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ABSTRACT 

 

Traditional network design problems only consider the long-term stationary travel patterns 

(e.g., fixed OD demand) and short-term variations of human mobility are ignored. This study aims 

to integrate human mobility characteristics and travel patterns into network design problems using 

a space-time network structure. Emerging technologies such as location-based social network 

platforms provide a unique opportunity for understanding human mobility patterns that can lead 

to advanced modeling techniques. To reach our goal, at first multimodal network design problems 

are investigated by considering safety and flow interactions between different modes of transport. 

We develop a network reconstruction method to expand a single-modal transportation network to 

a multi-modal network where flow interactions between different modes can be quantified. Then, 

in our second task, we investigate the trajectory of moving objects to see how they can reveal 

detailed information about human travel characteristics and presence probability with high-

resolution detail. A time geography-based methodology is proposed to not only estimate an 

individual’s space-time trajectory based on his/her limited space-time sample points but also to 

quantify the accuracy of this estimation in a robust manner. A series of measures including activity 

bandwidth and normalized activity bandwidth are proposed to quantify the accuracy of trajectory 

estimation, and cutoff points are suggested for screening data records for mobility analysis. 

Finally, a space-time network-based modeling framework is proposed to integrate human 

mobility into network design problems. We construct a probabilistic network structure to quantify 

human’s presence probability at different locations and time. Then, a Mixed Integer Nonlinear 



 

vii 

Programming (MINLP) model is proposed to maximize the spatial and temporal coverage of 

individual targets. To achieve near optimal solutions for large-scale problems, greedy heuristic, 

Lagrangian relaxation and simulated annealing algorithms are implemented to solve the problem. 

The proposed algorithms are implemented on hypothetical and real world numerical examples to 

demonstrate the performance and effectiveness of the methodology on different network sizes and 

promising results have been obtained. 
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CHAPTER 1:  INTRODUCTION 

 

Transportation engineers and city planners need to thoroughly understand human travel 

characteristics and mobility patterns, to economically locate network facilities and better serve 

travelers. Considering different types of facilities and infrastructures in transportation systems 

such as highways, intersections, bridges, sensors and digital traffic signs, etc., advanced modeling 

techniques are required for making the best decisions. For instance, smartly deploying sensors and 

digital traffic signs that can interact with travelers enables us to best observe travel characteristics 

and transfer route guidance and other information to the network users. Figure 1 illustrates 

different components of transportation systems and how closely they are tied to each other, which 

can be addressed with related modeling techniques. 

 

Figure 1  Transportation system components. 

Network design problems have been intensively studied for several decades, and 

researchers have conducted numerous studies investigating theoretical models. The early studies 

have focused on a deterministic location design problems and have developed models on discrete 
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[1], [2] and continuous setting [3], [4] formulations. Later, researchers started to investigate the 

stochastic facility network design to enhance system availability by providing redundancy [5]–[7]. 

There are many studies on location design problem that address only a single mode, and the 

literature of multimodal network design problem is relatively limited [8]. Further, in most relevant 

studies, the design objective is primarily related to travel time, while other important factors e.g. 

safety and spatial conflicts between different modes are yet to be quantitatively addressed.  

In many small communities in the United States that transportation is dominated by autos 

(single mode network) the lack of walkway infrastructures like sidewalks and crosswalks poses a 

safety hazard to pedestrians since they must walk along busy streets and highways. Since 1920, 

there has been a growing concern about pedestrians’ safety [9]. Pedestrians’ safety is defined as 

the condition of being protected from danger, risk, or injury caused by accidents with motor 

vehicles. The Federal Highway Administration (FHWA) estimates that 4,500 pedestrians are killed 

annually because of traffic accidents with motor vehicles, and as many as 88% of those accidents 

could have been avoided if walkways separate from travel lanes (sidewalks or crosswalks) had 

been available to pedestrians [10]. This implies the importance of pedestrians’ safety in 

transportation network design for city planners and governments. Due to the limited budget, 

identifying the optimal locations for separate walkways is yet a challenging issue.  

Motivated by these gaps, the first aim of this research is to investigate a new framework 

for multimodal network design problems, by considering safety and flow interactions between 

different modes of transport. A mixed-integer nonlinear programming model is proposed for 

locating sidewalks and crosswalks in a transportation network to reduce the overall cost, improve 

pedestrians’ safety and enhance walkability.  
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Traditional modeling frameworks in network design problems only consider the long-term 

stationary travel patterns (e.g., fixed OD demand) and short-term variations of human mobility are 

ignored. Recently, the rapid developments of geo-tagged data provide an opportunity to improves 

our knowledge about people’s mobility and travel characteristics, and it can lead to a better 

approach towards future modeling efforts.  

In the second task of this research, we investigate space-time travel patterns of humans at 

the individual trajectory level with high-resolution detail. Such geo-tagged mobility data are based 

on objective measurements or samples of human travel paths and contain massive temporal, 

spatial, and semantic information about individuals. They have become increasingly available and 

have provided substantial opportunities for understanding human mobility patterns [11]–[15], 

travel behaviors, and lifestyles [16], [17] and safety analysis [18]. Such data are critical to planning 

and operations of an efficient and reliable transportation system and eventually to the economic 

prosperity and long-term sustainability of an urban system [19]. These data can be used to 

characterize traffic flow patterns for better management of road networks [20]. Further, they have 

also been used to predict real-time travel demand for more responsive and convenient mobility 

operations [21].   

While geo-tagged mobility data provide abundant information for human travel 

characteristics, they are in general limited in two aspects, i.e., representativeness and granularity. 

First, representativeness refers to whether the individuals captured in the data well represent the 

overall traveler population in the corresponding region. Geo-tagged mobility data often have 

certain biases on particular traveler groups. For example, Twitter data may over-represent young 

age groups while under-representing senior age groups [22]. Granularity refers to whether the 

sample data are dense or frequent enough for an accurate estimation of the corresponding space-
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time trajectories. Geo-tagged mobility data essentially contain discrete samples of continuous 

space-time human (or vehicle) travel trajectories. Many mobility data sets have been recorded with 

very low sampling rates, which can be even further screened due to privacy concerns [23]. Other 

than the available sample locations, the remaining portions of trajectories are subject to 

interpolation-based estimation. It is easy to imagine that sparse samples likely yield higher 

estimation inaccuracies.  

Uncertainties due to low granularities of geo-tagged mobility data have been mainly 

investigated with two types of approaches. The first type focuses on deterministic geometric or 

geographical bounds to an individual’s activities based on known space-time sample points. 

Trajcevski et al. (2004) model trajectory bounds as cylinders to facilitate trajectory database 

queries. The time geography theory [24], [25] uses a space-time prism to bound an object’s activity 

range between two consecutive space-time samples as a prism, i.e., the intersection of two cones 

oriented in opposite directions. This concept is further generalized to incorporate transportation 

network structures [26]. The second type assumes stochastic underlying patterns of individual 

movements. With such stochastic settings, developments on probability distributions [27] and 

stochastic processes [28] can be applied to describe uncertainties of trajectories estimated with 

geo-tagged sample points.  

Despite these developments in modeling trajectory uncertainties, there is a lack of simple 

and efficient measures on the quality of using spatiotemporally distributed discrete samples in 

estimating an individual’s continuous trajectory and the suitability of such sample data for studying 

this individual’s travel patterns. Without such measures, transportation planner and operators may 

have difficulty in identifying whether a particular geo-tagged data set can help them accurately 
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quantify human travel patterns or not. They may also not be able to identify useful data sets from 

a vast amount of geo-tagged mobility data while such data become increasingly available.  

To bridge these gaps, we propose a set of quantitative measures for the inaccuracies of 

trajectory estimations with discrete geo-tagged mobility data. We apply a spatiotemporal data 

model based on time geography for representation and computation of geo-tagged mobility data. 

Based on this model, we propose two inaccuracy measures to quantify the accuracy of trajectory 

estimation in a robust manner. We also suggest cutoff points for screening data records for mobility 

analysis. These measures only have one parameter as an individual’s maximum speed and are 

applicable to different types of geo-tagged mobility data. To alleviate computational load for large-

scale data sets, we develop an efficient interpolation method with a lookup table. To demonstrate 

the applications of these measures, we test multiple sets of real-world geo-tagged trajectory data, 

including cell phone records and geo-tagged Twitter data. We find that the proposed measures can 

efficiently estimate associated mobility estimation inaccuracies for a large amount of individual 

mobility sample data. Further, these results also reveal managerial results into the quality of these 

data for human mobility studies, including their distribution patterns. Overall, the outcomes of the 

second task of this study advance our knowledge in understanding the relationship between the 

spatiotemporal distributions of geo-tagged mobility data and the quality of associated trajectory 

estimations. They provide a parsimonious and robust tool for evaluating the quality of massive 

amounts of geo-tagged mobility data and screening useful information from such data for mobility 

studies.  

The final aim of this research is to integrate human mobility characteristics into network 

design problems. Nowadays, governments, industries and marketing companies want to track their 

target population, collect their essential data and better interact with them to increase their total 
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welfare. For instance, in advertisement industry, billboards are the most common outdoor 

advertising strategy in cities and they have dominant advantages compared to the traditional 

advertising media such as prominent visibility, low cost per mile, and superior accumulation of 

local influence. To launch a successful billboard, the most important factors that should be 

cautiously considered is the geographical locations of billboards to increase the target exposure 

[29]. In transportation, traffic management centers deploy traffic sensors at various places across 

a network to estimate and predict network-wide traffic conditions. Electronic digital signs are also 

located in different spots to interact with travelers and transfer route guidance and information 

about the network.  

Due to limited resources and investment constraints, there is a need for smartly finding the 

proper locations of facilities over the network to maximize the network coverage. Regardless of 

the type of facility (e.g. sensors, billboards, etc.), in deterministic location design problems, the 

short-term variations and dynamics of targets’ mobility are ignored. In particular, dynamic space-

time relationships between facilities and sensing targets are seldom investigated in existing studies.  

To bridge these gaps, we try to integrate human mobility into network design problems by 

constructing a stochastic framework, where the presence probability of targets could be quantified 

in a space-time network-based structure. In general, we can expand a physical network by copying 

it in different time stamps and construct a space-time network. The advantages of the space-time 

network are that we can work with space-time nodes and links and specify different attributes (e.g., 

presence probability) of individual targets to them. Using the proposed space-time framework, a 

Mixed Integer Nonlinear Programming (MINLP) model is developed to maximize the utility from 

the inspected targets by optimally locating coverage facilities. To achieve near optimal solutions, 

customized algorithms including greedy heuristic, Lagrangian Relaxation (LR) and Simulated 
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Annealing (SA) are derived. Numerical examples on hypothetical and real world networks show 

that the proposed algorithms can efficiently solve realistic problem instances 

The organization of this dissertation is as follows: CHAPTER 2 reviews relevant literature 

and explains why this study contributes to the existing literature. CHAPTER 3 presents the facility 

location design problem and proposes the network reconstruction process where a multimodal 

network is reconstructed from a single mode transportation network. The application of this 

network reconstruction method to a traffic calming network design problem will also be 

investigated. CHAPTER 4 is about mobility pattern and trajectory analysis of moving objects. 

Further, we propose a new methodology for quantifying the activity range of moving targets using 

spatiotemporal data, and more importantly, to quantify the accuracy of trajectory estimation in a 

robust manner. CHAPTER 5 proposes a probabilistic space-time network structure that enables us 

to integrate human mobility into network design problems and maximize the network coverage. 

Finally, CHAPTER 6 concludes this dissertation and discusses possible directions for future 

research. 
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CHAPTER 2:  LITERATURE REVIEW 

 

2.1. Time Geography, Mobility Pattern and Trajectory Analysis 

In transportation studies, it is important to understand human travel characteristics from 

both microscopic and macroscopic perspectives. At the microscopic scale, we need to understand 

how vehicles proceed and interact (e.g., via car-following laws [30]) on a road link. Understanding 

microscopic vehicle trajectory characteristics help us explain root causes to a notorious highway 

traffic phenomenon, traffic oscillation, which incurs a number of adverse impacts on highway 

traffic efficiency and sustainability [31]–[33]. At the macroscopic scale, people’s space-time travel 

patterns across a wide space region are of a concern. Studies on human mobility and activity 

patterns have been applied to several fields, including epidemic modeling [34], traffic prediction 

[35], urban planning [36], [37], and social networks [38], [39]. With the emergence of rapidly 

growing geo-tagged Big data from various sources [11], [12], tremendous efforts have been made 

in the attempt to understand human mobility and activity patterns over time and space.  

To name just a few seminal studies, Brockmann et al. (2006) discovered a power-law 

distribution of human travel distances from anonymous one-dollar bill transactions. González et 

al. (2008) tracked traces from over ten thousand mobile phone users for a six-month period to 

quantify the scaling laws of individual humans. With similar cell phone data, Song, Qu, Blumm, 

& Barabási (2010) further showed that individual human trajectories have a high degree of 

predictability, although some of their collective measures demonstrate distribution patterns akin 

to those of scale-free random walks [40], [42].  
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Of the relevant data sources, social media (e.g., Twitter, Facebook) is arguably the newest 

and the most rapidly growing data source and has drawn enormous interest in many research fields, 

such as computer science [35], sociology [43], and urban and transportation planning [36], [37], 

[44], [45]. Social media data are possibly a low-cost, high-information supplement to conventional 

travel survey methods and contain detailed individual information from semantic messages. In 

particular, emerging location-based social networks (LBSNs) are a popular form of social media 

that provide accurate individual location information in addition to semantics [46]. Check-in 

records on LBSNs contain rich social and geographical information and provide a unique 

opportunity for researchers to study users’ spatial-temporal social behavior [44], [47]–[49]. 

However, such data have several limitations in determining an individual’s activity chain, 

including concerns about user privacy, lack of detailed descriptions of the activities, missing 

activities, and a deficiency in individual socioeconomic characteristics [49]–[51].  

While studies on theoretical path modeling are mature (e.g., [52], [53]), tracing and 

predicting an individual’s activity patterns using geo-tagged mobility data are still in the 

exploratory stage. This study attempts to address the issue of missing activities, that is, an 

individual’s whereabouts are known only at sample time points, but activities at other times are 

missing from the data.  

The time geography theory can be used to estimate the range of an individual’s missing 

whereabouts based on his/her known locations posted on social media. Time geography reveals 

how participating in an activity at a given place and time is directly related to abilities to participate 

in activities at other places and times [54]. This concept has been recently applied to transportation 

network design in innovative ways [55], [56]. Recent developments in time geography can provide 

intuitive concepts and quantitative measures to describe how discrete sample points can confine 
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an object’s path in a space-time coordinate system. Inspired by the general relativity, time 

geography quantifies an object’s activity range given its mobility capability and sometimes 

geographical barriers as well [24], [25], [57].  

According to the time geography literature, three major factors can constrain an 

individual’s ability to conduct activities in space and time: capability constraints (physiological 

necessities, such as sleeping), authority constraints (limited access, such as a military area), and 

coupling constraints (spatial and temporal requirements, such as a meeting at 3 p.m.) [58], [59]. 

Considering these factors, researchers applied time geography to investigate human activity 

patterns by integrating time geography concepts with geographic information systems (GIS) [60], 

[61], three-dimensional geo-visualization of activity-travel patterns [62], and some analytical 

measurement, such as the space-time path, space-time prism, or station [25].  

The space-time path and space-time prism are two fundamental concepts in time geography 

literature [24], [25], [63]–[65], and they serve as the basis for the proposed measures in this study. 

The space-time path has been applied to mobile phone logs to study human movement behavior 

[65] and individual access to urban opportunities [66]. The space-time prism is a more powerful 

measure for assessing the ability of an individual to travel and participate in activities and is used 

for measuring accessibility [25], [67], [68].  

Recently, the probabilistic models in time geography and spatial databases have been 

investigated from different perspectives. For instance, studies on measurement error analysis in 

measurement-based GIS argue the spatial data quality [69] and error propagation [70]. Researchers 

have also developed mathematical foundations for modeling the distribution of visit probabilities 

within the space-time prisms using the Random Walk theory [71], [72], the truncated Brownian 

Bridges method [73] and the moment-design method [74].  

http://onlinelibrary.wiley.com/doi/10.1111/0033-0124.00158/abstract
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These studies develop various means of describing human activity patterns under various 

probabilistic modeling assumptions. Different from these modeling assumptions, this study only 

employs the very simple concept of time geography to evaluate to what extent such data can reflect 

an individual’s activity trajectory. Note that because of irregular geometries, finding space-time 

prisms can be challenging for Big Data with available commercial software. Our proposed 

measures can smartly circumvent this computational challenge with a look-up table method. 

2.2. Location Design Problems 

Facility network design problems are one of the most difficult and challenging problems 

in transportation. The majority of studies in transportation network design problems (TNDP) focus 

on developing mathematical formulations and solution techniques for improving the utilization of 

the transportation network through either link improvements (i.e. expanding the capacity) or link 

additions (e.g. building new streets) [8]. The common objective in TNDP is to make an optimal 

investment decision in order to minimize the total travel cost in the network. The TNDP is usually 

formulated as a bilevel, leader–follower problem [75]–[78]. The upper level is the designers’ 

problem in which decision makers (e.g. city planners) design the transportation network. The lower 

level problem is the travelers’ problem in which users decide on their travel route and mode of 

transport. The bilevel structure allows the decision maker to improve the transportation network 

while accounting for travelers’ route and mode decisions [8]. 

Although there have been many studies of the TNDP, there are still numerous gaps and 

limitations in the literature, especially for multimodal network design problems. For instance, 

many transportation network design problems address only a single mode, and the literature of 

multimodal network design problem is very limited [8]. We found only one study in multimodal 

TNDP that considers a non-motorized mode (bicycle) [79]; all other studies focus on either bus 
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and car or on bus, car, and metro [80]–[83]. In pedestrian transportation literature, most studies 

are descriptive [84]–[86]. To the best of our knowledge, no study has considered walking as a 

mode of transportation within a multimodal network design problem. Also, most of the existing 

studies in multimodal network design problems do not consider flow interaction between different 

transportation modes [87]–[89]. However, when transportation modes share lanes in reality, the 

flow of different modes do interact. 

Most studies in TNDP have ignored combined mode trips where travelers can use multiple 

modes of transportation during their trips such as park-and-ride, especially in the strategic level 

decisions[8]. An important aspect of multimodal transportation systems with combined mode trips 

is to provide convenient mode transfer possibilities for travelers. Nowadays, with the advent of 

technologies like Uber, Lyft, SideCar and Curb, combined mode trips seem more viable than ever 

before. In addition, the objective in most studies in TNDP is primarily related to travel time [78], 

[90]–[92], or travel cost such as operator cost, and user cost [80], [89]. These gaps are addressed 

in the second task of this study, where we develop a multimodal TNDP for deployment of 

pedestrian infrastructures to reduce the overall cost, improve pedestrians’ safety and enhance 

walkability.  

Recently, a number of reliable location models have been proposed to address possible 

probabilistic facility failure risks [93]–[95]. Snyder and Daskin (2005) proposed two reliable 

facility location model formulations (based on p-median and UFL models) to investigate the effect 

of probabilistic facility failures on the optimal facility deployment. Li and Ouyang (2010) 

addressed the correlations between facility failures in the context of reliable facility location 

design, but the developed continuum approximation model is only suitable for macroscopic 

problems with a smooth and continuous setting. These discrete and continuous reliable facility 
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location modeling techniques have been adapted to solve traffic surveillance sensor location design 

problems [98], [99]. 

Traditionally, the operation of transportation systems has been monitored by fixed sensors 

that are not movable after installation  [100]–[103] to gather valuable information e.g. link flow 

data. Most of the studies in the literature typically assume the availability of measured link traffic 

information on all network links. However, in practical applications, the assumption of installed 

sensors on all links is unrealistic due to budgetary constraints. The existing models in sensor 

location design problem can be identified into two categories: models solving the sensor location 

flow-observability problem and models solving the sensor location flow estimation problem [104]. 

Studies on flow-observability problem determine the optimum deployment of sensors such that 

flows involved in the system are known [100], [105]–[107]. On the other hand, flow-estimation 

problems (e.g. origin-destination flow estimation) try to optimally deploy sensors such that the 

derived flow estimates are the best possible [108]–[111]. 

Overall, the optimal design of sensor locations across a transportation network yields the 

best data collection. Different sensor location models exist on different criteria such as sensor types 

(e.g., counting sensors, image sensors, Automatic Vehicle Identification (AVI) readers), available 

a priori information and flows of interest (e.g., OD flows, route flows, link flows) [112]–[118]. In 

addition to the link flow estimation, there is a particular emphasis on the end-to-end travel time 

prediction problem. Xing et al. (2013), proposed measurement and uncertainty quantification 

models to explicitly take into account several important sources of errors in the travel time 

estimation/prediction process, such as the uncertainty associated with prior travel time estimates, 

measurement errors and sampling errors. In their study, they selected a path travel time uncertainty 
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criterion to construct a joint sensor location and travel time estimation/prediction framework with 

a unified modeling of both recurring and non-recurring traffic conditions.  

During the last decade, the optimal allocation of plate scanning devices has received very 

limited attention, even though several scholars have demonstrated that plate scanning devices are 

much more informative than those based on traditional link count information. Mínguez and 

Sánchez-Cambronero (2010), provided some techniques for obtaining the optimal number and 

location of plate scanning devices for a given prior OD distribution pattern under different 

situations, i.e. maximum route identifiability or budget constraints. Cerrone et al. (2015) proposed 

four mathematical formulations for vehicle-ID sensors location problem to derive route flow 

volumes. They have considered both the full observability and estimation version of the problem.  

Despite the wide use of fixed sensors in transportation networks, there are evidences that 

mobile traffic sensors can improve the transportation network surveillance in different ways [121]. 

New technologies such as Unmanned Aerial Vehicles (UAVs) are more flexible to monitor the 

real time traffic conditions and special events with regards to both space and time and they can be 

considered as dynamic sensors [122], [123]. These technologies help the decision makers to 

change the sensor network design in unexpected events such as network disruptions. Zhang et al. 

(2015) proposed a mathematical model for traffic state detection of spatially and temporally 

distributed incidents using UAVs. This study shows that using a number of illustrative and real-

world networks, their proposed model offers a unified fixed and dynamic sensor network 

framework and efficient routing/scheduling algorithms for improving road network observability. 

Zhu et al. (2014)  investigated the motion ability of traffic sensors and proposed a mobile traffic 

sensor routing problem. The results showed that the mobile traffic sensor had a better network 

surveillance performance than the fixed sensor.  
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Despite the considerable number of studies on formulating and solving the sensor location 

problem, little research in this context has considered short-term variations of human mobility. 

Nowadays, location-based social data that contain a massive temporal-spatial information about 

population targets can be integrated into location design problems to improve the network 

coverage. Considering this as a unique opportunity that is not investigated in the literature, we to 

develop a new space-time framework and formulate a mathematical programming model to 

maximize the network coverage. This could be extended to other application e.g. advertising 

industry. For instance, launching successful billboards large cities to increase the target exposure 

[29].  
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CHAPTER 3:  NETWORK DESIGN PROBLEM - A DETERMINISTIC APPROACH  

 

3.1. Introduction1 

Transportation Network Design Problems (TNDP) are concerned with building new 

transportation infrastructures (e.g. streets or bridges) or expanding the capacity of existing 

infrastructures. City planners need to consider accessibility and/or mobility related issues such as 

congestion, air pollution, traffic incidents, etc., while designing a transportation network. TNDP 

are necessary to improve the systems performance especially in metropolitan areas and city 

centers. TNDP have been studied during the last five decades with a concentration on the road 

network and public transit. The primary focus of TNDP is to satisfy traveler’s needs, increase 

relevant social welfare and serve the travelers with the minimum total system cost by best planning 

and configurations of certain infrastructure facilities.  

As discussed in CHAPTER 1, many studies on transportation facility location design 

address only a single mode, and the literature of multimodal network design problem is relatively 

limited (see [8] for more details). In this chapter, we investigate a pedestrian network design 

problem in a multimodal network, where the behavior and characteristics of travelers are fully 

observed. We develop a network reconstruction method to expand a single-modal transportation 

network to one suitable for multi-modal traffic analysis considering flow interactions and safety. 

This reconstruction method further leads to a multimodal transportation network design model to 

enhance not only network efficiency but also pedestrians’ safety by optimally designing traffic 

                                                 
1 Portions of this chapter is published in [125],[126]. Permission is included in Appendix D. 
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calming facilities. In particular, flexible changes of transportation modes along a traveler’s 

trajectory and interactions of different modes of transportation when they share certain facilities 

are considered.  

We develop a bi-level mathematical programming model for optimally locating sidewalks 

and crosswalks (S&C) in a transportation network such that the overall transportation cost 

decreases and pedestrians’ safety improves. In the proposed bi-level leader–follower optimization 

model, the leader (city planners) decides where to locate the traffic calming facilities in the upper 

lever. In the lower level, the follower (travelers) decides on the travel route and modes of 

transportation. Travelers can use three modes of transport including auto, public transit and 

walking and they are allowed to switch between these modes along their trips. The problem is 

given a limited budget, to determine where to install traffic calming facilities (S&C) in a 

transportation network, to minimize the total transportation cost, and to improve pedestrians’ 

safety.  

3.2. Network Reconstruction 

A traditional transportation network, even though hosting multi-modal traffic, often allows 

the same link to be shared by multi-modal traffic instead of tagging each link with a specific mode. 

In this section, a network reconstruction process is used to convert the existing transportation 

networks dataset with only one mode (the auto mode) to a multimodal network structure, which is 

called mode-link structure. Given the road transportation network dataset, this process adds 

walking and public transit modes as a set of mode-specific links and nodes to the transportation 

network. In this framework, pedestrians use walking links, auto passengers use auto links, and 

public transit passengers use public transit links.  
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The reconstruction process presents a transportation network that consists of a network 

𝒢(𝒩, ℒ) made up of a set of links, ℒ, representing road segments, public transit lines, sidewalks 

and crosswalks, and a set of nodes, 𝒩, representing intersections between these links. Network 

𝒢(𝒩, ℒ) is reconstructed from a given only-auto network 𝐺(𝑁, 𝐿). The original network 𝐺(𝑁, 𝐿) 

is made up of a set of links, 𝐿, representing only road segments, and a set of nodes, 𝑁, representing 

the intersections between the road segments. The original and the reconstructed networks for the 

Small network instance are illustrated in Figure 2. The original network 𝐺(𝑁, 𝐿) in this example 

as illustrated in Figure 2(a) consists of 𝑁 = {1, 2, 3, 4}, representing nodes for the auto mode, and 

𝐿 = {(1,3), (1,4), (2,1), (2,3), (3,4)}, representing road segments [127]. 

The reconstruction mapping function ℜ is a process that takes the original network 𝐺(𝑁, 𝐿) 

and transforms it into a new network that, in addition to road segments and their intersections, also 

includes public transit lines and S&C with separate links and nodes. For each link 𝑙 ∈ 𝐿, 

representing a road segment in 𝐺, links 𝑙𝑠1 and 𝑙𝑠2 are added to the left and right-hand sides of 𝑙 in 

parallel, to represent left- and right- hand sidewalks, respectively, for road segment 𝑙. Also, two 

crosswalk links, 𝑙𝑐𝑏𝑒𝑔𝑖𝑛  and 𝑙𝑐𝑒𝑛𝑑, are added, one at the beginning and one at the end of each link 𝑙 

to the network. We refer to these crosswalks as the begin- and end- crosswalks. The crosswalk 

links cross the auto link 𝑙 and connect the left- and right- hand sidewalks. In addition to sidewalk 

and crosswalk nodes and links, public transit nodes and links are also added to the network. To 

connect these walking and public transit nodes and links to the original network, transfer links 

(representing the switch from one mode to another) are added to the network. For each origin and 

destination in the set of origin-destination pairs, dummy origin and destination nodes are added to 

the network. To ensure connectivity of the network, each dummy node is connected to its nearest 

sidewalk node using a connector link with zero travel time. This also ensures that travelers start 
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and end their trips by walking (using sidewalk links). The reconstructed network for the Small 

network instance is illustrated in Figure 2(b). In this figure, the dummy nodes are shown in green 

and are represented by 5, 6, 7 and 8. Walking nodes are represented with three digit numbers, e.g. 

231. The public transit nodes are represented with four digit numbers, e.g. 100. 

 

Figure 2  Small network, (a) original network (b) network after reconstruction. 

With the reconstruction process, the inter-modal interactions and transfers between 

different modes can be modeled in a robust manner. The proposed reconstruction process, which 

converts the single mode transportation network to a multimodal network structure, can be adapted 

to convert the physical transportation networks to a space-time network structure in CHAPTER 5 

(for a more detailed discussion on the reconstruction process and algorithm, please see [127]).  

3.3. Modeling Framework 

The integrated network design problem is formulated by a bi-level model structure. In the 

proposed bi-level model, the upper level problem locates and installs S&C on the reconstructed 

network, and the lower level problem solves the corresponding traffic assignment problem and 

user equilibrium. The reconstructed network is represented with 𝒢(𝒩, ℒ) in which 𝒩 and ℒ are 
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the set of nodes and links. Links in ℒ can be divided into six categories: A for auto links (which is 

equal to set 𝐿 in the original network 𝐺(𝑁, 𝐿)), T for public transit links, S for sidewalk links, C 

for crosswalk links, F for transfer links that connect walking links to auto and public transit links, 

and R for connector links which connect the whole network together. The sets of incoming and 

outgoing links to and from node 𝑖𝜖𝒩, respectively, are represented with 𝐼(𝑖) and 𝑂(𝑖). Let 𝑀 be 

the set of transportation modes that contains ‘a’, ‘t’ and ‘w’ representing auto, public transit and 

walking modes, respectively. Let 𝐾 represents the set of trips in the transportation network. For 

trip 𝑘 ∈ 𝐾, 𝑑𝑘 is the transportation demand, starting from the origin 𝒪𝑘 and ending at the 

destination 𝒟𝑘. The set of traffic calming facilities (S&C) is represented with 𝐽. Although we 

assume that the installation of sidewalks includes implementing both left and right-hand sidewalks, 

for the begin- and end- crosswalks (“𝑐𝑏𝑒𝑔𝑖𝑛” and “𝑐𝑒𝑛𝑑”), they can be installed independently. If 

the set of traffic calming facilities available for link 𝑙𝑎 ∈ 𝐴 (the subscript 𝑎 indicates that link 𝑙 is 

an auto link) is represented by 𝐽𝑙𝑎 , then the decision for city planners to make is whether to install 

the traffic calming facility 𝑗 ∈ 𝐽𝑙𝑎 that costs 𝑐𝐽𝑙𝑎  on the link 𝑙𝑎 and imposes the transportation cost 

𝜑𝑙(. ). The criterion for this decision making is whether the overall transportation cost decreases 

while pedestrians’ safety increases. This decision is limited to budget constraint on implementing 

traffic calming facilities (not exceeding 𝑏) on the transportation network. Table 1 shows all the 

notations used in the proposed model. 

As mentioned earlier, two traffic calming facilities are considered in this research, 

sidewalks and crosswalks. For crosswalks, we assume that there can be two crosswalk lines on 

each auto link: one at the beginning (represented by 𝑙𝑐𝑏𝑒𝑔𝑖𝑛) and one at the end (represented by 

𝑙𝑐𝑒𝑛𝑑). We assume that the begin- and end-crosswalks can exist and work independently. However, 

for sidewalks, we assume that the left- and the right-hand sidewalks are dependent and cannot exist  
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Table 1  Notations. 
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𝑁: Set of nodes indexed by 𝑖 = 1,… ,𝑁. 

𝐿: Set of links, indexed by 𝑙 = 1,… , 𝐿 or (𝑖, 𝑖′). 

𝒩 Set of nodes in the reconstructed graph indexed by 𝒾 = 1,… ,𝒩. 

ℒ Set of links in the reconstructed network, indexed by 𝑙 = 1,… , ℒ or (𝒾, 𝒾′).  

𝐼(𝑖) Set of incoming links to node 𝑖. 

𝑂(𝑖) Set of outgoing links from node 𝑖. 
𝑀: Set of transportation modes, denoted by 𝑚 = 𝑎, 𝑡, 𝑤 where “a”, “t”, and “w” represent 

auto, public transit, and walking modes respectively. 

𝐽: Set of traffic calming facilities indexed by  

 𝑗 = 𝑐𝑏𝑒𝑔𝑖𝑛, 𝑐𝑒𝑛𝑑 , 𝑠, where “𝑐𝑏𝑒𝑔𝑖𝑛”, “𝑐𝑒𝑛𝑑”, and “s” are the begin-crosswalk, end-

crosswalk and sidewalk, respectively. 

𝐽𝑙𝑎: Set of traffic calming facilities available on auto link la. 

𝐾: Set of trips indexed by k. 
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b: The budget ($) 

𝜗: Value of time ($/h) 

𝜔: Transit-auto equivalent factor  

𝜃: Automobile-transit equivalent factor  

𝜏𝑙𝑓: Transfer cost for switching between walking mode to auto or public transit modes (the 

transfer cost is different for auto and public transit).  

𝜎 Average cost of a pedestrian crash in dollars ($) 

𝑡𝑙𝑚: Free-flow travel time for link 𝑙𝑚 

𝑑𝑘 , 𝒪𝑘 , 𝒟𝑘 Demand, origin and destination of trip 𝑘 

𝛾𝑙𝑚: Capacity of link 𝑙𝑚 

𝛿: Safety weight factor that quantifies the travelers’ preference between time delay and 

safety. 

𝜑𝑙(. ): Travel cost function for link 𝑙 in the upper level problem 

�́�𝑙(. ): Travel cost function for link 𝑙 in the lower level problem 

𝜓(𝑋𝑙𝑠) The probability of a pedestrian getting into a crash when walking along the auto link 

adjacent to the sidewalk link 𝑙𝑠 

𝑃𝑙𝑎(𝑋𝑙𝑠) Pedestrians’ crash probability function on auto link 𝑙𝑎 

𝛼1, 𝛼2, 𝛽1, … , 𝛽6 Multipliers and powers used in the objective function formulation 

  

V
a

ri
a

b
le

s 

𝜋𝑖,𝑘: Auxiliary variable (the dual variables of the corresponding shortest path problem) 

𝑋𝑘,𝑙: Number of trip k flows on link 𝑙 

𝑋𝑙: The vector of flow variables (𝑋𝑘,𝑙) for all trips on link 𝑙:  

𝑋𝑙 = {𝑋𝑘,𝑙|∀ 𝑘 ∈ 𝐾} 

𝑋: The vector of all flow variables (𝑋𝑙) on all links for all trips: 

 𝑋 = {𝑋𝑙|∀ 𝑙 ∈ 𝐿} 
𝑌𝑙,𝑗: 1 if traffic calming facility 𝑗 is implemented on auto link 𝑙, 0 otherwise 

𝑌𝑙 The vector of all 𝑌𝑙,𝑗 on link 𝑙: 𝑌𝑙 = {𝑌𝑙,𝑗|∀ 𝑗 ∈ 𝐽} 

𝑌 The vector of all 𝑌𝑙 on all links: 𝑌 = {𝑌𝑙|∀ 𝑙 ∈ 𝐿} 
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independently, meaning that if we build a sidewalk for a road, we build it for both sides of the 

road. We formulate OTCIMTP as a link-based model. Each link in the transportation network has 

a transportation cost that includes the travel time converted to a dollar value. 

3.3.1. Travel Cost Function 

For auto links, 𝑙𝑎 ∈ 𝐴, the travel cost function is as follows: 

𝜑𝑙𝑎(𝑋, 𝑌) = (𝑡𝑙𝑎 (1 + 𝛼1 (
∑ 𝑋𝑘,𝑙𝑎 +𝑘∈𝐾 ∑ 𝜔𝑋𝑘,𝑙𝑡𝑘∈𝐾

𝛾
𝑙𝑎

)

𝛽1

) (𝑖) 

+((
∑ 𝑋𝑘,𝑙𝑠1𝑘∈𝐾

𝛾
𝑙𝑠1

)

𝛽2

+ (
∑ 𝑋𝑘,𝑙𝑠2𝑘∈𝐾

𝛾
𝑙𝑠2

)

𝛽2

)× (1 − 𝑦
𝑙𝑎,𝑠1

) (𝑖𝑖) 

+(
∑ 𝑋𝑘,𝑙𝑐𝑏𝑒𝑔𝑖𝑛𝑘∈𝐾

𝛾𝑙𝑐𝑏𝑒𝑔𝑖𝑛
)

𝛽3

×(𝑦𝑙𝑎,𝑐𝑏𝑒𝑔𝑖𝑛
) + (

∑ 𝑋𝑘,𝑙𝑐𝑒𝑛𝑑𝑘∈𝐾

𝛾𝑙𝑐𝑒𝑛𝑑
)

𝛽3

×(𝑦𝑙𝑎,𝑐𝑒𝑛𝑑
))×𝜗 + 𝜇𝑙𝑎  (𝑖𝑖𝑖)      (1) 

 

The travel cost of using the auto mode on link 𝑙𝑎 ∈ 𝐴 is affected by (𝑎) the amount of flow on 

auto link 𝑙𝑎, (𝑏) the amount of flow on the other links associated with link 𝑙𝑎 (public transit and 

walking modes), and (𝑐) whether traffic calming facilities, S&C, are installed on link 𝑙𝑎. To 

incorporate these three factors into the travel cost of auto links, we divide the auto travel cost into 

three parts. We use the coefficient ϑ (the value of time) to convert all these travel costs to a dollar 

value.  

Part (𝑖)  reflects the effect of traffic flows of the auto mode in conjunction with the flows 

of public transit on link  𝑙𝑎. In this formula, 𝑡𝑙𝑎 is the free flow travel time on link 𝑙𝑎. The quantities 

𝛼1 and 𝛽1 are model parameters. 𝑋𝑘,𝑙𝑎 and 𝑋𝑘,𝑙𝑡 are the amount of flows for auto and public transit 

respectively. Here, 𝛾𝑙𝑎 is the capacity of link 𝑙𝑎. Since there is a difference between the size of auto 

and public transit options (say, the capacity of the public transit is 𝜔 times bigger than that of 
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auto), we add 𝜔 as a multiplier to 𝑋𝑘,𝑙𝑡 to make up for this difference. We refer to 𝜔 as the transit-

auto equivalent factor. 

Part (𝑖𝑖)  reflects the effect of traffic flows on the left- and right-hand sidewalks on auto 

link la. Xk,ls1 and Xk,ls2 are the number of flows in the left- and right-hand sidewalks, respectively, 

and γls1 and γls2 are the capacity of the left- and right-hand sidewalks respectively. The quantity 

β2 is a model parameter. When a sidewalk is installed, we assume that both the left- and the right-

hand sidewalks are built on the sides of a street. The yla,s1indicates whether sidewalks are installed 

on the street represented by link la or not. When yla,s1 = 1, it indicates that two sidewalks are 

installed on both sides of 𝑙𝑎. Installing sidewalks on a link creates separate walkways for 

pedestrians which can decrease the travel cost of the auto mode, as the flow of pedestrians no 

longer interferes with the flow of autos.  

Part (𝑖𝑖𝑖)  reflects the effect of traffic flows on crosswalks (both the begin- and end-

crosswalks) on auto link la. In this formula Xk,lcbegin
 and Xk,lcend

 are the amount of flows in the 

begin- and end crosswalks respectively, and γlcbegin
 and γlcend

are the capacity of these crosswalks. 

The quantity 𝛽3 is a model parameter. 𝑦𝑙𝑎,𝑐𝑏𝑒𝑔𝑖𝑛
and 𝑦𝑙𝑎,𝑐𝑒𝑛𝑑

are decision variables indicating 

whether sidewalks are installed or not (at the beginning or at the end of a street). We assume the 

begin- and end-crosswalks can be implemented separately and independently (as opposed to 

sidewalks). Installing begin- or end-crosswalks can encourage more pedestrians to cross the auto 

link 𝑙𝑎 and increases its travel cost. This is reflected in part (𝑖𝑖) of equation (1). When a crosswalk 

is installed (𝑦𝑙𝑎,𝑐𝑏𝑒𝑔𝑖𝑛
= 1 or 𝑦𝑙𝑎,𝑐𝑒𝑛𝑑

= 1), the flow of pedestrians affects the travel cost of auto on 

link 𝑙. In this formula, 𝜇𝑙𝑎 represents the out-of-pocket cost (the indirect costs such as gas, 
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insurance etc.) that auto drivers have to pay for using auto (there is no such cost when walking or 

using public transit). 

The travel cost function for public transit link 𝜑𝑙𝑡(. ) is as follows: 

𝜑𝑙𝑡(𝑋, 𝑌) = 𝜗×𝑡𝑙𝑡 (1 + 𝛼2 (
∑ (𝑋𝑘,𝑙𝑡 + 𝜃𝑋𝑘𝑙𝑎)𝑘𝜖𝐾

𝛾𝑙𝑡
)

𝛽4

) (2) 

 

The travel cost of public transit reflects the effect of traffic flows of public transit in conjunction 

with the flows of auto on link 𝑙𝑡. In this formula, 𝑡𝑙𝑡  is the free flow travel time on link 𝑙𝑡. The 

quantities 𝛼2 and 𝛽4 are model parameters, and 𝛾𝑙𝑡 is the capacity of link 𝑙𝑡. Similar to equation 

(1), we use a multiplier, 𝜃, this time for 𝑋𝑘,𝑙𝑎, to make up for the difference between the capacity 

of an auto and that of a public transit. We refer to this multiplier as the auto-transit equivalent 

factor. We use the coefficient ϑ (the value of time) to convert the travel cost to a dollar value.  

The travel cost function for crosswalk link 𝜑𝑙𝑐(. ) is as follows: 

𝜑𝑙𝑐(𝑋, 𝑌) = 𝜗×𝑡𝑙𝑐 (1 + ∝3 (
𝑋𝑙𝑐
𝛾𝑙𝑐
)

𝛽5

) (3) 

 

It reflects the effect of traffic flow of the crosswalk on link 𝑙𝑐. In this formula, 𝑡𝑙𝑐 is the free flow 

travel time for crossing a street on link 𝑙𝑐. The free flow travel time can be found based on the 

length of 𝑙𝑐 and walking speed. The 𝑋𝑙𝑐 is the flow of pedestrians crossing a street using the 

crossover link 𝑙𝑐, which has the capacity of 𝛾𝑙𝑐 . The quantities 𝛼3 and 𝛽5 are model parameters. 

We use the coefficient 𝜗 (the value of time) to convert the travel cost to a dollar value. 

The travel cost function for sidewalk links 𝜑𝑙𝑠(. ) is as follows: 

𝜑𝑙𝑠(𝑋, 𝑌) = 𝜗×𝑡𝑙𝑠 (1 +  ∝4 (
𝑋𝑙𝑠
𝛾𝑙𝑠
)

𝛽6

) (𝑖) 

                   +(1 − 𝑦𝑙𝑠)×𝜎𝑃𝑙𝑎(𝑋𝑙𝑎)𝑋𝑙𝑠 (𝑖𝑖)        (4) 
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This travel cost function consists of two parts. part (𝑖) reflects sidewalks’ travel time and 

it is a function of the effect of the flow of pedestrians (𝑋𝑙𝑠) on sidewalk link 𝑙𝑠. In this formula, 𝑡𝑙𝑠 

is the free-flow travel time, and 𝛾𝑙𝑠 is the capacity of link 𝑙𝑠. The quantities 𝛼4 and 𝛽6 are model 

parameters. Part (𝑖𝑖) on the other hand, reflects pedestrians’ safety and computes the expected cost 

of pedestrians’ crashes (as a penalty cost in the absence of installed sidewalks) on the auto link 𝑙𝑎 

adjacent to sidewalk 𝑙𝑠. When no sidewalk is installed, pedestrians have to walk along the streets, 

which is unsafe. To compute the expected cost of pedestrians’ crashes, we multiply the probability 

that a given pedestrian will get in a crash ( 𝑃𝑙𝑎(𝑋𝑙𝑎)𝑋𝑙𝑠) by the average cost of a pedestrian crash 

(𝜎) [128]. The term 𝑃𝑙𝑎(𝑋𝑙𝑎) is the pedestrian crash probability function when pedestrians walk 

along the auto link 𝑙𝑎. This function is obtained by dividing the total number of crashes on a given 

road segment by the total traffic flow on that segment. Then, by using a simple linear regression 

among all the streets, we calculate the crash probability function. For this regression, we used the 

historical crash data from Starkville, Mississippi, U.S.A. (see [33] for more details). In this 

formula, 𝑦𝑙𝑠 indicates whether or not a sidewalk is installed, which can enforce the cost associated 

with pedestrians’ crashes in the absence of an installed sidewalk.  

For sidewalk links, the travel cost function for the upper level problem (equation (4)) is 

slightly different from the travel cost function in the lower level. The travel cost function for the 

lower level is as follows: 

�́�𝑙𝑠
(𝑋,𝑌) =  𝜗(1 − 𝛿)×𝑡𝑙𝑠 (1 +  ∝4 (

𝑋𝑙𝑠
𝛾𝑙𝑠
)

𝛽6

) (𝑖) 

                  + 𝛿(1 − 𝑦𝑙𝑠)×𝜎𝜓(𝑋𝑙𝑠) (𝑖𝑖)        (5) 

 

The travel cost function for the lower level also consists of two parts: part (𝑖) reflects 

sidewalks’ travel time, and part (𝑖𝑖) reflects pedestrians’ safety on sidewalks. Part (𝑖) is similar to 
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what is used in equation (4). However, here we also use an adjustment safety weight factor, 𝛿, to 

combine the travel time part and the safety part. The adjustment weight factor can be used by city 

planners for find a balance between travel safety and travel time when designing a transportation 

network. Part (𝑖𝑖) computes the expected cost for an individual when walking along the auto link 

la (adjacent to the sidewalk ls) for which the sidewalk has not been built. In this formula, ψ(Xls) 

is the probability that a pedestrian gets into a crash when walking along the auto link la (due to the 

lack of an installed sidewalk) and is computed as follows:  

𝜓(𝑋𝑙𝑠) =  (
𝑃𝑙𝑎(𝑋𝑙𝑎)𝑋𝑙𝑠
0.01×𝛾𝑙𝑠

) (6) 

 

The numerator in (6) computes the expected number of pedestrians’ crashes on auto link 

𝑙𝑎 when pedestrians walk along the street. The denominator in (6) is an estimate of the average 

number of pedestrians walking along auto link 𝑙𝑎. Due to a lack of data, we assume the average 

number of pedestrians walking along a street is 1% of the capacity of the adjacent sidewalk if it 

was built. The links that connect the pedestrian links to auto and public transit links are called 

“transfer links.” The travel cost function for transfer links 𝜑𝑙𝑓(. ) is a constant value which 

indicates the total walking time to reach the transfer station and the total waiting time in the transfer 

station: 

𝜑𝑙𝑓(𝑋, 𝑌) = 𝜗×𝜏𝑙𝑓  (7) 

 

There are two types of transfer links: auto-walking and transit-walking transfer links. In 

order to transfer from public transit to auto (or auto to public transit), both of these transfer links 

must be used. Finally, the travel cost function for connector links 𝜑𝑙𝑟(. ) is assumed to be 0 because 

these links are hypothetical: 

𝜑𝑙𝑟(𝑋, 𝑌) = 0 (8) 
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The objective functions in the upper level and the lower level are different. This is due to 

incorporating pedestrians’ safety on sidewalks into the objective function of the transportation 

problem in the upper level problem. However, pedestrians’ safety is also incorporated into the 

objective function of the lower level problem. We assume that the travel cost for all links, except 

sidewalk links, is the same for the upper level problem and the lower level problem: �́�𝑙(𝑋, 𝑌) =

𝜑𝑙(𝑋, 𝑌)   ∀ 𝑙𝜖ℒ\{𝑙𝑠|𝑠 ∈  𝑆}.  

3.3.2. Mathematical Formulation 

The proposed mathematical model is formulated as follows:  

𝑀𝑖𝑛 ∑∑𝜑𝑙(𝑋, 𝑌)𝑋𝑘,𝑙
𝑙∈𝐿𝑘∈𝐾

 (9) 

𝑠. 𝑡.   𝑋𝑘,𝑙 (�́�𝑙(𝑋, 𝑌) − (𝜋𝑖′,𝑘 − 𝜋𝑖,𝑘)) = 0       , ∀ 𝑙 = (𝑖, 𝑖
′)𝜖ℒ, 𝑘𝜖𝐾 (10) 

∑ 𝑋𝑘,𝑙 = 𝑑𝑘       , ∀ 𝑘 ∈ 𝐾  

𝑙∈𝑂(𝒪𝑘)

 
(11) 

∑ 𝑋𝑘,𝑙   −

𝑙∈𝐼(𝑖)

∑ 𝑋𝑘,𝑙′ = 0     , ∀ 𝑖𝜖𝒩 \ {𝒪𝑘 , 𝒟𝑘}, 𝑘𝜖𝐾              

𝑙′∈𝑂(𝑖)

 
(12) 

∑∑𝑐𝑗,𝑙𝑦𝑙,𝑗 ≤ 𝑏

𝑙∈𝐿𝑗∈𝐽

 (13) 

𝑋𝑘,𝑙 ≥ 0        , ∀ 𝑘𝜖𝐾, 𝑙𝜖ℒ (14) 

𝜋𝑖𝑘 ≥ 0         , ∀ 𝑘𝜖𝐾, 𝑖𝜖𝐼 (15) 

𝑦 𝑙,𝑗𝜖{0,1}     , ∀ 𝑗𝜖𝐽, 𝑙𝜖𝐿 (16) 

 

The objective function (9) minimizes the total transportation cost, including the cost of travel time 

due to a lack of pedestrians’ safety, in the network (in the objective function, a lack of safety is 

penalized with a dollar-value equivalent; therefore, by minimizing total cost, we are also 

minimizing lack of safety). Constraint (10) enforces the optimal flow solution to be at travel cost 

equilibrium. Constraint (11) and (12) represent flow conservation for all the nodes and trips. 

Constraint (13) is the budget constraint, and constraints (14) - (16) serve to restrict the range of 
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variables. Though this problem is a non-convex mixed-integer nonlinear programming problem, 

the following proposition shows that the lower level problem is convex. 

Proposition 1: The objective function of the lower level problem, 𝜑𝑙(. ), is convex. 

Proof. See Appendix A. □ 

For any solution to the upper level problem which locates and installs S&C, we use the 

nonlinear complementary algorithm [129] to solve the traffic assignment and user equilibrium in 

the lower level. The nonlinear complementary algorithm does not require the lower level problem 

to be convex. However, since the problem is convex, any other algorithm that requires convexity 

can also be used.  

3.4. Solution Algorithm 

Solving a bi-level network design problem is difficult as the problem is NP-hard. In fact, 

as Ben-Ayed and Blair [130] showed, even a linear bi-level problem (or bi-level linear problem; 

BLP) is NP-hard. Therefore, solving the problem for large scale instances using exact solution 

methods requires extensive computational resources. To solve the proposed bi-level transportation 

network design problem in this chapter, we use an exact approach and two heuristic algorithms. 

For the exact approach we implement the model in YALMIP (version 20141030) [131] and solve 

it using the BARON solver (version v1.69) [132], a computational system that can solve mixed 

integer nonlinear programming problems. We also develop a greedy heuristic (GH) and a 

simulated annealing (SA) algorithm. These algorithms are used to solve the upper level problem 

that is where to install S&C in the network considering the limited budget. Then, a nonlinear 

complementary algorithm [129] is used to solve the lower level problem (the user equilibrium 

traffic assignment problem on the reconstructed network). We use a link-list dynamic data 

structure proposed by Toobaei et al. [133], which was reported  to outperform the Frank-Wolfe 
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algorithm [134]. The advantages of the nonlinear complementary algorithm are its speed and the 

fact that it allows for a general cost function (i.e. the travel cost is a function of all the flows in the 

network). In the following sections, the greedy heuristic and the simulated annealing algorithm are 

described in more detail. 

3.4.1. Greedy Heuristic 

The greedy heuristic (GH) is a simple heuristic algorithm that makes the locally optimal 

choice at each stage with the hope of finding a global optimum. The GH in this study starts with a 

null solution 𝑋 (no sidewalks or crosswalks installed) and iteratively finds a new solution 

suggesting where to install a new sidewalk or crosswalk from the set of all possible options (�́�) 

until the budget is exhausted. For a given solution 𝑋, the nonlinear complementary algorithm is 

used to compute its corresponding objective value, 𝑓(𝑋). The benefit-cost ratio 
𝑓(𝑋)

𝐶𝑜𝑠𝑡(𝑋)
 is computed 

to evaluate the suitability of that solution. The solution that has the largest benefit-cost ratio in that 

iteration is accepted (i.e. the corresponding sidewalk or crosswalk is installed). Additional S&C 

are installed at successive iterations in a similar fashion until the budget is exhausted.  

Greedy Heuristic 

1 Initialization:  

𝑋 ← {} 

 �́� ← {𝐴𝑙𝑙 𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑘𝑠 𝑎𝑛𝑑 𝑐𝑟𝑜𝑠𝑠𝑤𝑎𝑙𝑘𝑠} 

2 while (𝐵𝑢𝑑𝑔𝑒𝑡 𝑖𝑠 𝑒𝑛𝑜𝑢𝑔ℎ) do 

3  Find the sidewalk or crosswalk with the largest cost-benefit 

gain: 

  𝑥 ← 𝐵𝑒𝑠𝑡𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝐶𝑎𝑙𝑚𝑖𝑛𝑔(�́�) 

4  �́� ←  �́� − {𝑥} 

5  𝐵𝑢𝑑𝑔𝑒𝑡 ← 𝐵𝑢𝑑𝑔𝑒𝑡 − 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡(𝑥) 

6 end while 

Figure 3  The pseudo code for the proposed GH. 
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In this study, we assume that the cost of installing S&C at any location is the same. 

Therefore, instead of 
𝑓(𝑋)

𝐶𝑜𝑠𝑡(𝑋)
 we can use 𝑓(𝑋) in evaluating solution 𝑋. The pseudo code of the GH 

is shown in Figure 3. 

3.4.2. Simulated Annealing 

An SA algorithm repeats an iterative neighbor generation procedure and follows search 

directions that improve the objective function value. To escape from local optima, the SA 

algorithm offers the possibility to accept worse solutions with a probability that decreases as the 

algorithm moves toward completion. In each iteration, the difference between the objective value 

of the current solution 𝑓(𝑋) and the new solution 𝑓(�́�) is evaluated as ∆ = 𝑓(𝑋) − 𝑓(�́�). If ∆≥ 0 

(for a minimization problem), the new solution �́� is accepted; otherwise, it will be accepted with a 

probability of 𝑝 = exp (
∆

𝑇
), in which 𝑇 is a parameter called the temperature of the current state. 

The factors that influence acceptance probability are the degree of objective function value 

degradation ∆ and the temperature 𝑇. Smaller degradation and higher temperature induce higher 

acceptance probability. The temperature can be controlled by a process called the cooling schedule, 

which specifies how it should be progressively reduced to make the procedure more selective as 

the search progresses to neighborhoods of good solutions [135].  

The cooling schedule starts with a high temperature 𝑇𝑚𝑎𝑥 so that it allows acceptance of 

new neighbor solutions with higher probability. An attenuation factor ∝ (0 <∝< 1) is used to 

decrease the temperature in each iteration, so the acceptance probability decreases. The algorithm 

is terminated when the current temperature reaches the minimum temperature (𝑇𝑚𝑖𝑛).  

The neighborhood search used in this study consists of two steps: (1) removing an installed 

traffic calming facility and (2) installing a traffic calming facility. For a given solution, we first 
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select an auto link arbitrarily from the pool of auto links with installed traffic calming and uninstall 

its traffic calming (if more than one traffic calming is installed on that auto link, one is arbitrarily 

selected and uninstalled). Then, we update the budget (the cost of the traffic calming that was 

uninstalled is reimbursed).  

Simulated Annealing 

1 Initialization: generate a random solution 

 𝑋 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛() 
2 Solve the traffic assignment problem at equilibrium for 

each link: 

 (𝑓𝑙𝑜𝑤, 𝑐𝑜𝑠𝑡) ← 𝑁𝑜𝑛𝐿𝑖𝑛𝑒𝑎𝑟𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦(𝑋) 
3 Evaluate the objective value for the current solution: 

 𝑓(𝑋) ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑗𝑉𝑎𝑙(𝑓𝑙𝑜𝑤, 𝑐𝑜𝑠𝑡) 
4 𝑇 ← 𝑇𝑚𝑎𝑥 

5 while (𝑇 > 𝑇𝑚𝑖𝑛) do 

6  𝑖 ← 1 

7  while (𝑖 < 𝑖𝑡𝑒𝑟𝑚𝑎𝑥) do 

8   𝑋′ ← 𝐹𝑖𝑛𝑑𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑋) 
9   (𝑓𝑙𝑜𝑤, 𝑐𝑜𝑠𝑡)

← 𝑁𝑜𝑛𝐿𝑖𝑛𝑒𝑎𝑟𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦(𝑋′) 
10   𝑓(𝑋′) ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑂𝑏𝑗𝑉𝑎𝑙(𝑓𝑙𝑜𝑤, 𝑐𝑜𝑠𝑡) 
11   ∆← (𝑓(𝑋) − 𝑓(𝑋′)) 
12   if (∆< 0) then 

13    𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛𝑉𝑎𝑙𝑢𝑒 ← exp (
−∆

𝑇
) 

14    if (𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛𝑉𝑎𝑙𝑢𝑒 ≤ 𝑅𝑎𝑛𝑑𝑜𝑚(0,1)) 
then 

15     Accept the new solution: 𝑋 ← 𝑋′ 
16    end if  

17   Else 

18    Accept the new solution: 𝑋 ← 𝑋′ 
19   end if 

20   𝑖 ← 𝑖 + 1 

21  end while 

22  𝑇 ← 𝑇 ∗∝ 

23 end while 

Figure 4  The pseudo code for the proposed SA. 

Next, we arbitrarily select another auto link (from the pool of all auto links) and install a 

traffic calming (either sidewalk or crosswalk, arbitrarily chosen) on that auto link. If the selected 

auto link already has that traffic calming installed, we discard that link and select another one. 
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Figure 4 shows the pseudo code for the proposed SA, and Table 2 shows the tuned parameters 

used in the cooling schedule. 

Table 2  The SA parameters and their values. 

Parameter Value 

𝑇𝑚𝑎𝑥 42000 

𝑇𝑚𝑖𝑛 0.00001 

𝐼𝑡𝑒𝑟𝑚𝑎𝑥 20 

∝ 0.80 

3.5. Case Studies 

Three sample networks are used for experimentation: a small hypothetical network (called 

“Small network”), the Hearn network [136] and the Sioux Falls network. The characteristics of 

these networks are given in Table 3. For the Sioux Falls network, the demand for each origin-

destination pair is available. However, for the Small and Hearn networks, which are hypothetical 

transportation network instances, no such data are available. Therefore, we generate these data 

arbitrarily for experimentation. Table 4 presents the arbitrarily-generated demand data and Table 

5 shows the parameters we use in the travel cost functions that were presented in section 2.  

Table 3  Sample transportation networks. 

Network 
Num. of OD 

pairs 

Original network Reconstructed Network 

Num. of 

nodes 

Num. of 

links 

Num. of 

nodes 

Num. of 

links 

Small 4 4 5 21 65 

Hearn 4 9 18 55 192 

Sioux Falls 552 24 76 143 523 
 

Table 4  Demand for different OD pairs for the Small and Hearn Networks. 

Small Network Hearn Network 

OD Pairs 
Demand 

OD Pairs 
Demand 

from to from to 

5 7 10 10 12 20 

5 8 40 10 13 40 

6 7 20 11 12 60 

6 8 60 11 13 80 
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The parameters used as coefficients in the travel cost functions in Table 5 are commonly 

used values. It is assumed that a public transit carries, on average, 20 passengers; 5 times more 

than that of an auto [129]. This makes 𝜔 =
4

20
= 0.2, and 𝜃 =

20

4
= 5 as shown in Table 5. The 

average cost of a pedestrian crash (𝜎 = $78300) is computed using data from Gårder [128]. The 

Highway Economic Recruitments System (HERS) [137] considers $19.86 as the value of time (per 

hour), which is equal to $ 0.33 per minute. Therefore we assume that 𝜗 = 0.33 (the value of time). 

The coefficients of the intercept and the slope of the linear regression model (𝑃𝑙𝑎(𝑋𝑙𝑎)) that is used 

in the pedestrian crash probability function in presented equations (4) and (6) are 1.7−7 and 

3.59−10 respectively. Therefore, 𝑃𝑙𝑎(𝑋𝑙𝑎) = 1.7
−7𝑋𝑙𝑠 + 3.59

−10 (for more detail we refer the 

reader to Parsafard et al. [138])). 

Table 5  Parameters’ values in travel cost functions used in this study. 

Parameter Value Description 

α1 0.15 Coefficient of the BPR-like function in (1) 

α2 0.15 Coefficient of the BPR-like function in (2) 

α3 2 Coefficient of the BPR-like function in (3) 

α4 2 Coefficient of the BPR like function in (4) and (5) 

β1 4 Power in equation (1) 

β2, β3 2 Power in equation (1) 

β4 4 Power in equation (2) 

β5 2 Power in equation (3) 

β6 2 Power in equation (4) and (5) 

ω 0.2 Public transit to auto equivalent factor in equation (1) 

θ 5 Automobile to public transit equivalent factor in equation (2) 

τ 3, 5 
The cost for transferring from the walking mode to auto and 

public transit modes respectively and vice versa (6) 

σ 78300 Average cost of a pedestrian crash in dollars (4), (5) 

ϑ 0.33 Value of time in (1)-(6) 
 

We used the BARON solver to solve the mathematical model. After running for 24 hours, 

BARON did not provide any feasible solution, even for the Small network. On the other hand, the 

GH and the SA produced competitive solutions in a reasonable time (as shown in Table 6). Table 
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6 shows the computational results and the solutions produced by the SA and the GH algorithms 

after installing S&C in the transportation networks.  

Table 6  A comparison of the computational performance of the SA and the GH 

(% reduction in cost =
f(x0)−f(x∗)

f(x0)
, x0: The null solution i.e. when no S&C are installed, 

x∗: Solution found by our algorithms). 

Networks 
% Reduction in cost Time (sec) 

SA GH SA GH 

Small % 12 % 12 20.7 0.92 

Hearn % 5 % 5 31 2.6 

Sioux Falls % 59 % 58 199 504 
 

The average demand per OD pair for the Small, Hearn and the Sioux Falls networks is 33, 

50, and 653, respectively, and the average demand per link is 2, 1 and 689, respectively. We 

speculate that the higher demand per link and per OD pair in the Sioux Falls network might be the 

reason for the higher reduction in cost for this network. We will investigate the impact of demand 

for these networks later in section 4.3. Regarding the computation time of the two algorithms for 

the hypothetical Small and Hearn networks, as shown in Table 6, the GH is faster than the SA; 

however, for the Sioux Falls network, the SA is faster than the GH. To investigate the cause of 

these differences, we counted the number of times that the nonlinear complementary algorithm is 

called by these two algorithms (for solving the user equilibrium in the lower level problem). We 

learned that for the Small and Hearn networks, the nonlinear complementary algorithm is called 

more often in the SA than the GH. For the Sioux Falls network, however, as the budget increases, 

the nonlinear complementary algorithm is called more often in the GH than the SA. Therefore, the 

GH becomes computationally more expensive and less efficient than the SA for the larger Sioux 

Falls network (Figure 5). In summary, for the larger transportation network (the Sioux Falls), the 

SA outperforms the GH both in solution quality and computation time. 
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As shown in Table 6, installing S&C reduces the total transportation cost. To test the 

robustness of the results, sensitivity analysis is presented for different parameters such as budget, 

demand and the safety weight factor. 

In the previous experiment (Table 6), we assumed that the budget for installing S&C was 

unlimited. To test the performance of the GH and the SA with a limited budget, we ran another set 

of experiments imposing a limit on the budget for installing S&C. Our results show that, as the 

budget increases and more S&C are installed, the overall transportation cost decreases in all three 

networks; however, for the Sioux Falls network, this change is more significant. For all three 

networks, as budget increases, the degree by which the overall cost decreases diminishes, and there 

exists a point where adding more S&C no longer affects the overall cost (see Figure 6). 

 
 

 

Figure 5  Computation time, the GH vs. the SA for the (a) Small network, (b) Hearn network and 

(c) Sioux Falls network 
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Figure 6  Percent change in the overall cost for different budget values. (a) Small network, (b) 

Hearn network and (c) Sioux Falls network 

For the hypothetical Small and the Hearn networks, there is no significant difference 

between the quality of the solutions produced by the GH and the SA as shown in Figure 6(a) and 

(b). However, for the Sioux Falls network, the SA produces better solutions and outperforms the 

GH with low budget (Figure 6(c)). As the budget increases, the difference between the two 

algorithms diminishes, however, the SA is still faster.  

Although the optimal installation of S&C decreases the overall cost in transportation 

networks, it has different impacts on the three modes of transportation. For auto and public transit 

modes, installing S&C means building separate walkways for pedestrians, and it can decrease the 

travel time of auto and public transit modes. However, for pedestrians, installing separate 

walkways can decrease crashes and therefore increase safety. For example, in the Sioux Falls 

network, as shown in Figure 7, installing S&C causes a larger reduction in walking travel costs 
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than public transit and auto costs. This can be explained by the effect that S&C have on 

pedestrians’ safety (equation (4)). 

 

Figure 7  Changes in the overall transportation cost over different transportation modes for the 

Sioux Falls network. (a) Relative changes (percent of changes) in the overall cost, (b) Absolute 

changes in the overall cost 

To see the impact of installing S&C on the traffic flow in transportation networks 

considering changes in demand and the safety weight factor, a series of experiments are presented 

for the Small network. Three scenarios are considered: (1) before and after installing S&C (with a 

safety weight factor of 𝛿 = 0.5, and a demand factor of 100%), (2) for low and high traffic 

congestion after installing S&C (a low and high demand factor), and (3) for low and high values 

of the safety weight factor (after installing S&C).  

Figure 8(1a) and Figure 8(1b) show the flows in the network before and after installing 

S&C, respectively. In general, we observed that after installing S&C, fewer autos and more 

walking are used. More specifically, the auto link (1, 3) is no longer used after installing S&C, and 

the unused public transit link (1001, 3001) is used after installing S&C. Some walking links are 

also used more often after installing S&C, such as (2, 324), (324, 431), and (431, 413). The public 

transit link (3001, 4001) is used less often after installing S&C.  

Figure 8(2a) and Figure 8(2b) show the differences under low and high traffic congestion 

(low and high demand factor), respectively. The model suggests that when the transportation 
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network becomes more crowded, fewer autos and more walking and public transit are used. This 

result is as expected: when there is high auto traffic congestion, people are more likely to walk 

than to use their own vehicles because auto traffic congestion causes slow travel speeds. 

Figure 8(3a) and Figure 8(3b) show the flow differences for low safety weight (𝛿 = 0.1) 

and high safety weight (𝛿 = 0.9), respectively. As shown in Figure 8(3a) and Figure 8(3b), the 

auto links (1, 3) and (2, 1) and the walking links (124, 413), (143, 124), (132, 124), (324, 431), 

and (431, 413) are used more often for a higher value of the safety weight factor. On the other 

hand, public transit links (1001, 3001) and (3001, 4001) are used less often. We speculate that 

increasing the safety weight factor (and therefore putting more emphasis on pedestrians’ safety) 

leads to more use of walking and auto links and less use of the public transit mode. The presence 

of safe walkways that are separate from roads can encourage more people to walk. As a result, the 

flow of pedestrians would cause less disturbance to the flow of auto, which can decrease the travel 

time of auto, increase the use of auto and decrease that of public transit. 

3.6. Results and Discussion 

The proposed model in this chapter provides insights into how implementing traffic 

calming facilities such as sidewalks and crosswalks (S&C) affects pedestrians’ safety and the 

transportation cost in a multimodal transportation network. Pedestrians’ safety is considered as an 

important factor in designing a transportation network. A mixed-integer nonlinear programming 

model is developed for optimally locating S&C in a transportation network. The model is 

implemented in YALMIP (version 20141030) and solved using the BARON solver (version 

v1.69), one of the most advanced solvers on the market. However, because of the computational 

difficulty, greedy heuristic and a simulated annealing algorithms are developed for finding a near 

optimal solution. Experiments with three sample networks show that these algorithms outperform 
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the BARON solver. Specifically, the SA algorithm is more efficient in producing better quality 

solutions for the Sioux Falls network.  

 

Figure 8  The flow in the Small transportation network under different scenarios. (1.a.) before 

and (1.b.) after implementing traffic calming facilities, (2.a.) low and (2.b.) high congestion, and 

(3.a.) low and (3.b.) high safety weight factors. 

Although these two approximate algorithms do not necessarily find the optimal solutions, 

the results are useful in better understanding the impact of traffic calming facilities (in this study, 

S&C) in multimodal transportation networks. The results show that installing S&C according to 

the solution obtained by the SA algorithm reduces the total transportation cost by 12%, 5% and 
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59% for the Small, Hearn and Sioux Falls networks, respectively. The optimal solutions are 

expected to yield an even greater reduction in transportation cost. The results suggest that installing 

S&C not only improves pedestrians’ safety, but also reduces the total transportation cost (including 

the travel cost of auto and public transit). However, S&C provide a smaller reduction of the total 

transportation cost in a network with low traffic.  

This study can be viewed as a foundation for further research on pedestrian transportation 

network design. Future research can be conducted in several directions. First, the only traffic 

calming facilities considered in this study are sidewalks and crosswalks. However, there are many 

more to consider such as speed bumps, stop lights, stop signs and police patrols. One can also 

study the effect of crosswalks on pedestrians’ safety. We assumed that the cost of installing S&C 

at any location in a transportation network is the same. This assumption can be relaxed by 

acquiring relevant data. Although safety is an important factor in promoting walking, connectivity 

is also important in designing a walkable transportation system [139]. Restrictions can be added 

to ensure connectivity when designing walkways. Further, the problem we studied in this study is 

deterministic. Therefore, considering uncertainty (in demand, capacity, travel time, etc.) is another 

way to extend this research. Regarding the solution methodology, since the heuristic methods 

produce approximate solutions, a useful next step is to develop exact methods for finding the 

optimal solution. As the problem is bi-level in nature, implementing a decomposition-based 

method is recommended. 
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CHAPTER 4:  TRAJECTORY ANALYSIS OF MOVING OBJECTS 
 

4.1. Introduction 

The trajectory analysis of moving objects, can reveal detailed information about human 

travel characteristics and provide opportunities to find the users’ mobility patterns and presence 

probability. In a microscopic scale, we can investigate the dynamics of vehicle kinematics and 

quantify the traffic oscillation based on the space-time trajectories of a set of conductive vehicles 

following one another along a highway link or segment [31]. In a macroscopic scale, check-in 

records on location-based social networks (LBSN) contain rich social and geographical 

information and provide a unique opportunity for researchers to study users’ mobility in the 

network. However, caution must be exercised when studying mobility pattern of moving objects 

according to their spatiotemporal data. The representativity and the granularity of such data could 

be relatively limited.  

To take the Twitter data as an example, Twitter users might be a special group (e.g., youth) 

rather than a sound representation of the general population. Despite of a non-representative 

sample of the whole population, the tremendous available information in such data can be 

complementary to traditional travel surveys. Furthermore, tweet data sample location and semantic 

information are available for a user only when he/she tweets, and his/her remaining activities are 

subject to inaccurate estimation or interpolation. This could be an issue for the data collected in 

other geo-tagged mobility data (e.g. cellphone data) as well. We address this issue by proposing a 

new method for trajectory estimation and a set of measures to quantify the accuracy of estimated 
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trajectories in a robust manner. The first measure is based on absolute inaccuracies between the 

estimated and ground truth trajectories and the second measure on relative inaccuracies with 

respect to an individual’s overall activity area. Then, we propose cutoff points for screening and 

selecting the suitable data for mobility analysis. To enable their efficient applications to large-scale 

data sets (or Big Data), we develop an efficient interpolation method with a lookup table to 

efficiently solve these measures for geo-tagged data involving a large number of individuals. 

Multiple sets of real-world geo-tagged data including cell phone records and geo-tagged twitter 

data are considered as case studies. The results reveal managerial insights on accuracy of trajectory 

estimations, how it relates to spatiotemporal distributions of geo-tagged data, and overall data 

qualities for mobility pattern analysis.  

4.2. Methodology - Human Trajectory Analysis with Time Geography 

This section describes the proposed work in this dissertation on estimating human travel 

trajectories and their error bounds  in a regional scale [140]. We basically extend the techniques in 

the moving objects literature to develop rigorous definitions of people’s activity range, called 

activity bandwidth. To explain some details, let consider a time period 𝐓:= [0, 𝑇] (e.g., a typical 

day) and a geographical space 𝐂 (e.g., a city). We call a traveler’s trajectory in space 𝐂 over time 

period 𝐓 a space-time path. A space-time path typically comprises a number of static stays (or 

activities) at discrete locations (e.g., home, workplaces, shopping centers, restaurants) according 

to certain schedules and trips connecting these activities, as illustrated in Figure 9(a). In that figure, 

the bottom plane denotes space 𝐂, and the vertical axis marks time period 𝐓. We define a space-

time point as a pair of location and time measurements, denoted by (𝑐, 𝑡), which mark the traveler’s 

presence at time 𝑡 ∈ 𝐓 and location 𝑐 ∈ 𝐂. A space-time path can be specified by the number of 

critical space-time points (𝑐1̅, 𝑡1̅), (𝑐2̅, 𝑡2̅), …, (𝑐�̅�, 𝑡�̅�) that mark either the beginning or the ending 
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of an activity, where 𝑁 is the total number of activities. With these critical points, the coordinates 

of this path at any time point 𝑡 ∈ 𝐓 can be denoted as an interpolation of the neighboring critical 

points, as follows: 

�̅�(𝑡): =

{
 

 
1

𝑡�̅�+1 − 𝑡�̅�
((𝑡�̅�+1 − 𝑡)𝑐�̅� + (𝑡 − 𝑡�̅�)𝑐�̅�+1), 𝑖𝑓 𝑡�̅� ≤ 𝑡 ≤ 𝑡�̅�+1, 1 ≤ 𝑖 ≤ 𝑁;

𝑐1̅,                          𝑖𝑓 0 < 𝑡 < 𝑡1̅;

𝑐�̅� ,                          𝑖𝑓 𝑡�̅� < 𝑡 < 𝑇;

 . (17) 

 

For ease of notation, we denote this space-time path by �̅� ≔ {�̅�(𝑡), ∀𝑡 ∈ 𝐓}. Note that 

when a traveler stays at the same location to perform a certain activity over a period of time, the 

corresponding path segment would be vertical, and its projection to the space plane is a single 

location. Otherwise, when the individual travels between two activities, the path segment is 

slanted, and its slope marks the individual’s travel speed. In this study, we assume that the 

maximum speed a traveler could reach is �̅�. This implies that the inverse of the slope of each path 

segment should be no greater than �̅�.  

Although it is difficult to track a complete space-time path, discrete sample points along 

the path may be available in massive social media data such as geo-tagged tweets (Figure 9(b)). 

With these sample points, we can estimate the individual’s trajectory by simply connecting the 

points with linear segments, as illustrated by the solid curve in Figure 9(b). However, the estimated 

path is likely different from the ground truth path, particularly when the sample points are sparse. 

Fortunately, we can use the concept of time geography to quantify the inaccuracy range between 

the estimated trajectory and any possible ground truth trajectory. We first consider the case when 

𝐂 is a one-dimensional space. 

A space-time cone, as illustrated by the shaded area in Figure 10(a), represents the 

movement boundary that an individual with a speed limit of �̅� can possibly reach if only one space-
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time sample point (𝑐𝑖, 𝑡𝑖) on his/her space-time path �̅� is known. Because of the speed limit, at a 

time 𝑡 ∈ [𝑡𝑖 , 𝑇], this individual has to be at a location, 𝑐𝑖 − �̅�(𝑡 − 𝑡𝑖), if traveling backward at the 

maximum speed and 𝑐𝑖 + �̅�(𝑡 − 𝑡𝑖) if traveling forward at the maximum speed. Therefore, his/her 

possible presence at time 𝑡 has to be no less than 𝑐𝑖 − �̅�(𝑡 − 𝑡𝑖) and no greater than 𝑐𝑖 + �̅�(𝑡 − 𝑡𝑖). 

With this, we can formulate the upper cone (i.e., the shaded area above point (𝑐𝑖, 𝑡𝑖)) as follows: 

𝑶(𝑐𝑖,𝑡𝑖)
+ ≔ {(𝑐, 𝑡)|  |𝑐 − 𝑐𝑖| ≤ �̅�(𝑡 − 𝑡𝑖), 𝑡 ∈ [𝑡𝑖, 𝑇]} . (18) 
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Figure 9  (a) Space-time path and (b) accessible control points on space-time path. 
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Figure 10  (a) Space-time cone and (b) space-time prism in one-dimensional space 
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Similarly, at time 𝑡 ∈ [0, 𝑡𝑖], this individual has to be between locations 𝑐𝑖 − �̅�(𝑡𝑖 − 𝑡) and 

𝑐 ≔ 𝑐𝑖 + �̅�(𝑡𝑖 − 𝑡). With this information, we can formulate the lower cone (i.e., the shaded area 

below point (𝑐𝑖, 𝑡𝑖)) as follows: 

𝑶(𝑐𝑖,𝑡𝑖)
− ≔ {(𝑐, 𝑡)|  |𝑐 − 𝑐𝑖| ≤ �̅�(𝑡𝑖 − 𝑡), 𝑡 ∈ [0, 𝑡𝑖]} . (19) 

 

Then the time-space cone with respect to (𝑐𝑖, 𝑡𝑖) is simply the union of 𝐎(𝑐𝑖,𝑡𝑖)
+  and 𝐎(𝑐𝑖,𝑡𝑖)

− : 

𝑶(𝑐𝑖,𝑡𝑖) ≔ 𝑶(𝑐𝑖,𝑡𝑖)
+ ∪ 𝑶(𝑐𝑖,𝑡𝑖)

− = {(𝑐, 𝑡)|  |𝑐 − 𝑐𝑖| ≤ �̅�|𝑡𝑖 − 𝑡|      , 𝑡 ∈ [0, 𝑇]} . (20) 

 

Now suppose that we observe two sample points (𝑐𝑖, 𝑡𝑖) and (𝑐𝑗, 𝑡𝑗) of �̅�. The space-time 

range this individual can potentially reach during time period [𝑡𝑖 , 𝑡𝑗] is shown as the shaded area 

in Figure 10(b). We call this area a space-time prism, which is essentially the intersection between 

𝐎(𝑐𝑖,𝑡𝑖)
+  and 𝐎(𝑐𝑗,𝑡𝑗)

− , i.e., 

𝑹(𝑐𝑖,𝑡𝑖)(𝑐𝑗,𝑡𝑗) ≔ {(𝑐, 𝑡)|  |𝑐 − 𝑐𝑖| ≤ �̅�(𝑡 − 𝑡𝑖), |𝑐 − 𝑐𝑗| ≤ �̅�(𝑡𝑗 − 𝑡),       𝑡 ∈ [𝑡𝑖, 𝑡𝑗]} . (21) 

 

These definitions for a one-dimensional space can easily be extended to a two-dimensional space. 

Figure 11(a) illustrates the space-time cones, and Figure 11(b) shows the space-time prism in a 

two-dimensional space.  
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Figure 11  (a) Space-time cones and (b) space-time prism in two-dimensional space. 
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We essentially need only to revise the distance measure to the Euclidean metric in a two-

dimensional space. Then, the cone and prism definitions in equations (18)-(21) can be adapted as 

follows: 

𝑶(𝑐𝑖,𝑡𝑖)
+ ≔ {(𝑐, 𝑡)|  ‖𝑐 − 𝑐𝑖‖ ≤ �̅�(𝑡 − 𝑡𝑖), 𝑡 ∈ [𝑡𝑖 , 𝑇]} , (22) 

𝑶(𝑐𝑖,𝑡𝑖)
− ≔ {(𝑐, 𝑡)|  ‖𝑐 − 𝑐𝑖‖ ≤ �̅�(𝑡𝑖 − 𝑡), 𝑡 ∈ [0, 𝑡𝑖]} , (23) 

𝑶(𝑐𝑖,𝑡𝑖) ≔ {(𝑐, 𝑡)|  ‖𝑐 − 𝑐𝑖‖ ≤ �̅�|𝑡𝑖 − 𝑡|, 𝑡 ∈ [0, 𝑇]} , (24) 

𝑹(𝑐𝑖,𝑡𝑖)(𝑐𝑗,𝑡𝑗) ≔ {(𝑐, 𝑡)|  ‖𝑐 − 𝑐𝑖‖ ≤ �̅�(𝑡 − 𝑡𝑖), ‖𝑐 − 𝑐𝑗‖ ≤ �̅�(𝑡𝑗 − 𝑡), 𝑡 ∈ [𝑡𝑖, 𝑡𝑗]} . (25) 

 

On the basis of these time geography concepts, some new measures are proposed for characterizing 

the space-time range of a traveler’s trajectory with geo-tagged social media data.  

4.2.1. Activity Bandwidth 

Given 𝑀 consecutive sample points and 𝐒 ≔ {(𝑐𝑖, 𝑡𝑖)}𝑖=1,2,…,𝑀 along an unknown 

underlying space-time path �̅� of an individual, we can estimate his/her underlying path with a 

proper interpolation method (e.g., linear interpolation). As long as the interpolation operation 

complies with speed limit �̅�, an estimated path will always be confined within a prism chain, as 

illustrated in Figure 12 (i.e., the series of space-time cones and prisms determined by 𝐒:, as follows: 

𝑯(𝑺) ≔ [𝑶(𝑐1,𝑡1)
− , 𝑹(𝑐1,𝑡1)(𝑐2,𝑡2), 𝑹(𝑐2,𝑡2)(𝑐3,𝑡3), … , 𝑹(𝑐𝑀−1,𝑡𝑀−1)(𝑐𝑀,𝑡𝑀), 𝑶(𝑐𝑀,𝑡𝑀)

+ ] . (26) 

 

Note that the size of 𝐇(𝐒) bounds the space-time region for any possible ground truth �̅�. As 

illustrated in Figure 12, we define 𝐏𝐒 as the centerline between sample points 𝐒 in prism chain 

𝐇(𝐒),  or, equivalently, the estimated trajectory obtained with 𝐒 using linear interpolation: 

𝑷𝑺(𝑡) ≔

{
 

 
1

𝑡𝑖+1 − 𝑡𝑖
((𝑡𝑖+1 − 𝑡)𝑐𝑖 + (𝑡 − 𝑡𝑖)𝑐𝑖+1), 𝑖𝑓 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1, 1 ≤ 𝑖 < 𝑀; 

𝑐1,                          𝑖𝑓 0 < 𝑡 < 𝑡1;
𝑐𝑀,                         𝑖𝑓 𝑡𝑀 < 𝑡 < 𝑇;

. (27) 
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Then, we define an activity bandwidth with respect to 𝐒, denoted by 𝐵(𝐒), which is the average 

distance between a generic point 𝑐 in  𝐇(𝐒) and the corresponding 𝐏𝐒(𝑡) divided by the chain 

volume, as indicated in Figure 12:  

𝐵(𝑺) =  
∫ ‖𝑐 − 𝑷𝑺(𝑡)‖(𝑐,𝑡)∈𝑯(𝑺)

𝑑𝑐𝑑𝑡

∫ 𝑑𝑐𝑑𝑡
(𝑐,𝑡)∈𝑯(𝑺)

 , (28) 

 

where operator ‖∙‖ in the numerator is the Euclidean distance between two points on a two-

dimensional plane, and the denominator is the volume of prism chain 𝐇(𝐒). Note that a large 𝐵(𝐒) 

indicates that the inaccuracy between 𝐏𝐒 and �̅� is likely high, whereas a small 𝐵(𝐒) value implies 

that 𝐏𝐒 is likely close to the �̅�.  
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Figure 12  Space-time prism chain. 

Despite the compact formulation, the integral equation (28) cannot be resolved into an 

analytical form and has to be solved numerically. To discuss the problem, we first decompose the 

prism chain to its cones and prisms. Basically, for 𝑀 consecutive sample points, there are 𝑀 + 1 

space-time cones and prisms in the prism chain. After decomposition, both numerator and 

denominator in equation (28) are decomposed to 𝑀 + 1 components, where each component 

corresponds to a single cone or prism. If 𝑈𝑚
c  and 𝐷𝑚

c  (𝑚 = 1,𝑀) specify the cone components in 
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the numerator and denominator, respectively, and 𝑈𝑚
p

 and 𝐷𝑚
p

 (𝑚 = 2, 3,… ,𝑀) correspond to the 

prism components, then equation (28) could be rewritten as follows: 

𝐵(𝑺) =  
𝑈1
𝑐 + ∑ 𝑈𝑚

𝑝𝑀
𝑚=2 + 𝑈𝑀

𝑐

𝐷1
𝑐 + ∑ 𝐷𝑚

𝑝𝑀
𝑚=2 +𝐷𝑀

𝑐
 , (29) 

 

where 

𝐷1
𝑐 = ∫ 𝑑𝑐𝑑𝑡

(𝑐,𝑡)∈𝑶(𝑐1,𝑡1)
−

 , (30) 

𝐷𝑚
𝑝 = ∫ 𝑑𝑐𝑑𝑡

(𝑐,𝑡)∈𝑹(𝑐𝑚−1,𝑡𝑚−1)(𝑐𝑚,𝑡𝑚)

 , (31) 

𝐷𝑀
𝑐 = ∫ 𝑑𝑐𝑑𝑡

(𝑐,𝑡)∈𝑶
(𝑐𝑀,𝑡𝑀)
+

  , (32) 

and 

𝑈1
𝑐 = ∫ ‖𝑐 − 𝑷𝑺(𝑡)‖

(𝑐,𝑡)∈𝑶(𝑐1,𝑡1)
−

𝑑𝑐𝑑𝑡 , (33) 

𝑈𝑚
𝑝 = ∫ ‖𝑐 − 𝑷𝑺(𝑡)‖

(𝑐,𝑡)∈𝑹(𝑐𝑚−1,𝑡𝑚−1)(𝑐𝑚,𝑡𝑚)

𝑑𝑐𝑑𝑡 , (34) 

𝑈𝑀
𝑐 = ∫ ‖𝑐 − 𝑷𝑺(𝑡)‖

(𝑐,𝑡)∈𝑶
(𝑐𝑀,𝑡𝑀)
+

𝑑𝑐𝑑𝑡 . (35) 

 

In equation (29), 𝐷1
c and 𝑈1

c are associated with the lower cone 𝐎(𝑐1,𝑡1)
− , 𝐷𝑀

c  and 𝑈𝑀
c  are 

associated with the upper cone 𝐎(𝑐𝑀,𝑡𝑀)
+ , and 𝐷𝑚

p
 and  𝑈𝑚

p
, ∀ 𝑚 = 2,… ,𝑀 are associated with the 

prisms between. Note that the terms in the denominator, 𝐷1
c, 𝐷𝑀

c , and 𝐷𝑚
p

, are essentially the 

volumes of the corresponding cones and prisms, and the terms in numerator, 𝑈1
c, 𝑈𝑀

c  and 𝑈𝑚
p

, 

correspond to their angular momentums. Actually, these terms can be calculated as certain 

functions of the relative difference between corresponding sample points, as described in the 

following propositions (see Appendix B for the proofs).  
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Proposition 2: Given (𝑐1, 𝑡1) and (𝑐𝑀, 𝑡𝑀), we have 𝐷1
c = 𝐷c(𝑡1) and 𝐷𝑀

c = 𝐷c(𝑇 − 𝑡𝑀), where 

function 𝐷c(𝑡): =
1

3
𝜋�̅�2𝑡3, ∀𝑡 ∈ [0,∞) (note that �̅� and 𝑇 are given parameters). 

Proposition 3: Given (𝑐1, 𝑡1) and (𝑐𝑀, 𝑡𝑀), we have 𝑈1
c = 𝑈c(𝑡1) and 𝑈𝑀

c = 𝑈c(𝑇 − 𝑡𝑀), where 

function 

𝑈c(𝑡): = ∫ ∫ ∫ √(𝜌𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜃)2 + (𝜌𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃)2𝜌2𝑠𝑖𝑛𝜑𝑑𝜌𝑑𝜑𝑑𝜃

𝑡
𝑐𝑜𝑠𝜑

0

𝑡𝑎𝑛−1(�̅�)

0

2𝜋

0

, ∀𝑡 ∈ [0,∞).   

Proposition 4: Given two consecutive control points (𝑐𝑚−1, 𝑡𝑚−1)  and (𝑐𝑚, 𝑡𝑚), 𝐷𝑚
p
=

𝐷p(‖𝑐𝑚 − 𝑐𝑚−1‖, |𝑡𝑚 − 𝑡𝑚−1|), ∀2 ≤ 𝑚 ≤ 𝑀, where function 

𝐷p(𝑐, 𝑡) ∶=  2∫ ∫ ∫ 𝜌2𝑠𝑖𝑛𝜑𝑑𝜌𝑑𝜑𝑑𝜃

�̅�2𝑡2−𝑐2

(2�̅�2𝑡)𝑐𝑜𝑠𝜃−(2𝑐)𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑

0

𝑡𝑎𝑛−1(�̅�)

0

2𝜋

0

,      ∀𝑐, 𝑡 ∈ [0,∞) 

Proposition 5: Given (𝑐𝑚−1, 𝑡𝑚−1)  and (𝑐𝑚, 𝑡𝑚), 𝑈𝑚
p
= 𝑈p(||𝑐𝑚 − 𝑐𝑚−1||, |𝑡𝑚 − 𝑡𝑚−1|), ∀2 ≤

𝑚 ≤ 𝑀, where  

𝑈p(𝑐, 𝑡) ≔ 2∫ ∫ ∫ 𝑄𝜌2𝑠𝑖𝑛𝜑𝑑𝜌𝑑𝜑𝑑𝜃,   ∀𝑐, 𝑡 ∈ [0,∞)

�̅�2𝑡2−𝑐2

(2�̅�2𝑡)𝑐𝑜𝑠𝜃−(2𝑐)𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑

0

𝑡𝑎𝑛−1(�̅�)

0

2𝜋

0

 , 

and : = √(𝜌𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜃)2 + (𝜌𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃 − (
𝑐𝜌𝑐𝑜𝑠𝜑

𝑡
))
2

. 

We see that only function 𝐷c(𝑡) can be solved analytically in a closed form equation 

defined in Proposition 2, and all other functions defined in Propositions 3-5 do not have closed 

form formulations and thus have to be solved numerically. Because the numerical solution to a 

complex integral takes much longer than an analytical computation, calculating these terms for big 

datasets (e.g., tweet data from millions of travelers) would consume excessive computation 

resources.  

By observing that these functions have at most two variables, we propose a lookup table–

based interpolation method that circumvents the need for a time-consuming numerical solution 
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approach to alleviate the computational load. Basically, for each variable in each function, we 

identify a finite interval that can cover most practical values of the variable, and then we position 

a number of ticks along that interval. If we have a set of sample values for the variable, we can 

place denser ticks in areas in which more sample values more likely fall, instead of evenly 

distributing them. For a variable with sample values, we first divide their span into 𝐾 consecutive 

intervals with equal length 𝑙, and 𝑓𝑘 denote the number of samples in the 𝑘th interval, ∀𝑘 =

1,⋯ ,𝐾, where 𝐾 is a proper number picked based on the sample distribution. Then we evenly 

place a number of ticks in each interval 𝑘, and this number is calculated as  

𝜔𝑘 = 
√(𝐴𝑘𝑓𝑘)

∑ √(𝐴𝑗𝑓𝑗)𝑗∈𝐾

𝛺   ,      ∀𝑘 ∈ 𝐾  , (36) 

 

where Ω is the total number of ticks selected based on the computational resources. The number 

𝐾 should be selected such that each interval has a sufficient number of samples and there are 

enough intervals to allow the ticks to be heterogeneously distributed across the entire feasible 

range of the variable. Once we obtain the ticks for all variables, the combinations of these ticks 

across the variables form a mesh that covers the feasible region of this function.  

We first pre-calculate the function value at each grid point on the mesh and store the 

function value in a lookup table indexed by the corresponding variable values. This pre-calculation 

need be executed only once, and then every time when receiving a set of variable values, we can 

quickly approximate the corresponding function value by linearly interpolating the lookup table 

values at the nearest grid points. Table 7 is a schematic view of a lookup table for a general function 

𝑧 = 𝑓(𝑐, 𝑡), where the number of ticks for variable 𝑐 is Ω and for 𝑡 is Ψ. 

The lookup table method provides significant savings in computational time compared with 

the numerical approach, particularly when the data set is big. Although the lookup table method is 
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essentially an interpolation approach and may have approximation inaccuracies, our case study 

shows that those inaccuracies are well controlled.  

4.2.2. Normalized Activity Bandwidth 

Activity bandwidth 𝐵(𝐒) indicates the inaccuracy bound between an estimated path (e.g., 

centerline 𝐏𝐒) and ground truth path �̅�. A relatively small activity bandwidth means that 𝐏𝐒 is likely 

close to �̅�. However, when control points 𝐒 are spatially close to each other, even if the absolute 

activity bandwidth value is small, it is still difficult to discern an individual’s activities. 

Table 7  A schematic form of lookup table for estimation of 𝑧 = 𝑓(𝑐, 𝑡). 

𝑐 
𝑡 

𝑡1 𝑡2 … 𝑡Ψ 

𝑐1 𝑓(𝑐1, 𝑡1) 𝑓(𝑐1, 𝑡2) … 𝑓(𝑐1, 𝑡Ψ) 
𝑐2 𝑓(𝑐2, 𝑡1) 𝑓(𝑐2, 𝑡2) … 𝑓(𝑐2, 𝑡Ψ) 
. . . . . 

. . . . . 

. . . . . 

𝑐Ω 𝑓(𝑐Ω, 𝑡1) 𝑓(𝑐Ω, 𝑡2) … 𝑓(𝑐Ω, 𝑡Ψ) 
 

As illustrated in Figure 13, although the activity bandwidth of the chain on the left is 

smaller than that on the right (which indicates smaller estimation inaccuracies), the control points 

are clustered around the same location, so it is difficult to use them to estimate the various activities 

of this individual over time. For example, if this location is mixed land use, the individual could 

conduct a series of different activities that may not be reflected by the clustered control points. On 

the other hand, although the activity bandwidth of the chain on the right is larger (which indicates 

larger estimation inaccuracies), the control points are far apart. The associated activity types may 

therefore more easily be inferred based on the different characteristics of these locations; thus, this 

chain may better help us understand this individual’s activity pattern.  
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Time

Space

T

 

Figure 13  Space-time prism chain with small and large radiuses of gyration. 

To solve this challenge, we normalize the activity bandwidth by the radius of gyration 

[141], which measures the spread of an individual’s locations around his/her center of mass (the 

standard deviation of distances between these locations and the individual’s center of mass). For 

an individual with 𝑀 consecutive control points (as defined in Figure 13), the center of mass of 

the control points is formulated as 𝑐̅ ≔ ∑ 𝑐𝑚
𝑀
𝑚=1 /𝑀, and the radius of gyration is defined as 

follows: 

𝑔:= √
∑ (𝑐𝑚 − 𝑐̅)2
𝑀
𝑚=1

𝑀
 . (37) 

 

In fact, 𝑔 measures the dispersion of an individual’s sampled locations and indicates how 

far he/she moves on average. A small 𝑔 value means that, overall, the individual travels locally, 

while a large 𝑔 implies long-distance travels. With this definition, we can adapt 𝐵(𝐒) to normalized 

activity bandwidth, defined as follows: 

𝑁𝐵(𝑺):=
𝐵(𝑺)

𝑔
 , (38) 

 

With this measure, suitable data for studying individual activity patterns are the ones with small 

normalized activity bandwidths (e.g., with a small activity bandwidth and a large gyration).  
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4.3. Case Studies 

4.3.1. Twitter Data 

This section presents a case study on a geo-tagged tweet data set gathered in New York 

City from 10:47 p.m. on June 28 through 4:27 a.m. on July 18, 2013. Note that tweet data have a 

number of intrinsic limitations for mobility studies, such as biased representativeness, sparse 

sampling rates, and potential location errors. Despite so, tweet data are available for free, and for 

a study that focuses on the methodology, tweet data are reasonable for illustrating the applications 

of the proposed methods. 

Each tweet consists of a number of fields, including the tweeter’s name, the tweet ID, the 

date and time of the tweet, the geographic coordinates of the tweet, the language, the tweeter’s 

number of followers, and the text of the tweet. The format of the tweet data is illustrated below 

(where we modified certain fields to anonymize this sample tweet). 

“Azama_2_”, 350329451143384562,  Thu Jun 27 19:07:04 +0000 2013, 40.6823018, -

73.3945501, en, 128, "Hello!". 

This study uses only the tweet ID, the date and time, and the geographic coordinates. The 

tweet ID is used to connect tweets from the same individual. The date and time and the geographic 

coordinates in all collected tweets from the same individual (sorted by time in ascending order) 

specify the sample space-time points {(𝑐𝑚, 𝑡𝑚)} for the individual. According to our data set, the 

basic problem settings and assumptions are as follows: 

• For more than 98% of individuals traveling in New York City, the travel speed (�̅�) falls 

below 30 km/h. Thus, the analysis in this section are presented for six different �̅� values 

including 5, 10, 15, 20, 25 and 30 km/h. 
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• For two consecutive points (𝑐𝑚−1, 𝑡𝑚−1)  and (𝑐𝑚, 𝑡𝑚) for an individual, the activity 

bandwidth is set to zero if one of the following three events happens: ‖𝑐𝑚 − 𝑐𝑚−1‖ <

0.1km, |𝑡𝑚 − 𝑡𝑚−1| < 0.01hr, or ||𝑐𝑚 − 𝑐𝑚−1||/|𝑡𝑚 − 𝑡𝑚−1| is greater than or equal 

to the corresponding �̅�. 

• We screen out individuals without any tweets in the first three days (June 28 through 

July 1) or any tweets in the last three days (July 15 through July 18) because the prism 

chains of those users have larger lower or upper cones and do not contain much 

information about activity patterns.  

The original data contain information on 93,316 individuals and 1,012,912 tweets during 

this three-week period. The distribution of the number of tweets per individual has been shown in 

Figure 14. Note that this distribution is aggregated across the time and may not be comprehensive 

in evaluating tweet data and understanding the estimation accuracy. For instance, if a Twitter user 

tweets very frequently during a short period of time but keeps silent afterwards, the sample points 

may not be as useful as those users that tweet with the same frequency but more evenly distributed 

over the time. After applying the screening criteria explained above, we keep only 11,734 

individuals with 486,114 tweets. Note that we assume that the geo-tagged tweet data is detected 

from those users that have been enabled tweeting with location and device's precise location is 

identified. Usually, the GPS devices such as smartphone's GPS sensor or wifi hotspots provide 

location accuracy to within a few meters. Note that for a few users the tagged locations (e.g. when 

one tags a neighborhood to a tweet) may be differ from the actual location. However, it is easy to 

identify user tagged locations versus actual GPS locations and we can only use the actual locations 

instead. Although a large number of the original data are screened (which is not surprising because 

social media data often require a considerable amount of cleaning), a relatively large number of 
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tweets remain, and they contain rich information about activity patterns. For the purpose of 

verification, the following analysis shows that the screened data inherit certain fundamental 

statistical properties of the original tweet data discovered in the literature. Figure 15 plots scattered 

data for each individual’s displacement (or travel distance) between two consecutive locations and 

for each individual’s radius of gyration (𝑔).  

 

 

Figure 14  The distribution of number of tweets. 

We find that the displacement 𝑟 fit a power-law distribution 𝑝(𝑟)~𝑟−(1+𝛽), where 𝛽 =

4.64 (see Appendix C for goodness of fit test). In addition to the displacement, the gyration also 

reasonably fits a power-law distribution after the initial portion is truncated for 𝑔 > 8 km and 𝛽 =

1.40. These findings are consistent with previous studies on general social media data [11], [40], 

which implies that the screening does not introduce much bias against important statistical 

properties. Note that the observed exponents for the gyration is pretty close to González et al., 

(2008) approximation, where 𝛽 = 1.65 ± 0.15. However, for the displacement, the coefficients 

are slightly different where in their study 𝛽 = 1.75 ± 0.15. This could be because of differences 

in geographical areas, data sources and power-law fitting models (the previous study uses 𝑝(𝑟) =

(𝑟 + 𝑟0)
−𝛽exp (𝑟 𝜅⁄ ) where 𝑟0 = 15 𝑘𝑚 and 𝜅 = 400 𝑘𝑚). 
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(a)                (b) 

Figure 15  Power-law distribution (a) displacement and (b) radiuses of gyration. 

 

To calculate 𝐵(𝐒) for each individual, we first prepare the lookup tables for all the terms 

in equation (29) that do not have closed form formulations (functions defined in Propositions 3–

5). The entries in the tables are calculated only once but can be repeatedly used to approximate the 

corresponding terms for arbitrary individuals. As explained in Propositions 2–5, for a given �̅� each 

of the terms has at most two variables, 𝑡 and 𝑐. The number of ticks of each variable is determined 

by equation (36), where Ω is set to 100 (which is manageable for our available computational 

resource and serves the illustration purpose well). For instance, given �̅� = 30 km/h, Table 8 

illustrates the lookup table for function 𝑈c(𝑡) in Proposition 3, where 𝑡 is the only variable in this 

function. Also, Table 9 and Table 10 show a snapshot of the lookup tables for the 𝐷p(𝑐, 𝑡) and 

𝑈p(𝑐, 𝑡) functions, respectively. Both functions include 𝑐 and 𝑡 as variables. It is theoretically 

difficult to calculate the derivatives of 𝐵(𝐒) with respect to 𝑡 or 𝑐, and examine how its value is 

changing when we increase (decrease) these variables. However, considering Table 8 to Table 10 

we can see how different terms in 𝐵(𝐒) are changing with respect to 𝑐 or 𝑡. If we integrate these 
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tables together and calculate 𝐵(𝐒), we observe that the value of 𝐵(𝐒) increases with the increase 

of 𝑡, and decreases with the increase of 𝑐.  

 

Table 8  Lookup table for 𝑈c(𝑡). 

𝑡 (hour) 0.205 0.409 0.614 … 455.4 451.95 458 

𝑈c(𝑡) 1693.77 26836.89 136305.2 … 3.77E+16 4.00E+16 4.24E+16 

 

Table 9  Lookup table for 𝐷p(𝑐, 𝑡). 

𝑐 (km) 
𝑡 (hour) 

0.205 0.409 … 451.950 458.5 

0.062 2.029 16.119 … 21,751,154,251 22,710,628,653 

0.125 2.028 16.118 … 21,751,154,249 22,710,628,651 

. . . .   

. . . .   

. . . .   

39.690 0 0 … 21,750,874,668 22,710,345,018 

40.500 0 0 … 21,750,863,140 22,710,333,323 

 

To illustrate the efficiency of the proposed lookup tables in calculating 𝐵(𝐒), Table 11 

compares the solution times from the lookup table approach with those from the traditional 

numerical approach for different data sets. For these experiments, we randomly select four 

different geo-tagged Twitter data sets of relatively small sample sizes (so that the experiments are 

manageable). All the experiments are run on a typical PC with 2.2 GHz CPU and 8 GB RAM. The 

Scipy module in the Python programming language is used for the numerical approach. We see 

that for all instances in Table 11, the lookup table approach dramatically reduces the solution time 

compared to the numerical approach: the ratio of the numerical approach solution time to the 

lookup table solution time is always greater than 20,000. With this performance, we expect that 

the absolute computational time savings is even more considerable as the data size further 

increases. Therefore, for larger data sets in realistic mobility pattern studies, the numerical method 
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may not be feasible (taking months), while the lookup table approach can yield solutions in a very 

short time (a few minutes). 

Table 10  Lookup table for 𝑈p(𝑐, 𝑡). 

𝑐 (km) 
𝑡 (hour) 

0.205 0.409 … 451.950 458.5 

0.062 3.120 49.447 … 73,728,256,227E+3 78,096,174,278E+3 

0.125 3.118 49.438 … 73,728,256,216E+3 78,096,174,267E+3 

. . . . . . 

. . . . . . 

. . . . . . 

39.690 0 0 … 73,726,834E+6 78,094,711E+6 

40.500 0 0 … 73,726,776E+6 78,094,650E+6 

 

Table 11  Comparison of solution time of 𝐵(𝐒) with numerical approach and lookup table. 

Data 

set 

Sample size 

(number of 

individuals) 

Number 

of tweets 

Solution time 

(minutes) Solution time 

ratio (numerical 

approach: 

lookup table) 

Relative error 

(𝐸𝑟) 

Numerical 

approach  

Lookup 

table  
Average 

95 

percentile 

1 7 2000 19.31 0.0009 21,456 : 1 0.0083 — 

2 102 4000 86.21 0.0016 53,881 : 1 0.0133 0.01 

3 192 8000 206.77 0.0037 55,884 : 1 0.0104 0.02 

4 303 16000 325.90 0.0077 42,325 : 1  0.0116 0.02 

 

Despite the superior computational performance, the lookup table approach produces an 

approximation error caused by linear interpolation. To quantify this approximation error, a relative 

error is formulated to measure the difference between the activity bandwidth obtained from the 

numerical approach, denoted by 𝐵𝑛𝑢𝑚 (𝐒), and that obtained from the lookup table, denoted by 

𝐵𝑙𝑜𝑜𝑘𝑢𝑝(𝐒), for one individual:  

𝐸𝑟: =
|𝐵𝑛𝑢𝑚 (𝑺)−𝐵𝑙𝑜𝑜𝑘𝑢𝑝(𝑺)|

𝐵𝑛𝑢𝑚 (𝑺)
 . (39) 
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Table 11 reports the average 𝐸𝑟 value and the 95 percentiles 𝐸𝑟 value across all individuals 

in each instance. Overall, the average 𝐸𝑟 values are no greater than 0.01. Also, 𝐸𝑟 is no greater 

than 0.02 for more than 95% of the population in all instances. Although the results in Table 11 

are based on a given �̅� = 30, the same 𝐸𝑟 value is gained by replication of the experiment for all 

the other predefined �̅� values (�̅� = 5, 10, 15, 20, 25, 30). Such an error magnitude is acceptable 

for most engineering applications. Note that this error can be reduced even further as we increase 

the density of the lookup table ticks.  

The distribution of 𝐵 for all �̅� values is shown in Figure 16 and, interestingly, this 

distribution can be well fit with a power-law distribution 𝐵−𝛽. We used a python package called 

“power law” [142] for fitting the power-law distributions and compare it with the other alternative 

heavy tailed distributions. As an observation, by increasing �̅� from 5 km/h to 30 km/h, the power-

law exponent (𝛽) decreases from 2.93 to 1.68, which suggests the power-law fit has a well-defined 

mean (𝛽 > 2) for the smaller �̅� values. We also use a log likelihood ratio test to compare the 

exponential distribution with power-law distribution and identify which of these two fits the data 

better. A large positive loglikelihood ratio and a very small p-value for all cases indicate that the 

data is more likely in the power-law distribution (To evaluate the power-law distribution 

individually, the goodness-of-fit results are provided in Appendix C). This finding reveals an 

interesting pattern about how frequently people travel and tweet. The long tail of this power-law 

distribution indicates that the majority of the individuals have relatively large activity bandwidths; 

thus, the ground truth trajectory cannot be accurately estimated. However, around the head of the 

distribution, we find a large number of people who have small activity bandwidths as a result of 

high frequencies of their tweets, and their data can be used to construct relatively accurate space-

time trajectories. 
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Figure 16  Power-law and exponential distribution fit for activity bandwidth with different 

traveling speed limits (km/h). (a) �̅� = 5 (b) �̅� = 10 (c) �̅� = 15 (d) �̅� = 20 (e) �̅� = 25 (f) �̅� =
30. 
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Figure 17  Power-law and exponential distribution fit for normalized activity bandwidth with 

different traveling speed limits (km/h). (a) �̅� = 5 (b) �̅� = 10 (c) �̅� = 15 (d) �̅� = 20 (e) �̅� = 25 

(f) �̅� = 30.  
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Here, we only quantify the distributions of inaccuracy bounds, but identifying the best 

cutoff point is subjective to specifications (e.g. hourly versus monthly analysis) and inaccuracy 

tolerances of specific applications. With the gyration values calculated in equation (37), we 

calibrate the preceding activity bandwidths to the normalized activity bandwidths using equation 

(38). Figure 17 shows the distribution of normalized activity bandwidth. Again, by comparing the 

exponential and power-law distribution with the log likelihood ratio test we found that the 

normalized activity bandwidth is well approximated by a power-law distribution. Here, the 

increase of �̅� from 5 km/h to 30 km/h will decrease the 𝛽 from 1.64 to 1.50 that reveals less 

sensitivity to the speed limit. As before, the indication is that the majority of the tweet data have 

relatively large 𝐸𝑟 in quantifying the mobility patterns of individuals, but there remain a large 

number of individuals around the head of the distribution that can provide relatively accurate 

mobility pattern information. For a given �̅�, the 𝛽 value for the normalized activity bandwidth 

(1.50 < 𝛽 < 1.64) is relatively smaller than that of the activity bandwidth (1.68 < 𝛽 < 2.93), 

which implies that less data are useful for quantifying relative mobility patterns. However, as 

explained in section 4.2.2, we believe that normalized activity bandwidth is a better value for 

evaluating individuals’ mobility patterns. The variation of 𝑁𝐵 with the average tweet density and 

the variance of tweet density is investigated in Figure 18. We can see that as the average number 

of tweets per day decreases and the variance increases, 𝑁𝐵 increases. Figure 18 could be useful in 

selecting a cutoff point for the minimum number of sample points required for mobility analysis 

for more specific applications. 

Sensitivity analyses are conducted to draw insights on how the traveling speed limit (�̅�) as 

a key input parameter affect the activity bandwidth and normalized activity bandwidth. As shown 

in Figure 19, for both of these measures the mean and standard deviation will increase as we 
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increase the �̅�. In Figure 19(b) the standard deviation of normalized activity bandwidth will 

increase dramatically by increasing �̅�, which suggests a smaller �̅� provides more rigorous results 

for mobility pattern analysis. 

 

Figure 18  The variation of 𝑁𝐵 with average and variance of number of tweets per day. 

 

    (a)                                          (b) 

Figure 19  Sensitivity analyses with regard to traveling speed limit �̅�. (a) activity bandwidth (b) 

normalized activity bandwidth. 

Finally, the application of the proposed methodology is illustrated for three cases with 

different time analysis intervals: case 1 for one day, case 2 for 16 hours and case 3 for 8 hours of 
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analysis. Different criteria and cutoff points are defined regarding the topology of an individual’s 

mobility pattern and the location estimation accuracy in relation to the geographical region of the 

study area. From a topological point of view, if 𝑁𝐵 < 0.1 the activity pattern information is much 

higher than the estimation inaccuracy and the data is considered very good. If 0.1 ≤ 𝑁𝐵 ≤ 1, the 

information is still higher than the inaccuracy and acceptable (good data). If 𝑁𝐵 > 1, the 

inaccuracy is greater than activity pattern information, and we recommend not to use such data for 

mobility pattern analysis.  

Table 12  Percentage of data within the recommended cutoff points. 

Criteria 
Case 1  

(one day) 

Case 2  

(16 hours) 

Case 3  

(8 hours) 

𝑁𝐵 ≤ 0.1 0.2 1.1 0.2 

0.1 ≤ 𝑁𝐵 ≤ 1 0.6 0.2 1.6 

𝑁𝐵 > 1 99.2 98.7 98.2 

𝐵(𝐒)

𝑅𝑁𝑌𝐶
≤ 0.01 0.02 0 0 

0.01 ≤
𝐵(𝐒)

𝑅𝑁𝑌𝐶
≤ 0.1 0.41 0.5 0.7 

𝐵(𝐒)

𝑅𝑁𝑌𝐶
> 0.1 99.57 99.5 99.3 

 

From the perspective of location estimation in relation to the study area, if 𝐵(S) is 

significantly smaller than the radius of the studied area (denoted by 𝑅𝑁𝑌𝐶 = 16 km for NYC with 

land area of 790 𝑘𝑚2), e.g. less than 1%, then the data is very useful for mobility analysis (very 

good data). If 𝐵(S) is somehow smaller than the radius (e.g. greater than 0.01 but smaller than 0.1) 

the data is still considered useful for mobility analysis (good data), and all other data are not 

recommended (bad data). According to the results in Table 12, as we decrease the analysis time 
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interval (i.e. from one day to 8 hours) there are more data to be selected for mobility pattern 

analysis. For instance, in a one day analysis, 0.8 % of data are very good or good in case 1 based 

on the first criterion (𝑁𝐵 ≤ 1) compared with 1.8 % in case 3 when we decrease the time interval 

to 8 hours. The results are similar if we take the second criterion where 0.43 % very good or good 

data in case 1 increases to 0.7% in case 3. Considering the massive amount of geo-tagged data 

available in different platforms (e.g. social media), these findings suggest that there are many 

individuals with relatively accurate mobility information that could be targeted for future mobility 

pattern analysis. However, cautions are needed in screening these data for specific applications, 

given that the majority of such data contains overwhelming noise and may not be suitable for high-

definition mobility pattern analysis. 

4.3.2. Cellphone Data 

The proposed measures are also applied to cellphone data collected in Shenzhen, China, 

for two days (Jan 14, 2014 and Jan 15, 2014) with 1,786,077 unique users and 18,485,979 geo-

tagged sample points. The data consists of five fields including “User’s ID”, “Date” “Time”, 

“Latitude” and “Longitude”. A similar analysis is performed to the cellphone data and the results 

are compared with the Twitter data.  

At first, to calculate 𝐵(𝐒), the lookup tables are prepared for the 𝑈c(𝑡), 𝐷p(𝑐, 𝑡) and 

𝑈p(𝑐, 𝑡). The lookup tables for cellphone data are alike Twitter data using the same parameters 

(see Table 8 to Table 10 for more details), except for ticks on 𝑐 and 𝑡 that are distributed using 

equation (36). Note that the variable’s domain differs from Twitter data. For instance, cellphone 

data is collected for two days, therefore time ticks on 𝑡 are distributed on 48 hours and the 

corresponding values in the lookup table are calculated accordingly.  
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Similar cutoff point analysis is presented in Table 13. The results show that 1.19% of data 

are very good or good in 8 hours analysis based on the first criterion (𝑁𝐵 ≤ 1), and 0.98% of data 

are very good or good considering the second criterion 
𝐵(𝐒)

𝑅𝑆
< 0.1 (Here 𝑅𝑆 = 25.54 𝑘𝑚 is the 

average radius of Shenzhen with area of 2050 𝑘𝑚2).  

Table 13  Percentage of cellphone data within the recommended cutoff points. 

Criteria 
Case 1  

(one day) 

Case 2  

(16 hours) 

Case 3  

(8 hours) 

𝑁𝐵 ≤ 0.1 0.06 0.06 0.07 

0.1 ≤ 𝑁𝐵 ≤ 1 0.24 0.42 1.12 

𝑁𝐵 > 1 99.70 99.52 98.81 

𝐵(𝐒)

𝑅𝑆
≤ 0.01 0.002 0.001 0.001 

0.01 ≤
𝐵(𝐒)

𝑅𝑆
≤ 0.1 0.094 0.103 0.978 

𝐵(𝐒)

𝑅𝑆
> 0.1 99.904 99.896 99.021 

 

  

(a)                                                                             (b) 

Figure 20  Sensitivity analyses on �̅� for cellphone data. (a) activity bandwidth (b) normalized 

activity bandwidth. 

Again, we can see for shorter analysis time (i.e. 8 hours) there are more data to be selected 

for mobility pattern analysis. Note that although the percentage of good data is slightly smaller 
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than Twitter data, the large number of cellphone users (1,786,077 individuals) means that more 

individuals can be selected for future mobility analysis. Figure 20 represents the sensitivity 

analysis results on effect of �̅� on both 𝐵(𝐒) and 𝑁𝐵(𝐒) and similar to the Twitter data, both mean 

and standard deviation increase by increasing �̅�.  

Finally, Figure 21 and Figure 22 represent the distribution fit results for 𝐵(𝐒) and 𝑁𝐵(𝐒). 

Unlike Twitter data, the distribution of 𝐵(𝐒) for all �̅� values can be well fitted with an exponential 

distribution (𝜆 < 0.003 for all �̅�). Note that exponential distribution has thinner tail than power-

law distribution but still around the head of the distribution there are many users that can be 

selected for building accurate space-time trajectories. For 𝑁𝐵(𝐒), again power-law distribution 

can be fitted to the data and the increase of �̅� from 5 km/h to 30 km/h decrease the exponent (𝛽) 

from 1.26 to 1.10 (less sensitivity to �̅�). This conveys consistent findings for both cellphone and 

Twitter data, where a small portion of individuals around the head of the distribution that can 

provide relatively accurate mobility pattern information. 

4.4. Results and Discussion 

This study proposes a set of parsimonious measures based on time geography concepts to 

answer an important question about mobility studies using geo-tagged mobility sample data: “How 

accurate it would be to utilize such samples in estimating continuous individual mobility 

trajectories?” In this study, the estimated trajectory between a set of limited space-time sample 

points is obtained by connecting these sample points with linear segments. However, since the 

estimated trajectory may differ from an individual’s unknown ground truth trajectory, a set of 

fundamental measures is proposed to quantify the accuracy of the estimation inaccuracy in a robust 

manner. The estimation inaccuracy depends on the density of the sample points. In the proposed 

methodology, an individual’s activity range around the estimated trajectory is constructed by a  
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Figure 21  Power-law and exponential distribution fit for activity bandwidth for cellphone data 

with different �̅� (km/h). (a) �̅� = 5 (b) �̅� = 10 (c) �̅� = 15 (d) �̅� = 20 (e) �̅� = 25 (f) �̅� = 30. 
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Figure 22  Power-law distribution fit for normalized activity bandwidth for cellphone data with 

different �̅� (km/h). (a) �̅� = 5 (b) �̅� = 10 (c) �̅� = 15 (d) �̅� = 20 (e) �̅� = 25 (f) �̅� = 30. 
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chain of space-time prisms. Then the proposed measures, including activity bandwidth and 

normalized activity bandwidth, are calculated on this chain. The activity bandwidth quantifies the 

possible absolute inaccuracy range between the estimated and the ground truth trajectories, while 

the normalized activity bandwidth measures the relative difference between the mobility pattern 

of the estimated trajectory and that of the ground truth trajectory. 

In travel mobility analysis, these measures can be used to evaluate the suitability of 

estimated individual trajectories from generic geo-tagged data. Since it is time consuming to 

calculate these measures working with massive mobility data, we also propose a lookup table–

based interpolation method to expedite the calculation. The proposed measures and the associated 

lookup table method have been tested with two sets of real-world geo-tagged mobility data from 

social-media and cell phone logs. These cases studies demonstrate that the proposed measures can 

efficiently quantify inaccuracies of using sample individual mobility data in estimating their 

continuous trajectories. These case studies also draw a number of interesting managerial insights. 

For the Twitter data, we find that both measures proposed in this study follow power-law 

distributions at different traveling speed limits (v̅). For the cellphone data, the normalized activity 

bandwidth again follows a power-law distribution, although the activity bandwidth measure can 

be better described with an exponential distribution. Sensitivity analyses are conducted to draw 

insights on how v̅ can affect the proposed measures. Our findings show that most individuals in 

these data sets likely yield high estimation inaccuracies and may not be suitable for mobility 

studies with high accuracy requirement. However, because of the massive amount of geo-tagged 

data available, there are still a good number of individuals with relatively accurate mobility 

information for mobility pattern analysis. Nonetheless, cautions should be taken in screening these 

data for specific applications. 
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This study provides a methodological foundation for analyzing inaccuracy bounds of 

mobility measures for emerging geo-tagged mobility data, which can be extended in several 

directions. For specific applications, it will be interesting to use our proposed measures for 

investigating different cutoff points for the separation between useful data with less noise and 

valueless data with large noise based on the needs of these applications. When other geo-tagged 

data sources are available, it is useful to apply the proposed methodology to these data sets to draw 

implications of their mobility patterns. While the measured geo-coordinates have significant 

inaccuracies, this proposed methodology needs to be properly calibrated to account for such 

sampling data noise. 
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CHAPTER 5:  NETWORK DESIGN PROBLEM – A SPACE-TIME PROBABILISTIC 

FRAMEWORK 

 

5.1. Introduction 

Sensor network design highly depends on the application considered e.g. network 

surveillance, traffic, pollution, agriculture or infrastructure monitoring [143]. Usually, sensors are 

designed to observe the environment and to collect data from target population to make a better 

decision. The observation could help us to detect specific events or track individual targets and 

interact with them to transfer valuable information. For instance, in advertisement industry, 

billboards are known as the most common outdoor advertising strategy in cities. Geographical 

locations of billboards can be predetermined if the target population and the environment are well 

known. Otherwise, caution may be exercised to determine the best locations for billboards. In 

transportation, traffic management centers and transportation planning organizations deploy traffic 

sensors at various places across a network to observe the traffic conditions and electronic digital 

signs are distributed in the network to inform drivers about real time traffic conditions and provide 

route guidance. Due to limited resources and investment constraints, smartly deploying 

surveillance sensors is essential to maximize the network coverage and increase the number of 

targets that are detected through the region, 

In this chapter, a space-time network-based modeling framework is proposed to integrate 

human mobility into network design problem. A probabilistic network structure is constructed to 

quantify human’s presence probability in a space-time framework. Within the space-time network, 

the presence probability of individual targets can be quantified in space-time nodes and links. 
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Then, we propose a Mixed Integer Nonlinear Programming (MINLP) model to maximize the 

spatial and temporal coverage of target population. To achieve near optimal solutions for large-

scale networks, the greedy heuristic, lagrangian relaxation and simulated annealing algorithms are 

proposed to solve this problem.  

5.2. Space-Time Network Structure - A Probabilistic Framework 

Following the motivations on CHAPTER 4, in order to construct a space-time network, we 

can augment the physical network into multiple layers for different time steps. For instance, if we 

divide the time horizon into a series of intervals with the same duration of 𝜎, we can reconstruct 

the space-time network as shown in Figure 23 [56]. Note that the network reconstruction is 

challenging for large scale geographical spaces and small values of 𝜎. This reconstruction process 

is adapted from [126] that is explained in CHAPTER 3. 

 

Figure 23  Reconstruction of a physical network into a space-time framework [56]. 

The advantages of the network reconstruction are that we can characterize different 

attributes of moving targets (e.g. presence probability) considering space-time nodes and links. 

For ease of explanation, let consider a one-dimensional space network with nodes 𝑗1 to 𝑗5 as shown 

in Figure 24(a). Then, the reconstruction process starts with duplication of space nodes 𝑗1 to 𝑗5 in 

different time series 𝑡1, 𝑡2, … , 𝑇.  
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(a)                                                                     (b) 

Figure 24  Illustration of probabilistic space-time network structure. a) prism chain in one 

dimensional space b) space-time node and link probabilities 

Using the time geography concepts and trajectory analysis explained in CHAPTER 3, now 

we can consider the movement boundary of individuals based on their known space-time sample 

points (black points in Figure 24), and quantify their presence probability in various locations by 

constructing their prism chains. The space-time links are added next considering the node 

connections in the physical network Figure 24(b). Then, for a single target, the probabilities of all 

the space-time node and links can be easily quantified as shown in Figure 24(b). For instance, 

according to the prism chain in Figure 24(a), the target cannot be present in nodes 𝑗1, 𝑗4 and 𝑗5 at 

time 𝑡1 and its presence probability of being at either node 𝑗2 or 𝑗3 is 0.5. This probabilistic network 
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structure could be used for all the targets and their prism chains can be constructed based on their 

known space-time sample points. Then, by aggregating all the individuals we can identify the spots 

that are more likely to be visited by different targets to maximize the network coverage.  

5.3. Model Formulation 

This section proposes a probabilistic framework to integrate geo-tagged location data 

generated by targets into sensor location design problem. Table 14 provides a summary of the 

notation used in the formulations. We deploy sensors in transportation network to maximize the 

expected benefit from covering targets while having a budget constraint. Let 𝐻 be the set of targets, 

𝑇 be the set of time stamps and 𝐺(𝑁, 𝐴) be the transportation network where 𝑁 and 𝐴 represent 

the set of space nodes and links, respectively. Also, let 𝑢ℎ𝑖𝑡  be the benefit (utility) of covering 

target ℎ ∈ 𝐻 at node 𝑖 ∈ 𝑁 and time 𝑡 ∈ 𝑇 (If the targets are homogenous and the benefits of 

covering a target in different space-time points are identical, then 𝑢ℎ𝑖𝑡 = 𝑢 ). We can formulate 

the location problem by using a number of known space-time point (geo-tagged data) that are 

visited by each target ℎ ∈ 𝐻. By implying time-geography concepts on these known space-time 

points, the probability of visiting all other space-time points can be calculated for all the targets. 

We denote this space-time point probability by 𝑝ℎ𝑖𝑡, ∀ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇.  

For all the physical links (𝑗, 𝑖) ∈ 𝐴, let (𝑗, 𝑖, 𝑠, 𝑡) be the index of space-time link that 

indicates a movement from node 𝑗 to node 𝑖 (𝑗, 𝑖 ∈ 𝑁), and from time 𝑠 to time 𝑡 (𝑠, 𝑡 ∈ 𝑇 and 𝑠 <

𝑡). Note that targets are moving in a space-time network and we need to distinguish between a 

space node (link) and a space-time point (link). The (𝑗, 𝑖, 𝑠, 𝑡) index can be used to define 𝑝ℎ𝑗𝑖𝑠𝑡, 

which represents the probability of visiting a space-time link (𝑗, 𝑖, 𝑠, 𝑡) by target ℎ ∈ 𝐻. For 

simplicity, we assume 𝑠 = 𝑡 − 1 that clarifies the space-time links are defined for two consecutive 

time stamps. Finally, we denote the installation cost of deploying a new sensor at node 𝑖 ∈ 𝑁 by 
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𝑓𝑖. It is assumed that sensors are fixed after installation and they cannot be moved over time. With 

this assumption, we can define the primal decision variable 𝑦:= {𝑦𝑖} to determine where to install 

sensors: 

Table 14  Sample transportation networks. 

𝐻 Set of targets 

𝑇 Set of time stamps  

𝑁 Set of space-nodes 

𝐴 Set of space links 

𝑢ℎ𝑖𝑡 Benefit (utility) of covering target ℎ ∈ 𝐻 at node 𝑖 ∈ 𝑁 and time 𝑡 ∈ 𝑇 

𝑝ℎ𝑖𝑡 Probability of visiting node 𝑖 ∈ 𝑁 at time 𝑡 ∈ 𝑇 by target ℎ ∈ 𝐻 

𝑗, 𝑖 Indices of space-nodes, 𝑗, 𝑖 ∈ 𝑁 

𝑠, 𝑡 Indices of time stamps, 𝑠, 𝑡 ∈ 𝑇 

(𝑗, 𝑖, 𝑠, 𝑡) 
Index of space-time link that indicates a movement from node 𝑗 to node 𝑖 
and from time 𝑠 to time 𝑡, where (𝑗, 𝑖) ∈ 𝐴 and 𝑠 < 𝑡 

𝑝ℎ𝑗𝑖𝑠𝑡 Probability of visiting space-time link (𝑗, 𝑖, 𝑠, 𝑡) by target ℎ ∈ 𝐻 

𝑓𝑖 Installation cost of deploying a new sensor at node 𝑖 ∈ 𝑁 

𝑦𝑖 1 if a sensor (facility) is installed at node 𝑖 ∈ 𝑁, 0 otherwise  

𝑞ℎ𝑖𝑡 
Probability of target ℎ to visit node 𝑖 at time 𝑡, without being intercepted 

by any sensor before time 𝑡, ∀ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 

𝑣ℎ𝑖𝑡 
Auxiliary variable (𝑣ℎ𝑖𝑡 = 𝑞ℎ𝑖𝑡𝑦𝑖) defined for linearization, ∀ℎ ∈ 𝐻, 𝑖 ∈
𝑁, 𝑡 ∈ 𝑇 

𝐵 Total budget (number of available sensors) 
 

𝑦𝑖 = {
1        𝑖𝑓 𝑎 𝑠𝑒𝑛𝑠𝑜𝑟 𝑖𝑠 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 ∈ 𝑁 
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                             

 (40) 

 

Also, we define 𝑞ℎ𝑖𝑡 the probability of target ℎ to visit node 𝑖 at time 𝑡, without being intercepted 

by any sensor before time 𝑡, ∀ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇. Due to limited budget, no more than 𝐵 sensors 

can be built on the network. Eventually, the space-time sensor location problem (STS) can be 

formulated as follows: 

(𝑆𝑇𝑆) 𝑚𝑎𝑥 𝑍(𝑦𝑖, 𝑞ℎ𝑖𝑡) ∶=∑∑∑𝑢ℎ𝑖𝑡𝑞ℎ𝑖𝑡𝑦𝑖
𝑡∈𝑇𝑖∈𝑁ℎ∈𝐻

 (41) 

𝑠. 𝑡.  𝑞ℎ𝑖1 = 𝑝ℎ𝑖1 , ∀ℎ ∈ 𝐻, 𝑖 ∈ 𝑁 (42) 
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         𝑞ℎ𝑖𝑡 = ∑ 𝑞ℎ𝑗(𝑡−1)𝑝ℎ𝑗𝑖(𝑡−1)𝑡(1 − 𝑦𝑗)

(𝑗,𝑖)∈𝐴

, ∀ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇\{1} (43) 

         ∑𝑓𝑖𝑦𝑖 ≤ 𝐵

𝑖∈𝑁

 (44) 

         𝑦𝑖 ∈ {0,1} , ∀ 𝑖 ∈ 𝑁 (45) 

         𝑞ℎ𝑖𝑡 ≥ 0 , ∀ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (46) 

 

The objectives function (41) maximizes the utility of covering targets in a spatial-temporal 

framework. Constraint (42) ensures 𝑞ℎ𝑖1 is equal to 𝑝ℎ𝑖1 at 𝑡 = 1, where 𝑝ℎ𝑖1 is the given 

probability of visiting node 𝑖 by individual ℎ using time-geography (since we are in the beginning 

of the time (𝑡 = 1), we assume targets are not intercepted yet and 𝑞ℎ𝑖1 = 𝑝ℎ𝑖1). According to the 

constraint (43), when 𝑡 > 1, the 𝑞ℎ𝑖𝑡 is calculated for each target based on the historical 

information we know about her coverage at his parent nodes. A space-time point (𝑗, 𝑡 − 1) is 

predecessor of space-time point (𝑖, 𝑡) where ∃(𝑗, 𝑖) ∈ 𝐴 (again note that space-time links are 

defined for two consecutive time stamps 𝑡 − 1 and 𝑡). Constraint (44) enforces the budget limit 

and constraint (45) and (46) postulate binary and continuous decision variables. Because of the 

nonlinear terms 𝑞ℎ𝑖𝑡𝑦𝑖 in (STS) formulation, the solution time complexity is NP-hard. Therefore, 

we try to linearize (STS) by defining an auxiliary variable 𝑣ℎ𝑖𝑡 = 𝑞ℎ𝑖𝑡𝑦𝑖. Using 𝑣ℎ𝑖𝑡 and without 

affecting the optimal solution, constraints (47) to (50) can be added to (STS) to ensure that 𝑣ℎ𝑖𝑡 =

𝑞ℎ𝑖𝑡 when 𝑦𝑖 = 1, and 𝑣ℎ𝑖𝑡 = 0 when 𝑦𝑖 = 0 (in another word, 𝑣ℎ𝑖𝑡 = 𝑞ℎ𝑖𝑡𝑦𝑖 is equivalent to 

𝑣ℎ𝑖𝑡 = min (𝑞ℎ𝑖𝑡, 𝑦𝑖)): 

𝑣ℎ𝑖𝑡 ≤ 𝑞ℎ𝑖𝑡 , ∀ ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (47) 

𝑣ℎ𝑖𝑡 ≤ 𝑦𝑖 , ∀ ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (48) 

𝑣ℎ𝑖𝑡 ≥ 𝑞ℎ𝑖𝑡 + (𝑦𝑖 − 1) , ∀ ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (49) 

𝑣ℎ𝑖𝑡 ≥ 0 , ∀ ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (50) 
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Therefore, the linearized space-time sensor location problem (LSTS) can be written as: 

(𝐿𝑆𝑇𝑆): 𝑚𝑎𝑥 𝑍(𝑦𝑖 , 𝑞ℎ𝑖𝑡, 𝑣ℎ𝑖𝑡) ∶= 𝑚𝑎𝑥∑∑∑𝑢ℎ𝑣ℎ𝑖𝑡
𝑡∈𝑇𝑖∈𝑁ℎ∈𝐻

 (51) 

𝑠. 𝑡.  𝑞ℎ𝑖1 = 𝑝ℎ𝑖1 , ∀ℎ ∈ 𝐻, 𝑖 ∈ 𝑁 (52) 

         𝑞ℎ𝑖𝑡 = ∑ 𝑝ℎ𝑗𝑖(𝑡−1)𝑡(𝑞ℎ𝑗(𝑡−1) − 𝑣ℎ𝑗(𝑡−1))

(𝑗,𝑖)∈𝐴

, ∀ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇\{1} 
(53) 

         𝑣ℎ𝑖𝑡 ≤ 𝑞ℎ𝑖𝑡, ∀ ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (54) 

         𝑣ℎ𝑖𝑡 ≤ 𝑦𝑖 , ∀ ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (55) 

         𝑣ℎ𝑖𝑡 ≥ 𝑞ℎ𝑖𝑡 + (𝑦𝑖 − 1) , ∀ ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (56) 

         ∑𝑓𝑖𝑦𝑖 ≤ 𝐵

𝑖∈𝑁

 (57) 

         𝑦𝑖 ∈ {0,1} , ∀ 𝑖 ∈ 𝑁 (58) 

         𝑞ℎ𝑖𝑡, 𝑣ℎ𝑖𝑡 ≥ 0 , ∀ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (59) 

 

5.4. Solution Algorithm 

The linearized space-time sensor location problem (LSTS) can be potentially solved by 

commercial solvers such as CPLEX or Gurobi for small-scale instances. However, as we increase 

the network size (see section 5.5 for more discussion), the computational burden is greatly 

exacerbated and it takes a large amount of computation time for the solvers to obtain even a 

feasible solution. Therefore, we develop heuristic algorithms to obtain near-optimum solutions in 

a reasonable amount of time. The first algorithm is based on a simple greedy heuristic, which can 

yield good solutions for many realistic applications. Since the greedy heuristic does not provide 

information on how close the solutions are from the true optima, Lagrangian Relaxation (LR) and 

Simulated Annealing (SA) are also implemented. LR provides not only good feasible solutions but 

also it provides the optimality gap.  
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5.4.1. Greedy Heuristic 

The greedy heuristic is widely applied to many practical problems because of its simplicity 

and reasonable practical performance. The greedy algorithm for (STS) selects sensors sequentially 

based on the best marginal increase of 𝑍(𝑦𝑖, 𝑞ℎ𝑖𝑡) until all the budget is exhausted. The exact steps 

are as follows.  

Step 0: Initialization: Let 𝛺 =  ∅  be the set of selected space nodes for sensor installation and 

𝐹 = 0 be the total installation cost. Set 𝑦𝑖 = 0, ∀𝑖 ∈ 𝑁 and. 𝑞ℎ𝑖𝑡 = 0, ∀ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇\{1}. 

Step 1: Search for the location that brings the maximum marginal improvement of objective (51); 

i.e., select 

𝑖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥⏟    
𝑘∈𝑁\Ω

{𝑍(𝐲′, 𝐪′) − 𝑍(𝐲, 𝐪): 𝑦𝑖
′ = 1 𝑖𝑓𝑓 𝑖 ∈ 𝛺 ∪ {k}}.  

where 𝑍(𝐲′, 𝐪′) − 𝑍(𝐲, 𝐪) represents the marginal improvement (note that given 𝒚, both 𝐪 and 

𝑍(𝐲, 𝐪) can be calculated.).  

Step 2: Let  𝑦𝑖∗ = 1, 𝐹 = 𝐹 + 𝑓𝑖∗  and 𝛺 = 𝛺 ∪ 𝑖∗.  

Step 3: If adding an additional sensor is possible according to the remaining budget, i.e. ∃𝑖 ∈

𝑁\𝛺: 𝑓𝑖 < 𝐵 − 𝐹, go to step 1; otherwise stop and return 𝐲 and the corresponding 𝐪 and 𝑍(𝐲, 𝐪). 

Given 𝐲 variable, both 𝐪 and 𝑍(𝐲, 𝐪) in (STS) can be calculated. Therefore, we can assume 

𝑍 is a monotone set function defined over subsets of 𝐲 as a ground set (It is monotone since adding 

a new sensor does not decrease the objective value). Also, the problem of choosing sensor locations 

from a given set of candidate location is submodular [144]. Therefore, we can prove that the 

objective value of any greedy solution is no smaller than (1 −
1

𝑒
) of the true optimum.  

Definition 1: The 𝑍 function is monotone iff: 

∀𝑆 ⊆ 𝑇 ⊆ 𝑁, 𝑍(𝑆) ≤ 𝑍(𝑇) (60) 



 

80 

Corollary 1. Let 𝑍 be a submodular function defined over subsets of a ground set N. Then,  

∀𝑆 ⊆ 𝑇 ⊆ 𝑁, 𝑍(𝑇) ≤ 𝑍(𝑆) + ∑ 𝑍(𝑆 ∪ {𝑒}) − 𝑍(𝑆)

𝑒∈𝑇\𝑆

 
(61) 

 

Proposition 6: In the STS problem, the objective value of the greedy algorithm solution is no 

smaller than (1 − 1/𝑒) of the true optimum. 

Proof. Since given 𝐲 variable, both 𝐪 and 𝑍(𝐲, 𝐪) can be calculated, we ignore the 𝐪 for ease of 

explanation. Let 𝐲∗ be the optimal solution and 𝑍(𝐲∗) be the true optimum and |𝐲∗| ≤ 𝐾 due to 

the budget constraint. Also, let 𝐲𝐢 be the set of selected locations for sensor installation returned 

by greedy algorithm after 𝑖 iteration where 𝐲𝐢 = {𝑦1, 𝑦2, … , 𝑦𝑖}. Then we have: 

𝑍(𝒚∗) ≤  𝑍(𝒚𝒊−𝟏) + ∑ 𝑍(𝒚𝒊−𝟏 ∪ {𝑦}) − 𝑍(𝒚𝒊−𝟏)

𝑦∈𝒚∗\𝒚𝒊−𝟏

 
 

              ≤  𝑍(𝒚𝒊−𝟏) + ∑ 𝑍(𝒚𝒊) − 𝑍(𝒚𝒊−𝟏)

𝑦∈𝑦∗\𝒚𝒊−𝟏

 
 

              ≤  𝑍(𝒚𝒊−𝟏) + 𝐾(𝑍(𝒚𝒊) − 𝑍(𝒚𝒊−𝟏)) (62) 

 

The first inequality used Corollary 1. The second inequality is correct because of the 

greediness of algorithm. Moving from iteration 𝑖 − 1 to iteration 𝑖, greedy will choose a node with 

best marginal contribution to 𝑍, therefor, ∑ 𝑍(𝐲𝐢−𝟏 ∪ {𝑦}) − 𝑍(𝐲𝐢−𝟏)𝑦∈𝐲∗\𝐲𝐢−𝟏 ≤

∑ 𝑍(𝐲𝐢) − 𝑍(𝐲𝐢−𝟏)𝑦∈𝐲∗\𝐲𝐢−𝟏 , therefore the second inequality is correct. The last inequality is correct 

because |𝐲∗| ≤ 𝐾 and at most set of 𝐲∗\𝐲𝐢−𝟏 has 𝐾 members.  

Subtracting 𝐾 ∗ 𝑍(𝐲∗) from both sides gives 𝑍(𝐲𝐢) − 𝑍(𝐲
∗) ≥ (1 −

1

𝐾
)(𝑍(𝐲𝐢−𝟏) − 𝑍(𝐲

∗)) 

which implies by induction: 

𝑍(𝐲𝐢) ≥ (1 − (1 −
1

𝐾
)
𝑖

)𝑍(𝐲∗) 
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Note that if 𝑎𝑖 = 𝑍(𝐲𝐢) − 𝑍(𝐲
∗), then we have 𝑎𝑖 ≤ (1 −

1

𝐾
) 𝑎𝑖−1 ≤ (1 −

1

𝐾
)
2

𝑎𝑖−2 ≤ … ≤

 (1 −
1

𝐾
)
𝑖

𝑎0 . If 𝑖 = 𝐾 and using (1 −
1

𝐾
)
𝐾

≤ 1/𝑒, we have 𝑍(𝐲𝐢) ≥ (1 −
1

𝑒
) 𝑍(𝐲∗) which 

concludes the proof. □ 

5.4.2. Lagrangian Relaxation 

As we discuss in Section 5.5, commercial optimization solvers (e.g., CPLEX) run into 

difficulty when problem size increases. In this section, we present an algorithm based on 

Lagrangian Relaxation (LR) and decompose the (LSTS) into a set of sub-problems that are easy to 

solve. The LR heuristic provides a feasible solution and an upper bound for the maximization 

problem to evaluate the optimality gap.  

5.4.2.1. Upper Bound 

We relax constraints (55) and (56) of (LSTS) formulation and add them to the objective 

(51) with nonnegative Lagrangian multipliers 𝜆 and 𝛾. Then, the relaxed (LSTS) becomes: 

(RLSTS):  𝑚𝑖𝑛⏟
𝜆,𝛾

𝑍𝑅(𝜆, 𝛾) ≔ m𝑎𝑥⏟
𝑦,𝑣,𝑞

∑∑∑𝑢ℎ𝑣ℎ𝑖𝑡
𝑡∈𝑇𝑖∈𝑁ℎ∈𝐻

+∑∑∑𝜆ℎ𝑖𝑡(𝑦𝑖 − 𝑣ℎ𝑖𝑡)

𝑡∈𝑇𝑖∈𝑁ℎ∈𝐻

 (63) 

                                               +∑∑∑𝛾ℎ𝑖𝑡(𝑣ℎ𝑖𝑡 − 𝑞ℎ𝑖𝑡−𝑦𝑖 +1 )
𝑡∈𝑇𝑖∈𝑁ℎ∈𝐻

  

𝑠. 𝑡.  𝑞ℎ𝑖1 = 𝑝ℎ𝑖1 , ∀ℎ ∈ 𝐻, 𝑖 ∈ 𝑁 (64) 

         𝑞ℎ𝑖𝑡 = ∑ 𝑝ℎ𝑗𝑖(𝑡−1)𝑡(𝑞ℎ𝑗(𝑡−1) − 𝑣ℎ𝑗(𝑡−1))

(𝑗,𝑖)∈𝐴

, ∀ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇\{1} (65) 

         𝑣ℎ𝑖𝑡 ≤ 𝑞ℎ𝑖𝑡, ∀ ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (66) 

         ∑𝑓𝑖𝑦𝑖 ≤ 𝐵

𝑖∈𝑁

 (67) 

         𝑦𝑖 ∈ {0,1} , ∀ 𝑖 ∈ 𝑁 (68) 

         𝑞ℎ𝑖𝑡, 𝑣ℎ𝑖𝑡 ≥ 0 , ∀ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (69) 
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For any given 𝜆 and 𝛾, the exact value of 𝑍𝑅(𝜆, 𝛾) provides an upper bound on the objective 

function (51). The (RLSTS) formulation can be decomposed into two sub-problems on targets (ℎ) 

and space nodes (𝑖). For sub-problem 1, we set 𝜆𝑖 ≔ [𝜆ℎ𝑖𝑡 ≥ 0]ℎ∈𝐻,𝑡∈𝑇 , 𝛾𝑖 ≔ [𝛾ℎ𝑖𝑡 ≥

0]ℎ∈𝐻,𝑡∈𝑇 , ∀𝑖 ∈ 𝑁, then decompose 𝑍𝑅(𝜆, 𝛾) as follows: 

𝑍𝑅1(𝜆𝑖, 𝛾𝑖) ≔ 𝑚𝑎𝑥⏟
𝑦𝑖

(∑∑(𝜆ℎ𝑖𝑡 − 𝛾ℎ𝑖𝑡)

𝑡∈𝑇ℎ∈𝐻

)𝑦𝑖 , ∀𝑖 ∈ 𝑁 (70) 

𝑠. 𝑡.    ∑𝑓𝑖𝑦𝑖 ≤ 𝐵

𝑖∈𝑁

 (71) 

𝑦𝑖 ∈ {0,1} , ∀ 𝑖 ∈ 𝑁 (72) 

For sub-problem 2, we set 𝜆ℎ ≔ [𝜆ℎ𝑖𝑡 ≥ 0]𝑖∈𝑁,𝑡∈𝑇 , 𝛾ℎ ≔ [𝛾ℎ𝑖𝑡 ≥ 0]𝑖∈𝑁,𝑡∈𝑇 , ∀ℎ ∈ 𝐻, then:  

𝑍𝑅2(𝜆ℎ, 𝛾ℎ) ≔ 𝑚𝑎𝑥⏟
𝑞,𝑣

∑∑((𝑢ℎ − 𝜆ℎ𝑖𝑡 + 𝛾ℎ𝑖𝑡)𝑣ℎ𝑖𝑡 + 𝛾ℎ𝑖𝑡(1 − 𝑞ℎ𝑖𝑡))

𝑡∈𝑇𝑖∈𝑁

, ∀ℎ ∈ 𝐻 (73) 

𝑠. 𝑡.  𝑞ℎ𝑖1 = 𝑝ℎ𝑖1 , ∀ 𝑖 ∈ 𝑁 (74) 

         𝑞ℎ𝑖𝑡 = ∑ 𝑝ℎ𝑗𝑖(𝑡−1)𝑡(𝑞ℎ𝑗(𝑡−1) − 𝑣ℎ𝑗(𝑡−1))

(𝑗,𝑖)∈𝐴

, ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇\{1} 
(75) 

         𝑣ℎ𝑖𝑡 ≤ 𝑞ℎ𝑖𝑡, ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (76) 

         𝑞ℎ𝑖𝑡, 𝑣ℎ𝑖𝑡 ≥ 0 , ∀ 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (77) 

 

Note that 𝑍𝑅(𝜆, 𝛾) = 𝑍𝑅1(𝜆𝑖, 𝛾𝑖) + 𝑍𝑅2(𝜆ℎ, 𝛾ℎ). After decomposition, sub-problem 1 becomes a 

knapsack problem, which can be solved practically using efficient knapsack algorithms such as 

dynamic programming. Also, for sub-problem 2, the LP model can be solved for each target ℎ, 

and the results can be aggregated for all the targets.  

5.4.2.2. Lower Bound 

By solving (RLSTS) at each iteration, we have all the decision variables 𝑦𝑖, 𝑞ℎ𝑖𝑡 and 𝑣ℎ𝑖𝑡 

and the corresponding upper bound value. Considering the original problem, 𝑦𝑖 satisfies all the 



 

83 

constraints (i.e. budget and integrality constraint). However, 𝑞ℎ𝑖𝑡 and 𝑣ℎ𝑖𝑡 are probably not feasible 

to the original (LSTS) problem and heuristic methods are used to construct a feasible solution. At 

first, we fix 𝑦𝑖 to the values obtained from (RLSTS), then update 𝑞ℎ𝑖𝑡 and 𝑣ℎ𝑖𝑡 ∀ℎ ∈ 𝐻, 𝑖 ∈

𝑁 𝑎𝑛𝑑 𝑡 ∈ 𝑇\{1} accordingly. Note that since 𝑞ℎ𝑖1 is known from constraint (52), for given 𝑦𝑖, 

both 𝑞ℎ𝑖𝑡 and 𝑣ℎ𝑖𝑡 can be obtained from constraints (53) to (56). Finally, deploying all the decision 

variables into the objective function (51) provides a lower bound at each iteration. If the lower and 

upper bounds are equal at an iteration, then the optimal solution is found and algorithm is 

terminated. Otherwise, the difference between the upper and lower bounds provides the optimality 

gap (which means the difference between the true optimum and the feasible solution is no larger 

than this gap). The optimality gap could be used as a stopping criterion to terminate the algorithm. 

Note that if the Lagrangian multipliers are near convergence, the obtained lower bound yields a 

good feasible solution of the original objective with small optimality gap.  

5.4.2.3. Updating Lagrangian Multiplier 

Lagrangian Relaxation is an iterative algorithm and we aim to minimize the upper bound 

while updating 𝜆 and 𝛾 at each iteration (𝑚𝑖𝑛⏟
𝜆,𝛾

𝑍𝑅(𝜆, 𝛾)). Since the 𝑍𝑅(𝜆, 𝛾) is convex over 

lagrangian multipliers, we can use a subgradient optimization method and update the multiplier as 

follows: 

𝜆ℎ𝑖𝑡
𝑘+1 = 𝑚𝑎𝑥 (0, 𝜆ℎ𝑖𝑡

𝑘 + 𝑡𝑘∆𝜆ℎ𝑖𝑡
𝑘 ), ∀ ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (78) 

𝛾ℎ𝑖𝑡
𝑘+1 = 𝑚𝑎𝑥 (0, 𝛾ℎ𝑖𝑡

𝑘 + 𝑡𝑘∆𝛾ℎ𝑖𝑡
𝑘 ), ∀ ℎ ∈ 𝐻, 𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (79) 

 

where the subgradients are ∆𝜆ℎ𝑖𝑡
𝑘 = 𝑣ℎ𝑖𝑡 − 𝑦𝑖 and ∆𝛾ℎ𝑖𝑡

𝑘 = 𝑞ℎ𝑖𝑡 + 𝑦𝑖 − 1 − 𝑣ℎ𝑖𝑡  . Note that the 𝑚𝑎𝑥 

operator is used to take care of the negative outcomes while updating multipliers. The step size is 

usually set to 
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𝑡𝑘 =
𝜇𝑘(𝑍𝑅(𝜆

𝑘, 𝛾𝑘) − 𝑍𝐿𝐵)

∑ ∑ ∑ [(∆𝜆ℎ𝑖𝑡
𝑘 )

2
+ (∆𝜆ℎ𝑖𝑡

𝑘 )
2
]𝑡∈𝑇𝑖∈𝑁ℎ∈𝐻

 (80) 

 

where 𝑍𝐿𝐵 is the objective value of the best-known feasible solution and 𝑍𝑅(𝜆
𝑘, 𝛾𝑘) is the upper 

bound at 𝑘𝑡ℎ iteration and 𝜇𝑘 is the control scalar. In practice, the scalar parameter is set to a value 

between 0 and 2 in the first iteration (0 < 𝜇0 < 2) ant it will be updated by comparing the best 

and worst values of 𝑍𝑅(𝜆
𝑘, 𝛾𝑘) in every certain number of iterations (e.g., 20). In section 5.5, we 

decrease 𝜇𝑘 (𝑘 > 0) if the difference between best and worst values is greater than 1%, and 

increase 𝜇𝑘 if the difference is less than a 0.1%.  

The LR algorithm is terminated if one of the following conditions is satisfied: (i) the 

optimality gap is less than a threshold (e.g. 0.0001), (ii) the solution time exceeds a reasonable 

limit (or a certain number of iterations). The LR steps could be summarized as follows: 

Step 0: Initialization: Let 𝐾 be the maximum number of iterations (e.g. 𝐾 = 1000), 𝑘 = 0 be the 

iteration index and 𝜖 be the acceptable optimality gap. Initialize 𝜆ℎ𝑖𝑡
𝑘  and 𝛾ℎ𝑖𝑡

𝑘 , for all ℎ ∈ 𝐻, 𝑖 ∈

𝑁, 𝑡 ∈ 𝑇 and let 𝑦𝐿𝐵, 𝑞𝑳𝑩 and  𝑍𝐿𝐵 be the best feasible solution of STS obtained by greedy 

algorithm and 𝑍𝑈𝐵 = 𝐼𝑛𝑓.   

Step 1: Upper Bound: Solve sub-problem 1 using dynamic programing and store 𝑍𝑅1
𝑘 (𝜆𝑖, 𝛾𝑖), and 

𝑦𝑘. Also, solve sub-problem 2 using CPLEX and store 𝑍𝑅2
𝑘 (𝜆ℎ, 𝛾ℎ), 𝑞

𝑘 and 𝑣𝑘. Then, the upper 

bound objective value is 𝑍𝑅
𝑘(𝜆, 𝛾) = 𝑍𝑅1

𝑘 (𝜆𝑖, 𝛾𝑖) + 𝑍𝑅2
𝑘 (𝜆ℎ, 𝛾ℎ).  

Step 2: Lower Bound: using 𝑦𝑘 from step 1, calculate the corresponding 𝑞𝐷, 𝑣𝐷 and 𝑍𝐷 for the 

STS.  

Step 3: If 𝑍𝐷 > 𝑍𝐿𝐵, update 𝑍𝐿𝐵 = 𝑍𝐷, 𝑞𝐿𝐵 = 𝑞𝐷, 𝑣𝐿𝐵 = 𝑣𝐷 and 𝑦𝐿𝐵 = 𝑦𝑘. If 𝑍𝑘 < 𝑍𝑈𝐵, then 

𝑍𝑈𝐵 = 𝑍𝑘. Also, update the optimality gap as 𝑜𝑝𝑡_𝑔𝑎𝑝 =
𝑍𝑈𝐵−𝑍𝐿𝐵

𝑍𝐿𝐵
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Step 4: If 𝑘 = 𝐾 or 𝑜𝑝𝑡_𝑔𝑎𝑝 < 𝜖, stop and return opt-gap, 𝑦𝐿𝐵, 𝑞𝐿𝐵 and 𝑍𝐿𝐵; otherwise, go to 

step 5.  

Step 5: Update lagrangian multipliers at iteration 𝑘 as follows. Then, 𝑘 = 𝑘 + 1 and go to step 1. 

5.4.3. Simulated Annealing  

The simulate annealing (SA) algorithm is used for approximating the optimal value 

(finding a near optimal solution) and comparing the results with LR and the exact solutions. As 

explained in section 3.4.2, SA is a random neighborhood search technique improves the objective 

value iteratively. As an important advantage, SA can escape from local optima by accepting a 

worse solution with a probability function that decreases in the higher iterations. In each iteration, 

the algorithm compares the new objective value 𝑍𝑛𝑒𝑤(. ), with the current objective 𝑍𝑐𝑢𝑟(. ) 

obtained from previous iterations. In a maximization problem, if 𝑍𝑛𝑒𝑤(. ) > 𝑍𝑐𝑢𝑟(. ), then 

𝑍𝑐𝑢𝑟(. ) = 𝑍𝑛𝑒𝑤(. ), which means the new solution is accepted, otherwise the new solution which 

is worse than the current solution (𝑍𝑛𝑒𝑤(. ) < 𝑍𝑐𝑢𝑟(. )) will be accepted with the probability of 

𝑝 = exp (
𝑍𝑛𝑒𝑤(.)−𝑍𝑐𝑢𝑟(.)

𝑇
) where 𝑇 is temperature parameter. Please see section 3.4.2 for more 

discussion on SA and the pseudo code of the algorithm is presented in Figure 4.  

For initialization, the algorithm starts with the solution obtained from Greedy algorithm. 

To find a new solution by the neighborhood search, remove one of the current locations 𝑖 with an 

installed sensor (set 𝑦𝑖 = 0). Then, search all the first level neighbors 𝑗 (first level neighbors are 

connected to 𝑖 with a space-link, i.e. (𝑖, 𝑗) ∈ 𝐴) and add them to the new solution (set 𝑦𝑗 = 1) as 

long as the budget constraint is satisfied. If none of the first level neighbors of node 𝑖 can be 

selected due to the budget constraint, set 𝑦𝑖 = 1 with 0.5 probability, and repeat the neighborhood 

search for another location in the current solution that has a sensor installed. If all the locations are 

investigated and still a new solution has not been found, the neighborhood search is extended to a 
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second level neighbors (second level neighbors are indirectly connected to 𝑖 where there is one 

node in between them.). This process continues by extending the neighborhood search to third 

level neighbors until a new solution can be found. Again, note that for the new locations selected 

for installation 𝒚, both 𝐪 and 𝑍𝑛𝑒𝑤(𝐲, 𝐪) can be calculated. 

5.5. Case Studies 

The proposed mathematical model and the solution approaches are applied to different 

numerical examples to demonstrate their applicability and performance. In the first example, a 

series of hypothetical space-time grid networks of various sizes are constructed and the solution 

results are compared. The hypothetical networks are generated in a one-dimensional space as 

shown in Figure 25 and the space-time sample points for each target are randomly generated. The 

second numerical example, on the other hand, is based on real geo-tagged twitter data collected in 

NYC (see section 4.3 for more details).  

1 2 3 N-2 N-1 N

1

2

3

T-2

T-1

T

Physical

Network  

Figure 25  𝑁 × 𝑇 grid network. 

The proposed model and solution algorithms are implemented in Julia Language [145] 

using high performance computing with 8 processors and 40 GB of RAM. The (RLSTS) model is 
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also solved directly by commercial solver (CPLEX). Table 15 shows the tuned parameters used 

for SA and LR algorithm. 

Table 15  The SA parameters and their values. 

Algorithm Parameter Value 

SA 

𝑇𝑚𝑎𝑥 40000 

𝑇𝑚𝑖𝑛 0.0001 

𝐼𝑡𝑒𝑟𝑚𝑎𝑥 10 

∝ 0.80 

LR 
𝜇0 0.5 

𝐼𝑡𝑒𝑟𝑚𝑎𝑥  500 

 

5.5.1. Hypothetical Grid Networks 

For the hypothetical networks, we use a solution time limit of 1800 seconds for all the 

algorithms and run a series of instances with different numbers of individuals (𝐻), network sizes 

(𝑁) and time periods (𝑇). Let denote the optimal objective value obtained by CPLEX, its solution 

time and optimality gap by 𝑍∗, 𝑡∗ and 𝜖∗, respectively. We also denote the objective values found 

by the greedy, LR and SA algorithms by 𝑍𝐺 , 𝑍𝐿𝑅, and 𝑍𝑆𝐴, respectively. The solution time for LR 

and SA are denoted by 𝑡𝐿𝑅 and 𝑡𝑆𝐴 respectively, and 𝜖𝐿𝑅 represents the optimality gap for LR. 

Overall, 24 hypothetical networks are generated and the results are summarized in Table 16. For 

the first 15 cases, the exact objective value with 0 optimality gap is found by CPLEX. LR returns 

the exact solution as well, but the gap is not promising. This high gap is because of the nature of 

the relaxed problem (we will explain this later in section 5.6). Also, SA is returning the exact value 

for more than 60% of cases and it is performing well in the other cases. 

From case 16 to 24, CPLEX is not able to solve the problem in 1800 s (or it returns a high 

optimality gap) but both LR and SA can find a near optimal solution. In cases 22 and 24, SA 

objective value is slightly better than LR and that is because LR needs to solve an LP in sub-
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problem 2 in each iteration which is time consuming. The LR terminates after 1800 seconds with 

less number of iterations compared to SA and cannot reach a better objective value.  

5.5.2. Large Scale Application 

The second numerical example is based on the real geo-tagged twitter data that are 

collected in NYC area. The data is cleaning and preprocessing is explained in section 4.3. We 

further filter the good twitter users based on the cutoff points that are proposed in Table 12, and 

narrow down the study area to Manhattan, NY (Figure 26). 

Table 16  Results for hypothetical grid networks. 

Case #  
Network size CPLEX Greedy LR SA 

𝐻 𝑁 𝑇 𝑍∗ 𝑡∗ 𝜖∗ 𝑍𝐺  𝑍𝐿𝑅 𝑡𝐿𝑅 𝜖𝐿𝑅 𝑍𝑆𝐴 𝑡𝑆𝐴 

1 10 12 24 42.74 0.21 0.00 42.74 42.74 7.67 0.26 42.74 3.28 

2 10 24 48 40.53 0.31 0.00 34.52 40.53 33.07 0.26 40.53 9.13 

3 25 12 24 108.50 0.62 0.00 101.78 108.50 27.05 0.22 108.50 6.66 

4 25 24 48 79.61 1.17 0.00 70.75 79.61 59.53 0.25 76.27 22.11 

5 50 12 24 206.92 0.93 0.00 196.83 206.92 42.57 0.22 206.92 14.03 

6 50 24 48 160.56 3.03 0.00 150.80 160.56 207.23 0.27 156.99 42.75 

7 100 12 24 382.96 2.92 0.00 332.89 382.96 178.88 0.27 382.96 27.35 

8 100 24 48 283.32 12.29 0.00 220.65 283.32 431.37 0.26 276.11 101.10 

9 200 12 24 799.12 11.34 0.00 654.71 779.12 357.45 0.30 779.12 60.36 

10 200 24 48 582.44 24.87 0.00 575.99 582.44 784.17 0.47 575.99 180.50 

11 500 12 24 1906.62 64.28 0.00 1832.41 1906.62 787.95 0.30 1906.62 165.21 

12 500 24 48 1363.75 109.28 0.00 947.42 1363.75 1530.83 0.50 1256.13 662.40 

13 1000 12 24 3627.19 161.84 0.00 3100.53 3627.19 1800 0.33 3627.19 378.45 

14 1000 24 48 2702.57 482.10 0.00 1847.72 2702.57 1800 0.51 2503.20 1101.78 

15 2500 12 24 9198.45 1023.74 0.00 7698.97 9198.45 1800 0.34 9198.45 1014.03 

16 2500 24 48 6923.86 1800 0.13 6037.35 6923.86 1800 0.51 6285.72 1800 

17 5000 12 24 13487.73 1800 0.59 15205.76 18551.18 1800 0.33 18551.18 1800 

18 5000 24 48 - 1800 - 9081.96 12497.94 1800 0.56 12007.73 1800 

19 7500 12 24 - 1800 - 22953.22 28117.34 1800 0.32 28117.34 1800 

20 7500 24 48 - 1800 - 16972.08 18403.00 1800 0.56 18177.63 1800 

21 10000 12 24 - 1800 - 30626.28 37646.79 1800 0.31 37646.79 1800 

22 20000 12 24 - 1800 - 61029.89 70106.36 1800 0.36 74481.90 1800 

23 25000 12 24 - 1800 - 81529.33 87444.82 1800 0.36 87444.82 1800 

24 30000 12 24 - 1800 - 97667.47 108667.47 1800 0.41 113085.16 1800 
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The Google API is used to select 84 major intersection in Manhattan. Then, by using a map 

matching technique, the location of each sample tweet (longitude, latitude of each sample point) 

is matched to the nearest neighbor intersection if it falls within a radius of 100 meter, otherwise 

the sample point is dropped from the dataset. To construct the space-time network, 37 time stamps 

in 30 minute intervals are considered from 6 Am to 12 AM. Then, the time of each sample point 

is matched to its nearest time stamp and the corresponding space-time nodes are characterized by 

the longitude, latitude and time stamp. 
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Figure 26  Manhattan Network.  

The twitter data is collected from June 28 to July 18. In each day, the prism chains are 

formed for each individual target based on sample points from 6 Am to 12 AM and all days are 
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aggregated to increase the sample size, Eventually, 1022 individuals are selected and three cases 

are considered to apply the proposed model and compare the performance of solution approaches: 

(1) the first 50 individuals, (2) by first 500 individuals and (3) all 1022 individuals. The solution 

results are presented in Table 17. We set a solution time limit of 3600 seconds and due to the 

increased problem size, CPLEX and Gurobi are not able to find a meaningful feasible solution.  

Table 17  Results for Manhattan network. 

Case #  
Network size Greedy LR SA 

𝐻 𝑁 𝑇 𝑍𝐺  𝑍𝐿𝑅  𝑡𝐿𝑅  𝜖𝐿𝑅 𝑍𝑆𝐴 𝑡𝑆𝐴 

1 50 84 37 2860.30 3128.290365 1039 0.21 3079.21 448 

2 500 84 37 27553.92 30028.4056 3600 0.30 28105.82 3600 

3 1022 84 37 54656.05 62127.06621 3600 0.39 60511.57 3600 
 

The greedy algorithm finds good feasible solutions that are approximately no smaller than 

63% (1 −
1

𝑒
) of the true optimum (see section 5.4.1 for more details). The results in Table 17 show 

that SA can improve the objective value found by greedy for cases 1 to 3 by 8%, 2% and 11%, 

respectively. On the other hand, LR improves greedy objective values by 9%, 9% and 14%. The 

relative gaps still are not promising in LR and that is because of the problem structure, as explained 

in section 5.6. However, from our experiments on hypothetical networks, the difference between 

the near-optimal solution and the true optimum is often much smaller than the relative gap and the 

solutions are reasonable in practice. 

5.6. Results and Discussion 

In this chapter, we try to integrate human travel characteristics and mobility patterns into a 

sensor network design problem. A Mixed Integer Nonlinear Programming (MINLP) model is 

proposed in a probabilistic space-time network structure. The proposed model is linearized and 

greedy, Lagrangian Relaxation and simulated annealing algorithms are designed to obtain near-

optimum solutions. The results show that Greedy algorithm can yield a good feasible solution and 
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both LR and SA algorithms have a good performance in finding a near optimal solution for 

hypothetical grid networks (in fact, when the network size is small, they return the exact optimal 

solution found by CPLEX). Despite that, the optimality gap obtained by LR is not promising. The 

reason is that when we relax constraints (55) and (56) in (LSTS) formulation, the dummy variable 

𝑣ℎ𝑖𝑡 does not relate to 𝑦𝑖 any more (note that before relaxation 𝑣ℎ𝑖𝑡 = 𝑞ℎ𝑖𝑡 when 𝑦𝑖 = 1, and 𝑣ℎ𝑖𝑡 =

0 when 𝑦𝑖 = 0). Therefore, since 𝑢ℎ is the predominant positive coefficient of 𝑣ℎ𝑖𝑡 in the objective 

function, the algorithm tries to maximize 𝑣ℎ𝑖𝑡, i.e. make 𝑣ℎ𝑖𝑡 = 𝑞ℎ𝑖𝑡 (considering constraint (66)). 

It means ∑ ∑ 𝑣ℎ𝑖𝑡𝑡∈𝑇𝑖∈𝑁 = 1, ∀ℎ ∈ 𝐻, whereas in (LSTS) formulation when 𝑦𝑖 = 0 we have 𝑣ℎ𝑖𝑡 =

0 and ∑ ∑ 𝑣ℎ𝑖𝑡𝑡∈𝑇𝑖∈𝑁 ≪ 1 for some of the targets. This structure affects the optimality gap and the 

algorithm cannot improve the upper bound although it is able to find the exact solution in smaller 

case studies.  

Future work can be conducted in several directions. First, a branch and bound framework 

can be implemented to slightly improve the optimality gap. The current study assumes that the 

space-time network is homogeneous and space-time node and links are independent with an equal 

visiting probability. However, in real world different weight factors may be considered regarding 

the land use associated with each node. For instance, the probability of moving to a space-time 

node in a residential area at 10 pm, is relatively higher than moving to a node in shopping centers 

at the same time. The target utilities (𝑢ℎ) are randomly generated for in this study, however there 

are many factors that can be considered in the future for assigning different utilities to each target 

ℎ e.g. sociodemographic variables. Exploring social media targets using text mining and machine 

learning techniques can also provide insights into formulating the defining utility functions. 
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CHAPTER 6:  CONCLUSION 

 

Facility network design has long been recognized as one of the most difficult and 

challenging problems in transportation and urban planning. In this study, at first we investigates a 

new framework for multimodal network design problems, by considering safety and flow 

interactions between different modes of transport. A mixed-integer nonlinear programming model 

is developed for optimally locating sidewalks and crosswalks in the network. The greedy heuristic 

and simulated annealing algorithms are implemented for finding a near optimal solution and 

numerical examples are conducted to evaluate the algorithms and draw managerial insights. 

According to the results, sidewalk and crosswalk installation can reduce the total transportation 

cost by 12%, 5% and 59% respectively for the Small, Hearn and Sioux Falls networks, 

respectively. The proposed model in task 1 only considers the long-term stationary travel patterns 

(e.g., fixed OD demand) and short-term variations of human mobility are ignored. Therefore, we 

defined our second task towards human mobility and travel characteristics.  

In the second task of this research, a set of parsimonious measures based on time geography 

concepts are proposed to answer an important question about mobility studies using geo-tagged 

mobility sample data: How accurate it would be to utilize such samples in estimating continuous 

individual mobility trajectories? The estimated trajectory between a set of limited space-time 

sample points is obtained by connecting these sample points with linear segments. However, since 

the estimated trajectory may differ from an individual’s unknown ground truth trajectory, a set of 

fundamental measures are proposed to quantify the accuracy of the estimation inaccuracy in a 
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robust manner. The estimation inaccuracy depends on the density of the sample points. In the 

proposed methodology, an individual’s activity range around the estimated trajectory is 

constructed by a chain of space-time prisms. Then the proposed measures, including activity 

bandwidth and normalized activity bandwidth, are calculated on this chain. The activity bandwidth 

quantifies the possible absolute inaccuracy range between the estimated and the ground truth 

trajectories, while the normalized activity bandwidth measures the relative difference between the 

mobility pattern of the estimated trajectory and that of the ground truth trajectory.  

In travel mobility analysis, these measures can be used to evaluate the suitability of 

estimated individual trajectories from generic geo-tagged social media data. Since it is time 

consuming to calculate these measures working with massive mobility data, we also propose a 

lookup table–based interpolation method to expedite the calculation. The proposed measures and 

the associated lookup table method have been tested with two sets of real-world geo-tagged 

mobility data from social-media and cell phone logs. These cases studies demonstrate that the 

proposed measures can efficiently quantify inaccuracies of using sample individual mobility data 

in estimating their continuous trajectories. They also draw a number of interesting managerial 

insights. For the Twitter data, we find that both measures proposed in this study follow power-law 

distributions at different traveling speed limits (v̅). For the cellphone data, the normalized activity 

bandwidth again follows a power-law distribution, although the activity bandwidth measure can 

be better described with an exponential distribution. Our findings show that most individuals in 

these data sets likely yield high estimation inaccuracies and may not be suitable for mobility 

studies with high accuracy requirement. However, because of the massive amount of geo-tagged 

data available, there are still a good number of individuals with relatively accurate mobility 
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information for mobility pattern analysis. Nonetheless, cautions should be taken in screening these 

data for specific applications. 

The final and predominant goal of this study is to integrate human travel characteristics 

and mobility patterns into traditional network design problems. We propose a probabilistic space-

time network structure to quantify the presence probability of individual targets at different 

locations and times. Then, a new Mixed Integer Nonlinear Programming (MINLP) model is 

developed to maximize the network coverage. Customized solution approaches including greedy 

heuristic, Lagrangian relaxation and simulated annealing are designed to achieve near optimal 

solutions. A set of hypothetical space-time networks with different sizes and parameter settings 

and a real-world case study are designed to demonstrate the performance of the algorithms. The 

results show that for small networks, LR has the best performance and it yields the exact optimal 

solution found by CPLEX. As we increase the size of the hypothetical network or for the real-

world case study, all algorithms can find good feasible solutions. In this case, the optimality gap 

in LR is not promising because of the problem structure as explained in section 5.6. However, 

from our experiments, the difference between the near-optimal solution and the true optimum is 

often much smaller than the optimality gap. This study can be extended in several directions in the 

future. A branch and bound framework can be implemented to slightly improve the optimality gap 

in LR. The current model rely on homogenous space-time network assumption and different 

weight factors may be considered regarding land use and other important factors. Finally, 

exploring different utility functions using text mining and machine learning techniques would be 

desirable in real world problems.  
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APPENDIX A: PROOF OF PROPOSITION 1 

 

We will show that the objective function of the lower level problem, 𝜑𝑙,𝑚(. ), is a 

combination of convex functions and therefore convex. First we will show that the objective 

function for the auto link, 𝜑𝑙,𝑎(. ), (equation (9)) is convex. If we ignore 𝜗 and 𝜇𝑙𝑎 in (9) (as they 

are positive constant values), and denote 𝑥𝑙𝑚 = ∑ 𝑋𝑘𝑙𝑚𝑘∈𝐾  for all links (𝑙,𝑚), we can rewrite (9) 

as: 

𝜑𝑙,𝑎(𝑋, 𝑌) =
1

(𝛾𝑙,𝑠)
𝛽1
(𝑥𝑙,𝑠1

𝛽1 + 𝑥𝑙,𝑠2
𝛽1) +

1

(𝛾𝑙,𝑐)
𝛽2
(𝑥𝑙,𝑏𝑥

𝛽2 + 𝑥𝑙,𝑒𝑥
𝛽2) 

+𝑡𝑙𝑎 (1 + 𝛼1 (
𝑥𝑙𝑎 + 𝜔𝑥𝑙,𝑡

𝛾𝑙𝑎
)
𝛽3

) + 𝜇𝑙,𝑎 

 

As 𝑥𝑎 is convex for 𝑎 ≥ 1 𝑜𝑟 𝑎 < 0, therefore, for 𝛽1, 𝛽2 ≥ 1 𝑜𝑟 𝛽1, 𝛽2 < 0  the first line (parts 

related to S&C) of (16) is convex. For simplicity we assume ∑ 𝑋𝑘𝑙𝑎 = 𝑥𝑘∈𝐾  and ∑ 𝑋𝑘,l,t = 𝑦𝑘∈𝐾 ; 

then, the Hessian matrix of the last part in equation (16) (the second line) is: 

𝛨 =
1

𝛾𝑙𝑎2

[
 
 
 𝛽3(𝛽3−1)𝛼1𝑡𝑙𝑎(

𝑥+𝜔𝑦

𝛾𝑙𝑎
)𝛽3−2 𝛽3(𝛽3 − 1)𝛼1𝑡𝑙𝑎𝜔(

𝑥 + 𝜔𝑦

𝛾𝑙𝑎
)𝛽3−2

𝛽3(𝛽3 − 1)𝛼1𝑡𝑙𝑎𝜔(
𝑥 + 𝜔𝑦

𝛾𝑙𝑎
)𝛽3−2 𝛽3(𝛽3 − 1)𝛼1𝑡𝑙𝑎𝜔

2(
𝑥 + 𝜔𝑦

𝛾𝑙𝑎
)𝛽3−2

]
 
 
 

 

 

A 𝑛×𝑛 real symmetric matrix 𝑀 is positive semi-definite if 𝑧𝑇×𝑀×𝑧 ≥ 0 for all non-zero 

vectors 𝑧 with real entries. For an arbitrary non-zero vector 𝑧 = [𝑎 𝑏], if  we show that   

zT×H×z ≥ 0,  then 𝛨 is positive semidefinite.  

𝑧𝑇×𝐻×𝑧 = [𝑎𝛽3(𝛽3−1)𝛼1𝑡𝑙𝑎(
𝑥+𝜔𝑦

𝛾𝑙𝑎
)
𝛽3−2

+ 𝑏𝛽3(𝛽3 − 1)𝛼1𝑡𝑙𝑎𝜔(
𝑥+𝜔𝑦

𝛾𝑙𝑎
)𝛽3−2; a𝛽3(𝛽3 −

1)𝛼1𝑡𝑙𝑎𝜔 (
𝑥 + 𝜔𝑦

𝛾𝑙𝑎
)
𝛽3−2

+ 𝑏𝛽3(𝛽3 − 1)𝛼1𝑡𝑙𝑎𝜔
2 (

𝑥 + 𝜔𝑦

𝛾𝑙𝑎
)
𝛽3−2

] × [
𝑎
𝑏
] = 
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𝑎2𝛽3(𝛽3−1)𝛼1𝑡𝑙𝑎(
𝑥 + 𝜔𝑦

𝛾𝑙𝑎
)
𝛽3−2

+ 𝑎𝑏𝛽3(𝛽3 − 1)𝛼1𝑡𝑙𝑎𝜔 (
𝑥 + 𝜔𝑦

𝛾𝑙𝑎
)
𝛽3−2

+ 𝑏a𝛽3(𝛽3 −

1)𝛼1𝑡𝑙𝑎𝜔 (
𝑥 + 𝜔𝑦

𝛾𝑙𝑎
)
𝛽3−2

+ 𝑏2𝛽3(𝛽3 − 1)𝛼1𝑡𝑙𝑎𝜔
2 (

𝑥 + 𝜔𝑦

𝛾𝑙𝑎
)
𝛽3−2

 

 

We need to show that the above expression is non-negative: 

 𝑎2𝛽3(𝛽3−1)𝛼1𝑡𝑙𝑎(
𝑥 + 𝜔𝑦

𝛾𝑙𝑎
)
𝛽3−2

+ 2𝑎𝑏𝛽3(𝛽3 − 1)𝛼1𝑡𝑙𝑎𝜔 (
𝑥 + 𝜔𝑦

𝛾𝑙𝑎
)
𝛽3−2

+ 𝑏2𝛽3(𝛽3 −

1)𝛼1𝑡𝑙𝑎𝜔
2 (

𝑥 + 𝜔𝑦

𝛾𝑙𝑎
)
𝛽3−2

 

= 𝛽3(𝛽3 − 1)𝛼1𝑡𝑙𝑎 (
𝑥 +  𝜔𝑦

𝛾𝑙𝑎
)
𝛽3−2

(𝑎2 + 2𝑎𝑏𝜔 + 𝑏2𝜔2) 

= 𝛽3(𝛽3 − 1)𝛼1𝑡𝑙𝑎 (
𝑥 +  𝜔𝑦

𝛾𝑙𝑎
)
𝛽3−2

(𝑎 + 𝑏𝜔)2 

 

Knowing that 𝑥, 𝑦, 𝑡𝑙𝑎 , 𝜔 and 𝛾𝑙𝑎 are all positive, for 𝛽3 ≥ 1 𝑜𝑟 𝛽3 < 0, the Hessian will 

always be non-negative, and therefore 𝜑𝑙,𝑎(. ) (represented by equation (9)) in the objective 

function is convex. In a similar way we can show that equations (10) and (13) are also convex. For 

𝛽5 ≥ 1 or 𝛽5 < 0 and positive values of  ∝3, 𝛾𝑙𝑝 and 𝜎, equation (11) is convex as long as 

𝑃𝑙𝑎(𝑋𝑙𝑠)𝑋𝑙𝑠 is convex. In our case, 𝑃𝑙𝑎(𝑋𝑙𝑠) is a linear expression with positive coefficients, and 

therefore 𝑃𝑙𝑎(𝑋𝑙𝑠)𝑋𝑙𝑠 is convex. Equation (14) consists of positive constant parameters and 

equation (15) is zero. Thus, the objective function in the lower level problem is a sum of convex 

expressions, which indicates that it is convex. 
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APPENDIX B: PROOF OF PROPOSITIONS 2-5 

 

This section discusses the proofs of the proposition in section 4.2. 

Proposition 2: Given (𝑐1, 𝑡1) and (𝑐𝑀, 𝑡𝑀), we have 𝐷1
c = 𝐷c(𝑡1) and 𝐷𝑀

c = 𝐷c(𝑇 − 𝑡𝑀), where 

function 𝐷c(𝑡): =
1

3
𝜋�̅�2𝑡3, ∀𝑡 ∈ [0,∞)  (note that �̅� and 𝑇 are given parameters). 

Proof. It can be seen from Figure 12 in the manuscript that the lower cone 𝐎(𝑐1,𝑡1)
− ’s height and 

the base radius are 𝑡1 and �̅�𝑡1, respectively, and therefore the volume of 𝐎(𝑐1,𝑡1)
−  would be 

𝐷1
𝑐 =

1

3
𝜋(�̅�𝑡1)

2𝑡1 =
1

3
𝜋�̅�2𝑡1

3   =  𝐷c(𝑡1). For upper cone 𝐎(𝑐𝑀,𝑡𝑀)
+ , again the height and the base 

radius are (𝑇 − 𝑡𝑀) and �̅�(𝑇 − 𝑡𝑀), respectively, and as a result, 

𝐷𝑀
𝑐 =

1

3
𝜋(�̅�(𝑇 − 𝑡𝑀))

2(𝑇 − 𝑡𝑀) =
1

3
𝜋�̅�2(𝑇 − 𝑡𝑀)

3  =  𝐷c(𝑇 − 𝑡𝑀) .  □ 

 

Proposition 3: Given (𝑐1, 𝑡1) and (𝑐𝑀, 𝑡𝑀), we have 𝑈1
c = 𝑈c(𝑡1) and 𝑈𝑀

c = 𝑈c(𝑇 − 𝑡𝑀), where 

function 

𝑈c(𝑡):= ∫ ∫ ∫ √(𝜌𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜃)2 + (𝜌𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃)2𝜌2𝑠𝑖𝑛𝜑  𝑑𝜌𝑑𝜑𝑑𝜃

𝑡
𝑐𝑜𝑠𝜑

0

𝑡𝑎𝑛−1(�̅�)

0

2𝜋

0

, ∀𝑡

∈ [0,∞).   

 

Proof. Essentially, function 𝑈c(𝑡) solves the angular momentum of a cone with a height of 𝑡 and 

a base radius of 𝑡�̅�.  We define a spherical coordinate system {(𝜌, 𝜃, 𝜑)|𝜌 ≥ 0, 𝜃 ∈ [0, 𝜋], 𝜑 ∈

[0,2𝜋]}, where 𝜌 is the radial distance, 𝜃 is the polar angle, and 𝜑 is the azimuthal angle. Let us 

consider a cone in this spherical coordinate system while the cone vertex is placed at the origin 

and its axis is on the radius with 𝜃 = 0 (so the cone’s base is facing up). Note that this spherical 

coordinate system is equivalent to the orthogonal coordinate system {(𝑥, 𝑦, 𝑧)|𝑥, 𝑦, 𝑧 ∈ (−∞,∞)}, 
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where  𝑥 = 𝜌𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜃, 𝑦 = 𝜌𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃, and 𝑧 = 𝜌𝑐𝑜𝑠𝜑. Then the angular momentum of this 

cone in the orthogonal coordinate system can be formulated as  

𝑈𝑐(𝑡): = ∫ ∫ ∫ √𝑥2 + 𝑦2  𝑑𝑦𝑑𝑥𝑑𝑧
√�̅�2𝑧2−𝑥2

−√�̅�2𝑧2−𝑥2
 .

�̅�𝑧

 −�̅�𝑧

𝑡

0

 (81) 

 

We can translate this expression into the spherical coordinate system as follows: 

𝑈𝑐(𝑡):

= ∫ ∫ ∫ √(𝜌𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜃)2 + (𝜌𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃)2𝜌2𝑠𝑖𝑛𝜑  𝑑𝜌𝑑𝜑𝑑𝜃

𝑡
𝑐𝑜𝑠𝜑

0

.
𝑡𝑎𝑛−1(�̅�)

0

2𝜋

0

 
(82) 

 

Note that in equations (17) and (19) in the manuscript, either cone can be rotated and 

repositioned in the coordinate system as specified in equation (25) and the operations will not 

change the values of the functions we are looking for. This yields a cone with a height of 𝑡1 for 

equation (17) or 𝑇 − 𝑡𝑀 for equation (19). Here, in the integrand, 𝐏𝐒(𝑡) = (0,0) and 𝑐 is a general 

point (𝑥 ∈ (−�̅�𝑡, �̅�𝑡), 𝑦 ∈ (−√�̅�2𝑡2 − 𝑥2, √�̅�2𝑡2 − 𝑥2)). Then, apparently 𝑈c(𝑡1) and 𝑈c(𝑇 −

𝑡𝑀) defined in (82) are equivalent to equations (17) and (19), respectively. This completes the 

proof. □ 

Proposition 4: Given two consecutive control points (𝑐𝑚−1, 𝑡𝑚−1)  and (𝑐𝑚, 𝑡𝑚), 𝐷𝑚
p
=

𝐷p(‖𝑐𝑚 − 𝑐𝑚−1‖, |𝑡𝑚 − 𝑡𝑚−1|), ∀2 ≤ 𝑚 ≤ 𝑀, where function  

𝐷p(𝑐, 𝑡) ∶=  2 ∫ ∫ ∫ 𝜌2𝑠𝑖𝑛𝜑  𝑑𝜌𝑑𝜑𝑑𝜃

�̅�2𝑡2−𝑐2

(2�̅�2𝑡)𝑐𝑜𝑠𝜃−(2𝑐)𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑

0

𝑡𝑎𝑛−1(�̅�)

0

2𝜋

0
,      ∀𝑐, 𝑡 ∈ [0,∞). 

 

Proof. For the convenience of the presentation, we decompose 𝑐𝑚−1 = (𝑥𝑚−1, 𝑦𝑚−1) and 𝑐𝑚 =

(𝑥𝑚, 𝑦𝑚). Then we investigate the prism between two control points (𝑥𝑚−1, 𝑦𝑚−1, 𝑡𝑚−1) and 

(𝑥𝑚, 𝑦𝑚, 𝑡𝑚). Because shifting and rotating operations will not affect 𝐷𝑚
p

, we can obtain the value 

of 𝐷𝑚
p

 with the following steps: 
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Step 1: Shift and rotate the original orthogonal coordinate system to translate points 

(𝑥𝑚−1, 𝑦𝑚−1, 𝑡𝑚−1)  and (𝑥𝑚, 𝑦𝑚, 𝑡𝑚) into A:= (0,0,0) and B:= (0, δ𝑐𝑚, δ𝑡𝑚), respectively, where 

δ𝑐𝑚 = ‖𝑐𝑚 − 𝑐𝑚−1‖ = √(𝑥𝑚 − 𝑥𝑚−1)2 + (𝑦𝑚 − 𝑦𝑚−1)2 and δ𝑡𝑚 = |𝑡𝑚 − 𝑡𝑚−1| (Figure 

B.1(a)). Note that now both control points are in the 𝑦 − 𝑡 plane. 

Space

t

v

Ps

B

A

G

E

y

x

δcm

δtm

(x,y,t)

(0,y,t)

Space

t

v

B

A

G

E

y

x

β

β 

n

β 
v.δtm

δcm
v

 

 (a)            (b) 

Figure B.1  (a) Space-time prism after shifting and rotating coordinates and (b) position of points 

in 𝑦 − 𝑡 plane and specification of angle β.  

Step 2: Find the coordinates of points G and E in 𝑦 − 𝑡 plane by crossing the lines AE, BE and 

AG, BG as follows (these lines are also in 𝑦 − 𝑡 plane): 

AE: 𝑦 = �̅�𝑡, BE: 𝑦 = −�̅�𝑡 + (𝛿𝑐𝑚 + �̅�. 𝛿𝑡𝑚) ⇒ 𝐸 = (0, 𝐸𝑦 ≔
𝛿𝑐𝑚+�̅�.𝛿𝑡𝑚

2
, 𝐸𝑡 ≔

𝑣.̅𝛿𝑡𝑚+𝛿𝑐𝑚

2�̅�
) 

AG: 𝑦 = −�̅�𝑡, BG: 𝑦 = �̅�𝑡 + (𝛿𝑐𝑚 − �̅�. 𝛿𝑡𝑚) ⇒ 𝐺 = (0, 𝐺𝑦 ≔
𝛿𝑐𝑚−𝑣.̅𝛿𝑡𝑚

2
, 𝐺𝑡 ≔

�̅�.𝛿𝑡𝑚−𝛿𝑐𝑚

2�̅�
) . 

 

Step 3: Find the equation of plane S, the interphase between the two cones in the prism. This plane 

can be formulated with point E and angle 𝛽 (Figure B.1(b)) as follows: 

−𝑠𝑖𝑛 𝛽 (𝑦 − 𝐸𝑦) + 𝑐𝑜𝑠 𝛽 (𝑡 − 𝐸𝑡) = 0 . 

 

This indicates that the normal vector of plane S is (0, − sin 𝛽 , cos 𝛽). Again, in the equivalent 

spherical coordinate system defined in the above proposition, plane S can be represented as 
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−𝑠𝑖𝑛 𝛽 (𝜌𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃 − 𝐸𝑦) + 𝑐𝑜𝑠 𝛽 (𝜌𝑐𝑜𝑠𝜑 − 𝐸𝑡) = 0        

 ⇒   𝜌 =
𝑐𝑜𝑠 𝛽 𝐸𝑡 − 𝑠𝑖𝑛 𝛽 𝐸𝑦

𝑐𝑜𝑠 𝛽 𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑
 . 

 

Step 4: By substituting 𝛽, E𝑡, and E𝑦 with their respective formulations,  the preceding equation 

of plane S becomes 

𝜌 =
�̅�2𝛿𝑡𝑚

2 − 𝛿𝑐𝑚
2

(2�̅�2𝛿𝑡𝑚)𝑐𝑜𝑠𝜃 − (2𝛿𝑐𝑚)𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑
 . 

 

Then, using the triple integral in the spherical coordinates, the volume between the plane 

S and truncated cone in the bottom of 𝐑(𝑐𝑚−1,𝑡𝑚−1)(𝑐𝑚,𝑡𝑚) is 

𝑉:= ∫ ∫ ∫ 𝜌2𝑠𝑖𝑛𝜃  𝑑𝜌𝑑𝜃𝑑𝜑

�̅�2𝛿𝑡𝑚
2−𝛿𝑐𝑚

2

(2�̅�2𝛿𝑡𝑚)𝑐𝑜𝑠𝜃−(2𝛿𝑐𝑚)𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑

0

𝑡𝑎𝑛−1(�̅�)

0

2𝜋

0

 . 

 

Step 5: Because of symmetry, we obtain 𝐷𝑚
p
= 2𝑉 = 𝐷p(δ𝑐𝑚, δ𝑡𝑚), ∀2 ≤ 𝑚 ≤ 𝑀. This 

completes the proof. □ 

Proposition 5: Given (𝑐𝑚−1, 𝑡𝑚−1)  and (𝑐𝑚, 𝑡𝑚), 𝑈𝑚
p
= 𝑈p(||𝑐𝑚 − 𝑐𝑚−1||, |𝑡𝑚 − 𝑡𝑚−1|), ∀2 ≤

𝑚 ≤ 𝑀, where  

𝑈p(𝑐, 𝑡) ≔ 2∫ ∫ ∫ 𝑄𝜌2𝑠𝑖𝑛𝜑  𝑑𝜌𝑑𝜑𝑑𝜃,   ∀𝑐, 𝑡 ∈ [0,∞)

�̅�2𝑡2−𝑐2

(2�̅�2𝑡)𝑐𝑜𝑠𝜃−(2𝑐)𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑

0

𝑡𝑎𝑛−1(�̅�)

0

2𝜋

0
 ,  

and 𝑄:= √(𝜌𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜃)2 + (𝜌𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃 − (
𝑐𝜌𝑐𝑜𝑠𝜑

𝑡
))
2

. 

Proof. This proof follows the same notation defined in Proposition 4. Shift and rotate the prism 

𝐑(𝑐𝑚−1,𝑡𝑚−1)(𝑐𝑚,𝑡𝑚) to put it into the position specified in Figure B.1(a). Now the centerline 

becomes 𝐏𝐒(𝑡) = (0, δ𝑐𝑚𝑡/δ𝑡𝑚), and for a generic point 𝑐 = (𝑥, 𝑦) and a generic time 𝑡, the 

integrand of equation (18) in the manuscript can be formulated in the equivalent spherical 

coordinates as follows: 
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‖𝑐 − 𝑷𝑺(𝑡)‖ = √𝑥2 + (𝑦 − (
𝛿𝑐𝑚𝑡

𝛿𝑡𝑚
))2 = √(𝜌𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜃)2 + (𝜌𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃 − (

𝛿𝑐𝑚𝜌𝑐𝑜𝑠𝜑

𝛿𝑡𝑚
))2 , 

 

which is identical to 𝑄 defined in the proposition statement. Therefore, similar to Step 4 in 

Proposition 4, we obtain 𝑈𝑚
p
= 2 ∗ ∫ ∫ ∫ 𝑄𝜌2𝑠𝑖𝑛𝜃  𝑑𝜌𝑑𝜃𝑑𝜑

�̅�2δ𝑡𝑚
2−δ𝑐𝑚

2

(2�̅�2δ𝑡𝑚)𝑐𝑜𝑠𝜃−(2δ𝑐𝑚)𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑

0

𝑡𝑎𝑛−1(�̅�)

0

2𝜋

0
 . As 

a result, 𝑈𝑚
p
= 𝑈p(δ𝑐𝑚, δ𝑡𝑚), ∀2 ≤ 𝑚 ≤ 𝑀. □ 
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APPENDIX C: GOODNESS OF FIT TEST FOR DIFFERENT MEASURES 

 

To investigate the goodness-of-fit test, we use the Kolmogorov-Smirnov (K-S) test, which 

simply measures the maximum distance between the cumulative distribution function (CDF) of 

the data and the fitted power-law distribution. To do that, we need to calculate a KS statistic as 

follows [146]: 

𝐾𝑆 = 𝑚𝑎𝑥|𝐹 − 𝐺|, (83) 

 

where F is the cumulative distribution of the best fit and G is the cumulative distribution of the 

synthetic data. The synthetic data are generated from the fitted distribution, and then the best fit 

for the empirical data can be tested by the 𝐾𝑆 value. González, Hidalgo, and Barabási (2008) 

proposed a weighted 𝐾𝑆 statistic (𝐾𝑆𝑤) because the regular 𝐾𝑆 is not very sensitive on the edges 

of the cumulative distribution. Hence, we also used 𝐾𝑆𝑤, defined as 

𝐾𝑆𝑤 = 𝑚𝑎𝑥
|𝐹 − 𝐺|

√𝐺(1 − 𝐺)
 . (84) 

 

We calculate 𝐾𝑆𝑤 for the empirical data and its best fit and compare it with that obtained 

for 2,000 synthetic data sets generated from the best fit. Empirical data are statistically consistent 

with their best fit if their 𝐾𝑆𝑤 behaves as good as or better than those obtained for the synthetic 

data. For the goodness-of-fit test for each of the measures, the distribution of 𝐾𝑆𝑤 values generated 

with the synthetic data is compared with the distribution of the ones representing the empirical 

distribution.  
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We summarize the goodness-of-fit test by calculating the p-value based on the distribution 

of 𝐾𝑆𝑤 generated with the synthetic data and the value of 𝐾𝑆𝑤 representing the empirical 

distribution. The p-value quantifies the plausibility of the hypothesis. The p-value is defined to be 

the fraction of the synthetic data values that is larger than the empirical data values. We assume 

the critical p-value is equal to 0.05; that means if the resulting p-value is greater than 0.05, the 

power law is a plausible hypothesis for the data; otherwise, it is rejected. Figure C.1 through Figure 

C.3 show the goodness-of-fit test results for displacement, activity bandwidth, and normalized 

activity bandwidth, respectively. In all cases we find the p-value is greater than 0.05, and thus the 

empirical data passes the goodness-of-fit test. 

 

Figure C.1  Goodness-of-fit test based on 𝐾𝑆𝑤 for displacement. 

 

Figure C.2  Goodness-of-fit test based on 𝐾𝑆𝑤 for activity bandwidth. 
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Figure C.3  Goodness-of-fit test based on 𝐾𝑆𝑤 for normalized activity bandwidth.  
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