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ABSTRACT	
	

Eutrophication	 is	defined	as	the	 ‘over	enrichment’	of	a	water	body	from	nutrients,	

resulting	 in	 uncontrolled	 growth	 of	 primary	 producers,	 leading	 to	 periods	 of	 oxygen	

depletion	 from	decomposition	of	 the	 algal	 organic	matter.	 	According	 to	 the	2010	Water	

Infrastructure	 Needs	 and	 Investment	 (a	 U.S.	 Congressional	 Report),	 40%	 of	 U.S.	 water	

bodies	 are	 contaminated	 with	 pollutants,	 including	 nutrients.	 	 Non-point	 sources	 of	

nutrient	pollution	are	a	major	cause	of	this	reduction	in	water	quality.	One	way	to	decrease	

eutrophication	 is	 to	 manage	 nutrients	 found	 in	 stormwater	 runoff,	 before	 they	 reach	 a	

receiving	water	body.	

Bioretention	 cells	 containing	 an	 internal	 water	 storage	 zone	 (IWSZ)	 have	 been	

shown	 to	 remove	higher	amounts	of	nitrogen	 than	conventional	 cells	 (without	an	 IWSZ).		

The	 IWSZ	 contains	 an	 organic	 carbon	 substrate,	 usually	 derived	 from	 wood	 chips	

submerged	 in	 water,	 which	 supports	 the	 biochemical	 process	 of	 denitrification.	

Characteristics	 of	 wood	 chips	 that	 affect	 nitrogen	 removal	 include	 carbon	 content	 (%),	

leaching	of	dissolved	organic	carbon	(DOC),	and	wood	chip	size	and	type.	However,	there	is	

limited	information	on	how	the	intermittent	hydraulic	loading	that	is	associated	with	these	

field	systems	impacts	their	performance.	Accordingly,	the	overall	goal	of	this	research	is	to	

improve	understanding	of	the	effect	that	the	antecedent	dry	conditions	(ADC)	have	on	the	

performance	of	a	field	scale	bioretention	cell	modified	to	contain	an	IWSZ.	

The	nine	different	types	of	wood	chips	used	in	laboratory	and	field	studies	identified	

in	the	literature	were	categorized	as	hardwood	and	softwood.	Literature	showed	that	total	
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organic	 carbon	 (TOC)	 leached	 from	 softwood	 chips	 is	 almost	 double	 the	 TOC	measured	

from	 the	 hardwood	 chips,	 138.3	 and	 70.3	 mg/L,	 respectively.	 	 The	 average	 observed	

nitrogen	 removal	 for	 softwood	 chips	 was	 found	 to	 be	 greater	 than	 the	 removal	 for	 the	

average	of	the	hardwood	chips	(75.2%	and	63.0%,	respectively).	 	Literature	also	suggests	

that	 larger	 wood	 chip	 size	 may	 limit	 the	 availability	 of	 the	 carbon	 for	 the	 denitrifying	

organisms	and	provides	less	surface	area	for	the	biofilm	growth.	

A	field	study	conducted	for	this	research	compared	the	performance	of	a	modified	

bioretention	 system	 designed	 to	 enhance	 denitrification,	 addition	 of	 an	 IWSZ,	 with	 a	

conventional	 system	 that	 does	 not	 contain	 an	 IWSZ.	 	 Fourteen	 storm	 events	 were	

completed	 from	 January	 2016	 to	 July	 2016	 by	 replicating	 storm	 events	 previously	

completed	 in	 the	 laboratory	using	hydraulic	 loading	 rates	 (HLR)	of	6.9	 cm/h,	13.9	 cm/h,	

and	4.1	cm/h.		The	goal	was	to	have	results	from	storm	events	with	ADCs	of	two,	four,	and	

eight	 days,	 with	 the	 varying	 durations	 of	 hydraulic	 loading	 of	 two,	 four,	 and	 six	 hours.	

Synthetic	stormwater,	simulating	nitrogen	levels	common	in	urban	runoff,	was	used	as	the	

system’s	influent	to	assist	 in	running	a	controlled	experiment.	The	resultant	ADCs	ranged	

from	 0	 to	 33	 days,	 with	 the	 average	 ADC	 being	 9	 days.	 	 The	 fourteen	 sets	 of	 influent	

samples	 were	 averaged	 to	 obtain	 mean	 influent	 concentrations	 for	 the	 synthetic	

stormwater.	 	 These	 values	were	used	when	 calculating	 the	percent	nitrogen	 removal	 for	

the	four	measured	nitrogen	species	(NOx	–	N,	NH4+–	N,	organic	N,	and	TN).	

The	field	storm	events	were	separated	into	three	groups	based	on	HLR	and	duration	

to	eliminate	 the	affects	of	both	variables	on	nitrogen	removal	 for	 these	 results,	 since	 the	

focus	is	the	ADC.		For	the	low	HLR	(4.1	cm/hr),	there	were	four	storm	events	(ADCs	of	4	to	

33	 days),	 as	 the	 ADC	 increased,	 greater	 percentages	 of	 ammonium	 –	 nitrogen,	 organic	
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nitrogen,	 and	 total	 nitrogen	 were	 removed.	 For	 nitrate/nitrite	 –	 nitrogen,	 the	 percent	

removal	 was	 rather	 consistent	 for	 all	 four	 storm	 events,	 not	 significantly	 increasing	 or	

decreasing	with	changes	in	the	ADC.		There	were	five	storm	events	(ADCs	of	0	to	28	days)	

tested	with	the	median	HLR	(6.9	cm/hr),	nitrogen	removal	for	all	four	species	increased	as	

the	 ADC	 increased.	 The	 increase	 was	 significant	 (p<0.05)	 for	 ammonium	 –	 nitrogen,	

organic	 nitrogen,	 and	 total	 nitrogen	 and	 not	 significant	 (p>0.05)	 for	 nitrate/nitrite	 –	

nitrogen.	The	third	group	also	contained	five	storm	events	(ADCs	from	0	to	11	days)	that	

were	 tested	with	 the	highest	HLR	(13.9	cm/hr).	 	Ammonium	–	nitrogen,	nitrate/nitrite	–	

nitrogen,	 and	 total	 nitrogen	 all	 increased	 with	 the	 ADC,	 and	 organic	 nitrogen	 removal	

decreased	with	the	increasing	ADC.		As	a	result,	this	research	concluded	that	the	difference	

in	 HLR	 affects	 the	 nitrogen	 removal	 efficiency,	 but	 overall	 increasing	 the	 ADC	 increased	

nitrogen	removal	for	NOx	–	N,	NH4+	-	N,	organic	N,	and	TN.	

	

	 	



	1	

	
	
	
	
	

CHAPTER	1:	INTRODUCTION	
	
	

According	 to	 the	 2010	Water	 Infrastructure	 Needs	 and	 Investment	 performed	 by	

the	Congressional	Research	Service,	40%	of	surveyed	U.S.	water	bodies	are	compromised	

with	 pollutants	 not	meeting	 relevant	 standards	 (CRS,	 2010).	 	 Non-point	 sources	 are	 the	

major	cause	of	the	reduction	in	water	quality,	while	pollution	from	point	sources	is	a	much	

smaller	percentage	(Copeland	and	Tiemann,	2010).		Non-point	sources	include	agricultural	

and	stormwater	runoff,	precipitation,	and	drainage	(EPA,	2016).		In	contrast,	point	sources	

are	defined	as	a	 “single	 identifiable	source	of	pollution”	where	pollutants	are	discharged,	

for	example,	a	pipe,	ship,	or	factory	smokestack	(NOAA,	2008). 	Stormwater	runoff	(a	non-

point	 source)	 is	 a	 concern	 because	 it	 can	 lead	 to	 excessive	 nutrient	 pollution	 of	 water	

bodies	and,	in	areas	such	as	Tampa	Bay,	can	contribute	up	to	75%	of	nitrogen	inputs	(Wang	

et	al.,	2012).		

Eutrophication	 is	defined	as	the	 ‘over	enrichment’	of	a	water	body	from	nutrients,	

causing	 uncontrolled	 growth	 of	 primary	 producers	 (Mihelcic	 and	 Zimmerman,	 2014),	

resulting	 in	 periods	 of	 oxygen	 depletion	 from	 the	 decomposition	 of	 algal	 organic	matter	

(Ansari,	2014).	 	It	may	lead	to	the	development	of	hypoxic	zones,	areas	of	the	water	with	

low	dissolved	oxygen	concentrations	 (less	 than	2	mg/L),	 causing	animal	and	plant	 life	 to	

suffocate	 and	 die	 (NOAA,	 2014).	 	 Greening	 (2014)	 defines	 “cultural	 eutrophication”	 as	 a	

process	where	human	activities	in	a	watershed	lead	to	increased	nutrient	concentrations	in	

the	water	 body,	 generating	 larger	 amounts	 of	 blooms	 of	 phytoplankton	 and	microalgae.		
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This	 definition	 includes	 the	 impact	 that	 humans	 have	 on	 the	 watershed	 and	 the	

contribution	 the	 community	 makes	 to	 the	 eutrophication	 of	 the	 water	 body.		

Eutrophication	 is	 a	 threat	 to	 water	 bodies	 used	 for	 fishing,	 recreation,	 industry,	 and	

drinking	because	of	the	increased	growth	of	bacteria	and	other	organisms	(Ansari,	2014).		

Additionally,	 the	algae	growth	can	prevent	sunlight	 from	penetrating	 the	water;	blocking	

the	 sun’s	 energy	 that	 sea	 grass	 and	other	 aquatic	plants	 and	organisms	need	 to	perform	

photosynthesis.	 	 In	September	of	2013,	 the	Carroll	Township	near	Toledo,	Ohio	detected	

dangerously	 high	 levels	 of	 the	 algae	 toxin	 Microcystin	 in	 their	 drinking	 water	 plant’s	

finished	 water	 and	 alerted	 their	 residents	 to	 stop	 drinking	 the	 water	 (Kozacek,	 2014).		

Following	 this	detection,	 the	City	of	Toledo	also	 found	high	 levels	of	Microcystin	 in	 their	

water	 and	 advised	 the	 residents	 served	 by	 Toledo	 Water	 not	 to	 drink	 it,	 leaving	 over	

400,000	people	in	the	area	without	clean	drinking	water	(Kozacek,	2014).		Eutrophication	

has	also	been	a	problem	 in	 the	Tampa	Bay	since	 the	 late	1970’s	and	early	1980’s.	 	As	of	

2009,	stormwater	accounts	for	63%	of	total	nitrogen	loadings	into	the	Bay	(EPA,	2009).		

One	 way	 to	 reduce	 eutrophication	 is	 to	 manage	 nutrients	 found	 in	 stormwater	

runoff	before	it	reaches	the	water	body,	resulting	in	a	decrease	of	nutrients	and	pollutants	

in	 the	 water.	 	 Treating	 stormwater	 runoff	 close	 to	 the	 source	 of	 pollution	 using	

bioretention	 systems	 is	 a	 technique	 for	 reducing	 the	 effects	 of	 eutrophication.  A	

bioretention	cell	combines	natural	and	engineered	systems	to	manage	stormwater	runoff	

in	developed	areas	(Lopez	et	al.,	2016a).		The	cell	is	made	up	of	layers	of	sand,	gravel,	and	

other	media	to	assist	in	filtering	the	runoff.		A	bioretention	cell	falls	into	the	category	of	low	

impact	 development	 (LID)	 technologies,	 used	 to	 bring	 the	 state	 of	 a	 site	 back	 to	 its	

“predevelopment	conditions”	or	before	development	occurred	in	the	area.		Other	examples	
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of	 LID	 technologies	 are	 green	 roofs,	 bioswales,	 planter	 boxes,	 permeable	 pavement,	

rainwater	harvesting,	and	green	streets	and	alleys	(Locicero,	2015).		LID	technologies	aim	

to	 control	 stormwater	 runoff	 volume,	 peak	 runoff	 rate,	 flow	 frequency	 and/or	 duration,	

and	improving	water	quality	(Ahiablame,	2013).	 	Bioretention	cells	meet	all	 four	of	 these	

considerations,	 along	 with	 working	 to	 mitigate	 the	 impacts	 urbanization	 has	 on	 water	

quality.	 	 Inherent	 in	 the	 definition	 of	 a	 LID	 technology,	 it	 is	 important	 to	 generate	

environmentally	friendly	and	effective	recommendations	for	building	a	bioretention	cell.	

Literature	 and	 research	 have	 shown	 that	 bioretention	 cells	 containing	 an	 IWSZ,	

remove	 higher	 amounts	 of	 nutrients	 such	 as	 nitrogen	 and	 phosphorus	 (along	with	 total	

suspended	 solids	 (TSS),	 Cu,	 and	 Zn)	 than	 standard	 bioretention	 cells	 (Ming-Han	 2014;	

Lopez	et	al.	2016a)	(Figures	1.1	a	and	b).			

Figure	1.1a.	Diagram	of	a	Conventional	
Bioretention	Cell	

Figure	1.1b.	Diagram	of	a	Modified	
Bioretention	Cell

IWSZ 
Woodchips & Gravel 

Sand 

Mulch 
Top Soil 

Pea Gravel 
Stone 

(underdrain) 

Sand 

Mulch 
Top Soil 

Pea Gravel 
Stone 

(underdrain) 
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An	IWSZ	is	an	additional	layer	within	the	cell	that	contains	a	carbon	source,	such	as	wood	

chips,	 where	 the	 water	 is	 retained.	 	 An	 anoxic	 zone	 is	 created	 in	 the	 IWSZ	 to	 promote	

denitrification	 of	 the	water	 before	 it	 drains	 out	 of	 the	 cell.	 	 It	 has	 been	 reported	 that	 a	

bioretention	 cell	 with	 an	 IWSZ	 would	 increase	 total	 nitrogen	 and	 total	 phosphorous	

removal	to	60%	from	around	40%	for	a	conventional	cell,	for	both	nutrients	(Brown,	2009).	

The	main	component	of	an	IWSZ	is	the	carbon	source	used	to	support	denitrification.		The	

majority	of	prior	studies	of	bioretention	systems	with	IWSZs	have	used	wood	chips	as	the	

carbon	source	(i.e.,	the	wood	chips	leach	DOC	into	the	system	which	serves	as	the	electron	

donor	 for	denitrification).	These	systems	have	been	used	to	treat	stormwater,	greywater,	

agricultural	runoff,	and	wastewater	(Ergas	et	al.,	2010;	Fowdar	et	al.,	2015;	Gilchrist	et	al.,	

2014).			In	order	to	improve	the	recommendations	for	designing	a	bioretention	system	that	

contains	an	IWSZ,	characteristics	of	wood	chips	need	to	be	investigated	more	thoroughly.	

A	 collection	of	 studies	 and	papers	 reviewed	 for	 this	 thesis	 outline	 carbon	 content	

(%),	 TOC	 leaching,	 influent	 and	 effluent	 nitrogen	 concentrations,	 and	 percent	 nitrogen	

removal.	 	A	 few	of	 the	gaps	 in	 this	 research	are	 the	half	 saturation	constant	 (Ks),	ADC	or	

how	many	days	in	between	water	flushing	through	the	system,	and	size	of	the	wood	chips.	

Examining	 these	 topics	more	closely	could	generate	more	 information	on	conditions	 that	

effect	the	operation	of	a	bioretention	system,	specifically	one	containing	an	IWSZ.	

	

1.1	 Research	Goal,	Objectives,	and	Hypothesis	

The	overall	goal	of	this	research	is	to	 improve	understanding	of	the	effect	that	the	

ADC	has	on	the	performance	of	a	modified	bioretention	cell	(containing	an	IWSZ).	 	There	

are	two	objectives	and	one	hypothesis	that	will	guide	this	research.		The	first	objective	is	to	
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identify	knowledge	gaps	in	the	literature	surrounding	the	use,	properties,	and	performance	

of	 wood	 chips	 in	 a	 denitrification	 bioreactor.	 	 The	 second	 objective	 is	 to	 look	 at	 the	

difference	in	nitrogen	removal	for	a	modified	bioretention	system	based	on	variable	ADCs.		

The	hypothesis	is	that	storm	events	with	longer	ADCs	will	have	lower	levels	of	nitrogen	in	

the	effluent	water	than	storm	events	with	shorter	ADCs.	
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CHAPTER	2:	LITERATURE	REVIEW	
	
	

Previous	 studies	 performed	 on	 different	 types	 of	 wood	 chips	 were	 reviewed	 to	

understand	their	potential	to	remove	nitrogen	species	and	promote	denitrification,	and	to	

identify	 the	 biokinetic	 properties	 associated	 with	 different	 types	 of	 wood	 chips.	 The	

majority	of	these	papers	examined	the	use	of	wood	chips	for	denitrification	and	compared	

them	to	other	sources	of	organic	carbon,	such	as	straw	or	maize	cobs.		They	were	used	in	

various	engineering	applications,	 including	bioretention	cells	used	to	manage	stormwater	

and	denitrification	beds	used	to	manage	agricultural	and	domestic	wastewater.	 	Only	two	

published	 studies	 (Peterson	 et	 al.,	 2015	 and	 Lynn	 et	 al.,	 2015a)	 were	 identified	 that	

reported	 the	values	of	 their	ADC	 in	between	experiments/storm	events.	 	 Igielski	 	 (2016)	

(not	published	at	 this	 time)	carried	out	research	observing	the	effect	of	different	 influent	

flow	 rates	 and	 hydraulic	 retention	 times	 (HRTs)	 on	 nitrogen	 removal.	 	 In	 systems	 that	

contain	anoxic	zones,	such	as	discussed	 later	 in	 this	 literature	review,	different	microbial	

processes	occur	to	remove	nutrients	from	the	influent	water.		This	review	will	specifically	

look	at	the	biochemical	processes	that	transform	nitrogen	in	these	systems.	

	

2.1	 Nitrogen	Transformation	Processes	

Nitrogen	 occurs	 in	 various	 forms	 in	 anthropogenic	 waste	 streams	 and	 includes	

inorganic	species	such	as	ammonium	(NH4+),	nitrate	(NO3-),	and	nitrite	(NO2-)	and	organic	

forms	such	as	dissolved	organic	N	and	particulate	organic	N	(Collins	et	al.,	2010).		Levels	of	
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organic	 and	 inorganic	 nitrogen	 can	 vary,	 depending	 on	 the	 land	 use	 and	 hydrologic	

conditions	where	the	runoff	occurs	(Collins	et	al.,	2010).		In	urban	areas,	organic	nitrogen	

has	been	reported	to	be	abundant	in	the	“first	flush”	of	stormwater	runoff	(Flint	and	Davis,	

2007).	 	 Typically,	 influent	 stormwater	 entering	 stormwater	 control	 measures,	 such	 as	

bioretention	 systems,	 contains	 nitrogen	 in	 the	 form	 of	 NH4+,	 NOx	 (NO3-/NO2-),	 and/or	

organic	N.		In	an	aqueous	system,	organic	N	can	undergo	ammonification	(Equation	2.1)	to	

NH4+	(Collins	et	al.,	2010).		

!"!!"!"! + !!! +  7!! →  3!"!! + !"! 
Equation	2.1	

A	modified	bioretention	 cell	 contains	both	an	un-submerged	and	 submerged	zone	

(previously	 depicted	 in	 Figure	 1b).	 	 Within	 these	 zones,	 different	 microbial	 processes	

occur.	 	First,	the	un-submerged,	or	unsaturated,	zone	is	where	the	process	of	nitrification	

takes	 place.	 	 Nitrification	 is	 a	microbial	 process	 during	which	 ammonium	 is	 oxidized	 to	

nitrite	 and	 then	 nitrate	 (EPA,	 2002;	 Mihelcic	 and	 Zimmerman,	 2014).	 	 This	 is	

predominantly	 done	 by	 two	 different	 groups	 of	 autotrophic	 bacteria	 that	 build	 organic	

molecules	 by	 consuming	 energy	 acquired	 from	 an	 inorganic	 source;	 in	 the	 case	 of	

nitrification	the	 inorganic	sources	are	ammonium	or	nitrite	(EPA,	2002).	The	first	step	of	

nitrification	is	ammonia-oxidizing	bacteria	oxidizes	the	ammonium	to	nitrite	as	follows:		

!"!! + 1.5!! →  !"!! + 2!! + 2!!!	
Equation	2.2		

The	second	step	of	nitrification	is	when	the	nitrite-oxidizing	bacteria	oxidize	the	nitrite	to	

nitrate	as	follows:	

!"!! +  !!! →  !"!! + 2!! + 2!!	
Equation	2.3	



	8	

The	 two-step	 process	 of	 nitrification	 converts	 nitrogen,	 but	 does	 not	 remove	 it.	

While	 the	 stormwater	 runoff	 flows	 through	 the	 bioretention	 system,	 nitrogen	 can	 be	

removed	from	the	aqueous	phase	through	three	different	methods:	assimilation	(nitrogen	

uptake),	 adsorption,	 and	denitrification	 (Collins	et	al.,	 2010).	Nitrogen	assimilation	 is	 the	

process	 where	 inorganic	 nitrogen	 (ammonium,	 nitrate,	 and	 nitrite)	 is	 converted	 into	

microbial	 or	 plant	 biomass	 and	 temporarily	 stored	 as	 organic	 N	 (Collins	 et	 al.,	 2010).	

Additionally,	 ammonium	 can	 be	 removed	 from	 the	 aqueous	 phase	 by	 adsorption	 onto	

negatively	 charged	 particles,	 such	 as	 soil	 or	 clay,	 within	 the	 system.	 	 Nitrogen	 uptake	

through	assimilation	or	adsorption	results	in	temporarily	removing	the	nitrogen	from	the	

aqueous	 phase,	 but	 not	 permanently.	 	 Permanent	 removal	 of	 nitrate	 occurs	 through	

microbial	 denitrification	 in	 the	 aqueous	 phase	 of	 the	 system.	 	 This	 occurs	 by	 converting	

inorganic	nitrogen	in	an	anoxic	environment	to	gaseous	forms	of	nitrogen	(N2O	or	N2	gas),	

which	are	then	released	to	the	atmosphere	(Collins	et	al.,	2010).	

In	a	modified	bioretention	cell,	or	similar	system,	the	effluent	from	the	layer	where	

the	 ammonia	 is	 nitrified,	 is	 the	 influent	 into	 the	 layer	 where	 denitrification	 occurs.		

Denitrification	 occurs	 when	 facultative	 microorganisms	 respire	 nitrate	 under	 anoxic	

conditions	 (i.e.,	 oxygen	 level	 is	 below	 0.5	 mg	 DO/L).	 The	 denitrifying	 bacteria	 can	 use	

different	 electron	 donors,	 including	 both	 inorganic	 and	 organic	 compounds,	 such	 as	

elemental	 sulfur	and	dissolved	organic	substrates	 (Lopez	et	al.,	2016b).	 	For	applications	

where	a	bioretention	system	is	filled	with	wood	chips,	the	electron	donors	are	the	organic	

substrates,	 specifically	 organic	 carbon	 leached	 from	 wood	 chips.	 Denitrification	 occurs	

using	 a	 carbon	 substrate	 to	denitrify	 the	nitrate	 into	nitrogen	gas	 and	 carbon	dioxide	 as	

follows:	
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2!"!! +  2!"#! →  !!! + 2!"! + !!! + 2!"!	

Equation	2.3	

These	two	transformations	occurring	consecutively	assists	in	removing	total	nitrogen	from	

the	water.	However,	if	one	or	both	processes	are	not	carried	out	completely,	it	could	limit	

total	nitrogen	removal	for	a	modified	bioretention	system	(Ergas	et	al.,	2009).		

	

2.2	 Wood	Chip	Type	

When	 using	wood	 chips	 for	 denitrification	 in	 a	 bioreactor,	 the	 type	 of	wood	 chip	

used	affects	the	carbon	content	(%),	nitrogen	removal,	and	amounts	of	organic	N,	TOC	and	

TKN	 leached	 into	 the	 system.	 Previous	 studies	 have	 performed	 experiments	 on	 various	

materials,	 including	 different	 types	 of	 wood	 chips,	 to	 test	 their	 denitrification	 potential	

(Peterson	et	al.,	2015,	Warneke	2011,	Gilbert	et	al.,	2008,	Healy	et	al.,	2011,	Fowdar	et	al.,	

2015,	 Lynn	 et	 al.,	 2015a	 and	 b,	 Ergas	 et	 al.,	 2010).	 	 These	 studies	 evaluated	 nitrogen	

removal	 in	 a	 number	 of	 engineered	 systems	 which	 include:	 bioretention	 systems,	

denitrifying	biofilters,	denitrification	beds,	permeable	reactive	barriers,	and	denitrification	

bioreactors.	 	 Other	 studies	 looked	 at	 different	 variables	 (e.g.,	wood	 chip	 size)	 that	 could	

effect	 denitrification	 in	 a	 bioreactor	 (Cameron	 and	 Schipper,	 2010	 and	 Peterson	 et	 al.,	

2015).		This	section	provides	insights	to	the	results	that	were	observed	in	the	studies	that	

evaluated	nine	different	 types	and	seven	different	 sizes	of	wood	chips,	 and	 identifies	 the	

gaps	in	the	literature	for	this	area	of	research.	

In	the	seven	studies	identified	for	this	research	(Table	2.1),	nine	types	of	wood	chips	

were	 identified	 and	 compared	 to	 other	 wood	 chips	 and	 occasionally	 to	 other	 organic	

materials	used	as	carbon	substrates.		This	section	will	solely	focus	on	the	different	types	of	



	10	

wood	 chips	 that	 were	 tested.	 	 The	 nine	 different	 wood	 chip	 types	 are;	 1)	 pine,	 2)	

eucalyptus,	3)	maple,	4)	wild	cherry,	5)	oak,	6)	beech,	7)	coniferous,	8)	willow,	and	9)	red	

gum.	 	 These	 types	 of	 wood	 chips	 can	 be	 divided	 into	 two	 categories	 of	 hardwood	 and	

softwood.	 	 The	 hardwood	 chips	 are	 eucalyptus,	 maple,	 red	 gum,	 oak,	 wild	 cherry,	 and	

beech,	and	the	softwood	chips	are	pine,	coniferous,	and	willow.		

All	 trees	are	categorized	as	either	hardwoods	or	softwoods;	however,	 these	 terms	

are	deceptive	because	 they	do	not	 refer	 to	 the	hardness	of	 the	wood,	 even	 though	many	

hardwoods	 are	 stronger	 and	 tougher	 in	 nature	 (Ma,	 2015).	 	 A	 study	 by	 Lamlom	 (2003)	

assessed	 the	 carbon	 content	 of	 41	 species	 of	 North	 American	 trees,	 both	 hardwood	 and	

softwood.		Out	of	the	nine	species	in	this	literature	review,	six	were	tested	in	the	Lamlom	

(2003)	study.		The	average	carbon	content	for	hardwood	(maple,	birch,	beech,	wild	cherry,	

and	oak)	was	48.7%	+/-	1.3	and	the	average	for	softwood	(pine)	was	significantly	greater	

(p<0.05)	 at	51.2%	+/-	1.5	 (Lamlom,	2003).	Hardwood	 is	normally	denser	 than	 softwood	

(Ma,	 2015);	 therefore,	 one	 can	 predict	 that	 softwoods	 will	 promote	 higher	 rates	 of	

denitrification	than	hardwoods,	due	to	the	ability	of	water	to	better	penetrate	the	softwood	

and	leach	out	the	organic	carbon.	

Table	 2.1	 outlines	 the	 type	 of	 study	 performed,	 carbon	 content,	 TOC	 leached,	

influent	and	effluent	nitrogen	concentrations,	and	percent	nitrogen	removal	for	each	of	the	

wood	types	and	summarizes	the	averages	based	on	hardwood	and	softwood	groupings.	If	a	

wood	 type	was	 tested	 in	more	 than	 one	 study,	 it	 has	multiple	 rows	within	 the	 table	 to	

differentiate	 the	 different	 conditions	 for	 each	 study.	 	 The	 overall	 carbon	 content	 for	 the	

hardwood	chips	reported	in	Table	2.1	is	significantly	greater	(p<0.05)	than	the	softwood,	

48.8%	and	41.5%,	respectively.		The	amount	of	leached	TOC	from	the	softwood	chips	was	
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significantly	 greater	 (p<0.05)	 and	 almost	 double	 the	 amount	 of	 TOC	 leached	 from	

hardwood	chips,	138.3	mg	TOC/L	and	70.3	mg	TOC/L,	respectively.	 	The	average	influent	

concentration	for	the	softwood	chips	was	significantly	higher	than	the	average	influent	for	

the	hardwood	chips;	however,	this	is	an	experimental	parameter	and	not	a	property	of	the	

woodchip	 itself.	 	 The	 average	 nitrogen	 removal	 for	 the	 softwood	 chips	 was	 about	 10%	

higher	than	the	hardwood	chips	(not	significantly),	75.2%	and	63.0%,	respectively.	

Five	out	of	 the	nine	 studies	 tested	pine	 (softwood)	 as	 a	 carbon	 source	 to	 support	

denitrification	(Peterson	et	al.,	2015,	Warneke	2011,	Gilbert	et	al.,	2008,	Healy	et	al.,	2011,	

Fowdar	et	al.,	2015).		All	four	reported	the	carbon	content	percentage	found	in	pine	wood	

chips,	and	three	of	the	four	values	were	between	46	and	49%	(Peterson	et	al.,	2015,	Healy	

et	al.,	2011,	Fowdar	et	al.,	2015),	one	of	the	studies	found	only	28%	carbon	content	(Gilbert	

et	al.,	2008)	in	the	pine	wood	chips.		These	values	were	generally	lower	than	the	previously	

reported	 carbon	 content	 value	 of	 51.2%	 +/-	 1.5	 for	 pine	 (Lamlom,	 2003).	 	 The	 average	

amount	of	TOC	leached	from	pine	wood	chips	was	144.4%	+/-	39.4	(reported	in	Gilbert	et	

al.,	2008	and	Peterson	et	al.,	2015).		The	average	percent	removal	of	nitrogen	for	pine	wood	

chips	was	70.1%	+/-	27.2.	 	Four	of	the	influent	concentrations	for	the	pine	studies	varied	

from	15	mg/L	to	57.75	mg/L	and	one	had	influent	concentrations	of	3	mg/L.		The	variation	

in	both	nitrogen	removal	and	influent	concentrations	are	due	to	the	different	applications	

and	experimental	methodology.	

Eucalyptus	 (hardwood)	 was	 tested	 in	 two	 of	 the	 eight	 studies	 to	 examine	 its	

denitrification	 potential.	 	 Only	 one	 study	 (Lynn	 et	 al.,	 2015b)	 reported	 a	 value	 for	 the	

carbon	content	(51.2	%)	and	neither	study	reported	values	for	leached	TOC.		
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Table	2.1	Collected	Data	for	Nine	Different	Types	of	Wood	Chips.		Type	of	Study	Performed,	Carbon	Content,	TOC	Leaching,	
Influent	and	Effluent	Nitrogen	Concentrations,	and	Nitrogen	Removal	

Standard	deviation	(if	applicable)	in	parenthesis	
*Study	that	reported	ADC	

	 Wood	Type	 Type	of	
Study	

Carbon	
Content	
(%)	

Leached	TOC		
(mg	TOC/L)	

Influent	
Concentration	
(mg	N/L)	

Effluent	
Concentration	
(mg	N/L)	

N	–	Removal		
(%)	 Reference	

So
ft
w
oo
d	

Pine	 Column	 46.6	(0.39)	 100.0	 3	(0.06)	 1.56	 48	 Peterson	et	al.,	2015*	

Pine	 Column	 -	 -	 15.82	(1.97)	 11.09	(0.94)	 29.9	(2.5)	 Warneke,	2011	

Pine	 Column	 28.11	 158	 50	 <	2.0	 96	 Gilbert	et	al.,	2008	

Pine	 Column	 28.11	 175.3	 50	 17.7	 64.6	 Gilbert	et	al.,	2008	

Pine	 Column	 49.6	 -	 26	(9.2)	 1.8	 93.08	 Healy	et	al.,	2011	

Pine	 Batch	 47.0	 -	 57.75	 6.42	 88.88	 Fowdar	et	al.,	2015	

Coniferous	 Batch	 44.1	 -	 32.2	 1.61	 95.0	 Gilbert	et	al.,	2008	

Willow	 Batch	 47.2	 120	 32.2	 4.51	 86.0	 Gilbert	et	al.,	2008	

Average	 	 41.5	(9.3)	 138.3	(34.4)	 33.4	(18.7)	 5.84	(5.8)	 75.2	(24.9)	 	

H
ar
dw

oo
d	

Eucalyptus	 Column	 51.2	 -	 2.33	(0.12)	 BDL	 100	 Lynn	et	al.,	2015a,b*	

Eucalyptus	 Column	 -	 -	 15.82	(1.97)	 9.95	(0.77)	 37.1	(1.97)	 Warneke	2011	

Maple	 Column	 49.3	(0.5)	 42.0	 3	(0.06)	 1.14	 61.8		 Peterson	et	al.,	2015	

Maple/Birch	 Pilot	 -	 -	 7.6	(1.68)	 0.9	(0.27)	 88.2	 Ergas	et	al.,	2010	

Red	Gum	 Batch	 44.0	 -	 55.03	 6.99	 87.3	 Fowdar	et	al.,	2015	

Wild	Cherry	 Column	 49.5	(0.2)	 153.0	 3.0	(0.1)	 1.92	 36	 Peterson	et	al.,	2015	

Oak	 Column	 49.6	(0.2)	 41.0	 3.0	(0.1)	 1.2	 61.9	 Peterson	et	al.,	2015	

Beech	 Column	 49.7	(0.2)	 45.0	 3.0	(0.1)	 2.04	 32	 Peterson	et	al.,	2015	

Average	 	 48.8	(2.5)	 70.3	(55.2)	 11.6	(18.1)	 3.45	(3.6)	 63.0	(26.6)	 	
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Their	influent	concentrations	varied	greatly,	2.33	mg/L	and	15.8	mg/L	(Lynn	et	al.,	2015b	

and	Warneke,	2011).	 	The	nitrogen	removal	efficiency	values	ranged	from	100%	(Lynn	et	

al.,	2015b)	to	32.6%	(Warneke,	2011).	

Maple	 (hardwood)	 chips	 were	 used	 in	 two	 laboratory	 experiments	 reviewed	 for	

research	(Peterson	et	al.,	2015	and	combination	of	maple	and	birch	in	Ergas	et	al.,	2010)	on	

bioretention	 systems,	 tested	 with	 artificial	 stormwater	 and	 agricultural	 runoff,	

respectively.	Peterson	et	 al.	 (2015)	 reported	a	 total	 carbon	content	value	of	49%	 for	 the	

maple	wood	 chips	 and	42	mg	TOC/L	was	measured	 that	 leached	 in	 the	 effluent;	 neither	

value	 (i.e.,	 carbon	 content	 and	 TOC	 leaching)	 was	 reported	 in	 Ergas	 et	 al.	 (2010).	 	 The	

organic	carbon	content	for	maple	found	in	Peterson	et	al.	(2015)	is	similar	to	the	value	of	

49.2%	+/-	0.42	previously	reported	in	Lamlom	(2003).	 	The	influent	total	nitrogen	values	

were	measured	to	be	3	mg	N/L	(Peterson	et	al.,	2015)	and	7.6	mg	N/L	(Ergas	et	al.,	2010),	a	

smaller	gap	between	the	two	studies	compared	to	the	other	groups	of	studies,	and	resulted	

in	an	average	nitrogen	removal	of	75%	+/-	18.7.	

Peterson	 et	 al.	 (2015)	 was	 the	 only	 study	 reviewed	 here	 that	 looked	 at	 the	

denitrification	characteristics	of	wild	cherry,	oak,	and	beech	wood	chips,	all	categorized	as	

hardwoods.	 	Their	organic	carbon	contents	were	relatively	similar	and	reported	as	49.53,	

49.57,	and	49.74%,	respectively.	These	results	compared	well	with	the	carbon	content	for	

wild	cherry,	oak,	and	beech	reported	in	Lamlom	(2003),	49.53%	+/-	0.18,	49.6%	+/-	0.04,	

and	46.6%	+/-	0.39,	respectively.	 	Even	though	the	organic	carbon	contents	were	close	in	

percent,	 the	 amount	 of	 TOC	 leached	 from	 each	 of	 these	 three	 wood	 chip	 types	 varied	

greatly.	 	 Wild	 cherry	 leached	 the	 highest	 concentration	 of	 TOC,	 153	 mg	 TOC/L,	 beech	

leached	the	second	highest	concentration	at	45	mg	TOC/L	and	oak	was	the	lowest	but	close	
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to	beech	at	41	mg	TOC/L.	 	The	influent	total	nitrogen	concentrations	in	the	water	for	the	

studies	using	these	three	wood	types	were	the	same	at	3	mg	N/L;	however,	their	effluent	

total	 nitrogen	 values	 varied.	 	 The	 beech	 wood	 chips	 had	 the	 highest	 measured	 effluent	

nitrogen	at	2.04	mg	N/L	 (32%	removal),	wild	cherry	had	 the	middle	amount	of	nitrogen	

measured	 in	 the	 effluent	 at	 1.92	 mg	 N/L	 (36%	 removal),	 and	 oak	 removed	 the	 most	

nitrogen	with	an	effluent	measured	as	1.2	mg	N/L	(61.9%	removal).		

Gilbert	et	al.	 (2008)	studied	the	denitrification	potential	of	seven	different	organic	

carbon	 source	 substrates,	 including	 coniferous	 and	 willow	 wood	 chips,	 both	 softwoods.		

The	 organic	 carbon	 content	 values	 reported	 for	 these	 wood	 chips	 were	 44.09%	 and	

47.23%,	respectively	(Gilbert	et	al.,	2008).		TOC	leaching	was	only	reported	for	the	willow	

woodchips,	 120	 mg	 TOC/L.	 	 Their	 influent	 total	 nitrogen	 concentrations	 were	 equal,	

however,	results	show	that	the	coniferous	wood	chips	removed	higher	amounts	of	nitrogen	

than	 the	willow	 chips	with	 effluent	 values	 reported	 for	 the	 two	 systems	of	 1.61	mg	N/L	

(95%	removal)	and	4.51	mg	N/L	(86%	removal),	respectively.	

Fowdar	 et	 al.	 (2015)	was	 the	 only	 study	 that	 used	 red	 gum	 (hardwood)	 chips	 in	

their	 column	 studies	 in	 comparison	 to	 pine	 chips	 and	 other	 readily	 available	 organic	

matter.		The	organic	carbon	content	found	for	the	red	gum	wood	chips	was	approximately	

44%,	which	is	below	average	for	a	hardwood	chip.		There	was	not	a	reported	value	for	the	

amount	of	TOC	leached	from	the	red	gum	chips.		The	influent	concentration	was	the	highest	

in	the	hardwood	category	and	second	highest	overall,	55.03	mg	N/L.		The	study	using	red	

gum	wood	chips	had	a	nitrogen	removal	of	87.3%.	

Moorman	 (2010)	 looked	 at	 the	 performance	 of	 various	 types	 of	 lignocellulosic	

material	on	the	denitrification	of	agriculture	wastewater.		The	exact	wood	species	tested	is	
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not	specified,	however,	 it	 is	noted	that	 it	was	hardwood	chips.	 	One	of	 the	characteristics	

examined	 in	 this	 study	was	 the	degradation	 and	wood	 loss	 of	 the	wood	 chips	 inside	 the	

bioreactor.	 	The	study	placed	mesh	bags	filled	with	wood	chips	at	different	depths	within	

the	bioreactor	 and	 removed	 the	bags	 to	weigh	 them	periodically	 and	 calculate	 the	wood	

loss.	The	results	from	Moorman	(2010)	show	that	50%	of	the	wood	was	lost	at	the	90-100	

cm	depth	and	less	than	13%	of	the	wood	was	lost	at	the	155-170	cm	depth.		These	results	

support	 the	 technology	 used	 in	 a	modified	 bioretention	 system	 or	 bioreactor	where	 the	

wood	chip	denitrification	layer	is	continuously	submerged.	 	For	portions	of	the	study,	the	

90-100	 cm	 layer	 became	 aerobic	 due	 to	 changes	 in	 the	 water	 table,	 where	 the	 deeper	

depths	 were	 almost	 continuously	 submerged,	 and	 there	 was	 less	 wood	 decay	 at	 those	

levels.	 	The	half-life	for	the	continuously	submerged	wood	was	predicted	to	be	around	36	

years,	where	the	wood	that	was	exposed	to	oxygen	throughout	the	study	was	only	given	a	

half-life	 of	 around	 4	 years	 (Moorman	 2010).	 	 This	 information	 is	 important	 for	

denitrification	 systems	 that	 use	 wood	 chips	 as	 the	 organic	 carbon	 source.	 	 In	 order	 to	

elongate	the	life	span	of	these	systems	and	use	less	wood	chips	over	the	life	of	the	system,	

the	wood	chips	should	remain	submerged	as	much	as	the	system	allows.		Since	hardwood	

is	 denser,	 it	 will	 probably	 decay	 more	 slowly	 than	 softwood;	 therefore	 it	 is	 even	 more	

imperative	that	systems	using	softwood	(because	of	their	higher	denitrification	abilities,	as	

seen	in	Table	2.1)	remain	submerged	as	well.		

	

2.3	 Wood	Chip	Size	

Two	 studies	 examined	 the	 impact	 of	 the	 size	 of	 wood	 chips	 on	 denitrification	

(Cameron	and	Schipper	2010	and	Peterson	et	al.,	2015).	 	The	sizes	analyzed	were:	4,	5,	6,	
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9.5,	 13,	 15,	 and	 61	 mm	 and	 the	 characteristics	 identified	 were	 amount	 of	 TOC	 leached	

(Peterson	 et	 al.,	 2015),	 nitrogen	 removal	 (Peterson	 et	 al.,	 2015),	 and	 removal	 rate	

(Cameron	and	Schipper,	2010).		The	results	for	the	different	sized	wood	chips	are	shown	in	

Table	2.2.	

	

Table	2.2	Collected	Data	for	Seven	Different	Wood	Chip	Sizes.		Wood	Chip	Type,	TOC	
Leached,	Influent	Concentration,	and	Percent	Nitrogen	Removal	

Size	 Wood	chip	
Type	

TOC	Leached	
(mg	TOC/L)	

Influent	
Concentration	
(mg	N/L)	

N	
Removal	
(%)	

Reference	

4	mm	(2.0)	
Pine	

(Softwood)	
-	 150.0	(9)	 14.4	

Cameron	and	
Schipper,	2010	

5	mm	
Oak	

(Hardwood)	
41	 3	 85.4	

Peterson	et	al.,	
2015	

6	mm	(3.3)	
Pine	

(Softwood)	
-	 150.0	(9)	 11.8	

Cameron	and	
Schipper,	2010	

9.5	mm	
Oak	

(Hardwood)	
38	 3	 66.6	

Peterson	et	al.,	
2015	

13	mm	
Oak	

(Hardwood)	
34	 3	 68.8	

Peterson	et	al.,	
2015	

15	mm	(5.3)	
Pine	

(Softwood)	
-	 150.0	(9)	 11.6	

Cameron	and	
Schipper,	2010	

61	mm	(19)	
Pine	

(Softwood)	
-	 150.0	(9)	 14.2	

Cameron	and	
Schipper,	2010	

Standard	deviation	(if	applicable)	in	parenthesis	
Performed	in	the	lab	as	column	studies	

	

Only	one	study	 	 (Peterson	et	al.,	2015)	was	 identified	 that	reported	 the	values	 for	

leached	 TOC	 from	 different	 sizes	 of	 wood	 chips.	 Their	 results	 showed	 that	 the	

concentration	 of	 TOC	 leached	 from	 the	 same	 type	 of	 wood	 chip	 decreased	 as	 the	 size	

increased,	it	was	not	specified	if	this	increase	was	significant	or	not.		It	is	possible	that	the	

decrease	in	leached	TOC	is	due	to	the	decrease	in	surface	area	to	volume	ratio,	as	the	chip	

size	 increases.	 	The	studies	both	reported	 the	 total	nitrogen	concentration	 in	 the	column	

influent	 water.	 Peterson	 et	 al.	 (2015)	 utilized	 an	 influent	 concentration	 of	 3	 mg	 N/L	
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because	 they	 tested	 nitrogen	 removal	 using	 wood	 chips	 for	 nonpoint	 sources	 of	

stormwater.	 	Cameron	and	Schipper	(2010)	had	an	influent	concentration	of	150	mg	N/L	

because	 they	 were	 testing	 a	 similar	 application	 for	 a	 waste	 stream	 containing	 higher	

amounts	 of	 nutrients	 from	 point	 source	 discharges.	 Due	 to	 the	 variation	 in	 influent	

nitrogen	concentration,	the	nitrogen	removal	also	varied	for	these	two	studies.	This	occurs	

as	 an	 effect	 of	 the	 Monod	 Model.	 	 If	 the	 system	 has	 high	 nitrogen	 concentrations,	 the	

specific	growth	rate	approaches	its	maximum	value,	and	growth	is	effectively	independent	

of	 the	 influent	 nitrogen	 concentration	 (zero-order	 kinetics)	 (Mihelcic	 and	 Zimmerman,	

2014).	At	low	nitrogen	concentrations,	the	specific	growth	rate	is	directly	proportional	to	

the	influent	nitrogen	concentration	(first-order	kinetics)	(Mihelcic	and	Zimmerman,	2014).		

Overall,	 Peterson	 et	 al.	 (2015)	 found	 that	 columns	 packed	with	 smaller	wood	 chips	 had	

much	 higher	 nitrogen	 percent	 removal	 that	 larger	 wood	 chips,	 85%	 compared	 to	 68%	

removal.	 	 Results	 from	 Cameron	 and	 Schipper	 (2010)	 did	 not	 show	 any	 trend	 in	 total	

nitrogen	removal	based	on	the	size	of	the	wood	chips.	 	This	could	be	due	to	high	influent	

concentrations	or	experimental	conditions.	

One	of	the	studies	found	that	there	was	no	significant	difference	in	nitrogen	removal	

for	 the	different	size	media	 (Cameron	and	Schipper,	2010)	while	 the	second	study	 found	

that	the	nitrogen	removal	was	higher	in	the	5	mm	wood	chips	than	the	larger	sized	wood	

chips,	9.5	and	13	mm	(Peterson	et	al.,	2015).		The	increase	in	the	size	leads	to	less	effluent	

TKN	and	less	nitrogen	reduction,	which	resulted	in	less	overall	nitrogen	removal	(Peterson	

et	al.,	2015).	 	The	 larger	chips	have	a	smaller	 total	surface	area	per	mass,	which	 leads	 to	

less	 contact	 with	 the	water	 and	 limits	 the	 availability	 of	 the	 carbon	 for	 the	 denitrifying	

organisms	 and	 provides	 less	 surface	 area	 for	 the	 biofilm	 growth	 (Peterson	 et	 al.,	 2015).	
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Smaller	wood	chips	have	a	larger	surface	area	per	unit	volume,	resulting	in	greater	contact	

between	 the	 surface	 of	 the	wood	 chip	with	 the	water	 and	 therefore,	 potentially	 greater	

leaching	of	DOC	which	is	measured	as	TOC	(Lopez	et	al.,	2016b).	

	

2.4	 Literature	Summary	and	Knowledge	Gaps		

Overall,	 there	 are	differences	 in	 the	performance	of	 various	wood	 chips	 sizes	 and	

types	when	 used	 for	 denitrification	 in	 a	 system	 such	 as	 a	modified	 bioretention	 system.		

While	 these	 studies	 summarized	 carbon	 content,	 amount	 of	 TOC	 leached,	 influent	 and	

effluent	nitrogen	concentrations,	and	nitrogen	removal,	 there	are	gaps	 in	the	 information	

being	 presented	 in	 this	 set	 of	 research.	 	 None	 of	 the	 studies	 reviewed	 in	 this	 section	

reported	 information	 about	 the	 half	 saturation	 constant	 (Ks),	 which	 is	 an	 important	

parameter	for	denitrification	of	water	with	low	nitrogen	concentrations.		Additionally,	only	

two	studies	(out	of	nine)	discuss	the	size	of	wood	chips	and	their	effect	on	denitrification.	

Only	 two	 of	 the	 studies	 reviewed	 here	 reported	 their	 ADC	 value.	 One	 study	 was	

performed	in	the	laboratory	and	its	primary	purpose	was	not	to	examine	the	effects	of	the	

ADC	 on	 nitrogen	 removal;	 therefore,	 the	 value	 of	 the	 ADC	 was	 the	 same	 for	 each	

experiment	(i.e.,	ADC	of	seven	days)	(Peterson	et	al.,	2015).	 	The	second	study	was	also	a	

laboratory	column	study	and	it	differed	from	Peterson	et	al.	(2015)	because	it	had	a	goal	of	

testing	 different	 ADC’s.	 Therefore	 that	 study	 (Lynn	 et	 al.,	 2015a)	 provides	 us	 with	

laboratory	data	on	the	effect	of	varying	ADCs	for	an	anoxic	zone	like	designed	for	an	IWSZ	

(Lynn	et	al.,	2015a).		That	particular	study	used	eucalyptus	wood	chips	and	demonstrated	

that	as	the	ADC	increased	from	0	to	4	to	8	to	16	to	30	days,	the	nitrate	removal	efficiencies	

increased	(Table	2.3).				



	 19	

Table	2.3	Nitrogen	Removals	for	Differing	Antecedent	Dry	Conditions	(Lynn	et	al.,	2015a)	

	 NO3-	–	N	 TN	
Influent	(mg/L)	 2.14	(0.51)	 2.5	(0.5)	

ADC	 %	Removal	 %	Removal	
0	 86	 66.5	
4	 96	 75	
8	 97	 76	
16	 97	 79	
30	 97	 75	

	
Igielski	(2016)	(not	published)	carried	out	research	that	focused	on	nitrogen	removal	with	

variable	flow	rates	and	HRTs.		That	research	found	that	nitrogen	removal	decreased	as	the	

HRT	decreased	and	the	influent	flow	rate	increased	(Table	2.4).	

	
Table	2.4	Percent	Nitrogen	Removal	with	Variable	HRTs	and	Influent	Flow	Rates	(Igielski,	
2016)	
Influent	Flow	Rate	(mL/min)	 HRT	(hr)	 Average	Nitrogen	%	Removal	

11	 1.82	 41.50	
22	 0.91	 39.29	
38.5	 0.52	 14.50	

	 	
	 Kim	et	al.	(2003)	states	that	there	are	two	main	purposes	of	using	a	lignocellulosic	

media	 to	 promote	 denitrification;	 to	 provide	 a	 electron	 donor	 and	 long-lasting	 carbon	

source	 and	 perform	 as	 a	 base/support	 for	 a	 microbial	 biofilm.	 	 Furthermore,	 biological	

denitrification	 is	 enhanced	 with	 an	 anoxic	 zone	 comprised	 of	 water	 with	 a	 dissolved	

electron	 donor	 (DOC	 leached	 from	 the	wood	 chips),	 the	 goal	 is	 to	 obtain	 a	 long	 enough	

contact	time	so	the	denitrifying	bacteria	can	respire	NO3-	(Lynn,	2014).	The	IWSZ	layer	in	a	

modified	 bioretention	 system	 is	 designed	 for	 this	 purpose,	 to	 help	 enable	 the	

denitrification	process.	 In	order	to	better	understand	this	technology	and	the	factors	that	

influence	its	performance,	these	three	areas	need	to	be	explored	further.	
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CHAPTER	3:	MATERIALS	AND	METHODS	
	
	

3.1	 Field	Site	and	System	Description	

The	 field	site	 for	 this	study	 is	 located	 in	East	Tampa,	FL	at	 the	Audrey	L.	Spotford	

Youth	 and	 Family	 Center,	 a	 part	 of	 the	 Corporation	 to	 Develop	 Communities	 (CDC)	 of	

Tampa,	 Inc.	 The	 space	 around	 the	 bioretention	 cells	 has	 a	 ‘mixed	 urban	 land	 use’,	

containing	a	church,	car	wash,	a	 laundromat,	and	residences.	Stormwater	runoff	 from	the	

East	 Tampa	 region	 directly	 drains	 to	 a	 section	 of	 Tampa	 Bay;	 therefore,	 bioretention	

systems	located	in	East	Tampa	should	reduce	nutrient	loading	to	the	bay	(Locicero,	2015).		

At	the	field	site	there	are	two	full-scale	bioretention	cells,	constructed	next	to	each	

other	 in	 parallel,	 located	 in	 a	 grassy	 area	between	 the	 Spotford	building	 and	parking	 lot	

(Figures	3.1	and	3.2).	The	cells	were	constructed	inside	a	wooden	frame	and	are	enclosed	

by	an	 impermeable	 liner,	 to	help	ensure	 the	consistency	of	 the	volume	of	water	entering	

and	 leaving	 the	 cells;	 additionally,	 there	 are	 PVC	 pipes	 to	 drain	 the	 effluent	 to	 the	

groundwater	and	that	are	configured	for	effluent	sampling.	Each	cell	has	a	surface	area	of	

0.56	m2,	depths	 that	 vary	by	30	 cm	 (the	 IWSZ	 layer	 in	 the	modified	 cell),	 and	a	ponding	

volume	of	2.54	m3.	Plastic	gardening	liners	were	used	to	outline	the	top	of	each	cell	to	allow	

for	ponding	to	occur.		
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Figure	3.1	Bioretention	Cells	at	the	
Corporation	to	Develop	Communities,	
Audrey	L.	Spotford	Youth	and	Family	
Center	(Tampa,	FL)	
	

Figure	3.2	Aerial	View	of	Location	of	
Bioretention	Cells	Near	the	Audrey	L.	
Spotford	Youth	and	Family	Center.	
(Google	Maps)

The	deeper	 cell	 (modified	 system)	 is	designed	 to	enhance	denitrification	by	 including	an	

IWSZ	 in	 the	design,	compared	to	 the	conventional	system	that	does	not	contain	an	 IWSZ.		

Both	cells	 (Figures	3.3	and	3.4)	have	a	 top	 layer	consisting	of	0.3	m	of	250	paver	sand,	a	

second	layer	of	0.05	m	of	pea	gravel,	and	a	bottom	layer,	containing	the	underdrain,	of	0.3	

m	of	#57	 limerock.	 	 The	modified	 cell	 has	 the	 IWSZ	 located	between	 the	pea	 gravel	 and	

limerock	layers.		The	IWSZ	is	0.3	m	of	a	2:1	(by	volume)	mixture	of	pea	gravel	(0.6	to	1.3	cm	

in	 diameter)	 and	 eucalyptus	 (softwood)	 wood	 chips	 (1.3	 to	 2.5	 cm	 in	 length)	 with	 a	

porosity	of	0.42.			

	
Figure	3.3	Conventional	Bioretention	Cell	Schematic	(with	permission	of	Tom	Lynn)	
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Figure	3.4	Modified	Bioretention	Cell	Schematic	(with	permission	of	Tom	Lynn)	

	

3.2	 Storm	Events	and	ADC	Calculations	

Fourteen	man-made	 storm	 events	 (Table	 3.1)	were	 completed	 over	 the	 period	 of	

January	 2016	 to	 July	 2016	 using	HLRs	 of	 6.9	 cm/h,	 13.9	 cm/h	 (Lynn,	 2014;	 Lynn	 et	 al.,	

2015b),	and	4.1	cm/h	HLR	(Davis	et	al.,	2006).		These	HLRs	were	selected	because	previous	

studies	 (Lynn,	2014;	Lynn	et	al.,	2015b,	Davis	et	al.,	2006)	used	 the	same	HLRs	 in	bench	

scale	 lab	experiments.	 	By	using	 the	same	HLRs	 for	 this	 field	study,	 the	data	can	 later	be	

compared	to	the	lab	studies.		

Table	3.1	Date,	ADC,	Duration,	and	HLR	for	the	Fourteen	Storm	Events	
Date	 Storm	Event	 Duration	(hr)	 HLR	(cm/hr)	

1/18/16	 1	 4	 6.9	
1/26/16	 2	 2	 13.9	
2/2/16	 3	 2	 4.1	
2/9/16	 4	 2	 13.9	
3/8/16	 5	 4	 6.9	
3/17/16	 6	 6	 4.1	
3/24/16	 7	 4	 6.9	
4/7/16	 8	 4	 6.9	
4/19/16	 9	 4	 13.9	
4/29/16	 10	 6	 4.1	
5/5/16	 11	 4	 13.9	
5/19/16	 12	 4	 13.9	
6/22/16	 13	 6	 4.1	
7/21/16	 14	 6	 6.9	
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Some	storm	events	were	carried	out	using	different	HLRs,	but	with	consistent	ADCs,	while	

other	 events	 had	 both	 various	 loading	 conditions	 and	 ADCs.	 For	 this	 research,	 the	 ADC	

refers	to	the	number	of	days	with	less	than	1.9	centimeters	of	rain	between	storm	events.		

The	 rainfall	 data	was	gathered	 from	USGS	gauge	275917082222500,	East	Lake	at	Orient	

Road	 in	 Tampa,	 FL. The	 rain	 requirement	 to	 calculate	 the	 ADC	 was	 computed	 by	 the	

amount	of	water	required	to	flush	out	15%	of	volume	of	water	in	the	IWSZ.		This	number	

was	determined	after	testing	different	‘flush	amounts’	(Appendix	B,	Tables	B.1	–	B.5).		This	

analysis	 showed	 that	 10%	was	 too	 small	 to	 count	 as	 a	 storm	event	 and	 ”flush	 amounts”	

greater	 than	 20%	 did	 not	 generate	 clear	 breaks	 in	 the	 data.	 The	 total	 volume	 (!!)	 and	

porosity	(∅)	of	the	IWSZ	are	0.17	m3	and	0.42,	respectively,	and	using	these	numbers	the	

IWSZ	void	volume	(!!)	was	calculated	as	follows.	

!! = ∅ × !! 	
Equation	3.1		

The	void	(pore)	volume	calculated	for	the	IWSZ	was	0.071	m3,	therefore	15%	of	the	pore	

volume	(0.011	m3)	needs	to	be	flushed	out	of	the	system	to	count	as	a	“storm	event”	for	the	

purpose	of	this	research.		Because	rainfall	data	is	available	in	inches,	the	surface	area	of	the	

system	was	used	to	calculate	how	many	inches	of	rain	would	generate	the	volume	of	water	

needed.	The	surface	area	of	the	system	(SA)	is	0.557	m2	and	15%	of	the	pore	volume	(V)	is	

0.011	m3.	Using	this	information	we	can	calculate	the	rainfall	(in)	required	to	displace	15%	

of	the	water	inside	the	IWSZ	as	follows.	

!
!" = ℎ = 0.011 !!

0.557 !! = 0.019 ! = 1.9 !"	
Equation	3.2		

A	limitation	of	this	study	is	the	ADC	is	determined	based	on	the	previous	storm	event	of	at	

least	1.9	cm	(displacing	15%	of	the	IWSZ).	
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3.3	 Synthetic	Stormwater	Composition	

Synthetic	stormwater,	simulating	nitrogen	levels	found	in	urban	runoff,	was	used	as	

the	system’s	influent	to	assist	in	running	a	controlled	experiment.	The	characteristics	of	the	

synthetic	 stormwater	 are	 presented	 in	 Table	 3.2	 and	 resulted	 in	 water	 quality	 that	 is	

similar	 to	 other	 studies	 (Davis	 et	 al.	 2001;	 Lynn	 2014;	 LeFevre	 et	 al.	 2014;	 Lynn	 et	 al.,	

2015b).		One	stock	solution	of	chemicals	was	prepared	for	each	rain	barrel	using	deionized	

(DI)	water.	 Live	 Oak	 tree	 leaves	were	 ground	with	 a	Mr.	 Coffee™	 (Model	 no.	 IDS55-RB)	

grinder	in	the	laboratory,	for	about	a	minute,	until	they	reached	a	powder-like	consistency.		

Nine	grams	of	ground	tree	leaves	were	measured	out	and	a	small	tea	bag	was	formed	using	

cheesecloth	and	string.	The	leaf	tea	bag	was	then	placed	into	800	mL	of	DI	water	overnight;	

this	was	to	ensure	that	the	leaf	particles	would	not	sink	to	the	bottom	of	the	rain	barrels	

when	 added	 and	 that	 dissolved	 organic	 nitrogen	 would	 be	 mixed	 in	 with	 the	 synthetic	

stormwater.		The	bottles	with	both	parts	of	the	synthetic	storm	water	were	then	brought	to	

the	 field	 and	 mixed	 with	 tap	 water	 in	 the	 55-gallon	 rain	 barrels	 immediately	 before	

running	a	storm	event	experiment.	

	
Table	3.2	Synthetic	Stormwater	Chemical	Make-up	(adapted	from	Harper	and	Baker	
(2007)	and	LeFevre	et	al.	(2014))	(Lopez	et	al.,	2016a)	

Pollutant	 Target	Concentration	(mg/L)	(as	N)	 Chemical	

Nitrate	(NO3-)	 1	 Potassium	nitrate	(KNO3)	

Organic	N	 1	 Ground	Live	Oak	tree	
leaves*	

Ammonium	
(NH4+)	 1	 Ammonium	chloride	

(NH4Cl)	
Total	N	 3	 	

*Ground	Live	Oak	tree	leaves	collected	at	the	University	of	South	Florida	(Tampa)	
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3.4	 Experimental	Set–Up		

Storm	 event	 experiments	 were	 conducted	 between	 January	 2016	 and	 July	 2016,	

with	 the	goal	of	obtaining	 results	with	varying	ADCs.	 	The	goal	was	 to	have	 results	 from	

storm	events	with	ADCs	of	two,	four,	and	eight	days.		Additionally,	the	storm	events	varied	

in	lengths	of	two,	four,	and	six	hours	and	in	influent	flow	rates	of	381,	641,	and	1,291	mL	

per	minute.	 	 For	each	 storm	event,	 the	weather	was	 checked	 to	obtain	 the	 set	 ideal	ADC	

(initially	ADCs	of	2,	4,	and	8	days	were	targeted	based	off	of	0.1	in	of	rainfall	to	count	as	a	

storm	event)	 and	 to	avoid	 running	an	experiment	on	a	day	where	a	natural	 storm	event	

would	occur.	 	The	synthetic	stormwater	was	made	 in	 the	 laboratory	1-2	days	prior	 to	an	

experiment,	 stored	 in	 clean	 (acid	 washed)	 Nalgene	 bottles	 at	 room	 temperature,	 then	

brought	 to	 the	 field,	 and	mixed	 in	with	 the	 tap	water	 in	 the	 rain	barrel(s),	depending	on	

how	much	water	was	needed	for	that	specific	storm	event	based	on	duration	and	flow	rate.			

Two	pieces	of	tubing	(Masterflex	6404	–	18)	ran	from	inside	the	rain	barrel,	through	

the	pump	(Cole-Palmer	Masterflex	L/S,	model	no.	07528-10	with	Easy-load	II	pump	drives,	

model	no.	77200-50)	connected	to	a	second	set	of	tubing	(Masterflex	3/8”),	then	a	third	set	

of	tubing	(Masterflex	6424	–	18)	containing	the	valve	to	take	influent	samples,	and	then	a	

third	set	of	tubing	(Masterflex	–	3/8”	inside	diameter,	vinyl)	and	out	onto	the	top	of	each	

cell	(Figure	3.5).	The	tubing	over	the	cell	was	perforated	with	holes	one	inch	apart,	using	

the	tip	of	a	hot	glue	gun	(Adhesive	TechTM	Model	no.	1200)	to	penetrate	the	plastic,	so	the	

water	would	be	spread	out	evenly	across	the	top	of	the	cell.		Once	the	desired	flow	rate	was	

reached	 for	 the	 pump,	 the	 second	 set	 of	 tubing	was	 connected	 to	 the	 first	 so	 the	water	

would	begin	to	flow	from	the	rain	barrel	to	the	tops	of	both	bioretention	cells.		Throughout	

the	experiment,	influent	samples	were	collected	from	a	port	in	the	tube,	along	with	effluent	
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samples	pumped	(using	a	Solinst	peristaltic	pump,	model	no.	410)	from	the	sample	port	in	

both	cells	(shown	in	Figure	3.5).		

	
Figure	3.5	Field	Site	Set-Up	(with	permission	of	Emma	Lopez)	

	

3.5	 Laboratory	Methods	

100	mL	of	influent	and	effluent	samples	were	collected	from	each	bioretention	cell	

at	pre-determined	time	intervals	(approximately	every	20	or	30	minutes,	depending	on	the	

experiment)	 in	 high-density	 polyethylene	 (HDPE)	 plastic	 bottles	 and	directly	 placed	 in	 a	

cooler	with	 ice	 packs	 at	 5	 °C.	 After	 the	 field	 experiment,	 the	 samples	were	 immediately	

transported	to	the	environmental	engineering	laboratory	at	the	University	of	South	Florida,	

where	 they	were	 then	prepared	and	 refrigerated	 according	 to	 Standard	Methods	 (APHA,	

2012).	NOx	–	N	and	NH4+–	N	were	measured	by	the	diffusion	conductivity	method	using	a	
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Timberline	 Ammonia	 Analyzer	 (Ammonia-001,	 USEPA	 ATP	 No.	 N08-0004).	 	 TN	 was	

measured	for	storm	events	one	through	seven	using	the	HACH	persulfate	digestion	method	

(Method	 10208).	 	 For	 storm	 events	 eight	 through	 fourteen	 TN	 was	 measured	 with	 a	

Shimadzu	TOC-V	CSH	Total	Organic	Carbon	/	Total	Nitrogen	Analyzer	(Shimadzu	Scientific	

Instruments,	Columbia,	Maryland).	 	Method	detection	 limits	 for	TN	and	NOx	–	N/NH4+–	N	

were	 0.03	 and	 0.014	mg/L,	 respectively.	 Organic	 nitrogen	was	 calculated	 by	 subtracting	

total	inorganic	nitrogen	(TIN)	from	the	TN	measurement.	All	bottles	and	glassware	used	for	

analysis	were	submerged	in	an	acid	bath	for	a	minimum	of	two	hours	and	triple	rinsed	with	

deionized	 (DI)	 water	 prior	 to	 use.	 DI	 water	 was	 used	 in	 every	 washing	 and	 testing	

procedure	and	a	field	blank	was	used	in	all	analyses	for	each	experiment.	A	set	of	standard	

chemicals	from	the	stock	of	known	N	species	concentration	was	run	along	with	each	set	of	

samples	and	one	was	placed	after	every	ten	samples	analyzed	for	NOx	–	N,	NH4+	-	N,	and	TN	

to	confirm	accuracy	of	methods	and	instruments.	

	

3.6	 Data	Analysis	

The	 results	 from	all	 fourteen	 storm	events	were	grouped	based	on	HLR	and	 their	

durations	were	made	identical	for	each	group.		This	was	done	to	compare	the	difference	in	

ADC	 without	 influence	 from	 the	 other	 two	 variables,	 which	 have	 been	 known	 to	 effect	

nitrogen	removal	as	well.	 	The	nitrogen	removals	for	each	grouping	of	storm	events	were	

graphed	 for	 each	 of	 the	 four	 nitrogen	 species	 (NOx	 –	N,	NH4+	 -	N,	 organic	N,	 and	TN)	 to	

compare	 the	 differences	 in	 nitrogen	 removal.	 	 Once	 these	 groups	 and	 percent	 removals	

were	obtained,	statistical	analysis	was	carried	out	to	determine	if	the	results	based	on	the	

differences	in	ADC	were	significant	or	not.		For	this	experiment	the	level	of	significance	was	
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95%,	 so	 the	 p-value	 was	 set	 at	 0.05,	 as	 traditionally	 done	 in	 scientific	 experiments	

(Hypothesis	 Testing,	 2013).	 	 This	 means	 that	 results	 with	 a	 p-value	 below	 0.05	 were	

deemed	 significant	 and	 results	 with	 a	 p-value	 above	 0.05	 were	 not	 significant.	 The	

statistical	analysis	included	calculating	the	standard	deviation	(S),	number	of	experiments	

(N),	S2/N,	variance,	t-score,	degrees	of	freedom,	significance	level,	and	p-value	(MS	Excel).	

Based	 on	 these	 results,	 it	 was	 determined	 if	 a	 longer	 or	 shorter	 ADC	 affects	 nitrogen	

removal	in	a	modified	bioretention	system.	
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CHAPTER	4:	RESULTS	AND	DISCUSSION	
	
	

4.1	 Comparison	of	Conventional	and	Modified	Results	

The	system	containing	the	conventional	bioretention	cell,	which	did	not	contain	an	

IWSZ	(full	storm	event	data	for	the	conventional	cell	in	Appendix	A,	Table	A.4),	had	lower	

removals	of	all	five	nitrogen	species	than	the	modified	cell	(IWSZ)	(Figure	4.1).	As	shown	in	

this	figure,	the	nitrate/nitrite	–	nitrogen	removal	was	significantly	higher	for	the	modified	

cell	 compared	 to	 the	 conventional	 cell,	 78.5%	+/-	19.9	 and	29.5%	+/-	25.2,	 respectively.		

Additionally,	 the	modified	cell	had	significantly	greater	removal	of	ammonium	–	nitrogen	

than	the	conventional	cell,	82.4%	+/-	8.7	and	70.1%	+/-	18.2,	respectively.		The	difference	

in	organic	nitrogen	removal	was	not	significant,	although	the	modified	cell	removed	more	

than	the	conventional	cell,	50.2%	+/-	26.4	and	36.3%	+/-	34.9,	respectively.	 	This	is	to	be	

expected	 as	 the	 transformation	 of	 organic	 nitrogen	 is	 by	 a	 hydrolysis	 reaction	 (see	

Equation	 2.1	 in	 Chapter	 2)	 and	 both	 bioretention	 systems	 provide	 conditions	 for	 this	

reaction.	As	a	sum	of	the	previous	nitrogen	species,	total	nitrogen	removal	efficiency	was	

observed	to	be	significantly	higher	for	the	modified	cell.		The	higher	levels	of	nitrate/nitrite	

–	 N	 removal	 in	 the	 modified	 cell	 are	 to	 be	 expected	 due	 to	 the	 IWSZ	 layer	 where	

denitrification	 occurs	 because	 of	 the	 anoxic	 conditions	 expected	 in	 that	 area	 and	 the	

availability	of	an	organic	carbon	substrate	(TOC	leaching	from	the	wood	chips)	that	serves	

as	 the	 electron	 donor.	 	 It	 is	 also	 expected	 that	 the	 ammonium	 removal	 levels	 for	 both	

systems	 would	 be	 similar	 due	 to	 the	 majority	 of	 ammonium	 being	 converted	 through	
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nitrification	 in	 the	 sand	 layer	 (located	 in	 both	 systems).	 However,	 ammonium	 is	 also	

converted	through	assimilation	(nitrogen	uptake)	and	adsorption.	 	Assimilation	can	occur	

in	 both	 the	 sand	 and	 IWSZ	 layers	 because	 there	 is	 microbial	 biomass	 growing	 in	 both	

locations,	potentially	leading	to	additional	removal	for	the	modified	system.	

	
Figure	4.1	Modified	and	Conventional	Nitrogen	Percent	Removal	Results.		NOx	–	N,	NH4+	–	
N,	Organic	N,	and	TN	
	

For	the	conventional	cell,	none	of	the	storm	events	removed	more	than	58%	of	NOx	

–	N	and	two	storm	events	had	negative	NOx	–	N	removal,	 there	were	higher	 levels	 in	 the	

effluent	than	the	influent.		This	may	have	occurred	due	to	nitrification	taking	place	within	

the	 sand	 layer	 of	 the	 conventional	 system,	 ammonium	 –	 nitrogen	 is	 converted	 to	
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nitrate/nitrite	–	nitrogen,	and	 there	 is	no	anoxic	zone	 for	denitrification	which	results	 in	

greater	amounts	of	nitrate/nitrite	–	nitrogen	in	the	effluent	streams	than	the	influent.		The	

highest	amount	of	nitrogen	removal	for	the	conventional	cell	was	in	the	form	of	ammonium	

–	nitrogen	at	70.1	+/-	18.2%.		This	is	due	to	the	fact	that	nitrification	takes	place	in	the	sand	

layer	of	a	bioretention	system	and	this	is	the	location	where	it	is	expected	that	the	majority	

of	ammonium	be	converted	to	nitrate.	As	previously	mentioned,	ammonium	could	also	be	

removed	through	assimilation	or	adsorption,	both	of	which	can	occur	in	the	sand	layer	of	

the	conventional	cell.	In	a	conventional	system,	the	chemical	species	nitrate	is	not	provided	

appropriate	conditions	to	expect	a	high	amount	of	denitrification.		Based	on	these	results,	

in	 was	 concluded	 that	 total	 nitrogen	 removal	 for	 the	 modified	 system	 is	 significantly	

greater	 than	 removal	 in	 a	 conventional	 system,	 where	 there	 is	 no	 anoxic	 zone	 or	

supplementary	electron	donor	(carbon	substrate)	to	promote	denitrification.	

	

4.2	 ADC	Calculations	and	Rainfall	Data	

Storm	event	and	ADC	details	are	shown	in	Table	4.1.		The	ADCs	ranged	from	0	to	33	

days	in	between	storm	events	and	the	amount	of	water	replaced	in	the	IWSZ	ranged	from	

35.5%	to	100%.		All	of	the	storm	events	with	100%	water	replacement	were	man-made.		In	

the	 previous	 chapter	 the	 antecedent	 ADC	 was	 calculated	 to	 displace	 15%	 of	 the	 IWSZ	

water.	 	 It	was	consequently	defined	as	the	number	of	days	with	less	than	1.90	cm	of	rain	

between	 storm	 events	 (Lopez	 et	 al.,	 2016a).	 	 	 Precipitation	was	 determined	 using	 USGS	

gauge	275917082222500,	which	 is	 located	3.43	miles	(via	Google	Maps)	northeast	of	 the	

field	site.			
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Table	4.1	Antecedent	Dry	Conditions	for	the	Fourteen	Storm	Events.		Conducted	at	the	
Field	Site	in	East	Tampa	
Storm	
Event	

Date	of	
Field	Trial	

Previous	
Storm	Event	

Previous	Storm	Rain	
Amount	(cm)*	

Water	
Replaced	(%)	

ADC	
(days)	

1	 1/18/16	 1/17/16	 6.27	 49.0	 0	
2	 1/26/16	 1/18/16	 27.58*	 100	 7	
3	 2/2/16	 1/28/16	 2.87	 22.4	 4	
4	 2/9/16	 2/2/16	 8.20*	 64	 6	
5	 3/8/16	 2/24/16	 4.55	 35.5	 12	
6	 3/17/16	 3/8/16	 27.58*	 100	 8	
7	 3/24/16	 3/17/16	 24.61*	 100	 6	
8	 4/7/16	 4/2/16	 5.08	 39.7	 4	
9	 4/19/16	 4/7/16	 27.58*	 100	 11	
10	 4/29/16	 4/19/16	 55.60*	 100	 9	
11	 5/5/16	 5/4/16	 5.82	 45.4	 0	
12	 5/19/16	 5/17/16	 2.41	 18.8	 1	
13	 6/22/16	 5/19/16	 55.60*	 100	 33	
14	 7/21/16	 6/22/16	 24.61*	 100	 28	

*previous	storm	event	was	a	human	generated	storm	event	

	

4.3	 Overall	Modified	System	Removal	Results	

There	were	four	different	nitrogen	species	data	sets	obtained	for	both	the	influent	

and	effluent	water	samples.	The	fourteen	sets	of	influent	samples	were	averaged	to	obtain	

average	 influent	concentrations	for	the	synthetic	stormwater	and	these	values	were	used	

when	calculating	the	percent	nitrogen	removal	for	all	four	nitrogen	species	(NOx	–	N,	NH4+	-	

N,	 organic	 N,	 and	 TN).	 The	 average	 influent	 concentrations,	 across	 all	 fourteen	 storm	

events,	were	1.07,	1.53,	0.60,	and	2.80	mg	N/L,	respectively.	 	The	 influent	concentrations	

for	each	individual	storm	event	can	be	found	in	Appendix	A,	Table	A.1.	

The	results	showing	the	 influent	and	effluent	concentrations,	and	percent	removal	

for	the	storm	events	are	shown	in	Table	4.2.	Out	of	the	four	nitrogen	species,	ammonium	–	

nitrogen	had	 the	 highest	 percent	 removal	 at	 82.4	%	+/-	 8.7.	 	 There	 are	 a	 few	ways	 that	
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ammonium	 can	 be	 transformed:	 nitrification,	 nitrogen	 uptake,	 and	 adsorption.	 	Nitrogen	

uptake	 can	 occur	 when	 ammonium	 is	 converted	 into	 microbial	 or	 plant	 biomass	 and	

temporarily	 stored	 as	 organic	 N.	 	 Because	 there	 are	 no	 plants	 in	 the	 systems	 for	 this	

research,	the	microorganisms	growing	inside	the	cell	on	the	different	layers	would	be	the	

only	way	that	uptake	would	occur.		Second,	adsorption	can	remove	ammonium	when	there	

are	 negatively	 charged	 particles	 such	 as	 clay	 or	metallic	 coatings	 on	 soil	 particles,	 since	

neither	 of	 these	materials	 is	 believed	 to	 be	 extensively	 present	 in	 the	 designed	 system,	

ammonium	is	not	thought	to	removed	through	adsorption	in	large	amounts.			

In	 the	 bioretention	 cell,	 nitrification	 is	 expected	 to	 occur	 in	 the	 sand	 layer,	 and	

through	 nitrification,	 ammonium	 is	 converted	 to	 nitrite	 and	 then	 nitrate.	 This	 is	 one	

explanation	 for	why	 there	 is	 good	 removal	 of	 ammonium	 in	 both	 systems	 and	 less	 (not	

significant)	 removal	 of	 nitrate/nitrite	 –	 nitrogen	 than	 ammonium	 –	 nitrogen	 in	 the	

conventional	 bioretention	 system,	 78.5	%	+/-	 19.9.	 	 The	 IWSZ	 in	 the	 bioretention	 cell	 is	

designed	to	contain	an	organic	carbon	(i.e.,	the	wood	chips)	and	be	always	saturated	with	

water;	 therefore	 it	 is	 expected	 to	 maintain	 anoxic	 conditions,	 which	 is	 ideal	 for	

denitrification.		The	denitrification	reaction	uses	a	carbon	substrate	(TOC	leached	from	the	

wood	chips)	as	the	electron	donor.	The	nitrate	serves	as	the	electron	acceptor	and,	over	the	

two	chemical	species,	is	converted	into	nitrogen	gas	and	carbon	dioxide.		This	IWSZ	is	the	

process	where	the	majority	of	the	nitrate/nitrite	is	expected	to	be	removed	in	the	system.		

Because	 nitrification,	 adsorption,	 and	 assimilation	 uptake	 nitrogen	 but	 do	 not	 remove	

nitrogen	from	the	system,	denitrification	is	the	only	process	under	these	conditions	that	is	

expected	to	remove	nitrogen	from	the	from	the	biorentention	system.	
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The	lowest	percent	nitrogen	removal	observed	in	both	systems	(see	Figure	4.1)	was	

for	organic	N,	50.2	%	+/-	26.4	in	the	modified	system	and	much	lower	in	the	conventional	

system.	 	When	the	 influent	water	enters	 the	bioretention	cell,	 it	already	contains	organic	

nitrogen	 that	 was	 part	 of	 the	 synthetic	 stormwater.	 	 Organic	 nitrogen	 can	 undergo	

ammonification,	 where	 the	 organic	 nitrogen	 is	 transformed	 to	 ammonium	 and	 then	

resulting	ammonium	can	become	nitrified	through	nitrification.	This	is	the	main	way	that	

organic	nitrogen	is	removed	in	the	bioretention	system;	however,	 there	are	storm	events	

where	 the	 organic	 nitrogen	 in	 the	 effluent	 stream	was	 observed	 to	 be	 greater	 than	 the	

influent	(Appendix	A,	Table	A.3).	 	This	 is	most	 likely	because	the	wood	chips	 in	the	IWSZ	

leach	 not	 only	 TOC	 into	 the	 system	 but	 can	 also	 leach	 organic	 nitrogen	 into	 the	 system.		

This	 can	 pose	 a	 complication	 for	 the	 system,	 since	 the	 carbon	 substrate	 is	 necessary	 to	

perform	 high	 levels	 of	 denitrification,	 however,	 these	 wood	 chips	 can	 contribute	 extra	

organic	 nitrogen	 to	 the	 system.	 	 This	 occurs	 in	 the	 system	 hydraulically	 after	 the	 layer	

where	ammonification	and	nitrification	are	expected	to	occur;	therefore,	organic	nitrogen	

leached	into	the	water	in	the	IWSZ	may	also	leave	the	system	in	the	effluent	stream	before	

it	has	time	to	be	transformed	to	ammonium.	

For	 the	 purpose	 of	 this	 analysis,	 the	 effluent	 concentrations	 used	 for	 the	 percent	

removal	for	each	storm	event	are	the	averages	for	the	effluent	over	the	entire	course	of	the	

storm	event.		It	is	important	to	know	that	nitrogen	removal	(in	all	forms)	does	not	remain	

constant	over	a	period	of	2,	4	or	6	hours	and	the	removal	also	differs	with	the	variation	in	

HLR.		Figures	4.2	and	4.3	show	nitrogen	removal	over	time	for	two	example	storm	events	

simulated	 in	 the	 field	 demonstration	 with	 different	 HLRs	 of	 13.9	 and	 6.9	 cm/hr	 and	

durations	of	2	and	4	hours.	
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Table	4.2	Storm	Event	Results	for	Modified	System:	Nitrogen	Removal	by	Species.	
Percentages	calculated	using	averages	of	effluent	samples	throughout	storm	events	(mg	N/L)	

Storm	
Event	 ADC	(d)	 NOx	–	N	%	

Removal	
NH4+	–	N	%	
Removal	

Organic	N	%	
Removal	

TN	%	
Removal	

Influent	(mg/L)	 1.07	(0.47)	 1.53	(0.38)	 0.60	(0.29)	 2.07	(0.66)	

1	 0	 91.6	 89.9	 9.3	 72.7	
2	 7	 69.3	 83.6	 43.8	 68.9	
3	 4	 99.7	 61.3	 75.6	 73.5	
4	 6	 64.4	 78	 54.1	 64.5	
5	 12	 93.2	 93.4	 56.6	 88.9	
6	 8	 98.6	 90.8	 50.9	 83.8	
7	 6	 92.5	 75.7	 55.4	 76.8	
8	 4	 86.8	 86.9	 62.7	 76.8	
9	 11	 62.9	 79.3	 64.5	 66.9	
10	 9	 98.3	 85.1	 79	 86.8	
11	 0	 27.8	 79.4	 32.1	 46.6	
12	 1	 68.4	 72.9	 37.3	 59.6	
13	 3	 71.7	 86.6	 -8.3	 64.2	
14	 4	 74.1	 90.1	 89.2	 96.5	

Average	%	Removal	 78.5	(19.9)	 82.4	(8.7)	 50.2	(26.4)	 72.5	(9.13)	
Standard	deviation	(if	applicable)	in	parenthesis	

	

	
Figure	4.2	Storm	Event	12:	NOx	–	N,	NH4+	-	N,	Organic	N,	and	TN	Effluent	Concentrations	
Over	Time.		(ADC:	1	day,	HLR:	13.9	cm/hr,	Duration:	4	hr)	
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The	most	noticeable	difference	between	the	two	figures	is	the	effluent	concentration	at	the	

end	 of	 the	 storm	 event.	 	 For	 the	 four	 hour	 storm	 event,	 the	 effluent	 total	 nitrogen	

concentration	was	observed	greater	than	2	mg	N/L	and	was	approaching	the	influent	total	

nitrogen	value	of	2.79	mg	N/L.		For	the	two	hour	storm	event	the	last	effluent	sample	was	

still	below	0.5	mg	N/L,	this	probably	also	had	to	do	with	the	ADC	of	12,	compared	to	the	

ADC	of	1	for	the	four	hour	storm	event.		Additionally,	the	HLR	could	factor	into	the	amount	

of	nitrogen	removed	for	these	two	storm	events.	 	Figure	4.2	showed	a	storm	event	with	a	

HLR	of	13.9	cm/hr	and	Figure	4.3	shows	a	storm	event	of	6.9	cm/hr.		The	lower	the	HLR	is,	

the	longer	contact	time	the	stormwater	has	inside	the	IWSZ,	therefore	it	is	expected	there	

is	a	greater	amount	of	time	in	the	IWSZ	for	denitrification	to	occur.	

	
Figure	4.3	Storm	Event	5:	NOx	–	N,	NH4+	-	N,	Organic	N,	and	TN	Effluent	Concentrations	
Over	Time.		(ADC:	12	days,	HLR:	6.9	cm/hr,	Duration:	2	hr)	
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4.4	 Conventional	and	Modified	System	Removal	Results	Based	on	ADC	

	 The	 fourteen	 storm	 events	 had	 varying	 HLRs	 and	 durations.	 	 Previous	 research	

(Igielski	 (2016)	 (not	 published),	 Lynn	2014)	 has	 shown	 that	 both	 of	 these	 variables	 can	

affect	nitrogen	removal	in	bioretention	systems.		In	order	to	obtain	results	that	were	only	

dependent	 on	 ADC,	 the	 storm	 events	 were	 broken	 up	 by	 HLR	 and	 the	 durations	 were	

shortened	 (if	 necessary)	 to	 control	 both	 of	 these	 additional	 variables.	 The	 same	

modifications	were	made	to	both	conventional	and	modified	data	in	order	to	look	at	what	

could	theoretically	be	entering	the	IWSZ	in	the	modified	cell,	based	off	of	the	effluent	from	

the	 conventional	 cell.	 	 Statistical	 analysis	 was	 performed	 for	 all	 three	 sets	 of	 data	

(Appendix	C,	Tables	C.1	–	C.3).	

There	were	four	storm	events	tested	using	the	low	HLR	(4.1	cm/hr),	three	of	these	

storm	events	had	a	duration	of	6	hours	while	one	storm	event	only	lasted	for	two	hours.	To	

keep	the	data	 from	being	skewed	by	a	variable	other	than	the	ADC,	all	 four	storm	events	

were	studied	for	just	the	first	two	hours	of	the	storm	event	and	results	were	shorted	for	the	

three	 longer	events.	 	The	 four	storm	events	had	ADCs	of	4,	8,	9,	and	33	days.	 	Figure	4.4	

illustrates	the	nitrogen	removal	results	for	these	four	storm	events.	All	 four	storm	events	

with	the	HLR	of	4.1	cm/hr	had	high	NOx	–	N	removal,	average	of	97.7%	+/-	0.02,	however	

the	ADC	did	not	seem	to	affect	NOx	–	N	removal	for	these	four	storm	events.		Generally	for	

the	 other	 two	 individual	 nitrogen	 species	 and	 total	 nitrogen,	 the	 nitrogen	 removal	

increased	with	ADC.		The	experiment	with	a	four	day	ADC	had	a	significantly	lower	NH4+	–	

N	 removal	 efficiency	 than	 the	 experiment	 with	 a	 33	 day	 ADC	 (61.5%	 and	 93.2%,	

respectively).		Organic	nitrogen	removal	increased	for	the	first	three	experiments	(ADCs:	4,	

8,	 and	9	days)	 but	 had	 a	 negative	 removal	 for	 the	 experiment	with	 the	 longest	 (33	day)	



	 38	

ADC.		Since	the	ADC	was	over	a	month	long	for	this	storm	event,	one	possible	explanation	is	

that	even	though	there	was	enough	time	for	denitrification	to	occur,	there	was	more	time	

for	organic	N	to	 leach	from	the	wood	chips	and	mix	with	the	water	 in	the	IWSZ.	 	The	TN	

results	had	similar	results,	consistently	showing	better	removal	of	TN	with	increasing	ADC,	

until	the	storm	event	with	the	longest	ADC	(i.e.,	33	days).		

	
Figure	4.4	Percent	Nitrogen	Removal	for	Different	ADC	for	Storm	Events	with	a	HLR	of	4.1	
cm/hr	and	Two	Hour	Duration.		(ADCs:	4,	8,	9,	and	33	days)	

	
Out	 of	 the	 five	 storm	 events	 that	 were	 conducted	 using	 the	 midrange	 HLR	 (6.9	

cm/hr),	 four	of	the	storm	events	 lasted	four	hours	and	one	of	the	storm	events	 lasted	six	

hours.	 These	 five	 storm	events	 can	be	 compared	 equally	 by	using	 the	 first	 four	hours	 of	

nitrogen	 removal	 data	 for	 the	 fifth	 storm	 event,	 and	 all	 of	 the	 data	 from	 the	 other	 four	

storm	events.		This	was	done	in	order	to	eliminate	the	effect	of	HLR	and	storm	duration	on	

examination	 of	 the	 ADC	 nitrogen	 removal	 data.	 	 These	 storm	 events	 had	 four	 different	
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ADCs	of	0,	4,	6,	and	12	days.		Figure	4.5	illustrates	the	results	from	these	five	storm	events.		

The	 effluent	 nitrogen	 was	 averaged	 throughout	 the	 four	 hour	 storm	 event	 and	 percent	

removal	calculated	by	using	the	average	influent	concentrations	presented	in	Table	4.2.			

	
Figure	4.5	Percent	Nitrogen	Removal	for	Different	ADC	for	Storm	Events	with	a	HLR	of	6.9	
cm/hr	and	Four	Hour	Duration.		(ADCs:	0,	4,	6,	12,	and	28	days)	

	
The	results	in	Figure	4.5	show	that	as	the	ADC	increased,	the	nitrogen	removal	for	all	four	

nitrogen	species	also	increased,	though	the	increase	is	not	large	for	ammonium	–	nitrogen	

and	nitrate	 –	nitrogen	 species.	 	Total	nitrogen,	 although	 simply	 a	 sum	of	 the	other	 three	

species,	 shows	 the	 most	 incremental	 increase	 as	 the	 ADC	 also	 increased.	 The	 percent	

nitrogen	removal	for	the	storm	event	with	a	28	day	ADC	was	significantly	(p<0.05)	greater	

than	 the	 storm	 event	 with	 a	 0	 day	 ADC	 for	 NH4+–	 N,	 Organic	 N,	 and	 TN.	 	 The	 NOx	 –	 N	

removal	results	for	the	28	day	ADC	storm	event	were	greater	than	the	removal	results	for	

the	0	day	ADC	storm	event,	however	they	were	not	significant	(p>0.05).	The	overall	trend	
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for	the	TN	data	showed	that	the	ADC	increasing	for	storm	events	with	an	HLR	of	6.9	cm/hr,	

also	increases	the	nitrogen	removal	rate.	

	 There	were	five	storm	events	conducted	at	the	highest	HLR	(13.9	cm/hr),	 three	of	

these	 storm	 events	 were	 conducted	 for	 six	 hours	 and	 two	 of	 the	 storm	 events	 were	

conducted	 for	 two	 hours.	 	 As	 in	 the	 previous	 two	 cases,	 the	 data	 from	 the	 longer	 storm	

events	was	shortened	to	only	include	the	first	two	hours	to	eliminate	these	variables	from	

the	ADC	results.	 	These	five	storm	events	had	ADCs	of	0,	1,	6,	7,	and	11	days,	the	percent	

nitrogen	removal	results	are	presented	in	Figure	4.6.		

	
Figure	4.6	Percent	Nitrogen	Removal	for	Different	ADC	for	Storm	Events	with	a	HLR	of	
13.9	cm/hr	and	Four	Hour	Duration.		(ADCs:	0,	1,	6,	7,	and	11	days)	
	
Since	these	five	storm	events	were	carried	out	with	the	highest	HLR,	their	overall	removals	

differ	 from	 the	 removal	 efficiencies	 of	 the	 other	 two	 groups	 of	 storm	 events.	 	 Research	

(Lynn	et	al.,	2015a)	has	shown	that	a	greater	HLR	results	in	less	nitrogen	removal	(for	all	
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forms	 of	 nitrogen)	 than	 a	 lower	 HLR.	 We	 can	 see	 this	 from	 the	 results	 that	 have	 been	

presented	 here	 (Figures	 4.4,	 4.5,	 and	 4.6).	 	 The	 greatest	 amounts	 of	 nitrate/nitrite	 –	

nitrogen	were	removed	in	the	first	group,	Figure	4.4.	This	is	presumably	due	to	the	lowest	

HLR	and	therefore,	the	water	having	a	longer	contact	time	inside	the	IWSZ.	

	 For	 all	 three	 sets	 of	 storm	 events	 conducted	 at	 various	 HLRs	 (4.1,	 6.9,	 and	 13.9	

cm/hr)	and	lengths	(2	and	4	hrs),	the	data	suggested	an	increasing	trend	in	TN	removal	as	

the	ADC	increased.	 	The	data	from	the	three	different	groups	of	ADC	should	be	examined	

further	to	investigate	the	effect	of	HLR	on	nitrogen	removal	and	ADC.		Some	of	the	nitrogen	

removals	increased	significantly,	such	as	the	group	of	storm	events	carried	out	with	a	HLR	

of	 6.9	 cm/hr.	 	 The	TN	 removal	 increased	 significantly	 (p>0.05)	when	 the	ADC	 increased	

from	0	to	28	days.	 	Additionally,	 the	storm	events	carried	out	with	a	4.1	cm/hr	HLR,	had	

significant	 (p>0.05)	 increases	 in	 nitrogen	 removal	 from	4	ADC	 to	 9	ADC	 for	 ammonium,	

organic	nitrogen,	and	total	nitrogen.		These	results	are	supported	by	the	results	of	Lynn	et	

al.	(2015a)	who	demonstrated	that	the	increase	in	ADC	for	consistent	HLR	and	durations	of	

storm	events	would	increase	the	nitrate	–	nitrogen	removal.		Lynn	et	al.	also	showed	that	as	

the	ADC	increased	from	0	to	16	days,	the	nitrate	–	nitrogen	removal	increased	from	86%	to	

97%	and	the	TN	removal	increased	from	66.5%	to	79%.			

One	 advantage	 of	 running	 identical	 storm	 events	 on	 a	 conventional	 and	modified	

system	at	 the	 same	 time	 is	 to	observe	what	might	be	happening	within	 the	 layers	of	 the	

modified	cell.		Two	storm	events	were	chosen	to	highlight	this	data.		Storm	events	8	and	14	

(4	and	28	day	ADC,	 respectively),	 tested	with	a	HLR	of	6.9	 cm/hr	and	a	duration	of	 four	

hours,	 were	 chosen	 because	 of	 the	middle	 range	 HLR	 and	 duration	 for	 all	 of	 the	 storm	

events.	 	 Table	 4.3	 outlines	 the	 influent	 and	 effluent	 concentrations	 of	 different	 nitrogen	
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species	 for	 the	 conventional	 cell	 for	 these	 two	experiments.	 	The	 influent	 concentrations	

are	 the	 same	 because	 the	 average	 nitrogen	 concentration	 was	 used	 to	 determine	 the	

percent	nitrogen	removal	for	all	14	storm	events	for	the	modified	cell	in	Table	4.2.	

	
Table	4.3	Conventional	Cell	Nitrogen	Removal	Data:	ADCs	of	4	and	28	Days	

	 NOx	–	N	 NH4+–	N	 Org	N	 TN	

Influent	
(mg	N/L)	 1.067	(0.471)	 1.527	(0.384)	 0.603	(0.288)	 2.797	(1.031)	

ADC		
(d)	

Effluent	
(mg	N/L)	

%	
Removal	

Effluent	
(mg	N/L)	

%	
Removal	

Effluent	
(mg	N/L)	

%	
Removal	

Effluent	
(mg	N/L)	

%	
Removal	

4	 0.445	 58.32	 0.191	 87.49	 0.187	 68.98	 0.789	 71.81	
28	 0.649	 39.17	 0.87	 43.04	 0.065	 89.22	 0.561	 79.95	

	
The	next	 step	of	 this	 hypothetical	 analysis	 is	 to	use	 the	 effluent	 concentrations	 from	 the	

conventional	cell	(Table	4.3)	as	the	influent	data	into	the	IWSZ	and	the	effluent	data	from	

the	 modified	 cell,	 to	 investigate	 the	 percent	 removal	 from	 these	 four	 nitrogen	 species,	

specifically	for	the	IWSZ	(Table	4.4).	

	
Table	4.4	Modified	Cell	Removal	Data	Under	Hypothetical	Analysis.		
(Influent	Concentrations	are	the	Effluent	of	the	conventional	system	from	Table	4.3)	

	 NOx	–	N	 NH4+–	N	 Org	N	 TN	

ADC	
(d)	

Effluent	
(mg	N/L)	

%	
Removal	

Effluent	
(mg	N/L)	

%	
Removal	

Effluent	
(mg	N/L)	

%	
Removal	

Effluent	
(mg	N/L)	

%	
Removal	

4	 0.1404	 68.45%	 0.1988	 -4.10%	 0.2252	 -20.45%	 0.6497	 17.66%	
28	 0.0471	 92.74%	 0.0407	 95.32%	 0.0649	 0.15%	 0.0719	 87.18%	

	
This	hypothetical	analysis	was	only	performed	on	two	storm	events	with	varying	ADC.		The	

data	 in	Table	4.4	 suggests	 that	 in	 this	 analysis	 there	would	be	 close	 to	0%	ammonium	–	

nitrogen	 removed	 in	 the	 IWSZ	 for	 the	 storm	 event	 with	 an	 ADC	 of	 four	 days.	 	 This	 is	

intuitive	because	as	discussed	in	Chapter	2	(Equations	2.1	–	2.4),	the	majority	of	ammonia	
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is	expected	to	be	transformed	in	the	sand	layer	(which	is	the	primary	transformation	zone	

of	a	conventional	cell).		However,	the	results	for	the	storm	event	with	a	28	day	ADC	suggest	

there	was	95%	of	 ammonium	–	nitrogen	 removed	 in	 the	 IWSZ	during	 that	 extended	dry	

period.	 	This	result	of	the	hypothetical	analysis	did	not	make	intuitive	sense	but	could	be	

because	 the	 measured	 effluent	 concentration	 was	 so	 small	 which	 resulted	 in	 a	 larger	

percent	 removal.	 Additionally,	 this	 interpretation	 of	 data	 suggested	 there	 could	 be	

generation	of	organic	nitrogen	in	the	effluent	for	the	storm	event	with	the	shorter	ADC,	this	

could	happen	due	to	organic	nitrogen	leaching	from	the	wood	chips	and	leaving	the	system	

in	 the	 effluent.	 	 For	 the	 longer	 ADC	 of	 28	 days,	 the	 hypothetical	 analysis	 resulted	 in	

basically	no	removal	or	addition	of	organic	nitrogen	 in	 the	 IWSZ.	 	This	conflicts	with	 the	

earlier	results	 that	 the	storm	event	with	a	33	ADC	had	an	 influx	of	organic	carbon	 in	 the	

effluent.		Both	of	the	storm	events	removed	greater	than	60%	of	nitrate/nitrite	–	nitrogen,	

however	the	storm	event	with	a	28	day	ADC	removed	20%	more.		This	result	is	most	likely	

because	 of	 the	 longer	 contact	 time	 between	 the	 carbon	 substrate	 (wood	 chips)	 and	 the	

stormwater,	leading	to	higher	levels	of	denitrification	for	the	storm	event.	
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CHAPTER	5:	CONCLUSIONS	AND	RECOMMENDATIONS	FOR	FUTURE	RESEARCH	
	
	

5.1	 Summary	of	Findings	

The	overall	goal	of	this	research	was	to	develop	greater	understanding	of	the	effect	

the	 ADC	 has	 on	 the	 performance	 of	 a	modified	 bioretention	 cell	 (containing	 an	 IWSZ	 to	

better	 treat	 nitrogen	 pollution).	 	 There	 were	 two	 objectives	 and	 one	 hypothesis	 that	

directed	this	research.		The	first	objective	was	to	identify	knowledge	gaps	in	the	literature	

related	to	the	use,	properties,	and	performance	of	wood	chips	that	are	placed	in	the	IWSZ	

to	promote	denitrification.		The	second	objective	was	to	examine	the	difference	in	nitrogen	

removal	in	a	field	demonstration	for	a	conventional	and	modified	bioretention	system	with	

variable	ADCs.		The	hypothesis	was	that	storm	events	with	longer	ADCs	would	have	lower	

levels	of	nitrogen	in	the	treated	effluent	than	storm	events	with	a	shorter	ADC.	

The	 literature	 review	 discussed	 in	 depth	 different	 types	 of	 studies	 performed	 on	

denitrification	 bioreactors	with	 the	 use	 of	wood	 chips	 as	 the	 carbon	 substrate	 (electron	

donor).	 	 Additionally,	 values	 of	 carbon	 content	 (%),	 TOC	 leaching,	 influent	 and	 effluent	

nitrogen	 concentrations,	 and	 nitrogen	 removal	 (%)	were	 reported	 for	 different	 types	 of	

wood	 used	 in	 different	 studies.	 	 Nine	 different	 types	 of	 wood	 chips	 were	 tested	 in	 the	

literature	 through	 seven	 different	 studies	 and	 each	 wood	 type	 was	 categorized	 as	 a	

hardwood	 or	 softwood.	 	 The	 literature	 reported	 that	 softwood	 chips	 leach	 significantly	

(p<0.05)	 more	 TOC	 than	 hardwood	 chips	 (138.3%	 and	 70.3%,	 respectively).	 	 Higher	

amounts	of	TOC	leached	into	the	IWSZ	should	increase	the	amount	of	nitrogen	removed	for	
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these	systems.		The	literature	review	did	show	that	systems	using	softwood	chips	provided	

greater	total	nitrogen	removal	than	systems	that	used	hardwood	chips	(75.2%	and	63.0%	

removal	 of	 total	 nitrogen,	 respectively).	 	 Lower	 densities	 of	 softwoods	 (opposed	 to	

hardwoods)	may	 provide	 the	 ability	 for	 the	water	 to	more	 easily	 penetrate	 the	wood	 to	

leach	out	more	bioavailable	organic	carbon	and	thus	increase	nitrogen	removal.			

The	 literature	review	also	showed	how	the	removal	of	 individual	nitrogen	species	

was	 impacted	 by	 different	 dry	 periods	 (ADCs)	 between	 storm	 events	 in	 a	 bioretention	

system.	Specifically,	Lynn	et	al.	(2015a)	reported	higher	amounts	of	nitrogen	removal	with	

increasing	 ADCs	 in	 a	 (column)	 laboratory	 study.	 	 The	 design	 goal	 of	 this	 scenario	 is	 to	

obtain	a	long	enough	contact	time	between	the	water	and	wood	chips	based	IWSZ,	so	the	

denitrifying	bacteria	can	convert	greater	amounts	of	nitrate	and	nitrite	to	nitrogen	gas.			

This	thesis	tested	the	effect	of	varying	ADCs	at	a	 field	site	 in	East	Tampa	(Florida)	

that	 contained	 a	 conventional	 and	 modified	 bioretention	 cell.	 	 Nitrogen	 removal	 in	 the	

modified	 system	 was	 significantly	 (p<0.05)	 greater	 than	 nitrogen	 removal	 in	 the	

conventional	 system	 for	 nitrate/nitrite	 –	 nitrogen,	 ammonium	 –	 nitrogen,	 and	 total	

nitrogen,	 and	 greater	 (not	 significantly)	 for	 organic	 nitrogen.	 	 In	 addition,	 the	 results	

demonstrated	 that	 the	 hypothesis	 was	 supported;	 if	 the	 ADC	 before	 a	 storm	 event	 was	

increased,	 the	nitrogen	removal	 in	the	modified	bioretention	system	would	also	 increase.			

Fourteen	 storm	 event	 experiments	 were	 conducted	 on	 the	 two	 bioretention	 systems	

(conventional	and	modified)	to	compare	the	effect	of	a	longer	ADC	on	the	nitrogen	removal	

in	the	system.		Three	nitrogen	species:	NOx	–	N,	NH4+	-	N,	and	TN,	were	tested	in	the	influent	

and	effluent	samples	throughout	each	experiment.	 	Organic	nitrogen	concentrations	were	

then	determined	using	this	data.	Once	the	results	for	all	of	the	storm	events	were	compiled,	
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they	were	grouped	into	three	groups	based	on	different	HLRs	(4.1	cm/hr,	6.9	cm/hr,	and	

13.9	 cm/hr)	 that	were	 tested	 throughout	 the	 research	 period.	 Additionally,	 some	 of	 the	

storm	event	data	were	shortened	in	order	to	obtain	identical	lengths	of	time	for	all	storm	

events	in	each	group.	 	This	was	done	in	order	to	eliminate	the	effect	on	nitrogen	removal	

from	two	variables	(HLR	and	storm	duration)	that	have	been	proved	to	change	the	nitrogen	

removal	efficiency	in	a	denitrifying	system.			

For	the	first	group	(HLR	of	4.1	cm/hr,	duration	of	2	hrs)	the	results	were	generally	

similar	for	all	four	nitrogen	species	(NOx	–	N,	NH4+	–	N,	organic	N,	and	TN)	due	to	the	low	

flow.	 	 The	 second	 group	 (HLR	 of	 6.9	 cm/hr,	 duration	 of	 4	 hrs)	 showed	 an	 increase	 in	

nitrogen	removal	with	the	increase	in	ADC.		The	higher	flow	rate	was	able	to	help	move	the	

water	through	the	system	faster.		The	differences	in	the	storm	event	with	an	ADC	of	0	and	

the	 storm	 event	with	 an	ADC	 of	 28	were	 significant	 (p<0.05)	 for	 ammonium	 –	 nitrogen,	

organic	N,	and	TN.		The	results	for	nitrate/nitrite	–	nitrogen	did	increase	with	the	increase	

in	ADC,	but	they	were	not	significant	(p>0.05).		The	third	group	with	the	highest	flow	(HLR	

of	 13.9	 cm/hr,	 duration	 of	 2	 hrs)	 had	 removal	 results	 that	 varied	 as	 the	 ADC	 increased.		

This	 is	 thought	 to	be	due	 to	 the	higher	hydraulic	 loading	 rate	moving	water	 through	 the	

system	much	 faster,	 therefore	decreasing	 the	contact	 time	 for	nitrogen	 transformation	 in	

both	the	nitrifying	and	denitrifying	zones	within	the	modified	system.		The	TN	removal	for	

storm	events	tested	with	the	highest	HLR	(13.9	cm/hr)	was	lower	for	it’s	five	storm	events	

when	 compared	 to	 the	 storm	 events	 conducted	 with	 the	 other	 two	 HLRs	 (4.1	 and	 6.9	

cm/hr).		

	 In	conclusion,	softwood	chips	provide	an	advantage	in	the	removal	of	nitrogen	in	a	

modified	bioretention	system	as	compared	to	hardwood	chips.	The	modified	bioretention	
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cell	had	higher	nitrogen	removal	efficiencies	than	the	conventional	cell.		Overall,	we	can	say	

that	 the	 longer	 ADC	 does	 increase	 nitrogen	 removal	 for	 a	modified	 bioretention	 system,	

however	there	are	other	variables	(HLR	and	storm	duration)	that	also	effect	the	system	and	

further	 research	 should	 be	 performed	 to	 look	 at	 the	 interaction	 between	 all	 three	 (ADC,	

HLR,	and	storm	duration).	

	

5.2	 Recommendations	for	Future	Research	

	 This	 study	 showed	 the	 effect	 of	 the	ADC	on	 total	 nitrogen	 removal	 efficiency	 in	 a	

field	study	of	a	bioretention	cell	constructed	with	an	IWSZ,	using	eucalyptus	wood	chips	as	

the	carbon	substrate	 to	promote	denitrification	of	nitrogen.	 	Future	 field	demonstrations	

should	 be	 performed	 on	 additional	 bioretention	 cells	 located	 in	 different	 parts	 of	 the	

United	 States	 to	 see	 the	 effect	 of	 climate	 and	 the	 ADC	 on	 nitrogen	 removal.	 It	 is	 also	

recommended	to	test	the	effect	of	different	wood	chip	types	with	varying	ADCs	on	nitrogen	

removal.	 	Another	 recommendation	 for	 future	 research	would	be	 to	 further	 examine	 the	

effect	of	the	ADC	with	differing	HLRs	and	durations.	 	The	final	recommendation	from	this	

study	would	be	to	add	plants	into	the	top	of	the	bioretention	cell	and	determine	the	effect	

of	adding	plants	on	nitrogen	removal	with	varying	ADCs	for	the	system.	
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APPENDIX	A.	STORM	EVENT	RESULTS	

Table	A.1	Average	Influent	Concentrations	of	NOx	–	N,	NH4+–	N,	Organic	N,	and	TN	

Storm	Event	 NOx	–	N	(mg/L)	 NH4
+–	N	(mg/L)	 Org	N	(mg/L)	 TN	(mg/L)	

1	 0.82	 1.83	 1.17	 3.88	

2	 0.47	 1.46	 0.29	 2.50	

3	 1.67	 1.54	 0.50	 3.70	

4	 0.53	 1.37	 0.57	 2.29	

5	 0.94	 1.01	 0.69	 2.73	

6	 1.04	 2.01	 0.86	 3.90	

7	 0.75	 1.39	 0.62	 2.76	

8	 0.88	 0.88	 0.20	 2.16	

9	 0.86	 0.96	 0.28	 2.05	

10	 0.61	 1.71	 0.83	 3.16	

11	 1.86	 1.55	 0.41	 3.83	

12	 1.17	 2.15	 0.83	 4.15	

13	 1.83	 1.82	
	

1.02	

14	 1.50	 1.71	
	

1.03	

Average	 1.07	(0.47)	 1.53	(0.38)	 0.60	(0.29)	 2.80	(1.03)	
Standard	deviation	(where	applicable)	in	parenthesis	
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Table	A.2	Modified	Cell	Nitrogen	Removal	of	NOx	–	N	and	NH4+–	N	

	 NOx–	N	 NH4+–	N	

Storm	
Event	 ADC	 Duration	 HLR	 Flow	Rate	 Effluent	 Removal	 Removal	 Effluent	 Removal	 Removal	

	 d	 hr	 cm/hr	 L/min	 mg/L	 mg/L	 %	 mg/L	 mg/L	 %	

Influent	 1.067	(0.471)	 1.527	(0.384)	

1	 0	 4	 6.9	 0.64	 0.089	 0.978	 91.64	 0.153	 1.374	 89.95	
2	 7	 2	 13.9	 1.29	 0.327	 0.740	 69.34	 0.250	 1.278	 83.65	
3	 4	 2	 4.1	 0.38	 0.004	 1.064	 99.66	 0.591	 0.937	 61.33	
4	 6	 2	 13.9	 1.29	 0.380	 0.688	 64.44	 0.336	 1.191	 78.00	
5	 12	 4	 6.9	 0.64	 0.073	 0.994	 93.15	 0.099	 1.428	 93.49	
6	 8	 6	 4.1	 0.38	 0.015	 1.053	 98.63	 0.140	 1.387	 90.84	
7	 6	 4	 6.9	 0.64	 0.080	 0.987	 92.49	 0.370	 1.157	 75.78	
8	 4	 4	 6.9	 0.64	 0.140	 0.927	 86.85	 0.199	 1.329	 86.98	
9	 11	 4	 13.9	 1.29	 0.396	 0.671	 62.87	 0.315	 1.212	 79.38	
10	 9	 6	 4.1	 0.38	 0.018	 1.049	 98.28	 0.228	 1.300	 85.10	
11	 0	 4	 13.9	 1.29	 0.771	 0.297	 27.78	 0.314	 1.214	 79.46	
12	 1	 4	 13.9	 1.29	 0.337	 0.730	 68.43	 0.414	 1.114	 72.91	
13	 3	 6	 4.1	 0.38	 0.302	 0.766	 71.72	 0.204	 1.323	 86.65	
14	 4	 6	 6.9	 0.64	 0.277	 0.790	 74.05	 0.150	 1.377	 90.17	

Standard	deviation	(where	applicable)	in	parenthesis	
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Table	A.3	Modified	Cell	Nitrogen	Removal	of	Organic	N	and	TN	

	 Organic	N	 TN	

Storm	Event	 ADC	 Duration	 HLR	 Flow	Rate	 Effluent	 Removal	 Removal	 Effluent	 Removal	 Removal	

	 d	 hr	 cm/hr	 L/min	 mg/L	 mg/L	 %	 mg/L	 mg/L	 %	

Influent	 0.603	(0.288)	 2.797	(1.031)	

1	 0	 4	 6.9	 0.64	 0.547	 0.056	 9.32	 0.763	 2.034	 72.73	
2	 7	 2	 13.9	 1.29	 0.338	 0.265	 43.88	 0.869	 1.928	 68.93	
3	 4	 2	 4.1	 0.38	 0.147	 0.456	 75.58	 0.742	 2.055	 73.49	
4	 6	 2	 13.9	 1.29	 0.277	 0.326	 54.07	 0.993	 1.804	 64.51	
5	 12	 4	 6.9	 0.64	 0.262	 0.341	 56.60	 0.308	 2.489	 88.98	
6	 8	 6	 4.1	 0.38	 0.296	 0.307	 50.89	 0.454	 2.343	 83.76	
7	 6	 4	 6.9	 0.64	 0.269	 0.334	 55.40	 0.650	 2.147	 76.78	
8	 4	 4	 6.9	 0.64	 0.225	 0.378	 62.65	 0.650	 2.147	 76.77	
9	 11	 4	 13.9	 1.29	 0.214	 0.389	 64.49	 0.927	 1.870	 66.86	
10	 9	 6	 4.1	 0.38	 0.127	 0.476	 79.00	 0.370	 2.427	 86.79	
11	 0	 4	 13.9	 1.29	 0.409	 0.194	 32.14	 1.494	 1.303	 46.59	
12	 1	 4	 13.9	 1.29	 0.378	 0.225	 37.29	 1.129	 1.668	 59.63	
13	 3	 6	 4.1	 0.38	 0.653	 -0.050	 -8.26	 1.001	 1.795	 64.20	
14	 4	 6	 6.9	 0.64	 0.065	 0.538	 89.22	 0.099	 2.698	 96.47	

Standard	deviation	(where	applicable)	in	parenthesis
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Table	A.4	Conventional	Cell	Removal	of	NOx	–	N,	NH4+–	N,	Organic	N,	and	TN	

	 NOx	 NH4+	 Org	N	 TN	
Storm	
Event*	 ADC	 Length	 HLR	 Effluent	 Removal	 Effluent	 Removal	 Effluent	 Removal	 Effluent	 Removal	

	 d	 hr	 cm/hr	 mg/L	 %	 mg/L	 %	 mg/L	 %	 mg/L	 %	

Influent	(mg/L)	 1.067	(0.471)	 1.527	(0.384)	 0.603	(0.288)	 2.797	(1.031)	
4	 6	 2	 13.9	 1.315	 -23.16	 0.235	 84.60	 0.246	 59.24	 1.796	 35.79	
5	 12	 4	 6.9	 0.613	 42.56	 0.240	 84.28	 0.542	 10.06	 1.294	 53.72	
6	 8	 6	 4.1	 0.731	 31.48	 0.627	 58.94	 -	 	 -	 	
7	 6	 4	 6.9	 0.642	 39.89	 0.359	 76.48	 0.403	 33.17	 1.291	 53.85	
8	 4	 4	 6.9	 0.445	 58.32	 0.191	 87.49	 0.187	 68.98	 0.789	 71.81	
9	 11	 4	 13.9	 0.733	 31.37	 0.626	 59.00	 0.177	 70.69	 1.660	 40.65	
10	 9	 6	 4.1	 0.723	 32.30	 0.247	 83.84	 0.424	 29.71	 0.424	 84.84	
11	 0	 4	 13.9	 1.202	 -12.6	 0.562	 63.18	 0.472	 21.69	 2.237	 20.01	
12	 1	 4	 13.9	 0.723	 32.30	 0.923	 39.60	 0.603	 0.03	 2.248	 19.62	
13	 3	 6	 4.1	 0.501	 53.08	 0.141	 90.74	 0.721	 -19.59	 0.658	 76.47	
14	 4	 6	 6.9	 0.649	 39.17	 0.870	 43.04	 0.065	 89.22	 0.561	 79.95	

Standard	deviation	(where	applicable)	in	parenthesis	
*Storm	events	1-3	were	not	included	in	the	conventional	results	due	to	experimental	error.	
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APPENDIX	B.	ADC	CALCULATIONS	
	
Table	B.1	ADC	Calculations	for	10%	of	the	IWSZ	Replaced	

ADC	(days)	 NOx	–	N	%	
Removal	

NH4+–	N	%	
Removal	

Organic	N	%	
Removal	 TN	%	Removal	

0	 91.64	 89.95	 9.32	 72.73	
0	 27.78	 79.46	 32.14	 46.59	
1	 68.43	 72.91	 37.29	 59.63	
3	 71.72	 86.65	 -	 64.20	
4	 99.66	 61.33	 75.58	 73.49	
4	 86.85	 86.98	 62.65	 76.77	
4	 74.05	 90.17	 89.22	 96.47	
6	 64.44	 78.00	 54.07	 64.51	
6	 92.49	 75.78	 55.40	 76.78	
7	 69.34	 83.65	 43.88	 68.93	
8	 98.63	 90.84	 50.89	 83.76	
9	 98.28	 85.10	 79.00	 86.79	
11	 62.87	 79.38	 64.49	 66.86	
12	 93.15	 93.49	 56.60	 88.98	

	
Table	B.2	ADC	Calculations	for	15%	of	the	IWSZ	Replaced	

ADC	(days)	 NOx	–	N	%	
Removal	

NH4+–	N	%	
Removal	

Organic	N	%	
Removal	 TN	%	Removal	

0	 91.6	 89.9	 9.3	 72.7	
0	 27.8	 79.4	 32.1	 46.6	
1	 68.4	 72.9	 37.3	 59.6	
4	 99.7	 61.3	 75.6	 73.5	
4	 86.8	 86.9	 62.7	 76.8	
6	 64.4	 78	 54.1	 64.5	
6	 92.5	 75.7	 55.4	 76.8	
7	 69.3	 83.6	 43.8	 68.9	
8	 98.6	 90.8	 50.9	 83.8	
9	 98.3	 85.1	 79	 86.8	
11	 62.9	 79.3	 64.5	 66.9	
12	 93.2	 93.4	 56.6	 88.9	
28	 74.1	 90.1	 89.2	 96.5	
33	 71.7	 86.6	 -8.3	 64.2	
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Table	B.3	ADC	Calculations	for	20%	of	the	IWSZ	Replaced	

ADC	(days)	 NOx	–	N	%	
Removal	

NH4+–	N	%	
Removal	

Organic	N	%	
Removal	 TN	%	Removal	

0	 91.6	 89.9	 9.3	 72.7	
0	 27.8	 79.4	 32.1	 46.6	
4	 99.7	 61.3	 75.6	 73.5	
4	 86.8	 86.9	 62.7	 76.8	
6	 64.4	 78	 54.1	 64.5	
6	 92.5	 75.7	 55.4	 76.8	
7	 69.3	 83.6	 43.8	 68.9	
8	 98.6	 90.8	 50.9	 83.8	
9	 98.3	 85.1	 79	 86.8	
11	 62.9	 79.3	 64.5	 66.9	
12	 93.2	 93.4	 56.6	 88.9	
13	 68.4	 72.9	 37.3	 59.6	
28	 74.1	 90.1	 89.2	 96.5	
33	 71.7	 86.6	 -8.3	 64.2	

	
Table	B.4	ADC	Calculations	for	50%	of	the	IWSZ	Replaced	

ADC	(days)	 NOx	–	N	%	
Removal	

NH4+–	N	%	
Removal	

Organic	N	%	
Removal	 TN	%	Removal	

0	 91.6	 89.9	 9.3	 72.7	
5	 27.8	 79.4	 32.1	 46.6	
6	 99.7	 61.3	 75.6	 73.5	
6	 64.4	 78	 54.1	 64.5	
6	 92.5	 75.7	 55.4	 76.8	
7	 69.3	 83.6	 43.8	 68.9	
7	 93.2	 93.4	 56.6	 88.9	
8	 98.6	 90.8	 50.9	 83.8	
9	 98.3	 85.1	 79	 86.8	
11	 62.9	 79.3	 64.5	 66.9	
13	 86.8	 86.9	 62.7	 76.8	
13	 68.4	 72.9	 37.3	 59.6	
28	 74.1	 90.1	 89.2	 96.5	
33	 71.7	 86.6	 -8.3	 64.2	
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Table	B.5	ADC	Calculations	for	100%	of	the	IWSZ	Replaced	

ADC	(days)	 NOx	–	N	%	
Removal	

NH4+–	N	%	
Removal	

Organic	N	%	
Removal	 TN	%	Removal	

5	 27.8	 79.4	 32.1	 46.6	
6	 99.7	 61.3	 75.6	 73.5	
6	 92.5	 75.7	 55.4	 76.8	
7	 69.3	 83.6	 43.8	 68.9	
7	 93.2	 93.4	 56.6	 88.9	
8	 98.6	 90.8	 50.9	 83.8	
9	 98.3	 85.1	 79	 86.8	
11	 62.9	 79.3	 64.5	 66.9	
12	 64.4	 78	 54.1	 64.5	
13	 86.8	 86.9	 62.7	 76.8	
13	 68.4	 72.9	 37.3	 59.6	
28	 74.1	 90.1	 89.2	 96.5	
33	 71.7	 86.6	 -8.3	 64.2	
220	 91.6	 89.9	 9.3	 72.7	
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APPENDIX	C.	STATISTICAL	ANALYSIS	RESULTS	FOR	STORM	EVENTS	BASED	ON	HLR	
	
Table	C.1	Low	Flow	Storm	Event	Statistical	Analysis	Results.	(4.1	cm/hr)	
Standard	deviation,	number	of	experiments,	variance,	t-score,	d.f.,	and	p-value	
SE	 NOx	–	N	 STDEV	 N	 S2/N	 Var	 t-score	 d.f	 p-value	 Significant?	

3	 99.53%	 0.0079	 7	 0.0000	
0.0078	 2.75	 24	 <0.05	 Yes	6	 97.38%	 0.0316	 19	 0.0001	

3	 99.53%	 0.0079	 7	 0.0000	
0.0171	 2.30	 18	 <0.05	 Yes	

10	 95.60%	 0.0606	 13	 0.0003	
3	 99.53%	 0.0079	 7	 0.0000	

0.0879	 0.14	 18	 >0.05	 No	
13	 98.22%	 0.3169	 13	 0.0077	
SE	 NH4+–	N	 STDEV	 N	 S2/N	 Var	 t-score	 d.f	 p-value	 Significant?	
3	 61.50%	 0.0119	 7	 0.0000	

0.0096	 31.64	 24	 <0.05	 Yes	6	 91.82%	 0.0369	 19	 0.0001	
3	 61.50%	 0.0119	 7	 0.0000	

0.0082	 28.54	 18	 <0.05	 Yes	
10	 84.88%	 0.0247	 13	 0.0000	
3	 61.50%	 0.0119	 7	 0.0000	

0.0309	 10.26	 18	 <0.05	 Yes	
13	 93.19%	 0.1101	 13	 0.0009	
SE	 Org	N	 STDEV	 N	 S2/N	 Var	 t-score	 d.f	 p-value	 Significant?	
3	 67.50%	 0.0838	 6	 0.0012	

0.0515	 5.28	 13	 <0.05	 Yes	6	 40.31%	 0.1153	 9	 0.0015	
3	 67.50%	 0.0838	 6	 0.0012	

0.0381	 3.52	 17	 <0.05	 Yes	
10	 80.93%	 0.0607	 13	 0.0003	
3	 67.50%	 0.0838	 6	 0.0012	

0.0734	 10.93	 17	 <0.05	 Yes	
13	 -12.75%	 0.2341	 13	 0.0042	
SE	 TN	 STDEV	 N	 S2/N	 Var	 t-score	 d.f	 p-value	 Significant?	
3	 71.79%	 0.0788	 6	 0.0010	

0.0572	 1.67	 13	 <0.05	 Yes	6	 81.37%	 0.1419	 9	 0.0022	
3	 71.79%	 0.0788	 6	 0.0010	

0.0404	 3.52	 17	 <0.05	 Yes	
10	 86.02%	 0.0881	 13	 0.0006	
3	 71.79%	 0.0788	 6	 0.0010	

0.0945	 0.04	 19	 >0.05	 No	
13	 71.40%	 0.3442	 15	 0.0079	
SE	=	storm	event	
d.f.	=degrees	of	freedom	
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Table	C.2	Median	Flow	Storm	Event	Statistical	Analysis	Results.	(6.9	cm/hr)	
Standard	deviation,	number	of	experiments,	variance,	t-score,	d.f.,	and	p-value	
SE	 NOx	–	N	 STDEV	 N	 S2/N	 Var	 t-score	 d.f	 p-value	 Significant?	

1	 91.64%	 0.249	 10	 0.0062	
0.0815	 0.58	 17	 >0.05	 No	

8	 86.85%	 0.064	 9	 0.0004	
1	 91.64%	 0.249	 10	 0.0062	

0.0790	 0.10	 15	 >0.05	 No	
7	 92.49%	 0.018	 7	 0.0000	
1	 91.64%	 0.249	 10	 0.0062	

0.0942	 0.16	 21	 >0.05	 No	
5	 93.15%	 0.187	 13	 0.0027	
1	 91.64%	 0.249	 10	 0.0062	

0.1047	 0.37	 21	 >0.05	 No	
14	 95.59%	 0.249	 13	 0.0048	
SE	 NH4+–	N	 STDEV	 N	 S2/N	 Var	 t-score	 d.f	 p-value	 Significant?	

1	 89.95%	 0.086	 10	 0.0007	
0.0278	 1.06	 21	 >0.05	 No	

8	 86.98%	 0.022	 13	 0.0000	
1	 89.95%	 0.086	 10	 0.0007	

0.0301	 4.71	 21	 <0.05	 Yes	
7	 75.78%	 0.047	 13	 0.0002	
1	 89.95%	 0.086	 10	 0.0007	

0.0537	 0.65	 21	 >0.05	 No	
5	 93.49%	 0.167	 13	 0.0022	
1	 89.95%	 0.086	 10	 0.0007	

0.0360	 2.05	 21	 <0.05	 Yes	
14	 97.35%	 0.086	 13	 0.0006	
SE	 Org	N	 STDEV	 N	 S2/N	 Var	 t-score	 d.f	 p-value	 Significant?	

1	 9.32%	 0.075	 5	 0.0011	
0.0793	 6.72	 8	 <0.05	 Yes	

8	 62.65%	 0.161	 5	 0.0052	
1	 9.32%	 0.075	 5	 0.0011	

0.0605	 7.61	 9	 <0.05	 Yes	
7	 55.40%	 0.123	 6	 0.0025	
1	 9.32%	 0.075	 5	 0.0011	

0.0557	 8.48	 10	 <0.05	 Yes	
5	 56.60%	 0.118	 7	 0.0020	
1	 9.32%	 0.075	 5	 0.0011	

0.0503	 15.88	 7	 <0.05	 Yes	
14	 89.24%	 0.075	 4	 0.0014	
SE	 TN	 STDEV	 N	 S2/N	 Var	 t-score	 d.f	 p-value	 Significant?	

1	 72.73%	 0.020	 5	 0.0001	
0.0280	 1.44	 8	 >0.05	 No	

8	 76.77%	 0.059	 5	 0.0007	
1	 72.73%	 0.020	 5	 0.0001	

0.0194	 2.08	 9	 <0.05	 Yes	
7	 76.78%	 0.042	 6	 0.0003	
1	 72.73%	 0.020	 5	 0.0001	

0.0171	 9.48	 10	 <0.05	 Yes	
5	 88.98%	 0.039	 7	 0.0002	
1	 72.73%	 0.020	 5	 0.0001	

0.0105	 23.50	 16	 <0.05	 Yes	
14	 97.43%	 0.020	 13	 0.0000	
SE	=	storm	event	
d.f.	=degrees	of	freedom	
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Table	C.3	High	Flow	Storm	Event	Statistical	Analysis	Results.	(13.9	cm/hr)	
Standard	deviation,	number	of	experiments,	variance,	t-score,	d.f.,	and	p-value	

SE	 NOx	–	N	 STDEV	 N	 S2/N	 Var	 t-score	 d.f	 p-value	 Significant?	

11	 32.27%	 0.62	 9	 0.0427	
0.2294	 2.5118	 16	 p<0.05	 Yes	

12	 89.88%	 0.30	 9	 0.0099	

11	 32.27%	 0.62	 9	 0.0427	
0.2657	 1.2109	 14	 p>0.05	 No	

4	 64.44%	 0.44	 7	 0.0279	

11	 32.27%	 0.62	 9	 0.0427	
0.2788	 1.3300	 14	 p>0.05	 No	

2	 69.34%	 0.50	 7	 0.0350	

11	 32.27%	 0.62	 9	 0.0427	
0.2291	 2.2079	 16	 p<0.05	 Yes	

9	 82.86%	 0.30	 9	 0.0098	

SE	 NH4+–	N	 STDEV	 N	 S2/N	 Var	 t-score	 d.f	 p-value	 Significant?	

11	 77.54%	 0.21	 9	 0.0048	
0.1066	 0.7063	 16	 p>0.05	 No	

12	 85.07%	 0.24	 9	 0.0066	

11	 77.54%	 0.21	 9	 0.0048	
0.0723	 0.0636	 14	 p>0.05	 No	

4	 78.00%	 0.05	 7	 0.0004	

11	 77.54%	 0.21	 9	 0.0048	
0.1239	 0.4929	 14	 p>0.05	 No	

2	 83.65%	 0.27	 7	 0.0105	

11	 77.54%	 0.21	 9	 0.0048	
0.1047	 1.2448	 16	 p>0.05	 No	

9	 90.57%	 0.24	 9	 0.0062	

SE	 Org	N	 STDEV	 N	 S2/N	 Var	 t-score	 d.f	 p-value	 Significant?	

11	 74.47%	 0.27	 9	 0.0080	
0.1060	 1.4700	 16	 p>0.05	 No	

12	 58.88%	 0.17	 9	 0.0032	

11	 74.47%	 0.27	 9	 0.0080	
0.1420	 1.4362	 14	 p>0.05	 No	

4	 54.07%	 0.29	 7	 0.0122	

11	 74.47%	 0.27	 9	 0.0080	
0.1328	 2.3041	 13	 p<0.05	 Yes	

2	 43.88%	 0.24	 6	 0.0096	

11	 74.47%	 0.27	 9	 0.0080	
0.0955	 2.4867	 12	 p<0.05	 Yes	

9	 98.22%	 0.08	 5	 0.0011	

SE	 TN	 STDEV	 N	 S2/N	 Var	 t-score	 d.f	 p-value	 Significant?	

11	 71.61%	 1.00	 9	 0.1119	
0.4093	 0.1817	 16	 p>0.05	 No	

12	 79.05%	 0.71	 9	 0.0555	

11	 71.61%	 1.00	 9	 0.1119	
0.4304	 0.1650	 14	 p>0.05	 No	

4	 64.51%	 0.72	 7	 0.0733	

11	 71.61%	 1.00	 9	 0.1119	
0.4218	 0.0636	 13	 p>0.05	 No	

2	 68.93%	 0.63	 6	 0.0659	

11	 71.61%	 1.00	 9	 0.1119	
0.4189	 0.1417	 12	 p>0.05	 No	

9	 77.55%	 0.56	 5	 0.0636	

SE	=	storm	event	
d.f.	=degrees	of	freedom	
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