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ABSTRACT

ENERGY EFFICIENCY EXPLORATION OF
COARSE-GRAIN RECONFIGURABLE ARCHITECTURE

WITH EMERGING NONVOLATILE MEMORY

FEBRUARY 2015

XIAOBIN LIU

B.Sc., TONGJI UNIVERSITY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell Tessier

With the rapid growth in consumer electronics, people expect thin, smart and

powerful devices, e.g. Google Glass and other wearable devices. However, as portable

electronic products become smaller, energy consumption becomes an issue that limits

the development of portable systems due to battery lifetime. In general, simply

reducing device size cannot fully address the energy issue.

To tackle this problem, we propose an on-chip interconnect infrastructure and pro-

gram storage structure for a coarse-grained reconfigurable architecture (CGRA) with

emerging non-volatile embedded memory (MRAM). The interconnect is composed

of a matrix of time-multiplexed switchboxes which can be dynamically reconfigured

with the goal of energy reduction. The number of processors performing computation

can also be adapted. The use of MRAM provides access to high-density storage and

lower memory energy consumption versus more standard SRAM technologies. The

combination of CGRA, MRAM, and flexible on-chip interconnection is considered for

v



signal processing. This application domain is of interest based on its time-varying

computing demands.

To evaluate CGRA architectural features, prototype architectures have been pro-

totyped in a field-programmable gate array (FPGA). Measurements of energy, power,

instruction count, and execution time performance are considered for a scalable num-

ber of processors. Applications such as adaptive Viterbi decoding and Reed Solomon

coding are used for evaluation. To complete this thesis, a time-scheduled switchbox

was integrated into our CGRA model. This model was prototyped on an FPGA. It

is shown that energy consumption can be reduced by about 30% if dynamic design

reconfiguration is performed.
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CHAPTER 1

INTRODUCTION

1.1 Embedded Signal Processing Trends

As the use of mobile applications expands, data transfer between users and service

providers is a bottleneck for “everything in your pocket”. Concepts such as wearable

devices and cloud computing continue to push the edge of wireless communication.

Improved wireless communication would allow consumers to have richer user expe-

riences, such as fast file transfers, multimedia streaming and online gaming. It has

been projected that the daily average for received data per device will increase from

the current 10MB value to over 280MB by 2020, possibly reaching 680MB by 2028

[27, 43]. Figure 1.1 shows that computing power would be quickly drained by dras-

tic increases in requirements of multimedia applications. This motivation is now the

single most important driver for semiconductor foundries to keep fighting deviations

from Moore’s Law. Even though new transistor technologies continue to be proposed

and manufactured, e.g. multigate transistor, performance gains can no longer be

assured simply by boosting clock frequency. New hardware architectures optimized

for embedded signal processing must be proposed to take advantage of the additional

transistors, achieving a goal of high data transfer rate while maintaining an energy

budget.

Many low power techniques have been proposed at the circuit, architecture and

device levels to address the energy efficiency problem over the past decade [17, 31, 36].

For digital signal processing algorithms, an application-specific integrated circuit

(ASIC) would be the best solution for an application in terms of power and per-

1



Figure 1.1: Computational power requirements for social sites in the form of text,
image, video and audio along with available CPU computing power [42].

formance characteristics [8]. However, the high cost and limited flexibility of ASICs

prohibit them from reaching market quickly. To obtain acceptable performance and

platform flexibility, a digital signal processor (DSP) has been proposed and developed.

This architecture is optimized for digital signal processing datapaths. In state-of-the-

art DSPs, a general-purpose processor (e.g. an ARM processor) is coupled with other

coprocessors (e.g. network and graphics processing units) as well as a DSP core [52].

A system-on-chip solution provides high programmability for a wide variety of appli-

cations, but power dissipation largely constrains its usage in mobile devices which are

powered by batteries. The inherent sequential nature of DSPs also limits parallelism

extraction which could support speedup. Another significant bottleneck is the latency

associated with data transfer between off-chip memory and on-chip registers [14].

To balance hardware performance and software flexibility, reconfigurable com-

puting has been proposed to fill the gap between DSPs and ASICs. Reconfigurable

systems are classified into two categories based on the size of their elementary logic

elements: fine-grained and coarse-grained. The former can be reconfigured at the bit

level while the latter generally contains functional units at the word level. The Field

2



Figure 1.2: Comparison of peak performance, power efficiency, and programmability
of different architecture design styles [22].

Programmable Gate Array (FPGA) is the most common fine-grained architecture

[42]. FPGAs are capable of exploiting hardware benefits by parallelizing repetitive

datapaths at the gate level. SRAM-based LUTs are fine-grained devices which can

implement arbitrary logic functions, increasing ease of programming. However, most

signal processing algorithms use many wide and complex arithmetic operations. This

is not optimal for FPGAs since this requirement leads to excessive interconnect use

[21]. Another issue is energy and area. Conventional FPGAs are composed of a sea

of SRAM blocks. Though the 6-T architecture of an SRAM provides acceptable read

and write speed, it sacrifices area and energy to achieve this goal.

To address the previously described problems of fine-grained reconfigurable archi-

tectures, two architectural solutions can be considered: coarse-grained reconfigurable

architectures (CGRA) [7, 21] and emerging non-volatile memory (NVM) [32, 29, 26].

Coarse-grained reconfigurable architectures feature multiple simple processing el-

ements (PE) which are composed of a complete ALU and peripheral circuitry (shown

3



Figure 1.3: Details of a typical CGRA processing element (PE)

in Figure 1.3). The PE itself cannot be modified, although its interconnection is re-

configurable. A prime advantage of coarse-grained versus fine-grained reconfigurables

is that coarse-grained architectures need less configuration data than FPGAs do,

which results in faster reconfiguration speed (they can adapt to applications quicker).

Coarse-grained architectures are suitable for computation-intensive workloads while

nonvolatile memory offers resources for improvements on memory-intensive tasks.

These two solutions form the cornerstone of our innovative architecture which tar-

gets energy efficiency while maintaining a pre-specified performance level. Figure

1.2 depicts pros and cons of different digital signal processing platforms in terms of

performance, programmability and power.

Coarse-grained reconfigurable arrays (CGRAs) that include a grid of simple ALU-

based processing elements and limited inter-element communication have been shown

to be effective at implementing signal processing applications [21]. These devices

are typically better suited for streaming applications that can be parallelized across

abundant CGRA arithmetic units than their fine-grained field-programmable gate

4



array (FPGA) counterparts. Often, the amount of programming information needed

to configure a CGRA can reach into the millions of bits [21] and the amount of time

needed to change configurations can be an impediment to rapid application update.

This issue can be addressed by caching multiple application configurations on chip in

SRAM, preventing the need for time-consuming accesses to off-chip DRAM. However,

for many embedded applications, the extra leakage energy dissipated by SRAM-based

configuration memory is unacceptable.

In this thesis work, we address concerns about CGRA reconfiguration time and

energy in response to changing environmental parameters for signal processing ap-

plications. Our main contribution is the storage of multiple CGRA configurations

in magnetic RAM (MRAM) close to their target resources. This emerging memory

architecture is well suited to bulk configuration storage, given its non-volatile and low

leakage characteristics. The reduced size of MRAM in contrast with SRAM allows

for increased configuration storage with the ability to support numerous applications,

both active and inactive. A full CGRA architecture including compute blocks, inter-

connect, and configuration cache is introduced and validated. Our work includes a full

evaluation of MRAM implementation tradeoffs and interfacing. We demonstrate that

this memory design is rapidly responsive to changes in processing demands, providing

just enough computation to the target application.

1.2 Thesis Overview

In this thesis we address some of the problems which have prevented CGRAs

from being used as a more energy-efficient solution. We evaluate these advancements

through the use of architectural techniques:

• In signal processing tasks, the computational workload is not always constant

in terms of complexity. A good example is coding/decoding algorithms. For

some Forward Correction Codes (FCC), the code rate is largely dependent on
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the signal-to-noise ratio (SNR), which represents how much data in a wireless

channel is likely to be corrupted. If the SNR is temporarily low, the data

received could be unreliable, and more computing power and effort would be

required to decode and correct possible errors in the received data stream. In

such a scenario, more processing elements (PEs) of a CGRA would be preferred

to maintain an acceptable throughput, although this action may lead to an

increase in energy. This result is acceptable as long as long term energy con-

sumption is reduced. Alternatively, it would be possible to power down some

PEs if the signal quality is higher to reduce energy consumption.

• In each PE, an ALU needs access to configuration memory to determine func-

tionality and interconnection and register files to perform computing. In a

conventional CGRA, memory is built from 6-Transistor SRAM cells. Since

SRAM is faster than other prevailing memory techniques (e.g DRAM and flash

memory), SRAM is commonly the choice for on-chip memory solutions for high-

performance computing. However, the 6 transistors in each SRAM cell lead to

significant leakage, making SRAM power-hungry. Besides energy, an SRAM cell

occupies 3 times the area of a DRAM cell. Portable and wearable devices and

other embedded systems, could benefit from reduced energy consumption. A

new memory technique is needed which can provide significant capacity while

allowing for fast configuration access.

• Interconnect accounts for a large portion of area (80%-90% of total area) [53]

and energy consumption (50%-60% of total energy consumption) [55] in spatial

archiectures. To better use on-chip resources, time-scheduled interconnect was

proposed. Some CGRA architectures including RaPiD [16] and Matrix [38]

optimize the interconnect via a combination of scheduled and static switching.

However, neither of these two projects studied an optimal mixture of these two
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design styles. If all of the interconnect is statically configured, the area and delay

will be improved but there is then no flexibility in signal routing. At the other

extreme, if interconnect is fully scheduled, distributed configuration memory

and associated control circuitry would result in a large area overhead. To better

exploit the benefits of implementing scheduled/static combined interconnect in

a CGRA, a tradeoff needs to be studied carefully to maintain reasonable area

and desirable performance for digital signal processing algorithms.

The goal of this thesis is to investigate these issues for a CGRA which utilizes

emerging embedded NVM. Our proposed CCGRA is capable of dynamically recon-

figuring its topology and the functionality of each PE to adapt to time-varying com-

putational complexity. A time-switched interconnect will be investigated to find the

appropriate mixture of time-scheduled and static interconnect [55]. Specific research

described in this document includes:

1. A CGRA prototyped in an FPGA with soft processors as the PEs. Three digital

signal processing applications are implemented to test this prototyped CGRA

to measure power, energy and throughput. Possible energy reductions due to

reconfiguring the CGRA architecture are studied. The reconfiguration overhead

of the CGRA approach is quantified.

2. A new time-multiplexed interconnect to allow CGRA processor cores to commu-

nicate in an energy-efficient fashion. Routing is implemented with multiplexed

switchboxes and unidirectional wires. In this design, the topology of the inter-

connection could be reconfigured based on DSP algorithm parameters. Perfor-

mance and area is studied to evaluate this interconnect. The energy benefits of

the fast configuration of the interconnect is also investigated.

3. Implementation of MRAM in the proposed CGRA architecture is investigated

to determine how it would interact with configuration memory and configura-
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tion bits of the time-scheduled switchbox. Timing overhead is estimated with

regards to loading instructions and configuration bits from MRAM to SRAM for

different applications. Energy improvements based on this interface is factored

into the final analysis of the overall system.

In this thesis, we target a CGRA which can be reconfigured rapidly to adapt to

different applications or computation complexity changes within a single application.

With the emerging NVM technology and time-scheduled interconnection, significant

energy reduction could be gained without impacting performance.

1.3 Thesis Outline

In Background chapter, we review the development of digital signal processing

platforms and the benefits from CGRAs. NVM and its interaction with CGRAs

will be introduced. Three algorithms are studied for energy performance tradeoffs

from system-level reconfiguration. Chapter 3 focuses on the detailed architecture of

prototyped CGRAs. Its energy advantage over time-varying environment is shown

through preliminary experimentation. Chapter 4 describes an on-chip time-scheduled

interconnect that provides predictable energy savings. Chapter 5 describes a memory

hierarchy and interface between emerging NVM and conventional on chip SRAM.

8



CHAPTER 2

BACKGROUND

In this chapter, background is provided about CGRA architectures, emerging

non-volatile memory (NVM) and developing trends of digital signal processing. Ap-

plications, such as those used for wireless communication, can often be adapted over

time to save energy. Previous work [48][4][51] has indicated the benefits of using

reconfigurable devices for applications which can take advantage of dynamic changes

in their operating environment, an issue we review in this chapter.

2.1 Coarse-Grained Reconfigurable Architectures

Our experimentation in this thesis is focused on CGRAs. In this section we provide

an overview of typical CGRA architecture and usage.

2.1.1 Processing Element (PE) Architecture

CGRAs are composed of a matrix of PEs and interconnect. Each PE typically

includes an ALU, a register file and associated controlling circuitry [5]. Interconnect

in CGRAs is typically realized using switchboxes [55] or simple networks-on-chip

(NoCs) [47] which allow for dynamic switching during application execution. An

architectural overview is shown in Figure 2.1.

In each PE, the ALU performs arithmetic operations. It has interfaces to regis-

ters and data memory, where final and intermediate results are stored. There is a

dedicated central controller that determines what data should be routed to the reg-

ister file, in what mode the ALU is operating and access to the register file. The
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Figure 2.1: Overview of a Typical Coarse-Grained Reconfigurable Architecture

configuration memory can store a variety of different programs which can be quickly

accessed as application needs change. Unlike general-purpose RISC cores, CGRA

PEs are generally simple (e.g. no memory hierarchy or deep pipelining). Generally,

all instructions for a task implemented by the core are located in the Instruction

SRAM. Since the computing load for a single PE is fairly low, typically all needed

instructions are loaded into the instruction memory before running the application

[37]. One of the goals of our work is to implement Configuration Memory in MRAM

so new instruction sets can be very quickly loaded into the Instruction Memory on

demand.

2.1.2 Interconnect Infrastructure

Interconnect for our planned CGRA will be implemented by an array of switch-

boxes inspired by [54]. On-chip switchbox hardware connects wires in adjacent chan-

nels together forming paths between processing elements. In general, switchboxes can

use unidirectional or bidirectional wires [33]. For unidirectional wires, only one driver

is present, while bidirectional wires can have multiple drivers. Although most CGRAs

use bidirectional wiring, we will explore both types of interconnect in this thesis, with
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Figure 2.2: Architecture Overview of Time-Scheduled Switchbox

an emphasis on unidirectional wiring. For a track in a channel, there are two wires of

opposite directions to realize bidirectional communication. An architectural overview

is shown in Figure 2.2. Inside the switchbox, there are multiplexers enabling data

flow to turn left, right, up, or down. The multiplexers are configured by SRAM bits.

To reduce energy consumption, our proposed interconnect infrastructure features

time scheduling. Instead of statically mapping the data flow onto wires, we expect

that a cycle-by-cycle assignment of data to wires could give a better area utilization

of routing resources. The dynamic data mapping is realized by a phase signal, which

configures a multiplexer by selecting a configuration bit every cycle. The pattern of

phase signal over time could be reconfigured to adapt to different applications. Less

area overhead could be obtained. A similar approach, outlined in [54], indicated that

area-delay products could be reduced by two-thirds versus a static connection. Unlike

the previous approach, we will also consider the impact of using MRAM to configure

the switchboxes.

2.1.3 Previous CGRAs

CGRA research started with the development of the PADDI [10] architecture in

the 1990s. During the subsequent period of time, multiple designs with different
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Table 2.1: Comparison of different Coarse-Grained Reconfigurable Architecture[53]

Project Granularity Interconnect Fabric Mapping Tool Target App

RaPid 16 bit segmented buses channel routing pipelining
PipeRench 128 bit (sophisticated) scheduling pipelining
MorphoSys 16 bit mixed Manual N/A

Mosaic 32 bit time-scheduled switchbox SPR Tool [23] loop pipelining

granularity, fabric, mapping and target applications have been proposed, as discussed

below.

The Reconfigurable Pipelined Datapath (RaPiD) [19] aims to accelerate highly

repetitive and computationally intensive datapaths using a control flow which has

low data dependency. The architecture takes advantage of deep pipelines to pro-

vide high throughput for streaming applications organized in a single dimension. Our

two-dimensional approach focuses on a broader range of applications. The PipeRench

architecture [24] is an accelerator that also primarily features the acceleration of linear

applications. What differentiates it from RaPiD is its capability to reconfigure inter-

connect dynamically. If an application is too large to fit into available pipeline stage

“strips”, a controller will dynamically reconfigure available hardware to accommodate

the task.

MorphoSys [46] is composed of a tiny on-chip RISC processor and a reconfigurable

array (RA). MorphoSys features three layers of interconnect in the RA. Each layer

provides connection to a nearest neighbor, inside a sub-quadrant and between quad-

rants. It aims to lower data transfer latency at the cost of interconnection complexity.

In this thesis, we propose a time-scheduled interconnect infrastructure derived from

a mesh architecture realized by multiplexed switchboxes instead.

Mosaic [39] is a CGRA which is optimized for reduced energy consumption. Sup-

porting tools include a programming language, compiler, and mapping tool. Mosaic

is shown to accelerate computing-intensive loops in general-purpose applications. It

features a von Neumann sequential controller and a parallel compute engine, which is
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a reconfigurable PE array. The CGRA part is composed of an array of clusters. Each

cluster features four 32-bit processing elements, data memory and register files. All

components in a cluster are connected by a crossbar. Inter-cluster communication is

realized by an array of time-scheduled switchboxes connected by unidirectional wires.

Our work extends this type of architecture to consider the impact of using MRAM to

store large amounts of configuration information. By using MRAM instead of SRAM

we hope to dramatically reduce energy consumption.

2.1.4 Architectural Advantage in Signal Processing

Digital signal processing algorithms feature two characteristics that benefit CGRAs

[6]:

• Math-Centricity : Digital signal processing algorithms generally require word-

level mathematical operations (e.g. add, subtract, multiplication, division). In

most cases, digital signal processing applications feature computations which

can be parallelized, represented as a stream, or both. These computations can

often be accelerated by a collection of parallel processing elements whose inter-

connection is configurable.

• Standards : Digital signal processing commonly takes place after analog-to-

digital conversion (ADC). Conventionally, ADCs generate data in multi-byte

fashion. For example, for Reed-Solomon decoding, a common symbol width is

8 bits. CGRAs are generally built to operate on word or double-word data.

Instead of operating on bit-level operands, the internal architecture of a CGRA

features multi-bit channel widths in routing channels and processing elements.

This parallelism minimizes interconnect configuration memory, hence saves en-

ergy. This fixed width comes at the cost of unused resources if the word width

of the CGRA does not match the width of the required computation.
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Figure 2.3: Architecture Overview of Magnetic Tunneling Junction [12].
(a) refers high resistance, (b) refers low resistance

2.2 Emerging Non-Volatile Memory (NVM)

Non-volatile memory refers to memory that holds data after a supply voltage is

removed. Examples of NVM include read-only memory (ROM), flash memory and

magnetic storage device like hard disk. The speed of NVM technologies can sometimes

be low. In this section we review new emerging NVMs which have high capacity and

relatively low access times.

2.2.1 MRAM Overview

Recently, two kinds of emerging NVM technology, phase-change RAM (PCRAM)

and spin-transfer torque magnetoresistive RAM (STT-MRAM) [25, 28, 50], have re-

ceived interest. STT-MRAM is generally considered the more promising candidate

and it is the NVM of choice for this work. Unlike SRAM or DRAM that measures

the voltage of a memory cell to read stored data, STT-MRAM uses resistance. A key

component in STT-MRAM is the magnetic tunneling junction (MTJ) [34], shown in

Figure 2.3. This junction is composed of two ferromagnetic (FM) layers separated by

an oxide barrier, e.g. MgO [34]. One of the layers, the reference layer, has fixed mag-
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Figure 2.4: Writing a 0 into STT-MRAM cell (parallel, low resistance)

netization orientation. The other layer can be configured in a controlled manner. In

conventional MRAM, writing process is performed through Field Induced Magnetic

Switching (FIMS), i.e. the magnetization direction is switched by a current induced

magnetic field. Due to the tunneling magnetoresistive effect, the resistance of an

MTJ can be determined by the relative magnetization orientations of two different

FM layers. If the direction of the free FM layer is the same as that of the reference

layer, which means that they are parallel, the resistance is low and the data stored

in the MTJ is 0. If not, the storage value is opposite.

The storage technique for STT-MRAM is slightly different from a conventional

MRAM. Instead of configuring the direction of a current, there is a wire which di-

rectly passes through the MTJ. The free layer can be manipulated by controlling the

direction of the current flowing on that wire.

The operating theory of STT-MRAM is depicted as shown in Fig. 2.4 and Fig. 2.5.

While writing a ’0’ into the cell, non-polarized current passes through the reference

layer. The magnetic field in the reference layer spin-polarize the electrons so that only

part of them with a specific direction could go through and in the free layer, they

determine the magnetic field. Similarly, while writing an ’1’ into the STT-MRAM

cell, the unpolarized current needs to be injected from the free layer side. Although

at first the magnetic characteristic of the free layer is unpredictable (the dotted arrow
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Figure 2.5: Writing an 1 into STT-MRAM cell (anti-parallel, high resistance),
dotted line in Free Layer presents the original direction in that layer

assumes one of the possibilities), when the current hits the reference layer, a polarized

current will be bounced back, as shown in Fig. 2.5, so that the magnetic direction in

the free layer could be determined.

Table 2.2: Comparison of Different RAM Techniques [57]

Memory Tech MRAM SRAM DRAM Flash
Read Speed Fast Fastest Medium Fast
Write Speed Fast Fastest Medium Low

Area Efficiency Med/High Med High Med/Low
Scalability Good Good Limited Limited

Cell Density Med/High Low High Medium
Cell Leakage Low Medium High Low

MRAM can be fabricated using existing metalization techniques. MRAM needs

3 additional layers than CMOS logic [58] and 3-4 fewer than embedded eFLASH

memory [40]. A comparison among MRAM, DRAM, SRAM and Flash is shown in

Table 2.2.

2.2.2 MRAM Interaction with CGRA

MRAM memory system could either be centralized or distributed in CGRAs across

an array of PEs. Since MRAM stores data in the resistance domain, extra circuitry

must be implemented to convert data from resistance to a voltage level. Previous
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research [41] has indicated that MRAM and associated circuitry will benefit from a

centralized design style for FPGAs since fault tolerance techniques can be readily

employed. However, such a limitation is not applicable to CGRAs. A configuration

memory in a CGRA needs to store multiple sets of configuration bits (different sets of

instructions), whose size ranges from 10 kB to 100 kB. Part of configuration memory

may also be used for general data storage. Therefore, configuration memory for each

PE could be fairly large. To guarantee system reliability, a partially-centralized design

style will been proposed. The reconfigurable computation fabric will be partitioned

into different regions. Each region shares a block of MRAM. In this thesis work, we

simplify the architecture and assume that each PE has a private block of MRAM.

The block stores configuration contexts and signal processing data.

In each PE, as shown in Figure 2.1, both a large MRAM (Configuration Memory)

and smaller SRAM (Instruction Memory) are needed to guarantee performance. The

SRAM is directly connected to the ALU and other configurable points. The SRAM

can be quickly configured from the MRAM during configuration changes.

2.3 Case Study of Energy Performance Tradeoffs from System-

Level Reconfiguration

To better understand the energy performance tradeoffs of the dynamic reconfigu-

ration of a CGRA, three codec algorithms will be mapped onto our prototype archi-

tecture (Viterbi, AVA and RS algorithms). Although they use very different coding

theories at the algorithm level (Viterbi and AVA are convolutional codes while RS is

a block code), their computational complexities can benefit from reconfiguration. In

this section, the benefits of adaptive software and hardware implementations for all

three benchmarks are explored.

To further understand the benefits of reconfiguring with STT-MRAM, we increase

the testbench with a motion estimation algorithm and an FIR filter. The former
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(a) Circuit Model
(b) State Diagram for the convolutional encoder in Fig-
ure 2.6a

Figure 2.6: A (2, 1, 3) convolutional encoder [48]

requires high-throughput data processing and huge amount of data flow. The latter,

on the other hand, is computationally intensive which could be potentially accelerated

by a parallel array.

2.3.1 Viterbi Algorithm

The Viterbi algorithm has been proposed as a decoding algorithm for convolu-

tional codes over noisy wireless communication channels. It has found applications in

digital cellular, satellite, and deep-space communication and 802.11 wireless LANs.

In general, a Viterbi code is an error correction code which is capable of detecting

and correcting data transmission errors in wireless channels [56]. To support error

tolerance, multiple redundant bits must be added to the original message to provide

extra information for the decoder to handle the possible corruption of message bits.

A Viterbi encoder, which is identical to conventional convolutional encoder, gen-

erates output not only depending on the data bit received in a time point, but also

on data received within a previous span of K-1 time points, where K is a constraint
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Figure 2.7: Trellis Diagram for the Convolutional Encoder in Figure 2.6 [48]

length which must be larger than 1. Encoding is accomplished by multiple shift

registers and XOR function units. Characteristics of a convolutional encoder are

determined by three factors: the number of output bits generated when receives an

input symbol (v) is received, the number of input bits at a time (b) and the constraint

length (K ). Together, the information is represented as (v, b, K ). Figure 2.6a [48]

shows an example of a (2, 1, 3) conventional encoder. The encoding process can be

represented by a state diagram, as shown in Figure 2.6b [48]. Each node represents

the present state and edges are attached based on the input bit and the associated

output sequence. For example, when the current state is a 00, if the next incoming

bit is a 0, the state machine will output 00 and the current state will be updated to

00. If the input bit is a 1, the state machine will output a 11 and the current state

will be updated to 10.

A decoder tries to reconstruct the original input sequence from the channel output,

which might not be the same as the input sequence due to channel noise. A trellis
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diagram (shown in Figure 2.7 [48] ) is used to find the most likely transmitted data

sequence. Its horizontal axis represents received v -bit symbols from the channel

output in time order. The vertical axis represents present states corresponding to

the state diagram. Each node in the diagram represents a probable current state

based on the input symbol. Edges represent state changes after receiving a symbol.

In the Viterbi algorithm, each trellis node produces two output edges because the

incoming bits could be either 0 or 1. In Figure 2.7, the digit associated with an edge

is the output of encoder, which could be found in the state diagram in Figure 2.6b.

At each node, a Hamming Distance between the received symbol and an expected

symbol is computed (not shown in the figure). An expected symbol is an output of

the encoder. For example, if current state is 00, next state could either be 00 or

10, which is dependent on the next input bit to the encoder. Associated encoder

output is 00 and 11. In Figure 2.7, the first incoming symbol is 00. For state 00,

Hamming distance (simplified as cost) is 0, for 10, it is 2. The cost of each node

accumulates after transiting from one state to the other (shown as the number next

to each node). A large cost indicates a low probability that the trellis node would

be part of the optimal path with lowest global cost. When two edges converge, the

lower accumulated cost will be assigned to the converging point. An optimal path is

found by connecting nodes with lowest costs along existing edges (The bold path in

Figure 2.7). The following tersm allow for a more precise definition:

• Path Metric - The accumulative cost at each node

• Branch Metric - Error metric associated with a trellis branch

• Truncation Length - A span of time steps in which the lowest cost path is found

Generally, a larger constraint length K generates more states in a state diagram,

hence a more complicated trellis diagram. [20] indicates that larger K provides greater
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resilience to bit errors but at the cost of computing effort. By adapting K to channel

quality, an improved energy consumption could be achieved.

2.3.2 Adaptive Viterbi Algorithm

The Adaptive Viterbi algorithm [9] has been proposed to reduce the average com-

putation and trellis stage storage required by the Viterbi algorithm. Instead of retain-

ing all 2K−1 stages for each received channel output symbol, only those that satisfy

some cost conditions could be stored in a survivor memory. Intuitively, we could

discard trellis nodes with high path metric before storing them. To quantify such

intuition, previous research [9, 45] proposed the following criteria:

1. For each node, there is a threshold T that determines whether it could be

stored in the survivor memory. If path metric is larger than dm + T , it will be

eliminated due to high cost, where dm represents the minimum cost among all

survived paths in the previous trellis stage.

2. The total number of surviving paths in a trellis stage is pre-fixed to be Nmax.

While decoding, the first criterion filters out paths having a high distance from

expected sequence. Since the remaining paths may have similar cost, the second

criterion is used to control the total number of survivor paths. Figure 2.8 [48] shows

the decoding process of the adaptive Viterbi algorithm, which has the same input

symbols as shown in Figure 2.7. The bold path indicates the output stream. Values

of T and Nmax needs to be carefully determined. If T is too small, few paths will be

stored in Survivor Memory, which could result in an increase in bit error ratio (BER).

However, less memory and computing effort is required. Nmax has a similar effect on

BER as T . In general, the adaptive Viterbi algorithm can adapt itself to different

channel quality by varying T and Nmax. If SNR becomes higher, we could select a

combination of smaller T and Nmax and still obtain a target BER. Otherwise, more

memory bits and computing effort are required.
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Figure 2.8: Trellis Diagram for AVA decoding with T = 1 and Nmax = 3 [48]

In the algorithm implementation, reducing the number of survived paths to Nmax

is not as trivial as pruning paths based on path metric. Intuitively, the best way

to remove paths is to sort all survived paths based on path metrics and select the

first Nmax paths. However, the sorting algorithm is at least O(n logn), which is

too computationally intensive for embedded signal processing systems. To address

this problem, reference [48] has proposed an approach of adapting threshold T to

the number of survived paths. If the total number is less than Nmax, no update is

required. If the number of survived paths exceeds Nmax in a trellis stage, the threshold

is decreased by 1, which is adjustable. With a decreased T , the number of survived

paths will decrease until the survivor count is equal to or less than Nmax. Reference

[48] indicates that if we select the original T carefully, only a couple of T adjustment

loops are needed.
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Figure 2.9: Reed Solomon Code definitions [13]

2.3.3 Reed-Solomon Algorithm

Reed-Solomon (RS) codes are non-binary linear block codes [15], which can detect

and correct a limited number of errors that occur anywhere in an erroneous message

with the help of redundant symbols in a codeword. Figure 2.9 shows the definition of

a Reed-Solomon code [13]. It could be described as a (n, k) code, where n represents

block length in symbols, k is the length of original message in symbol, m is the

number of bits in a single symbol, and t is the number of symbol errors being able to

be corrected by a receiver in a codeword. The relationship between n and m is

n ≤ 2m − 1.

The number of correctable errors is

t =
n− k

2
, for n− k even

or
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Figure 2.10: A Brief Overview of Reed-Solomon Encoder [49]

t =
n− k − 1

2
, for n− k odd.

RS codes are designed to handle both random and burst bit errors. Since a consecutive

bit errors can affect at most d a
m
e symbols, if t is large enough, it can handle an error

burst. For the random-error case, b errors will affect at most b symbols. Therefore,

an appropriate t could handle both burst and random error scenarios.

The RS algorithm works in Galois Fields (GF) [15] in which there are 2m ele-

ments. The RS algorithm adds n-k parity symbols to a codeword to supplement

the original message. This information provides redundancy for the encoded message

symbols. All parity symbols are computed through multiple pipelines of GF addition

and multiplication. Figure 2.10 shows the encoding data flow [49]. These operations

are performed using coefficients (g0, g1, g2, g3 in the figure) of a GF polynomial, de-

fined as generator polynomials, which is predefined based on the number of parity

symbols. The complexity of encoding ( and decoding) is dependent on code rate (the

non-redundant portion of the codeword). A lower value of k requires more computa-

tional effort to process parity symbols. A detailed encoding example is provided in

[1].

The RS decoding algorithm represents the received word as coefficients of a poly-

nomial r(x). A code generator polynomial can be represented as g(x). The original

message polynomial is defined as p(x) = r(x)
g(x)

. Considering that the received word
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could be corrupted by channel noise, an error polynomial e(x) needs to be added.

The relationship among polynomials is

r(x) = p(x) · g(x) + e(x).

Polynomial division is performed on every received symbol. If the remainder e(x) is

not zero, an error has occurred during data transfer. While locating errors, the error

vector e(x) could be determined from the received codeword polynomial. Hence, by

adding the error vector back to the product of message and generator polynomial, a

corrected received word can be obtained.

Since the code rate of the RS algorithm can be adjusted to adapt to physical envi-

ronments, it is applicable to a runtime reconfigurable architecture. Our experiments

have shown that high-code-rate configurations consume less energy but at the cost of

decoding accuracy. When the original message size k is large, the number of parity

symbols t will be small. By dynamically tuning k, we can achieve reduced computa-

tional complexity while maintaining an acceptable codeword error rate (CER).

2.3.4 Three-Step-Search Motion Estimation

Three-Step-Search is a motion estimation algorithm. It is simple, robust and

provides near optimal performance. The algorithm first searches in a coarse pattern

and converges into a fine one. It works as follows:

1. An initial step size is picked. Eight blocks at a distance of the step size from

the center point are selected for comparison.

2. The step size is cut by half and the center point moves to one of the eight blocks

with the least distortion.

3. Keep doing steps 1 and 2 until the step size reaches one.
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Figure 2.11: Convergence of Three-Step-Search

A brief example of convergence of the algorithm is shown in Fig. 2.11. For this

application, a series of 1024×1024 pixel greyscale images are distributed to a CGRA

array for testing. Each of these images is part of a sequence in which motion can be

detected. Subsequent images in the sequence are split into windows and each window

is tested. In our experiment, the motion estimation algorithm will receive two images

simultaneously (one old image and one new image), each image is segmented into

hundreds of windows.

In this implementation, the accuracy of the motion estimation algorithm is depen-

dent on the window size. For higher accuracy, a smaller window size is used, leading

to more windows and increased computation. For reduced accuracy, the opposite

effect is observed. In our experimentation, we consider square window sizes of 14, 16,

18, 20, 24 and 26 pixels on a side.

2.3.5 Finite Impulse Response (FIR) Filter

An FIR filter is a common multiply-accumulation based DSP algorithm. The

accuracy and quality of the filtered output is based on the number of coefficients the

algorithm has. In the thesis, the FIR filter is configured as a band-pass filter. The

frequency of the band ranges from 0.35 to 0.65. Taps (coefficients) are generated from
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MATLAB with the fir1 command. This application involves the implementation of

a filter with tap counts ranging from 120 to 1920 taps.

2.4 System Adaption to a Changing Environment

Changes in signal processing algorithms based on noise and other environmental

factors need to be carefully evaluated to allow for associated energy-saving dynamic

hardware changes. For example, in future wireless communication devices, three

industrial trends motivate the development of a reconfigurable platform:

1. Modulation and codec algorithms often adapt to the quality of radio channels

to maximize throughput. For modulation, a system can automatically select

the simplest technique to save energy as long as it provides an acceptable bit

error rate (BER). Codec algorithms, such as adaptive Viterbi algorithm (AVA)

[9], can adapt their computational complexity to a varying signal-to-noise ra-

tio (SNR). For example, two parameters of AVA dynamically determine the

computing workload: threshold T and number of survivors Nmax. A larger T

retains more trellis nodes, hence accuracy is achieved at the cost of comput-

ing effort. Similar to T , a large Nmax gives better BER but sacrifices energy.

By dynamically changing both parameters, we can adapt the system to differ-

ent channel qualities. One of our goals is to rapidly configure T and Nmax to

achieve reduced energy consumption at an acceptable decoding performance.

Other applications for audio and video experience similar characteristics.

2. We expect that a signal processing chip is robust enough to make the above

tradeoffs. Signal processing chipsets must support a wide range of applications

and deliver tradeoffs for performance and energy. For example, if a back-end

system requires a byte stream instead of a bit stream, the adaptive system

should be able to switch from AVA (outputs bit stream) to a Reed-Solomon (RS)
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algorithm, which can naturally support byte-level codec and error correction.

Additionally, if a mobile device enters an environment subject to burst errors

(i.e. multiple bit errors happen in sequence), we expect the system could switch

from a convolutional code (e.g. AVA) to a block code (RS), since the latter

algorithm could handle such a scenario [4]. With high-density MRAM, more

application configurations can be located close to a PE array, allowing for fast

reconfiguration.

3. Hardware resources in signal processing devices are not always fully utilized due

to time-varying computational complexity of the adaptive digital signal process-

ing algorithms. Typically, hardware is designed to achieve acceptable perfor-

mance in a worst-case physical environment. If channel quality gimproves, the

computing power offered by a platform will be wasted because workload is no

longer intensive. If the platform is able to adapt itself to the operating environ-

ment, unnecessary hardware resources can be turned off. Our experimentation

discussed in the next chapter shows that there is a 31.3% energy difference

between architectural adaption and non-adaption to channel quality (SNR in-

creases from 2.45 dB to 2.85 dB, throughput is constant). Therefore, we expect

that a CGRA-based processing platform could be dynamically reconfigured to

adapt hardware infrastructure to the target computing task.

In the next chapter we examine these tradeoffs for a multicore system prototyped

in an FPGA.
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CHAPTER 3

PRELIMINARY EXPERIMENTATION

In this chapter, we discuss energy tradeoffs achieved by varying algorithm imple-

mentations in CGRAs based on environmental factors such as communication channel

noise. To generate preliminary data, we have prototyped a mockup of a CGRA in an

FPGA to explore energy consumption and performance tradeoffs. Three codec algo-

rithms (Adaptive Viterbi, Viterbi, and Reed-Solomon) have been manually mapped to

our prototype CGRA. By studying results from preliminary experiments, we conclude

that adapting an algorithm implementation with changing environment parameters

in a CGRA can yield energy savings. For AVA, a 0.4 dB improvement in channel

quality results in 31.3% energy savings. For Viterbi, a 0.1 dB improvement gives

85.7%. For RS, the number is 20.3% with 1 dB increase in SNR.

3.1 Energy Benefits Exploration of a Dynamic CGRA

In a typical CGRA, each PE includes an ALU, peripheral control circuitry and

memory blocks. The PE program and the contents of memory blocks can be recon-

figured to adapt to different computing tasks either across applications or within a

time-varying application. In order to examine the benefits of reconfiguration in terms

of energy and performance, we implemented several CGRAs using pre-synthesized soft

processors. An Altera NIOS II soft RISC processor is used to implement a PE. The

system is prototyped using a Stratix IV FPGA. Our initial experiments do not dy-

namically reconfigure processor functionality at runtime, although experiments with

several different parameter sets help determine the likely benefit of dynamic recon-
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figuration. As part of the continuing thesis work, dynamic reconfiguration based on

channel noise will be considered.

Case studies in the previous chapter indicate the possible benefits of adapting

communication decoder parameters during runtime to different SNRs (e.g. T and

Nmax of AVA). To quantify such energy savings, we compile multiple versions of de-

coder applications with different parameter sets and evaluate them for performance

and energy. Each parameter set targets a certain channel noise scenario: low, medium

or high SNR. A low SNR is associated with a parameter set requiring a high com-

putational complexity for the decode algorithm, a high SNR presents the opposite

case. In our experimentation, all decoders provide the same Bit Error Rate (BER)

in simulation and after mapping to our FPGA-based CGRA prototype. In our ex-

perimentation we show that when SNR changes from low to high (channel quality

gets better), energy savings can be obtained by switching from an executable whose

parameter set yields high computational complexity to a lower one. In this way, we

explore the energy benefits from algorithm level adaptation. For a set of decoders,

although BER is constant, a parameter set with high computational complexity and

the same set of compute resources can lead to reduced throughput.

To maintain a constant throughput for an application with a fixed BER, hardware

resources (PEs) must be added to the computing system. To accurately determine

the number of required PEs, simulations can be performed. The experimentation

in this chapter explores appropriate hardware configurations of PEs to maintain a

pre-specified BER and decode throughput. The energy consumption of these config-

urations is then explored. Ultimately, these configurations could be swapped in real

time to reduce energy costs as channel noise changes. This goal will be explored in

later chapters.
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3.2 Experimental Approach

To determine the energy efficiency of a dynamically reconfigurable CGRA, energy,

power and execution time of different configurations need to be measured. Also,

code size, instruction count and performance (throughput for codec applications) are

quantified. They are computed using the following methodologies:

• Power: Since our prototype is implemented in a Stratix IV FPGA, a software

tool which uses simulation information, Altera PowerPlay [11], is used for power

estimation. Generally, PowerPlay estimates power consumption using signal

toggle rates and the static probability of I/O signals. Frequent toggles lead

to increased dynamic power consumption. Our prototypes are designed using

Qsys, a block-based design tool from Altera. All components, including NIOS

processors and memory blocks, are built in Qsys and only CLK and RESET

are used as external I/O pins. Since RESET is tied to ground, CLK is the only

dynamic I/O in our design. Our DE4 board also provides on-chip current and

voltage drop sensors connected to FPGA via SPI bus. Run-time power numbers

could be obtained by reading those ADC’s using NIOS processor.

• Execution Time: The Altera IP core library includes a hardware counter which

can be used in circuit to measure the execution time of a circuit component in

clock cycles [3]. We included it in our prototype to measure the time span to

decode a given volume of input bits.

• Energy: Energy is determined as the product of time and power, as determined

above.

• Decoder Throughput: Throughput is calculated by dividing the number of out-

put bits by execution time.
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Table 3.1: Parameter sets that determine computational complexity

BER=10−4 Viterbi Adaptive Viterbi Reed-Solomon

Channel Quality SNR (dB) SNR (dB) SNR( dB)

Low 2.70 K = 6 2.85 K = 11 Nmax

= 25 T = 23
17.0 t = 12 n = 255

k = 231

Medium 2.65 K = 7 2.65 K = 13 Nmax

= 26 T = 24
16.5 t = 14 n = 255

k = 227

High 2.60 K = 8 2.45 K = 14 Nmax

= 41 T = 24
16.0 t = 16 n = 255

k = 223

• Code Size and Instruction Count: Instruction count is determine after program

compilation with a MIPS GCC compiler. Code size in bytes is four times the

instruction count since each instruction requires four bytes.

To estimate the behavior of a dynamically reconfigurable system, multiple static

hardware configurations are pre-synthesized to our multiprocessor system. For these

experiments, we pre-synthesized six multiprocessor configurations, which include pro-

cessor counts of between 1 and 6. The details of the hardware-level configuration are

provided in the next section. Our energy saving approach considers that some pro-

cessors can be shut off depending on channel noise conditions for a fixed bit error rate

(BER).

To determine a corresponding parameter set for each SNR, we simulated algorithm

behavior on a workstation. Previous work [48] and [4] have researched the impact

of algorithm parameter sets on AVA and RS performance. Based on this work, we

generated parameter sets for our experimentation, which are organized in Table 3.1.

A 10−4 BER for VA and AVA and a 10−4 codeword error rate (CER) for RS are

targeted (based on simulation of one million input symbols). SNR selections for low,

medium and high channel quality are based on available data from previous research.

In [48], SNR values from 2.5 dB to 6.5 dB are evaluated for AVA. Since AVA is a

modified version of the Viterbi algorithm, we select SNR numbers from the same
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Table 3.2: Hardware configurations which result in the same throughput

Low SNR Medium SNR High SNR Throughput

PE Count (VA) 6 5 3 ≈ 1.65 Kbps

PE Count (AVA) 6 2 1 ≈ 0.17 Kbps

PE Count (RS) 6 5 4 ≈ 26.91 Kbps

Figure 3.1: Architectural Overview of a Prototyped CGRA in a Stratix IV FPGA
Using NIOS II Soft Processors

range for VA. For previous RS experimentation [4], SNR ranged from 13.6 dB to 20.0

dB. We define our configuration similarly.

Table 3.1 indicates parameter values for a fixed BER. The number of PEs needed

to achieve a given throughput are indicated in the table.

3.3 Experimental Platform

Our prototype is implemented as shown in Figure 3.1. The prototyped system

receives a continuous data stream, parallelizes the decoding workload, executes de-
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Figure 3.2: Inter-NIOS Communication via Shared Memory

coding algorithms, and then collects results. The data distributor, collector and all

parallel decoders are implemented using NIOS-based soft processors. The distribu-

tor packetize streaming data into packets before sending them to available parallel

NIOS II decoders. When computation is finished, the collector retrieves the results

in the correct order and forwards them to a potential back-end system. All NIOS

II decoders simultaneously execute the same source code but on different portions of

incoming data, leading to parallelism.

Data distribution in Figure 3.1 is implemented based on codec type. For convolu-

tional codes, such as Viterbi and AVA, input bits arrive in a continuous fashion. In our

experimentation, each data packet contains 500 streaming bits. Each convolutional

decoder will be assigned a data packet. For block codes, such as the Reed-Solomon

code, data is transmitted in blocks and there is no data dependencies among blocks.

Therefore, block codes naturally support decoding parallelization. In our experimen-

tation, each RS decoder is assigned codewords. The length (in symbols, each symbol

contains 8 bits) of the codeword is 255. The function of data collection is to concate-
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nate outputs from different decoders. The order of collection must be the same as

the order of distribution.

All blocks in Figure 3.1 are connected by Avalon Memory Mapped (AMM) buses, a

hardware IP designed by Altera. This interface provides read and write capabilities for

master and slave components in a memory-mapped implementation. Communication

between blocks is realized by blocks of shared memories (SHM), whose architecture

is shown in Figure 3.2. Through software-level flow control technique, one NIOS II

PE can transfer data to another PE by writing to/reading from it. In Figure 3.1, all

connections between the distributor and PEs and between PEs and the collector are

made using these shared memory interfaces.

In our prototype, each PE is unable to directly communicate with all other PEs.

For the complete thesis work, one of our goals is to replace the trivial on-chip inter-

connection with a time-scheduled NoC so that both streaming and parallel datapaths

can be better implemented.

Figure 3.3 shows a complete implementation of our experimental platform in an

Altera FPGA. To feed our prototyped CGRA decoding system with input data, an

on-chip input generator is implemented. It uses the fastest NIOS II soft processor

whose clock frequency is set to be 200 MHz, which is four times higher than the

other NIOS PEs in our system. Note that this is the highest clock frequency that

guarantees reliable behavior of NIOS II soft processors [2]. Since the available clock

from the FPGA board is only 50 MHz, we used a phase locked loop (PLL) to generate

the 200 MHz clock. The worst-case throughput of the input generator is 3.2 Kbps

for convolutional codes and 83.3 Kbps for block codes (Worst-case refers to encoding

with the lowest code rate). During experimentation, decoding is limited to this rate.

The input generator is shown in the grey block in the figure. It generates simu-

lated channel outputs. Random numbers are generated to represent the original data

message. The numbers are then encoded based on the target application. We did not
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Figure 3.3: FPGA implementation of the complete experimental platform

include modulation and noise-based data corruption in the data generator because

these parameters can be pre-set in building the IP core. A performance counter is

implemented to measure execution time for throughput calculation.

3.4 Results and Analysis

Energy and throughput results are depicted in Figures 3.4 through 3.9. Figure

3.4, 3.6 and 3.8 show that throughput increases linearly with PE count, which is to

be expected due to a lack of communication congestion. The PE counts in the graphs

do not include the Distributor and Collector shown in Figure 3.1). Since each PE

executes on different portions of input data stream, there is no data dependancies

among PEs and all decoders operate in parallel. The data transfer overhead reduces

overall throughput a bit, however, it is negligible compared to the decoding time in

our experiments of tens to hundreds of seconds.
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Figure 3.4: Throughput of Viterbi algorithm with varying PE count

Figure 3.5: Energy of Viterbi algorithm with varying PE count
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Figure 3.6: Throughput of adaptive Viterbi algorithm with varying PE count

Figure 3.7: Energy of adaptive Viterbi algorithm with varying PE count
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Figure 3.8: Throughput of Reed-Solomon algorithm with varying PE count

Figure 3.9: Energy of Reed-Solomon algorithm with varying PE count
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Table 3.3: Energy Benefits of Adaptive Algorithm Implementation For Constant
Throughput and Variable SNR

BER=10−4 Viterbi Adaptive Viterbi Reed-Solomon

Channel Quality energy (mJ) savings energy (mJ) savings energy (mJ) savings
Low 6108.3 0% 3721.1 0% 2387.1 0%

Medium 1952.0 68.0% 3550.6 4.6% 2106.3 11.8%

High 875.3 85.7% 2557.8 31.3% 1901.5 20.3%

Figure 3.5, 3.7 and 3.9 show the relationship between energy and PE count. In

many cases, the best energy point corresponds to the maximum number of PEs.

However, for reduced SNR, fewer PEs can be used to achieve the same or an improved

energy level. For example, energy curves of AVA in Figure 3.7 indicate that when

SNR=2.45, 3750 mJ energy is consumed to decode 105 bits over 6 AVA decoding PEs.

In Figure 3.6, it is shown that 5 PEs with SNR=2.65 and 3 PEs with SNR=2.85 can

give similar throughput. The corresponding energy is 3550.6 mJ and 2557.8 mJ .

Energy savings are 4.6% and 31.3% versus the worst case with the lowest SNR. It

can be concluded that substantial energy benefits can be obtained by dynamically

reconfiguring algorithm implementation in response to changes in wireless channel

quality.

The energy numbers and corresponding reduction for constant throughput at a

fixed error rate are shown in Table 3.3. It is apparent that there would be an energy

reduction by adapting a CGRA to a variable SNR with BER and throughput fixed.

Note that the SNR range in our experiment is limited (from 2.45 dB to 2.85 dB for

VA and AVA and 16.0 dB to 17.0 dB for RS). If a CGRA could adapt to a wider

range of SNRs, it is possible that the energy savings could be even more substantial.

To complete the experiment, we also measured the instruction count and code size

for executables assigned to the PEs (Table 3.4). In future experiments we can use

this information to estimate the energy cost of reconfiguration. The Distributor and

Collector will have variable code sizes which require configuration. Computational
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Table 3.4: Code Size and Instruction Count

PE Count
1 2 3 4 5 6

Distributor
Instruction Count 1546 1556 1564 1577 1588 1596
Code Size(KBytes) 7.07 7.11 7.14 7.19 7.24 7.27

Collector
Instruction Count 3358 3367 3374 3386 3396 3403
Code Size(KBytes) 14.68 14.72 14.75 14.80 14.84 14.86

Viterbi and AVA code size: 64.34KB, Instruction Count: 3287
Reed-Solomon code size: 15.76KB, Instruction Count: 3036

complexity is updated in PEs by changing parameters, therefore the code size and

instruction count of the NIOS II decoder is not be affected in this experiment. The

Viterbi Algorithm and AVA implementations have the same instruction count and

code size because there computations are similar, although parameters determine

how many operations are performed.
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CHAPTER 4

TIME-SCHEDULED DYNAMIC INTERCONNECT

Interconnect is an important part of an overall energy-efficient system. In this

chapter we describe an on-chip interconnect for a CGRA which can be quickly recon-

figured. This interconnect uses time-multiplexing based on a schedule to transfer data

in a mesh topology. As part of this thesis we will explore CGRA interconnect archi-

tecture and its performance for the three communication coding algorithms mentions

in earlier chapters: Reed Solomon, Motion Estimation and FIR. To explore runtime

reconfigurability, a detailed switchbox and associated configuration memory will be

created. The throughput, energy and power of the system under reconfiguration will

be evaluated.

4.1 Time-Scheduled on-chip Interconnect

A switchbox-based on-chip interconnect of a CGRA can be configured to support

communication for many different applications. The use of time-multiplexing during

execution allows the same interconnect wiring to be used many times, potentially

saving energy and area. Generally, in a CGRA, not all channels need to be used

on every cycle. As a result, wires can be time-multiplexed to eliminate the area

overhead found in static signal assignment [35]. Figure 4.1 depicts a multiplexer

found in a phase-cycle-based time-scheduled switchbox compared with another MUX

in a statically-configured switchbox [55]. The former contains multiple configuration

bits stored in SRAM, which can be selected on a per-cycle basis by a phase signal. The
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Figure 4.1: Dynamic vs. Static switchbox [55]

latter contains only one configuration SRAM bit. It can be concluded that routing

flexibility and hardware multiplexing are obtained at the cost of control complexity.

Another challenge for time-scheduled interconnect is control strategy. Figure 4.2

shows how a phase signal could be generated and how it controls the internal architec-

ture of a switchbox. The phase signal points into a block of memory which contains

configuration information for a switchbox. It iteratively selects configurations in a

round robin pattern. Each entry in the SRAM interconnect memory contains a se-

quence of bits that control all multiplexers in a switchbox. The control bits of one

interconnect instruction is partitioned into different regions, as shown in Fig. 4.3.

The first part determines which input buffer the switchbox will be reading, which

will be elaborated in the following switchbox interface section. The following five

segmentations determine the routing direction of all five input signals (from East,

South, West, North and PE). Each segmentation is consisted of 3 bits. Four out of

eight total combinations of the 3 bits are used to indicate where the input signal goes.

In Figure 4.2, configurations from 1 to N are pre-determined and stored in In-

terconnect Memory. All configurations are loaded into the switchbox in the order
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Figure 4.2: Implementation of Time-Scheduled Reconfigurable Switchbox

Figure 4.3: Breakdown of an interconnect instruction

Figure 4.4: An Example of Time-Scheduled on-chip Interconnect
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as number-labeled. The system has the flexibility to determine when to load a con-

figuration (effectively perform an interconnect reconfiguration). The contents of the

switchbox configurations are determined based on the repetitive datapath behavior

of an application (Figure 4.4). The figure depicts 4 operational cycles of an applica-

tion that requires a data Distributor as well as a Collector, as used in the previous

chapter for communication coding applications. Solid blue lines indicate data output

from the Distributor to PEs while red lines indicate data transmitted from PEs to

the Collector. In operation cycle 1, a connection is built between the Distributor and

PE1 so that data is transferred from the former to the latter. When transmission

is finished, the next phase is selected for operation cycle 2. This action creates a

channel between the Distributor and PE2 and another channel between PE1 and the

Collector are established. When data collection is completed, operation cycle 3 is

triggered in which the Distributor sends data to PE3 and the collector gathers data

from PE2. The multi-phase cycle then repeats. In this example, all configurations are

organized in a time order, which is defined as a schedule. Reconfiguration is triggered

by an external event.

In our work, STT-MRAM will be interfaced to the SRAM Interconnect Memory to

allow for a quick reconfiguration path. Reconfigurations will be triggered by changes

in a specific communication coding algorithm or a change in algorithm. Program

memory in the CGRA processing elements will also be interfaced to STT-MRAM to

allow for fast program download. The proximity of the STT-MRAM will allow for

fast download bandwidth.

4.2 SwitchBox Interface

Previous section gives a big picture of how the time-scheduled switchboxes is built

and controlled to route signals. In this section, the interfaces between switchbox

and switchbox as well as switchbox and PE will be discussed. There are occasions
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Figure 4.5: Interface of Switchbox to Other Peers and PE

that data from a single source will be routed to multiple sinks and from multiple

sources to a single sink. This will be a problem for a time-scheduled interconnection

because every clock cycle all multiplexers will be configured to adopt a different data

path. Therefore maximum 4 input buffers are implemented on each input side to

differentiate different data sources. Keep sending five zero’s will switch from one

input buffer to the next available one. By selecting different buffers, data from the

same input port could be routed to different places. The number of buffers on one

input side could be modified.

An example is shown in Fig 4.5. Data is sent through buffer 1 on the west side

of the first switchbox. After a sequence of five zero’s is sent, buffer 2 on the west

side is picked to take the input data. Of each interconnect instruction, the first 5

bits are utilized to specify which buffer it is reading. There are four buffers on each

input port, five ports yields 20 buffers. Each one is uniquely addressed with that five

bits. With buffer 1 and buffer 2 on the same side, we could differentiate data streams

going to different sinks. In this example, buffer 1 on west side goes east and buffer 2
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Figure 4.6: Buffer Switching of a SwitchBox Interface

on west side goes south. The five zero’s are not consumed in the switchbox, instead,

they ripple through all the switchboxes along the datapath so that buffers along the

complete datapath could be switched to accommodate a new datapath. Considering

that there might be continuous zero’s in data streams flowing in the network, we

attach a small piece of function before injecting data to the network which shifts the

data left by one bit and modify the right most bit as 1. For the receiver end, it

shift the data to the right by one. Before shifting and actually reading the data, the

receiver will also need to filter out zero’s. We believe it will not bring computational

burden onto the system because hardware shifting and bitwise operation are very

fast.

To better adapt the switchbox interface to different applications, the number

of buffers on each input side is open for modification. This provides the ease for

application mapping. The reason is that most DSP algorithms are streaming, it is

very likely the same operation will be applied onto different data. Therefore, The

buffers on one side will be iteratively chosen for multiple times. If the number of

buffers is more than needed, an incoming five zero’s will direct the input data to a

redundant buffer which is not used by any instructions in the interconnect memory.

This will halt the system. Therefore, for different applications, the number of buffer

activated should be exactly the number of buffer needed. Notice that we set the
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Figure 4.7: Mapping of Streaming Application

maximum to be 4. It is based on the assumption that each input port will at most

take 4 different streams. This number could be expanded as long as the number of

bits that address the buffers will be expanded accordingly. The process is depicted

in Fig 4.6.

4.3 Application Mapping

For this thesis, apart from preliminary experimentation, we will map multiple

applications (Reed Solomon, Motion Estimation and FIR Filter) onto our prototype

CGRA architecture using the time-scheduled on-chip interconnect. Applications can

be categorized into two classes: parallel and streaming. For parallel applications,

the workload is evenly distributed onto all available PEs, similar to our preliminary

experimentation. All PEs execute in parallel and they simultaneously fetch data from

the Distributor and send results to the Collector. Streaming applications will also

be mapped as shown in Figure 4.7. The Distributor and Collector are implemented

by NIOS-based architecture. All PEs are connected in a nearest-neighbor fashion.

Our switchbox is capable of handling both types of applications because for parallel

algorithm, multiple input buffers could be activated so that data stream could be

handled concurrently (Strictly only one stream is taken care of every clock cycle.

However since we assume that there are at most 20 data streams going through one

switchbox, which means the maximum between service interval for one data stream
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Figure 4.8: Data Distribution of Reed Solomon Application Mapped in Parallel

is 20 clock cycles, it could be assumed that data streams are handled in parallel).

For streaming applications, the buffer number of each input side could be set as

one. The interconnect memory would contain only one configuration which makes

the switchbox static so that streaming datapath can be implemented.

4.3.1 Reed Solomon

In Chapter 2, Reed Solomon algorithm is introduced as a block codec application.

The algorithm is mapped as a parallel application with each code block going to

available decoding PE. All decoding PEs share the same source code so that no

matter where the code block goes, it will be decoded in exactly the same way and

sent back to the Collector. The decoding system is a 3x4 array. Four code blocks are

sent every time to the decoding array from the communication channel. Each code

block goes to one of the four PEs in a row of a decoding array. Five zero’s are sent

between every two code blocks. After sending four code blocks, a data flag is sent to

indicate the termination of sending. Since each symbol in RS code is 8-bit, therefore

the data flag needs to be larger than 28 so that it will not overlap the data from

communication channel. Notice that the five zero’s and data flag are generated not

from the communication channel but from the interface between the decoding array

and channel. A visual demonstration of the above operation is shown in Fig 4.8.
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Figure 4.9: Data Collection of Reed Solomon Application Mapped in Parallel

In our emulation platform, we assume that all decoded data is sent back to a

Collector. Therefore, the decoded data from four PEs should be routed to a single

sink, the Collector. Since the Collector cannot take all four streams at the same time,

therefore a communication scheme needs to be established so that only one PE could

talk to the Collector at a given time. To enable this, another data flag needs to be

created to play the role as a token. It will be passed from the first PE to the last

one and go back to the first again. The PE with the token will be able to send the

decoded data. This step is shown in Fig 4.9.

After distributing code blocks to the complete array (12 code blocks are dis-

tributed), the decoding array will halt the reading of the communication channel

until decoding is finished(The decoding array cannot reading data and decoding or

decoding and sending data at the same time). Each row of the decoding array has

an output FIFO which also interfaces to the Collector. The Collector monitors the

status of the FIFO and iteratively reads all the FIFO if they are not empty. There is

a counter associated with reading of the last row that indicates if the decoding of one

round, which is decoding 12 code blocks, has finished or not. The sequencing nature

of the Collector determines that the three FIFOs cannot be read concurrently.
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Figure 4.10: Mapping of Motion Estimation Algorithm

4.3.2 Motion Estimation

The Motion Estimation algorithm requires two pictures from different timing

points at the same time. The older one, in terms of time, provides a center point from

which a motion vector starts. The newer one, where the algorithm is applied, provides

a pixel position where the center point in the older will most likely be, which is the

ending point of the motion vector. Since each picture will be segmented into hundreds

of windows, then two windows from both of the images that has the same location

on the picture will be sent to one PE for comparison. A vector will be returned to

indicate the estimated motion in that window. Since pictures are broken down into

windows and data is distributed in the unit of window, therefore distributing and

collecting models are the same as that in RS. Fig 4.10 shows how the pictures are

broken down and sent. Similar to RS, all PEs share the same source code so that

each motion vector is generated in the same way.

4.3.3 FIR Filter

As described in Chapter 2, the FIR filter we implemented is a band pass filter

with ω sitting in the range [0.35, 0.65]. There are typically two ways to map FIR

to our architecture, streaming and parallel. In this thesis we choose parallel because

51



Figure 4.11: Mapping of FIR Filter

it is similar to the distributing and collecting model we use in previous applications.

Another reason is that the coefficients (taps) are generated from Matlab, which is not

suitable for streaming mapping. Therefore, incoming 8-bit data is distributed among

the 3x4 array. The data is distributed in the unit of block, with each block having 256

8-bit radar data symbols considering data distribution overhead and computational

complexity of every processing element. Each PE has a unique piece of source code

that is capable of computing partial finite impulse response. Mapping of FIR filter

is shown in Fig 4.11. The Collector will add up all the partial MACs together.

Since there will be zero’s inserted between different MAC’s in the output of one row,

therefore it is easy to differentiate output from PEs in the same row.
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CHAPTER 5

MRAM-ENABLED COARSE-GRAINED
RECONFIGURABLE ARRAY

In this chapter, the FPGA emulation platform for MRAM-enabled CGRA will be

introduced and elaborated. The experimental approach will be introduced and the

results will be presented and analyzed. From desktop-based simulation, we expect to

obtain overall performance of implementing STT-RAM in 40 nm technology as well

as the comparison against prevailing SRAM technology. From FPGA emulation and

performance/power measurement, we expect to see the energy benefits of configuring

the Instruction/Data memory and interconnect memory attached to the switchbox

to adapt to time-varying physical environment. If an energy-saving configuration

update is needed, a new configuration can be quickly swapped into compute blocks

and interconnect switchboxes to minimize system down time. Our experiments show

that the use of MRAM reduces overall application energy consumption by nearly 30%

when dynamic reconfiguration is used.

5.1 Architecture

Our MRAM-enabled coarse-grained architecture is designed to support streaming

applications with pre-scheduled communication paths. As shown in Fig. 5.1, the

architecture is based on a two-dimensional array of ALU-based processing elements1.

Each cell contains a 32-bit ALU, a 36K-word data memory, and a 24K-word config-

uration memory. These memories are directly connected to much larger multi-MB

1Nine PEs are shown for clarity, but much larger array sizes are feasible.
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Figure 5.1: Coarse-grained reconfigurable architecture with interface to MRAM.

non-volatile memory (MRAM) blocks which can be used to change their configuration

memory contents. The array interfaces to a network of multiplexer-based switchboxes

to provide inter-element communication. Data are switched in 32-bit increments to

lower the switch configuration memory overhead. A dedicated microprocessor is lo-

cated on the bottom of the array to provide control over the loading of configurations

to MRAM (if needed) and coordinating signal processing application data transfer to

and from DRAM.

The switchbox for each processing element (Fig. 5.1) operates on a pre-determined

schedule that coordinates communication with neighboring elements, which is elab-

orated in Chapter four. Schedule information for cycle-by-cycle configuration of the

multiplexer-based crossbar is stored in the schedule memory. Buffers and flow control

signals are provided on each interface port to prevent overflow. On each cycle for a

port, data can be forwarded from the buffer or the neighbor. Each buffer contains

storage for data from multiple independent streams (effectively, virtual channels). For

our architecture, the clock speed of the switchbox and the PE is the same, so com-
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munication between the two components is synchronous. As a data value becomes

available for a stream, the PE or switchbox writes the value to the appropriate buffer

location.

The key new architectural feature in this scalable multi-PE system is the use

of MRAM to cache multiple PE and switchbox configurations. The use of MRAM,

rather than more traditional SRAM, for configuration storage leads to several memory

interfacing and organizational issues that can be addressed by examining the opera-

tion of time-varying signal processing applications. Localized embedded MRAM can

dynamically reconfigure the configuration memories under control of the external con-

troller enabling changes in signal processing algorithm implementations in response

to the physical environment and/or signal characteristic changes (e.g. noise). Specific

MRAM issues that must be considered include:

• The energy consumption and performance of MRAM are tied to the width and

depth of the MRAM array. In this work we explore whether it is more efficient

to dedicate one wide MRAM bank per PE or to share a common bank across

multiple PEs

• The availability of large MRAM arrays allows for more rapid reconfiguration be-

tween applications and between multiple configurations of a single application.

We examine how this increased flexibility reduces system energy consumption

by adapting computation to environment factors.

5.2 Experimental Approach

To validate the energy and performance aspects of our approach, we use a combi-

nation of simulation and FPGA-based architectural emulation to accurately measure

system energy and performance. NVSIM [18] is used to evaluate circuit-level area,

performance, power, and energy for our STT-RAM (MRAM) implementations. This
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simulator has been widely used in a variety of experimental research studies. In our

work, the NVSIM LOP (low power) library is used to evaluate read/write access time

and static and dynamic energy for varying MRAM array sizes. NVSIM was also used

to model SRAM banks in the same 40 nm technology.

The processing element in our system, based on the ALU-based SPREE func-

tional unit [59], and the switchbox were written in Verilog. The performance of the

architecture for 12 PEs and switchboxes was validated using both RTL simulation

and in-circuit emulation after design synthesis using an Altera DE4 FPGA board.

Cycle-accurate performance and node toggle rate calculations for the applications

were determined using the Altera Performance Counter Unit, instrumented in the

FPGA hardware. This IP core could be activated by the microprocessor attached to

the PE array, which is implemented by a NIOS processor. The performance counter

starts when data is fed into the array and stops when all data has been processed

and returned. Detailed power consumption was determined using a current measure-

ment sensor included on the DE4 board. Another sensor is implemented to measured

the voltage drop of the chip power supply. Both of the sensors are connected to

Analog-Digital Converters(ADCs) which interface to FPGA via serial peripheral in-

terface(SPI) bus. A dedicated NIOS processor, which has no connection to any other

parts of the system, is instrumented in FPGA to read current and voltage and power

numbers on terminal every second.

Power and performance were scaled from measured 40 nm FPGA values found in

emulation to estimated 40 nm ASIC values. The switchbox and SPREE designs were

analyzed by both Altera PowerPlay and Synopsys Design Compiler using the NanGate

open core 40 nm library2 to determine the scaling factors of 11.6 for performance and

5.0 for power. Both of the numbers are derived from ASIC simulation and FPGA

2www.nangate.com
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emulation. Maximum clock frequency for ALU like SPREE processing element in

ASIC is 1.388GHz, while for FPGA, SPREE is running at 120MHz, from which we

infer the performance scaling factor. FPGA emulation power for SPREE is 60mW,

ASIC simulation gives 12.138mW, which gives a 5.0 power scaling factor.

Power simulation from Altera PowerPlay is determined by simulating all three

benchmarks with ModelSim Altera edition, dumping signal activities on each node

and putting that information into PowerPlay for power evaluation. Since the static

power number it returns is of the complete Stratix IV chip, therefore we infer the

static power for our design based on the portion of resource utilization.

During emulation, input data was streamed to PEs in the array from DRAM

(Fig. 5.1) using a NIOS microprocessor. Design performance was constrained by the

processing rate of the PEs, rather than the DRAM interface. The implementation

specifics for each benchmark are provided below:

RS decoding - In this application, each PE is assigned one RS decoder. The

error-correcting capability of the decoder (e.g. number of k message symbols) is de-

termined by the PE configuration. Our experimentation considers k values ranging

from 217 to 239 out of n = 255 total symbols (e.g. RS(255,217) to RS(255,239)). A

constant codeword error rate (CER) of 10−4 is used. The specific decoder configura-

tion is selected based on channel noise. To simulate the behavior of a communication

system, channel noise (SNR) was considered to vary at an accepted rate [4] of 1.5

seconds and a new noise value was randomly selected at this rate. If necessary, the

CGRA configuration is updated in response to the change in noise, necessitating a

PE configuration load from the attached configuration cache. For results, we consider

7 different decoder configurations. During processing, decoded data is streamed back

to DRAM from each PE.

Motion estimation - For this application, a series of 1024×1024 pixel greyscale

images are distributed to the PE array. Each of these images is part of a sequence
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in which motion can be detected. Subsequent images in the sequence are split into

windows and each window is tested by each PE for motion. In this implementation,

the accuracy of the motion estimation algorithm is dependent on the window size.

For higher accuracy, a smaller window size is used, leading to more windows and

increased computation. For reduced accuracy, the opposite effect is observed. In our

experimentation, we consider square window sizes of 14, 16, 18, 20, 24 and 26 pixels

on a side. Reconfiguration is considered every 0.5s based on changes in expected

motion.

FIR filtering - This application involves the implementation of a filter with tap

counts ranging from 120 to 1920 taps. A stream of input data is sourced from the

DRAM and the filtered data is streamed back to DRAM. For our experimentation,

eight-bit sampled radar data is used [44]. Computation for the taps is distributed

evenly across the PEs. An increased number of taps leads to more accurate filtered

data. Reconfiguration is considered every 0.5s based on changes in expected data

quality.

5.3 Results

There are three key issues that must be considered in evaluating the benefits of

using MRAM versus SRAM for on-chip configuration storage:

1. The relative power consumption, both static and dynamic, of MRAM (in this

case STT-RAM) versus SRAM.

2. The relative power consumption of the configuration storage versus the target

application.

3. The power and energy benefits of using a configuration cache and performing

dynamic reconfiguration versus always using the most powerful version of the

target application and not performing reconfiguration.
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Table 5.1: PE and switchbox configuration bit sizes for one configuration of each
application (results were generated by Tedy Thomas)

one PE whole CGRA
PE switchbox Total PE switchbox Total

RS 81,920 16,384 98,304 983,040 196,608 1,179,648
ME 49,152 16,384 65,536 589,824 196,608 786,432
FIR 40,960 16,384 57,344 491,520 196,608 688,128

Each of these three issues are addressed in our results.

5.3.1 MRAM and SRAM Energy Tradeoffs

Table 5.1 illustrates the configuration bit sizes required for the individual process-

ing elements and switchboxes. A CGRA with 12 PEs is used for experimentation.

The total for 12 PE/switchbox pairs is shown in the right columns of the table for

each application. PE configuration memory bits set connections between the ALU

and data memory. Switchbox configuration information, stored in the schedule mem-

ory, configures the routing crossbar on a per-cycle basis. As will be described later

in this section, seven distinct Reed Solomon configurations, six distinct motion esti-

mation configurations and five distinct FIR configurations are possible. As a result,

a configuration cache must hold multiple copies of configuration information for each

PE/switchbox, even though only one is loaded into the PE config. memory and

switchbox schedule memory at a given time.

An important driver of MRAM, rather than SRAM, use for configuration cache

storage is the substantially reduced leakage power of STT-RAM compared to SRAM.

The amount of this reduction is apparent from Table 5.2. For 128KB, 1MB, and

4MB memory blocks, the ratio of leakage power for SRAM versus MRAM is 2.8, 2.4,

and 8.3, respectively. In general, STT-RAM cells exhibit little leakage, so much of

the array leakage is due to the decoders and output multiplexer. From the table, it

can also be noted that the dynamic power of similar sized MRAM and SRAM blocks
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Table 5.2: MRAM and SRAM parameter comparison for 128KB, 1MB and 4MB
memory blocks with 32-bit output (results were generated by Tedy Thomas)

MRAM SRAM
128KB 1MB 4MB 128KB 1MB 4MB

Read time (ns) 1.10 1.30 1.67 0.31 0.60 1.23
Write time (ns) 5.24 5.36 5.88 0.28 0.49 0.82
Rd energy (pJ) 17.49 39.17 127.24 13.44 30.34 139.10
Wr energy (pJ) 17.05 29.74 105.71 10.00 22.81 116.45
Area (mm2) 0.57 2.42 4.92 0.74 3.38 12.95
Leakage (mW) 0.61 3.56 3.87 1.71 8.52 31.98

Table 5.3: Reed Solomon decoder statistics after mapping to a 12 PE array

k SNR Rate Energy per
(db) (Mb/s) million bits decoded

(mJ)
239 19.2-20.0 16.39 4.44
237 18.6-19.2 14.62 5.03
233 17.2-18.6 11.71 6.38
229 16.2-17.2 10.81 6.97
225 15.2-16.2 8.38 8.87
221 14.4-15.2 7.21 10.14
217 13.6-14.4 6.34 11.76

are similar. However, for our use of dynamic reconfiguraton where configuration

update takes place on the order of 500 ms to 1.5 s, the dynamic power consumed

by reconfiguration is minimal. For example, to reconfigure a PE and a switchbox

requires 3,012 32-bit reads from the configuration cache and 3,012 32-bit writes to the

PE configuration and switchbox schedule memories. For a 128KB MRAM, memory

reading requires 52.7 nJ and for 128KB SRAM reading requires 40.48 nJ, a modest

amount.
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Figure 5.2: Energy consumption of a RS(255, 217) decoder and MRAM versus SRAM
configuration cache storage for a selection of cache output bit widths. The total
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5.3.2 Configuration Performance and Energy Tradeoffs

As mentioned in Experimental Approach section, RS decoders of differing error-

correcting capability and power consumption can be used at different times based

on channel noise level. Table 5.3 indicates appropriate message symbol counts (out

of 255 total) for our implemented system. The results indicate that decode rate

and energy consumption vary with k. As k changes from 239 to 217, decode rate is

reduced from 16.39 to 6.34 Mb/s and the energy to decode one million bits increased

from 4.44 mJ to 11.76 mJ. One approach to providing sufficient error correcting

capability would be to use an RS(255,217) decoder at all times and avoid decoder

reconfiguration. However, this approach limits opportunities for faster decode rates

and reduced energy consumption.

Fig. 5.2 illustrates the energy cost of configuration cache storage in relation to

Reed Solomon coding per one million decoded bits. The CGRA-wide energy for
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the RS application is shown along with amount of energy needed to store 12 MB

of configuration cache storage in either MRAM or SRAM. This storage is assessed

for banks of memory with different output bit widths. If a 32-bit output is used,

each PE/switchbox pair has a dedicated MRAM or SRAM cache of 1 MB. For a

512-bit output, a single 12 MB bank is used to configure all PE/switchbox pairs

simultaneously. The single-bank option shows lower energy due to reduced decode

and multiplexer logic in the memory. However, all individual PE/switchbox pairs

must be configured at the same time.

It can be observed from the figure that if SRAM is used to cache configurations, its

energy is about the same as the energy used by the CGRA PE and switchbox circuitry

to perform the RS computation, an observation which echoes a previous finding of

43% of energy consumed by configuration caches [30]. However, across all memory

widths, MRAM configuration cache energy is significantly lower than RS decoding

energy (from about 50% less for 12 banks of 1MB to about 12× lower for 1 bank of

12MB). As mentioned in the previous subsection, the bulk (over 98%) of the MRAM

and SRAM configuration cache energy consumption is due to static power since the

RAMs are infrequently accessed. Although we do not consider voltage scaling for

the SRAMs which possibly could help reduce their energy consumption, we also do

not include the energy needed to initially load the SRAMs from off-chip non-volatile

storage. This action is unneeded for non-volatile MRAM.

Similar results in terms of throughput and energy can be observed for the motion

estimation application (Fig. 5.3) for search window sizes between 14 and 26. The

figure indicates that the application throughput improves with increasing window

size since fewer windows must be searched. Two configuration cache sizes per PE are

considered, 128 KB and 1 MB. A 1 MB cache size is desirable since it is able to hold

the configurations of all versions of all applications. A 128 MB cache size can hold

all versions of ME. The configuration cache energy per frame is reduced as window

62



0

200

400

600

800

1000

1200

1400

1600

1800

2000

14 16 18 20 24 26
ME Window Size

Th
ro

ug
hp

ut
 (F

PS
)

0.00

0.05

0.10

0.15

0.20

0.25

En
er

gy
 (m

J) ME throughput
1 MB SRAM energy
ME energy
1 MB MRAM energy
128 KB SRAM energy
128 KB MRAM energy
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size is increased because the frame requires less time for processing. For comparable

cache sizes, MRAM once again requires about 2 to 3× less energy than its SRAM

counterparts. It is notable that once again, the energy consumption of the SRAM-

based configuration cache is greater than the processing and switchbox components

of the application.

Similar throughput and energy results are seen for the floating point FIR appli-

cation. The throughput difference between the 120 tap implementation (5.2 MB/s)

and the 1920 tap version (0.56 MB/s) is almost an order of magnitude. For a 1MB

per PE/switchbox configuration cache, the average energy per million decoded bits

of the MRAM (29.20 mJ) is less than half the energy of the 960 tap FIR filter (74.47

mJ). However, an SRAM-based cache is nearly the same value (69.84 mJ).
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Table 5.4: Results of dynamic reconfiguration for mapped applications using three
4MB (256Kx128) memory banks per CGRA.

MRAM
Ave. pwr Energy Ave. Ene. Energy % Ene.

(mW) MRAM (mJ) App (mJ) Total (mJ) imprv
RS 90.91 0.99 7.66 8.65 26
ME 94.31 0.013 0.106 0.11 38
FIR 97.91 7.11 59.31 66.42 33

SRAM
Ave. power Energy Ave. Ene. Energy % Ene.

(mW) SRAM (mJ) App (mJ) Total (mJ) imprv
RS 176.46 9.12 7.66 16.78 -43
ME 179.86 0.12 0.10 0.22 -22
FIR 183.46 69.84 59.31 129.15 11

5.3.3 Benefit of Dynamic Reconfiguration

For all three applications (Reed Solomon decoding, motion estimation, and FIR),

energy consumption can be improved by adapting the application configuration to the

measured environmental condition (e.g. noise in the communications channel for RS).

In a final set of experiments, we examine the benefit of using dynamic reconfiguration

of the CGRA with either an MRAM- or SRAM-based cache versus simply using the

most powerful configuration of the application all the time (e.g. using the RS(255,

217) decoder for all RS decoding). A series of 10,000 random selections of decoder

noise, required ME motion detection, and FIR accuracy were generated to represent

changing environmental conditions. The application configuration which best met

the requirements for these conditions were then chosen for each selection.

The average power and energy of the applications considering dynamic reconfig-

uration from an MRAM-based or SRAM-based cache is shown in Table 5.4. Energy

is determined per one million processed bits for RS and FIR and per frame for ME.

The percentage improvement is the energy improvement for the average case using

reconfiguration versus the most computationally powerful configuration of the appli-
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cation (e.g. RS(255, 217), window size 14 for ME, 1920 taps for FIR). For example,

for RS using an MRAM cache, the RS(255, 217) decoder has a 11.76 mJ dissipation

while the average energy with reconfiguration is 8.65 mJ, a 26% savings. Although

not shown in the table, the throughput performance of the applications using the

reconfigured average case versus the most computationally powerful configuration is

70%, 118%, and 94% for RS, ME, and FIR, respectively.

From Table 5.4, it is apparent that the use of SRAM is limiting since its leakage is

high. The average energy consumption of the reconfigured RS and ME applications

are increased versus the most computationally-powerful versions by 43% and 22%,

respectively due primarily to this leakage. The throughput performance of the appli-

cations is improved with reconfiguration by the same amount as for the MRAM caches

since reconfiguration time is so small (µs) versus the frequency of reconfiguration (s).
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CHAPTER 6

CONCLUSION

Coarse-Grained Reconfigurable Array(CGRA) is known as a promising architec-

ture for data-streaming application due to its natural support for pipelined as well as

parallel applications. Each processing element in this array is capable of performing

basic mathematical and logic operation. It is competitive in terms of reconfiguration

overhead compared to its fine-grained peer, Field Programmable Gate Array. How-

ever, such energy reduction technique is not sufficient enough to shrink leakage power.

6-T SRAM cell consumes considerable amount of static energy(could be 43%).

In this thesis work, we have introduced the idea of using STT-RAM, the most

promising candidate of MRAM, to implement a configuration cache on a coarse-

grained reconfigurable array (CGRA). We have evaluated using a big chunk of MRAM

which is shared by all processing elements and separated but smaller chunks of MRAM

so that each PE will have private memory block. For CGRAs, leakage power can

dominate configuration cache energy consumption. We show that the use of MRAM as

a configuration cache is preferable to SRAM for a collection of three signal processing

applications, due to reduced leakage. We also show that the reconfiguration overhead

of MRAM and SRAM are the same. Therefore implementation of MRAM is beneficial

in terms of energy. We also examine the area of both of the memory fabric and with

an increasing size of memory chunk, which is the prevailing trend, MRAM will occupy

less than half of the area of SRAM(4MB).

To further reduce energy consumption, we also explore the possibility of adapting

CGRA to time-caring application requirements. By using dynamic CGRA reconfigu-
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ration in response to environmental factors (e.g. noise), application energy consump-

tion is reduced by about 30% with significant improvements in performance versus

the constant use of the most power hungry application configuration.

In the future we plan to consider larger CGRA sizes so that we could map more

complicated applications. A larger PE array will also require more memory support.

We believe that, from studying the trend of memory performance, a larger MRAM

chunk will bring more area efficiency as well as leakage power reduction compared to

SRAM. We would also consider the use of dynamic voltage scaling to save configura-

tion cache energy consumption. Since the configuration cache is read-biased and not

always activated, the supply voltage of memory can be toggled so that energy could

be further reduced.
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