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ABSTRACT 

The discharge of point- and non-point source pollutants into surface waters resulting from 

industrial and/or municipal activities is a major focus of environmental regulation in the United 

States. As a result, the National Pollutant Discharge Elimination System (NPDES) permit 

program was established in 1972 in an effort to regulate discharges from industrial or municipal 

sources, including wastewater treatment plants (WWTP). To further protect Florida water 

quality, in 1978, State legislation enacted the Grizzle-Figg Act for Tampa Bay, which requires 

advanced wastewater treatment for any discharge into sensitive water bodies. A common use of 

wastewater effluent in the Tampa Bay area is for reclaimed water for irrigation. This leads to an 

estimated 90% reduction of total nitrogen (TN) load to the bay in comparison to direct discharge 

(TBEP, 2016).  

One type of wastewater treatment process that has been shown to have low aeration and 

chemical requirements is simultaneous nitrification denitrification (SND), which can be carried 

out in an oxidation ditch. SND is a biological process for nitrogen removal where nitrification 

and denitrification occur at the same time within the same reactor. An oxidation ditch is a race-

track type reactor that promotes the occurrence biological conversion of reactive nitrogen to 

nitrogen gas (N2) and additionally can provide enhanced biological phosphorus removal (EBPR).  

Many theories exist as to the mechanisms that allow SND to occur, but the literature is 

inconclusive as to whether the presence of different zones within the floc, within the reactor 

itself, a combination of the two or unique microorganisms are responsible for SND. Advantages 

of SND include efficient (80-96%) nitrogen removal, with significant reductions in energy, 
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chemical, equipment and spatial requirements. Specifically, oxygen requirements are reduced 

and dedicated aerobic/anoxic zones, internal recirculation and supplemental carbon and 

alkalinity are not required. Despite these advantages, widespread use of SND is limited because 

of a lack of understanding of SND kinetics as well as interactions between factors affecting SND 

performance.   

 This research was carried out at the Falkenburg Advanced Wastewater Treatment Plant 

(AWWTP) in Hillsborough County Florida, which carries out SND, biological and chemical 

phosphorous removal in an oxidation ditch system. Although this facility continually meets and 

exceeds its permit requirements, improvements in process control strategies have the potential to 

improve energy efficiency, as well as decrease chemical use, sludge production, greenhouse 

gasses (GHG) emissions and costs.  Therefore, the overall goal of this research was to investigate 

mechanisms of nitrogen and phosphorus removal at the Falkenburg AWWTP. These goals were 

achieved through bench scale SND studies carried out at varying temperatures.  Kinetic 

parameters were determined using a simple kinetic model of nitrification/denitrification. 

Additionally, carrying out sampling campaigns completed the investigation of the fate of 

phosphorus in the Falkenburg AWWTP. The results were combined with information on alum 

dosing and sludge wasting to determine the overall fate of phosphorus in the system and make 

additional recommendations regarding the addition of alum. 

 To mimic an oxidation ditch at Falkenburg AWWTP, bench scale bioreactor experiments 

were set up in glass beakers at 22°C and 29.5 C. Influent wastewater and return activated sludge 

(RAS) for these experiments were collected from the Falkenburg AWWTP. Bioreactors were 

constantly mixed and aeration was controlled to maintain a target dissolved oxygen (DO) 

concentration based on measurements of DO at the facility.  Three phosphorous sampling 
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campaigns (October, November and December) were also carried out to understand the fate of 

phosphorous, nitrogen and organic carbon at the facility.  In these campaigns, samples were 

taken at six locations at Falkenburg AWWTP and samples were analyzed for filtered and 

unfiltered total phosphorus, orthophosphate and polyphosphates, filtered and unfiltered total 

nitrogen, soluble, total and readily biodegradable COD (rbCOD), volatile acids, cations, anions, 

alkalinity, total suspended solids (TSS) and volatile suspended solids (VSS).  pH and DO were 

also measured on site.  

In the nitrification batch reactors, in four hours, 50% of ammonia was successfully 

removed at a rate of 6.31 mg-N/L/hr indicating that four hours is not sufficient time to achieve 

complete removal. In the denitrification batch reactors, in six hours, there was successful 

removal of nitrate and nitrite at a rate of 23.70 mg-NO3
-/L/hr and 3.6 mg-NO2

-/L/hr. In an SND 

batch reactor experiments at 22° C, ammonia oxidation successfully occurred in 12 hours but 

denitrification was inhibited due to insufficient rbCOD in the reactor. In an SND batch reactor at 

29.5° C, no accumulation of nitrate or nitrite was observed, indicating successful SND. At a 

higher temperature, sludge bulking occurred in the reactor resulting in variations in TSS and 

VSS concentrations.  

Results from the sampling campaigns at the treatment plant indicate that successful 

phosphorus removal was achieved. Alum addition varied before each sampling and a relationship 

between alum addition and sulfate can be made. rbCOD was consumed throughout the treatment 

process as expected and noticeable results can be noted when rbCOD was low in terms of 

phosphorus removal. 

The results of the bench-scale experiments showed that the SND was successfully 

achieved at the Falkenburg facility and that temperature, DO and rbCOD are all important 
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factors controlling biological nutrient removal at SND facilities. DO is much more difficult to 

maintain and control at a higher temperature further supporting the idea that stricter operator 

control is needed in warmer months. Additionally, because SND removal still occurred with poor 

DO control at 29.5°C, it further supports the idea that SND occurs because of zones within the 

floc, the reactor or that novel microorganisms exist that allow denitrification to occur above ideal 

DO concentration and nitrification to occur below ideal concentrations of DO.  A variation in 

rbCOD in the influent wastewater at the treatment plant caused nitrification and denitrification to 

be inhibited in different trials. With too much rbCOD, nitrification was inhibited and with too 

little rbCOD, denitrification was inhibited. Additionally, alkalinity consumption was minimal 

which supports the idea that supplemental alkalinity is not needed in SND processes.  

The results from the phosphorous sampling campaign show how important influent COD 

is for successful phosphorus removal in the system.  

 The objectives were achieved and overall, the plant is achieving SND and EBPR and the 

plant is performing as designed. The addition of alum should continue to be studied to determine 

a better dose and save the county ratepayers money while still meeting permit regulations.  Jar 

tests should be used to determine the proper dosing that will not hinder the settling properties 

further in the treatment train.  Additionally, alum feed pipe sizes should be investigated at the 

plant to ensure no clogging occurs with a decrease in alum flow and automated aeration based on 

ammonia concentrations should be considered to remove the manual operation of aerators.
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CHAPTER 1: INTRODUCTION 

1.1 Background 

The discharge of point and non-point source pollutants into surface waters resulting from 

industrial and/or municipal activities is a major focus of environmental regulation in the United 

States, specifically the Clean Water Act of 1972 (EPA, 2005). The Clean Water Act’s primary 

objective is to restore and maintain the quality of water bodies throughout the United States.  As 

a result, the National Pollutant Discharge Elimination System (NPDES) permit program was 

established in 1972 in an effort to regulate discharges from industrial or municipal sources, 

including wastewater treatment plants (WWTP). Minimum regulated criteria for discharge by 

WWTPs include, but are not limited to, biological oxygen demand (BOD) and total suspended 

solids (TSS). Total maximum daily load (TMDL) calculations for specified criteria are used to 

determine the maximum amount of a pollutant a water body can receive while still maintaining 

established water quality standards (WQS). Recently, increased sensitivity in TMDL’s have 

driven down the NPDES effluent limits for nitrogen and phosphorus (Ergas and Aponte-Morales, 

2013), as many water bodies, including Florida’s fresh water springs and marine waters in the 

Florida Keys, are extremely sensitive to these pollutants.  As a result, WQS call for more 

stringent control on wastewater treatment methodologies, and/or the design and operation of 

advanced wastewater treatment plants (AWWTP).  To further protect Florida water quality, in 

1978, State legislation enacted the Grizzle-Figg Act for Tampa Bay, which requires advanced 

wastewater treatment for any discharge into sensitive water bodies. A common use of wastewater 

effluent in the Tampa Bay area is for reclaimed water for irrigation. This leads to an estimated 
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90% reduction of total nitrogen (TN) load to the bay in comparison to direct discharge (TBEP, 

2016).  

 If WQS are ignored, impacts on water bodies include increased potential for 

eutrophication. Eutrophication occurs when excess nutrients, including nitrogen and phosphorus, 

result in excess algal growth. Typically, the availability of these nutrients act as a limiting factor 

with respect to algal growth. Unchecked, algal growth can block filters and intake pipes for 

water treatment plants, or pass through them causing bad odors, taste, and potential health 

impacts in the treated waters (Goel and Motlagh, 2013). Subsequent die off and decomposition 

of biomass results in degradation of water quality with respect to decreased dissolved oxygen 

(DO) levels, and increased turbidity (Fuerhacker, 1999). These factors are significant 

contributors to the decline of aquatic and marine habitats, including coastal nurseries and sea 

grass beds, upon which numerous species depend for both food and habitat.  In addition to the 

dangers to marine and aquatic life, human health can be affected if nitrate-rich water is ingested. 

Methemoglobinemia, or blue baby syndrome, occurs in infants when nitrate oxidizes iron in 

hemoglobin in red blood cells to methemoglobin back to hemoglobin too slowly, hindering the 

infants’ ability to carry oxygen in blood (Ergas and Aponte-Morales, 2013).  

 The advancement and evolution of wastewater treatment methodologies continues 

pursuant to four basic principles: (1) human health (2) environmental concerns, (3) cost 

effectiveness and 4) sustainability. Combined, these principles have led to the design and 

operation of facilities that promote the biological and chemical removal of solids, organics, 

nutrients, metals, toxic compounds and pathogens from wastewater prior to the discharge of 

effluent waters into the environment. The need to conserve resource use has incentivized 

improving process sustainability through the optimization of treatment processes. Sustainability 
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issues, including energy consumption, process related greenhouse gas (GHG) emissions, 

chemical usage and carbon footprint, are now of critical importance to the design, construction 

and operation of any WWTP (Metcalf & Eddy, 2014). Aeration is the single largest energy 

consuming operation at a WWTP, accounting for 45-75% of treatment energy costs. As a result, 

investigations of wastewater treatment processes with lower oxygen requirements are increasing 

(Arnaldos et al., 2014). Another large cost of wastewater operations are for chemicals, such as 

those used for phosphorus removal and alkalinity consumption, resulting in the need for research 

on optimization of chemical use in treatment plants. 

One type of wastewater treatment process that has been shown to have low aeration and 

chemical requirements is simultaneous nitrification denitrification (SND), which can be carried 

out in an oxidation ditch. An oxidation ditch is a race track type reactor that promotes the 

occurrence biological conversion of reactive nitrogen to nitrogen gas (N2) and additionally can 

be configured to provide enhanced biological phosphorus removal (EBPR).  SND is a biological 

process for nitrogen removal where nitrification and denitrification occur at the same time within 

the same reactor. Many theories exist as to the mechanisms that allow SND to occur, but the 

literature is inconclusive as to whether the presence of different zones within the floc or within 

the reactor itself or a combination of the two are responsible for SND. Advantages of SND 

include efficient (80-96%) nitrogen removal, with significant reductions in energy, chemical, 

equipment and spatial requirements. Specifically, oxygen requirements are reduced and 

dedicated aerobic/anoxic zones, internal recirculation and supplemental carbon and alkalinity are 

not required. Despite these advantages, widespread use of SND is limited because of a lack of 

understanding of SND kinetics as well as interactions between factors affecting SND 

performance (Jimenez et al, 2010).   
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The Falkenburg AWWTP in Hillsborough County, Florida uses oxidation ditches 

preceded by anaerobic selectors for treatment of domestic and a small fraction of industrial 

wastewater. Total phosphorous (TP) is removed using a combination of EBPR and aluminum 

sulfate (alum) coagulation.  The average influent flow rate is 9.27 million gallons per day 

(MGD), with a permitted annual average daily flow rate of 12.0 MGD. The plant’s NPDES 

permit requires the removal of carbonaceous Biochemical Oxygen Demand (cBOD5), TSS, total 

nitrogen (TN) and TP to levels of 5, 5, 3, and 1 mg/L (annual averages), respectively.  

1.2 Research Objectives 

Although the Falkenburg AWWTP continually meets and exceeds its permit 

requirements, improvements in process control strategies have the potential to improve energy 

efficiency, as well as decrease chemical use, sludge production, GHG emissions and costs.  In 

addition, there is a limited understanding of the mechanisms behind SND and EBPR in SND 

systems. Therefore, the overall goal of this research was to investigate mechanisms of nitrogen 

and phosphorus removal at the Falkenburg AWWTP in Hillsborough County, Florida. This was 

achieved through the following: 

 Bench scale SND studies carried out at varying temperatures. The experimental results at 

each temperature were compared and then compared to results from full plant nitrogen 

results. 

 Investigation of fate of phosphorus in the Falkenburg AWWTP by carrying out sampling 

campaigns. The results were combined with information on alum dosing and sludge 

wasting to determine the overall fate of phosphorus in the system and make additional 

recommendations regarding alum addition. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter focuses on biological nitrogen removal in SND systems and combined 

EBPR and chemical phosphorous removal in wastewater treatment.  

2.1 Nitrogen Removal 

2.1.1 Nitrification 

Nitrification is the biological oxidation of ammonia (NH4
+) to nitrite (NO2

-) and then to 

nitrate (NO3
-) by autotrophic nitrifying prokaryotes that use oxygen as a terminal electron 

acceptor through a two- step process (Figure 2.1). The first step is nitritation, which is carried out 

by ammonia oxidizing bacteria (AOB) and ammonia-oxidizing archaea (Eq. 1):  

2NH4
+ + 3O2  2NO2

- + 4H+ + 2H2O       [1] 

The second step is the oxidation of nitrite to nitrate, which is carried out by nitrite oxidizing 

bacteria (NOB) (Eq. 2):  

2NO2
- + O2  2NO3

-          [2] 

The overall reaction, if biosynthesis is included, can be shown as (Ergas and Aponte-Morales, 

2013): 

NH4
+ + 1.86 O2 + 0.098 CO2  0.0196C5H7O2N + 0.094H2O + 1.92 H2CO3 + 0.98NO3

- 1.98H+  

[3] 
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Figure 2.1 Nitrification and Denitrification 

2.1.2 Nitrification Growth Kinetics  

The rate of nitrification depends on the DO concentration, pH, temperature and the 

presence of metals and other toxic compounds. To achieve nitrification in WWTPs, it is common 

to operate the biological process at bulk DO levels above 2.0 mg/L. The system costs are 

increased and their energy requirements tend to increase with increasing aeration rates so the 

investigation of the ability of nitrifying communities to carry out nitrification at low DO 

concentrations is of great importance (Arnaldos et al., 2014). The optimum pH for nitrification is 

between 7.2 and 9.0 and below a pH of 6.8 the rates significantly decline (Ergas and Aponte-

Morales, 2013; Metcalf & Eddy, 2014). Additionally, alkalinity is destroyed at a rate of 7.07 

mg/L for every NH4
+-N oxidized (Eq. 3). Reaction rates increase with increasing temperature 

until a maximum rate is reached (Rabionowitz, 2004).  Therefore, a longer SRT will be 

necessary for nitrification at low temperatures (Ergas and Aponte- Morales, 2013). At 

temperatures greater than 25° C, the rate controlling factor isn’t temperature but the conversion 

of nitrite to nitrate.  Between 30 and 35° C, nitrification will not fail, but nitrite accumulation 

will become controlling (Rabinowitz, 2004).   
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The Hoff-Arrhenius equation (Metcalf and Eddy, 2014) describes the variations of rate with 

temperatures where: 

k = Ae-μ/RT           [4] 

k = reaction rate coefficient, d-1 

A= pre-exponential constant for the reaction, d-1 

μ = temperature coefficient, J/mol 

R= ideal gas constant, 8.314 J/mol*K 

T= absolute temperature, K 

 

The presence of toxic compounds, such as amines, proteins, tannins, phenolic 

compounds, alcohols, cyanates, ether, carbamates and solvents can inhibit nitrification (Ergas 

and Aponte-Morales, 2013). Complete inhibition of nitrification occurs at 0.25 mg/L nickel, 0.25 

mg/L chromium and 0.10 mg/L copper. In addition, nitrification is inhibited by un-ionized 

ammonia (Metcalf & Eddy, 2014).  

2.1.3 Denitrification 

Denitrification is the biological reduction of nitrate to nitrogen gas under anoxic 

conditions (Metcalf & Eddy, 2014; Ergas and Aponte-Morales, 2013; Critteneden and Trussel, 

2005) (Figure 2.1). When DO concentrations are below 0.5 mg/L and NO3
- is present, 

denitrifying bacteria will couple oxidation of organic carbon compounds to CO2 with the 

reduction of NO3
- to N2 gas. At higher DO concentrations, denitrifiers utilize more 

thermodynamically favorable O2 as an electron acceptor, which inhibits denitrification (Ergas 

and Aponte-Morales, 2013).  

The overall denitrification reaction can be shown as: 

NO3
- →NO2

- →NO→N2O→N2         [5] 

The stoichiometry depends on the electron donor, but with organic carbon from 

wastewater, the overall reaction can be shown as (Ergas and Aponte-Morales, 2013):  
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0.02C10H19O3N +0.13429NO3
- + 0.13429 H+  0.01429C5H7O2N + 0.06N2 + 0.10857CO2 + 

0.15714H2O + 0.02HCO3
-           [6] 

Denitrifying bacteria are facultative bacteria capable of using nitrite or nitrate as terminal 

electron acceptors for respiration under anoxic conditions (Ergas and Aponte-Morales, 2013). 

Denitrifying bacteria will use either the biodegradable soluble chemical oxygen demand (COD) 

in the influent wastewater, the COD produced during endogenous decay or an exogenous source, 

such as methanol, acetate, ethanol, elemental sulfur or hydrogen as the electron donor (Metcalf 

& Eddy, 2014). Low concentrations of electron donors, high DO, pH outside the range of 7-8 

lead to an accumulation of NO2
- and N2O (Ergas and Aponte-Morales, 2013).  

2.1.4 Nitrite Shunt 

Nitrite Shunt (or Shortcut Nitrogen Removal), is a nitrogen removal process that involves 

the autotrophic oxidation of ammonium to nitrite and the heterotrophic reduction of nitrite to 

nitrogen gas.  If nitrification stops at nitrite, skipping the conversion of nitrite to nitrate, then 

denitritation can occur (Jimenez et al, 2013; Ju et al., 2007), as shown in Figure 2.2.  Advantages 

of nitrite shunt include 25% reduction in oxygen demand (which saves energy), 40% reduction in 

carbon demand and 40% reduction in biomass production (which reduces sludge disposal costs) 

in comparison to conventional nitrification/denitrification (Jimenez et al, 2014 and AECOM, 

2012).  Disadvantages include a lack of complete understanding of the underlying mechanisms 

and proper design, control and operational guidelines. Low DO has been shown to suppress NOB 

while high DO tends to favor AOB over NOB in studies of mainstream nitrite shunt systems 

(Jimenez et al, 2013). 
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Figure 2.2 Nitritation and Denitritation 

2.1.5 Simultaneous Nitrification Denitrification  

SND is a biological process for nitrogen removal where nitrification and denitrification 

occur at the same time within the same reactor (Jimenez et al., 2010). Advantages and 

disadvantages of SND are listed in Tables 2.1 and 2.2.  The literature is inconclusive as to the 

mechanisms of SND; however, several theories have been proposed:  

 Anoxic micro-environments, or the presence of microscopic anoxic and aerobic zones 

within the sludge flocs caused by DO consumption on the outside of the floc (Figure 2.3; 

Kaempfer et al., 2000; Satoh et al., 2003; Stensel, 2001; Pochana and Keller, 1999);  

 Aerobic denitrification (Zhao et al., 1999; Hippen et al., 1997); 

 Shortcut nitrogen removal (Figure 2.2; Villaberde et al, 2000; Yoo et al, 1997);  

 The macro-environment, or presence of aerobic and anoxic zones within the reactor;  

 The presence of novel microorganisms (Daigger and Littleton, 2000).   
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Figure 2.3 Conceptual Model of SND 

 

A number of factors, including the concentration of DO, COD, TN, hydraulic residence 

time (HRT) and solids residence time (SRT), influence nitrifiers but DO is one of the most 

important (Puznava et al, 2000).  Rittman et al. (1985) suggested that SND occurs in a micro-

environment with the appropriate carbon supply, DO concentrations and floc size. Barnard et al. 

(2004) found that while SND is the result of many factors, the main factor is the DO gradient 

within the floc. Puznava et al. (2000) stated that the main physical explanation for SND is the 

occurrence of SND within microbial flocs as a result of oxygen diffusion. The authors found 

through investigation of aeration strategies at treatment plants that nitrifying organisms arrange 

themselves in the outer layer of the floc where oxygen is available.  As long as the floc is not 

broken up by aeration, denitrification will occur in anoxic zones in the floc.  If this theory were 

true, there would not be enough of a carbon source to promote denitrification in the anoxic 

environment in the inner part of the floc, leading the authors to believe that a combination of 

both zones within the floc and zones within the reactor cause SND to occur. With aeration, the 

floc is able to utilize some of the carbon from the outer environment and thus is able to promote 

denitrification within the floc (Barnard et al., 2004).  

Pochana and Keller (1999) proposed that an increase in readily biodegradable COD 

(rbCOD) increased SND activity and that increases in DO caused a decrease in SND activity. 

Additionally, Pochana and Keller (1999) and Pochana et al (1999) found that with a decrease in 
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floc size came a decrease in nitrogen removal, as the flocs were unable to withstand the sheering, 

eliminating the different anoxic and aerobic zones.  

In terms of novel microorganisms being responsible, two theories exist. The first is that 

the organisms responsible for denitrification within the anoxic zone are able to continue to 

reduce nitrogen after oxygen levels increase for an undetermined amount of time (Kugleman et 

al., 1991). The second is that microorganisms responsible for denitrification have a greater 

physiological variety than originally thought. Some of these denitrifying microorganisms could 

be autotrophic, which would reduce their rbCOD requirements (Tonkovic, 1998; Drysdale et al, 

1999; Littleton and Daigger, 2002; Helmer and Kunst, 1998).  

While many authors argue that different zones within the floc are responsible for SND, 

others argue that SND can be achieved within the same reactor with temporally separated aerobic 

and anoxic zones that are created by cyclic aeration (Alleman and Irvine, 1980; Randall et al., 

1992; Sedlak, 1991; Silverstein and Schroder, 1983). In an oxidation ditch, the spatial separation 

of anoxic and aerobic zones within the ditch are created by adjusting aeration (Liu et al., 2010). 

The presence of a macroscopic anoxic and aerobic zones within the reactor are created by 

aerobic zones forming near the aerators and anoxic zones forming away from the aerators 

(Kaempfer et al., 2000; Satoh et al., 2003; Stensel, 2001). Ju et al. (2007) concluded that cyclic 

aeration (one hour at 0.8 mg/L, one hour at 0.2 mg/L) was better than constant aeration to avoid 

bulking along with shortening the required system SRT.  Nitrogen removal during cyclic aeration 

resulted in more available nitrate and nitrite for denitrification. In these lab studies, nitrite shunt 

was observed in the low DO systems and results indicated that nitrite shunt likely took place 

because of the disrupted nitrification at low DOs. These lab studies were consistent with 

observations at full-scale wastewater treatment systems (Ju et al., 2007).  
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Holman and Wareham (2004) investigated the microbiological mechanisms involved in 

SND processes using bench scale sequencing batch reactor (SBR) systems. They found that the 

jumps in DO concentrations could be directly related to changes in COD and ammonia 

concentrations, which could cause an increase in DO. At low DO levels, the decrease in a DO 

concentration was believed to be due to microbial activity causing the DO to be utilized though 

COD and ammonia oxidation as quickly as it was supplied. The second increase in DO 

concentration was believed to have occurred when the COD was depleted. DO was also observed 

an increase when the ammonia concentrations were depleted. The authors stated that the lack of 

nitrate detected could indicate that the oxidation of nitrite to nitrate may not exist in SND or that 

nitrite could be reduced to nitrogen gas directly from nitrite, thus skipping the oxidation to nitrate 

and reduction to nitrite. The experiments concluded that at DO concentrations over 1.0 mg/L 

SND becomes inhibited. While the literature suggest that SND is inhibited at concentrations over 

1.0 mg/L, the experimental results indicate that aerobic denitrifiers are likely able to continue to 

aerobically reduce nitrogen for a limited amount of time once the DO concentration is increased 

to about 1.0 mg/L. The authors concluded that SND is suppressed at high air flow rates further 

backing up the idea that SND is based on the mechanism of different zones within the floc. 

                                             Table 2.1 Advantages of SND 

Advantages Source 

Achieves removal of 80-96% total nitrogen Jimenez et al., 2010; Zeng, 2003; Fuerhacker, 

1999 

Eliminates the need to build separate tanks Jimenez et al., 2010; Ergas and Aponte-

Morales, 2013; Ju et al., 2007; Yoo, 1997 

Produce less nitrous oxide emissions than conventional 

nitrogen removal processes 

Jimenez et al., 2010 

Simpler process design with a smaller total tank size Kaempfer et al., 2000; Stensel, 2001; Ju et al., 

2007 
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Table 2.1 (Continued) 

Maintains a relatively neutral pH in the bioreactor without 

the addition of an external acid or base because alkalinity 

consumed by nitrification is partially recovered by 

alkalinity production in denitrification. 

Ju et al., 2007; Grady et al., 1999; Ju et al., 

2007 

 

Table 2.2 Disadvantages of SND 

Disadvantages Source 

Difficult to control Jimenez et al., 2010 

Requires an understanding of the kinetics and the 

interaction of the factors affecting its performance 

Jimenez et al., 2010 

Challenges in design, control and operation Grady et al., 1999; Jenkins et al., 2003; Martins 

et al., 2004 

More susceptible to sludge bulking, primarily because of 

the excessive growth of filamentous bacteria 

Grady et al., 1999; Jenkins et al., 2003; Martins 

et al., 2004 

Relies on achieving a balance between nitrification and 

denitrification 

Grady et al., 1999; Jenkins et al., 2003; Martins 

et al., 2004 

Long SRT Ergas and Aponte-Morales, 2013 

Strict control over DO concentration Ergas and Aponte-Morales, 2013 

 

2.1.6 Oxidation Ditch  

An oxidation ditch is a term used to describe a loop shaped reactor with a continuous 

flow where all reactions occur at the same time in the same reactor (Rittmann and Langeland, 

1985). It is a modified activated sludge system that utilizes a long SRT. As of January 2016, 

there were 58 oxidation ditches in use in Florida at domestic wastewater facilities (FDEP, 2016). 

An oxidation ditch is an economical and efficient technique for biological wastewater treatment 

(Yongzhen et al., 2007) that can achieve high removal of nutrients with low operational and 

energy requirements and operation and maintenance costs. Oxidation ditches have an added 

measure of reliability and performance due to the constant water level, continuous discharge, 

long HRT, and mixing which minimizes shock loading and surges, and long SRT’s, which 

produce less sludge (EPA, 2002). Oxidation ditches are able to promote SND due to the 

establishment of alternating aerobic and anoxic zones, which are created by the distance and time 
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between aerators (Rittmann and Langeland, 1985). They have also been shown to have the 

ability to remove phosphorus without the high consumption of alkalinity (Yongzhen et al., 2007). 

Significant disadvantages of oxidation ditches include: high suspended solids 

concentrations, the large footprint required (EPA, 2000) and the absence of studies on how to 

create a feasible environment for SND to occur (Liu et al., 2010).  A schematic of an oxidation 

ditch is shown in Figure 2.4. 

 

Figure 2.4 Schematic of an Oxidation Ditch 

2.2 Phosphorus Removal 

Phosphorus in municipal wastewater is often found in the form of orthophosphate, 

polyphosphate and organic phosphorus (Moore, 2009) (Figure 2.5). Orthophosphate can be 

soluble and can be precipitated using coagulants while polyphosphates cannot. 

 

 

Figure 2.5 Phosphorus Species in Wastewater 

Typical total phosphorus concentrations in municipal wastewater influent range from 6-8 

mg-P/L, with concentrations of orthophosphate between 3-4 mg/L, polyphosphate of 2-3 mg/L 
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and organic phosphate of around 1 mg/L (WEF and ASCE, 2005).  Phosphorus is commonly 

removed by a combination of both chemical and biological removal processes.  

2.2.1 Enhanced Biological Phosphorus Removal 

EBPR systems are constructed with an anaerobic zone followed be an aerobic and/or 

anoxic zone, as shown in Figure 2.7. These systems favor the growth of organisms that have the 

ability to accumulate polyphosphates in the aerobic zone, these are known as polyphosphate 

accumulating organisms (PAO) (Goel and Motlagh, 2013). In the anaerobic zone, PAOs 

assimilate fermentation products, such as rbCOD in the form of volatile fatty acids (VFA) 

(Metcalf and Eddy, 2014). PAOs have an advantage over other heterotrophic bacteria because 

other heterotrophs need an electron donor, such as oxygen, (Figure 2.6), which is not present in a 

reactor designed to put PAOs at an advantage over other organisms, like an anaerobic selector 

(Figure 2.7). In the aerobic zone, energy is produced in the oxidation stage, which allows for 

more growth and consumption of more phosphorous (Metcalf and Eddy, 2014; Jimenez et al., 

2014). 

To help with this process, primary clarifiers can act as a fermenter to produce many more 

VFAs on site (Metcalf and Eddy, 2014). Sewage contains a high proportion of VFAs, which are 

synthesized by fermentation under anaerobic conditions. These conditions may exist during 

sewage transport to the treatment plant (Arun et al., 1988). In flat topography and warmer 

climates, such as Florida, primary clarifiers are not frequently used, as the sewage has a long 

HRT in the transport process, allowing fermentation to occur before reaching the treatment plant. 

Phosphorous in the influent stream is incorporated into cell biomass, which is wasted during 

sludge wasting (Metcalf & Eddy, 2014). The phosphorus removed through treatment is 
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incorporated into sludge, which is then subject to a variety of different treatments, such as those 

which allow reuse.  

 

Figure 2.6 Fate of rbCOD and Phosphorus in EBPR  

 

Figure 2.7 EBPR Typical Reactor Configuration  

 

EBPR can be incorporated in a reactor that promotes the SND process, such as an 

oxidation ditch, by encouraging denitrification mediated by PAOs (Zeng et al., 2003; Meyer et 

al, 2005). EBPR occurs in an oxidation ditch by using the anaerobic zones (areas away from the 

aerators) as a fermentation zone for the production of VFAs and PAOs. In this area, there will 

also be a small release of phosphorus that accompanies fermentation. To improve EBPR in a 

configuration with an oxidation ditch, an anaerobic reactor may be added prior to the oxidation 

ditch for additional phosphorus removal (Figure 2.8). Yongzhen et al. (2008) achieved successful 

removal of nitrogen and phosphorus in a pilot scale oxidation ditch and concluded that an 

oxidation ditch is suitable to remove both. Ju et al. (2007) found through bench scale bioreactor 

experiments with cyclically aerated mixed liquor that phosphate concentrations increased during 



 17  

 

the low DO periods and decreased in high DO periods (similar to that of a separate basin tank). 

The authors concluded that cyclically aerated reactors had a higher phosphate removal than 

steady aeration, which supports the feasibility of enriching PAOs in a low DO SND system. The 

authors also completed plant case studies at a treatment plant with an oxidation ditch where they 

found that the plants showed similar phosphorus removal as the bench scale bioreactors. Typical 

influent TP concentrations were over 7.0 mg-P/L and effluent concentrations were 1.0 mg-P/L. 

Littleton et al. (2007) demonstrated through a theoretical model of an oxidation ditch that 

heterotrophs and PAOs were controlled by oxygen input, but that it was possible to achieve 

phosphorous removal in the same basin as biological nitrogen removal. Several studies have 

shown that a lower phosphorus removal rate is found at low DO levels compared to aerobic 

zones, but nitrate can be used as an electron acceptor for denitrifying PAOs, allowing 

phosphorus removal to occur in an SND reactor. Jimenez et al. (2013) investigated this theory at 

the Southwest WRF in St. Petersburg, FL (a simple A/O process configuration with no inter-

reactor mixed liquor recycle, only return activated sludge (RAS) recycle) and found that the 

plant achieved effluent phosphate concentrations of approximately 0.1 mg-P/L, which 

contradicts the belief that a DO concentration of 1.5 mg/L is necessary for EPBR. Additionally, 

the authors found that phosphate uptake did not occur with nitrite as an electron acceptor.  

 

Figure 2.8 Common EBPR Reactor Configuration with an Oxidation Ditch 
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Activated sludge facilities can achieve greater than 90% phosphorus removal when the 

anaerobic tanks are configured before aerobic tanks.  In this case, an effluent concentration of 

about 1.0 mg-P/L can be achieved. Improvement in phosphorus removal occurs because each 

reaction is optimized separately rather than all reactions occur in the oxidation ditch (Yeoman et 

al., 1988).  

Operational considerations for EBPR include (Goel and Motlagh, 2013; Jeyanayagam, 

2005):  

 Maintain DO levels of 0.5-1.0 mg/L O2 at the end of the aerobic zone  

 Influent BOD: P ratio of at least 25:1  

 Monitoring recycled phosphorous loading, as the sludge dewatering return flows can 

contain a high concentration of phosphorous, which increases the influent load to the 

WWTP and reduces the BOD:P ratio. With a decreased ratio, the biological process will 

be overwhelmed leading to insufficient VFA concentration in the anaerobic phase.  

 If PAOs in the anaerobic tank release stored phosphates too soon and fail to uptake the 

available VFA’s, secondary phosphorous release occurs in the clarifiers.  

2.2.2 Chemical Phosphorous Removal 

The most common way to achieve phosphorous effluent concentrations below 1.0 mg-

P/L is by the chemical addition of metal salts (i.e. alum or ferric chloride) (Metcalf and Eddy, 

2014). Chemical addition can be performed using four different strategies:  

 Pre-precipitation, in which coagulants are added to the raw sewage. This process 

produces more sludge, which can be good for the production of biogas but adds to the 

amount of sludge handling needed; 



 19  

 

  Co-precipitation, in which coagulants are added during or before/after activated sludge 

treatment. BOD, heavy metals and viruses are all removed in this process; however, the 

sludge volume increases and the aeration causes floc shearing and poor settlability;  

 Post-precipitation, in which coagulants are added as a “polishing stage” after secondary 

sedimentation. Unlike the others, post-precipitation does not increase the amount of 

sludge produced, results in excellent effluent quality and has lower chemical 

requirements (Karlsson, 1985; Metsch et al., 1985); 

 Two- Point Chemical Addition, which is applied at both the primary clarifier feed and 

before the secondary clarifier. This achieves the most efficient use of chemicals for 

phosphorous precipitation (Metcalf and Eddy, 2014).  

Operations and maintenance costs are higher for chemical phosphorous removal than 

EBPR. The increase in chemical addition will result in the increase in sludge production.  At 

treatment plants using alum, an increase in sludge production of up to ~26% has been reported 

(Boyko & Rupke, 1976).  

2.2.3 Chemical Phosphorous Removal using Alum 

Chemical processes for phosphate removal commonly rely on the formation of soluble 

phosphate that through precipitation by salts (such as alum) can be removed through solids 

separation processes (Sedlak, 1991) (Eq. 7). Yang et al. (2006) found through a serious of batch 

experiments designed to identify the characteristics of alum sludge for phosphorus adsorption, 

that alum has the ability for phosphorus removal, though there are many factors that affect the 

adsorption rate and capacity. Their results showed that alum has a higher phosphate adsorption 

capacity in an acid pH region than in an alkaline pH region.  

Al2 (SO4 )3 
.14H2O+ 2H3PO4  2AlPO4 + 3H2SO4 + 18H2O    [7] 
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The use of alum is safer, easier to handle and less corrosive than ferric chloride. In 

addition, alum is the most efficient chemical to use because phosphorous is not released during 

storage, recycling, the point of addition is flexible, low sludge volumes are produced, no pH 

adjustments are necessary, and it helps improve clarifier performance. Yeoman et al. (1988) 

found that oxidation ditches used in conjunction with chemical treatment, can also remove 

phosphorous, producing effluent phosphorous concentrations of <1.0 mg-P/L.  

The required alum dose depends on influent concentrations of soluble phosphate, effluent 

requirements, pH, total organic carbon (TOC), hardness, temperature, flow rate, the point of 

addition, loading rates, frequency of dosing, engineered systems and SRT (a longer SRT does 

not allow sludge to absorb phosphorous as well and is more difficult to dewater) (Yeoman et al., 

1988). Longer SRT leads to the cell mass no longer having the ability to uptake phosphorus 

causing the growth rate to gradually decline and continue to reduce until cell death occurs. pH is 

important for efficient removal using alum with the most efficient pH being 5-7 (Jeyanayagam, 

2005).  

2.2.4 Combined Chemical Biological Phosphorus Removal 

 EBPR can be combined with chemical phosphorus removal to achieve stringent discharge 

limits (Goel and Motlagh, 2013). Chemical addition in a combined removal process is often used 

as a polishing step in secondary treatment. This allows EBPR to provide the substantial 

phosphorus removal and cost savings, while the chemical addition to help meet regulations.  

2.3 Process Control for Biological Nutrient Removal 

Variability in wastewater treatment comes from variations in influent wastewater flow 

rates and characteristics, processes and that caused be mechanical breakdown and operational 
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failures. The variability in wastewater treatment depends on factors such as time of day, season, 

size and characterization of population and the collection system (WSBC, 1986).  

2.3.1 Wasting Control 

All processes within the treatment process are interrelated and one adjustment will lead to 

a change in other variables. Adjustments in RAS rate and wasted activated sludge (WAS) 

wasting rate will produce changes in aeration requirements, sludge settleability, SRT, F/M ratio 

and the concentrations of nutrients (WSBC, 1986).  

It is important to note if sludge aggregates well, settles uniformly, leaves a clear 

supernatant, floats or remains settled. All of these factors will help determine sludge age. Rising 

sludge/ splitting sludge is caused by endogenous decay of organic matter in the biomass 

accompanied by gas release. Additionally, settling tests can be used to decide if wasting needs to 

be increased (WEF, ASCE, EWRI, 2006). Lack of settleability may also indicate sludge bulking 

conditions. Sludge bulking is caused by the growth of filamentous bacteria, which inhibits 

settling. This is caused by either a low DO concentration, a low F/M ratio or nutrient deficiency. 

The sludge volume index (SVI) is determined by MLSS settling test results and is used as a 

measure of sludge settleability (WEF, ASCE, EWRI, 2006). 

Two types of wasting exist: controlled wasting and uncontrolled wasting (self wasting). 

Controlled wasting uses a control method to determine how much WAS to purposely waste 

based on settleability tests, centrifuging and gravimeter testing. It is important to calculate how 

much to waste from the system using F/M ratio and SRT. Uncontrolled wasting occurs when the 

amount of biomass exceeds the solids loading rates of the unit processes and results in solids 

washout of clarifiers (Pellegrin, 2013). F/M ratio is the amount of food available to VSS. A high 
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ratio indicates young sludge meaning the wasting rate should be reduced and a low ratio 

indicates old sludge meaning the wasting rate must be increased.  

Frequently, wasting is calculated based on a targeted mixed liquor suspended solids 

(MLSS) concentration and the amount of space in the WAS storage tank. Operators are 

beginning to move away from this technique as wasting based on MLSS concentration can cause 

unnecessarily high SRTs and too high of a concentration of MLSS will increase solids in the 

system and this leads to over loading of the clarifiers, which has a negative effect on sludge 

quality. If the SRT is too low, bacteria will be washed out of the system and ammonia 

concentrations will increase in the effluent. Thus, wasting should be based on SRT, not MLSS 

concentrations (WEF, 2002).  

2.3.2 Observation and Nutrient Loading 

 By simply observing the treatment processes, observations can be made which can 

provide information on how the process is doing. Observation of surface turbulence and foam in 

aeration tanks, surface scum, floc, clouds and sludge clumps in the final clarifier can lead to 

crucial information.  

Microscopic observations, using a microscope, can be helpful in looking for key floc 

observations. The floc shape and density, filament presence/ abundance, protozoa/ metazoan 

abundance and activity, and quality of liquid around floc are important factors. A round floc 

shape indicates immature floc particle, an irregular floc shape indicates a mature floc, and an 

oval indicates a congealed floc, which means a presence of metals and a dispersed floc (which is 

irregular in shape) indicates mechanical sheering.  

Observing foam can indicate sludge age, nutrient deficiency, conditions and bacterial 

processes. A white/ light loose foam indicates surfactants or young sludge age, a white heavy 
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foam indicates nutrient deficiency, a heavy chocolate brown foam indicates a presence of 

Nocardia, and a dark brown/ black foams indicates anaerobic conditions (WEF, 2002). 

2.3.3 Aeration Control 

The respiration rate (RR) can be used to measure the microbiological activity of 

microorganisms in a process and can help to determine if treatment is complete once the oxygen 

uptake rate (OUR) is determined. A high RR indicates an under oxidized sludge, organic 

overloading, too short of an aeration time, undertreated waste or a high F/M ratio. It will lead to 

sludge that will settle slowly and not compact well. The effluent will be high in TSS, BOD and 

NH4
+ and will indicate young sludge or under oxidized conditions. A low RR indicates an over 

oxidized sludge, completely treated waste or low F/M ratio. The sludge will settle and compact 

rapidly and pin floc will be left behind. This means that the plant is producing an effluent above 

optimum BOD and TSS and has old sludge or over oxidized conditions. A very low or zero RR 

indicates an inhibitory or toxic influent. 

The oxidation reduction potential (ORP) measures the reduced versus oxidized species 

present, shown in mV. Aerobic conditions (+50- +250 mV) indicate the presence of free DO or a 

higher presence of oxidizers than reducers and the oxidation of carbon compounds and 

conversion of ammonia to nitrate. Anoxic conditions (+50- -100 mV) indicate the presence of 

nitrate but no free DO (this is a good range for denitrification). Anaerobic conditions indicate no 

nitrate or free DO present (-100 to -250mV (indicates volatile acid production) -175- -350 mV 

(indicates methane gas production)). These conditions are is very important for biological 

phosphorus removal (WEF, ASCE, EWRI, 2006).   
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CHAPTER 3: MATERIALS AND METHODS 
 

This chapter describes the wastewater treatment plant that was the site of this research, 

materials and methods used in each experiment. 

3.1 Site Description 

The Falkenburg AWWTP (Fig. 3.1), is a biological nutrient removal (BNR) facility 

located on N. Falkenburg Road, in Tampa, Florida. The average influent flow rate is 9.27 MGD, 

with a permitted annual average daily flow rate of 12.0 MGD. The plant receives domestic 

wastewater and a small fraction of industrial wastewater. The plant’s National NPDES permit 

requires the removal of cBOD5, TSS, TN and TP to levels of 5, 5, 3, and 1 mg/L (annual 

averages), respectively. The plant must also meet Florida public access reuse standards.  

 

Figure 3.1 Layout of the Falkenburg AWWTP. (* Indicates sampling locations for bioreactor 

experiments) 

 

In the liquid train, wastewater first passes through screening and grit removal in the head 

works and then travels through an anaerobic selector (used to promote EBPR) and then to 

Carrousel® oxidation ditches for BOD removal, nitrification and denitrification. Aeration in the 
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oxidation ditches is provided by mechanical aerators with variable frequency drives (VFDs) that 

are controlled manually. Mixed liquor then is divided between circular secondary clarifiers, 

where alum (Al2(SO4)3) is dosed from spitter boxes for chemical phosphorus removal. The 

clarified effluent travels through deep bed filters and ultra violet (UV) disinfection before the 

effluent is used for reclaimed water or discharged to the Palm River/ Hillsborough River Bypass 

Canal. Solids from the clarifiers are returned to the anaerobic selector as screened influent RAS, 

or it is wasted and sent to a holding tank before a screw press is used for dewatering and disposal 

to a landfill. The reject water from sludge dewatering at the screw press is returned to the 

influent for treatment. Dimensions of the anaerobic basins, oxidation ditches and clarifiers are 

provided in Table 3.1 and were obtained from the Falkenburg Operations and Maintenance (O & 

M) Manual.  

Table 3.1 Physical WWTP Data (Falkenburg Operations and Maintenance Manual) 

Tank Dimensions Number of 

Tanks 

Total Volume 

(gallons) 
Anaerobic Length: 

48 ft 

Width: 

51 ft 

Depth: 

16.6 ft 

4 1,215,800 

Oxidation 

Ditch 

Area: 

15,890 

ft2 

Width of 

Pass: 30 

ft 

Depth: 15 

ft 

4 7,130,000 

Clarifier Diameter: 100 ft Depth: 

14 ft 

5 4,112,300 

 

3.2 Bench Scale Bioreactor Tests 

3.2.1 Experimental Set Up 

To mimic an oxidation ditch at Falkenburg AWWTP, bench scale bioreactor experiments 

were set up in 4-liter glass beakers in a 22° C constant temperature room in the Environmental 

Engineering laboratories at University of South Florida (USF) (Figures 3.2 and 3.3).  

Experiments at 29.5 C were maintained using a water bath.  Influent wastewater and RAS for 

these experiments were collected from the Falkenburg AWWTP at sampling locations noted by 
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an asterisk (*) in Figure 3.1.  Bioreactors were constantly mixed using magnetic stirrers (Nuova 

II Stir Plate, SP18425, Thermo Scientific, Waltham, MA) or an overhead mixer (Arrow 

Engineering 1750, Hillside, NJ) at a speed where complete mixing was observed without 

creating a vortex. Beakers were aerated using two aquarium pumps (Whisper 10 Air Pump, 

Tetra, Blacksburg, VA) and diffusers to maintain a target DO concentration based on 

measurements of DO at the facility.  DO was controlled manually.  Conditions for each 

experiment are shown in Table 3.2. The procedures used were based on methods described by 

Jimenez et al. (2014). 

 

Figure 3.2 Typical Nitrification and Denitrification Bench Scale Bioreactor Set Up 

 

Figure 3.3 SND Bench Scale Bioreactor Set Up 
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Table 3.2 Specifics of Each Bench Scale Bioreactor Test 

Experiment Influent 

(L) 

RAS 

(L) 

DO (mg/L 

O2) 

Temp. 

(° C) 

Ping 

Pong 

Balls 

Added? 

Aeration Mixing Total 

duration of 

Experiment 

(hrs) 

Nitrification 2 2 1.5- 5.0  22 No Yes Yes 4 

Denitrification 0 3 < 0.5 22 Yes No Yes 6 

SND 2 2 Alternated 

(see Table 

3.5)  

22, 

29.5 

Yes Yes Yes 16 

 

3.2.2 Experimental Procedures  

During the bench-scale nitrification experiment, ammonium chloride was dosed into the 

reactor to achieve an initial NH4
+-N concentration of 25 mg/L.  Samples (25mL) were collected 

in duplicate at the start of the experiment (T=0h) for analysis of TSS, VSS, ammonium, nitrate, 

nitrite and soluble COD (sCOD). Subsequent samples (25mL) were collected every 20 minutes 

for the first two hours and every 40 minutes for the next two hours.  DO and pH were measured 

hourly throughout the experiment. A final sample (10mL) was collected at the end of the 

experiment (t=16h) to measure TSS and VSS. Sampling specifics are shown in Table 3.3. This 

experiment was a preliminary experiment and a full data set was not collected. 

Table 3.3 Nitrification Test Details 

Hour 0 0.33 0.67 1.0 1.33 1.67 2.0 2.67 3.33 4.0 

Aeration Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Mixing Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Dose Ammonium 

chloride to 

25 mg-N/L 

         

Sample for Cations & Anions 

Measure pH and DO 

 

During the bench-scale denitrification experiment, ping pong balls were added to the top 

of the beaker to limit the oxygen input to the system. Samples (25mL) were collected in 



28 

 

duplicate prior to dosing for analyses of TSS, VSS, COD, nitrate, nitrite, phosphate and 

ammonium. After dosing, samples (25mL) were collected every 30 minutes for the first two 

hours and every hour for the next four hours and analyzed for nitrate, nitrite, ammonium and 

phosphorous. pH and DO were measured hourly throughout the experiment. Sampling specifics 

are shown in Table 3.4.  

Table 3.4 Denitrification Test Details 

Hour 0 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0  

Aeration No No No No No No No No No 

Mixing Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Dose Nitrite to 25 

mg-N /L, 

Nitrate to 5 mg-

N/L 

        

Sample for TSS, VSS, 

COD, Cations, 

Anions 

Cations & Anions TSS, VSS, 

COD, Cations, 

Anions 

Measure pH and DO 

 

During the bench-scale SND experiment, ammonium chloride was dosed into the reactor 

to achieve an initial ammonium concentration of 25 mg NH4
+- N/ L. Aeration was adjusted to 

achieve a DO concentration of approximately 1.0 mg/L. Ping pong balls were placed on top of 

the reactor to reduce the oxygen input into the system. An initial sample was collected and 

analyzed for cations, anions, COD, TSS, VSS and alkalinity. Every hour, pH and DO were 

measured. Every other hour, a sample was taken and analyzed for cations and anions. At hour 

four, the aeration was turned down or off to achieve a target DO concentration of approximately 

0.3 mg/L. At hour eight, the aeration was turned back on to achieve a target DO concentration of 

about 1.0 mg/L and turned back down or off at hour 12.  This experiment was repeated with the 
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beakers in an ISO Temp 220 water bath, which was used to maintain a reactor temperature of 

29.5°C.  Sampling specifics are shown in Table 3.5.  

Table 3.5 SND Test Details 

Hour 0 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0 

Aeration 1.0 (mg/L- 

O2) 

1.0 

(mg/L- 

O2) 

1.0 

(mg/L- 

O2) 

1.0 

(mg/L- 

O2) 

1.0 

(mg/L- 

O2) 

1.0 

(mg/L- 

O2) 

1.0 (mg/L- 

O2) 

0.3 

(mg/L- 

O2) 

0.3 

(mg/L- 

O2) 

Dose Ammonium 

chloride to 

30 mg/L-N 

        

Sample 

for 

Cat, An, 

COD, TSS, 

VSS, 

Alkalinity 

Cations & Anions 

 

 Cations & 

Anions 

 Cations 

& Anions  

Measure DO, pH 

Hour 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 

Aeration 0.3 

(mg/L- 

O2) 

1.0 

(mg/L- 

O2) 

1.0 

(mg/L- 

O2) 

1.0 

(mg/L- 

O2) 

1.0 

(mg/L- 

O2) 

0.3 

(mg/L- 

O2) 

0.3 

(mg/L- 

O2) 

0.3 

(mg/L- 

O2) 

0.3 

(mg/L- 

O2) 

0.3 

(mg/L- 

O2) 

Sample 

for 

 Cations 

& 

Anions 

 Cations 

& 

Anions  

 Cations 

& 

Anions  

 Cations 

& 

Anions  

 Cations 

& 

Anions, 

COD, 

TSS, 

VSS, 

Alkalinity 

Measure DO, pH 

 

3.3 Full-Scale Plant Performance 

Three phosphorous sampling campaigns (October, November and December) were 

carried out and samples were taken at six locations at Falkenburg AWWTP, shown in Figure 3.4. 

Samples were collected in 1-liter acid bath washed containers, transported to the USF 

Environmental Engineering laboratories on ice and analyzed within 2 hours of collection. 

Samples from each location were analyzed for filtered and unfiltered total phosphorus, 

orthophosphate and polyphosphates, filtered and unfiltered total nitrogen, soluble, total and 
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rbCOD, volatile acids, cations, anions, alkalinity, TSS and VSS.  pH and DO were measured on 

site.  

 

Figure 3.4 Full- Scale Plant Investigation Sampling Locations. (Location 1 includes filtrate and     

location 5 is a clarifier Full- Scale Plant Investigation Sampling grab sample) 

3.4 Analytical Methods 

Samples were collected in 50 mL centrifuge tubes and immediately centrifuged at 8.5 r/ 

min for 10 minutes. Samples were subsequently filtered using 0.45μm HA filter paper and 

refrigerated to prevent sample degradation. Samples were subsequently analyzed for anions 

(NO3
-, NO2

-, PO4
3-) and cations (NH4

+) via Ion Chromatography with chemical suppression of 

eluent conductivities (Dionex, 2001) using a Metrohn 850, Professional Ion Chromatograph 

[Method Detection Limits (mg/L): NH4
+, 0.20; NO3

-, 0.21; NO2
-, 0.01; PO4

3-,0.02]. Total N 

concentrations were measured using Hach TNT plus 827 test kits [Method Detection Limits 

(mg/L): (LR) 1.0, (HR) 5.0] and Total P was measured using Hach TNT plus 845 test kits 

[Method Detection Limits (mg/L): (LR) 0.5, (HR) 1.5, (UHR) 6.0]. VFA concentrations were 

measured by the esterification method using Hach TNT plus 872 test kits [Method Detection 

Limits (mg/L): 50.0]. Results are reported as the equivalent concentration of COD, assuming that 

all VFAs were acetic acid. rbCOD was measured using the method of Mamais et al. (1993). 
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Hydrolyzable Phosphorus was measured using EPA Method 365.3. rbCOD and Hydrolyzable 

Phosphorus methodology can be found in Appendix D. 

All other water quality measurements were performed using Standard Methods (APHA et 

al., 2012): COD (5220B) [Orbeco mid-range (0-1500 mg/L)], TSS (2540-D), and VSS (2540-E). 

pH (4500-H+B) was measured with an Orion 5 Star Meter Probe. DO (4500-O G) was measured 

with a Hach SC1000 Controller. A YSI 556 Handheld Multiparameter Instrument (Yellow 

Springs, OH) was used to measure DO and pH at the treatment plant. Alkalinity (2320 B) 

measurements were performed with a Metrohm Dosimat Plus multipurpose dispensing unit. 

Details of analytical chemistry methods, instruments and max daily loads (MDLs) are listed in 

Appendix B. Standard calibrations were prepared when appropriate and duplicates were analyzed 

for all samples. Propagation of error is shown in Appendix E.   



32 

 

 

 

 

 

 

CHAPTER 4: RESULTS AND DISCUSSION 

 

To investigate SND kinetics, five bench-scale nitrification, five denitrification and four 

SND studies were carried out at 22°C using influent and RAS from the Falkenburg AWWTP.  

Four additional SND tests were carried out at 29.5°C to investigate the effect of seasonal 

temperature changes on SND at the facility.  To characterize the removal of phosphorus at the 

Falkenburg AWWTP, three extensive sampling campaigns were performed at the treatment 

plant. Note that additional trial results not shown in this chapter are shown in Appendix C.  

4.1 Bench Scale Bioreactor Study 

4.1.1 Nitrification Study 

            Results from one of the nitrification studies are shown in Figure 4.1. Approximately 50% 

of ammonia was removed during the four-hour experiment, with a nitrification removal rate of 

6.31 mg-N/L/hour.  Nitrite and nitrate accumulation were observed after t=1hr. Nitrate and nitrite 

formation was slightly lower than ammonia consumption, most likely due to biosynthesis or 

SND. Even at a bulk DO concentration between 3.5 and 5.0, SND could still occur because of 

possible different zones in the floc or reactor (Metcalf and Eddy, 2014).  Four hours was not 

sufficient time for complete nitrification to occur therefore SND experiments were carried out 

for a longer time period.   
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Figure 4.1 Nitrogen Species Concentrations Over t=4 hrs during a Typical Batch Nitrification   

Test. (Initial TSS= 800 mg/L, VSS=600 mg/L, average DO= 3.5 mg-O2/L, Temp = 22°C)  

4.1.2 Denitrification Study 

            Results for the denitrification study are shown in Figure 4.2.  Complete removal of nitrate 

was observed after four hours under anoxic conditions. Nitrite was observed until t= 4hr, but 

complete removal of both nitrate and nitrite was achieved by t=6hr. Denitrification successfully 

occurred at a removal rate of 23.7 mg-NO3
-/L/hour and 3.6 mg-NO2

-/L/hour. COD was produced 

at a rate of 123 mg- COD/L/hour leading to more than a sufficient amount of COD present to 

drive denitrification.  COD production was unexpected in this experiment, but may have been 

due to endogenous decay of MLSS, which can be seen in Fig. 4.3. This allowed for successful 

denitrification to occur (only 81.2 mg-COD/L was needed, leading to an excess of 123 mg-

COD/L).  
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Figure 4.2 Nitrogen Species Concentrations Over t=6 hrs during Typical Batch Denitrification 

Test. (Initial TSS= 1800 mg/L, VSS= 1700 mg/L, average DO= 0.42 mg- O2/L, Temp =22°C) 

 
Figure 4.3 Initial and Final TSS and VSS (A), sCOD (B) and Nitrogen Species (C) 

Concentrations for Typical Batch Denitrification Test 

  

4.1.3 SND Studies at 22°C 

 Multiple SND experiments were carried out at a temperature of 22°C without cyclically 

operating the aeration, but because the small-scale size of the beaker, the formation of different 

zones within the reactor were impossible to create. After failing to achieve SND, aeration was 

cyclically turned up and down to create different aerobic and anoxic periods within the reactor. 

Ju et al. (2007) saw similar results, where SND did not occur without the cyclic aeration.  These 

failed results indicate that it is likely zones within the reactor that allow the occurrence of SND, 

not necessarily zones within the floc.  

Results from one SND trial are shown in Fig. 4.4. TSS, VSS and COD results are shown 

in Figure 4.5.  At the conclusion of SND trial 1 at 22°C, NH4
+ was removed to below detection 
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limits by t=12hr, NO3
- was never completely removed and NO2

- was removed to below detection 

limits. Nitrification was successful, with a slight accumulation of ammonia occurring during the 

first anoxic period, which may have been due to endogenous decay of the MLSS. Complete 

ammonia removal was observed in the second aerobic period. Nitrate accumulation occurred in 

the aerobic period, with removal occurring in the anoxic period and accumulating again in the 

aerobic period to a concentration of 10 mg/L by t=16hr. Denitrification was most likely inhibited 

by a lack of COD, as shown in Figure 4.5.  

 
Figure 4.4 Nitrogen Species Concentrations Over t=16 hrs during Trial 1 Batch SND Test.  

(Initial TSS= 600 mg/L, VSS= 600 mg/L, Temp = 22°). Average DO Concentrations are Shown 

in the Figure. 

 

 

Figure 4.5 Trial 1 Initial and Final Nitrogen (A) and COD (B) Species at 22°C  

TSS and VSS results are shown in Figure 4.6. At a temperature of 22°C, there was no 

change in concentration of TSS and a slight decrease in VSS concentration.  It was not expected 

that TSS concentrations would change significantly during the short period of time of the batch 
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test. A small decrease in VSS could be the result of endogenous decay, which contributed to 

denitrification as discussed previously. Alkalinity results are shown in Figure 4.6 and are 

discussed below.   

  

Figure 4.6 Trial 1 Initial and Final TSS and VSS (A) and Initial and Final Alkalinity (B) at 22°C 

Average concentrations of DO over the length of trial 1 are shown in Figure 4.7. DO 

concentrations were consistent with those mentioned in the experimental methods and were 

fairly easy to maintain during the experiment.  Note that at t= 12 hrs a sharp increase in DO was 

observed, which corresponds with complete ammonia removal (and therefor decreased oxygen 

demand by nitrifying bacteria).  This phenomenon was also observed by Holman and Wareham 

(2004). 

 

Figure 4.7 Trial 1 DO Concentrations vs. Time at 22°C 
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 Results from a second SND trial are shown in Fig. 4.8. TSS, VSS and COD results are 

shown in Figure 4.9. At the conclusion of SND trial 2 at 22°C, NH4
+ was removed to 30 mg/L 

from an initial concentration of 50 mg/L. A high COD during this test likely inhibited 

nitrification due to competition between heterotrophic and nitrifying bacteria for DO. NO3
- 

accumulated in the aerobic period and decreased in the anoxic, indicating that successful 

denitrification occurred. NO2
- stayed below detection limits for the duration of the experiment 

also indicating successful denitrification and no inhibition from a lack of COD (Fig. 4.9). 

 

 
Figure 4.8 Nitrogen Species Concentrations Over t=16 hrs During Trial 2 Batch SND Test.  

(Initial TSS= 900 mg/L, VSS=800 mg/L, Temp = 22°). Average DO Concentrations are Shown 

in the Figure. 

 

 
Figure 4.9 Trial 2 Initial and Final Nitrogen (A) and COD (B) Species at 22°C 

TSS and VSS results are shown in 4.10. The concentrations of TSS and VSS differed 

greatly between trial 1 (Figure 4.3) and trial 2 (Figure 4.10), indicating variations in the 

treatment plant, where more removal occurred in trial 2. Trial 2 had a higher influent TSS and 
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VSS concentration, which lead to less nitrate accumulation occurrence than trial 1. It would be 

expected that trial 1 would have a lower rate of SND due to the lower biomass concentration, 

which was observed. Alkalinity consumption (Figure 4.6 and 4.10) did not vary much between 

both trials conducted at 22°C.  In a conventional system, at a temperature of 22°C, 138 mg-

CaCO3
-/L would be consumed in Trial 1; however, during Trial 1 only 25 mg-CaCO3

-/L was 

consumed. During Trial 2, 82.09 mg-CaCO3
-/L would be expected to be consumed, while only 

45 mg-CaCO3
-/L was consumed. The pH remained between 6.7 and 7.3, an ideal range for 

nitrification and denitrification (Metcalf and Eddy, 2014). pH and alkalinity results support the 

idea that an advantage of SND is supplemental alkalinity is not required.  

  

Figure 4.10 Trial 2 Initial and Final TSS and VSS (A) and Initial and Final Alkalinity (B) at 

22°C 

Average concentrations of DO over the length of trial 2 are shown in Figure 4.11. 

Concentrations were consistent with those mentioned in the experimental methods and were 

fairly easy to maintain during the experiment. 
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Figure 4.11 Trial 2 DO Concentration vs Time at 22°C 

4.1.3 SND Studies at 29.5°C  

Results from Trial 1 of the 29.5°C SND experiments are shown in Figure 4.12. COD 

results are shown in Figure 4.13. During Trial 1 of the 29.5°C experiments, successful 

nitrification occurred, with ammonia oxidation from 20 to 5 mg/L. A small increase in ammonia 

was observed in the second anoxic period. There was no accumulation of nitrate or nitrite, 

indicating successful SND. An accumulation of COD was observed during the experiment, thus 

there was an excess amount of COD and denitrification was able to occur fully.  

 
Figure 4.12 Nitrogen Species Concentrations Over t=16 hrs during Trial 1 Batch SND Test.  

(Initial TSS= 1,100 mg/L, VSS= 700 mg/L, Temp = 29.5°). Average DO Concentrations are 

Shown in the Figure. 
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Figure 4.13 Trial 1 Initial and Final Nitrogen (A) and COD (B) Species at 29.5° 

Initial and final alkalinity results are shown in Figure 4.14. In a conventional system, 152 

mg-CaCO3
-/L would be expected to be consumed for the nitrogen removal that occurred in trial 

1, but only 77.5 mg-CaCO3
-/L was consumed. These results are discussed further below. At t=10 

hrs, an increase in DO is observed when ammonia is fully removed. Average DO concentrations 

for trial 1 are shown in Figure 4.15. 

  

Figure 4.14 Trial 1 Initial and Final TSS and VSS (A) and Initial and Final Alkalinity (B) at 

29.5°C 
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Figure 4.15 Trial 1 DO Concentration vs Time at 29.5°C 

 Results of Trial 2 of the 29.5°C SND experiments are shown in Figure 4.16. COD results 

are shown in Figure 4.17.  During Trial 2 at 29.5°C, complete ammonia removal occurred by t=8 

hr, indicating complete nitrification. An increase of nitrate to 15 mg/L during the first aerobic 

and anoxic phases and a lack of nitrite accumulation indicates a lack of complete denitrification. 

Only half of the required COD was consumed, thus denitrification was inhibited slightly leading 

to a small accumulation of nitrite. There was plenty of rbCOD yet denitrification did not occur. 

This will be discussed below (Fig. 4.17).   

  
Figure 4.16 Nitrogen Species Concentrations Over t=16 hrs during Trial 2 Batch SND Test.  

(Initial TSS= 700 mg/L, VSS= 700 mg/L, Temp = 29.5°). Average DO Concentrations are 

Shown in the Figure. 
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Figure 4.17 Trial 2 Initial and Final Nitrogen (A) and COD (B) Species at 29.5°  

Results of initial and final alkalinity results are shown in Figure 4.18. In Trial 2, 111 mg-

CaCO3
-/L would be expected to be consumed in a conventional system, but only 25 mg- CaCO3

-

/L was consumed. These results are discussed further below. Average DO concentrations for trial 

2 are shown in Figure 4.19. 

  

Figure 4.18 Trial 2 Initial and Final TSS and VSS (A) and Initial and Final Alkalinity (B)  

 

 

Figure 4.19 Average DO Concentrations vs Time at 29.5°C 
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Ammonia removal was more efficient at higher temperatures, with a majority of removal 

occurring by t=8hr. Additionally, at higher temperatures there was not as high of an 

accumulation of nitrate or nitrite, indicating more successful denitrification. At a higher 

temperature, SND successfully occurred unlike at the lower one. When nitrification and 

denitrification occur separately, it is expected that as ammonia oxidation occurs, an increase in 

nitrate and nitrite concentration occurs but during SND, the ammonia oxidation and nitrate and 

nitrite reduction occur simultaneously.  

At a temperature of 29.5°C, there was a decrease in concentration of TSS and VSS. As 

with 22°C, it was not expected that there would be a change in TSS and VSS during the 16 hour 

experiment, but the decrease likely occurred due to bulking (Figure 4.14 and 4.18). As bulking 

occurred solids accumulated at the surface, which caused variations in biomass concentrations 

within the reactor.  This may have led to the full reactor volume not being available for 

biodegradation.  In addition, some biomass may have been lost from the system, as shown in the 

TSS and VSS results in Figure 4.14 and 4.18. 

 

Figure 4.20 Bulking in the Reactor at 29.5°C 
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Alkalinity consumption (Figures 4.14 and 4.18) did not vary between trials conducted at 

22°C and 29.5°C. pH remained between 6.7 and 7.3 for all of the trials.  pH and alkalinity results 

further support the idea that an advantage of SND is that supplemental alkalinity is not required.  

The initial concentrations of rbCOD during the 22°C experiments were close to twice that 

of the 29.5°C experiments. The contents of the bioreactor reactor were collected from the 

treatment plant, which is susceptible to variations concentrations and flows in the influent. This 

difference in initial concentration likely occurred because 22°C experiments were carried out in 

July, while the 29.5°C were carried out in late August and early September. During the first three 

weeks of August, Tampa, FL experienced severe flooding and rainfall, which led to a dilution in 

wastewater influent concentrations. Comparing Figures 4.5, 4.9 and 4.13, 4.17, it can be seen 

that there was less rbCOD available to help denitrification occur in the 29.5°C experiments, 

leading to a higher final nitrate concentrations than in the 22°C experiments. 

Throughout 29.5°C trials, DO concentrations (Fig. 4.15 and 4.19) were significantly 

harder to maintain than 22°C trials. At 29.5°C trials, aeration had to be adjusted manually every 

15-20 minutes whereas during the 22°C experiments, aeration had to be adjusted manually every 

hour. The amount of oxygen in the system is affected by an increase in temperature because the 

solubility of oxygen changes with temperature. At lower temperatures, DO concentrations can be 

higher than in warmer temperatures. In addition, at higher temperatures the rate of DO 

consumption by nitrifying bacteria and aerobic heterotrophs increases, which highlights the need 

for stringent operator control over DO at high temperature. This is similar to Holman and 

Wareham (2004) who found that the variations in DO concentrations could be directly related to 

changes in COD and ammonia concentrations, which could cause an increase in DO. At low DO 

levels, the decrease in a DO concentration was believed to have been due to microbial activity 
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causing the DO to be utilized by COD and ammonia oxidation as quickly as it was supplied. The 

second change in DO concentration (an increase) was believed to have occurred when the COD 

was depleted. DO was also observed to increase when the ammonia concentrations were 

depleted. They believe that the lack of nitrate detected could indicate that the oxidation of nitrite 

to nitrate may not exist in SND or that nitrite could be reduced to nitrogen gas directly from 

nitrite, thus skipping the oxidation to nitrate and reduction to nitrite. Similar results were seen in 

Figures 4.15 and 4.19. These relationships can be related to full-scale treatment and at 

Falkenburg AWWTP, where nutrient removal is required to meet NPDES permits, it is crucial 

that proper DO control is maintained for those standards to be achieved.   

4.2 Full-Scale Plant Performance  

           The results from analysis of phosphorus species at six locations throughout the treatment 

train are shown in Figure 4.21. The results indicate that biological phosphorus removal is 

occurring and can be observed by high phosphorus concentrations in the anaerobic reactor 

followed by low concentrations in the oxidation ditch. The average concentration of total 

phosphorus in the anaerobic reactor and oxidation ditch was 40 mg-P/L and 0.9 mg-P/L, 

respectively. The average concentration of TP in the clarifier was 20 mg-P/L, with 14.6 mg-P/ L 

in the form of particulate phosphorus and 0.2 mg-P/L in the form of soluble phosphorus.  These 

results indicate that the alum dosed prior to the clarifier successfully precipitated remaining 

soluble phosphorus. 

 Total phosphorus is determined by the unfiltered sample that includes all forms of 

phosphorus. Particulate phosphorus is determined by the digestion of a filtered sample subtracted 

by an unfiltered sample and is the form of phosphorus expected to be wasted with the WAS and 

RAS. The results agree that the particulate form is expected to be the second highest 



46 

 

phosphorous species concentration. Soluble phosphorus is the result of filtered phosphorus 

samples and is the form of phosphorus that exits with the clarifier effluent; this form will 

continue to be reduced in concentration as it travels through the final filters at the treatment 

plant. The organic phosphorus is calculated by subtracting polyphosphates by orthophosphate 

from particulate phosphorus samples. The lowest phosphorus species concentration is expected 

to be the polyphosphates, which is calculated from subtracting orthophosphates from acid 

hydrolysable phosphorus. Ideally, throughout the treatment train, soluble phosphorus will 

decrease and after precipitation with alum, particulate phosphorus will increase which is shown 

in Figure 4.21. 

 

Figure 4.21 Typical Phosphorus Concentrations Profiles from Grab Samples Throughout the 

Treatment Process. (Effluent Data Obtained from Plant Operators) 

 

Alum dosing at the treatment plant varied during the course of the sampling period 

(Figure 4.22). For the first sampling campaign, alum was dosed at 100 GPD, 200 GPD for the 

second and at 300 GPD for the third sampling period. Alum is dosed through a splitter box after 

the oxidation ditch and before the clarifier. Reduction of flow-pacing of alum at Falkenburg 

AWWTP (from ~260 gpd) was suggested by Knapp (2014) to reduce the chemical costs, sludge 

production and possible impacts on the biological process. Alum addition varies at the treatment 

plant based on a number of factors including pipe clogging, “bad batches”, phosphorus removal 
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and settling factors. Following the second sampling campaign, a “bad batch” of alum caused 

alum feed pumps to clog. Prior to this sampling campaign, alum dosing was increased above the 

needed amount for phosphorus removal due to clogging in the feed pipes from oversized pipes. It 

is thought that a “bad batch” was received because multiple treatment plants reported the same 

clogging issue. Operators have tried through trial and error to find an optimum alum dose, 

though no jar tests have been completed to our knowledge. Throughout this trial and error 

period, the plant has not failed to meet permit limits for total phosphorus, though further alum 

reduction is still possible. Operators should be conducting jar tests until an optimum dose is 

determined and after any large plant shifts or weather changes at the plant. Additional sampling 

of sulfate and phosphorus species in the clarifier will allow the operators to better understand 

phosphorus removal and impacts at the treatment plant.  

 

Figure 4.22 Alum Dosing at Falkenburg AWWTP During Sampling Period. (10/13/15-12/31/15) 

(Arrows note sampling dates) 

 

Additional tests were conducted to fully understand the processes occurring at the 

treatment plant. Cations, anions, total nitrogen, COD and TSS/VSS results are shown in Figure 

4.23, 4.24, 4.25, 4.26 and 4.27, respectively. Additional test results are provided in Appendix C.  
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Figure 4.23 Typical Cation Concentration from Grab Samples Throughout the Treatment Process 

  

Sulfur is required for protein synthesis and is reduced biologically in anaerobic 

conditions. Sulfate concentrations of less than 200 mg/L are required to not upset the biological 

process. Sulfate concentrations were below 200 mg/L in the influent, anaerobic reactor and 

oxidation ditch, but at or above in the clarifier and WAS. An increase in sulfate in the clarifier 

was expected and is shown as alum is dosed prior to the clarifier. Anion results are shown in 

Figure 4.24. 

 

Figure 4.24 Typical Anion Concentrations from Grab Samples Throughout the Treatment 

Process 

 Concentrations of nitrogen species during the phosphorous sampling campaign are shown 

in Figure 4.25. A high TN occurs in the influent, as expected, with a decrease in concentration 

occurring through the oxidation ditch. The clarifier has a higher concentration of particulate 
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nitrogen, likely due to poor settling. Soluble nitrogen, in the form of ammonia, nitrate and nitrite, 

was below permit requirements by this point, as expected. Additional nitrogen removal can be 

expected in the filters before discharged as effluent. 

 

Figure 4.25 Typical Nitrogen Species Concentrations from Grab Samples Throughout the 

Treatment Process. (Effluent data was obtained from plant operators) 

Similar to the SND batch studies, some rbCOD formation occurred throughout the 

treatment train, likely due to endogenous decay of the MLSS. COD is extremely important for 

both denitrification and phosphorus removal at the plant. Ideally there will be a decrease in 

rbCOD in the anaerobic zone as it is consumed for PAO production and phosphorus removal 

follows in the aerobic zone. The results show rbCOD consumption from influent through the first 

oxidation ditch sampling point, which corresponds with EBPR but then a production in the 

oxidation ditch which corresponds with the production and consumption that occurs in different 

zones and stages in the aerobic zone when SND occurs. 
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Figure 4.26 Typical COD Analyses from Grab Samples Throughout the Treatment Process 

 

Figure 4.27 Typical TSS and VSS Results from Grab Samples Throughout the Treatment 

Process
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

The operations staff at Falkenburg AWWTP consistently meets and exceed NPDES 

permit requirements. In addition to meeting the permits, the operators are willing to adjust plant 

operations to better optimize the treatment overall. Areas of improvement at Falkenburg 

AWWTP include decreasing the variations in alum dosing and DO control in warmer 

temperatures (such as summer months).  

 A bench top bioreactor was created and successfully mimicked the oxidation ditch at the 

treatment plant. Nitrification, denitrification and SND were all achieved during different 

experiments in a batch scale reactor at 22° C and additional SND experiments were conducted 

29.5° C to study the impacts of seasonal temperature change on kinetics. Trends in ammonia, 

nitrate and nitrite concentrations were consistent with SND. Additional sampling was completed 

to further understand the fate of phosphorus, nitrogen and organic carbon in the treatment train at 

the plant.   

In the nitrification batch reactors, in four hours, 50% of ammonia was successfully 

removed at a rate of 6.31 mg-N/L/hr indicating that four hours is not sufficient time to achieve 

complete removal. In the denitrification batch reactors, in six hours there was successful removal 

of nitrate and nitrite at a rate of 23.7 mg-NO3
-/L/hr and 3.6 mg-NO2

-/L/hr. In an SND batch 

reactor experiments at 22° C, ammonia oxidation successfully occurred in 12 hours but 

denitrification was inhibited due to insufficient rbCOD in the reactor. In an SND batch reactor at 

29.5° C, no accumulation of nitrate or nitrite was observed, indicating SND successfully 
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occurred. At a higher temperature, sludge bulking occurred in the reactor resulting in variations 

in TSS and VSS concentrations.  

The results of the bench-scale experiments showed that the SND was successfully 

achieved. The microbial community in the MLSS from Falkenburg AWWTP is capable of SND 

under the right environmental conditions, such as temperature, DO and rbCOD. DO is much 

more difficult to maintain and control at a higher temperature, further supporting the idea that 

stricter operator control is needed in warmer months. Additionally, because SND removal still 

occurred with poor DO control at 29.5°C, it further supports the idea that SND occurs because of 

zones within the floc or the reactor or that novel microorganisms exist that allow denitrification 

to occur above ideal DO concentration and nitrification to occur below ideal concentrations of 

DO.  A variation in rbCOD in the influent wastewater at the treatment plant caused nitrification 

and denitrification to be inhibited in different trials. With too much rbCOD, nitrification was 

inhibited and with too little rbCOD, denitrification was inhibited. Additionally, alkalinity 

consumption was minimal which supports the idea that supplemental alkalinity is not needed in 

SND processes.  

Results from the sampling campaigns at the treatment plant indicate that successful 

phosphorus removal. Alum addition varied before each sampling and a relationship between 

alum addition and sulfate can be made. rbCOD was consumed throughout the treatment process 

as expected and noticeable results can be noted when rbCOD was low in terms of phosphorus 

removal.  

 The objectives were achieved and overall, the plant is achieving SND and EBPR and the 

plant is performing as designed. The addition of alum should continue to be studied to determine 

a better dose and save the county taxpayers money while still meeting permit regulations.  Jar 
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tests should be used to determine the proper dosing that will not hinder the settling properties 

further in the treatment train.  Additionally, alum feed pipe sizes should be investigated at the 

plant to ensure no clogging occurs with a decrease in alum flow and automated aeration based on 

ammonia concentrations should be considered to remove the manual operation of aerators.  
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Appendix A List of Acronyms 

Alum Aluminum sulfate 

AOB Ammonia Oxidizing Bacteria 

ASM Activated Sludge Model 

AWWTP Advanced Wastewater Treatment Plant 

BOD Biological Oxygen Demand 

BNR Biological Nutrient Removal 

cBOD5 5-day Carbonaceous Biological Oxygen Demand 

COD Chemical Oxygen Demand 

CSTR Continuously Stirred Tank Reactor 

DO Dissolved Oxygen 

EBPR Enhanced Biological Phosphorus Removal 

F:M Food to Microorganism Ratio 

GHG Greenhouse Gases 

HRT Hydraulic Residence Time 

MGD Million Gallons Per Day 

MLSS Mixed Liquor Suspended Solids 

MLVSS Mixed Liquor Volatile Suspended Solids 

NOB Nitrite Oxidizing Bacteria 

NPDES National Pollutant Discharge Elimination System 

OHO Ordinary Heterotrophic Organisms 

O&M Operation and Maintenance  

ORP Oxidation Reduction Potential 

PAO Phosphorus Accumulating Organisms 

RAS Return Activated Sludge 

rbCOD Readily Biodegradable COD 

RR Respiration Rate 

SAR Sum of Absolute Residuals 

SND Simultaneous Nitrification Denitrification 

SRT Solids Retention Time 

SSV Settled Sludge Volume 

SVI Sludge Volume Index 

TIN Total Inorganic Nitrogen 

TMDL Total Max Daily Load 

TN Total Nitrogen 

TP Total Phosphorus 

TSS Total Suspended Solids 

VFA Volatile Fatty Acids 

VFD Variable Frequency Drive 

VSS Volatile Suspended Solids 

WAS Waste Activated Sludge 

WEF Water Environment Federation 
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WQS Water Quality Standards 

WWTP Wastewater Treatment Plant 
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Appendix B Analytical Chemistry Methods and Instruments for Analytical Work 

Table B1.1.  Analytical Chemistry Methods, Method Detection Limits (MDL) or Range of Test 

and Instruments Used for Analytical Work 

 

Analyte Method Instrument MDL or Range (mg/L)  

Alkalinity Standard Method 2320 B (APHA, 

2012) 

Metrohm Dosimat Plus 20 

Chemical Oxygen 

Demand (COD) 

Standard Method 5220B (APHA, 

2012) 

HACH® DR2800 

spectrophotometer 

0-1,500 (MR) 

Readily 

Biodegradable 

COD 

Mamis et al., 1993 HACH® DR2800 

spectrophotometer 

0-1,500 (MR) 

Cl–, NO2 –, NO3
–, 

PO4
3– SO4

2– 

Ion chromatography with 

chemical suppression USEPA 

1997 

Metrohm 850 Ion 

Chromatograph 

0.1, 0.04, 0.01, 0.02, 0.01 

DO Standard Method 4500-O G 

(APHA, 2012) 

HACH® SC1000 

Controller 

0.00-90.00 

Na+, K+, Mg2+, 

Ca2+, NH4
+ 

Ion chromatography with 

chemical suppression USEPA 

1997 

Metrohm 850 Professional 

IC 

0.50, 0.07, 0.09, 0.27, 

0.20 

Acid 

Hydrolyzable 

Phosphorus 

EPA Method 365.3 HACH® DR2800 

spectrophotometer 

0.5- 1.5 (LR) 

1.5- 15.0 (HR) 

 

pH Standard Method 4500-H+ B 

(APHA, 2012) 

Orion 5 Star meter and 

probe 

0-14 

Temp. Standard Method 2550 B (APHA, 

2012) 

NA -5° - 105°C 

Total Nitrogen 

(TN) 

Standard Method 4500-N (Per 

Sulfate) (APHA, 2012) 

HACH® DR2800 

spectrophotometer  

1-16 (LR) 

5-40 (HR) 

Volatile Acids 

(VFA) 

Esterification method using Hach 

TNT plus 872 test kits 

HACH® DR2800 

spectrophotometer 

50- 2,500 

TP/PO4
3- Standard Method 4500-P E 

(APHA, 2012) 

HACH® DR2800 

spectrophotometer 

0.5- 1.5 (LR) 

1.5- 15.0 (HR) 

 6-60 (UHR) 

TSS/ VSS Standard Method 2540-D and 

Standard Method 2540-E (APHA, 

2012) 

Fisher Drying Oven and 

Fisher Muffle Furnace 

Up to 1L sample volume 

to yield min of 200 mg 

dried residue 
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Appendix C Sampling Data 

Table C1.1 Results of the Full- Scale Plant Investigation Sampling Campaign on October 13, 

2015. (Ambient Air Temperature: 85°F) 

 

Location Influent Anaerobic 

Reactor 

Oxidation 

Ditch #1 

Oxidation 

Ditch #2 

Clarifier WAS 

sCOD 206.50 49.50 231.00 39.00 60.00 20.50 

rbCOD 300.00 716.00 272.00 310.50 11.50 549.00 

VFA (mg 

COD/L) 

19.91 89.62 24.43 18.30 10.29 23.31 

Ammonia 40.91 17.58 0.51 0.42 0.45 1.44 

Nitrate 0.03 0.02 0.00 0.02 0.00 0.02 

Nitrite 0.95 1.01 0.60 1.11 1.12 0.79 

Potassium 15.07 31.06 24.19 24.96 26.68 36.37 

Calcium 158.24 158.99 137.23 141.36 143.15 157.32 

Magnesium 27.03 34.64 21.39 22.41 22.49 31.59 

Sodium       

Chloride 61.16 83.45 92.57 88.43 90.63 93.01 

Sulfate 26.17 96.59 147.70 140.70 145.72 151.76 

Alkalinity 185.00 210.00 152.20 170.00 152.50 227.50 

pH 7.39 7.23 7.51 7.37 7.49 - 

DO - 0.13 0.27 1.26 0.20 - 

TSS NM 689.00 1544.00 439.00 0.00 1139.00 

VSS NM 628.00 1383.00 372.00 6.00 983.00 

TSS/VSS 

Ratio 

0.00 1.09 1.12 1.18 0.00 1.16 

Total P 8.44 40.42 0.83 1.36 0.43 30.63 

Soluble P 0.80 8.05 0.28 0.19 0.21 .588 

Particulate P 7.64 32.37 0.55 1.18 0.22 30.04 

Alum used 100 

gal/day 
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Table C1.2 Results of the Full- Scale Plant Investigation Sampling Campaign on November 3, 

2015. (Ambient Air Temperature: 80.6°F) 

 

Location Influent Anaerobic 

Reactor 

Oxidation 

Ditch #1 

Oxidation 

Ditch #2 

Clarifier WAS 

sCOD 1465.00 4786.00 5790.00 4156.00 2334.00 6212.00 

rbCOD 663.50 372.00 455.00 4602.00 2312.00 2112.00 

VFA (mg 

COD/L) 

132.55 486.32 1761.32 683.02 347.64 926.89 

Ammonia 35.25 17.46 0.21 0.12 0.07 0.25 

Nitrate 0.05 0.04 0.24 0.37 0.47 0.32 

Nitrite 0.07 0.05 0.33 0.52 0.66 0.44 

Potassium 12.90 28.57 26.05 22.36 28.94 28.81 

Calcium 147.05 150.50 137.93 121.89 141.99 141.02 

Magnesium 32.10 38.09 27.10 22.50 27.26 31.10 

Sodium 68.80 69.12 66.14 55.02 73.39 67.73 

Chloride 91.48 78.95 67.37 70.97 70.93 76.83 

Sulfate 54.68 92.05 109.24 108.18 134.67 129.64 

Alkalinity 230.00 245.00 311.50 192.50 150.00 272.50 

pH 7.32 7.05 7.38 7.29 7.19 - 

DO - 2.60 3.60 4.30 4.40 - 

TSS (g/day) 60.00 860.00 6780.00 1040.00 530.00 1770.00 

VSS (g/day) 80.00 730.00 1490.00 870.00 0.00 149.00 

TSS/VSS 

Ratio 

0.75 1.18 4.55 1.20 0.00 1.19 

Total P 13.64 17.69 22.98 18.77 13.96 16.11 

Phosphate 6.22 38.52 1.50 0.17 0.00 12.86 

Poly P - - - 10.13 6.53 0.19 

Organic P - - - 0.00 0.17 0.00 

Particulate P 5.74 0.445 10.75 78.83 6.50 7.15 

Alum Used 264 gal/ 

day 
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Table C1.3 Results of the Full- Scale Plant Investigation Sampling Campaign on December 30, 

2015. (Ambient Air Temperature: 70°F) 

 

Location Influent Anaerobic 

Reactor 

Oxidation 

Ditch #1 

Oxidation 

Ditch #2 

Clarifier WAS 

sCOD 414.50 325.50 173.50 249.50 223.50 171.00 

rbCOD 471.00 347.00 187.50 181.50 204.50 274.50 

VFA (mg 

COD/L) 

158.49 665.09 609.43 586.79 126.42 951.42 

Ammonia 38.85 8.68 0.43 0.23 0.09 0.20 

Nitrate 0.06 0.06 0.10 0.02 0.22 0.04 

Nitrite 1.66 1.87 1.56 1.82 2.20 2.22 

Soluble N 27.65 15.65 3.795 4.69 3.06 14.16 

Total N 49.10 - - - 36.85 25.00 

Particulate N 21.45 - - - 33.79 10.85 

Potassium 21.60 21.08 20.19 17.53 25.38 26.49 

Calcium 169.79 124.92 130.91 116.58 142.01 145.88 

Magnesium 34.44 31.60 29.72 25.87 32.24 34.52 

Sodium 77.65 55.91 70.03 57.11 79.68 80.69 

Chloride 70.84 62.37 51.68 94.55 102.31 105.06 

Sulfate 70.15 106.37 105.65 189.77 226.64 216.03 

Alkalinity 230.00 245.00 311.50 192.50 150.00 272.50 

pH - 7.12 7.38 7.48 7.56 7.42 

DO - 0.34 0.22 0.56 0.21 - 

TSS (mg/L) - - 660.00 510.00 200.00 940.00 

VSS(mg/L) 220.00 390.00 610.00 530.00 940.00 830.00 

TSS/VSS 

Ratio 

n/a n/a 1.08 0.96 0.24 1.13 

Total P 13.30 - - - 29.80 62.92 

Phosphate 6.41 17.78 3.13 1.08 0.00 7.26 

Poly P 0.00 - - - 5.30 0.00 

Organic P 2.35 - - - 6.75 17.08 

Particulate 

P 

5.59 - - - 14.12 29.61 

Soluble P 0.80 8.05 0.28 0.19 0.21 0.59 

Alum Used 370      
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Table C1.4 Results for Nitrification Studies. (Trial 1 run on March 25, 2015; Trial 2 run on April 

1, 2015) 

 
Time (hrs) Trial Ammonia Nitrate Nitrite 

0 1 44.5 0.203 1.268 

 2 40 1.7 0.456 

 Avg 42.25 0.95 0.86 

 St. Dev. 3.18 1.06 0.57 

0.33 1 44.488 0.1809 0.679 

 2 56.43 0.823 0.754 

 Avg 50.46 0.50 0.72 

 St. Dev. 8.44 0.45 0.05 

0.66 1 42.32 0.28 0.975 

 2 56.53 0.9705 0.732 

 Avg 49.43 0.63 0.85 

 St. Dev. 10.05 0.49 0.17 

1 1 41.4477 0.283 1.216 

 2 54.08 2.26 0.99 

 Avg 47.76 1.27 1.10 

 St. Dev. 8.93 1.40 0.16 

1.33 1 39.83 0.519 1.935 

 2 53.69 0.918 0.92 

 Avg 46.76 0.72 1.43 

 St. Dev. 9.80 0.28 0.72 

1.66 1 37.03 0.7808 2.811 

 2 52.23 1.465 0.998 

 Avg 44.63 1.12 1.90 

 St. Dev. 10.75 0.48 1.28 

2 1 34.9 1.416 3.789 

 2 50.15 1.663 1.07 

 Avg 42.53 1.54 2.43 

 St. Dev. 10.78 0.17 1.92 

2.66 1 30.0522 2.72 5.49 

 2 48.61 1.551 1.066 

 Avg 39.33 2.14 3.278 

 St. Dev. 13.12 0.83 3.13 

3.33 1 25.45 4.189 7.29 

 2 45.62 0 0 

 Avg 35.54 2.09 3.65 

 St. Dev. 14.26 2.96 5.15 
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Table C1.4 (Continued) 

4 1 20.59 6.2667 9.954 

 2 43.86 0 0 

 Avg 32.23 3.13 4.98 

 St. Dev. 16.45 4.43 7.04 

 

Table C1.5 Results for Denitrification Studies. (Trial 1 Run on April 27, 2015; Trial 2 Run on 

May 18, 2015; Trial 3 Run on May 20, 2015; Trial 4 Run on June 4, 2015) 

 
Time 

(hrs) 

Trial Ammonia Nitrate Nitrite 

0 1 0.80 125.70 0.55 

 2 0.11 1.19 0.31 

 3 0.00 0.75 0.17 

 Avg 0.30 42.55 0.34 

 St. Dev. 0.43 72.01 0.19 

0.25 1 0.03 125.72 33.08 

 2 0.17 117.14 30.62 

 3 0.29 110.45 25.18 

 Avg 0.16 117.77 29.63 

 St. Dev. 0.13 7.65 4.04 

0.66 1 0.08 112.10 29.50 

 2 0.41 111.11 29.04 

 3 0.29 109.39 24.94 

 Avg 0.26 110.87 27.83 

 St. Dev. 0.17 1.37 2.51 

1.33 1 0.25 100.52 26.45 

 2 0.69 105.99 27.71 

 3 0.52 105.07 23.96 

 Avg 0.49 103.86 26.04 

 St. Dev. 0.22 2.93 1.91 

2.00 1 0.08 79.84 21.01 

 2 0.88 97.45 25.47 

 3 0.27 110.70 25.24 

 Avg 0.41 96.00 23.91 

 St. Dev. 0.42 15.48 2.51 

2.67 1 0.04 65.51 17.24 

 2 0.76 89.10 23.29 

 3 0.52 97.21 22.16 
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Table C1.5 (Continued) 

 Avg. 0.44 83.94 20.90 

 St. Dev. 0.37 16.47 3.22 

3.33 1 0.04 46.83 12.32 

 2 1.44 78.72 20.58 

 3 0.13 97.40 22.21 

 Avg. 0.54 74.32 18.37 

 St. Dev. 0.78 25.57 5.30 

 1 0.07 17.25 4.54 

4.667 2 0.00 71.22 18.62 

 3 0.15 90.53 20.64 

 Avg. 0.07 59.67 14.6 

 St. Dev. 0.08 37.98 8.77 

5.33 1 0.19 4.05 2.16 

 2 9.07 1.55 9.37 

 3 1.62 0.00 0.00 

 Avg. 3.63 1.87 3.84 

 St. Dev. 4.77 2.04 4.91 
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Table C1.6 Results for SND Studies at 22° C. (Trial 1 Run on July 8, 2015; Trial 2 Run on July 15, 2015; Trial 3 Run on July 21, 

2015; Trial 4 Run on July 28, 2015) 
Time (hrs) Trial sCOD NH4

+ NO3
- NO2

- pH DO Alk. TSS VSS rbCOD Temp 

0:00 1 62.50 24.82 0.00 0.00 7.16 0.30 195.00 900.00 800.00   22.00 

  2 63.50 24.69 0.00 0.00 7.02 0.29 215.00 1000.00 1000.00  22.00 

  3 192.50 38.94 0.00 0.00 7.10 0.28 212.50 700.00 600.00 131.00 22.00 

  4 55.50 24.90 0.00 0.00 7.45 1.48 197.50 700.00 600.00 48.00 22.00 

  Average 93.50 28.34 0.00 0.00 7.18 0.59 205.00 825.00 750.00 89.50   

  Stdev 66.10 7.07 0.00 0.00 0.19 0.60 10.21 150.00 191.49 58.69   

2:00 1     7.06 0.19     22.00 

 2     6.92 0.21     22.00 

  3  1.20 0.02 0.01 7.46 0.71     22.00 

  4  1.88 0.10 0.02 7.55 1.34     22.00 

  Average  1.54 0.06 0.01 7.25 0.61       

  Stdev  0.48 0.06 0.00 0.31 0.54       

4:00 1   0.46 0.03 0.00 7.05 0.18         22.00 

  2  0.46 0.03 0.00 6.89 0.19     22.00 

  3  0.29 0.02 0.00 7.28 0.20     22.00 

  4  0.46 0.03 0.00 7.29 1.24     22.00 

  Average  0.42 0.02 0.00 7.13 0.45       

  Stdev   0.08 0.00 0.00 0.19 0.53           

6:00 3     7.40 3.30     22.00 

 4     7.08 0.50     22.00 

 5  1.13 0.01 0.01 7.27 0.17     22.00 

  6  1.76 0.02 0.01 7.14 0.15     22.00 

  Average  1.44 0.02 0.01 7.22 1.03       

  Stdev  0.45 0.01 0.00 0.14 1.52           

8:00 1   0.27 0.06 0.00 7.35 0.44         22.00 

  2  0.27 0.06 0.00 7.26 0.25     22.00 

  3  0.17 0.04 0.00 7.25 2.23     22.00 
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Table C1.6 (Continued) 

  4  0.27 0.06 0.00 6.94 0.14     22.00 

  Average  0.24 0.05 0.00 7.20 0.77       

  Stdev   0.05 0.01 0.00 0.18 0.98           

10:00 1     7.26 0.16     22.00 

  2     7.26 0.16     22.00 

  3  0.88 0.18 0.00 7.02 2.81     22.00 

 4  1.38 0.28 0.01 6.76 1.34     22.00 

 Average  1.13 0.23 0.01 7.08 1.12       

  Stdev  0.35 0.07 0.00 0.24 1.26       

12:00 3   0.39 0.01 0.00 7.23 0.15         22.00 

  4  0.40 0.01 0.00 7.12 0.16     22.00 

  5  0.25 0.00 0.00 6.95 0.17     22.00 

  6  0.39 0.01 0.00 6.82 3.44     22.00 

  Average  0.36 0.01 0.00 7.03 0.98       

  Stdev   0.07 0.00 0.00 0.18 1.64           

14:00 1     7.06 0.80     22.00 

  2     7.31 0.22     22.00 

  3  0.59 0.14 0.01 6.95 0.17     22.00 

 4  0.93 0.22 0.02 6.87 0.11     22.00 

 Average  0.76 0.18 0.02 7.05 0.33       

  Stdev  0.24 0.06 0.00 0.19 0.32       

16:00 1   0.15 0.44 0.00 6.93 0.27 150.00 900.00 800.00   22.00 

  2  0.15 0.44 0.00 7.20 0.55 - 1000.00 900.00  22.00 

  3 39.50 0.10 0.28 0.00   202.50 600.00 700.00  22.00 

  4 40.50 0.15 0.44 0.00  0.13 142.50 800.00 1000*0.

6 

22.00 22.00 

  Average 40.00 0.14 0.40 0.00 7.07 0.32 165.00 825.00 800.00 22.00 22.00 

  Stdev 0.71 0.03 0.08 0.00 0.19 0.21 32.69 170.78 100.00 0.00   
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Table C1.7 Results for SND at 29.5° C. (Trial 1 Run on August 25, 2015; Trial 2 Run on September 1, 2015; Trial 3 Run on 

September 8, 2015; Trial 4 Run on November 25, 2015) 

 
Time (hrs) Trial sCOD NH4

+ NO3
- NO2

- pH DO Alk. TSS VSS rbCOD Temp 

                  

0:00 1 44.500 24.530 0.330 0.640 7.490 0.450 205 600 700 32.000 28.50 

  2 51.000 24.490 0.030 0.800 7.130 0.300 217.5 700 700 55.000 20.50 

  3 75.500 27.090 0.110 0.090 7.350 0.250 100 600 600 39.000 19.70 

  4 80.500 20.450 0.220 1.670 6.900 0.540 150 1100 700 33.810 16.70 

  Avg. 62.875 24.140 0.173 0.800 7.218 0.385 168.125 750 675 39.953   

  Stdev 17.783 2.744 0.131 0.655 0.258 0.134 54.059 238 50 10.461   

2:00 1   1.130 16.990 0.000 7.160 3.100         30.00 

  2  20.670 1.920 0.820 7.050 1.160       29.10 

  3  17.670 1.440 0.070 7.200 0.120       28.90 

    12.130 1.130 0.980 7.290 0.320       29.20 

  Avg.  12.900 5.370 0.297 7.175 1.175         

  Stdev   8.607 7.753 0.455 0.099 1.360           

4:00 1   0.090 20.930 0.670 7.050 2.450         29.30 

  2  14.290 5.920 0.860 7.120 0.960       29.40 

  3  20.790 1.490 0.080 7.140 0.350       29.20 

  4  11.410 0.890 1.290 7.220 0.220       29.40 

  Avg.  11.723 9.447 0.537 7.133 0.995         

  Stdev   10.586 10.189 0.407 0.070 1.022           

6:00 1   0.120 15.340 0.180 6.930 0.100         29.40 

  2  8.030 10.740 0.750 7.110 0.230       29.40 

  3  18.310 0.140 0.130 7.020 0.060       29.20 

  4  9.190 0.290 1.510 7.170 0.170       29.70 

  Avg.  8.820 8.740 0.353 7.058 0.140         

  Stdev   9.121 7.795 0.344 0.105 0.075           

8:00 1   0.120 11.170 0.000 6.980 0.100         29.10 
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Table C1.7 (Continued) 

  2  0.000 15.590 0.230 6.910 0.160       29.30 

  3  14.670 0.810 0.030 6.870 0.060       29.20 

  4  5.000 0.590 1.350 6.950 0.220       29.60 

  Avg.  4.930 9.190 0.087 6.928 0.135         

  Stdev   8.435 7.586 0.125 0.048 0.070           

10:00 1   0.110 10.700 0.650 6.970 1.450         29.50 

  2  0.020 16.810 0.650 6.860 3.110       29.40 

  3  10.970 1.560 0.020 6.870 0.240       29.20 

  4  3.180 0.780 1.160 7.020 0.920       29.60 

  Avg.  3.700 9.690 0.440 6.930 1.430         

  Stdev   6.296 7.675 0.364 0.078 1.225           

12:00 1   0.110 11.370 0.670 6.950 1.170         29.70 

  2  0.020 16.810 0.650 6.590 0.040       29.30 

  3  9.590 3.780 0.030 6.840 0.350       29.20 

  4  3.130 0.800 1.220 7.050 0.940       29.60 

  Avg.  3.240 10.653 0.450 6.858 0.625         

  Stdev   5.499 6.544 0.364 0.198 0.521           

14:00 1   0.180 8.410 0.190 6.800 0.000         29.70 

  2  0.010 16.700 0.430 6.590 0.000       29.30 

  3  3.710 8.860 0.090 6.710 0.370       29.20 

  4  4.350 0.450 1.570 6.910 0.260       29.60 

  Avg.  1.300 11.323 0.237 6.753 0.158         

  Stdev   2.089 4.662 0.175 0.136 0.187           

16:00 1 23.500 0.250 5.300 0.000 6.640 0.000 142.5 0.300 0.300 19.000 29.70 

  2 50.000 0.130 7.100 0.070 6.580 0.030 140 0.600 0.500 21.000 29.30 

  3 22.500 0.000 13.950 0.150 6.790 3.200 132.5 0.600 0.500 36.000 29.20 

    4 18.000 4.830 0.450 1.570 6.880 0.230 125 - - 28.000 29.60 

  Avg. 28.500 0.127 8.783 0.073 6.723 0.865 135.000 0.500 0.433 26.000 29.45 

  Stdev 14.532 0.125 4.564 0.075 0.137 1.560 7.906 0.173 0.115 7.703 0.24 
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Appendix D Step By Step Analytical Methods 

 Methodology for rbCOD: The rbCOD was determined using a physical-chemical method 

developed by Mamais et al. (1993). The sample was flocculated by adding 1mL of a 100 

g/L zinc sulfate solution to 100 mL of influent wastewater and rapidly mixing with a 

magnetic stirrer for 1 min.  Then, the pH of the sample was adjusted to 10.5 using a 6M 

NaOH solution. After stirring was stopped, the sample was allowed to settle for 

approximately 5 minutes.  Forty milliliters of supernatant were removed with a pipette, 

taking care not to disturb the settled portion of the sample, and vacuum filtered through a 

0.45µm membrane filter (Fisherbrand 0.45µm, 47mm, MCE membrane filters).  The 

COD of the sample was determined using Standard Methods 5220D (APHA et al, 2012).  

 Methodology for Acid Hydrolyzable Phosphorous: The acid hydrolysable phosphorus 

method is used to calculate polyphosphates and organic phosphates. Acid hydrolysable 

phosphorus was determined by a method described by EPA method 365.3. First, all 

glassware was washed with a 6N hydrochloric acid and rinsed with deionized water. 

Next, 25-mL of sample was measured into a 50-mL Erlenmeyer flask. Then, 2.0-mL of 

5.25 N Sulfuric Acid solution was added and the flask was placed on a hot plate and 

boiled gently for 30 minutes. Deionized water was added to the flask to maintain a 

volume near 20-mL throughout the 30 minutes. The sample was cooled to room 

temperature. After, 2.0-mL of 5.0N NaOH solution was added to the sample and swirled 

to mix. Hach TNT Plus 845 test kits were used to complete the test following the 

instructions for measurement of reactive phosphorus. Note that the results included the 

orthophosphate and the acid- hydrolysable phosphate thus the results were subtracted 

from a reactive phosphorus test on an untreated sample.  
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