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ABSTRACT 
 

Thermal Integrity Profiling (TIP) is a relatively new non-destructive test method for 

evaluating the post-construction quality of drilled shafts. Therein anomalies in a shaft are indicated 

by variations in its thermal profile when measured during the curing stages of the concrete. A 

considerable benefit with this method is in the ability to detect anomalies both inside and outside 

the reinforcement cage, as well as provide a measure of lateral cage alignment. Similarly 

remarkable, early developments showed that the shape of a temperature profile (with depth) 

matched closely with the shape of the shaft, thus allowing for a straightforward interpretation of 

data. As with any test method, however, the quality of the results depends largely on the level of 

analysis and the way in which test data is interpreted, which was the focus of this study. This 

dissertation presents the findings from both field data and computer models to address and improve 

TIP analysis methods, specifically focusing on: (1) the analysis of non-uniform temperature 

distributions caused by external boundary conditions, (2) proper selection of temperature-radius 

relationships, and (3) understanding the effects of time on analysis. 

Numerical modeling was performed to identify trends in the temperature distributions in 

drilled shafts during concrete hydration. Specifically, computer generated model data was used to 

identify the patterns of the non-linear temperature distributions that occur at the ends of a shaft 

caused by the added heat loss boundary in the longitudinal direction. Similar patterns are observed 

at locations in a shaft where drastic changes in external boundary conditions exist (e.g. shafts that 

transition from soil to water or air). Numerical modeling data was also generated to examine the 
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relationship between measured temperatures and shaft size/shape which is a fundamental concept 

of traditional TIP analysis. 

A case study involving a shaft from which 24hrs of internal temperature data was 

investigated and compared to results from a computer generated model made to mimic the field 

conditions of the shaft. Analysis of field collected and model predicted data was performed to 

examine the treatment of non-linear temperature distributions at the ends of the shaft and where a 

mid-shaft change in boundary was encountered. Additionally, the analysis was repeated for data 

over a wide range of concrete ages to examine the effects of time on the results of analysis. 

Finally, data from over 200 field tested shafts was collected and analyzed to perform a 

statistical evaluation of the parameters used for interpretation of the non-linear distributions at the 

top and bottom of each shaft. This investigation incorporated an iterative algorithm which 

determined the parameters required to provide a best-fit solution for the top and bottom of each 

shaft. A collective statistical evaluation of the resulting parameters was then used to better define 

the proper methods for analyzing end effects. 

Findings revealed that the effects of non-uniform temperature distributions in drilled shaft 

thermal profiles can be offset with a curve-fitting algorithm defined by a hyperbolic tangent 

function that closely matches the observed thermal distribution. Numerical models and statistical 

evaluations provided a rationale for proper selection of the function defining parameters. 

Additionally, numerical modeling showed that the true temperature-to-radius relationship in 

drilled shafts is non-linear, but in most cases a linear approximation is well suited. Finally, analysis 

of both model and field data showed that concrete age has virtually no effect on the final results 

of thermal profile analysis, as long as temperature measurements are taken within the dominate 

stages of concrete hydration.  
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CHAPTER 1: INTRODUCTION 
 

The vast majority of bridges in the U.S. are founded on concrete deep foundations, the 

most common forms of which are driven piles and drilled shafts. While both foundation types are 

well suited for resisting large loads, drilled shafts have the advantage of being able to do so with a 

much smaller footprint in many applications. This often makes them the foundation of choice not 

only for bridges, but for many tall buildings, lighting and signage structures, and some retaining 

walls. In the family of concrete deep foundations, drilled shafts are generally classified as those 

that are constructed by means of a drilled excavation which is stabilized prior to the placement of 

reinforcement and concrete (Brown 2010). They typically range in sizes of 3 to 12 feet in diameter 

and can extend as deep as 300 feet into the ground (Brown 2010). Steel reinforcement is provided 

by a rebar cage, typically 6 inches in from the sidewalls. Although drilled shaft foundations are 

reputed for their strength, reliability, and economy, their construction requires careful attention to 

quality control and quality assurance. Due to the blind nature of the underground concreting 

process, defects in drilled shafts are common. This is particularly true among excavations 

extending below the water table which are stabilized with drilling fluids (Mullins 2010). Intrusion 

of soil from the excavation side walls, encapsulation of slurry, or improper flow of concrete 

through congested reinforcement cages can occur during construction, often without any indication 

to the contractor. As a result, the as-built shaft may contain areas of degraded concrete quality, 

exposed rebar, reduced cross section, or combinations thereof. Defects such as these reduce both 

the structural and geotechnical capacity of the shaft, and allow pathways for corrosion, rendering 
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the shaft unfit for service in many cases. Figure 1.1 shows the severity of defects which can form 

in drilled shafts. 

 
Figure 1.1 Shaft with severe necking (left), and shafts from a soldier pile wall with numerous 

defects (right). (Mullins & Winters, 2012) 

 

Even with careful attention to quality control during construction, quality assurance after 

construction is necessary to validate the integrity of the as-built shaft. Unlike above ground 

structures however, visual inspection of drilled shafts is rarely available. Excavation and core 

sampling methods can provide some visual confirmation but they are expensive, time consuming, 

and can further compromise the integrity of a shaft. These methods are only employed when strong 

suspicion warrants them. Similarly, load testing is expensive and can cause structural damage to 

shafts. (Anderson, 2011) 

1.1 Quality Assurance of Drilled Shafts 

This two-fold problem - a high probability of defects with a low ability to detect them - 

lends itself to an array of creative inspection techniques. Non-destructive testing methods 

developed over the last 40 years have greatly improved the quality assurance process for drilled 

shafts by allowing contractors to verify structural integrity without the need for excessive coring 
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or load testing. Methods such as Sonic Echo and Impulse Response are able to detect anomalies 

from entirely above ground. They involve generating a small compressive disturbance at the top 

of the shaft which travels downward through the shaft’s length and is reflected back to the top 

where it is measured. Methods like this are the least intrusive but are limited in their ability to 

define the nature and severity of detected anomalies, especially at increasing depths. They also 

suffer from a phenomenon known as the “shadow effect” wherein wave disturbances from a 

shallow anomaly will prevent the detection of any deeper anomalies. More effective means of 

inspection involve down-hole measurements and are commonly referred to as integrity profiling 

methods. Most states have adopted the use of at least one or more of these methods and have 

requirements in place for all drilled shaft to be constructed with access tubes that can accommodate 

them. Table 1.1 summarizes the most popular methods of drilled shaft integrity profiling. (Brown, 

2010) 

Table 1.1 Down-hole methods for drilled shaft quality assurance. 

Testing Method Measurement Indicator Coverage 

Cross-hole Sonic 

Logging (CSL) 

Wave speed 

reduction 
Density 

Majority of area within 

reinforcement cage 

Gamma Gamma 

Logging (GGL) 

Gamma particle 

count 
Density 

3-5 inch radial zone around 

access tubes 

Thermal Integrity 

Profiling (TIP) 
Temperature 

Cement 

hydration 
Entire cross-section 

 

Developed in the late 1990’s, Thermal Integrity Profiling (TIP) is the youngest of these 

methods, but is a rapidly increasing form of post-construction quality assurance for drilled shafts. 

Where this method excels is in its ability to detect anomalies across the entire cross section of a 

shaft, both inside and outside the reinforcement cage. Multiple studies have proven the 
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effectiveness of TIP for shaft evaluation, and several states have adopted its use. As with any test 

method, however, the quality of the results depends largely on the level of analysis and the way in 

which test data is interpreted, which is the focus of this study. (Anderson, 2011) 

1.2 Thermal Integrity Profiling (TIP) 

 The chemical processes that take place during cement hydration are highly exothermic, 

meaning that energy is released in the form of heat as the reactions occur. In massive concrete 

elements, such as drilled shafts, a significant amount of energy is released during the curing 

process over a period of days. In fact, a single concrete truck containing 9 cubic yards of concrete 

can contain the equivalent energy of 400-500lbs of TNT. The difference, of course, is the time 

over which the energy is released. Table 1.2 provides a list of energy quantities comparable to that 

of a single drilled shaft. 

Table 1.2 Comparison of energy in a drilled shaft. 

1 drilled shaft, 6 ft. diameter x 80 ft. deep 12,800 MJ 

30 Mark 82 aerial bombs 13,200 MJ 

2 cross-country trips in a Hummer 11,500 MJ 

2 bolts of lightning 10,000 MJ 

5 months average household usage 13,400 MJ 

A lifetime supply of Red Bull (1 per day for 75 yrs) 13,200 MJ 

 

 The amount of heat released during concrete hydration is dictated by cement content, and 

the resulting temperature distribution is largely a function of shaft geometry. Cement content and 

shaft size are also the key contributors to strength and durability, thus all of these factors tie 

together and, combined, define shaft serviceability (Mullins & Winters, 2012). TIP takes 

advantage of this thermal energy, measuring the elevated temperatures within a shaft caused by 

the heat produced during concrete hydration. Therein anomalies in a shaft are indicated by 

variations in the observed thermal profile. 
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 Temperature measurements can be achieved in either of two ways – via probe with infrared 

sensors which is lowered down access tubes, or by thermal wires which are attached to the 

reinforcement cage and cast with the shaft. Figure 1.2 shows the testing equipment and the access 

tubes where measurements are taken using the probe method. A thermal probe, equipped with 4 

infrared sensors, is lowered down each access tube (dry) at a rate of about 3 – 5 inches/sec. While 

temperature is measured by the sensors, depth is recorded by the encoder assembly. The optimal 

time for testing is during the peak of concrete hydration, which can range from 12 to 72 hours after 

concrete placement, depending on shaft size. Figure 1.3 shows use of the wire method, wherein 

several thermistors are strung together on one foot intervals and fastened to the reinforcement cage 

prior to concreting. With this method, data may be continually recorded over several days, but the 

instrumentation must be disposable as it is cast permanently in the concrete. (ASTM D7949)           

 
Figure 1.2 TIP setup – probe method. 



6 

 

 
Figure 1.3 TIP setup – wire method. 

 

 Despite the procedural standards set forth by ASTM D7949 for testing, ASTM does not 

provide a standardized method for analysis of collected data. Therefore interpretation of TIP 

results is still highly subjective among end users. While the TIP analysis methods most commonly 

used in practice today have allowed for successful evaluation of shaft integrity, the approaches 

rely on empirically developed values and lack robust scientific rationale in certain aspects of 

interpretation. The focus of this dissertation is to provide an objective and standardized procedure 

for analyzing thermal integrity data. 

1.3 Organization 

 

This dissertation presents the findings from both field data and computer models to address 

and improve the applicability of TIP analysis methods, specifically focusing on: (1) the analysis 

of non-uniform temperature distributions caused by external boundary conditions, (2) proper 

selection of temperature-radius relationships, and (3) understanding the effects of time on analysis. 

Thermal wires 

Data loggers 
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Chapter 2 proposes curve-fitting algorithms whereby non-uniform temperature distributions can 

be addressed, thereby allowing these portions of data to be analyzed using traditional methods. 

Chapter 3 presents a case study in which data was collected continuously up to 24hrs after 

concreting. Comparing the data to computer generated model data, the trends were examined as 

they relate to time of testing (i.e. concrete age). Chapter 4 presents a statistical evaluation of over 

200 field tested shafts where all curve fitting parameters were varied through a wide range of 

values until a best-fit solution was obtained. Finally, Chapter 5 summarizes the findings and 

provides recommendations for proper analysis and interpretation of thermal integrity data. 
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CHAPTER 2: TEMPERATURE PREDICTION MODELING1 
 

Thermal integrity profiling (TIP) is an increasingly popular form of post-construction 

quality assurance for drilled shafts. Therein anomalies in a shaft are indicated by variations in its 

thermal profile. As with any test method, the quality of the results depends largely on the level of 

analysis and the way in which test data is interpreted. With thermal integrity profiling, data 

interpretation techniques can fall into two schools of thought: (1) use of construction logs and 

concrete yield plots as a means to calibrate thermal data to shaft dimensions or (2) use of 

temperature prediction software to compare measured to model predicted thermal profiles. In 

theory, a signal matching approach using modeled shafts could reveal the shaft geometry that 

would produce the measured thermal profiles. However, the accuracy of models is largely 

dependent on input parameters such as shaft dimensions, boundary conditions, and concrete 

hydration behavior. Although the margins of error associated with these parameters can easily 

accumulate, useful trends and relationships about the temperature distributions within drilled 

shafts and surrounding environments can be identified. This chapter examines computer generated 

trends and demonstrates ways in which they can be merged with existing TIP analysis techniques 

to produce a heightened level of data interpretation. 

2.1 Introduction 

With the advent of thermal methods for post-construction quality assurance of drilled 

shafts, contractors have the ability to detect anomalies throughout the entire cross section of a shaft 

                                                      
1 Portions of this chapter were published in the ASCE Geo-Congress 2014 Technical Papers. Permission is included 

in Appendix C. 
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and assess its general shape, concrete quality, cage alignment, and concrete cover. Thermal 

integrity profiling (TIP) reveals the temperature distributions that result from cement hydration 

which can in turn be used to infer the distribution of concrete underground. While direct 

observation of thermal profiles alone can be useful in obtaining qualitative information about a 

shaft, a quantifiable assessment of shaft integrity must come from more detailed analysis. 

Traditional analysis techniques make use of construction logs and concrete yield plots to calibrate 

temperature measurements which can then be converted to effective radius, a quantity that can 

represents the presence or lack of quality concrete. More advanced methods of analysis involve 

the use of temperature prediction software to compare modeled thermal profiles to those measured 

by TIP. These methods are more rigorous and limited to the accuracy of estimated input 

parameters. Recent investigation into the trends and relationships revealed by models however has 

led to more enhanced methods of traditional analysis, including methods for correcting for end 

effects and developing a temperature-radius relationship that is both accurate and conservative 

against false positives. 

2.2 Background 

In mass concrete elements, such as drilled shafts, a significant amount of energy is released 

during the curing process over a period of days. TIP takes advantage of this and detects anomalies 

based on variations in a shaft’s thermal profile during the curing stages (Anderson, 2011). Figure 

2.1 illustrates the way in which heat is dissipated from the shaft to its surroundings and the 

temperature distributions that result from it. For a perfectly cylindrical shaft, the vertical 

distribution of temperature is nearly uniform over the majority of its length. The exception is near 

the ends where there is a distinct region of decreasing temperature. This temperature “roll-off” at 

the top and bottom is due to the added mode of heat loss in the longitudinal direction.  The radial 
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distribution of temperature is bell-shaped, with peak temperatures occurring at the center of the 

shaft and decreasing radially towards the surrounding soil. With a typical configuration of access 

tubes (one tube per 0.3m of diameter, evenly spaced around the reinforcing cage, per ASTM 

D7949), data collected from thermal integrity testing provides a continuous temperature profile 

vertically and discrete measurements laterally (red dots in Figure 2.1). The vertical profile reveals 

any bulges, necks, or inclusions that may be present, while comparison among tube temperatures 

indicates lateral cage alignment. (Mullins & Winters 2012) 

 
Figure 2.1 Temperature distributions in an idealized shaft. 
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Direct observation of measured temperature profiles can provide immediate qualitative 

information about a shaft, such as general shape, relative cage alignment, and the types of 

anomalies that may be present. However, in order to quantify this information with actual 

dimensions, more rigorous methods of analysis are required. Mullins & Winters (2011) suggests 

the following breakdown of analysis techniques: 

 Level 1: Direct observation of the temperature profiles 

 Level 2: Superimposed construction logs and concrete yield data 

 Level 3: Three dimensional thermal modeling 

 Level 4: Signal matching numerical models to field data 

In most drilled shaft constructions, it is customary to record and plot the volume of concrete 

placed with each truck along with the change in height to top of concrete resulting from each 

placement. These logs, known as yield plots, can be compared with theoretical yield plots based 

on the design diameter of the shaft, and any variation therein can be used to deduce the actual 

effective average diameter (or radius) of the shaft over the measured height change. This 

information can then be used to provide a series of calibration points for measured thermal data 

(Mullins & Winters, 2011). Figure 2.2 shows a case study where both the concrete yield plot data 

and thermal profile are plotted together. 

This type of calibration essentially eliminates the need to make the assumptions about 

thermal properties that are required for modeling analysis. By plotting the effective radius against 

measured temperature, a best-fit linear regression can be used to form a temperature-radius 

relationship, as shown in Figure 2.3. The assumption of linearity is valid for temperatures 

measurements taken in the regions near the edge of the shaft, as the temperature distribution there 
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is strongly linear. In either direction away from this region however, a linear relationship will tend 

under-predict anomaly size. (Mullins & Winters, 2011)  

 
Figure 2.2 Yield plot data compared with thermal data. (Adapted from Mullins, 2010) 

 

 
Figure 2.3 Multi-point regressed T-R relationship. (Mullins, G., Winters, D., 2011, p. 40) 
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2.3 Thermal Modeling for Drilled Shafts 

 

For analysis of TIP data using computer models, temperature prediction software is used 

to solve the finite-difference form of the general heat equation (Eq. 2.1) based on input shaft 

dimensions, thermal properties, and boundary conditions. 

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘

𝜕𝑇

𝜕𝑧
) + 𝑞 = 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
    {2.1} 

 

where,   

  𝑇 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

  𝑘 = 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 

  𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

  𝐶𝑝 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡 

  𝑞 = 𝑟𝑎𝑡𝑒 𝑜𝑓 ℎ𝑒𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

The thermal properties of concrete vary through the curing stages and are typically 

expressed as a function of the degree of hydration. The hydration of Portland cement is the result 

of many different chemical reactions that take place, all of which release heat in the process (i.e. 

exothermic), though be it at separate times and magnitudes. Since the evolution of heat is a direct 

indication of completed reactions, it serves as a defining measure for the progression of hydration. 

Therein, at any given time, the rate of hydration is defined by the instantaneous rate of heat 

generation, q (Eq. 2.2), and the degree of hydration, α, is defined as the fraction of cumulative heat 

evolved, H(t), to the ultimate amount of heat available, Hu (Eq. 2.3) (Schindler & Folliard, 2005). 

The variation in time and rate of the multiple types of reactions results in a hydration process that 

is not constant, but rather occurs in phases. In general, there are five distinguishable stages of 

hydration: (1) initial hydration, (2) dormant period, (3) acceleration, (4) deceleration, and (5) 
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steady state (Mindess et al., 2003). This behavior results in rate of heat generation and degree of 

hydration curves that follow the general pattern of those shown in Figure 2.4. 

𝑞 = 𝑟𝑎𝑡𝑒 𝑜𝑓 ℎ𝑒𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑑

𝑑𝑡
𝐻(𝑡)   {2.2} 

 

𝛼 = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 ℎ𝑦𝑑𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐻(𝑡)

𝐻𝑢
    {2.3} 

 

 
Figure 2.4 Hydration behavior of concrete. (Schindler et al., 2002) 

 

The most widely accepted method for modeling this hydration behavior involves the 

concept of equivalent age, te, which invokes the Arrhenius theory for rate processes to account for 
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the temperature dependency of reactions (Eq. 2.4), combined with an exponential formulation 

which approximates the S-shaped degree of hydration curve (Eq. 2.5). (Schindler & Folliard, 2005) 

𝑡𝑒 = 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝐴𝑔𝑒 = ∑ 𝑒
−
𝐸𝑎
𝑅
(
1

𝑇
−
1

𝑇𝑟
)
⋅ Δ𝑡𝑡

0    {2.4} 

 

𝛼 = 𝛼𝑢 ⋅ exp [− (
𝜏

𝑡𝑒
)
𝛽

]     {2.5} 

 

In Equation 2.4, R is the natural gas constant (8.314 J/mol/K) and Ea is the activation 

energy, a property which represents the temperature sensitivity of the hydration process. T is the 

temperature (oK) of concrete at time t. In Equation 2.5, αu, β, and τ are parameters that describe the 

shape of the hydration curve, corresponding to the ultimate degree of hydration, the rate of the 

acceleration phase, and the start of the acceleration phase, respectively, as shown in Figures 2.5 – 

2.7 (Folliard et al., 2008). These shape parameters, as well as properties Ea and Hu, are unique to 

every concrete batch and are best determined experimentally on an individual basis. They can be 

found through a combination of isothermal and adiabatic or semi-adiabatic calorimetry testing, 

wherein Tr is the reference temperature (oK) at which testing is conducted. 

 
Figure 2.5 Effect of shape parameter αu on hydration curve. (Folliard et al., 2008) 
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Figure 2.6 Effect of shape parameter β on hydration curve. (Folliard et al., 2008) 

 

 
Figure 2.7 Effect of shape parameter τ on hydration curve. (Folliard et al., 2008) 

 

Although exact determination of a concrete’s hydration behavior requires laboratory 

testing, empirical correlations developed through past research can be used to accurately estimate 

hydration parameters based on cement and concrete compositions. Bogue (1947) first correlated 
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the total heat of hydration of Portland cement to its major compounds, producing the relationship 

shown in Equation 2.6. 

𝐻𝑐𝑒𝑚 = 500 ⋅ 𝑝𝐶3𝑆 + 260 ⋅ 𝑝𝐶2𝑆 + 866 ⋅ 𝑝𝐶3𝐴 + 420 ⋅ 𝑝𝐶4𝐴𝐹 

+624 ⋅ 𝑝𝑆𝑂3 + 1186 ⋅ 𝑝𝐹𝑟𝑒𝑒𝐶𝑎𝑂 + 850 ⋅ 𝑝𝑀𝑔𝑂 
{2.6} 

 

Several studies since then have extended this concept to correlate the additional hydration 

parameters used in the exponential α model and to include a broader range of variables such as 

supplementary cementitious materials, chemical admixtures, and cement fineness. Some of the 

most notable and recent work to examine such relationships includes studies from Schindler & 

Folliard (2005), Ge (2006), and Poole (2007), the latter of which is currently the most 

comprehensive. The constitutive empirical correlations that make up this model are provided in 

Appendix A. This set of equations is specific to cement compositions as determined by Bogue 

calculations (Poole, 2007). While other relationships exist for correlation with cement 

compositions as determined by x-ray diffraction analysis, which is considered a more accurate 

method (Taylor, 1997), the Bogue relationships are used here as these are the values most 

commonly found on cement mill certificates. 

With a working model for hydration behavior of concrete, thermal properties that are 

hydration dependent can be determined as they vary with time. Since the rate of heat generation, 

q, is an inherent part of the model definition, it can be found by substituting Equations 2.3, 2.4, 

and 2.5 into Equation 2.2 and differentiating. The resulting expression is given in Equation 2.7. 

𝑞 = 𝐻𝑢𝑊𝑐 (
𝜏

𝑡𝑒
)
𝛽

(
𝛽

𝑡𝑒
)𝛼

𝐸𝑎

𝑅
(
1

𝑇𝑟
−

1

𝑇𝑐
)    {2.7} 

 

For estimating thermal conductivity, k, and specific heat, Cp, Schindler & Folliard (2002) 

suggest using the empirical models shown in Equations 2.8 and 2.9 in conjunction with values 

found in Appendix B (Tables B.1 and B.2). 



18 

 

𝑘 = 𝑘𝑢𝑐(1.33 − 0.33𝛼)     {2.8} 

 

where, 

𝑘𝑢𝑐 = 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑚𝑎𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 

𝐶𝑝 =
1

𝜌
(𝑊𝑐𝛼𝐶𝑟𝑒𝑓 +𝑊𝑐(1 − 𝛼)𝐶𝑐 +𝑊𝑎𝐶𝑎 +𝑊𝑤𝐶𝑤)  {2.9} 

 

where, 

𝐶𝑟𝑒𝑓 = 8.4𝑇 + 339,𝑤ℎ𝑒𝑟𝑒 𝑇 𝑖𝑠 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑛 °𝐾 

𝐶𝑐,𝑎,𝑤 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡 𝑜𝑓 𝑐𝑒𝑚𝑒𝑛𝑡, 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒, & 𝑤𝑎𝑡𝑒𝑟 

𝑊𝑐,𝑎,𝑤 = 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑒𝑚𝑒𝑛𝑡, 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒, & 𝑤𝑎𝑡𝑒𝑟 

In thermal modeling of drilled shafts, equally important as the thermal properties of 

concrete are the thermal properties of surrounding materials. For deep foundations, this is primarily 

soil or rock and the dominant mode of heat transfer is conduction, thus the same thermal properties 

k, Cp, & ρ apply. These properties can vary widely with soil type, moisture content, and porosity. 

Table B.3 in Appendix B gives typical values for various soil and rock types. 

In the case of deep foundation construction, Standard Penetration Testing (SPT) data and 

borehole information are often available, and can provide further insight into the thermal properties 

of subsurface materials. In-situ soil density, ρ, is a commonly needed property by geotechnical 

designers and can be estimated directly from uncorrected SPT blow count (N) values using the 

empirical correlations shown in Appendix B (Figure B.4). Thermal conductivity is not typically 

considered a result of SPT analysis, but research has shown that it is largely dependent on soil 

type, density, and saturation state. Pauly (2010) investigated these relationships by culminating 

results from past studies involving the thermal behavior of soil and correlating them to the 

information provided by boring log data. To this end, an algorithm was developed to estimate 

values of density and thermal conductivity of soils based on the depth, soil type, blow count, and 
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water table elevation as determined from SPT boring logs. The overall range of correlations 

investigated and regressed by Pauly (2010) are presented as functions of thermal conductivity vs. 

dry density for variable moisture contents, for both coarse grained (sandy) and fine grained 

(clayey) soils, are presented in Figure 2.8. The individual regressions are provided in Appendix B 

(Figures B.2 – B.15). 

 
Figure 2.8 Thermal conductivity vs. dry density based on soil type and moisture content.  

 

2.4 End Effects 

The signature temperature roll-offs at the top and bottom of every thermal profile have long 

been problematic for traditional analysis techniques. In the process of developing a temperature-

radius relationship, inclusion of the temperatures in these regions in the regression results a falsely 

steep slope. Conversely, a regression developed with exclusion of these regions results in a 

relationship that is applicable to the rest of the shaft but leaves the ends to remain unanalyzed. 
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Through modeling however, a better understanding of the nature of these temperature distributions 

is gained and a method in which they can be accounted for and included in analysis is proposed 

herein. 

Figure 2.9 shows the end regions of a model temperature profile for a 1.8m (6ft) diameter 

shaft at 24hrs with surrounding soil temperature set at 22.8oC (73oF). Examining the bottom, 

several key characteristics can be noted about the shape of the curve. The temperature decrease 

starts at around 1.5m (5ft) above bottom of shaft (BOS) and continues with an upward concavity 

which lessens as it approaches the interface between concrete and soil. At the interface is an 

inflection point where the curve continues to decrease, but with a downward concavity, until it 

starts asymptotically approaching the surrounding soil temperature. Examination of the same curve 

for different times, shaft sizes, and soil temperatures reveals the way in which some of these 

characteristics change but the general shape of the curves remains the same.  

By fitting a mathematical function to these curves and identifying the variables that define 

the shape of that function, the need to perform an excessive number of computer simulations can 

be eliminated. The best fit for this type of curve is given by a hyperbolic tangent (tanh) function. 

By applying the proper scales and offsets, the basic tanh function can be transformed to fit the end 

region temperature distribution curves. The function and transformations are presented in Equation 

2.10.  

𝑇𝑓𝑖𝑡 = −(
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

2
) tanh (

𝑧−𝑧0

𝛼
) + (

𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛

2
)    {2.10} 

where for the top, 

𝑇𝑚𝑎𝑥 = 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑠ℎ𝑎𝑓𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑏𝑒𝑙𝑜𝑤 𝑟𝑜𝑙𝑙 − 𝑜𝑓𝑓 

𝑇𝑚𝑖𝑛 = 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

𝑧0 = 𝑇𝑜𝑝 𝑜𝑓 𝑆ℎ𝑎𝑓𝑡 (𝑇𝑂𝑆) 𝑑𝑒𝑝𝑡ℎ 
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𝛼 = 𝑠𝑙𝑜𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 

and for the bottom, 

𝑇𝑚𝑎𝑥 = 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑠ℎ𝑎𝑓𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑏𝑜𝑣𝑒 𝑟𝑜𝑙𝑙 − 𝑜𝑓𝑓 

𝑇𝑚𝑖𝑛 = 𝑆𝑜𝑖𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

𝑧0 = 𝐵𝑜𝑡𝑡𝑜𝑚 𝑜𝑓 𝑆ℎ𝑎𝑓𝑡 (𝐵𝑂𝑆) 𝑑𝑒𝑝𝑡ℎ 

𝛼 = 𝑠𝑙𝑜𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 

In analysis of TIP data, the measured top and bottom roll-offs are individually fit with 

hyperbolic tangent curves by adjusting the transformation variables to values that produce the best 

fit curve and are within a range of values appropriate for the given shaft. The nominal shaft 

temperature for each end is obtained from the nearest region of relatively uniform temperature 

measurements within the shaft. This can generally be found at a distance into the shaft that is 

roughly equal to the shaft diameter. Soil temperature can be obtained by using the yearly average 

temperature of the geographical location. As most shafts extend deeper than 3m (10ft), soil 

temperature at the toe is unaffected by seasonal temperature changes and can mostly be considered 

constant for a given city or location (Figure 2.10). 

Equivalent air temperature is a pseudo – temperature that accounts for the additional 

cooling by convection and is therefore usually significantly lower than actual air temperature. Its 

value should be set such that the inflection point of the curve is in the range of actual air 

temperature. TOS and BOS depths should be near reported values, but should be adjusted as 

needed to fit the curve, up to a foot in either direction. Finally, slope factors should be adjusted 

until the best fit is achieved. These values generally range between 0.5 and 5 and increase with 

time. Once the best fit curves are determined, corrected temperatures can be found according to 

Equation 2.11. 
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𝑇𝑐𝑜𝑟 =
𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑇𝑚𝑖𝑛

𝑇𝑓𝑖𝑡−𝑇𝑚𝑖𝑛
(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) + 𝑇𝑚𝑖𝑛    {2.11} 

 

 

 
Figure 2.9 Model temperature distributions for the top and bottom of a 6ft shaft at 24 hours (black), 

with best fit hyperbolic tangent curves (red), and corrected temperatures (blue). 

-0.3

0.2

0.7

1.2

1.7

2.2

-1

0

1

2

3

4

5

6

7

8

60 80 100 120 140

D
e

p
th

 (
m

)

D
e

p
th

 (
ft

)

Temperature (oF)

15.6 35.6 55.6

9.8

10.3

10.8

11.3

11.8

12.3

12.8

32

33

34

35

36

37

38

39

40

41

42

Temperature (oC)

𝑇𝑚𝑎𝑥 = 46.4℃ (115.5℉) 
𝑇𝑚𝑖𝑛 = −2.2℃ (28℉) 
𝑧0 = 0𝑚 (0𝑓𝑡) 
𝛼 = −1.9 
 

𝑇𝑚𝑎𝑥 = 46.4℃ (115.5℉) 
𝑇𝑚𝑖𝑛 = 22.8℃ (73℉) 
𝑧0 = 12.2𝑚 (40.1𝑓𝑡) 
𝛼 = 1.5 
 

TOS 

BOS 

TOS 

BOS 



23 

 

 
Figure 2.10 Ground temperatures in the United States. (Pauly, 2010) 

 

2.5 Temperature-Radius Relationship 

Once corrected temperatures have been established for the top and bottom regions, a 

temperature-radius (T-R) relationship can be developed that applies to all regions. For shafts that 

are nearly uniform or those that require relatively few trucks for pouring, the concrete yield plot 

may not contain a wide enough range of data points to generate a T-R relationship by linear 

regression, as in Figure 2.3. Instead, when plotted against temperature, the yield plot points will 

be tightly clustered, revealing no useful trends. In such cases, the total volume and length of the 

shaft can be averaged to determine an average radius for the shaft, and TIP data can be averaged 

over the entire length to give an average temperature of the entire shaft. This provides a single 

point to which a T-R relationship can be calibrated, but lacks the information needed to determine 

the slope of the curve. 
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Determining the proper way to develop a useful T-R relationship begins with an 

understanding of the way that the radial temperature distribution changes as shaft size changes. 

Figure 2.10 shows a series of radial temperature distributions resulting from modeled shafts with 

diameters ranging from 0.3 to 4.6m (1 – 15ft). As with the longitudinal end effect curves, several 

key characteristics of these bell shaped curves are worth examining. At the left end of the curves 

(shaft center), peak temperatures increase with the first few increasing shaft sizes but are virtually 

the same for all shafts larger than a certain size. This is due to the fact that, in large shafts, the 

center is so far removed from the heat loss boundary that temperatures are able to approach those 

of adiabatic conditions, making it close to what would be experienced in an infinitely large shaft 

or one with perfectly insulated boundaries. Likewise, the right side of the curves approach what 

would be expected of an infinitesimally small shaft, which is a measured temperature equal to that 

of the surrounding soil. All temperature distributions eventually reach soil temperature at a radial 

distance which is approximately proportional to shaft size. Lastly, examining the shape of each 

curve, it can be seen that an inflection point occurs at the interface between concrete and soil. 

For a given measurement location, a vertical slice through these curves produces the 

theoretical temperature-radius relationship. Plotting the temperature from each curve at a given 

radial distance against the respective shaft size corresponding to each curve reveals this unique 

relationship. Considering a shaft of 36in radius with a cage of 30in radius, the vertical slice shown 

in Figure 2.11 produces the T-R relationship shown in Figure 2.12. This relationship is non-linear 

with upper and lower asymptotes approaching concrete adiabatic temperature and ambient soil 

temperature, respectively. 
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Figure 2.11 Radial temperature distributions for varying shaft sizes (0.3 - 4.6m diameter, 0.3m 

increments) at 24hrs. 

 

 
Figure 2.12 Theoretical T-R curve for measurements taken at a 0.762m (30in) radius and 24hrs. 
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In most cases, when measurements are taken at cage location, the average T-R point 

(average temperature, average radius) will fall towards the center of the curve, near the inflection 

point. This region is also the most linear portion of the curve, allowing for a linear regression to 

represent a close approximation for a T-R relationship in most cases. 

Figure 2.12 represents a T-R curve for measurements taken at a reinforcement cage with 

0.762m (30in) radius, which would be typical of a shaft that is expected to have an average radius 

of about 36 inches. Plotting this point on the curve, it can be seen that the best fit slope for a linear 

T-R relationship would be one that corresponds to line having a negative y-intercept and an x-

intercept somewhere between zero and soil temperature. 

However, for different times, soil temperatures, and other parameters, these values would 

be different. In fact, any shift of the T-R curve left or right, would cause the linear approximation 

to produce false negatives. A leftward shift of the true curve would cause necking anomalies to be 

interpreted as more severe than they really are. Likewise, a rightward shift of the true curve would 

cause bulges to appear bigger than they really are. If the slope of the true curve decreases, then 

anomalies in either direction are over-predicted. 

To combat this, a linear relationship that is both accurate and conservative should be used. 

This can be achieved by drawing a line that passes through the calibrated point (average 

temperature, average radius) and the origin (0, 0). It can be shown through modeling that a linear 

curve generated this way is conservative for all times and all soil temperatures above 30oF, 

anything below which is an inconceivable soil temperature for any region of the world with drilled 

shaft construction. 
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Figure 2.13 Theoretical T-R curve with a linear T-R curve that is accurate but not conservative 

(left), and a linear T-R curve that is accurate and conservative (right).  

 

2.6 Case Study 

 

For the widening of the Lee Roy Selmon Expressway in Tampa, FL in 2012 -2013, over 

200 drilled shafts were poured. Due to the non-redundant design, 100% of the shafts were tested 

using TIP and analyzed using the methods presented here. Figures 2.13 – 2.15 are an excerpt of 

the analysis performed on a 4 ft. diameter shaft. Application of the methods for correcting end 

effects and using a single point T-R relationship are illustrated herein. 
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Figure 2.14 Raw TIP data for tested shaft. 

 

Figure 2.14 shows the temperature corrections for the ends of the shaft. Since the modeled 

curve (red) is in good agreement with the measured data (black), the corrected temperature profile 

(blue) indicates no anomalies in these regions. Note that setting Tmin = 3.9oC (39oF) for the top 

curve results in a top of shaft temperature of 32oC (90oF), well within reason for Florida in August. 

Tmin for the bottom of shaft is taken as the annual average temperature for Tampa, FL.  
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Figure 2.15 Curve fit and temperature corrections for top and bottom of tested shaft. 

 

After correcting the end temperatures, the average corrected temperature for the entire shaft 

is calculated as 49.96oC (121.92oF). From the construction log, the concrete volume placed (CVP), 

length of shaft, and volume of steel are used to calculate an average shaft radius of 0.628m 

(24.72in). These values are used to determine the T-R relationship which is then used to compute 

the effective radius for each tube at every depth, as shown in Figure 2.15. The difference between 
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effective radius and cage radius provides an estimate of concrete cover, and the difference in radius 

among opposing tubes (e.g. 1 & 3, 2 & 4) indicates cage alignment. 

 
Figure 2.16 Effective shaft radius for tested shaft. 

 

2.7 Chapter Summary 

 

The information gained from computer generated thermal models provides valuable 

information about temperature distributions in drilled shafts that can be used to better understand 

TIP measurements and enhance the methods used to analyze them. Insight provided by models has 
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led to methods for converting temperature to effective radius that are both accurate and 

conservative, as well as a method for analyzing the end regions of shafts, which do not follow a 

typical temperature-radius relationship. The techniques presented here have been successfully 

applied in hundreds of TIP analyses to date and have proved to provide a heightened level of shaft 

assessment based on temperature profiles. 
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CHAPTER 3: ANALYZING THERMAL INTEGRITY PROFILES2 

 

Thermal Integrity Profiling (TIP) is the most recent non-destructive test method to gain 

widespread popularity in post-construction evaluation of drilled shafts. The allure lies in its ability 

to detect anomalies across the entire cross section of a shaft as well as provide a measure of lateral 

cage alignment. Similarly remarkable, early developments showed that the shape of a temperature 

profile (with depth) matched closely with the shape of the shaft, thus allowing for a fairly 

straightforward interpretation of data. Immediately apparent however, was that the relationship 

between shape and temperature was with two major exceptions: (1) near the ends of the shaft where 

heat can escape both radially and longitudinally and (2) where drastic changes in the surroundings 

are encountered (e.g. soil to water, soil to air). Today, methods for analyzing these portions of data 

exist, but can often involve tedious levels of parameter iterations and trial-and-error thermal 

modeling. This is particularly true when the effects of time are not well understood. A comparison 

of model and field results is presented to provide further insight into these types of temperature 

distributions and to address the difficulties associated with their analysis. This chapter shows how 

thermal modeling can be used to track the effects of time on analysis, and concludes with a case 

study that demonstrates the findings. 

3.1 Introduction 

Thermal Integrity Profiling (TIP) is an in-situ, non-destructive method for evaluating the 

post-construction quality of cast-in-place deep foundations. Due to the blind nature of the 

                                                      
2 Portions of this chapter were published in DFI Journal, Vol. 10, No. 1. Permission is included in Appendix C.  
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underground concreting process, as well as the lack of visual inspection thereafter, quality 

assurance in drilled shaft construction relies heavily on the means of other physical measurements 

to infer the quality and distribution of concrete. Common methods include Cross-hole Sonic 

Logging (CSL), which measures the time for acoustic waves to travel between access tubes, and 

Gamma-Gamma Logging (GGL), which measures the attenuation of gamma radiation in the 

material immediately surrounding access tubes. Both are effective in detecting anomalies, but have 

limited zones of detection due to the positioning of source and receiver probes.  

Developed in the late 1990’s, TIP is the most recent of non-destructive test methods to gain 

popularity in drilled shaft evaluation. Its uniqueness from other methods, like CSL and GGL, lies 

in its ability to detect anomalies across 100% of the cross section of a shaft as well as provide a 

measure of lateral cage alignment. However, as with any test method, the quality of results depends 

largely on the level of analysis and the way in which test data is interpreted. 

3.2 Background 

Concrete hydration is a highly exothermic process, and in large concrete elements, such as 

drilled shafts, a significant amount of energy is released, causing elevated temperatures in both the 

shaft and surrounding soil, typically for several days. The amount of temperature increase at any 

given point depends on the volume of hydrating concrete in proximity as well as the cementitious 

content of that concrete, both of which help to define shaft serviceability. TIP takes advantage of 

this and detects anomalies based on variations in the thermal profile of a shaft during the curing 

stages. Temperature measurements can be achieved in either of two ways – via thermal probe 

which is lowered down access tubes, or thermal wires which are attached to the reinforcement cage 

and cast within the shaft. (Anderson, 2011) 
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Figure 2.1 illustrates the way in which heat is dissipated from a shaft to its surroundings, 

and the temperature distributions that result from it. For a perfectly cylindrical shaft, the vertical 

distribution of temperature is uniform throughout the majority of its length. The exception is near 

the ends where there is a distinct region of decreasing temperature. This temperature “roll-off” at 

the top and bottom is due to the added mode of heat loss in the longitudinal direction.  The radial 

temperature distribution is bell-shaped, with peak temperatures occurring at the center of the shaft 

and decreasing radially towards the surrounding soil. With a typical configuration of access tubes 

(one tube per 0.3m of diameter, evenly spaced around the reinforcing cage, per ASTM D7949), 

data collected from thermal integrity testing provides a continuous temperature profile vertically 

and discrete measurements laterally (indicated by red dots in Figure 2.1). The vertical profile 

reveals any bulges, necks, or inclusions that may be present, while comparison among tube 

temperatures indicates lateral cage alignment. (Mullins & Winters, 2012) 

Direct observation of measured temperature profiles can provide immediate qualitative 

information about a shaft, such as general shape, relative cage alignment, and the types of 

anomalies that may be present. An increase or decrease in all tube temperatures indicates a bulge 

or neck in the shaft, respectively; whereas an equal but opposite variation of opposing tube 

temperatures indicates cage eccentricity. Circular shaped temperature roll-offs that extend about 

one diameter from the top and bottom of the shaft indicate normal end conditions. Figure 3.1 

illustrates these types of observations. 

While direct observation of profiles is useful in identifying anomalies, a measurable 

assessment of shaft integrity is obtained by converting temperatures to values of effective shaft 

radius. Because measured temperatures are affected by both shaft size and cementitious content, 

it can be conceived that the temperature resulting from an anticipated shaft radius consisting of 



35 

 

intact, quality concrete could also result from a larger radius consisting of compromised concrete. 

In this sense, the term effective radius implies the radius of intact, quality concrete that would 

produce the measured temperature. 

 
Figure 3.1 Example thermal profiles with anomalies. 

 

Figure 3.2 shows the relationship between shaft radius, cage position, and measured 

temperature. The dashed lines represent cage position where measurements are taken, the bold 

lines represent the temperature distribution corresponding to the local shaft size, and the 

intersection of the lines reveals the temperature that would be measured. Note that the inflection 

point of each curve, where the slope is the steepest and most linear, is at the edge of shaft, near 

cage location. This makes temperature measurements at the cage highly sensitive to both shaft size 

and cage eccentricity. Distinction between the two can be made by comparison of cage 

temperatures on opposing sides of the bell curve. For a given radial position, the dashed lines in 



36 

 

Figure 3.2 reveal the unique correlation that exists between shaft size and temperature. This 

relationship is asymptotic towards soil temperature and the adiabatic concrete temperature, and 

has an inflection point where shaft radius equals the given measurement position. Note that 

measurements taken at cage radius will fall near the inflection point, where the relationship 

between shaft size and temperature is strongly linear. (Mullins, 2013) 

 
Figure 3.2 Relationship between cage position, shaft size, and temperature. (Mullins, 2013) 

 

3.3 Concepts of TIP Analysis 

Since the relationships illustrated in Figure 3.2 are specific to the nearly infinite 

combinations of variables like concrete mix, shaft surroundings, and regional climate, the 

relationship between temperature and radius for a given shaft is best determined by superimposing 

it with information provided by construction logs and concrete yield data. At the onset of the 

development of TIP technology, findings showed that the shape a thermal profile linearly 

corresponded with shaft dimensions as determined from concrete yield data (Figure 2.2). This led 
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to a method of analysis based on superimposing TIP data with concrete yield data to generate a 

temperature-radius (T-R) correlation which could be applied to an entire dataset. With this method, 

the average radius was computed from concrete volume placed (plus steel volume) over a given 

height and paired with the average measured temperature over the same height to provide a 

calibration point from which a T-R relationship was regressed. Although the true relationship is 

S-shaped (dashed lines in Figure 3.2), the assumption of linearity is valid for measurements taken 

at cage location. Variations in either direction from this point fall within the linear portion of the 

curve. A linear T-R relationship can be generated using the average radius and average temperature 

over the entire shaft derived from a single point solution; or, if concrete yield data is sufficiently 

resolved with multiple points, a best fit linear regression can be derived. Research suggests that a 

single point solution yields a close approximation to model results and is conservative against 

over-prediction of anomaly severity in most cases (Figure 3.3). 

 
Figure 3.3 Single-point T-R curve compared to theoretical. 
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This type of calibration essentially eliminates the need to make assumptions about thermal 

properties that would be required for temperature prediction modeling. However, a single 

expression, whether it be linear or S-shaped, is limited to regions of uniform boundary conditions. 

Immediately apparent in any shaft is that the ends do not conform to this limitation due the 

additional heat loss boundary in the longitudinal directions. The temperature profiles exhibited at 

the top and bottom of a shaft do not follow a one-to-one correlation with radius, thus, without 

proper corrections, cannot be directly analyzed using a T-R relationship and should not be included 

in the development of such. Likewise, transitions between soil and water or air, or between 

drastically different soil strata, can produce similar thermal distributions which do not adhere to 

the limitations of a single T-R correlation. In fact, a boundary transition within the middle of a 

shaft will divide the thermal profile into regions that follow two different T-R relationships, thus 

a single expression for the shaft cannot be generated or applied until temperatures are corrected. 

As a result, algorithms have been developed to account for both end conditions and boundary 

transitions, and to normalize temperatures to remove fluctuations not caused by changes in cross 

section. 

Modeling reveals that the theoretical heat dissipation at the ends of a perfectly cylindrical 

shaft closely mimic a hyperbolic tangent equation. This was first explained by Johnson (2014) 

where the normal temperature of the shaft close-to but not affected by end conditions was used to 

define one asymptote of the hyperbolic fit. The other asymptote was then defined by the soil 

temperature below the shaft or the air above. By comparing fitted to measured temperatures, the 

“roll-off” zone near the ends could then be adjusted/corrected to shaft temperatures away from the 

ends, and the radius predicted from the T-R relationship would then show the correct shape. The 

hyperbolic tangent formulation (Eqn. 3.1) and temperature correction algorithm (Eqn. 3.2) are 
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presented here, but slightly modified to be more interchangeable and universally applicable to both 

top and bottom roll-offs as well as mid-shaft transitions. 

𝑇𝑓𝑖𝑡 = (
𝑇𝑏𝑒𝑙𝑜𝑤−𝑇𝑎𝑏𝑜𝑣𝑒

2
) tanh (

𝑧−𝑧0

𝛼
) + 𝑇0    {3.1} 

where, 

𝑇𝑏𝑒𝑙𝑜𝑤 = 𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑏𝑒𝑙𝑜𝑤 𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 

𝑇𝑎𝑏𝑜𝑣𝑒 = 𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑏𝑜𝑣𝑒 𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 

𝑇0 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑡 𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 = (𝑇𝑏𝑒𝑙𝑜𝑤 + 𝑇𝑎𝑏𝑜𝑣𝑒)/2 

𝑧0 = 𝐷𝑒𝑝𝑡ℎ 𝑜𝑓 𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 

𝛼 = 𝑇𝑖𝑚𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 

𝑇𝑐𝑜𝑟 = (𝑇𝑚𝑒𝑎𝑠 − 𝑇𝑓𝑖𝑡) (
𝑇𝑛𝑜𝑟𝑚

𝑇𝑓𝑖𝑡
) + 𝑇𝑛𝑜𝑟𝑚    {3.2} 

where, 

𝑇𝑐𝑜𝑟 = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

𝑇𝑚𝑒𝑎𝑠 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

𝑇𝑛𝑜𝑟𝑚 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

While the above hyperbolic tangent formula can be applied to almost any thermal transition 

zone, fits are rarely a 100% match, even with model data, and blind selection of parameters can 

lead to tedious levels of trial-and-error iterations and can even produce fits which are seemingly 

correct but with values that are physically impractical. To this end, the following analysis serves 

as an example of using hyperbolic corrections and provides insight into the proper selection of 

curve parameters. 

3.4 Application of Hyperbolic Corrections 

In order to evaluate the application of hyperbolic corrections, a set of thermal wire data 

was selected from a shaft containing clear top and bottom roll-offs as well a significant mid-shaft 
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thermal transition (discussed later). Before applying these analysis methods to the field collected 

data however, a model shaft was generated with similar conditions and was analyzed to assess any 

trends or patterns which may prove useful. Model data was generated, using the α-β-τ heat of 

hydration method as described by Schindler & Folliard (2005) and Poole (2007), for concrete 

curing times ranging up to 60hrs. The modeled profiles were then analyzed as if they were field 

collected data, using hyperbolic corrections and T-R conversions. 

The profile in Figure 3.4 was generated from a model shaft with an upper cased portion of 

69cm (27in) radius and a lower uncased portion of 61cm (24in) radius below the bottom of casing 

(BOC). Top of shaft (TOS) was located at ground surface and bottom of shaft (BOS) was located 

at a depth of 10.8m (35.4ft). Based on the input shaft dimensions, the concrete volume placed 

(CVP) was 14.7m3 (19.25cy), which was used to calculate the average shaft radius for the T-R 

relationship. Also included was a drastic change in boundary layers (low diffusivity overlying high 

diffusivity) occurring at depth of about 3.6m (12ft). Ambient soil temperature was set to 15.6oC 

(60oF) and air temperature was set to have a diurnal fluctuation of 18.9-28.3oC (66-83oF). Once 

data was generated, peak temperatures were identified at 18hrs and the corresponding profile was 

selected for initial analysis. 

The first step in applying temperature corrections is to properly identify regions of the 

profile where corrections are warranted. In almost all shafts, this includes the top and bottom, 

however any other suspected regions should be justified by strong evidence from site 

investigations (e.g. boring log, SPT, CPT). Also, for mid-shaft boundary changes, the boundary 

layer considered as normal should be identified. This is typically whichever layer is in soil (i.e. not 

water or air) and accounts for the majority of shaft length. In this case, everything in the low 

diffusivity layer was normalized to the underlying higher diffusivity layer. 
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Selection of hyperbolic parameters began by setting the inflection point depths based on 

the known depths of TOS, BOS, and the interface between differing boundary layers. Next, 

asymptotic and inflection point temperatures (Tmax, Tmin, T0) were selected based on observed 

values within the profile as well as known environmental temperatures. At the interface between 

boundary layers, Tmin and Tmax was observed from the nearest regions of uniform temperature on 

either side of the transition zone, and T0 was computed as the average between them. For the top 

and bottom roll-offs, the temperature of both the ambient air and soil are strong pieces of 

information which help to define each hyperbolic distribution. At the bottom, because the heat 

transfer characteristics of soil are similar to those of concrete, the temperature distribution in the 

soil is essentially a continuation of the same hyperbolic curve exhibited in the concrete. This results 

in a symmetrical curve with Tmin equal to soil temperature, Tmax equal to nearest uniform 

temperature in the shaft, and T0 equal to the midpoint between them. Conversely, at the top of the 

shaft, the modes of heat transfer between concrete and air are drastically different. The much 

stronger convective cooling behavior of air results in little to no temperature distribution beyond 

the interface and dominates the temperature at the surface. Because of this effect, top roll-offs are 

best fit by setting the inflection point (T0) to be ambient air temperature. Note that doing so results 

in a Tmin value that has no physical significance. 

After determining depth and temperature parameters for each curve, α values were 

systematically selected to achieve the best fit. The parameter α defines the distance to which the 

effects of a thermal transition extend away from the interface. It has units of distance and is defined 

by the intersection of the asymptote and the slope at the inflection point on a hyperbolic curve. 

Using this definition, a rough estimate can be made by visual inspection of the profile. 

Theoretically, α ranges from zero at time zero, when no heat exchange has had time to occur, to 
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infinite once all heat exchange has occurred and equilibrium is reached. For the typical timeframe 

of testing, α generally ranges between 0.3-1.5m (1-5ft), increasing with time.  

Table 3.1 gives the best fit hyperbolic parameter values for the model shaft at 18hrs. All 

depth and temperature parameters were kept in agreement with the shaft dimensions and boundary 

temperatures input into the model, and α values ranged from 0.38-0.43m (1.25-1.4ft). Figure 3.6 

shows the applied hyperbolic fits and corrected temperatures along with the resulting effective 

radius profile. 

 
Figure 3.4 Results of model analysis at 18hrs. 
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Table 3.1 Hyperbolic equation parameters for model data at 18hrs.  

 
Z0 

m (ft) 
Tmax 

oC (oF) 
Tmin 

oC (oF) 
T0 

oC (oF) 
α 

m (ft) 

Top 0 (0) 60.9 (141.6) … 19.1 (66.3) 0.39 (1.28) 

Transition 3.6 (11.9) 60.9 (141.6) 49 (120.2) … 0.38 (1.25) 

Bottom 10.8 (35.4) 43.3 (110) 15.6 (60) … 0.43 (1.4) 

 

With the same model inputs, the same analysis procedure was performed for all times 

ranging from 9-60hrs in order to examine the effects of time. In each case, best fits were achieved 

with the same inflection point depths (z0 = top or bottom of concrete) throughout, matching 

asymptotic temperatures within the shaft by visual inspection, and using soil temperature as the 

minimum for the bottom roll-off. The only parameters requiring trial and error iterations were the 

inflection point temperature (T0) for the top roll-off and all three α values, each of which revealed 

trends. Figure 3.5 shows the correlation that was exhibited between air temperatures and the 

inflection temperatures at the top roll-off. The pattern of inflection temperatures exhibits the same 

period as that of the diurnal air temperatures, but with a distinct lagging effect, suggesting that 

they are primarily influenced by the range of recent air temperatures experienced, rather than the 

current air temperature. Furthermore, the damping effect exhibited as time progressed suggests 

that inflection temperatures are less variable at later stages and could be more accurately estimated 

with the average of previous daily temperatures. Figure 3.6 shows the trends revealed by the best 

fit α values from the model analysis. All three exhibit a strong linear relationship with the square 

root of time, and with similar slopes. 
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Figure 3.5 Variation of top roll-off inflection temperatures compared with air temperature. 

 

 
Figure 3.6 Variation of α with time resulting from analysis of model data. 

 

3.5 Case Study 

Using the insight gained from modeling, the same analysis was performed using data 

collected from a 10.7m (35ft) long, 1.2m (4ft) diameter shaft with partial length permanent casing. 
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Figure 3.7 shows the temperature profiles measured by five thermal wires fastened to the 

reinforcing cage. As the reinforcing cage is rarely perfectly concentric, the average of all profiles 

should be used for determining T-R relationships. As with the model data, peak temperatures were 

observed at 18hrs and this data was analyzed first (Figure 3.7). Hyperbolic parameters were 

selected using the same guidelines but were adjusted in order to obtain the best fits. Inflection point 

depths for the top and bottom roll-offs were adjusted from reported values up 0.3m (1ft) and down 

0.1m (0.3ft), respectively. It is common for reported TOS and BOS elevations to vary slightly 

depending on factors like over-excavation of the bottom and the amount of over-pour (or under-

pour) at the top. Thus, adjustment of inflection point depths up to about 0.3m (1ft) in either 

direction is reasonable. The inflection point for the mid-shaft transition was set at 3.5m (11.4ft) 

based on visual inspection of the data and then compared with the nearest boring log which 

indicated a water table depth of 3.4m (11ft) as well as an interface of clay overlying sand at the 

same depth. While soil type and saturation states can have an effect on soil conductivity, soil 

saturation does not typically vary significantly just above and below the water table (Johansen, 

1977). However, in regions where the water table is relatively stable, this can occur. A more 

common cause of such a drastic temperature variation in this case is the presence of a small annular 

air gap that can form around the shaft due to predrilling of the clay layer to install the permanent 

casing. Soil temperature at depth was determined from the annual average air temperature of the 

region, which was 12.8oC (55oF), and was used for the bottom roll-off minimum temperature 

(Tmin). Air temperature from the time of casting was conveniently available from the excess thermal 

wire sensors extending from the top of shaft, which recorded air temperatures ranging from 18.3oC 

(65oF) to 27.8oC (82oF). An inflection temperature of 25oC (77oF) provided the best fit for the top 

roll-off. All other temperature parameters were selected from observed values in the thermal 
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profile, and α was iterated by trial and error, using the general relationships in Figure 3.6 as an 

initial estimate. Table 3.2 gives the final parameter values. 

 
Figure 3.7 Measured field data (left) and applied temperature corrections (right). 

 

Table 3.2 Hyperbolic equation parameters for field data at 18hrs. 

 
Z0 

m (ft) 

Tmax 
oC (oF) 

Tmin 
oC (oF) 

T0 
oC (oF) 

α 
m (ft) 

Top -0.3 (-1.0) 62.2 (144) - 25 (77) 0.91 (3.0) 

Transition 3.5 (11.4) 62.2 (144) 52.5 (126.5) - 0.38 (1.25) 

Bottom 10.9 (35.7) 47.5 (117.5) 12.8 (55) - 0.41 (1.33) 
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Analysis of the entire time range that was collected (23hrs), yielded similar patterns to 

those revealed by the model analysis. Inflection point temperatures at the top were dominated by 

air temperature (Figure 3.8), and α values followed a linear increase with the square root of time 

(Figure 3.9). In fact, the α relationships for the bottom and middle fits adhered to a similar slope 

as found in modeling, however the top α values followed a pattern that increased at more than 

twice the rate of the others, possibly due to the strong effects of wind which can be difficult to 

accurately replicate in computer models. 

Finally, with the corrected temperature profile, a T-R relationship was determined and 

applied to the data to produce an effective radius profile for each thermal wire (Figure 3.10, left). 

Because testing was performed via thermal wires, data was collected continuously for 23 hours 

after casting. To examine the effects of concrete age on analysis results, the same procedures were 

applied to the thermal profiles measured between 9hrs and 23hrs. In theory, analysis performed on 

the same shaft at different times during the dominant stages of concrete hydration will produce 

varied T-R relationships, but should ultimately compute the same effective radius. Figure 3.10 

(right) shows a comparison of the average effective radius profiles determined from analyses of 

various times, revealing very little variation. Furthermore, construction log information revealed 

that the upper portion of the shaft was permanently cased and that the shaft took 0.76m3 (1cy) 

more concrete than anticipated. This is strongly corroborated by the thermal results which indicate 

a close match to the casing radius in the upper part, and a slightly larger than intended radius in 

the lower uncased part, which was expected from the tool diameter. 
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Figure 3.8 Top inflection point temperatures compared with measured air temperatures. 

 

 
Figure 3.9 Correlation between α and time resulting from analysis of field data. 
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Figure 3.10 T-R results for analysis at 18hrs (left) and range of results for all times (right). 

 

3.6 Chapter Summary 

The temperature correction algorithm presented here provides a heightened level of 

traditional TIP analysis, allowing for previously problematic regions of a shaft to be analyzed 

using traditional T-R conversions. The results of the case study showed that analysis methods are 

largely insensitive to concrete age during the dominant stages of concrete hydration. Both model 

and field collected data show strong correlations with hyperbolic fitted curves in the top and 

bottom roll-off regions as well as in regions of mid-shaft thermal transitions due to changes in 

surrounding conditions. However, care must be taken to not abuse the application of mid-shaft 

transition corrections, as temperature variations due to actual radius changes can exhibit similar 
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patterns. These corrections should be justified with strong evidence that the occurrences are an 

effect of real boundary changes. The most common cases are overwater structures with shafts that 

transition from soil to water and/or to air.  

Construction techniques can have significant effects on the quality of the interface/contact 

between the shaft and its surroundings and can have a distinctive temperature signature that may 

cause a mid-shaft transition.  This manifested itself in this case study as a low diffusivity region 

most likely caused by the construction practice of predrilling before casing installation.  

Temporary, permanent, or isolation casing installation or extraction procedures can all be 

justification for mid-shaft transition corrections. 

With the exception of the top of shaft α factor, the modeled results presented agreed well 

with the field observed/fitted values.  In all cases, α should increase with time (as it did) and has 

been shown to be linearly proportional to the square root of curing time. Whether or not the fitted 

value is appropriate is best determined from site specific experience that may show increases in 

the upper shaft heat dissipation modes. 

  



51 

 

 

 

 

 

 

CHAPTER 4: STATISTICAL ANALYSIS OF FIELD DATA3 

 

As with any signal matching approach, good matches can be found with physically 

impractical parameters. A strong sense of reasonable input values must be present when applying 

temperature corrections. To further investigate the selection of the most appropriate hyperbolic 

fitting parameters for TIP analyses, data from 232 field tested shafts were collectively examined 

to identify the trends exhibited by the best-fit hyperbolic parameters selected for each one. To do 

this, the data from each shaft were imported into a single spreadsheet and a curve-fitting algorithm 

was developed to find the best-fit solution for each top and bottom roll-offs by iterating through a 

range of values for each of the hyperbolic parameters (e.g., Tmax, Tmin, Dinf, Tinf, α, etc.). Once the 

best-fit hyperbolic solutions were found for every shaft, the resulting parameters were examined 

collectively and compared against contributing factors like concrete age and air temperature. 

4.1 Selection of α Parameters 

As noted previously, modeling shows the α factor to follow a strong increasing relationship 

with the square root of time, which was also corroborated by the case study in Chapter 3 (Figures 

3.8 and 3.11). This relationship can be expressed by Equation 4.1, where α is in units of feet, t is 

units of hours, and the coefficient c is the subject of investigation (in units of ft∙hr-1/2). 

 𝛼 = c√𝑡 {4.1} 

Figure 4.1 shows the α values resulting from the best-fit top and bottom hyperbolic 

solutions versus the age of concrete at time of testing for the 232 shafts analyzed. Since testing on 

                                                      
3 Portions of this chapter were published as part of a Florida Department of Transportation technical report. 

Permission is included in Appendix C. 
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this project was typically performed either one or two days after concreting, much of the data is 

clustered around the 24 and 48 hour timeframes, however some tests were performed as early as 

12 hours and as late as 96 hours after concreting, providing a wide enough range of data to examine 

the time dependent trends. 

 
Figure 4.1 Best fit α values for both the top and bottom of shaft. 

For each data point in Figure 4.1, the coefficient c was back calculated and rounded to 

nearest multiple of 0.025 for the purpose of creating the frequency distribution curve shown in 

Figure 4.2. The result is a positively skewed distribution, as opposed to a normal distribution, due 

to the hard boundary on the lower side imposed by the concept that c cannot equal zero. This is 

not uncommon for data with such a condition, but it results in a statistical average that is heavily 

weighted by the outliers on only one side of the distribution. Instead, the central tendency of the 

data is better represented by the median value, which in this case yielded a value of c = 0.4. The 

variability of the data is measured by the standard deviation (σ). Figure 4.3 shows the α vs. time 

relationship resulting from the statistical analyses. 
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Figure 4.2 Probability density distribution for the coefficient c in the equation 𝛼 = c√𝑡. 

 
Figure 4.3 Statistically derived boundaries for α selection. 

Note that the occurrence of α values less than one standard deviation below the median is 

less frequent than those more than one standard deviation above the median. This demonstrates 
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the effects of a positively skewed probability distribution where α values for bullet shaped shaft 

tips or misshaped tops are more likely than oversized tops or bell-shaped toes. A lower than 

expected α value only occurs in the presence of a significant belled shaft tip or bulge. At the surface 

this occurs when over pour concrete is left on the ground surface around the shaft top. 

4.2 Top Inflection Point Temperatures 

Further investigation of the fitted field data is aimed at proper selection of the inflection 

point temperature at the top of shaft. Because the convective cooling behavior of free air is much 

stronger the conductive heat transfer in soil, it directly influences the temperature at the top surface 

of a shaft. Figure 4.4 shows the best-fit top of shaft inflection point temperatures along with the 

daily high and low recorded air temperatures.  

Note that the 232 shafts were all cast up to ground surface, but did not extend above. For 

shafts that are terminated well below ground (low cutoff elevation), there is less effect from air 

and those cases tend to be more aligned with bottom of shaft conditions. 

One quick observation is that in warmer summer months, the inflection temperature more 

closely aligns with the lower daily air temperature and in winter months it aligns with the warmer 

daily air temperature. It should also be noted that the trend could also be affected by the regional 

deep soil temperature which was 73oF for that site. Recall, the deep soil temperature is a constant 

that reflects the average annual air temperature for the geographical region. A further extension of 

this evaluation could be performed which would look more closely at the exact time of testing 

relative to the recent air temperature history (e.g., within the previous 4 to 24hrs, etc.). 
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Figure 4.4 Top of shaft inflection temperature along with max. and min. daily air temperature. 

4.3 Inflection Point Depth Offsets 

The best fit algorithm also varied the inflection depth to account for known or unknown 

variations in construction details (e.g. where the excavation stopped or where the top of concrete 

truly concluded after the pour); bleed water can cause a slight reduction in the effective top of shaft 

elevation. Figure 4.5 shows that bottom of shaft inflection depths were virtually always within 1ft 

of the actual measured/reported shaft tip but rarely above. An inflection point above the reported 

tip indicates a problematic shaft that could only be “best fit” with a physically unreasonable 

condition. This can occur where the shaft is drastically bullet shaped for example. Only five of the 

232 shafts exhibited this condition.  
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Similarly, the top of shaft inflection depth consistently showed the hyperbolically fitted 

solution to inflect above the shaft (negative refers to a depth less than top of shaft). Further 

evaluation showed that the TOS and BOS inflection points move slightly outside the shaft, 

increasing with time. This is a numerical curve fitting artifact that accounts for the difference in 

diffusivity between the concrete and air or concrete and soil, respectively. 

 
Figure 4.5 Hyperbolic inflection point offsets for top and bottom of shaft fits.  

Figures 4.6 and 4.7 illustrate the effects of proper versus improper selection of the 

hyperbolic curve fitting parameters. The fitted curves in Figure 4.6 were produced by allowing the 

algorithm to blindly select the parameters necessary to produce best-fit solutions. For the top, the 

resulting parameters yielded a transition length (α) of 2.7ft and a depth offset (ΔDinf ) equal to -

0.76ft. For the bottom, the resulting parameters were α = 2.8ft and ΔDinf = -3.3ft. Shown in Figure 
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4.7 are the fitted curves resulting from parameter selections based on the trends exhibited in the 

above statistical analyses. 

 
Figure 4.6 Example of toe fitted with best-fit solution, but with incorrectly selected parameters. 

 

For a concrete age of 44hrs, as was the case for this profile, the relationships derived from 

Figure 4.5 yield ΔDinf values of -0.64ft for the top and 0.93ft for the bottom. The relationship 

derived from Figure 4.3 yields α = 2.7ft (same for top and bottom). Compared to the blindly 

selected best-fit solutions above, the top shows good agreement with predicted parameters, 
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indicating normal conditions. At the bottom however, the disparity between predicted and best-fit 

ΔDinf values (0.93ft vs. -3.3ft) indicates an anomalous toe condition. Essentially, the shaft is 

roughly 3 feet shorter than designed. Even upon direct observation of the thermal profile, this is 

visibly evident by the presence of the downward concavity temperature distribution below the 

inflection point, which indicates that measurements have extended beyond the heat producing 

medium (concrete) into the heat diffusing medium (soil). 

 
Figure 4.7 Same shaft with properly selected parameters, showing the correct shape of the toe. 
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4.4 Chapter Summary 

Six input parameters are required when analyzing field data whereby the temperature 

profile can be converted to a radius profile. Therein, the shape of the top and bottom of the shaft 

can be predicted by adjusting the temperature profile to account for energy dissipation both radially 

and longitudinally where the rest of the shaft dissipates only radially. Proper selection of the 

parameters is vital; these include: top of shaft inflection temperature (Tinf), the top and bottom 

transition lengths (α), the top and bottom inflection depth/elevation (Dinf), and the local at-depth 

bottom soil temperature (Tmin). It should also be noted that that the upper asymptotic temperature 

(Tmax) is a required parameter, but is determined directly from the thermal profile itself and is not 

dependent on external information. 

Statistical evaluation of 232 previously tested shafts showed that the selection of the most 

appropriate α value should vary between 0.3 and 0.5 times the square root of time in hours. This 

finding is in keeping with model findings and should serve as a limiting range in which future 

integrity evaluation is performed. Likewise, best-fit top of shaft inflection point temperatures were 

observed to fall within the range of recent daily air temperatures. Bottom and top of shaft depth 

offsets revealed a trend that consistently placed the inflection points slightly outside of the shaft, 

increasing with time when compared to empirically observed data sets and best fit hyperbolic 

tangent solutions. As opposed to previous thought, which suggested that depth offsets were 

reasonable in either direction due to discrepancies between planned and as-built elevations, these 

findings suggest that this is more likely a mathematical phenomenon due to the slight difference 

in thermal distributions between a shaft and surrounding boundaries. Therefore it should be 

considered normal for inflection point depths to be placed slightly outside of the shaft (i.e. negative 

ΔDinf for the top, positive ΔDinf for the bottom), and increase with time. 
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Near perfect fits of all shafts were achieved, but when the fit required unreasonable input 

parameters, the shaft had a flaw (deviation from normal). When hyperbolic parameters used to fit 

the top or bottom profile shape can be supported by statistically normal values, then the shaft can 

be considered normal. When the fitted values fall outside normal range, then the appropriate values 

should be assigned based on the criteria provided and the true shape of the shaft will be produced. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

 

 

Analysis of TIP data for drilled shaft evaluation is still best performed using traditional 

methods, whereby the measured temperatures in a shaft are correlated to concrete yield data 

provided by construction logs to produce a temperature-radius relationship, which is then used to 

assess the effective radius, concrete cover, and cage alignment over the entire length of the shaft. 

However, objective and standardized procedures backed by scientific rationale are needed to 

ensure proper interpretation of data, which was the focus of this study. The general procedure for 

analysis of TIP data is outlined below and specific recommendations based on the findings of this 

study are presented herein: 

1. Obtain and review all auxiliary information pertinent to the shaft, including 

construction logs, yield plots, borehole data, etc. 

2. Determine concrete age at time of testing. If multiple times are available (e.g. wire 

data), select the time nearest peak temperatures. 

3. Align data from all tubes/wires to same elevation. 

4. Average the temperature profiles of all tubes/wires to produce an average profile. 

5. Fit the top and bottom roll-off regions using the hyperbolic curve-fitting algorithm 

(Eq. 3.1) with properly selected parameters. 

6. Apply temperature correction algorithm (Eq. 3.2) to properly fitted top and bottom 

roll-offs. 

7. Repeat steps 5 and 6 for any mid-shaft transitions if warranted. 
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8. After corrections, determine the average temperature of the entire shaft. 

9. Determine the volume and height of concrete placed in the excavation. 

10. From volume and height of concrete, compute the average radius of the shaft, 

ensuring to account for additional volume from reinforcing steel, access tubes, O-

cell, etc. 

11. Compute linear T-R relationship. 

12. Apply T-R conversion to each individual tube/wire thermal profile as well as the 

average profile to produce effective radius profiles. 

13. Evaluate concrete cover and cage alignment from effective radius profile. 

14. If needed, advanced numerical modeling can be used for comparison of results. 

5.1 Use of Construction Logs in TIP Analysis 

Analysis of any integrity test data should always make use of all available information. 

Hertlein (2015) highlighted the importance of incorporating all available “collateral” information 

stating failure to do so can lead to misinterpretation of the as-built foundation condition. This is 

particularly true when analyzing TIP data. 

Paramount to a quantifiable analysis of TIP data is the determination of average shaft radius 

based on concrete yield data in order to generate a T-R relationship. In addition to records of 

concrete truck volume vs. change in concrete height, a truly accurate calculation must take into 

account all other factors. These include the volume of concrete to fill the tremie and/or lines, 

volume of concrete left in lines and/or hopper, volume used for quality control/assurance testing, 

volume of reinforcing steel, volume of other materials in excavation (e.g. O-cell, grouting tubes, 

cooling tubes, etc.), and changes in concrete height during casing removal. 
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Furthermore, the analysis should take into consideration the strength/reliability of the 

concrete volume values, and when possible, use known boundary conditions to adjust volume. 

Examples include known inspect-able dimensions such as the top of shaft or permanent casing 

diameter. However, permanent casing in itself does not imply a perfect section. 

Additionally, information such as casing lengths, excavation depths, soil stratigraphy, 

construction procedures, and any noted abnormalities during construction (e.g. tremie breach, cage 

distortion during casing removal, etc.) can confirm observations or explain unexpected profile 

features. Sources of such information should include construction logs, borehole data, site 

investigations, and communication with the contractor. 

The case study presented in Chapter 3 illustrated the usefulness of such information, 

wherein an otherwise inexplicable thermal transition in the middle of the shaft was found to 

coincide with an interface between dry clay overlying saturated sand, as well as the fact the clay 

layer had been pre-drilled for casing installation, likely resulting in a region of poor thermal contact 

between shaft and soil. 

5.2 Hyperbolic Parameters for End Corrections 

 

The hyperbolic temperature correction algorithm (Eq. 3.1) presented in this study requires 

several input parameters to account for increased diffusion near the ends of the shaft which should 

be selected on the basis of reasonable limits. These parameters include: 

 Top and bottom of shaft transition lengths (α) 

 Top of shaft inflection point temperature (Tinf) 

 Top and bottom of shaft inflections point depths (Dinf) 

 Bottom of shaft lower bound temperature (Tmin) 

 Top and bottom of shaft upper bound temperatures (Tmax) 
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As with any signal matching algorithm, a strong match can be obtained for almost any 

profile, but the values selected may be unreasonable. Based on the findings of this study, the 

following guidelines for proper selection are recommended. 

5.2.1 Transition Length (α) 

The transition length (α) for the bottom and top of shaft follows a square root of time 

dependency where the most appropriate (average) value should be expressed as 0.4√time (time in 

hours). Based on the frequency distribution of all observations, reasonable values were shown to 

vary within one standard deviation, between 0.3 and 0.5√time (time in hours, Figure 4.3). Values 

that produce a good fit between the hyperbolic tangent function and the measured data that use 

transition lengths outside this range should be considered incorrect and indicate an abnormally 

shaped end (relative to a square ended cylindrical prism). In such cases, a value corresponding to 

0.4√time should be applied to show the most probable shape. 

5.2.2 Top of Shaft Inflection Point Temperature (Tinf) 

The top of shaft inflection temperature was found to be closely related to the average air 

temperature over the 12hr period prior to testing/time of evaluation (Figures 3.5 and 3.8). 

Furthermore, in winter months, the inflection temperature closely aligned with the highest daily 

temperature; in summer months aligned more closely with the lowest daily temperature; these 

values tended to be moderated by the local soil temperature (Figure 4.4). In general, the inflection 

temperature should not be outside the daily temperature extremes for the prior day. 

5.2.3 Inflection Point Depths (Dinf) 

The top and bottom of shaft elevations (TOS and BOS) should align closely with the 

hyperbolic tangent inflection point location (Dinf) which indicates the interface between energy 

producer and energy dissipater. However, a single hyperbolic tangent function is used to represent 
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the two material types. As a result, the best fit inflection point locations were shown to slightly 

move outside the shaft progressing farther away with time (Figure 4.5).  If the inflection point 

location is ever found to be best fit inside the shaft or is disparate from the recommended/shown 

range, that value should not be used. Again, in such cases, an inflection point location 

corresponding to Figure 4.5 should be used in conjunction with the most appropriate transition 

length note above. 

5.2.4 Bottom of Shaft Lower Bound Temperature (Tmin) 

With exception to those cases where geothermal heat sources are present, the average 

annual air temperature for a given geographical location (Figure 2.10) provides a direct indication 

of the at-depth constant temperature boundary condition used to fit the bottom of shaft hyperbolic 

tangent correction/adjustment. This value is perhaps the most trustworthy input parameter when 

analyzing field data and converting from temperature to radius profiles. 

5.2.5 Upper Bound Temperatures (Tmax) 

The upper bound temperatures (Tmax) for top and bottom of shaft corrections are the only 

parameters that should not be estimated based external conditions or time. Rather, they should be 

matched to the measured temperature profile itself and estimated based on the nearest region of 

uniform temperature distribution. This can typically be found at a distance roughly equal to one 

diameter of the shaft away from the ends, but can depend on time of testing and whether or not the 

end condition is anomalous. 

5.2.6 Normalizing Temperatures (Tnorm) 

Once the top and bottom temperature distributions are fitted using properly selected 

parameters, the temperature correction algorithm (Eq. 3.2) should be applied and normalized 
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(Tnorm) to Tmax in order produce the temperature profile that would be expected had the additional 

heat loss boundary not been present. 

5.3 Hyperbolic Parameters for Mid-Shaft Corrections 

In cases where a shaft extends out of the ground (e.g., into water or air) or is known to have 

changed the external heat diffusing environment, the analysis should incorporate a mid-shaft 

correction. However, it should be noted that temperature distributions caused by actual changes in 

effective radius can exhibit similar patterns. Therefore, without a justifiable change in external 

environmental conditions within the length of a shaft, intermediate corrections should not be used 

and are not warranted. 

When mid-shaft corrections are warranted however, the same hyperbolic temperature 

correction algorithms used for end effects should be applied, but with selection of parameters based 

on that which is appropriate for the given condition. 

5.3.1 Transition Length (α) 

The transition length (α) should adhere to same time dependent relationship as for end 

conditions, between 0.3 and 0.5√time (time in hours). 

5.3.2 Inflection Point Depths (Dinf) 

The inflection point depth should be matched to the observed inflection point in the 

measured thermal profile, but corroborated by evidence from site investigation, borehole data, or 

construction logs. As opposed to the inflection point depth offsets observed in top and bottom 

corrections where mediums transfer to either soil or air, no offset should be expected in mid-shaft 

corrections as the medium never transfers out of concrete. 
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5.3.3 Upper and Lower Bound Temperatures (Tmax, Tmin) 

Both the upper and lower bound temperatures (Tmax, Tmin) for mid-shaft corrections should 

be matched to nearest regions of uniform temperature above and below the inflection point. Neither 

should be estimated based on external factors. 

5.3.4 Normalizing Temperatures (Tnorm) 

Once a mid-shaft transition has been fitted using properly selected parameters, the 

temperature correction algorithm (Eq. 3.2) should be applied in order produce the temperature 

profile that would be expected had the change in heat diffusion boundary not been present. 

However, unlike with top and bottom corrections, proper selection of the normalization 

temperature (Tnorm) can vary between Tmin and Tmax. It is recommended that temperatures be 

normalized to whichever region of the shaft contains the most reliable conditions for analysis. 

Considerations for this should include the portion of the shaft that is in soil (as opposed to water 

or air), whether either portion constitutes a vast majority of the shaft length, or if either part of the 

shaft is permanently cased. 

5.4 Temperature-Radius Relationship 

Only after all appropriate hyperbolic temperature corrections have been applied, should the 

temperature-radius relationship for a shaft be determined and applied.  

Mullins and Winters (2011) showed that the average temperature at a given depth can be 

linearly correlated to the local effective shaft radius for changes in radius generally less than 12in. 

Greater changes in radius tend to be under predicted though, as the true temperature-radius 

relationship becomes non-linear (e.g. a change in radius on the order of 16in might be reported as 

14in). However, a shaft radius that is less than 6in of the design radius usually fails acceptance 
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criteria for multiple reasons (Piscsalko et al., 2016), making the linear approximation reasonable 

for virtually all cases of shaft integrity evaluation. 

The model findings of this study have shown that the theoretical T-R relationship follows 

a non-linear S-shaped curve with lower and upper bounds of soil temperature and concrete 

adiabatic temperature, respectively. However, for measurements taken near the edge of shaft (e.g. 

cage location), data falls within the linear portion of the curve, thereby making a linearly 

approximated T-R relationship appropriate for analysis. 

For very large shafts (e.g. 8ft diameter and larger), there is often a sufficient amount of 

yield plot data to determine a linear T-R relationship by multi-point regression (as demonstrated 

in Figure 2.3). 

For most commonly constructed shafts however (e.g. less than 8ft diameter), where yield 

plot data is usually not sufficient for a multi-point regression, a single-point (or pole-point) 

solution, using the average temperature and average radius of the entire shaft, should be used. In 

this case, the linear T-R relationship is defined by the points (Tavg,Ravg) and (0,0). Modeling has 

shown this type of solution to provide a close approximation to the linear portion of the theoretical 

T-R relationship and to also be conservative against false positives (i.e. over-prediction of 

anomalies) for shafts in the 3-8ft diameter range. 

5.5 Effects of Concrete Age 

The case study presented in Chapter 3 showed that time of testing has virtually no effect 

on the computed effective shaft radius. This finding, however, is limited to a reasonable timeframe 

that stays within the previously stated rule-of-thumb, whereby testing/evaluation time should be 

performed within a one day per foot of shaft diameter timeframe, corresponding to at or recently 
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after peak temperatures have occurred. This also requires that the effects of time are well 

understood as they pertain to the hyperbolic correction parameters. 

Additionally, the start of hydration time should consider any delays caused by retarders 

added to the concrete. Top of shaft α values may be slightly higher to account for additional modes 

of heat transfer that include convection. This phenomenon is more pronounced in shafts that extend 

above ground via permanent casing or other similar means. 

5.6 Use of Numerical Modeling in TIP Analysis 

Modeling for exact temperature predictions should not be used as a means of direct analysis 

for thermal integrity data. The precision of such models is highly subjective to the estimation of 

many input parameters including cement mineralogy, concrete hydration behavior, subsurface 

stratigraphy, soil thermal properties, and the effects of air convection.  

However, while numerical models are fraught with limitations associated with accurate 

estimation of input parameters, such models are a convenient mechanism to identify trends that 

occur regardless of actual field conditions. In such cases, all available information (as described 

in Section 5.1) should be considered and input appropriately into the model constraints. Appendix 

A provides the constitutive equations that define concrete hydration behavior based on Bogue 

calculations (commonly found in cement mill certificates), and Appendix B provides 

recommendations for the thermal properties of concrete and soil. 

This study made use of numerical model data to confirm the applicability of temperature-

radius relationships in drilled shafts, and to help define the non-uniform thermal distributions 

exhibited at the top and bottom of a shaft, as well as those that may be present within the middle 

of a shaft due to drastic changes in boundary conditions. 
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5.7 Future Work 

With the rapid rise in TIP acceptance worldwide and the applications to which it is applied 

there will be continued need to develop analysis methods. Two areas can be noted in this regard: 

(1) analysis of non-cylindrical sections and (2) defining the non-linear temperature to radius 

relationship directly from field data.  Designers and owners for projects involving cutoff walls, 

soldier pile walls or other rectangular concrete sections are now looking for ways to incorporate 

TIP capabilities to provide the same level of quality assurance. While direct observation of the 

data will follow in the same fashion as drilled shafts, effective radius will not be an appropriate 

indicator. Rather, a new set of acceptance criteria will be required. 

The non-linear temperature to radius relationship defined herein via numerical modeling is 

not presently transferable to field collected data. It is conceivable that such a method could be 

developed with additional measurements or relationships derived from numerical models.  
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APPENDIX A: α-β-τ CONCRETE HYDRATION MODEL EQUATIONS 

 

Below are the empirical equations and parameters, as described by Poole, 2007, used in 

defining the α-β-τ model for concrete hydration behavior. 

 

𝐻𝑐𝑒𝑚 = 500 ⋅ 𝑝𝐶3𝑆 + 260 ⋅ 𝑝𝐶2𝑆 + 866 ⋅ 𝑝𝐶3𝐴 + 420 ⋅ 𝑝𝐶4𝐴𝐹 

+624 ⋅ 𝑝𝑆𝑂3 + 1186 ⋅ 𝑝𝐹𝑟𝑒𝑒𝐶𝑎𝑂 + 850 ⋅ 𝑝𝑀𝑔𝑂 
{A.1} 

 

𝐻𝑢 = 𝐻𝑐𝑒𝑚 ⋅ 𝑝𝑐𝑒𝑚 + 461 ⋅ 𝑝𝐺𝐺𝐵𝐹𝑆−100 + 550 ⋅ 𝑝𝐺𝐺𝐵𝐹𝑆−120 

+1800 ⋅ 𝑝𝐹𝐴−𝐶𝑎𝑂 ⋅ 𝑝𝐹𝐴 + 330 ⋅ 𝑝𝑆𝐹  
{A.2} 

  

  

𝐸𝑎 = 41,230 + 1,416,000 ⋅ [(𝑝𝐶3𝐴 + 𝑝𝐶4𝐴𝐹) ⋅ 𝑝𝑐𝑒𝑚 ⋅ 𝑝𝑆𝑂3 ⋅ 𝑝𝑐𝑒𝑚] 

−347,000 ⋅ 𝑝𝑁𝑎2𝑂𝑒𝑞 − 19.8 ⋅ 𝐵𝑙𝑎𝑖𝑛𝑒 

+29,600 ⋅ 𝑝𝐹𝐴 ⋅ 𝑝𝐹𝐴−𝐶𝑎𝑂 + 16,200 ⋅ 𝑝𝐺𝐺𝐵𝐹𝑆 − 51,600 ⋅ 𝑝𝑆𝐹 

−3,090,000 ⋅ 𝑊𝑅𝑅𝐸𝑇 − 345,000 ⋅ 𝐴𝐶𝐶𝐿 

{A.3} 

  

𝛼𝒖 =
1.031 ⋅ 𝑤/𝑐𝑚

0.194 + 𝑤/𝑐𝑚
+ exp

(

 
 
−0.0885 − 13.7 ⋅ 𝑝𝐶4𝐴𝐹 ⋅ 𝑝𝑐𝑒𝑚          

−283 ⋅ 𝑝𝑁𝑎2𝑂𝑒𝑞 ⋅ 𝑝𝑐𝑒𝑚                          

−9.90 ⋅ 𝑝𝐹𝐴 ⋅ 𝑝𝐹𝐴−𝐶𝑎𝑂                          
−339 ⋅ 𝑊𝑅𝑅𝐸𝑇 − 95.4 ⋅ 𝑃𝐶𝐻𝑅𝑊𝑅)

 
 

 {A.4} 

 

 
 

𝛽 = exp(
−0.464 + 3.41 ⋅ 𝑝𝐶3𝐴 ⋅ 𝑝𝑐𝑒𝑚 − 0.846 ⋅ 𝑝𝐺𝐺𝐵𝐹𝑆        

+107 ⋅ 𝑊𝑅𝑅𝐸𝑇 + 33.8 ⋅ 𝐿𝑅𝑊𝑅 + 15.7 ⋅ 𝑀𝑅𝑊𝑅
+38.3 ⋅ 𝑃𝐶𝐻𝑅𝑊𝑅 + 8.97 ⋅ 𝑁𝐻𝑅𝑊𝑅                       

) {A.5} 

 

 
 

𝜏 = exp (
2.92 − 0.757 ⋅ 𝑝𝐶3𝑆 ⋅ 𝑝𝑐𝑒𝑚 + 98.8 ⋅ 𝑝𝑁𝑎2𝑂 ⋅ 𝑝𝑐𝑒𝑚 + 1.44 ⋅ 𝑝𝐺𝐺𝐵𝐹𝑆
+4.12 ⋅ 𝑝𝐹𝐴 ⋅ 𝑝𝐹𝐴−𝐶𝑎𝑂 − 11.4 ⋅ 𝐴𝐶𝐶𝐿 + 98.1 ⋅ 𝑊𝑅𝑅𝐸𝑇                  

) {A.6} 
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where, 

 

𝐻𝑐𝑒𝑚 = 𝑇𝑜𝑡𝑎𝑙 ℎ𝑒𝑎𝑡 𝑜𝑓 ℎ𝑦𝑑𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑒𝑚𝑒𝑛𝑡 (𝑘 𝐽 𝑘𝑔⁄ ) 

𝐻𝑢 = 𝑇𝑜𝑡𝑎𝑙 ℎ𝑒𝑎𝑡 𝑜𝑓 ℎ𝑦𝑑𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑖𝑜𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 (𝑘𝐽 𝑘𝑔⁄ ) 

𝐸𝑎 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 (𝐽 𝑚𝑜𝑙⁄ ) 

𝛼𝑢 = 𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 ℎ𝑦𝑑𝑟𝑎𝑡𝑖𝑜𝑛 

𝛽 = 𝐻𝑦𝑑𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑙𝑜𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

𝜏 = 𝐻𝑦𝑑𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 (ℎ𝑟𝑠) 

𝑝𝑐𝑒𝑚 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑐𝑒𝑚𝑒𝑛𝑡 𝑡𝑜 𝑎𝑙𝑙 𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑖𝑜𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

𝑝𝐹𝐴 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑓𝑙𝑦 𝑎𝑠ℎ 𝑡𝑜 𝑎𝑙𝑙 𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑖𝑜𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

𝑝𝐺𝐺𝐵𝐹𝑆−100 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑔𝑟𝑎𝑑𝑒 100 𝑠𝑙𝑎𝑔 𝑡𝑜 𝑎𝑙𝑙 𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑖𝑜𝑢𝑠 

𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

𝑝𝐺𝐺𝐵𝐹𝑆−120 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑔𝑟𝑎𝑑𝑒 120 𝑠𝑙𝑎𝑔 𝑡𝑜 𝑎𝑙𝑙 𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑖𝑜𝑢𝑠 

𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

𝑝𝑆𝐹 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑠𝑖𝑙𝑖𝑐𝑎 𝑓𝑢𝑚𝑒 𝑡𝑜 𝑎𝑙𝑙 𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑖𝑜𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

𝑤 𝑐𝑚⁄ = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑡𝑜 𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑖𝑜𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

𝑝𝐶3𝑆 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝐶3𝑆 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑐𝑒𝑚𝑒𝑛𝑡 

𝑝𝐶2𝑆 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝐶2𝑆 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑐𝑒𝑚𝑒𝑛𝑡 

𝑝𝐶3𝐴 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝐶3𝐴 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑐𝑒𝑚𝑒𝑛𝑡 

𝑝𝐶4𝐴𝐹 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝐶4𝐴𝐹 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑐𝑒𝑚𝑒𝑛𝑡 

𝑝𝑆𝑂3 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑆𝑂3 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑐𝑒𝑚𝑒𝑛𝑡 

𝑝𝐹𝑟𝑒𝑒𝐶𝑎𝑂 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑓𝑟𝑒𝑒 𝐶𝑎𝑂 (𝑙𝑖𝑚𝑒) 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑐𝑒𝑚𝑒𝑛𝑡 

𝑝𝑀𝑔𝑂 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑀𝑔𝑂 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑐𝑒𝑚𝑒𝑛𝑡 
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𝑝𝑁𝑎2𝑂 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑁𝑎2𝑂 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑐𝑒𝑚𝑒𝑛𝑡 

𝑝𝑁𝑎2𝑂𝑒𝑞 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑁𝑎2𝑂 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑎𝑙𝑘𝑎𝑙𝑖𝑒𝑠 𝑖𝑛 𝑐𝑒𝑚𝑒𝑛𝑡

= 𝑝𝑁𝑎2𝑂 + 0.658 ⋅ 𝑝𝐾2𝑂 

𝑝𝐾2𝑂 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝐾2𝑂 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑐𝑒𝑚𝑒𝑛𝑡 

𝐵𝑙𝑎𝑖𝑛𝑒 = 𝐵𝑙𝑎𝑖𝑛𝑒 𝑓𝑖𝑛𝑒𝑛𝑒𝑠𝑠 𝑜𝑓 𝑐𝑒𝑚𝑒𝑛𝑡 

𝑝𝐹𝐴−𝐶𝑎𝑂 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝐶𝑎𝑂 𝑖𝑛 𝑓𝑙𝑦 𝑎𝑠ℎ 

𝐴𝐶𝐶𝐿 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟 𝑡𝑜 𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑖𝑜𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

𝑊𝑅𝑅𝐸𝑇 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑟𝑒𝑑𝑢𝑐𝑒𝑟 𝑟𝑒𝑡𝑎𝑟𝑑𝑒𝑟⁄ (𝐴𝑆𝑇𝑀 𝑡𝑦𝑝𝑒 𝐵&𝐷) 

𝑡𝑜 𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑖𝑜𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

𝐿𝑅𝑊𝑅 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑙𝑜𝑤 𝑟𝑎𝑛𝑔𝑒 𝑤𝑎𝑡𝑒𝑟 𝑟𝑒𝑑𝑢𝑐𝑒𝑟 (𝐴𝑆𝑇𝑀 𝑡𝑦𝑝𝑒 𝐴) 

𝑡𝑜 𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑖𝑜𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

𝑀𝑅𝑊𝑅 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑚𝑖𝑑 𝑟𝑎𝑛𝑔𝑒 𝑤𝑎𝑡𝑒𝑟 𝑟𝑒𝑑𝑢𝑐𝑒𝑟 𝑡𝑜 𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑖𝑜𝑢𝑠 

𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

𝑁𝐻𝑅𝑊𝑅 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑛𝑎𝑝ℎ𝑡ℎ𝑎𝑙𝑒𝑛𝑒 𝑜𝑟 𝑚𝑒𝑙𝑎𝑚𝑖𝑛𝑒 𝑏𝑎𝑠𝑒𝑑 ℎ𝑖𝑔ℎ 𝑟𝑎𝑛𝑔𝑒 

𝑤𝑎𝑡𝑒𝑟 𝑟𝑒𝑑𝑢𝑐𝑒𝑟 (𝐴𝑆𝑇𝑀 𝑡𝑦𝑝𝑒 𝐹) 𝑡𝑜 𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑖𝑜𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

𝑃𝐶𝐻𝑅𝑊𝑅 = 𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑝𝑜𝑙𝑦𝑐𝑎𝑟𝑏𝑜𝑥𝑦𝑙𝑎𝑡𝑒 𝑏𝑎𝑠𝑒𝑑 ℎ𝑖𝑔ℎ 𝑟𝑎𝑛𝑔𝑒 𝑤𝑎𝑡𝑒𝑟 

𝑟𝑒𝑑𝑢𝑐𝑒𝑟 (𝐴𝑆𝑇𝑀 𝑡𝑦𝑝𝑒 𝐹) 𝑡𝑜 𝑐𝑒𝑚𝑒𝑛𝑡𝑖𝑡𝑖𝑜𝑢𝑠 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 
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APPENDIX B: CONCRETE AND SOIL THERMAL PROPERTIES 

 

 

Table B.1 Thermal conductivity of mature concrete based on aggregate type. (Schindler et al., 

2002) 

 
 

 

Table B.2 Specific heat of concrete materials. (Schindler et al., 2002) 
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Table B.3 Conductive thermal properties of subsurface materials. 

Material 

Density, 

ρ 

Thermal 

Conductivity, k 

Specific 

Heat, Cp 

Diffusivity, 

k/ρCp Reference 

(kg/m3) (W/m/K) (J/kg/K) (mm2/s) 

Granite 2630 2.79 775 1.37 

Incroperra 

& Dewitt 

(2007) 

Limestone 2320 2.15 810 1.14 

Marble 2680 2.8 830 1.26 

Quartzite 2640 5.38 1105 1.84 

Sandstone 2150 2.9 745 1.81 

Sandy Soil - 

40% pore space 

Dry 1600 0.3 800 0.23 

Arya 

(2001) 

Saturated 2000 2.2 1480 0.74 

Clay Soil - 

40% pore space 

Dry 1600 0.25 890 0.18 

Saturated 2000 1.58 1550 0.51 

Peat Soil - 

80% pore space 

Dry 300 0.06 1920 0.10 

Saturated 1100 0.5 3650 0.12 

Still Water (20oC) 1000 0.57 4180 0.14 

Still Air (20oC) 1.2 0.025 1010 20.63  

 

 

 
Figure B.1 Soil density as a function of uncorrected SPT blow count (N). (Pauly, 2010) 
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Figure B.2 Kersten’s conductivity vs. density and moisture content for sandy soils. (Pauly, 2010) 

 

 
Figure B.3 Kersten’s conductivity vs. density and moisture content for clayey soils. (Pauly, 2010) 
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Figure B.4 Mickley’s conductivity vs. density and moisture content for sandy soils. (Pauly, 2010) 

 

 
Figure B.5 Mickley’s conductivity vs. density and moisture content for clayey soils. (Pauly, 2010) 
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Figure B.6 Gemant’s conductivity vs. density and moisture content for sandy soils. (Pauly, 2010) 

 

 

 
Figure B.7 Gemant’s conductivity vs. density and moisture content for clayey soils. (Pauly, 2010) 
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Figure B.8 De Vrie’s conductivity vs. density and moisture content for sandy soils. (Pauly, 2010) 

 

 
Figure B.9 De Vries’s conductivity vs. density and moisture content for clayey soils. (Pauly, 2010) 
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Figure B.10 VanRooyen’s conductivity vs. density and moisture content for sandy soils. (Pauly, 

2010) 

 

 
Figure B.11 VanRooyen’s conductivity vs. density and moisture content for clayey soils. (Pauly, 

2010) 
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Figure B.12 McGaw’s conductivity vs. density and moisture content for sandy soils. (Pauly, 2010) 

 

 
Figure B.13 McGaw’s conductivity vs. density and moisture content for clayey soils. (Pauly, 2010) 
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Figure B.14 Johansen’s conductivity vs. density and moisture content for sandy soils. (Pauly, 

2010) 

 

 
Figure B.15 Johansen’s conductivity vs. density and moisture content for clayey soils. (Pauly, 

2010) 
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Below is permission for the use of material in Chapter 2. 
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Below is permission for the use of material in Chapter 3. 
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 Below is permission for the use of material in Chapter 4. 
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Below is permission for the use of Figure 2.2. 
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 Below is permission for the use of Figure 2.4, Table B.1, and Table B.2. 
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 Below is permission for the use of Figures 2.5 – 2.7. 
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Below is permission for the use of Figure 2.10 and Figures B.1 – B.15. 
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 Below is permission for the use of Figure 2.3. 
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