominican 
Republic 

Dominican 
Republic 

Dominican 
Republic 

Dominican 
Republic 

Dominican 
Republic 

Cost of Project 
Materials (USD)** 9600 71300 11200 42800 22700 8900 11300 

Connections 30 100*** 25 120 89 52 60 

Hypothetical Cost 
per Meter (USD)** $50  $50  $50  $50  $50  $50  $50  

Additional cost of 
meters as 
compared to total 
materials budget 
(as %) ** 

16 7 11 14 20 29 27 

Year Completed 2014 2004 2014 2014 2013 2011 2011 

 
*Costs for System A and Systems C through G were obtained from Returned Peace Corps Volunteers from the Dominican Republic.  
**Total costs of project materials come from real systems (except for System B- the source reports it as design-only) but the cost of meters varies greatly based 
on the product and location, thus the sum of 50USD for a meter is chosen as a hypothetical example based on the author’s experience. Meters for individual 
household taps were not installed in any of the systems thus the information is provided here for comparison purposes. Materials budgets and the portion of these 
budgets that the addition of meters would cost were rounded to the nearest hundred. None of the dollar values were adjusted to present-day dollars.  
***This is the number of households served by the system but only 20 metered communal taps were part of the original design due to budgetary constraints.  
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 
 

7.1 Conclusions 

The design of water flow meters has evolved to address the needs of urban water supply 

and distribution systems. As importance of water resource management is increasingly 

recognized in rural community-managed systems, metering can offer solutions to manage 

demand, increase revenue recovery and promote social equity and transparency.  

There is evidence that metering programs in rural community water systems are already 

being implemented through partnerships with private management companies or by international 

aid organizations and turned over to communities themselves to manage. There is no information 

available publicly, however, regarding how meters are selected, installed, and their long-term 

performance in rural systems. In fact, for those unfamiliar with metering concepts and 

technologies it can be very difficult to enter into a field with its own history and terminology 

which is passed on through institutional knowledge rather than in clear, relevant and publicly-

available formats. 

Multiple criteria decision analysis (MCDA), and particularly the Analytical Hierarchy 

Process (AHP) along with direct scoring of alternatives are tools that are simple enough to be 

used in the field. While there are concerns about indicator correlation when using these tools, 

they have become popular in numerically evaluating multiple technological alternatives against 

multiple criteria in the developing world water sector. A particularly attractive aspect of MCDA 

is that it can be facilitated by a field practitioner to gain stakeholder input regarding the goal and 
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criteria for meter selection. This study serves as an example for how MCDA could be applied for 

meter selection decisions in the field and while the nutating disc type of meter was found to be 

the most preferred, the result may be different when the analysis is performed with stakeholder 

and expert input. Because technical characteristics of rural community-managed systems vary 

and are not well documented, there is no single answer for a choice of meter or a set of specific 

weighted criteria to be considered. MCDA may also be carried out when more specific, local 

information is available regarding available models of meters.  

Metering and consumption-based pricing are practices that could be well integrated with 

the community-management model, but ultimately the community should decide whether 

metering is the correct option. If metering is selected as the preferred option for pricing and 

demand equity, then community members should be trained in meter reading, use, and 

recordkeeping of meter reading data. In keeping with the best practices of community 

development work, the field development worker should involve the community in the meter 

selection process. Finally, the tariff scheme recommended here, is the increasing block type, in 

which a certain volume of water should be sufficiently priced to meet the needs of the poorest 

households. All the consumption beyond the first block would be priced at a higher rate. 

Individual service suspension is recommended only in cases where payment delinquency is not 

linked directly to income loss and in cases of blatant violations of water committee rules. While 

the actions are punitive, lack of action on the part of the water committee board can significantly 

affect its credibility and authority within the community.  

After the meter selection process is complete, it is important to properly size the meter 

because poorly sized meters may contribute to pressure loss under high flow conditions at the tap 

where pressure head may be a concern. Oversized meters tend to significantly under-register 
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demand. Meter placement should be taken into consideration during service line sizing. It is 

recommended that locking valve boxes be used to house meters and shutoff valves before and 

after the meter. These boxes should be placed in areas not prone to flooding and not directly in 

highly-trafficked areas. Particular attention should be paid to the mounting position according to 

the meter manufacturer’s specifications. After the installation, meters should inspected to verify 

their functioning and to scope for possible leaks after the meter. After meter installation, 

accessories may be connected to the meter to determine the flowrate which could be a useful 

indicator for whether the design flow is achieved.  

7.2 Recommendations 

Future studies examining the appropriateness of meters in rural, community-managed,  

piped water supply systems should strive to collect and analyze field data regarding: 1) technical 

characteristics of such systems, 2) technical performance of meters under various pressure and 

flow conditions (especially intermittent and partially-full pipe flows), 3) stakeholder preferences 

and involvement in the selection of a water meter, 4) availability and cost of meters, replacement 

parts, and maintenance requirements in developing countries. Indicator and criteria selection in 

meter decision analysis could be improved not only through stakeholder but also with expert 

participation.  

 Because implementation of a new metering program could mean significant economic 

costs, a cost-benefit analysis should be performed to determine whether in small systems 

metering results in improved revenue recovery and whether that has an effect on overall system 

maintenance and sustainability rates. Social effects of community-managed metering programs 

have been studied in urban settings but little information exists for rural, community-managed 

programs. 
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 Finally, it has been proposed that urban developing world systems could benefit from the 

development of a new water meter design. The results of this study revealed that no single meter 

alternative identified as appropriate for residential metering in developed countries scored highly 

based on the criteria evaluated. There may be a need for a special meter design for rural 

community-managed systems. The ideal meter for community-managed rural systems in the 

developing world would be characterized by: 1) high tolerance of flow and pressure variations 

(this area needs more study), 2) high tolerance of particulates (the level of tolerance should be 

more specifically determined), 3) low failure rates and longevity (in order to minimize 

replacement due to scarcity of resources), 4) low- or no-maintenance requirements (with the 

possibility of local repair if needed) and 5) consistency in relative measurement accuracy (high 

absolute accuracy may not be as important for small systems because there are fewer users as 

compared to urban systems).  
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APPENDIX A: BACKGROUND INFORMATION 
 

A.1 Current Design Features for Rural Water Supply Systems and Water Committee 

Training Manuals 

The design for present-day rural water supply systems is guided by water distribution 

principles based on gravity-fed flow that date back millennia and are well documented (Jones, 

2010). Because the principles are easily grasped by non-technical audiences, and the system 

design is minimalist (including only the necessary features for the system to function), it is no 

surprise that the gravity-fed design was quickly adopted along with the community-management 

model and the first manuals emerged midway through the International Drinking Water Supply 

and Sanitation Decade (Hanson, 1985; Jordan Jr., 1984; Okun & Ernst, 1987). While these 

manuals are still just as applicable today (and in fact Jordan Jr., 1984 is still used for training in 

the field) the gravity-fed design has evolved to satisfy different needs and adapted to include new 

tools and materials (Arnalich, 2010; Brikké & Bredero, 2003; Jones, 2010; Mihelcic et al., 2009; 

WaterAid, 2013). An example gravity-fed rural water supply system is depicted in Figure A.1 

showing many of the components and features that may be included in the design. This example 

shows a system where water is pumped from low-lying sources to a storage tank on a hill, from 

which water is distributed via gravity to the users. The system depiction also includes additional 

components such as bleed valves, break pressure tanks, soak pits, and looped versus branched 

distribution networks. In fact, various resources have been developed that often focus exclusively 

on certain aspects of the gravity-fed design (Table A.1). While neither Table A.1 nor Figure A.1 
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are meant to be exhaustive resources for the various design components of gravity-fed water 

systems, these are included to highlight that to the author’s best knowledge, however there is no 

such attention devoted to metering and enforcement in rural community-managed water supply 

systems. By providing technical guidance related to metering to field workers planning and 

implementing rural community-managed water supply systems, it would allow them to include 

this feature in the design and cost analysis of the project, thus also providing the opportunity to 

train and prepare the community to collect revenue and enforce tariff payment and usage rules.  

Table A.1 Examples of gravity-fed system components and considerations that have received 
exclusive attention and evolved over time to become part of standard system design. This is not 
an exhaustive list but is merely an illustration to show the evolution and adaptation of the design 
in response to unique needs.  

Aspect of Design Reference 

Estimating Demand (Nauges & Whittington, 2009) 
Pumps  (Arnalich, 2011b; Brikké & Bredero, 2003; Fraenkel et 

al., 1993; Jeffery et al., 1992; Posorski, 1996; Stewart, 
2003) 

Storage tanks (Guerra et al., 1978; Shah, 1979; Watt, 1988) 
Pipeline gully crossings (Stone, 2006) 
Use of computer software in 
design 

(Arnalich, 2011a) 

Tariff Setting (Sohail, 2004) 
Water Committee Training (Braithwaite, 2009; Castro et al., 2009; Uckrow & 

Stephan, 2012) 
Soak Pits (Ahrens & Mihelcic, 2006) 
Distribution network design (Swamee & Sharma, 2000) 
Groundwater development (RWSN, no date) 

 
It is interesting to note some similarities between water pumps and water meters. The lifting of 

water has a history just as long as the measurement of water, going back millennia and similarly, 

modern versions of electric pumps began appearing in the early-20th century (Yannopoulos et al., 

2015). Both technologies (meters and pumps) depend on moving parts and in some cases may 

use electricity (more modern types of meters require electricity to perform measurements or in 

some cases only the recording and reading devices that accompany meters may be electric), thus 
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there are legitimate concerns regarding the operations and maintenance stages of the project with 

such components. Generally, many consider technologies requiring electricity, having moving 

parts, not reproducible locally, to be inappropriate for use in the developing world due to the 

limited local expertise and availability of parts in case of device failure (Radosevic, 1999). While 

these technologies may not be generally applicable , there is a long track record of successful 

application of water pumping devices in the developing world (Brikké & Bredero, 2003; 

Hazeltine & Bull, 2003). Although the goal is often to provide the simplest and cheapest device 

possible that will perform the desired function, there is also recognition that developing country 

citizens are actually interested in becoming modernized, especially with the rising incomes of the 

poor and there is an argument for using “intermediate technology” (Kaplinsky, 2011; Wicklein, 

1988). Inherently, there may be risks of introducing a technology with which the community 

managing the water system is unfamiliar, but often these risks may be addressed through training 

and capacity building by the field workers, especially with the appeal of modernity motivating 

the community to accept such technologies.  

Although there are many examples of situations where a hydrophilanthropic mission 

completed the construction of a rural supply system in a short period of time and left without 

ever providing meaningful training to the community, there is also evidence that many 

understand the importance of training for local communities as demonstrated through the 

formation of water committees and existing training manuals (Uckrow & Stephan, 2012). Many 

community training manuals have been developed by field workers over the years but are often 

unpublished, and may belong to the agency that employed/supported the field workers. 

Furthermore, they are often prepared in the language of the target audience, which is often not 

English. It is therefore difficult to perform an in-depth review of existing materials but key 
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contents of water committee training manuals are summarized in English and the manual used by 

the author during her Peace Corps Service, in Spanish. In keeping with the principles of the 

community management model, water committee training manuals include many capacity-

building topics that range from basic understanding of the water cycle and water system 

composition, to planning and bookkeeping. All the manuals include activities to codify the use of 

water, payment of tariffs, and roles and responsibilities of water committee members into statute. 

Some of the proposed rules also mention enforcement, for example “what are the consequences 

of delinquency in payment?”, “what are the consequences of using water for uses other than 

those allowed by committee statutes?”, “what are the consequences for illegally connecting to 

the system?”.  The answers to these question vary by and is often largely left up to the 

community to decide under the (misguided) notion that the community is united and capable of 

enforcement on its own statutes (Cleaver & Toner, 2006; Johnson, 2002). In the developed 

world, it is assumed that users will behave in ways so as to contribute to the greater good by 

conserving water, paying (on time) for the service they receive, and avoiding tampering with 

regulated equipment and water utilities, either private or public, have a keen interest in protecting 

their investment and recovering revenue. Such assumptions would not stand in the developing 

world setting. While in some cases the water committees may include rules that range from 

financial penalties, to exclusion form the project, to legal proceedings during the training 

process, in practice, the community often does not proceed with these enforcement measures 

because the system design does not include enforcement mechanisms (e.g., meters for measuring 

the actual amount of water consumed in case of misuse accusations, and locked valve boxes at 

individual taps to shut off service). Setting of rules by the water committee has been found to 

have a significant impact on the overall project success (Sara & Katz, 1997). If the water 
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committee does not enforce its own rules is seen as impotent within the community, additional 

violations of committee rules by members and users who witness their neighbors getting away 

without consequences will occur. The author witnessed all communities in surrounding villages 

struggling with this issue. All of the surrounding villages had been beneficiaries of water systems 

through the efforts of hydrophilanthropists. In some cases, no water committee had been formed 

and in some cases it had dissolved, but even in those communities that still had a water 

committee none had successful mechanisms of enforcing their rules. The water supply to the 

entire village (i.e., even the users who may have been in compliance) was periodically shut off 

until the non-compliant users resolved their debts or misuse issues. This easily breeds discontent 

among the compliant users and even contributes to social and political discord in the community. 

Many ask, “Why should I suffer for the sins of my neighbor?” (The issues associated with 

service shut-off are discussed in the following section). Thus, it is proposed that through 

installation of meters and protective and locking valve boxes accompanied by training of water 

committees in rural, piped community-managed water systems, the need to measure water can be 

addressed in order to set fair pricing, manage demand and enforce water committee rules.  

Somewhat surprisingly, a water committee manual written for community-based 

organizations (CBOs) in Indonesia does refer to metering as a pricing and demand-management 

strategy (Sy, 2011). However, metering is not addressed by in the design section the manual, but 

only at a high level in the O&M and Financial Reporting phases of the project. The manual is 

based on participatory, demand-led community management framework, but it also incorporates 

elements of utility management. For example, members of the water committee board and 

special teams are employed and compensated (whereas often with rural water committees, these 

members are often volunteers, especially if the committee does not generate sufficient income). 
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It is suggested that the meter reader within the water committee organization should report to the 

head of operations, who in turn reports to the general manager (or president) and tips about 

performing meter reading in conjunction with billing are provided. Meter rental fees and meter 

reading routes are briefly mentioned. There is no information provided, however, for what types 

of meters are to be used, how to install, read (even though a sample meter reading record sheet is 

provided), and maintain them, when to replace them, how to inspect for evidence of tampering, 

etc. In contrary, other sections do address pump design and troubleshooting issues, source flow 

measurement, pipe sizing, demand calculations, and other in detail. No reference is provided for 

water metering, thus this work could fill at least part of this gap because it is unlikely that local 

community members or even field workers will have this knowledge independently.  

A.2 Brief History and Current Situation of Meters 

The recognition of importance of measuring the flow of water delivered via conduit was 

documented as early as the Roman times but a good understanding of factors influencing the 

flow of water (i.e., velocity and area of channel/conduit) did not begin to emerge until the early 

18th century, when Henri Pitot began experimenting with glass tubes in the river Seine (AWWA, 

2012). Today, the practice of measuring the flow of water in pipes, the practice also known as 

metering, is nearly universal in developed countries. Particularly, entities that are in charge of 

producing and delivering water to users (e.g., utilities) see this practice as being beneficial 

because metering allows to: recover revenue, determine fair pricing for customers, manage 

demand, and troubleshoot system problems. When it comes to choosing a meter for installation 

to monitor residential water consumption, there is almost an unquantifiable number of meters to 

choose from. The choice is not only in brands of meters, it is also in the types of mechanisms 

that are employed to detect flow, since it cannot be measured directly. Between 18th century and 
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middle of the 20th century, meter development boomed around world, with hundreds of patents 

being registered in the United States for various technologies at the end of the 19th and beginning 

of the 20th century (AWWA, 2012). The standardization of meters, however, began only in 1913 

in the United States but remained much less organized abroad (AWWA, 2012). The International 

Standards Organization produces standards for measuring flow, but it is a private, non-

governmental entity made up of a voluntary member body which came about in 1946 (ISO, no 

date). In Europe, individual countries (e.g., the Danish Standard) may also have their own 

standardization practices as well as the CEN (European Committee for Standardization), which 

means that different entities may produce different standards.  

It is also important to note that while standards may exist, it would take a significant 

investment of time for a field worker not familiar with the technical language used in metering to 

study the defined terminology as well as the underlying concepts. A well-funded, multi-year 

study evaluating new meter versus used meter performance in the United States cited statistics 

about which meter brands and types are common not from published sources but from personal 

interviews with a  representative of Master Meter, a prominent manufacturer of water meters in 

the United States (Barfuss et al., 2011). Unsurprisingly, to an “outsider” designing and 

implementing a rural water supply system, trying to make sense of the disjointed information 

about water meters that is generally applicable to urban systems, this can be a daunting task. This 

work, while not comprehensive, is the first attempt to the author’s best knowledge to give a 

centralized resource to a development field worker interested in maximizing the sustainability 

potential of a rural water supply system through the practice of metering. 
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Figure A.1 Example rural water supply system. It is unlikely that an actual system would include all of these components in this order 
but is presented here merely for purposes of example. Adapted from various sources and the author’s experience. 
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A.3 Additional Meter Installation Details 

A.3.1 Meter Mounting Position 

One of biggest contributors to meter accuracy degradation is the stress created on meters 

due to improper positioning and mounting (AWWA, 2012; Barfuss et al., 2011; Mutikanga et al., 

2009, 2011). All meters are designed to be mounted horizontally, with the register pointing up. 

Some meter models may be designed to be mounted in additional positions such as those shown 

in Figure A.2 which can be mounted vertically or horizontally but with the register pointed to 

either side. Very few meters are designed to be installed upside down, which means horizontally 

with the register pointing down. In fact, most meters have only one mounting position as 

indicated in Figure A.3 and this this is always the preferred position.  

 

 

Figure A.2 Example of a meter that may be mounted vertically, horizontally, and on its side. It is 
important to review the manufacturer’s specifications sheet accompanying the meter not only 
prior to installation, but when deciding their appropriateness Reprinted with permission from 
BMeters. 
 
 

 
Figure A.3 Example of a meter that should only be mounted horizontally. It is important to 
review the manufacturer’s specifications sheet accompanying the meter not only prior to 
installation, but when deciding their appropriateness. Reprinted with permission from BMeters.  
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Figure A.4 Example instructions for application of thread seal tape printed in accompanying 
meter specifications sheet. Reprinted with permission from www.flows.com, © Assured 
Automation 2015.  
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A.3.2 Post-installation Inspection 

After the meter is installed, the connections should be checked for leaks. Also, in the 

meter dial there is usually a small triangular piece that rotates when water is flowing through the 

meter (see Figure A.5). This may be referred to as flow or trickle indicator. If water is turned off 

at the tap, this arrow piece should not move. Movement in the flow indicator when all the 

connections on the service line are off indicated that there is a leak somewhere between the 

meter and the tap(s). Conversely, if water is flowing at the tap but the indicator is not moving 

this is indicative of a “struck” meter (a meter that no longer registers flow). The meter may be 

dismounted, inspected and possibly repaired if the technician possess the required knowledge 

and skills, otherwise the meter should be replaced. As with all the other parts of water system 

project, there should be a surplus of about ten percent with meters. The technician should plan to 

purchase more meters than the number of metered connections planned anticipating the need for 

several exchanges. AWWA recommends scheduled meter replacement increments of ten years. 

 

Figure A.5 A typical register display with emphasis added to highlight the flow sensor. Reprinted 
with permission from www.flows.com.  
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A.3.3 Meter Accessories 

Many meters have may be equipped with single-use anti-tampering devices meant to 

indicate whether a meter has been opened or in the case of jet meters, whether the calibration 

valve has been adjusted. Another option is for connecting a pulse reading device which allows to 

estimate the flowrate (which may be a useful statistic in trying to evaluate the design flow and 

diagnose possible system errors and in characterizing many unknown characteristics of rural 

water systems). A valve box is recommended in lieu of anti-tampering devices in a developing 

world setting. Once a meter has been tampered with, there is often little that the water committee 

can do to correct the behavior of the individual. The meter would also need to be replaced. A 

valve box at once protects the meter and the shutoff valve which can be used as an enforcement 

mechanism for nonpayment of tariffs or violation of water committee rules.  

A.4 Community-management Model 

The community-management model is well-documented and has been used for several 

decades in lieu of publicly owned utilities to install and manage services such as water supply in 

the developing world (Annis, 2006; Behailu et al., 2015; Hanson, 1985; Lockwood, 2004; Okun 

& Ernst, 1987; Sy, 2011). It is a particularly attractive model in rural areas with small 

populations because these settlements are otherwise unlikely to receive attention from their own 

governments which direct scarce resources to more densely-populated areas. While it is not the 

goal of this work to analyze the community-management model, it is worthwhile to summarize 

some of the general concepts and assumptions of this model. These are important to note when 

considering the incorporation of metering into a rural community-managed water supply system 

because metering has traditionally been instituted by water utilities which originated in urban 

settings, with many resources and oversight provided by governments in place, and having 



104 
 

specialized technical expertise – the characteristics which are often in contrast to rural 

communities in the developing world managing their own water supply systems. The 

community-management model became popular as a result of the World Health Organization’s 

(WHO’s) International Drinking-Water Supply and Sanitation Decade (IDWSSD) (proclaimed in 

1980) aimed to increase access to improved drinking water around the world (Annis, 2006; 

Behailu et al., 2015; Lockwood, 2004). Grounded in the demand-responsive and participatory 

frameworks, the community-management model marked a shift from “supply-driven” to 

“bottom-led” development, meaning that donors and international actors became more interested 

in the voices and contributions of the very communities in water projects were being 

implemented (Annis, 2006; Cleaver & Toner, 2006; Lockwood, 2004). The community-

management model can be broadly summarized in Figure A.6 as having three desired outcomes 

of: empowerment of local communities, efficiency through means of local knowledge and 

resources, and sustainability of the rural water supply system. The principles for achieving these 

broad objectives can be summarized as: participation by and broad support of the community, 

control either through direct management of the water supply system or indirectly through 

decision-making during all the phases of the project, ownership of the system by the community 

which includes rules and enforcement, and lastly, sharing of costs for the project since this is 

thought to increase community buy-in. Four general groups of non-community actors may be 

involved in driving the community-management model can be summarized as: governments (of 

the host country) for whom this model is attractive as it allows the already-scarce resources to be 

maximized, donors who see this as a way to circumvent the often-corrupt government processes, 

field-development organizations (e.g., non-governmental organizations) who generally advocate 

for the community and may be services providers assuming a quasi-government role in some 
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communities, and multilateral lending institutions (such as the World Bank) who find it attractive 

because it increases the ties between the private and civil sectors. It also needs to be pointed out 

that the underlying characteristic of the community management model is time – it takes much 

longer to implement a project following this model as compared to a supply-driven approach, 

because it takes time to engage the community and carryout the project at the local-community 

scale (e.g., in terms of material, labor, expertise, etc.) (Lockwood, 2004). Two groups of factors 

can make it difficult to achieve the objectives: 1.) internal limitations may refer to social or 

political conflict within the community, insufficient revenue, lack of maintenace, lack of 

capacity, and 2.) external constraints can mean poor system deisgns, poor implementation, 

government interference, unnavailability of spare parts, lack of external support after project is 

completed. Another very important characteristic to note is that while the model is in its third 

decade of use, it is adaptive or still considered to be evolving (Behailu et al., 2015; Cleaver & 

Toner, 2006; Lockwood, 2004). Many organizations and individuals involved in rural water 

system projects have learned a lot of lessons through trial and error in the field over time and this 

process of what works well and what should be avoided, continues. 

Many benefits of the community-management model have been realized, but there are 

also many examples of where rural water supply systems failed because there is no single 

approach to be followed in all communities and what works in one may not work in another 

(Schweitzer & Mihelcic, 2012). Table A.2 includes a brief summary of commonly-cited benefits 

and drawbacks of the community-management model. One important observation that should be 

made is that while the community-management model is imperfect and not ideal in all situations, 

it has endured and continues to evolve. This is because of the nature of the problem – there is a 

lack of other entities (either governmental or non-governmental) which would be prepared and 
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willing to take on the management of rural water supply systems in the developing world, thus 

the responsibility has been transferred to the community itself. In the late 2000s, the term 

“hydrophilanthropy” was coined by a university professor for “the altruistic efforts of colleagues 

to provide sustainable, clean water for people and ecosystems worldwide” (Kreamer, 2010). This 

was not just an academic exercise but in response to academic programs encouraging 

“experiential learning” for engineering students (the author of this work is one of these students) 

which combine coursework on campus and practical work often in a developing country 

(Campana, 2010; Manser et al., 2015; Mihelcic, 2010; Mihelcic et al., 2006). While this term 

originally referred to academic field workers, it is certainly applicable to all entities doing not-

for-profit water development work worldwide and it has been increasingly noted, however, that 

often philanthropic and altruistic organizations or individuals descending on a community may 

not have the skills, the time, or the willingness to engage the community properly in a 

meaningful way (Breslin, 2010; Cleaver & Toner, 2006; RWSN Executive Steering Committee, 

2010). There is no single “right answer” when it comes to community-management and it often 

requires patience on the part of the development worker to adapt it to the community at hand. As 

an example, the model has been successfully applied on a much larger scale, to a town-sized 

system in Sri Lanka with several thousand connections, where government support for water 

supply was absent (Dahanayake, 2007). The benefits and the drawbacks inherent to the model 

may occur in the pre- and post-construction phases and some may affect the long-term viability 

of the system. The relationships between those drawbacks and effects on system sustainability 

have been studied by others and this thesis proposes that some of the drawbacks of the 

community-management model may be addressed through the adoption of water meters in rural 

water supply systems. 
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While many studies have focused on identifying factors affecting sustainability of 

community-managed systems, Schweitzer and Mihelcic (2012) found that none directly 

addressed the community management aspect after construction had been completed. One of the 

eight main factors affecting a system’s sustainability that they identified is tariff payment and 

while in the developed world metering and enforcement are well-accepted methods for setting 

tariffs and ensuring their collection, these are not common practices in the developing world. The 

same study found that tariff payment and transparency tended to decrease with the age of 

community managed systems and suggested that this may be due to the decrease in social capital 

originally acquired once the project is finished. A correlation was also found between higher 

incidence of tariff payment and increase in time spent on maintenance of the system as well as 

money paid out as wages to its stewards (Schweitzer & Mihelcic, 2012). Successfully employing 

meters for measuring household water consumption might contribute to enhancing transparency 

in the years after construction and an effective enforcement strategy would encourage continued 

payment of tariffs. Often, only the perception of inequity is sufficient to stir dissatisfaction and a 

break in the payment of tariffs, for example, if everyone in the community is being charged a flat 

fee while some households may be using much more water than others. Whereas if the meters 

are installed correctly and the community trusts that they are functioning fairly and that they are 

being charged fairly, based on the amount of water they actually use, they may be less likely to 

stop paying their tariffs on the grounds of dissatisfaction with (perceived) inequity. Certainly, 

continuous intake of revenue can mean the difference between a well-maintained system that 

serves its population or a failed one that no longer delivers improved water to rural households. 

Due to the adaptive nature of the community-management model and the benefits that metering 
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promises in terms of system sustainability, this practice could be well suited for integration into 

community-managed rural water supply systems.  

 

Table A.2 Example benefits and drawbacks of community-management model in rural water 
supply work. 

 

Benefits Drawbacks 

‐ Participatory approach (demand-led, recognizes 
social norms) 

‐ Promotes equity 
‐ Seeks participation from local entities and 

institutions to further longevity of systems 
‐ Builds capacity (technical, democratic, 

administrative, institutional, etc.) 
‐ Inclusive of vulnerable populations (e.g., 

women, the poor) 
‐ Seeks transparency and accountability  
‐ Inspires ownership of water systems by 

community 

‐ Participation is not necessarily 
representative 

‐ Glamorizing or “mythologizing” of 
intra-community dynamics 

‐ Lengthy process 
‐ Need for strong external actors 
‐ No follow-up from those external actors 

post-construction 
‐ Lack of technical expertise in 

community 
‐ Lack of resources within the for tariff 

payment 
Sources: (Behailu et al., 2015; Lockwood, 2004) Sources: (Cleaver & Toner, 2006; 

Lockwood, 2004) 
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Figure A.6 Summary of the community-management model applied to rural water systems. 
Adapted from (Annis, 2006; Harvey & Reed, 2007; Lockwood, 2004). 
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APPENDIX B: COPYRIGHT PERMISSIONS 
 

Below is permission for the use of material in Figure 15 in Chapter 3. Private information 

has been redacted. 
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Below is permission for the use of material in Figure 15 in Chapter 3. Private information 

has been redacted.
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Below is permission for the use of material in Figures 18, and 19, in Chapter 3, as well as 

Figures A.2 and A.3 in Appendix A. 
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Below is permission for the use of material in Figures 9, 20, 21, 22, 25, 26, 28, and 29, in 

Chapter 3, as well as Figures A.4 and A.5 in Appendix A. Private information has been redacted.   
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Below is permission for the use of material in Figure 14, Chapter 3. Private information 

has been redacted.  
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