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ABSTRACT 
 

Disinfection is an essential process in the treatment of municipal wastewater before the 

treated wastewater can be discharged to the environment.  Hillsborough County’s Northwest 

Regional Water Reclamation Facility (NWRWRF) in Tampa, Florida, currently uses ultraviolet 

(UV) light for disinfection.  However, this method has proven expensive to implement and 

maintain, and may not be effective if the light transmission is poor. For these reasons, Hillsborough 

County is considering switching from UV light to sodium hypochlorite for disinfection.  However, 

hypochlorite (chlorine) disinfection has disadvantages as well, such as the production of 

disinfection by-products (DBPs) such as trihalomethanes (THM) and haloacetic acids (HAAs), 

which may have adverse impacts on the quality of surface waters that receive the treated 

wastewater.   

Therefore, the objectives of this research are (1) to compare NWRWRF typical operating 

conditions and water quality to those of two nearby facilities (River Oaks and Dale Mabry 

Advanced Wastewater Treatment Plants) that currently employ chlorine disinfection, (2) to 

determine the chlorine demand of treated effluent from NWRWRF, (3) to quantify the DBP 

formation potential of treated effluent from NWRWRF, and (4) to determine the effects of 

temperature, reaction time, and chlorine dose on chlorine demand and THM formation. 

To inform laboratory experiments, the quality of final effluent was monitored at NWRWRF 

and at two nearby wastewater treatment plants that currently use hypochlorite for disinfection.  At 

these two facilities, pH of 7.0–8.0, chemical oxygen demand (COD) of 12–26 mg/L, alkalinity of 

200–250 mg/L as CaCO3, chlorine residual of 1.5–6.0 mg/L, and total trihalomethanes of 100–190 
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μg/L (mostly chloroform) were observed. Conditions at NWRWRF were similar to those at Dale 

Mabry and River Oaks AWWTP, suggesting that chlorine demand and THM formation at 

NWRWRF would be similar to those at the two AWWTP, if chlorination is to be used. THM 

experimental results agreed with this suggestion. 

Chlorine dose and temperature effects on the free chlorine residual and THMs production 

in NWRWRF filtered wastewater effluent were determined. Filtered effluent was collected and 

transported to USF laboratory where it was tested for 3 different chlorine doses (6 mg/L, 9 mg/L 

and 12 mg/L as Cl2) and 3 different temperatures (16°C, 23°C, and 30°C) at 7 different contact 

times (15, 30, 45, 60, 75, 90, and 120 min) in duplicate. The total number of batches prepared was: 

3 different chlorine doses × 3 different temperatures × 7 different reaction times = 126 reactors. 

According to Florida Administrative code 62-600.440, total chlorine residual should be at 

least 1 mg/L after a contact time of at least 15 min at peak hourly flow. Also, according to Florida 

Administrative code 62-600.440, if effluent wastewater has a concentration of fecal coliforms 

greater than 10,000 per 100 mL before disinfection, FDEP requires that the product of the chlorine 

concentration C (in mg/L as Cl2) and the contact time t (in minutes) be at least 120. Results showed 

that free chlorine residual was always above 1 mg/L in 15 min contact time for all chlorine doses 

and temperatures tested in this thesis. However, to be conservative, thesis conclusions and 

recommendations were based on the more stringent regulation: C*t ≥ 120 mg.min/L, assuming 

that the number of fecal coliform in NWRWRF wastewater effluent exceeds 10,000 per 100 mL 

prior to disinfection. The analysis showed that free chlorine residual for 6 mg/L was below the 

FDEP standard at all temperatures. At 16 °C and 23 °C, chlorine doses of 9 and 12 mg/L resulted 

in an appropriate free chlorine residual above the FDEP standard. However, a chlorine dose of 12 

mg/L was resulting in high residual, which means high THM would be expected. Therefore, at 16 
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and 23°C, 9 mg/L would be preferable. At 30 °C, only the chlorine dose of 12 mg/L met the 

standard at all contact times. 

As expected, free chlorine residual decreased with an increase in temperature from 23°C 

to 30°C. Surprisingly, the residual at 16°C was lower than residual at 23°C. The production of 

THMs increased with higher contact time in all the experiments completed. Chlorine dose didn’t 

have an effect on THM formation at 23°C, but it did at 30°C and 16°C, where THM concentrations 

were generally higher with the increase of chlorine dose. Temperature effect was noticed in most 

of the experiments, where THM production was usually higher at higher temperatures, except 

some cases where formation was similar for different temperatures. Chloroform, 

dichlorobromomethane, dibromochloromethane production ranges were respectively: 20-127 

μg/L, 18-59 μg/L, and 3-7 μg/L. Bromoform concentrations were not observed in this experiment 

at any temperature or chlorine dose.  

According to Florida Administrative code 62-302.530, Criteria for Surface Water Quality 

Classifications, the Florida Department for Environmental Protection (FDEP) set the following 

limits for THM concentrations in wastewater effluent to be as the following; 470 μg/L for 

chloroform, 22 μg/L for dichlorobromomethane, 34 μg/L for dibromochloromethane, and 360 

μg/L for bromoform. Experimental results on NWRWRF filtered effluent showed that only 

dichlorobromomethane exceeded the limits set by FDEP at about 30 min contact time for all 

temperatures and chlorine doses tested. However, according to Florida Administrative code 62-

302-400, proposed changes to the code have set higher DCBM limit of 57 μg/L. Chlorination 

would be recommended at NWRWRF if the DCBM regulated limit increases to 57 μg/L. The 

recommended chlorine dose would be 9 mg/L for water temperatures around 16–23 °C and 12 

mg/L for water temperatures around 30 °C. 
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CHAPTER 1: INTRODUCTION, MOTIVATION, AND OBJECTIVES 
 
1.1 Introduction 
 

Municipal wastewater consists of the sewage collected from houses, businesses, schools, 

and other institutions, from sources such as sinks, toilets, showers, and appliances. Typically, 

wastewater is transported via sewer pipes to a wastewater treatment plant (WWTP), where it is 

treated before it is discharged to a water body, such as river or bay.  Domestic wastewater typically 

contains high concentrations of solids organic matter, nutrients (nitrogen, phosphorus and 

potassium), pathogens, and other substances that lead to a decline in water quality if discharged 

without treatment (Hunter and Heukelekian, 1965). The goal at the wastewater treatment plant is 

to achieve a water effluent that represents acceptably low risk to human or environmental health. 

In order to attain that, wastewater treatment usually incorporates several stages, such as biological 

degradation of organic matter, sedimentation of suspended solids, removal of nutrients, and finally, 

disinfection to inactivate pathogenic microorganisms (Crittenden et al., 2012).  

Disinfection is a critical stage of the wastewater treatment plant processes. This step is 

usually the last one before discharge, where most waterborne pathogens are inactivated. The 

different types of microorganisms found in water are bacteria (such as Vibrio cholerae, Salmonella 

typhi, Escherichia coli), protozoa (such as Cryptosporidium, Giardia), viruses (such as Rotavirus, 

Poliovirus, Adenovirus), and helminth ova (such as Ascaris) (Tchobanoglous et al., 2014). Two of 

the most common techniques for disinfecting wastewater at centralized wastewater treatment 

plants are chlorine addition and exposure to ultraviolet light (UV).
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1.2 Motivation 
 

Chlorination and UV light disinfection both have advantages and disadvantages. 

Chlorination is the most widely used technique for wastewater disinfection since it meets all the 

characteristics for efficient and feasible treatment. It is soluble, stable, available, not expensive, 

simple and very effective against most of the pathogenic microorganisms (Tchobanoglous et al., 

2014). However, organic matter in water reacting with chlorine during the disinfection phase of 

water treatment can produce disinfection by products (DBPs) (Tang et al., 2013). Disinfection 

byproducts produced by chlorine disinfection include trihalomethanes (THMs) (chloroform, 

dichlorobromomethane, dibromochloromethane, bromoform) and haloacetic acids (Kovacs et al., 

2013). Also, chlorination leaves a chemical residual, which requires dechlorination before 

discharge to surface waters. 

THMs are hazardous products to the human health and environment. Humans are affected 

when treated wastewater is discharged, since the receiving water is used downstream as potable 

water supply. Also, they are impacted when reclaimed water is used as agricultural irrigation 

source (Krasner et al., 2009). DBPs are considered carcinogenic (bladder cancer) and they cause 

kidney and liver problems in humans (US EPA, 2009). Information on DBPs impacts on aquatic 

life is limited but some experiments were done on fish in order to predict DBPs effect on humans. 

These studies show that DBPs may result in development toxicity and chronic risks (cancer, 

neurological, heart, and reproductive problems) in Japanese madeka fish exposed to DBPs for a 

one-year or more (Teuschler et al., 2000). DBPs in effluent wastewater adversely affect the aquatic 

life directly and the human health indirectly. 

The second most common disinfection technique is UV light; at a wavelength between 200 

and 300 nanometers, it can alter the DNA of microorganisms, which inactivates them (Crittenden 

et al., 2012). Wastewater disinfection using UV has the significant advantage that it does not 
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produce DBPs or chemical residual, requires less space than chlorination, and there is no need for 

a dechlorination stage in the treatment process. However, this method has its complications, such 

as high electricity cost, maintenance requirements, no residual disinfectant (pathogens regrowth 

potential), lamp disposal issues (presence of mercury), and disinfection efficiency uncertainty in 

some cases of poor light transmission. Moreover, the UV light absorptivity is relatively high for 

wastewater with elevated dissolved and suspended solids concentrations, requiring accordingly 

high-energy input (Tchobanoglous et al., 2014). 

1.3 Site Description 
 

Hillsborough County’s Northwest Regional Water Reclamation Facility (NWRWRF) in 

Tampa, Florida receives 6.5 million gallons per day (MGD) of wastewater on average for 

treatment, with a permitted annual average daily flow rate of 10 MGD (Mulford, 2016).  

 
Figure 1.1: NWRWRF Process Flow Chart 
 

The influent wastewater goes through screening, where large objects are removed, then 

flows through grit chamber, where sand, dirt, and small stones are settled. After the preliminary 

treatment is completed, NWRWRF influent flows into Bardenpho process, which consists of the 

following five stages: fermentation basin for phosphorous release, primary anoxic basin for 

denitrification, aeration basin for BOD consumption, phosphorous removal, and nitrification, 

secondary anoxic basin for denitrification, and re-aeration basin for nitrogen gas stripping. 
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Following Bardenpho process, wastewater is sent to a secondary clarifier, where sludge is 

separated from effluent wastewater by gravity settlement, and alum is dosed for chemical 

phosphorous removal. Most of the settled sludge is sent back to the headworks and some is stored 

in sludge holding tank as waste activated sludge (WAS). Effluent travels to a deep bed filter and 

then disinfection process to inactivate pathogens before it is either stored as reclaimed water or 

discharged into Channel A, which flows to Rocky Creek, then to Old Tampa Bay.  

NWRWRF is currently applying the UV light technique for disinfection of the wastewater. 

However, because of the challenges associated with this method, the facility is considering a 

switch to chlorine disinfection using sodium hypochlorite (NaOCl).  In order to make such a 

decision, the county needs to know two key things: how much chlorine must be dosed to achieve 

sufficient disinfection, and how much DBP formation occurs at that chlorine dose. According to 

Florida Administrative code 62-302.530, Criteria for Surface Water Quality Classifications, 

Florida Department of Environmental Protection (FDEP) set limits for THM concentrations in 

wastewater effluent discharged to different types of surface waters. For NWRWRF, the applicable 

effluent limits are; 470 μg/L for chloroform, 22 μg/L for dichlorobromomethane, 34 μg/L for 

dibromochloro-methane, and 360 μg/L for bromoform. 

1.4 Objectives 

The overall research question to be addressed by this thesis is “Can NWRWRF switch to 

chlorine disinfection and meet regulatory compliance limits?” To answer this question, the specific 

objectives of this research are (1) to compare NWRWRF typical operating conditions and water 

quality to those of two nearby facilities (River Oaks and Dale Mabry Advanced Wastewater 

Treatment Plants) that currently employ chlorine disinfection, (2) to determine the chlorine 

demand of treated effluent from NWRWRF, (3) to quantify the DBP formation potential of treated 
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effluent from NWRWRF, and (4) to determine the effects of temperature, reaction time, and 

chlorine dose on chlorine demand and THM formation. 
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CHAPTER 2: LITERATURE REVIEW 
 
2.1 Wastewater Treatment 

Untreated wastewater can have large impact on human health and environmental safety. 

Until the early 1900s, wastewater was discharged untreated to the receiving water bodies in the 

United States. Diseases resulting from this activity raised the concern and need for more 

considerate wastewater management (Tchobanoglous et al., 2014). Wastewater became a 

significant environmental problem with the increase of population density over the years (Akpor 

and Muchie, 2011). Wastewater constituents that should be removed include: solids, heavy metals 

(such as arsenic, cadmium, Iron, lead…), substances that exert high oxygen demand such as 

biochemical oxygen demand (BOD) and chemical oxygen demand (COD), toxic organics, 

nutrients such as nitrogen and phosphorus, and microorganisms (Akpor and Muchie, 2011). If 

wastewater is left with no treatment, organics can decompose and produce greenhouse gases to the 

atmosphere, pathogens can cause diseases and put humans and aquatic life at risk, and excess 

nutrients can lead to rapid growth of algae, which decompose causing hypoxic conditions and can 

also block the sunlight and can be toxic (Tchobanoglous et al., 2014). Moreover, the breakdown 

of organics leads to oxygen depletion (hypoxia) in water, which may cause death of aquatic 

animals and plants (Hamilton et al., 1995). For these reasons, municipal wastewater is typically 

conveyed through a sewer system to a centralized wastewater treatment plant (WWTP), where it 

is treated to acceptable standards prior to discharge into the environment. WWTP consists of 

several processes for treatment, where disinfection is usually the last one before the effluent is 

discharged into a water body. 
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Disinfection can be accomplished using different techniques such as chlorination, 

ultraviolet (UV) light, ozone, peracetic acid, or peroxone. According to the US EPA (1998), 

chlorination is an effective method that will kill more than 99 percent of harmful microorganisms, 

but this technique will require one more step before surface water discharge, which is 

dechlorination, since chlorine is toxic to the aquatic life. Moreover, chlorine reacts with natural 

organics in the wastewater and surface water that produce DBPs that are harmful to the 

environment (Tang et al., 2013). UV light disinfection doesn’t produce disinfection by-products 

(DBPs) or residual (Tchobanoglous et al., 2014), but it is only effective with low turbidity water 

to prevent lamps fouling and to permit adequate light transmission (WEF, 2009). Ozone is a very 

effective disinfectant, needs shorter contact time than chlorine, but it produces DBPs such as 

bromate, present safety concerns, and it is relatively expensive (Tchobanoglous et al., 2014). 

Peracetic acid (PAA) is a disinfection chemical agent newly introduced to wastewater treatment. 

PAA is a stronger disinfectant than chlorine and it is effective against a wide range of pathogens. 

However, PAA leads to increase in the organic concentration in wastewater due to PAA 

decomposition to acetic acids (AA), which may lead to microbes’ regrowth (Kitis, 2003).  DBPs 

produced by PAA are acetic acid CH3COOH, O2, CH4, CO2 and H2O and their concentrations are 

low to be toxic (Tchobanoglous et al., 2014). Peroxone disinfectant is a mix of ozone or UV light 

with hydrogen peroxide. Reactions between ozone and hydrogen peroxide, or UV light and 

hydrogen peroxide produce hydroxyl radical (OH), which is a very strong disinfectant 

(Tchobanoglous et al., 2014). The two most commonly used techniques for wastewater treatment 

are chlorination and UV light. 
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2.2 Chlorination for Disinfection of Wastewater  

2.2.1 Different Forms of Chlorine  
 

Chlorine is a chemical agent with a high oxidation power that can inactivate 

microorganisms in wastewater (Murphy, 1985). Chlorine is introduced to the water in the 

following forms: calcium hypochlorite (Ca(OCl)2), sodium hypochlorite (NaOCl), chlorine 

dioxide (ClO2), or chlorine gas (Cl2) (Crittenden et al., 2012).  When chlorine is added as Cl2 gas 

or liquid hypochlorite, hypochlorous acid (HOCl) is formed, which is a strong disinfectant. 

Chlorine compounds can be classified as free or combined chlorine. According to Crittenden et al. 

(2012), in the absence of ammonia, chlorine holds its HOCl /OCl- form which is considered free 

chlorine. However, in the presence of ammonia (NH3), hypochlorous acid reacts with the ammonia 

and form chloroamines, which is called combined chlorine (Tchobanoglous et al., 2014). 

According to Crittenden et al. (2012), if ammonia is present in the wastewater, it can react with 

HOCl and produces chloramines. The reaction between HOCl and NH3 produces 

monochloroamine (Eq.1):  

NH3+HOCl  NH2Cl (monochloramine) + H2O 

HOCl reacts with monochloroamine and produces dichloroamine (Eq.2):  

NH2Cl+ HOCl  NHCl2 (dichloramine) + H2O 

Also, a reaction between HOCl and dichloroamine can occur, which results in trichloroamine as a 

product (Eq.3): NHCl2 + HOCl  NCl3 (trichloroamine) + H2O 

According to Crittenden et al. (2012), free chlorine is a stronger disinfectant than combined 
 
 chlorine, and in the case of ammonia presence in the water, higher chlorine doses should be added. 
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2.2.2 Chlorine Application 

Chlorine can be added as sodium hypochlorite bleach (NaOCl) or bubbled as gas (Cl2) to 

the wastewater, which becomes HOCl once it is transferred to liquid phase (Crittenden et al., 

2012). Adding NaOCl to water, results in this reaction (Eq.4):  

Na++OCl-+H2O  HOCl+Na++OH- 

Cl2 chlorine gas reacts with water and gives HOCl as shown in (Eq.5):     

Cl2+ H2O  HOCl+ H++Cl- 

 Chlorine dose, chlorine demand, and chlorine residual are three important terms that are 

often used with chlorine disinfection. Chlorine dose is the amount of chlorine added to the water. 

Chlorine demand is the amount of chlorine that has reacted in the water. Chlorine residual is the 

chlorine demand that hasn’t reacted. Moreover, chlorine demand and chlorine residual are time 

dependent since the reaction occurs over time (Morrow, 1978). These three parameters are related 

according to the following: 

Chlorine residual (mg/L) = Chlorine dose (mg/L) − Chlorine demand (mg/L) 

Chlorine residual depends on chlorine demand in the wastewater. The better the water quality, the 

less chlorine demand exerted (Crittenden et al., 2012).  

2.2.3 Factors Affecting Chlorine Disinfection  
 
2.2.3.1 Water pH   
 

Water pH higher than 7.5 favors the presence of OCl- over its acid component HOCl, which 

decreases the disinfection efficiency. HOCl is 40 to 80 times more effective disinfectant than OCl- 

(Tchobanoglous et al., 2014). The fraction of HOCl (rather than OCl-) is approximately 97% at pH 

6 and 4.5% at pH 9 at 20 °C (Murphy, 1985). HOCl dissociate in water as follows (Eq.6): 

HOCl H++ OCl-, pKa=7.5 
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2.2.3.2 Contact Time 
 

   Disinfection efficiency depends on the reaction time between chlorine and microorganisms 

in the wastewater (Crittenden et al., 2012). The longer the contact time, the greater is the pathogens 

inactivation effectiveness. To demonstrate contact time effect, laboratory experiments were 

completed and data were used to develop a model for the reaction kinetics of chlorine in water. 

These data support the hypothesis that most microorganisms are deactivated with first order 

kinetics during disinfection (Tchobanoglous et al., 2014). The reaction kinetics of chlorine 

disinfection was introduced by Dr. Dame Hariette Chick in 1908. The equation was named after 

her as follows (Chick, 1908). 

Chick’s Law (Eq.7): 

Nt/N0=exp (-K1θ) 

where:  

            Nt: microorganism’s concentration at time t, number of pathogens/L 

             N0: microorganism’s concentration at time 0, number of pathogens/L 

            K1: Chick’s law rate constant, 1/min 

            θ: Residence time, min 

2.2.3.3 Chlorine Dose 
 
 Chlorine dose impacts the disinfection efficiency of wastewater. The higher the added 

dose, the more pathogens are killed and higher chlorine residual would be expected (Crittenden et 

al., 2012). Chlorine dose is accounted for in Chick’s Law K1 constant. Chick –Watson is the 

modified version of Chick’s Law that accounts for disinfectant concentration (Watson, 1908) and 

it is shown in (Eq.8):  

K1= λC 
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λ: coefficient of specific lethality (disinfection rate constant), L/mg·min 

C: chlorine concentration (mg/L) 

Chick’s Law equation can thus be written as the following (Eq.9): 

Nt/N0=exp (-λCθ) 

The independent variables in this equation are C and t, which results in Ct (concentration 

× time) as a key parameter to determine degree of inactivation of a specific organism. Experiments 

were completed to develop Ct tables presenting Ct needed to achieve 99% inactivation of the most 

common pathogens in the water under specific conditions (Crittenden et al., 2012). For example, 

to achieve 99% inactivation of E. coli using free chlorine disinfection, a Ct value of 1 mg.min/L 

is required (Crittenden et al., 2012). 

2.2.3.4 Water Temperature  
 

The equilibrium coefficient of HOCl reaction varies with the temperature, which changes 

the equilibrium pH of the reaction, and impacts the presence of HOCl and OCl- for most pathogens 

present in wastewater. A 10°C increase in water temperature would result in 2 to 2.5 times increase 

in the coefficient of specific lethality, which results in faster reaction rate (Tchobanoglous et al., 

2014). Temperature influences the chlorine reaction rate constant during disinfection as 

represented in Arrhenius equation below (Eq.10): 

ln (K) =ln (A) + (-Ea/R)(1/T) 

where: 

K: reaction rate coefficient, 1/sec (for first order reaction), 1/sec.M (for second order reaction) 

Ea: activation energy, J/mol 

R: universal gas constant. 8.314 J/ (mol.K) 

T: reaction temperature, K (273+°C) 
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A: collision frequency parameter, 1/sec (for first order reaction), 1/sec.M (for second order 

reaction) 

This equation shows that the reaction coefficient increases with the increase in temperature, which 

leads to faster chlorine reaction and disinfection. 

2.2.3.5 Pathogen Type and Age 
 

Chlorine is an effective disinfectant against almost all pathogens except Cryptosporidium. 

To achieve a 99% inactivation of pathogens at 25°C and pH 6-9 using free chlorine, Ct required 

for the common microorganisms is 100 mg.min/L. However, at 25°C and pH 6-9, Ct required for 

Cryptosporidium disinfection using free chlorine is greater than 1000 mg.min/L. Therefore, it is 

unreasonable to use chlorine to kill Cryptosporidium (Crittenden et al., 2012). Moreover, the age 

of microorganisms plays a role in the effectiveness of disinfection. Young bacterial cultures need 

less contact time to be disinfected compared to old bacterial cultures (Tchobanoglous et al., 2014).  

2.2.3.6 Contact Chamber Design 

Chamber design is an essential parameter that can strongly affect the efficiency of 

chlorination. For best performance, the disinfection reactor should be baffled with well-rounded 

corners to prevent dead zones and short-circuiting. The design and numbers of baffles are critical 

and can dramatically affect the efficiency of disinfection (Tchobanoglous et al., 2014). Short-

circuiting affects the contact time, which becomes shorter than what the reactor was designed for. 

To compare the theoretical to the real contact time of a reactor, a tracer study can be conducted. A 

tracer is a conservative chemical that is added to the water influent to determine the time needed 

for the chemical to exit the reactor. The more ideal the reactor is and the less short circuiting exists, 

the closer the contact time is to the theoretical hydraulic residence time (HRT) (Crittenden et al., 

2012). Also, mixing is very important to obtain a plug flow performance and it should be done in 

a fraction of a second (WEF, 2009). Reactor operation should be automated to provide the exact 
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chlorine dose and contact time for disinfection without exceeding the design values, avoiding 

excessive DBPs production (WEF, 2009). 

2.2.4 Dechlorination 
 

Chlorine residual is toxic to aquatic life (EPA, 1999). Therefore, wastewater effluent 

should be de-chlorinated before it is discharged.  This step is completed by either using sulfur 

dioxide (SO2), sodium sulfite (Na2SO3), sodium bisulfite (NaHSO3), sodium meta-bisulfite 

(Na2S2O5), hydrogen peroxide (H2O2), or activated carbon (Tchobanoglous et al., 2014). Sulfur 

dioxide is the most commonly used for dechlorination. When added to wastewater, it reacts with 

chlorine and converts free chlorine to chloride according to the following reaction (Tchobanoglous 

et al., 2014) (Eq.11): 

SO2 + HOCl + H2O  Cl- + SO4
2- +3 H+ 

Also, the addition of activated carbon can remove free chlorine and combined chlorine completely 

through the following reactions (Tchobanoglous et al., 2014) (Eq.12), (Eq.13), and (Eq.14) 

respectively: 

C + 2 Cl2 +2 H2O  4 HCl + CO2 

C + 2 NH2Cl + 2 H2O  CO2 + N2+ 8 H++ 2 Cl- 

C + 4 NHCl2 + 2 H2O  CO2 + 2 N2 + 8 H+ + 8 Cl- 
 
2.2.5 Cost of Chlorination Technique 
 
 The cost is divided into chlorine chemical and operation/maintenance cost. Chlorination is 

considered less expensive compared to other disinfection techniques. However, as the influent 

flow rate increases, the cost of chlorine and UV light tends to become very similar (Moghadam, 

2012). Chemical cost depends on the form of chlorine used, on the wastewater quality, and on 

treatment plant site. In the past, WWTPs commonly used chlorine gas since it had lower operating 

cost than others. However, most of the WWTPs switched to other methods for two reasons: costs 
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of different disinfection techniques are becoming similar and chlorine gas is considered unsafe 

(WEF, 2009). 

2.2.6 Chlorine Toxicity 
 

At high concentrations, chlorine in both gas and liquid forms is dangerous. Chlorine gas 

causes skin irritation and negatively affects the respiratory system. Liquid chlorine can cause skin 

and eye burn. Moreover, chlorine is corrosive to certain metals, which create storage and handling 

issues at the WWTP (WEF, 2009) 

2.3 Formation of Disinfection By-products (DBPs) from Chlorination 
 
2.3.1 Types of Chlorinated Disinfection By-products 
 

Although chlorination was proven to be a very efficient disinfection technique, chlorine 

reacts with organics present in the water to produce halogenated disinfection byproducts (DBPs) 

that represent health and environmental impacts and they are regulated by the US EPA (Delpla et 

al., 2009). More than 700 halogenated disinfected by-products have been detected in chlorinated 

water but only the 4 THMs and 5 HAAs mentioned previously are regulated by the FDEP because 

of the fact that they are the most common DBPs detected with the highest concentrations (Chen et 

al., 2008). The 4 regulated THMs are chloroform (CHCl3), dichlorbromomethane (CHCl2Br), 

dibromochlorometahne (CHClBr2), and bromoform (CHBr3). There are nine HAAs that can be 

produced as DBPs but only five of them are regulated, monochloro- and monobromoacetic acid, 

dichloro- and trichloroacetic acid, and dibromoacetic acid (ClAA, BrAA, Cl2AA, Cl3AA, and 

Br2AA, respectively) (Liang and Singer, 2003). The structures of the four targeted THMs are as 

follows. 
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Figure 2.1: THMs Structures 
 

NWRWRF effluent is not used as a potable water source. Some of the effluent is used as 

reclaimed water and the rest is discharged in channel A, which flows to Rocky creek, then to old 

Tampa bay. Table 2.1 shows the current THM limits for different surface water quality classes. 

NWRWRF effluent wastewater falls under Class II (Shellfish Propagation or Harvesting) or class 

III (Recreation, Propagation, and Maintenance of a Healthy, Well Balanced Population of Fish and 

Wildlife) categories. However, changes to this regulation have been made and tentatively 

approved. Table 2.2 shows the proposed limits on THM by the FDEP.  

Table 2.1: THMs Limits for Different Surface Water Quality Classes (FDEP, FAC 62- 
302.530) 

THMs 
Class I: Potable 
Water Supply 

(μg/L) 

Class II: Shellfish 
Propagation or 

Harvesting (μg/L) 
Annual average 

Class III: Recreation, 
Propagation, and 

Maintenance of a Healthy, 
Well Balanced Population of 

Fish and Wildlife (μg/L) 
Annual average 

CHCl3 5.67 470.8 470.8 

CHCl2Br 0.27 22 22 

CHClBr2 0.41 34 34 

CHBr3 4.3 360 360 
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Table 2.2: Proposed THMs Limits for Class II Water Quality (FDEP, FAC 62- 
302.400)  

THMs 
 

Class II* (μg/L) 
Annual average 

CHCl3 2300 
CHCl2Br 57 
CHClBr2 44 
CHBr3 260 

* All or portions of Tampa Bay, Old Tampa Bay, and Mobbly Bay, excluding waters in the 
Tampa Harbor Channel 
 
2.3.2 DBP Production Mechanisms 

Chlorine is a highly reactive compound, which oxidizes organic and inorganic compounds 

in wastewater and produces halogenated DBPs in water. Reactivity capacity varies with chlorine 

form, which is dependent on the pH as explained earlier. The most reactive form is hypochlorous 

acid (HOCl) (Deborde and Von Gunten, 2008). According to Singer (1994), the generalized 

formation equation of DBPs is the following (Eq.15): 

HOCl+Br-+NOM THMs and other halogenated DBPs 

where NOM stands for natural organic matter. 

THM formation is affected by several factors such as pH, temperature, alkalinity, organics 

concentrations, reaction time, and chlorine dose. The increase of these factors results in increase 

of THMs production (Doederer et al., 2014).  Moreover, models were developed and the following 

multiple parameters power function form was concluded: THMs=k (DOC) a (Br-) b (Temp) c (Cl2) 

d (pH) e (time) f, where DOC, Br-, Temp, Cl2, pH, and time are respectively; organic concentration 

(mg/L), Bromide concentration (mg/L), wastewater temperature, Chlorine dose added (mg/L), 

wastewater pH, and reaction time (min), and a.b.c.d.e, and f are empirical constants (Sohn et al., 

2004). The following equations show some of the models developed by Sohn et al. (2004). 

TTHM applicable model on raw water is shown in (Eq.16): 

TTHM = 10-1.385 [(DOC) 1.098 (Cl2) 0.152 (t) 0.263 (T) 0.609 (pH) 1.601 (Br -) 0.068 with R2 = 0.9 
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TTHM applicable model on coagulated waters (alum or iron) is shown in (Eq.17): 

TTHM = 3.296 (DOC) 0.801 (Cl2) 0.261 (Br) 0.223 (t) 0.264 with R2 = 0.87 
 

HAA applicable model on raw water is as follows (Eq. 18): 
 
HAA = 9.98 (DOC) 0.935 (Cl2) 0.443(Br) 0.031 (T) 0.387 (pH) 0.655 (t) 0.178 with R2 = 0.87 
 
HAA applicable model on coagulated water is shown below (Eq.19): 
 
HAA = 63.7 (UVA) 0.419 (Cl2) 0.640 (Br) 0.066 (t) 0.161 with R2= 0.92 
 
where: 
 
TTHM: total trihalomethanes concentration (μg/L) 

HAA: haloacetic acids concentration (μg/L) 

DOC: dissolved organic carbon concentration (mg/L) 

UVA: ultraviolet absorbance (cm-1) 

Cl2: chlorine dose (mg/L) 

t: time (hr) 

T: temperature (°C) 

Br: bromide ion concentration (mg/L) 

2.3.2.1 Temperature, pH and Organic Matter Effects on THMs Production 

 THMs production is affected by the temperature, pH, and the natural organic matter 

concentration in wastewater. The increase of these parameters results in higher THM formation 

(Tchobanoglous et al., 2014). According to an experiment completed by Kovacs et al., (2013), 

total THM (TTHM) increased from 89.37 μg/L to 105.4 μg/L when temperature was augmented 

by 2°C, and to 139.31 μg/L when temperature increased by 4°C. Also, TTHM formation has risen 

from 6 μg/L to 8 μg/L when the total organic carbon (TOC) concentration was increased from 2 

mg/L to 9.5 mg/L (Zhang et al., 2010). pH effect on THM production was proved as well, analysis 
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made by Liang and Singer (2003) demonstrates this correlation. At pH equal to 8 THMs production 

is higher than for pH equal to 6 concluding that THMs formation rises with pH increase.  

2.3.2.2 Chlorine Dose and Reaction Time Effects on THMs Production 
 

Chlorine dose is one of the factors that control the trihalomethane formation. THM 

concentrations increase with higher chlorine doses (Rodrigues et al., 2006). The significance of 

chlorine dose effect varies with the type of THM. Chlorine dose effect is the most significant with 

dibromochloromethane, then bromoform, then dichlorobromomethane, and least significant with 

chloroform (Rodrigues et al., 2006). The challenge is lowering the chlorine dose in wastewater 

may increase the risk of pathogen survival in the receiving water, but increasing it will lead to 

THM formation (Singer, 1994). According to an experiment done by Liang and Singer (2003), the 

ratio of TTHM to total organic carbon (TOC) ratio increases as the contact time becomes longer 

after adding chlorine. The concern of contact time is the same as for chlorine dose, since decreasing 

the contact time may result in incomplete disinfection, but increasing it may result in high THM 

production potential (Singer, 1994). 

2.3.2.3 Ammonia Presence Effect 

If the wastewater has a high concentration of ammonia, combined chlorine may dominate 

over free chlorine. Combined chlorine is a weaker disinfectant but produces less DBPs 

(Tchobanoglous et al., 2014). When the chlorine-to-ammonia was equal to 1, the TTHMs 

production was lower than when this ratio was equal to 2 (Zhang et al., 2010). 

2.3.2.4 Bromide Presence Effect on THM Species Production  

The ratio of chloroform to brominated trihalomethanes depends on bromide presence in 

the wastewater. The higher the bromide concentration, the lower the chloroform production 

compared to the brominated THMs. The concentration of chloroform was shown to decrease from 

60 % of TTHMs for a low bromide concentration to 20 % of TTHM for a high bromide 
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concentration (Sorlini and Collivignarelli, 2005). Knowing the fraction of brominated THMs 

formed is very important since brominated THMs are more harmful than non-brominated THM 

(Richardson et al., 2007). The effect of pH on the formation of different THMs was shown by 

testing brominated and chlorinated THMs in water at pH 7, 8.5, and 10. The results indicated that 

bromination to chlorination rate ratio was decreased with the increase of pH (Roccaro et al., 2014). 

Moreover, Zhang et al. (2010) showed that TTHMs increased with increasing bromide 

concentration rise in the water at constant pH, temperature, TOC, contact time and chlorine dose. 

2.3.3 Factors Affecting Production of HAAs 
 

Liang and Singer (2003) noted that while testing for HAAs and TOC correlation, HAAs to 

TOC ratio increased with more contact time when adding chlorine to water. This observation can 

be interpreted as indicating that; chlorine consumes organics by oxidation and production of HAA. 

Like THM, HAA formation is affected by the following variables. 

2.3.3.1 Temperature, pH and Organics Effects on HAA Production 
 

The production of HAA increases with higher temperature, higher organics concentration, 

and lower pH. Total HAA5 increased from 61 μg/L to 77 μg/L when temperature increased by 2 

°C and to 82 μg/L when temperature increased by 4 °C (Kovacs et al., 2013). Liang et al. (2003) 

demonstrated that HAA formation is higher when pH is equal to 6 than when it is equal to 8. Since 

HAAs are formed as a result of reaction between chlorine and organics as mentioned previously 

(Kovacs et al., 2013), the HAAs concentration would be higher when organics concentration is 

higher in water. 

2.3.3.2 Chlorine Dose and Reaction Time Effects on HAAs Production 

According to the kinetic equations of Sohn et al. (2004), HAA are dependent on chlorine 

dose. Their production will be higher with the larger chlorine dose addition. Moreover, the 

concentration of HAA formation increases with longer contact time (Liang and Singer, 2003). 
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2.3.4 Source Control of DBPs 

 Primary source control of DBP formation is removing NOM from the wastewater, which 

is the principal DBP precursor (Singer, 1994).  Also, according to Singer (1994), decreasing the 

saltwater and brine water intrusion would decrease bromide presence and consequently will hinder 

THM formation. 
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CHAPTER 3: METHODS AND MATERIALS 

3.1 Chemical Reagents  

3.1.1 Sodium Hypochlorite Solution 

 A solution of sodium hypochlorite (NaOCl) was used for chlorine dosage. The 

concentration of this solution was regularly checked using a Hach pocket colorimeter to adjust for 

any solution strength degradation. Solution concentration was initially 60 g/L as Cl2 but degraded 

to 45 g/L over the course of the experiments. Calculation of the sodium hypochlorite concentration 

was obtained by adding 11 μL of the hypochlorite solution to 100 mL deionized water to dilute 

appropriately. Using Hach pocket colorimeter, the free chlorine concentration of the 100 mL 

solution was measured. Then, the chlorine concentration of the original, undiluted solution was 

computed by accounting for the dilution. 

3.1.2 Sodium Sulfite 
  
 Solid sodium sulfite (Acros Organics product, 98% purity, code #: 424432500) was added 

to deionized water until saturation. The sodium sulfite saturated solution was used to quench the 

chlorine reaction at the desired reaction times in order to assess the contact time effect on DBPs 

formation. Sodium sulfite de-chlorinates the wastewater, which prevents further oxidation and 

DBP formation. 

3.1.3 Trihalomethane (THM) Standard Solutions 
 
 Chloroform liquid solution (Acros Organics product #: 404635000, 99.8% purity), 

dichlorobromomethane liquid solution (Sigma Aldrich product #: 139181,98% purity), 

dibromochloromethane (Sigma Aldrich product #: 206326, 98% purity), and bromoform (Tokyo 
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Chemical Industry product #: T0348, 98% purity) were added to methanol liquid solution (Fisher 

product #: A452SK-4) to prepare THM stock solutions of 300 mg/L, 300 mg/L, 400 mg/L, and 

450 mg/L respectively. These stock solutions were used later to make the aqueous standard 

solutions that were employed to form the THMs calibration curves. 

3.1.4 Other Chemicals and Reagents  
 

Hexane (Fisher product #: H302-1, HPLC grade) was used as the solvent for the GC 

analysis. Sulfuric acid liquid solution (Fisher product #: A300-212) was used to prepare the 

sulfuric acid solution of 0.045 N for alkalinity titration. N, N Diethyl-1, 4 Phenylenediamine 

Sulfate (DPD) free chlorine reagent powder pillow (Hach product #: 2105569) was the chemical 

used to measure the free chlorine residual concentrations. Chlorine solution ampoules (Hach 

product #: 1426820) were used to prepare free chlorine standards. COD (Hach product #: 2415815) 

reagent kits were employed for COD concentrations analysis. Deionized water provided by USF 

laboratory of conductivity 1 μS/cm (Payne, 2016), was used to prepare standards. 

3.2 Analytical Methods  
 

As discussed earlier in this thesis, production of THM depends on several factors including 

temperature, pH, alkalinity, chlorine dose, organic matter concentration, and reaction time. In 

order to measure these parameters and the associated THM production, the following laboratory 

methods were employed.  

3.2.1 Temperature and pH 
 
  Wastewater pH was measured using Oakton pH 2700 standard laboratory pH meter with 

a dual-purpose probe that can measure temperature and pH. The pH meter was calibrated regularly 

with pH standard buffer solutions. For the sampling campaigns performed on the three wastewater 

treatment plants, the temperatures of the samples collected were measured on-site using a 

thermometer. 
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3.2.2 Alkalinity 
 
 Alkalinity was determined using titration method with sulfuric acid solution of 0.045 N to 

an end-point pH of 4.5 according to Standard Method 2320 B (Rice et al., 2012). The volume of 

acid added was recorded and plugged in the following equation was used to compute the alkalinity 

as mg/L CaCO3 (Eq.21): 

Alkalinity (mg/L CaCO3) = A × N × 50,000 / V 

where: 

A: volume of acid (mL) added to reach an end-point pH of 4.5  

N: normality of the sulfuric acid (eq/L) 

V: volume of sample (mL) 

50,000 is a conversion factor: (100 g CaCO3 /1 mole CaCO3) ×(1 mole CaCO3/ 2 eq) x 

(1000mg/1g) = 50,0000 mg CaCO3 /eq 

3.2.3 Free Chlorine Residual  
 

Free chlorine residual was determined using two methods, spectrophotometer absorbance 

and titration, according to modified versions of Standard Method 4500-CI G (Rice et al., 2012). In 

the first method, one Hach N, N Diethyl-1, 4 Phenylenediamine Sulfate (DPD) free chlorine 

reagent powder pillow (Hach product #: 2105569), was added to 10 mL sample, or two pillows 

were added to 5 mL sample, for low- and high-range free chlorine residual concentrations, 

respectively. After shaking sample vials 10 times by hand, light absorbance through the resulting 

solution was measured using a spectrophotometer at two different wavelengths, 515 nm and 530 

nm. In addition to spectrophotometer analysis, samples were analyzed using an already calibrated 

Hach pocket colorimeter. To calibrate the method, standards of known concentrations 0.1, 0.2, 0.5, 

1, 1.5, and 2 mg/L free chlorine were prepared and analyzed. For both the spectrophotometer and 

the Hach pocket colorimeter, consistent and linear calibration curves were achieved. Towards the 
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end of this experimental work, only the Hach pocket colorimeter was used, not the 

spectrophotometer, because the pocket colorimeter was easier to use and had been observed to be 

reliable. Calibration curve is as shown in Figure 3.1. 

 
Figure 3.1: Free Chlorine Calibration Curve Using Hach Pocket Colorimeter 

 
In the second method (titration), two Hach N, N Diethyl-1, 4 Phenylenediamine Sulfate 

(DPD) free chlorine reagent powder pillows (Hach product #: 2105569) were added to 100 mL 

sample and were titrated with ferrous ammonium sulfate solution prepared on site by River Oaks 

and Dale Mabry treatment plants until the pink color disappears. A pre-calibrated titrator provided 

by the facilities was employed to determine the free chlorine concentration based on the volume 

of titrant added.  

Based on nitrogen tests done on NWRWRF filtered effluent in USF laboratory using the 

Timberline ammonia analyzer instrument TL-2800, inorganic nitrogen species concentrations 

were very low and can be neglected. A volume of 4 mL of NWRWRF sample was added to a vial 

and analyzed using TL-2800 instrument. When nitrate is detected, a peak is formed. Using a 

calibration curve prepared, the concentration of nitrate can be derived. The sum of ammonia and 

nitrate concentration measured in NWRWRF was 0.13 mg/L. Therefore, only free chlorine 

residual was measured, because combined chlorine is not expected to be present.  

y = 1.0456x
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3.2.4 Chemical Oxygen Demand (COD) 

 COD was measured using a modified version of Standard Method 5220 (Rice et al., 2012).  

A volume of 2 mL of a solution was added to a Hach COD digestion reagent vials with mercury, 

ultra-low range, 1 to 40 mg/L COD, (Hach product #: 2415815). Vials were shaken before they 

were inserted in a COD hot block preheated to 150 °C for 120 min. Using HACH® DR2800 pre-

calibrated spectrophotometer, the absorbance was measured at 350 nm wavelength. To check the 

calibration of the Hach spectrophotometer, COD standards of known concentrations 1, 2, 5, 8, 10, 

15, 20, 30, 40, and 50 mg/L were prepared. According to the calibration curve in Figure 3.2, formed 

using the prepared standards, Hach spectrophotometer results are 28 % higher than known 

concentrations.  

 
Figure 3.2: COD Calibration Curve 

3.2.5 THM Concentrations 

  THM concentrations were measured according to the Standard Method 6232 B (Rice et al., 

2012). Perkin-Elmer Clarus 500 gas chromatograph (GC) with an electron capture detector (ECD) 

was used for this purpose. A new 30 m Perkin-Elmer Elite 5 chromatographic column (5% -phenyl-

95%-dimethylpolisiloxane) and a new ECD anode were purchased to ensure high quality 

chromatography. Detector gas and carrier gas used were, respectively, nitrogen and helium. 

Solvent used for liquid-liquid extraction was hexane. A volume of 2.4 mL of the aqueous sample 

was added to a 5 mL vial along with 2.4 mL of hexane solvent. After shaking the vial 10 times by 
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hand, samples were let to sit for 22 hours in the refrigerator in order for the THMs to be extracted 

from water phase to the hexane phase. Finally, hexane phase was added into GC vials, and 

analyzed by GC/ECD. The chromatography method is summarized in Table 3.1.  

To calibrate the GC/ECD method, aqueous standard solutions were prepared for each of 

the four target THMs (chloroform, dichlorobromomethane, dibromochloromethane, and 

bromoform), as described in section 3.1.3. The calibration was performed in Spring 2016 using 

aqueous standards of the following concentrations for all THMs: 1 μg/L, 2 μg/L, 5 μg/L, 10 μg/L, 

20 μg/L, 50 μg/L, and 100 μg/L. The calibration was performed again in Summer 2016 after re-

installing a new GC column and ECD anode. For the Summer 2016 calibration, the standard 

solutions for all THMs except chloroform were 2 μg/L, 5 μg/L, 10 μg/L, 20 μg/L, 50 μg/L, and 

100 μg/L. For chloroform, which was expected to be present at higher concentrations, the aqueous 

standards were 20 μg/L, 50 μg/L, 100 μg/L, 150 μg/L, and 200 μg/L. The Spring 2016 calibration 

curves are shown in Figures 3.4-3.7. It can be observed that the chloroform calibration curve is 

linear up to 100 μg/L, while the other three are linear up to 50 μg/L. Hexane blank samples were 

regularly run on GC to check for any contamination. 

Figure 3.3: Chromatogram Example 
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Table 3.1. GC Method Parameters 

Injection 
2 μL liquid by autosampler at slow speed 

3 sample pumps 

 
Syringe Washes 

2 pre-injection solvent wash (hexane) 

2 pre-injection sample wash 

Injection Port temperature 250 °C 

Detector (ECD) temperature 300 °C 

Helium (carrier gas) flow rate 8 mL/min 

Nitrogen (detector gas) flow rate 40 mL/min 

 

Oven Temperature 

Initial temperature= 30°C for 10 min. 

Increase 2°C/min to 50°C and hold for 2 min. 

Increase 25°C /min to 240°C and hold for 5 min 

Total Run time 34.6 min 

 

 

Figure 3.4: Chloroform Calibration Curve 
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Figure 3.5: Dichlorobromomethane Calibration Curve 

 
Figure 3.6: Dibromochloromethane Calibration Curve 
 

 
Figure 3.7: Bromoform Calibration Curve 
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3.3 Sampling Campaigns 
 

During May and June 2016, multiple sampling campaigns were made to River Oaks 

Advanced Wastewater Advanced Treatment Plant, NWRWRF, and Dale Mabry Wastewater 

Treatment Plant. These sampling campaigns were completed in order to monitor the performance 

of two treatment plants run by Hillsborough County that use chlorination for disinfection. Samples 

were collected on various days and times to reflect the wastewater characteristics throughout the 

week. Grab samples were collected in 250 mL amber glass jars for chlorinated effluent, prior to 

de-chlorination stage, from River Oaks and Dale Mabry wastewater treatment, and filtered 

effluent, prior to UV light disinfection phase, from NWRWRF. Temperature and chlorine residual 

were measured on-site at the time of sample collection. Chlorine residual was measured via 

titration method (section 3.2.3). The samples were transported to University of South Florida 

(USF) laboratory on ice, and then stored in the laboratory refrigerator. In the laboratory, samples 

were analyzed the same day of collection for pH, alkalinity, COD, and THM concentrations. 

NWRWRF samples were not analyzed for free chlorine residual and THM because NWRWRF 

effluent is not currently chlorinated. 

3.4 Assessment of Chlorine Demand and THM Formation in NWRWRF Effluent 

A bench-scale reactor was set up in the USF lab to mimic a chlorination disinfection 

method in order to assess NWRWRF performance if chlorination will be the disinfection method 

adapted in the future. Filtered effluent from NWRWRF was collected in 4 L amber glass bottles 

and transported on ice to the USF laboratory, then stored in a laboratory refrigerator. Samples were 

analyzed for temperature on the site, and for pH, alkalinity, and COD in USF laboratory. Then the 

effluent was used to assess THM formation potential, THM formation kinetics, and chlorine 

demand under different chlorine doses, temperatures, and reaction times. 
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3.4.1 Experimental Conditions  

  Nine sets of experimental conditions were prepared in duplicate, which gave a total number 

of 18 experimental sets testing the THMs production under three different temperatures (16 °C, 23 

°C, and 30 °C) and three different chlorine doses (6 mg/L as Cl2, 9 mg/L as Cl2, and 12 mg/L as 

Cl2).  Each set of conditions was tested for seven different contact times: 15 min, 30 min, 45 min, 

60 min, 75 min, 90 min, and 120 min. Therefore, a total of 126 reactor experiment were done: 3 

chlorine doses × 3 temperatures × 7 reaction times × 2 duplicates. Wastewater filtered effluent 

temperature results of the measurements done during the sampling campaigns completed at 

NWRWRF during May, June and July were between 28°C and 33°C. No data were found for 

NWRWRF wastewater temperatures during wintertime. Looking at Tampa weather throughout the 

year: baseline temperature 23 ±1°C represents months of April, May, October, or November, cold 

temperature 16±1°C represents months of December, January, February, or March, and warm 

temperature 30±1°C represents months of June, July, August, or September (US Climate Data, no 

date). Assuming that wastewater treatment would not go below 16°C during the winter, the 

temperature range chosen for this experiment was 16°C–30°C and the three temperatures selected 

were 16°C, 23°C, and 30°C. Chlorine doses were selected based on laboratory preliminary trials 

and the literature review. The goal was to test a realistic range of chlorine doses, from a low dose 

where low THM formation is expected but chlorine residual may be low, to a high dose where 

chlorine residual is sufficient but THM formation may be too high. In preliminary experiments, 

tests were made on 10 and 15 mg/L at 30°C but free chlorine residual and THM formation were 

both found to be too high. Based on these trials, 6, 9, and 12 mg/L chlorine doses were chosen for 

the final experiments. 
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3.4.2 Experiment Description and Setup 
 
 A volume of 500 mL of treated filtered wastewater effluent from NWRWRF was poured 

in 1000 mL beaker, heated to the desired temperature (16 °C, 22 °C, or 30 °C) using a laboratory 

heater, and mixed with a magnetic stirrer. Then, the wastewater was dosed with sodium 

hypochlorite solution at the desired chlorine dose (6, 9, or 12 mg/L as Cl2). Immediately after 

dosing, the batch was mixed by stirrer stick and then poured into 60 mL bottles with no headspace. 

Solutions were allowed to react in the specific temperature in the dark for the following specified 

contact times: 15 min, 30 min, 45 min, 60 min, 75 min, 90 min, and 120 min. At the end of the 

desired reaction time, 10 mL were set aside for measuring free chlorine residual, and the remaining 

solution was quenched with a saturated sodium sulfite solution. Free chlorine residual and THM 

formation were measured based on the methods described in sections 3.2.3 and 3.2.5. Free chlorine 

residual was measured immediately at the specified contact time to ensure that the measured 

residual is properly indicative of the desired reaction time. Also, 2.4 mL was added along with 2.4 

mL hexane in 5 mL vial for THM extraction immediately after quenching the solution. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Conditions at Three Treatment Plants 

One of the objectives of this thesis was to determine and compare the water quality and 

characteristics of NWRWRF, River Oaks AWWTP, and Dale Mabry AWWTP effluent. To 

accomplish this objective, temperature, pH, alkalinity, and COD tests on the three plant’ effluents 

were completed. Tabular data can be found in Appendix B. 

4.1.1 pH, COD, and Alkalinity at NWRWRF, River Oaks, and Dale Mabry Wastewater 

Treatment Plants 

Samples were collected during May and June 2016 from NWRWRF, Dale Mabry, and 

River Oaks AWWTP. Tests for pH, COD, and alkalinity were performed as described in chapter 

3. Figures 4.1, 4.2, and 4.3 show the results obtained for these tests and they are all within the 

expected ranges. Figures 4.4, 4.5, and 4.6 show that conditions at NWRWRF are similar to those 

at the other two AWWTPs. pH and alkalinity values are more similar to those at River Oaks 

AWWTP, and COD values are more close to those at Dale Mabry AWWTP. It is expected that 

chlorine demand and THM formation at NWRWRF would be similar to the other two plants. 

 
Figure 4.1: pH of Treated Effluent at Three Treatment Plants 
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Figure 4.2: Alkalinity of Treated Effluent at Three Treatment Plants 

 
Figure 4.3: COD of Treated Effluent at Three Treatment Plants  
 

 
Figure 4.4: pH Average of Treated Effluent at Three Treatment Plants 
 

 
Figure 4.5: Alkalinity Average of Treated Effluent at Three Treatment Plants 
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Figure 4.6: COD Average of Treated Effluent at Three Treatment Plants 
 
4.1.2 Free Chlorine Residual and THMs Formation at River Oaks and Dale Mabry 

Free chlorine residual and trihalomethane concentrations were measured in the treated 

effluents for River Oaks and Dale Mabry wastewater treatment plants. These parameters were not 

measured for NWRWRF, since the facility doesn’t use chlorine for disinfection. The free chlorine 

residual at River Oaks was in the range expected, around 2 mg/L. At Dale Mabry, the residual was 

higher than would generally be recommended. Chloroform, dibromochloromethane, and 

bromoform met the regulatory limits for both treatment plants; in fact, bromoform was not 

detected. Dichlorobromomethane concentrations exceeded the limit, which is 22 μg/L for class II 

water, according to Florida administrative code rule 62-302.530(35).  However, it is important to 

mention that the grab samples collected were not the final effluent. At the point of discharge, the 

THM concentrations may change due to different factors such as volatilization, and sunlight effect. 

Moreover, an increase of THMs concentration over time was observed in Figure 4.12 for 
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0
5

10
15
20
25
30

NWRWRF Dale Mabry River Oaks

C
O

D
 (m

g/
L)



35 
 

 
Figure 4.7: Free Chlorine Residual at River Oaks and Dale Mabry AWWTPs 
 

 
Figure 4.8: Chloroform Concentrations at River Oaks and Dale Mabry AWWTPs 
 

 
Figure 4.9: Dichlorobromomethane Concentrations at River Oaks and Dale Mabry 
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Figure 4.10: Dibromochloromethane Concentrations at River Oaks and Dale Mabry 
AWWTPs 
 

 
Figure 4.11: Bromoform Concentrations at River Oaks and Dale Mabry AWWTPs 
*Bromoform was not detected at Dale Mabry WWTP 
 

 
Figure 4.12: TTHMs Concentration at River Oaks and Dale Mabry AWWTPs 
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residual. Therefore, chlorine residual was assessed for three different temperatures and chlorine 

doses.   

4.2.1 Characteristics of Wastewater Effluent Collected Prior to Chlorination 

Grab samples were collected from NWRWRF on Sunday September 9, 2016 at 10 AM.  

At this time wastewater influent flow rate was 8.5 MGD. The following table shows the 

characteristics of the wastewater samples collected at this day. 

Table 4.1: NWRWRF Filtered Effluent Water Quality 
Parameters Value 
Temperature 28°C 

pH 7.8 
Alkalinity 225 mg/L as CaCO3 

COD 13 mg/L 
 
4.2.2 Chlorine Dose Effect on Free Chlorine Residual 
 

According to Florida Administrative code 62-600.440, Florida Department of 

Environmental Protection (FDEP) requires a chlorine residual of at least 1 mg/L to be maintained 

after at least 15 min contact time at the peak hourly flow. However, if the number of fecal coliform 

is greater than 10,000 per 100 mL before disinfection, FDEP requires a Ct=120 mg.min/L at least. 

Results showed that free chlorine residual is always higher than 1 mg/L at 15 min, and even 30 

min for all experimental conditions. If fecal coliform number is less than 10,000 per 100 mL in 

effluent prior to disinfection, 6 mg/L chlorine dose would be recommended at all temperatures. 

However, to be conservative, this thesis’ discussion and conclusion was based on the more 

stringent standard, assuming NWRWRF wastewater effluent contains greater than 10,000 per 

100mL fecal coliform, prior to disinfection and Ct should be at least 120 mg.min/L.  

According to Figure 4.13, as expected, free chlorine residual decreased with time due to 

chlorine reaction with pathogens and organic matter in water. The experimental results showed 

that at 23°C, free chlorine residual for chlorine dose of 6 mg/L as Cl2 decreased to 1.8 mg/L in 15 
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min and to 0.55 mg/L in 120 min. For a chlorine dose of 12 mg/L as Cl2, free chlorine residual 

was somewhat high; it dropped to 6 mg/L in 15 min and to 4.3 mg/L in 120 min. For chlorine dose 

of 9 mg/L, free chlorine residual dropped to 3.8 mg/L in 15 min and to 2.6 mg/L in 120 min. 

Chlorine dose of 6 mg/L didn’t meet the FDEP regulation for chlorine residual at all contact times. 

Chlorine doses of 9 mg/L and 12 mg/ met the FDEP standard. However, with higher chlorine dose, 

higher THM production is expected. Therefore, 9 mg/L chlorine dose is recommended at 23°C. 

 
Figure 4.13: Free Chlorine Residual at 23°C  
*Error bars at 6 mg/L chlorine dose are not visible 
 

Figure 4.14 shows that free chlorine concentration decreased with time, at 30°C as well. 

Free chlorine concentration dropped to 1.3, 3.3, and 5.6 mg/L in 15 min, and to 0.1, 1, and 3 mg/L 

in 120 min, respectively for 6, 9, and 12 mg/L chlorine doses. At 30°C, for 6 mg/L chlorine dose, 

free chlorine residual was below the FDEP standard. For chlorine dose of 9 mg/L, free chlorine 

residual met the FDEP standard at 75, 90, and 120 min. However, it did not meet the standard at 

15, 30, 45, and 60 min. For chlorine dose of 12 mg/L, free chlorine residual × contact time was 

always above Ct= 120 mg/min/L, which makes 12 mg/L chlorine dose looks like the best option 

at 30°C. 
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Figure 4.14: Free Chlorine Residual at 30 °C  
*Error bars at 6 mg/L chlorine dose are not visible 
 

In Figure 4.15, it can be observed that free chlorine residual decreased with time at 16 °C. 

For 6, 9, and 12 mg/L chlorine dose, free chlorine residual respectively dropped to 1.5, 4.3, and 

6.1 mg/L in 15 min, and to 0.4, 2.3, and 3.9 mg/L in 120 min. Chlorine dose of 6 mg/L didn’t meet 

the FDEP chlorine residual standard. FDEP standard is met for 9 and 12 mg/L for a contact time 

of 30 min or higher. Since THM formation is expected to be the highest for 12 mg/L and the 

disinfection contact time would be about 30 min, chlorine dose of 9 mg/L would be recommended 

at 16°C. 

 
Figure 4.15: Free Chlorine Residual at 16°C  
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For 6 and 12 mg/L, free chlorine residual at 16°C was less than free chlorine residual at 23°C, 

which is unexpected. For 9 mg/L, free chlorine residual at 23 and 16°C was approximately the 

same. NWRWRF effluent collected was stored in different containers in USF laboratory. When 

the experiment at 16°C started, a new container was opened. Although wastewater filtered effluent 

were collected at the same date and time, it is possible that the water quality varied slightly between 

grab samples, thus between containers, this might have affected the chlorine demand. 

 
Figure 4.16: Free Chlorine Residual for 6 mg/L Chlorine Dose 
 

 
Figure 4.17: Free Chlorine Residual for 9 mg/L Chlorine Dose 
 

 
Figure 4.18: Free Chlorine Residual for 12 mg/L Chlorine Dose  
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4.3 THM Formation  
 

To achieve the objectives of this thesis of quantifying the DBP formation potential and 

determining the effects of temperature and chlorine dose on THM production, THM formation 

was assessed under different conditions. 

4.3.1 Chlorine Dose Effect on THM Formation  
 
 As seen in Figures 4.19, 4.20, and 4.21, the four THM concentrations increased with the 

reaction time increase, as expected. THM production behavior was very similar for the three 

chlorine doses at 23°C. According to these results, chlorine dose didn’t have a big effect at 23°C, 

but contact time certainly did. Bromform wasn’t detected in this experiment, which can be 

contributed to the low bromide concentration in the treated NWRWRF effluent. TTHM 

concentration went to 121 μg/L, 140 μg/L, and 131 μg/L for 6, 9, and 12 mg/L as Cl2 chlorine dose 

respectively, at 120 min as seen in Figure 4.19. Observed concentrations of chloroform, 

dibromochloromethane, and bromoform were all below the FDEP limits even after 120 min of 

contact time. However, at 23°C, dichlorobromomethane concentrations exceeded the FDEP limit 

of 22 μg/L, within 30 min at 6 mg/L chlorine dose, within 15 min at 9 mg/L chlorine dose, and 

within 30 min at 12 mg/L chlorine dose. 

 
Figure 4.19: Chloroform Formation at 23°C  
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Figure 4.20: Dichlorobromomethane Formation at 23°C  

 
Figure 4.21: Dibromochloromethane Formation at 23°C  

 
Figure 4.22: TTHM Formation at 23°C  
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for 9 and 12 mg/L compared to 6 mg/L, but the change in THM concentration was barely seen 

between 9 and 12 mg/L. For dichlorobromomethane, when 12 mg/L chlorine dose was added, 

higher THM concentrations were detected, but concentrations were similar for 6 and 9 mg/L 

chlorine doses. For dibromochlorormethane, concentrations were similar for the three chlorine 

doses, and they were all low and far below the FDEP limits. Overall the total THM formation 

according to Figure 4.23 increased slightly with higher chlorine dose addition. It went up to 135, 

161, and 193 μg/L within 120 min for 6, 9, and 12 mg/L (respectively) chlorine dose as Cl2. 

Observed concentrations of chloroform, chlorodibromomethane, and bromoform were all below 

the FDEP limits even after 120 min of contact time. However, at 30°C, dichlorobromomethane 

concentrations exceeded the FDEP limit of 22 μg/L within 30 min for 9 mg/L chlorine dose, and 

within 15 min for 6 and 12 mg/L chlorine dose. 

 
Figure 4.23: Chloroform Formation at 30°C  
*Error bars at 9 mg/L chlorine dose are not visible 
 

 
Figure 4.24: Dichlorobromomethane Formation at 30°C  
*Error bars at 9 mg/L chlorine dose are not visible 
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Figure 4.25: Dibromochloromethane Formation at 30°C  
 

 
Figure 4.26: TTHM Formation at 30°C  
*Error bars at 9 mg/L chlorine dose are not visible 
 

According to Figures 4.27, 4.28, and 4.29, the four TTHM concentrations increased with 

time at 16°C. Chloroform formation at 9 mg/L chlorine dose was higher than at 6 mg/L. The 

deviation between duplicates was somewhat high for 9 mg/L but the concentrations were always 

under the limits specified by Florida Environmental Protection Department (FDEP). 

Dichlorobromomethane formation was the highest at 12 mg/L. For dibromochloromethane, 

concentrations were similar and low for all three chlorine doses. Observed concentrations of 

chloroform, chlorodibromomethane, and bromoform were all below the FDEP limits even after 

120 min of contact time. However, at 16°C, dichlorobromomethane concentrations exceeded the 

FDEP limit of 22 μg/L within 45 min for 6 mg/L chlorine dose, 30 min for 9 mg/L chlorine dose, 

and 15 min for 12 mg/L chlorine dose. 
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Figure 4.27: Chloroform Formation at 16°C  
 

 
Figure 4.28: Dichlorobromomethane Formation at 16°C  
 

 
Figure 4.29: Dibromochloromethane Formation at 16°C  
 
 Chlorine dose was found to affect chlorine residual and THM formation. The higher the 

chlorine dose, the higher chlorine residual was obtained at all temperatures analyzed, as expected. 

In addition, THM production generally increased with the increase of chlorine dose, as expected. 
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The experimental results agree with the literature review, Sections 2.2.3.3, and 2.3.2. However, 

the effect of chlorine dose on THM formation varied with the individual THM and experimental 

conditions. In general, the effect of chlorine dose was weak. 

4.3.2 Temperature Effect on THM Formation 
 
 Figures 4.30, 4.31, and 4.32 show that chloroform formation was the highest at 30°C for 9 

and 12 mg/L chlorine doses as Cl2. For 6 mg/L chlorine dose as Cl2, concentrations were almost 

equal at both temperature 23°C and 30°C. Chloroform formation at 16°C was the lowest, as 

expected. 

 
Figure 4.30: Chloroform Formation for 6 mg/L Chlorine Dose  
 

 
Figure 4.31: Chloroform Formation for 9 mg/L Chlorine Dose 
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Figure 4.32: Chloroform Formation for 12 mg/L Chlorine Dose  

According to Figure 4.33, 4.34, and 4.35, dichlorobromomethane formation was the 

highest at 30°C but concentrations at 23 and 16°C were similar for 6 and 12 mg/L chlorine dose. 

For 9 mg/L chlorine dose as Cl2, dichlorobromomethane production was similar at the three 

temperatures 16, 23, and 30°C. 

 
Figure 4.33: Dichlorobromomethane Formation for 6 mg/L Chlorine Dose 
 

 
Figure 4.34: Dichlorobromomethane Formation for 9 mg/L Chlorine Dose 
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Figure 4.35: Dichlorobromomethane Formation for 12 mg/L Chlorine Dose 
 

According to Figures 4.36, 4.37, and 4.38, dibromochloromethane formation was low (<8 

μg/L) and similar for the different temperatures examined. 

 
Figure 4.36: Dibromochloromethane Formation for 6 mg/L Chlorine Dose  
 

 
Figure 4.37: Dibromochloromethane Formation for 9 mg/L Chlorine Dose 
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Figure 4.38: Dibromochloromethane Formation for 12 mg/L Chlorine Dose 
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contact time. As expected, THM formation in the experiment was close to THM formation at River 

Oaks and Dale Mabry AWWTPs. 

 
Figure 4.39: Chloroform Concentration Averages at River Oaks AWWTP, Dale Mabry 
AWWTP, and for the 30 °C Experiments on NWRWRF Filtered Effluent 
 

 
Figure 4.40: Dichlorobromomethane Concentration Averages at River Oaks AWWTP, 
Dale Mabry AWWTP, and for the 30 °C Experiments on NWRWRF Filtered Effluent 
 

 
Figure 4.41: Dibromochloromethane Concentration Averages at River Oaks AWWTP, 
Dale Mabry AWWTP, and for the 30 °C Experiments on NWRWRF Filtered Effluent 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 
 

The overall research question that was addressed by this thesis is “Can NWRWRF switch 

to chlorine disinfection and meet regulatory compliance?” and the specific objectives of this 

research were (1) to compare NWRWRF typical operating conditions and water quality to those 

of two nearby facilities (River Oaks and Mabry Advanced Wastewater Treatment Plants) that 

currently employ chlorine disinfection, (2) to determine the chlorine demand of treated effluent 

for NWRWRF, (3) to quantify the DBP formation potential of treated effluent for NWRWRF, and 

(4) to determine the effects of temperature, reaction time, and chlorine dose on chlorine demand 

and THM formation.    

NWRWRF effluent water quality was compared to River Oaks and Dale Mabry AWWTPs. 

Results obtained from monitoring River Oaks AWWTP, Dale Mabry AAWTPs, and NWRWRF 

showed that the plants effluent water quality parameters (pH, COD, and alkalinity) are within the 

expected ranges. Free chlorine residual at River Oaks AAWTP was in an accepted range, between 

1.3 and 3.3 mg/L. However, at Dale Mabry AAWTP, free chlorine residual was a little high, 

between 3.2 and 6 mg/L. Effluent wastewater THM concentrations at River Oaks and Dale Mabry 

meet the limits set by FDEP except for dichlorobromomethane concentrations. At River Oaks and 

Dale Mabry AAWTPs, pH of 7.0–8.0, chemical oxygen demand (COD) of 13–26 mg/L, alkalinity 

of 200–250 mg/L as CaCO3, chlorine residual of 1.5–6.0 mg/L, and total trihalomethanes of 100–

190 μg/L (mostly chloroform) were observed.  At NWRWRF, pH of 7.3 -7.8, COD of 12-19 mg/L, 

alkalinity of 197-225 mg/L as CaCO3 were obtained from the tests completed. Statistical analysis 

showed that conditions at NWRWRF were similar to those at the other two treatment plants, more 
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similar to River Oaks AWWTP for pH and alkalinity and to Dale Mabry AWWTP for COD. Based 

on the fact that the NWRWRF water quality was similar to that at River Oaks and Dale Mabry 

AWWTPs, it would be expected that chlorination of NWRWRF effluent would result in similar 

THM production as well. 

Experiments to assess the effects of chlorine dose and temperature of free chlorine residual 

and trihalomethanes formation on NWRWRF filtered effluent were successfully completed for 6, 

9, and 12 mg/L chlorine dose as Cl2 and at 16°C, 23°C, and 30°C in duplicates for 7 reaction times: 

15, 30, 45, 60, 75, 90, and 120 min. A total of 126 batch reactors were prepared: 3 chlorine doses 

× 3 temperatures × 7 contact times × 2 duplicates. Samples were tested for free chlorine residual 

and THM production after being chlorinated at the specific conditions and contact times. 

Chlorine demand of NWRWRF filtered effluent and the factors affecting it were assessed. 

Chlorination of NWRWRF filtered effluent showed that free chlorine residual decreased with the 

increase of contact time, decreased with increase of temperature, and decreased with the decrease 

of chlorine dose added. Assuming that the number of fecal coliform is greater than 10,000 per 

100 mL before disinfection, therefore Ct should be at least 120 mg.min/L according to Florida 

administrative code 62-600.440, 6 mg/L chlorine dose resulted in a low free chlorine residual 

below the Ct= 120 mg.min/L standard at all temperatures. At 16 and 23°C, both 9 mg/L and 12 

mg/L chlorine dose met the FDEP chlorine residual standard but since a higher chlorine dose 

would be expected at 12 mg/L, a chlorine dose of 9 mg/L would be recommended at 16 and 23°C. 

At 30°C, 12 mg/L chlorine dose is recommended at all contact times. However, if at least 1 mg/L 

of free chlorine residual is required at a contact time of at least 15 min at peak hourly flow 

according to Florida administrative code 62-600.440 is to be adopted, 6 mg/L chlorine dose would 

meet the FDEP standard at all temperatures. 
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THMs formation and the factors affecting it were examined. During chlorination of 

NWRWRF filtered effluent, the production of THM was increasing with the increase of contact 

time. The formation of THM generally went up with temperature and chlorine doses, but in many 

cases, the effect was weak. At 23°C, chlorine dose did not have an effect of THM formation. 

Chloroform, dibromochloromethane, and bromoform met the limits set by FDEP for all the 

chlorines doses and at all the temperatures. Dichlorobromomethane frequently exceeded the limit 

set by FDEP. For all conditions tested, dichlorbromomethane concentration was greater than the 

FDEP 22 μg/L limit within 30 min.  As expected, THM formation in the experiment was similar 

to the THM formation at River Oaks AWWTP and Dale Mabry AWWTP. 

The answer of the overall question: “Can NWRWRF switch to chlorine disinfection?” is 

that disinfection of NWRWRF filtered effluent using sodium hypochlorite would be an efficient 

method and would meet the THM limits set by FDEP at all temperatures and chlorine doses except 

for dichlorobormomethane. However, according to Florida Administrative code 62-302-400, the 

proposed new regulation set the dichlorobromomethane limit to 57 μg/L. If the proposed regulation 

becomes effective, chlorination would be a good option for NWRWRF as a disinfection technique. 

If chlorination is selected as the new disinfection method, chlorine dose of 12 mg/L would be 

recommended at 30°C and a chlorine dose of 9 mg/L would be recommended at 16–23°C. 
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Appendix A: List of Acronyms 
 
AWWTP Advanced wastewater treatment plant 
 
BOD  Biochemical oxygen demand 

ECD  Electron capture detector 

EPA  Environment Protection Agency  

FDEP  Florida Department of Environmental Protection  

COD  Chemical oxygen demand 

DBP  Disinfection by-product 

DBCM  Dibromochloromethane 

DCAA  Dichloroacetic acid concentration  

DCBM  Dichlorobromomethane 

DPD  N, N diethyl-1,4 phenylenediamine sulfate 

GC  Gas chromatography 

HAA  Haloacetic acid 

HCPUD  Hillsborough County Public Utilities Department  

HRT  Hydraulic residence time 

MGD  Million gallons per day 

NOM  Natural organic matter 

NWRWRF Northwest Water Regional Reclamation Facility 

PAA  Peracetic acid 

AA  Acetic acid 

pH  potential of hydrogen  

PFR  Plug flow reactor 

TCAA  Trichloroactecic acid concentration 

THM  Trihalomethane 
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TTHM  Total trihalomethane 
 
TOC  Total organic carbon 
 
UV-254 Ultraviolet absorbance at 254 nm  
 
WAS  Waste activated sludge 
 
WWTP Wastewater treatment plant
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Appendix B: Sampling Campaigns Data 
 
Table B1.1: River Oaks Sampling Campaigns Water Quality Results 

Date of Sampling Sampling point 

 
    Temperature  

(°C) 
 

Free 
Chlorine 
Residual 
(mg/L) 

COD  
(mg/L) pH 

Alkalinity 
(mg/L as 
CaCO3) 

Influent Flow 
Rate (MGD) 

Tuesday 5/10/2016 at 
9:30 am Chlorinated effluent 30 1.3 - 8.0 194 NA 

Tuesday 5/17/2016 at 
10.42am Chlorinated effluent 29 1.4 - 8.0 205 NA 

Thursday 5/19/2016 
at 11:05 am Chlorinated effluent 29 2.0 - 7.5 199 7.6 

Monday 5/23/2016 at 
4:40 pm Chlorinated effluent 30 - - 8.1 210 8.3 

Wednesday 5/25/201 
at 4:00 pm Chlorinated effluent 30 3.0 - 7.6 202 8.9 

Friday 5/27/2016 
at10: 30am Chlorinated effluent 29 1.8 - 7.4 214 8.9 

Saturday 5/28/2016 at 
10:10 am Chlorinated effluent 30 3.3 18 7.3 218 - 

Thursday 6/2/2016 at 
9:40 am Chlorinated effluent 29 1.8 26 7.2 205 9.5 

Friday 6/3/2016 at 
9:50 am Chlorinated effluent 30 2.9 14 7.2 200 8.0 
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TableB1.2: River Oaks Sampling Campaigns THM Production Results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Date of Sampling Chloroform 
(μg/L) 

Dichlorobromomethane 
(μg/L) 

Dibromochloromethane 
(μg/L) 

Bromoform 
(μg/L) 

Tuesday 5/10/2016 
at 9:30 am 64 28 12 1 

Tuesday 5/17/2016 
at 10.42am 61 32 8 1 

Thursday 5/19/2016 
at 11:5 am 76 40 12 1 

Monday 5/23/2016 
at 4:40 pm 78 41 12 2 

Wednesday 
5/25/2016 at 4:00 
pm 

81 47 10 1 

Friday 5/27/2016 at 
10:30am 90 47 14 2 

Saturday 5/28/2016 
at 10:10 am 90 59 14 2 

Thursday 6/2/2016 
at 9:40 am 93 72 22 4 

Friday 6/3/2016 at 
9:50 am 100 64 22 3 
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Table B1.3: Dale Mabry Sampling Campaigns Water Quality Results 
 

 
 
 

Date of sampling Sampling point Temperature 
(°C) 

Free Chlorine 
Residual  
(mg/L) 

COD 
(mg/L) pH 

Alkalinity 
(mg/L as 
CaCO3) 

Influent 
Flow Rate 

(MGD) 

Tuesday 5/10/2016 
at 10:30 am 

Chlorinated 
effluent 26 - - 8.2 242 NA 

Tuesday 5/17/2016 
at 11:25 am 

Chlorinated 
effluent 28 - - 8.1 239 2.96 

Thursday 5/19/2016 
at 1:35 pm 

Chlorinated 
effluent 30 - - 8.1 245 2.68 

Monday 5/23/2016 
at 3:49 pm 

Chlorinated 
effluent 28 - - 8.1 246 2.40 

Wednesday 
5/25/2016 at 
3:00pm 

Chlorinated 
effluent 

28 4.6 - 8.2 259 2.17 

Friday 5/27/2016 at 
9:30 am 

Chlorinated 
effluent 26 6.0 - 8.0 250 2.40 

Saturday 5/28/2016 
at 11:20 am 

Chlorinated 
effluent 28 3.2 - 7.8 246 3.90 

Thursday 6/2/2016 
at 11:45 am 

Chlorinated 
effluent 28 3.5 14 7.7 250 2.53 

Friday 6/3/2016 at 
11:21am 

Chlorinated 
effluent 29 3.6 13 7.7 250 2.35 
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Table B1.4: Dale Mabry Sampling Campaigns THM Production Results 
  

Date of Sampling 
Chloroform 

(μg/L) 
Dichlorobromomethane 

(μg/L) 
Dibromochloromethane 

(μg/L) 
Bromoform 

(μg/L) 
Tuesday 5/10/2016 at 
9:30 am 104 19 1 ND 

Tuesday 5/17/2016 at 
10.42am 100 21 2 

ND 

Thursday 5/19/2016 
at 11:5 am 129 24 2 

ND 

Monday 5/23/2016 at 
4:40 pm 136 25 2 ND 

Wednesday 
5/25/2016 at 4:00 pm 141 24 2 ND 

Friday 5/27/2016 at 
10:30am 116 25 2 

ND 

Saturday 5/28/2016 at 
10:10 am 126 29 3 

ND 

Thursday 6/2/2016 at 
9:40 am 148 31 3 

ND 

Friday 6/3/2016 at 
9:50 am 148 32 3 

ND 

*ND: not detected 
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Table B1.5: NWRWRF Sampling Campaigns Water Quality Results   
 

Date 
 

Sampling point Temperature 
(°C) 

COD 
(mg/L) pH 

Alkalinity 
(mg/L as 
CaCO3) 

Influent 
Flow Rate 

(MGD) 
Tuesday 5/10/2016 at 
11:30 am Filtered effluent 28 - 7.7 197 6.3 

Tuesday 5/17/2016 at 
12:3 pm Filtered effluent 30 - 7.5 209.5 6.9 

Thursday 5/19/2016 
at 11:49 am Filtered effluent 30 - 7.7 214 N/A 

Monday 5/23/2016 at 
3:15 pm Filtered effluent 30 - 7.8 218 5.25 

Wednesday 
5/25/2016 at 4:40 pm Filtered effluent 30 - 7.7 214 8.9 

Friday 5/27/2016 at 
11:30 am Filtered effluent 30 - 7.3 223 7.5 

Saturday 5/28/2016 at 
12:30 pm Filtered effluent 30 19 7.3 205 N/A 

Thursday 6/2/2016 at 
10:45 am Filtered effluent 29 15 7.4 214 6.3 

Friday 6/3/2016 at 
10:45 am Filtered effluent 31 16 7.3 209 1.8 

Thursday 6/9/2016 at 
10:00 am Filtered effluent 31 13 7.6 200 8.8 

Tuesday 6/14/2016 at 
9:12 am Filtered effluent 31 15 7.4 209 9.1 

Friday 6/17/2016 at 
9:00 am Filtered effluent 31 15 7.6 214 8.0 

Monday 6/27/2016 at 
10:20 am Filtered effluent 31 15 7.3 214 8.5 

Tuesday 7/5/2016 at 
1:30 pm Filtered effluent 33 12 --- 209 8.7 
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Appendix C: Preliminary Chlorine Doses Trials on NWRWRF Filtered Effluent 
 
Table C1.1: Free Chlorine Residual for 8.3 mg/L Chlorine Dose at 22°C 

 
 

Contact 
Time (min) 

 
 

Free Chlorine 
Residual- 

Duplicate 1  (mg/L) 

 
 

Free Chlorine 
Residual– 

Duplicate 2 (mg/L) 

 
 

Free Chlorine 
Residual – 

Duplicate 3 (mg/L) 

 
 

Free Chlorine 
Residual -Duplicate 

4 (mg/L) 

 
 

Average Free 
Chlorine Residual 

(mg/L) 
0 8.3 8.3 8.3 8.3 8.3 
15 3.7 3.7 3.9 4.2 3.9 
30 3.3 3.5 3.3 3.4 3.4 
45 3.0 3.1 2.9 3.0 3.0 
60 2.8 3.0 2.9 2.8 2.9 
75 2.5 2.9 2.6 2.7 2.7 
90 2.4 2.5 2.7 2.7 2.6 
120 1.8 2.0 2.2 2.2 2.1 

 
Table C1.2: Free Chlorine Residual for 10 mg/L Chlorine Dose at 22°C 

Contact 
Time (min) 

Free Chlorine 
Residual-Duplicate 1  

(mg/L) 

Free Chlorine 
Residual –Duplicate 2 

(mg/L) 

Free Chlorine 
Residual – 

Duplicate 3 (mg/L) 

Free Chlorine 
Residual –

Duplicate 4 (mg/L) 

Average Free 
Chlorine Residual 

(mg/L) 
0 10 10 10 10 10.0 
15 5.5 5.6 5.4 5.3 5.5 
30 5.1 5.1 4.8 4.9 5.0 
45 4.7 4.5 4.6 4.4 4.6 
60 4.4 4.3 4.1 4.1 4.2 
75 4.2 4.2 3.8 4 4.1 
90 3.9 3.9 3.9 3.8 3.9 
120 3.6 3.5 3.5 3.5 3.5 
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Table C1.3: Free Chlorine Residual for 15 mg/L Chlorine Dose at 22°C 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table C1.4: Free Chlorine Residual for 20 mg/L Chlorine Dose at 22°C 
 
 
 
 
 
 
 
 
 

Contact 
time (min) 

 
 

Free Chlorine 
Residual-Duplicate 

1  (mg/L) 

 
 

Free Chlorine Residual –
Duplicate 2 (mg/L) 

 
 

Free Chlorine 
Residual –Duplicate 

3 (mg/L) 

 
Average Free 

Chlorine 
Residual (mg/L) 

0 15 15 15 15 
15 10 10 9.4 15 
30 9.4 9.2 9.2 9.8 
45 8.6 9.0 8.4 9.3 
60 8.4 8.4 8.0 8.7 
75 8.4 8.5 7.9 8.3 
90 8.2 8.0 7.7 8.3 
120 7.7 7.7 7.2 8.0 

Contact time 
(min) 

Free Chlorine residual  
(mg/L) 

0 20.0 
15 14.2 
30 13.4 
45 12.8 
60 12.8 
75 12.6 
90 12.2 
120 11.8 
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Table C1.5: Free Chlorine Residual for 10 mg/L Chlorine Dose at 30°C 

Contact time 
(min) 

Free Chlorine Residual-
Duplicate 1  (mg/L) 

Free Chlorine Residual 
–Duplicate 2 (mg/L) 

 
 

Average Free 
Chlorine 

Residual (mg/L) 

0 10 10 10 

15 5.1 5 5.1 

30 4.3 4.4 4.4 

45 4.1 4 4.1 

60 3.8 3.6 3.7 

75 3.4 3.4 3.4 

90 3.2 3.1 3.2 

120 2.8 2.6 2.7 
 

Table C1.6: Free Chlorine Residual for 15 mg/L Chlorine Dose at 30°C 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
. 
 
 
 
 

 

Contact 
time (min) 

Free Chlorine Residual-
Duplicate 1  (mg/L) 

Free Chlorine 
Residual –

Duplicate 2 (mg/L) 

Average Free 
Chlorine 

Residual (mg/L) 

0 15 15 15.0 

15 -- 9.2 9.2 

30 9.6 8.6 9.1 

45 9 8 8.5 

60 9 7.7 8.4 

75 7.4 7.5 7.5 

90 7.4 7.1 7.3 

120 6.4 6.5 6.5 
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Table C1.7: Free Chlorine Residual for 20 mg/L Chlorine Dose at 30°C 

 
Table C1.8: THMs Formation for 10 mg/L Chlorine Dose at 30°C 

* ND: not detected 
 
Table C1.9: THMs Formation for 15 mg/L Chlorine Dose at 30°C 

*ND: not detected 
 

 

 
 
 

Contact 
time 
(min) 

 
 

Free Chlorine 
Residual-

Duplicate 1  
(mg/L) 

 
 

Free Chlorine 
Residual –
Duplicate 2 

(mg/L) 

 
 

Free Chlorine 
Residual –
Duplicate 3 

(mg/L) 

 
 
 

Average Free 
Chlorine Residual 

(mg/L) 
0 20 20 20 20 
15 13.8 14.4 14 14.1 
30 13.2 13.6 13.6 13.5 
45 12.4 13.4 13.2 13.0 
60 12.2 12.6 12.6 12.5 
75 12.6 12.2 12.2 12.3 
90 11.6 11.8 11.6 11.7 
120 11 11.4 11 11.1 

Contact 
time 
(min) 

Chloroform  
(μg/L) 

Dichlorobromo-
methane (μg/L) 

Bromodichloro-
methane  (μg/L) 

Bromoform 
(μg/L) 

TTHM 
(μg/L) 

15 74 30 3 ND 108 
30 88 37 4 ND 130 
45 104 41 5 ND 150 
60 116 47 5 ND 168 

75 122 52 5 ND 180 
90 132 51 6 ND 189 
120 138 54 6 ND 198 

Contact 
time 
(min) 

Chloroform  
(μg/L) 

Dichlorobromo
- methane 

(μg/L) 

Bromodichloro-
methane  (μg/L) 

Bromoform  
(μg/L) 

TTHM 
(μg/L) 

15 76 33 4 ND 113 
30 162 58 7 ND 227 
45 114 46 6 ND 167 
60 134 52 6 ND 191 
75 142 55 6 ND 204 
90 215 67 8 ND 290 
120 202 65 8 ND 276 
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Appendix D: Free Chlorine Residual and THM Formation Experimental Data  
 
Table D1.1: Free Chlorine Residual at Temperature 23°C 

                                         Free Chlorine Residual (mg/L) 
          Chlorine Dose 
                      (mg/L) 
                                  
Time (min) 

 
6 mg/L 

 
9 mg/L 

 
12 mg/L 

15 1.8 4.0 6.1 
30 1.4 3.9 5.7 
45 1.2 3.6 5.6 
60 1.0 3.2 5.4 
75 0.8 2.9 5.1 
90 0.7 2.8 4.8 
120 0.6 2.6 4.3 

 
Table D1.2: Free Chlorine Residual at Temperature 30°C 

                                         Free Chlorine Residual (mg/L) 
          Chlorine Dose 
                      (mg/L) 
                                  
Time (min) 

 
6 mg/L 

 
9 mg/L 

 
12 mg/L 

15 1.3 3.3 5.6 
30 0.9 2.7 5.2 
45 0.7 2.2 4.6 
60 0.5 1.6 4.1 
75 0.3 1.5 3.9 
90 0.2 1.3 3.5 
120 0.1 1.0 3.1 

 
Table D1.3: Free Chlorine Residual at Temperature 16°C 

                                         Free Chlorine Residual (mg/L) 

          Chlorine Dose 
                      (mg/L) 
                                  
Time (min) 

 
6 mg/L  

 
9 mg/L 

 
12 mg/L 

15 1.5 4.3 6.1 
30 1.1 3.7 5.3 
45 0.9 3.3 4.3 
60 0.9 3.3 4.1 
75 0.7 2.7 4.0 
90 0.4 2.6 3.8 
120 0.4 2.3 3.9 
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Table D1.4: Chloroform Formation at Temperature 23°C 
                                               Concentration (μg/L) 

          Chlorine Dose 
                      (mg/L) 
                                  
Time (min) 

 
6 mg/L 

 
9 mg/L 

 
12 mg/L 

15 46 48 47 
30 60 61 62 
45 66 72 68 
60 72 77 74 
75 76 76 78 
90 80 86 84 
120 80 94 86 

 
Table D1.5: Dichlorobromomethane Formation at Temperature 23°C 

                           Concentration (μg/L) 

          Chlorine Dose 
                      (mg/L) 
                                  
Time (min) 

 
6 mg/L 

 
9 mg/L 

 
12 mg/L 

15 20 21 24 
30 26 27 30 
45 31 31 32 
60 32 32 35 
75 34 36 36 
90 36 40 40 
120 36 41 40 

 
Table D1.6: Dibromochloromethane Formation at Temperature 23°C 

                           Concentration (μg/L) 

          Chlorine Dose 
                      (mg/L) 
                                  
Time (min) 

 
6 mg/L 

 
9 mg/L 

 
12 mg/L 

15 3 3 3 
30 4 3 4 
45 4 4 4 
60 4 4 4 
75 5 4 4 
90 5 5 4 
120 5 5 5 
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Table D1.7: Chloroform Formation at Temperature 30°C 
                                               Concentration (μg/L) 

          Chlorine Dose 
                      (mg/L) 
                                  
Time (min) 

 
6 mg/L 

 
9 mg/L 

 
12 mg/L 

15 45 56 32 
30 53 68 54 
45 62 76 69 
60 64 83 75 
75 78 93 92 
90 77 103 102 
120 87 116 127 

 
Table D1.8: Dichlorobromomethane Formation at Temperature 30°C 

                           Concentration (μg/L) 

          Chlorine Dose 
                      (mg/L) 
                                  
Time (min) 

 
6 mg/L 

 
9 mg/L 

 
12 mg/L 

15 26 20 28 
30 31 25 37 
45 35 29 42 
60 35 31 45 
75 40 33 51 
90 40 36 52 
120 43 40 58 

 
Table D1.9: Dibromochloromethane Formation at Temperature 30°C 

                           Concentration (μg/L) 

          Chlorine Dose 
                      (mg/L) 
                                  
Time (min) 

 
6 mg/L 

 
9 mg/L 

 
12 mg/L 

15 3 3 3 
30 4 4 5 
45 5 4 5 
60 5 4 5 
75 5 4 6 
90 5 5 6 
120 5 5 7 
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Table D1.10: Chloroform Formation at Temperature 16°C 
                                     Concentration (μg/L) 
          Chlorine Dose 
                      (mg/L) 
                                  
Time (min) 

 
6 mg/L 

 
9 mg/L 

15 - 31 
30 - 35 
45 21 40 
60 23 43 
75 26 41 
90 29 41 
120 31 50 

 
Table D1.11: Dichlorobromomethane Formation at Temperature 16°C 

                Concentration (μg/L) 

          Chlorine Dose 
                      (mg/L) 
                                  
Time (min) 

 
6 mg/L 

 
9 mg/L 

 
12 mg/L 

15 17 12 25 
30 22 23 28 
45 25 36 33 
60 31 31 38 
75 32 34 43 
90 31 36 42 
120 36 42 46 

 
Table D1.12: Dibromochloromethane Formation at Temperature 16°C 

                           Concentration (μg/L) 

          Chlorine Dose 
                      (mg/L) 
                                  
Time (min) 

 
6 mg/L 

 
9 mg/L 

 
12 mg/L 

15 4 3 4 
30 4 3 4 
45 4 4 5 
60 5 4 5 
75 5 5 6 
90 5 6 6 
120 5 6 6 
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Appendix E: Analytical Methods Instruments 
 
Table E1.1: Instruments, Limits of Quantification or Range of Analytes 

Analyte Instrument LOQ or Range 
Alkalinity Manual Titrant 50 mg/L as CaCO3 

pH Oakton pH 2700 standard 
laboratory pH meter 0-14 

COD HACH® DR2800 0-40 mg/L 

Free chlorine residual Hach pocket colorimeter LR: 0-2 mg/L 
HR: 2- 8 mg/L 

Chloroform Clarus 500 GC/ECD 20 μg/L 
Dichlorobromomethane Clarus 500 GC/ECD 2 μg/L 
Dibromochloromethane Clarus 500 GC/ECD 2 μg/L 

Bromoform Clarus 500 GC/ECD 2 μg/L 

Ammonia + nitrate Timberline ammonia analyzer 
instrument TL-2800 0.05 mg/L 
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