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ABSTRACT

THE IMPACT OF QUANTUM SIZE EFFECTS ON
THERMOELECTRIC PERFORMANCE IN
SEMICONDUCTOR NANOSTRUCTURES

FEBRUARY 2017

ADITHYA KOMMINI

B.Tech., JNT UNIVERSITY, ANANTAPUR

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Zlatan Aksamija

An increasing need for effective thermal sensors, together with dwindling en-

ergy resources, have created renewed interests in thermoelectric (TE), or solid-state,

energy conversion and refrigeration using semiconductor-based nanostructures. Ef-

fective control of electron and phonon transport due to confinement, interface, and

quantum effects has made nanostructures a good way to achieve more efficient ther-

moelectric energy conversion. This thesis studies the two well-known approaches:

confinement and energy filtering, and implements improvements to achieve higher

thermoelectric performance. The effect of confinement is evaluated using a 2D mate-

rial with a gate and utilizing the features in the density of states. In addition to that,

a novel controlled scattering approach is taken to enhance the device thermoelectric

properties. The shift in the onset of scattering due to controlled scattering with

respect to sharp features in the density of states creates a window shape for trans-

port integral. Along with the controlled scattering, an effective utilization of Fermi
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window can provide a considerable enhancement in thermoelectric performance. The

conclusion from the results helps in selection of materials to achieve such enhanced

thermoelectric performance. In addition to that, the electron filtering approach is

studied using the Wigner approach for treating the carrier-potential interactions,

coupled with Boltzmann transport equation which is solved using Rode’s iterative

method, especially in periodic potential structures. This study shows the effect of

rapid potential variations in materials as seen in superlattices and the parameters

that have significant contribution towards the thermoelectric performance. Param-

eters such as period length, height and smoothness of such periodic potentials are

studied and their effect on thermoelectric performance is discussed. A combination

of the above two methods can help in understanding the effect of confinement and key

requirements in designing a nanostructured thermoelectric device that has a enhanced

performance.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Global demand for cost-effective, environmentally friendly forms of energy con-

version inspired people to focus on the field of thermoelectrics. To meet the ever

increasing demand for power sources, there is a need to improve our energy sources.

Renewable energy sources can be used as an alternative to the non-renewable energy

sources, but their efficiency and production capabilities aren’t able to satisfy the in-

creasing demand. Besides this, there is a possibility to effectively utilize the current

generation methods using coal and nuclear energy, but a lot of energy is going waste in

the form of heat dissipation in these methods. This can be used to produce electricity

but it requires reliable and efficient thermoelectric devices. Besides that, an increas-

ing need for effective thermal sensors have created renewed interests in thermoelectric

(TE), or solid-state, energy conversion and refrigeration. The efficiency of thermo-

electric devices for power generation is determined by dimensionless Figure-of-merit

(ZT ) of material [17]:

ZT =
σS2

κe + κp
T (1.1)

where σ is electrical conductivity, S is Seebeck coefficient, κe is electronic thermal

conductivity, κp is lattice (phonon) thermal conductivity. In Eq. 1.1, ZT is related to

S, κe, σ, which depend on electronic structure of materials and κp depends on lattice.

In the quest for efficient thermoelectric device/material, a lot of materials has been

investigated and studied.
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1.2 Physics behind the Thermoelectric energy conversion

Energy and particle transport accompany each other in a material, especially in

thermoelectrics where the temperature difference is maintained between the ends.

Let us consider a basic p-type and n-type semiconductor which are connected at ends

that are maintained at different temperatures as shown in Fig. 1.1. The electrons

Figure 1.1: A thermoelectric device with p-type and n-type semiconductor legs.

and holes diffuse from hot side to cold side to distribute the energy that is supplied to

the hot side. This energy transfer creates a cooling effect called Peltier cooling at the

hot junction and a heating effect at the cold junction. This carrier diffusion creates

a potential difference between the two junctions. This process of creating a potential

difference (∆V ) between two junctions at different temperatures (∆T ) is called as

Seebeck effect. The energy transport that gives rise to heating and cooling trends are

governed by Peltier coefficient (Π) and the potential difference between the junctions

is gauzed by Seebeck Coefficient (S) where

S = −∆V/∆T (1.2)
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Peltier coefficient (Π) and Seebeck Coefficient (S) are related using the kelvin relation

which is given as.

Π = ST (1.3)

A number of such p-type and n-type are connected such that they are thermally

parallel and electrically in series to create a thermoelectric device. But still, there

is no economical thermoelectric device that can be used for electrical generation in

large scale using Seebeck effect instead of conventional energy generation methods.

Fig. 1.1 shows the comparison between the efficiency of thermoelectrics that has to

be achieved to the efficiencies of conventional energy sources.

Figure 1.2: Comparison of thermoelectric power generation efficiency versus efciency
for conventional mechanical engines as well as the Carnot limit taken from [44].

Even though ZT is a measure of thermoelectric energy conversion, the power fac-

tor σS2, which is a part of ZT is mostly used to compare the efficiency of different

materials and devices. In metals, electrical conductivity σ is high but has a low

Seebeck coefficient. In insulators, the electrical conductivity is less but high Seebeck

coefficient. But, semiconductors have a moderate electrical conductivity and Seebeck
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coefficient that give a good power factor compared to the insulators and metals mak-

ing them the suitable materials for thermoelectrics. Even though the total thermal

conductivity (κ) of semiconductors can be reduced without causing much change in

electrical conductivity, as phonons contribute more to thermal conductivity than elec-

trons. The phonon thermal conductivity (κp) depends on the lattice of the material

and can be reduced by using different approaches like edge roughness and interface

scattering [9, 31, 45] such as isotope insertion [32], grain boundaries [48, 4], and

boundary confinement [1, 3] without significantly changing the transport properties

of electrons. These changes can modify the phonon thermal conductivity as they

change the relaxation time of the phonons due to different scattering processes that

are being introduced. Besides this, a lot of effort is made to enhance the power factor

by changing the electronic band structure. This thesis is an effort to improve the

thermoelectric performance by changing the electronic band structure using quantum

size effects like confinement and periodic structures.

1.3 Outline of Thesis

This Thesis is organized as follows: Chapter 2 discusses the ways that have been

reported in the literature to enhance thermoelectric performance using quantum size

effects. Chapter 3 introduces the idea of improving Seebeck coefficient in a 2-D ma-

terial using the density of states and restricting scattering of carriers. The numerical

simulation results are shown implementing the idea. The effect of periodic struc-

tures is studied in chapter 4 by incorporating the carrier potential interactions using

Wigner approach and results are reported. Conclusions are drawn in chapter 5.
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CHAPTER 2

OVERVIEW ON ENHANCEMENT IN
THERMOELECTRIC PERFORMANCE

2.1 Low-Dimensional Thermoelectric Structures

Seminal early work by Hicks and Dresselhaus [20] reported the possibility of im-

proved ZT when moving from higher to lower dimensional materials using the change

in the shape of density-of-states (DOS). They concluded that the sharp features in

reduced-dimensional materials provide energy filtering and push the carrier energies

upward (Since S ∝ (E−Ef ))relative to their bulk counterparts, resulting in enhanced

thermopower. There has been enormous research and innovations in the field over

years mainly on nanostructured materials and devices. The two main approaches re-

searched are using the nanostructuring or low-dimensional materials and hot electron

filtering using thermionic emission. Some of them that have been reported in the

literature for improving power factor are discussed below:

2.1.1 Quantum Wells

As discussed above the nanoscale effects like the sharp density of states can im-

prove power factor, thereby the total efficiency. But, these nanoscale effects when

implemented in devices and structures the resulting device thermoelectric efficiency

is not as expected. The work by Hicks and Dresselhaus [19] predicted that the quan-

tum confinement of carriers by using quantum wells increase ZT by increasing the

density of states without affecting the electronic transport properties. This inspired

people to work on quantum wells, but there are some fall-backs in implementing these

changes. To impose quantum confinement, one has to create barriers, these barriers

5



result in heat loss from hot to cold terminals. If the barriers are made thin, then tun-

neling may broaden the energy levels and sharp features in the density of states may

vanish. The size non-uniformity in materials and interface scattering in narrow quan-

tum structures also affect the density of states, limiting the efficiency enhancement

that can be achieved.

2.1.2 Quantum Wires

Quantum wires provide more quantum confinement than quantum wells. There

are many theoretical studies showing a huge improvement in ZT due additional con-

finement. But there were no experimental results that indicate the same. Papers by

Boukai [8] et al. and Hochbaum [21] et al. claimed a ZT of 0.6 for Silicon nanowires.

There are reports showing that the boundary scattering in thin nanowires reduces

thermal conductivity that improves ZT at low temperature. They also reported an

improvement in ZT at low temperatures and attributed it to the phonon drag effects.

Ryu et al. [43] also reported an increase in the contribution of phonon drag towards

the thermoelectric efficiency at low temperatures. This phonon drag increases the

Seebeck coefficient by using a phonon mode in electron transport that doesn’t con-

tribute much to thermal conductivity.

2.1.3 Quantum Dots

Quantum dots have zero dimension which provides high levels of quantum con-

finement. This gives a sharp density of states required to achieve high power factor.

A single quantum dot doesn’t help in making a thermoelectric device. It requires an

array of quantum dots to form a thermoelectric device. The transfer of heat from

one location to other require the movement of the electrons which is restricted if the

energy barrier is narrow and carriers are highly confined. If the barrier is shallow

then the sharp density of states is lost. When 3D array of dots is formed, then they

behave like a bulk crystal. In their work Linke et al. [33] studied the coupling

6



between quantum dot energy level and reservoirs broadens the density of states and

reduces the efficiency of the thermoelectric conversion process.

2.2 Thermionic Energy Conversion

To enhance the thermoelectric efficiency another approach called hot electron

filtering can also be used. In this method potential barriers are introduced in the

material to allow only high energy electrons to participate in the transport, thereby

improving the Seebeck coefficient. These heterostructures can have single and multi-

barrier structures. In single barrier devices, an optimum height barrier is used in one

direction and a large barrier is used in other direction to prevent the reverse current.

In multibarrier barrier devices, Mahan and Woods [29] suggested an improvement by

a factor by two but later concluded that it worse than the normal devices. Seebeck

enhancement by hot electron filtering is observed in some systems [52], but this comes

with a decrease in electrical conductivity because of reduced number of carriers.

The general interpretation of the carrier transport over the barriers is that the

electron with higher kinetic energy perpendicular to the barrier is emitted. Many

hot electrons with higher transverse momentum can’t pass the barrier. To break

this, non-planar barriers or scattering centers are created [7]. Moreover, the effect

of barriers on the distribution function of the particles is not considered. If the

non-planar or the scattering centers have a characteristic length less than electron

de-Broglie wavelength, then wave nature of the electron has to be considered which

makes the problem complex to analyze.

2.3 Calculation of Thermoelectric Performance Parameters

To evaluate the efficiency of thermoelectrics, Figure-of-merit (ZT )(Eq. 1.1) is the

commonly used parameter. Calculation of ZT requires the calculation of Seebeck co-

efficient (S), electrical conductivity (σ) and Thermal conductivity of both electrons

7



(κe) and phonons (κp). This thesis deals only with the electron transport, so only

Seebeck coefficient (S), electrical conductivity (σ) and Thermal conductivity of elec-

trons (κe) is focused. To calculate them, Boltzmann Transport equation (BTE) with

relaxation time approximation is used and additional effects to include the quantum

treatment of electrons is added in later part of the thesis. Carrier transport occurs

when the system is in a nonequilibrium state and to describe this nonequilibrium con-

dition Boltzmann equation is used. Boltzmann equation is a one-particle distribution

function by averaging the N -particle distribution function over (N − 1) particles in

the system. This averaging process gives the Boltzmann equation as

∂f

∂t
+ v.∇rf +

F

~
.∇kf =

(
∂f

∂t

)
c

(2.1)

where fq is the particle density. The right hand side (scattering or collision term) of

the equation represents the interaction of this one particle with the rest of the parti-

cles in the system and calculates the change in particle density due to interaction with

other particles. This term is influenced by two factors, diffusion and scattering. Dif-

fusion is a result of the temperature gradient where as scattering is due to impurities,

dislocations, grain boundaries, the collision between the phonons, between phonons

and boundaries, and phonons with other particles. To calculate the collision term in

the Boltzmann transport equation, Fermi golden rule was used which gives rate of

transition of a particle from one set of quantum states to other. By integrating the

transition of a particle at a particular quantum state into all possible quantum states

gives the scattering term for that particle. Due to the complexity of the equation a

simplification called Relaxation Time Approximation (RTA) for this term was used.

(
∂f

∂t

)
c

= −f − f0
τ

(2.2)

8



Where τ represents the total relaxation time calculated from different processes which

are later combined using Matthiessen’s and f0 represents the equilibrium distribution

of the carriers. Then the expressions for S,σ and κe are derived under the assumption

that the local deviation from equilibrium is small and the relation between heat

transport and carrier transport is included using the first law of thermodynamics.

The expressions thus calculated are:

σ = L(0) (2.3)

S =
1

eT

L(1)

L(0)
(2.4)

κe =
1

e2T

(
L(2) −

(
L(1)

)2
L(0)

)
(2.5)

L(α) =

∞∫
0

− ∂f0 (E)

∂E
(E − EF )αΞ(E)dE (2.6)

Ξ(E) = e2τ(E)g(E)v2(E) (2.7)

where L(α) is called transport integral, Ξ(E) is called differential conductivity or

Transport Distribution Function (TDF), EF is called Fermi energy, E is energy of

the carriers, g (E) is density of states, τ (E) is energy dependent relaxation time,

∂f0 (E)/∂E is Fermi window factor and v(E) is velocity of the carriers in the direction

of the electric field or temperature gradient.

2.4 Trade-off between Electrical Conductivity and Seebeck

coefficient

As discussed earlier, to improve power factor, both Seebeck and electrical conduc-

tivity has to be improved. But, improving one of them results in the decrease of the

other so a balance has to be maintained to maximize both in a material. The differ-

ential electrical conductivity function or Transport distribution function (TDF) can
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be used to study the trade-off between electrical conductivity and Seebeck coefficient.

Now, the carefully observing the expression for Seebeck coefficient, it can be inter-

preted as the weighted average of energies above the Fermi level. To improve it the

a matching peak in TDF with the peak in Fermi window (∂f0 (E)/∂E) which occurs

at Fermi energy. But this alone is not sufficient because a perfect symmetric function

centered at Fermi level has a minimum contribution towards Seebeck coefficient. So

the peaks have to be matched by keeping the overlap asymmetric with respect to

Fermi energy. So using the low-dimensional materials which have sharp features in

the density of states will help to improve the Seebeck coefficient and Electric conduc-

tivity simultaneously due to the asymmetry caused by those sharp features between

the TDF and Fermi window. Doping can improve electrical conductivity by mov-

ing the Fermi energy well into the conduction band, thereby improving the electrical

conductivity, but decreases the Seebeck coefficient due to the symmetry.

The electron group velocity which depends on the effective mass as v(E) =
√

2E
mv

also causes trade-off between electrical conductivity and Seebeck coefficient especially

in superlattices [6]. The bands having high effective mass results in the higher density

of states and lower mobilities, resulting in high power factor. This is not the only

possibility: even bands with high mobility and low effective mass also have good power

factor as velocity depends only on the curvature of the bands whereas the density of

states depends on the entire dispersion relation. So, selecting and implementing a

good band structure can overcome this and a better power factor can be achieved

with optimal electrical conductivity and Seebeck coefficient.
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CHAPTER 3

ENHANCEMENT IN A GATED 2-D MATERIAL USING
FEATURES IN DENSITY OF STATES

The initial work on improving the thermoelectric properties of materials sug-

gests moving from higher to lower dimensional material [20] and tuning the TDF

[28] to make it a delta shaped function helps to achieve higher conversion efficiency.

Thermoelectric refrigeration using Si-based nanowires and nanoribbons is an attrac-

tive approach for targeted cooling of local hotspots [30],[11] due to the ease of on-

chip integration and the nanowires’ enhanced TE Figure-of-merit [21, 8]. Silicon-on-

insulator (SOI) membranes [22] and membrane-based nanowires [39] and ribbons [8]

show promise for application as efficient thermoelectrics, which requires both high

power factor and low thermal conductivity.

3.1 Overview of our approach

Mahan and Sofo [28] studied the optimal conditions for thermoelectric conversion

and proposed that a delta-shaped transport distribution function (TDF) Ξ(E) =

τ(E)g(E)v2(E), where τ(E) represents the relaxation time, g(E) represents the DOS,

and v(E) is velocity of carriers, can significantly improve S thereby improving the

overall ZT through electron filtering. Zhou et. al. [50] re-investigated this idea to

determine the best electronic structure for materials in terms of energy filtering band-

width (Wα) by studying the transport properties using different scattering models of

carriers. They concluded that a narrow window-shaped, rather than a delta-function

shaped TDF, brings about the highest enhancement in the TE properties, especially
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when that window matches the so-called Fermi window [24]. Achieving a narrow or

delta-shaped TDF, however, has proven difficult as the sharp features in the density-

of-states g(E) are readily canceled by related features in the scattering rate τ−1(E).

In this work, we propose a novel method of further enhancing the thermoelectric

Seebeck coefficient beyond what is achievable by confinement and reduced dimension-

ality alone. We study ways to achieve significant enhancement of Seebeck coefficient

arising from narrow window-function shaped TDF. We propose to achieve this narrow

TDF by combining a step-like DOS in a 2-dimensional system with predominantly

inelastic scattering from the optical phonon emission mechanism. The narrow-band

TDF is achieved due to electron confinement in a gated two-dimensional (2D) silicon

nanomembrane (SiNR). The 2D nature of the system leads to a step-like electronic

DOS gbn(E) = mb
n/(π~2)Θ(E − Eb

n) with one step contributed by each subband n in

each ladder b [5]. Typically, elastic scattering rates τ−1el. (E) are proportional to the

DOS as they do not involve energy transfer; consequently, the number of possible

transitions is closely related to the number of available final states, which is captured

by the DOS. Because of this, sharp features in the DOS are canceled out by the equal

and opposite features in the τel., which makes it difficult to achieve a delta-shaped

TDF, even when the DOS has very sharp features. In addition, scattering tends to

smear out the sharp features in the DOS due to collisional broadening.

In contrast, inelastic and intersubband scattering can only begin to occur when

the carrier accumulates enough energy above the bottom of a band, or, in the case of

confined structures, a subband. Consequently, inelastic scattering rates still follow the

shape of the DOS, but they are shifted by the amount of energy being exchanged in the

scattering event: τ−1inel.(E) ∝ g(E ±∆E), where ∆E is the energy being exchanged–

either the difference in subband energies for intersubband scattering or the optical

phonon energy ~ωop for optical transitions. The subband energies can be controlled by

gate-tuning thereby limiting the scattering of the carriers. Hence these mechanisms,
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Figure 3.1: Schematic of the approach we proposed in this study. A shift in the
onset of scattering rates (in top row) which respect to Density of states can give the
proposed delta shape to TDF [27] (shown in the second row). Along with delta shaped
TDF, maximum utilization of Fermi window still maintaining the asymmetry with
respect to TDF (shown in the bottom figure) can provide maximum thermoelectric
performance.

when inelastic scattering is dominant, delay the onset of the step in the scattering

rate relative to the DOS. In this case, unlike its elastic counterpart, the DOS and

13



τinel. are offset by ∆E and thus lead to a narrow band TDF. This, along with the

maximum utilization of the Fermi window, as shown in Fig. 3.1 lead to a significant

further enhancement of the Seebeck coefficient at low temperatures where inelastic

scattering due to optical phonon emission is dominant.

3.2 Transport Model

To explore the practical possibility of achieving the delta shaped TDF in a confined

nanostructure, a back gated undoped silicon nanoribbon of 20 nm thickness on an

oxide of 10 nm thickness is simulated. The oxide acts as a capacitor which induces

carriers that participate in the transport of both charge and energy, by applying

the bias to the gate. The subband energies in the nanoribbon are obtained by self-

consistently solving the coupled one-dimensional Schrödinger and Poisson equations

in the direction of confinement [2]. The 1D Poisson equation is solved for the potential

over the entire simulation domain, including the gate contact, the buried oxide, the

silicon nanoribbon, and the vacuum on the opposite side. The 1D Poisson problem

d2V (z)

dz2
=
ρ(z)

ε(z)
(3.1)

produces a tridiagonal system of equations
∑

j Ai,jzj = ρ(zi)/ε(zi) when discretized

by finite differences, and can then be solved very efficiently by the popular and ro-

bust Thomas algorithm which consists of one forward substitution pass followed by a

back-substitution sweep, effectively eliminating the off-diagonal entries and diagonal-

izing the system matrix . The solution of the Poisson problem produces the values of

the electrostatic potential V (z) at each point in the discretization. Then the values

of those points which are inside the silicon nanoribbon region (0 ≤ z ≤ 20 nm) are

extracted from the total solution for the whole system. A few points (typically 5) are

added on the SiO2 side for z < 0 in order to account for penetration of the wavefunc-

tion into the oxide due to its finite barrier height. A potential barrier is added to the
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Figure 3.2: Schematic depiction of the simulated silicon nanoribbon. The thickness
of the silicon layer is L=20 nm, while the oxide thickness is 10 nm. Gate voltage is
applied to the metal gate, causing an inversion layer to appear near the semiconductor-
oxide interface. Confinement of carriers and in the near-triangular potential well
near the Si surface, and the separation of the confined subbands, are also shown
schematically in the figure.

electrostatic potential so that VSchr.(z) = V (z) +VBarrier where VBarrier = 4.35 eV for

z < 0 and VBarrier = 0 for z > 0. The time-independent Schrödinger equation is then

solved in the effective-mass approximation by setting up a finite-difference solution

over the same discretization as the Poisson system, only restricting the solution to

the silicon region plus a few points in the oxide. The resulting eigenvalue problem [5]

HΨ(z) = VSchr.(z)Ψ(z) (3.2)

is solved numerically to obtain eigenvalue/eigenvector pairs at each discretization

point. Then the obtained energy values are used to calculate the charges in the

obtained bands

N =

∫
D(E)f(E)dE (3.3)
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Then the charge density is calculated and again used to solve the Poisson equation.

The potential profile is then used to solve numerically for the eigenvalue/eigenvector

pairs. This self-consistent loop is iterated to till the convergence in the charge den-

sity is achieved. Then, the resultant subband energies Eb
n are used to calculate the

contribution of each subband to the thermoelectric Seebeck Coefficient (S) using the

following relations from the semi-classical Boltzmann Transport Equation (BTE),

solved under the Relaxation Time Approximation (RTA) [43] :

L(α) = −e2
∑
n,b

∞∫
0

∂f0
(
E + Eb

n

)
∂E

(E + Eb
n − EF )

α
Ξ(E)dE (3.4)

Ξ(E) = τ bn (E) gbn (E) v2b (E) (3.5)

where L(α) is called the transport integral, Ξ(E) is called transport distribution func-

tion (TDF), EF is Fermi energy, Eb
n is the subband bottom for band b with subband

n, gbn is the density of states of that subband, τ bn (E) is energy dependent relaxation

time, and vb(E) is velocity of the carriers in the ladder b. The Fermi window factor

−∂f0
(
E + Eb

n

)
/∂E has to be symmetric [44] with EF and the Ξ(E) must be as big

as possible in the Fermi window to have good thermoelectric properties.

In the effective mass approximation, velocity of carriers (vb(E)) can be written in

the form of their corresponding effective mass and energy of the subband as follow

vb(E) =

√
2E

mb
v

(3.6)

where mb
v is conductivity or transport effective mass for band b. Carrier transport

is controlled by the scattering mechanisms that they undergo i.e., from lattice vi-

brations, impurities, material defects and other electrons. The scattering mecha-

nisms that are implemented in this work are inelastic intervalley scattering by optical

phonons (τ bn,O(E)), elastic acoustic phonon scattering (τ bn,A(E)) and surface roughness
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scattering(τ bn,S(E)) [53, 26, 14, 5, 40, 15]. The relaxation time of the carriers τ bn(E)

for band b with subband n is obtained by calculating the scattering rates of different

scattering mechanisms and combining them by using the Mathiessens rule.

1

τ bn(E)
=

1

τ bn,O(E)
+

1

τ bn,A(E)
+

1

τ bn,S(E)
. (3.7)

In optical phonon intervalley scattering both f -type and g-type processes are

implemented. A root-mean-square surface roughness of 0.35 nm is used in the cal-

culation of surface roughness scattering. An acoustic-phonon deformation potential

of 12 eV is used for implementing the acoustic phonon scattering. This model has

been thoroughly validated against the experimental results in [43]. For intervalley

scattering, an optical deformation potentials of 8×1010 eV m−1 and 11×1010 eV m−1

with optical phonon energies of 0.059 eV and 0.063 eV are used for f -processes and

g-processes respectively.

3.3 Results and Discussion

To check the proposed approach in silicon nanoribbons towards the possible en-

hancement in Seebeck coefficient (S), we implement the elastic mechanisms, phonon

acoustic and surface roughness scattering has to be minimized; thus making the inelas-

tic intervalley optical phonon scattering as dominant mechanism. A reduced acoustic

phonon scattering is implemented by using a deformation potential which is 10% of

the normal value. All the transport integrals and the Seebeck coefficient S are cal-

culated and shown in Fig. 3.3. As expected, there is a little or no change in S in

the presence of surface roughness in normal or reduced acoustic phonon scattering

conditions, indicating that the elastic surface roughness (SR) is the dominant scat-

tering mechanism when large roughness is present. At low temperatures (especially

at T < 200K) there is a significant enhancement in S, particularly in the ideal case
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when there is no surface roughness. The enhancement is more prominent with reduced

acoustic phonon scattering (red color in Fig. 3.3). The restriction to low tempera-

tures is due to the need for optical phonon intervalley scattering to be the dominant

mechanism, which occurs at low temperatures. Our proposed approach does lead to

enhancement in S, which is attributed to a narrow rectangular window-shaped TDF.

Figure 3.3: S at different temperatures with a Vgate= 5V for all scattering mechanisms,
reduced acoustic phonon scattering with surface roughness (SR) and without surface
roughness. There is an enhancement in S at low temperatures with reduced acoustic
phonon scattering without surface roughness.

To validate it, TDF is plotted for the temperature T=100 K where a significant

enhancement is observed. Fig. 3.4 plots the TDF which displays a sharp and narrow

rectangular peak at low energies and gradually decreases towards the higher energies.

Here, inelastic optical phonon scattering is the dominant mechanism, so carriers can

only undergo scattering by either emitting or absorbing an optical phonon. Energy
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conservation requires that this emitted or absorbed phonon has an energy of Eop =

~ωop. Typically, emission dominates over absorption in the intervalley optical phonon

scattering [41]; the emission rate Γems due to inelastic optical phonons is proportional

to Θ(E+∆(E)−Eop); here ∆(E) is the energy difference of initial and final subbands

between which scattering occurs. Electrons occupying lower energies near the bottom

of each subband lack sufficient energy to emit an optical phonon, required for this

transition, which leads to Γems(E < Eop) = 0. This requirement, which stems from

energy conservation, delays the onset of the step in the inelastic scattering rate, which

leads to the narrow rectangular window shape to the TDF.

Figure 3.4: Delta shaped Transport Distribution Function (TDF) formed at the sec-
ond subband with T=100K, Vgate=5V and optical phonon energies more than the
maximum subband energy gap.
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To explore the contribution of narrow rectangular window-shaped TDF towards

the enhancement of TE properties, the Seebeck coefficient(S) is calculated at differ-

ent optical phonon energies (Eop) as shown in Fig. 3.5. Here it is shown that the

matching between the 5 kBT ”Fermi window” and the optical phonon energy plays a

major role in attaining the maximum enhancement in S. Having an optical phonon

with energy (Eop) comparable to the Fermi window width (∼ 5kBT ) utilizes the entire

Fermi window; in that case, the narrow TDF matches the Fermi window and pro-

duces the largest enhancement of the Seebeck coefficient (S). Our findings here agree

with the work of Zhou et. al. [51] and Kim et.al. [24] where the concept of optimal

bandwidth was introduced as a way to achieve the maximum energy conversion effi-

ciency. However, with further increase in the optical phonon energy (Eop), the optical

phonon energy begins to exceed the separation between adjacent subbands and the

TDF starts to smear out due to the onset of elastic transitions between subbands.

Further improvements were not possible even though the complete Fermi window is

utilized, thereby decreasing the enhancement in S which is shown in Fig. 3.5.

Results in Fig. 3.5 were obtained by applying a constant gate voltage Vgate of 5

Volts, which fixes the subband separation in the inversion layer. The dependence of

subband energies on applied gate voltage also plays an important role in the shape

of the TDF and affect the conditions which can lead to Seebeck enhancement. In

Fig. 3.6, we have simulated the SiNR at a constant temperature of T=80 K and

varied the applied bias. Increasing the gate bias voltage increases the steepness of

the potential well inside the semiconductor and produces larger subband separation.

The number of carriers in the confined inversion layer is also controlled by the gate

voltage, and thereby affects the position of the Fermi level relative to the positions

of the subbands. But these changes to the electronic band structure only affects the

amount enhancement that can be achieved. The phonon energy where the peak in

S falls doesn’t change, as it is controlled by the Fermi window which is constant for
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Figure 3.5: Variation in S with optical phonon energies showing the peak being
positioned near the valley bottom subband energy difference with Vgate= 5 V at
different temperatures. The change in subband energy difference by temperature is
reflected in the shift of peak in S.

a given temperature. We conclude that, at a fixed operating temperature, applying

low gate bias and having optical phonon energies which utilize the entire of Fermi

window can provide maximum Seebeck coefficient (S).

The height of the steps in the step-like electronic DOS of 2-dimensional confined

structures, used here to achieve the narrow window-shaped TDF, depends also on the

density of states effective mass (m∗d). As DOS ∝ m∗d, by selecting the material with

higher m∗d we can increase the height of each step in the DOS. However, the increase

in m∗d also implies a corresponding decrease in the subband energy difference, which
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Figure 3.6: Seebeck coefficient as a function of the energy of the optical phonon for
several values of gate voltage. The gate voltage controls the number of carriers in the
confined inversion layer and thereby affects the position of the Fermi level relative to
the positions of the subbands. Higher gate voltage means the charge concentration of
electrons is higher and the Fermi level is closer to the lowest subband, which decreases
the Seebeck coefficient, as shown in previous work [43].

has been observed to be detrimental to the Seebeck coefficient. To observe this effect,

S has been calculated in SiNR with different dominant scattering mechanisms by

changing the effective mass and plotted in Fig. 3.7. At low values of m∗d, there

is considerable enhancement which dies off as one moves to higher effective mass.

So a careful selection of the material is required to achieve the maximum Seebeck

enhancement by balancing the DOS and scattering of carriers. We conclude that

higher effective mass materials may be advantageous, as long as they can maintain

large subband separations exceeding the optical phonon energy.
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Figure 3.7: Variation in S with the DOS effective mass m∗d at T=100 K with
Eoptical=0.043 eV and Vgate=5 V.

3.4 Conclusion

In summary, the selection of the material for maximum energy conversion at a

given temperature depends on the interplay between the subband structure and ef-

fectively using the inelastic scattering mechanisms to take the advantage of such

subband structure. Simulation for thermoelectric conversion coefficients in a silicon

nanoribbon showed an enhancement in Seebeck coefficient at low temperatures in

situations where inelastic transitions are dominant and little or no elastic interac-

tions in the form of acoustic and surface roughness scattering. A further detailed

study showed the formation of almost delta shaped transport distribution function

due to the discrete band structure in confined nanostructures that restricts the elec-
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tron transport to the lowest subbands. This forces electrons to acquire or emit the

required energy to occupy these energy levels after scattering which is assisted by

the optical phonons due to the dominant intervalley optical phonon scattering. In

addition to that, we observed that a delta shaped TDF alone can’t provide maximum

enhancement, the Fermi window decides the extent of this enhancement. Further-

more, by applying external gate bias and thereby rearranging the subbands, we can

achieve further control on enhancement in the thermoelectric Seebeck coefficient by

tuning the TDF. Changing the density-of-states effective mass affects the height of

the step in the TDF and further tunes the enhancement; however, the corresponding

change in the subband structure limits the advantage from reduced effective mass.

In our study, the 2D nature is imparted by confining a bulk material and the

applied gate voltage controls the spacing in the discrete band structure, thereby

creating a strong interdependence that affects the enhancement. So, to avoid it an

intrinsically 2D material can be used which will have an independent native discrete

band structure and then a detailed analysis in such material gives more insight on

proposed method for achieving thermoelectric enhancement. A possible extension to

this work can be implementing our approach in such 2D materials to observe the

nature of the enhancement and formulating a general criteria to design an efficient

thermoelectric device.
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CHAPTER 4

ENHANCEMENT OF SEEBECK COEFFICIENT IN
RAPID VARYING PERIODIC STRUCTURES USING

WIGNER FORMALISM

4.1 Introduction

Electron filtering is one of the approaches that can provide an improved thermo-

electric performance. In electron filtering ”cold” electrons (low energy electrons) are

restricted from participating in transport using a potential barrier as the Seebeck co-

efficient (S) ∝ (E −Ef ). There have been several studies done by implementing this

approach using nanocomposites [25], superlattices, single and multiple barrier struc-

tures. Zide et al. [52] demonstrated an increase in thermoelectric efficiency using a

nanocomposite consisting of III-V semiconductors (more specifically, InGaAlAs) con-

taining nanoparticles of erbium arsenide as energy-dependent scatterers. Yokomizo

and Nakamura [49] showed ZGNR/h-BN superlattices drastically enhance the See-

beck coefficients of ZGNR’s. Dragoman and Dragoman [12] showed that the Seebeck

coefficient in a graphene-based interference device can be engineered to achieve un-

precedented high values. Fig. 4.1 shows the Graphene device has been used by them

with a series of gates which are used to create a periodic potential in Graphene. Then

they studied the effect of such periodic potentials on the thermoelectric performance

of the device and showed a giant Seebeck coefficient being achieved. There are studies

([36], [35] and [25]) based on NEGF formalism to study the effect of smoothness and

periodicity of potential barriers on thermoelectric parameters. In addition to these

direct implementations, potential barriers are used to model the grain boundaries in

nanocrystalline materials [37]. In this thesis, we implemented such periodic potential
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in semiconducting materials and study their effects on thermoelectric performance.

We used a comprehensive transport model that can effectively capture the carrier-

potential interactions using Wigner formalism along with the semiclassical Boltzmann

transport equation (BTE).

Figure 4.1: The graphene device used by D. Dragoman and M. Dragoman [12] to
observe the effect of periodic potential being applied using a series of gates.

4.2 Wigner Formalism

The semi-classical approach of the Boltzmann transport equation (BTE) is widely

used in the device simulations. But, in semi-classical approach, electrons are consid-

ered as point particles moving with a velocity of their wave packet center and the

spread of wave packet to be unchanged during their propagation. Hence the elec-

trons are assumed to be well localized wave packets of Gaussian typical form. Along

with that the potential across the simulation domain is linear, quadratic or varies

slowly. But, this semi-classical approach is unable to explain all the device effects
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(such as underestimating the threshold voltage in Bulk MOSFET in ultra-thin body

transistors [10, 47]) and quantum processes like interaction of carriers with the rapid

potential changes across the materials such as super lattices. To model such abrupt

change in the potential across the material, quantum formalisms like density matrix,

Wigner function and Green’s function approaches have to be used. In this thesis, to

capture the quantum effects, Wigner function is used which effectively captures the

potential variation and its effect on distribution of carriers across the material. The

Wigner equation is given as [34, 46]

(
∂

∂t
+ vr∇r +

eF

}
∇k

)
fw (r, k, t) = Qfw (r, k, t) +

(
∂fw
∂t

)
coll

(4.1)

where fw (r, k, t) is called as Wigner distribution function which is written as

fw (r, k, t) =
1

2π

∫
dr′e−ir

′kρ

(
r +

r′

2
, r − r′

2

)
(4.2)

where ρ is the density operator that is used to represent the mixed states in the

quantum system, r and r′ represents the center of mass and spread of the wave

packet. The potential operator or quantum evolution Qfw (r, k, t) is given as

Qfw (r, k, t) =

∫
dk′Vw (r, k − k′) fw (r′, k, t) (4.3)

Where the Wigner potential is given as

Vw (r, k) =
1

i}(2π)d

∫
dr′e−ir

′k

(
V

(
r +

r′

2

)
− V

(
r − r′

2

))
(4.4)

which depends on the potential V across the material. Eq. 4.4 can be simplified as

Vw (r, k) =
2

π}
Im{e2ikrV̂ (2k)} (4.5)
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where V̂ (k) is spatial Fourier transform of Vq

V̂ (k) =

∞∫
−∞

Vq(r)e
−ikrdr (4.6)

The potential operator Qfw (r, k, t) can be decomposed in to slow varying classical

component and rapidly varying quantum mechanical component based on V .

V (x) = Vcl(x) + Vqm(x) (4.7)

The contribution towards Vcl from the slow varying potential like applied external

bias that is taken care in BTE. Also, barriers cause the rapid varying Vqm which is

handled by the Wigner function. Hence the Wigner equation tends to the Boltzmann

equation in the case for which the Boltzmann equation is established i.e. linear,

quadratic or slowly varying potential. The Boltzmann equation may thus be seen

as the semi-classical limit of the Wigner equation and at steady state with a small

perturbation (gw where fw = fo + gw) to distribution, can be implemented by using

the Wigner-Boltzmann transport equation (WBTE) which is given as

(
vr∇r +

eF

}
∇k

)
fw (r, k, t) = Qfw (r, k, t) +

(
∂fw
∂t

)
coll

(4.8)

4.3 Soution to Wigner-Boltzmann transport equation (WBTE)

4.3.1 Rode’s Method for Boltzmann Transport Equation (BTE)

To model the electron transport by solving the Boltzmann Transport Equation

(BTE), Rode’s method can be used. Rode’s method [42] is an iterative method to

calculate electronic characteristics of a material by solving for perturbation to the dis-

tribution function due to the applied field. Then this perturbation is used to calculate

electrical transport parameters like the Seebeck coefficient (S), electrical conductivity
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(σ), electron thermal conductivity(κel) etc. The collision operator in BTE (Eq. 2.1)

includes the evolution of the particles from scattering mechanisms. This evolution

caused by the perturbation in the distribution of carriers can be obtained easily in

the absence of any inelastic processes using RTA approximation (Eq. 2.2) for colli-

sion operator in BTE. In the presence of dominant inelastic scattering process, the

concept of RTA is not accurate as the distribution of carriers doesn’t relax to their

equilibrium distribution. So Rode’s method has to be used, which effectively models

inelastic processes in the material.

In Rode’s method, all inelastic scattering processes of carriers is included while

solving for the perturbation to the distribution function. To do that the distribution

function is approximated to first order using Lagrange polynomials

f(k) = fo(k) +
∑
n=1

gn(k)pn (cos(θ)) (4.9)

where fo(k) is equilibrium distribution function, gn(k) is the perturbation to the

distribution function due to the applied electric field and θ being the angle between

carrier velocity and electric field. The collision term in Eq. 2.1 can be written as sum

of contribution from elastic and inelastic scattering processes.

(
∂f

∂t

)
coll

=

(
∂f

∂t

)el
coll

+

(
∂f

∂t

)inel
coll

(4.10)

Including both in-scattering and out scattering processes of inelastic scattering

mechanisms, its contribution can be written as

(
∂f

∂t

)inel
coll

= cos(θ) [I(k)− g(k)Io(k)] (4.11)

I(k) =
∑
k′

g(k′)cos(α)
[
Sinelkk′ f0 + Sinelk′k (1− f0)

]
inscattering processes (4.12)
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Io(k) =
∑
k

[
Sinelk′k f0

′ + Sinelkk′ (1− f0′)
]

outscattering processes (4.13)

and the contribution from elastic mechanisms can be written as

(
∂f

∂t

)el
coll

=
g(k)cos(θ)

τ el(k)
outscattering processes (4.14)

where α is the angle between the initial and final wavevector, Sk′k is the scattering

rate from k′ to k, f0 is the Fermi-Dirac distribution of corresponding wavevector and

τ el(k) is the elastic processes relaxation time. Substituting Eq. 4.10 in Eq. 2.1,

perturbation in distribution can be written as

g(k) =
I(k) + eF

}
∂f0
∂k
− vr ∂f

∂r

S0(k)
(4.15)

where S0(k) = I0(k) +
1

τ el(k)
(4.16)

S0 is the sum of out-scattering rates of all processes and in-scattering rates of all scat-

tering mechanisms except inelastic mechanisms. The perturbed distribution function

for electrons is calculated by iteratively solving,

gi+1(k) =
I(k) + eF

}
∂f0
∂k
− vr ∂f

∂r

S0(k)
(4.17)

where I(k) =
∑
k′

gi(k
′)cos(α)

[
Sinelkk′ f0 + Sinelk′k (1− f0)

]
(4.18)

Here the ith iteration solution of gi is used to calculate the (i+ 1)th solution of the

perturbed distribution function and the process is continued till it converges. The

zeroth-iteration solution g0 is assumed to be 0, where the solution gives the RTA
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approximated value. Then the mobility and Seebeck coefficient are calculated using

converged gi as follows:

µe =

∫ ∫
v(k)gi(k)δ(E − E(k))dk dE

eF
∫ ∫

f(k)δ(E − E(k))dk dE
(4.19)

S =

∫ ∫
v(k)gi(k)(E − Ef )δ(E − E(k))dk dE

T
∫ ∫

v(k)gi(k)δ(E − E(k))dk dE
(4.20)

where v(k) is group velocity of carriers, F is applied electric field, Ef is Fermi energy

level and T is the temperature of the material.

4.3.2 Rode’s implementation of the WBTE

The Wigner-Boltzmann transport equation (WBTE) is implemented here using

the Rode’s method to calculate the perturbation to the distribution function due

to the rapid varying potentials. In the Rode’s implementation of the WBTE, the

contribution of rapid varying potentials is evaluated as an additional force term being

added to the conventional force due to the electric field. The perturbation to the

distribution function in Eq. 4.17 can be written as

gi+1 =
Siogi + eF

}
∂f0
∂k
− vr ∂f

∂r
+Qfw

S0

(4.21)

where Qfw is the potential operator or quantum evolution of Wigner potential.

In this thesis, an extensive study of effect of rapid varying periodic potentials of

different periodicity and shape is done as shown in Fig. 4.2. The reason for a rapid

varying periodic potential is to limit position dependence and complexity of solution

of the potential operator or quantum evolution term at a fixed position for a single

electron packet. Let’s consider a generalized periodic fast-varying potential of form,

Vq(r) =
∞∑

n=−∞

Vp(r − nLp) (4.22)
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The quantum evolution (Eq. 4.3) (detailed derivation is shown in Appendix B) of

this generalized periodic potential is

Qfw =
∞∑
m=1

Wm(r)

[
fw

(
r, k − mπ

Lp

)
− fw

(
r, k +

mπ

Lp

)]
(4.23)

where for a square barriers of height V0 with smoothening factor β and width 2a or

Lp/2 (Fig. 4.2)

Vq(r) =
V0
2
{−erf [β(r − a)] + erf [β(r + a)]} (4.24)

Wm(r) is obtained as

Wm(r) =
2V0
π~m

e
−m2π2

β2Lp2 sin

(
2πma

Lp

)
sin

(
2πmr

Lp

)
(4.25)

Figure 4.2: Shape of the potentials that are being considered in this study and their
shape parameters.
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In perfectly smooth potentials, a cosine shaped potential Vq(r) = A cos(K0r),

(applied in r direction) where K0 = 2π/Lp has a simple quantum evolution as it has

single order Wigner potential which is calculated using the Eq.4.4 (detailed derivation

is shown in Appendix B) as

Vw =
A sin(2K0r)

π~
[δ(2k −K0) + δ(2k +K0)] (4.26)

and the quantum evolution in Eq. 4.3 for cosine potential is obtained as

Qfw = Wm(r)

[
fw

(
r, k − K0

2

)
− fw

(
r, k +

K0

2

)]
(4.27)

where Wm(r) =
A sin(K0r)

π}
(4.28)

The Wigner distribution function used in above formulations to calculate the

quantum evolution term can be written as

fw (r, k, t) = f0 (r, k, t) + gw (r, k, t) (4.29)

which is the sum of equilibrium distribution function from Fermi-Dirac statistics, and

perturbation to distribution due to the electric field and rapid potential variation (as

shown in Eq. 4.7). This shows the nonlinearity of WBTE, hence using the Rode’s

iterative method the perturbation distribution is evaluated at ith iteration and then

the quantum evolution for (i + 1)th is calculated as shown in Eq. 4.21 with solution

of ith iteration. This process can be repeated till convergence is achieved.

4.4 Implementation of Transport Model

In this thesis, Rode’s approach of Wigner-Boltzmann transport formalism is imple-

mented in bulk silicon. To maintain a more realistic approach to the implementation,
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the full band structure silicon is used for modeling the thermoelectric properties. To

calculate the band structure, the empirical pseudopotential model is implemented and

energy E(k) values are calculated for k-space corresponding to 1/8th of the Brillouin

zone, which can be extended to full BZ using symmetry. Then the energy gradients

are calculated to determine the group velocities of electrons. By using this full band

structure data, the accuracy of the calculations increases when compared to using the

effective mass approximation for carrier energies. Then the density of states (DOS)

is calculated using the Spherical averaging method (SAVE) [13]. Then the scattering

rates are calculated from the bandstructure and the density of states. The scattering

rates that are covered in this model are:

• Elastic Mechanisms

– Deformation potential acoustic phonon scattering

– Ionized Impurity scattering

– Boundary scattering

• Inelastic Mechanisms

– Intervalley optical phonon scattering (f -type and g-type processes)

Once scattering rates are calculated, then the drift component of Eq. 4.21 is calcu-

lated. The model in this thesis is written for a single period length of the potential

(either cosine shaped or general square potential). The length of the material along

with the rapid varying potential is discretized for the simulation. Then the quantum

weight Wm(r) is calculated at every point in the grid, from where the convergence for

gi is started.

As Rode’s method uses in-scattering of the inelastic mechanisms for calculating

the perturbation in distribution function, it has to be implemented carefully. For

any band the inelastic mechanism used here i.e., intervalley optical phonon scattering
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can have the in-scattering contributions from other three branches and from the same

branch. To include this we again used the spherical averaging method [13] to calculate

I(k). For example, for f -type emission the I(k) is calculated using SAVE method

with Λinems (k′) gi (k
′) as an weight using Eq. A.5 and Eq. 4.18, where DOS is written

as
∫
dk δ(E − E(k)). So,

I(k) =

∫
dk′Λinems (k′) gi (k

′) δ(Ei + }ω0 − E(k′)) (4.30)

where the E(k′) is the band from which the carrier scatters to the band Ei. gi is

the perturbed distribution function of the ith iteration and }ω0 is the optical phonon

energy. The coefficient Λinems for a f -type intervalley scattering can be written as

using Eq. A.5 as

Λinems =
e (N0 + 1− f (k)) (Z − 2)D0

2

ρωf
(4.31)

where N0 is phonon Bose-Einstein distribution, f (k) is the Fermi-Dirac statistics for

electron., D0 is the optical coupling potential for f -type processes, Z is the degeneracy

of silicon, ρ is density and ωf is the frequency of f -type phonons. This method is used

to calculate the in-scattering contribution from intervalley optical phonon scattering

by both f and g processes for a band from other three bands and from itself. S0 in

Eq. 4.17 is calculated as follows:

S0 = Sacs + Simp + Sb + Soiop (4.32)

Sacs is deformation acoustic phonon scattering rate, Simp is impurity scattering rate,

Sb is the boundary scattering rate and Soiop is out-scattering rate of inelastic intervalley

phonon scattering. To evaluate the contribution from rapid varying potential in Eq.

4.27 and 4.23, the k vector displaced gi(k
+) and gi(k

−) is calculated by interpolating

gi(k). As our simulation domain is fixed to 1/8th of the Brillouin zone (BZ), any
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query for out of the domain perturbation function is fulfilled by folding the k vector

back in to simulation domain using the periodicity of BZ. In this process, the folded

k+ or k+ vector’s final velocity is compared with the k and if they are opposite then

the direction of the perturbation is also negated. At each and every iteration towards

the convergence, previous iteration value of gi is used to calculate the I(k) and the

quantum evolution term.

The iterative Rode’s method to solve for gi is a nonlinear problem, due to the

diffusion term of Eq. 4.21. So, Gummel’s iteration method is used to decouple the

problem. At first, we solve for gi without the diffusion term as shown in Eq. 4.33

and a converged solution is obtained.

gi+1 =
Siogi + eF

}
∂f0
∂k

+Qfw

S0

(4.33)

Then this solution is used to calculate the diffusion contribution or diffusion term of

the transport. The spatial gradient of distribution in the diffusion term is performed

using three-point scheme along with the central finite differences. Then we solve for

gi of Eq. 4.21 iteratively, which is now a linear problem. In addition to this for

potentials with higher amplitude, the potential is applied in steps to calculate the

quantum evolution. Starting at low potentials quantum weight is calculated, from

there the partially converged gi as in Eq. 4.33. Then the amplitude of the potential

is incremented in steps along with its partially converged gi is calculated, till the

amplitude reaches the required value. The calculated perturbed distribution function

is then used mobility and Seebeck coefficient of electrons is calculated using Eq. 4.19

and Eq. 4.20.
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4.5 Results

4.5.1 Validating the Model

Our initial implementation of the Rode’s method is completed, and thermoelectric

parameters are calculated. At first, to validate the model, bulk silicon thermoelectric

properties are compared with the experimental results in the literature. Fig. 4.3a

and Fig. 4.3b shows the mobility and Seebeck coefficient dependence on impurity

concentration that has been calculated from Rode’s implementation, compared with

the literature. These thermoelectric parameters are in good agreement with the

literature, thus validating the model.

4.5.2 Effect of boundaries on bulk silicon

The aim of this thesis is to study the effects of nanostructuring on thermoelectric

properties, now with the model validated the effect of confinement or boundaries is

studied. In Nanostructures, material dimensions confine the electron transport and

considerably change the electrical characteristics. Our model captures the effect of

boundaries on transport through boundary scattering, which evaluates the boundary

as either diffuse or specular based on the surface roughness. Then boundary scattering

rate is calculated as shown in Appendix A. Fig. 4.4a shows the effect of boundaries

when moving from bulk to nanostructures by reducing the width of the simulated

silicon sample.

There is a significant decrease in the mobility from bulk to nanostructures due

to the increased scattering of electrons at the boundaries as boundary scattering

Sb ∝ v/L. The onset of boundary dependence on electron transport is when the

material dimension is less than mean free path (MFP) of the electron, as electrons

encounter a boundary before obtaining equilibrium state. To understand this, relative

contribution of electrons with different MFPs to electrical conductivity in bulk silicon

sample is observed which is shown in Fig. 4.4b, where normalized cumulative electrical
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(a) Dependence of mobility of electrons on impurity concentration in bulk silicon at room
temperature T = 300 K and compared with results from literature C. Jacobini et al., [23]
W. J. Patrick [38] and I. Grancher [18].

(b) Seebeck coefficient of electrons dependence on impurity concentration in bulk silicon at
room temperature T = 300 K and compared with results from T. H. Gaballe.et al., [16].

Figure 4.3: Mobility and Seebeck coefficient of silicon are calculated and compared
with literature to validate the Rode’s method
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conductivity from electrons with different MPF is plotted. It shows that the transport

is through electrons that have MFP < 70nm and MFP < 30nm in the silicon for

a donor doping concentration of ND = 1016 cm−3 and ND = 1019 cm−3 respectively.

So, if the silicon sample has a width less than these MFP’s, it affects the electrical

properties of the material. Another factor that affects the boundary scattering is

the surface roughness of the material, as it decides the nature of the boundary as

seen by the electrons. When we calculated the change in mobility due to the surface

roughness, it didn’t show any dependence. In Fig. 4.5a, the mobility of silicon at

different surface roughness shows little or no change, this happens when the boundary

is diffuse i.e., p = 0 in Eq. A.5. Electrons see a boundary as diffuse when the low

wavelength or high-momentum electrons heavily contribute to transport. To validate

this, electron momentum contribution towards the electrical conductivity is calculated

and plotted in 4.5b. It shows that high-momentum electrons that are near Brillouin

zone edge (≈ 2π/a = 11.5 × 109m−1) contribute more towards the transport. This

can be explained by silicon’s conduction band edge minimum being at the ∆ valley,

and electrons near CB minimum have a major contribution to the transport. So, in

silicon, the dimension of boundaries affects transport as we move to nanoscale but

the surface roughness has little or no effect on it.

4.5.3 Electron filtering using potential barriers

4.5.3.1 Effect of potential period length (Lp)

To analyze the electron filtering using a potential barrier, Rode’s method along

with Wigner formalism is used to study the thermoelectric properties as shown in

the previous section. Now moving to analyzing the electron filtering and other quan-

tum effects due to the potential barriers, we first observed the effect of period (Lp)

of a smooth potential barrier like a cosine function. After solving for the perturbed

distribution function (Eq. 4.21) including the quantum evolution due to this cosine
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(a) Width dependence of mobility to show the onset of effect of boundaries on electrical
characteristics in bulk silicon at room temperature T = 300 K for different doping concen-
trations.

(b) Contribution of electrons with different MFP’s to electrical conductivity in bulk silicon
sample at a temperature of T = 300 K to predict the onset of boundaries effect on electron
transport.

Figure 4.4: Change in electrical properties of silicon as move to nanoscale (as we
reduce the device dimension) and using MFP of electrons to predict this dependence.
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(a) Effect of boundaries on mobility of electron at a concentration of Nd = 1016 cm−3 and
at a temperature of T = 300 K. Mobility decreases with decrease in width of the sample
due to the increase in boundary scattering of electrons, although the surface roughness has
minimal effect on the transport.

(b) Momemtum of electrons that contribute to electrical conductivity at a temperature
of T = 300 K showing that only high momentum electrons contribute to transport, thus
creating a diffuse boundary in bulk silicon. This explains the little or no effect of boundary
roughness on mobility in 4.5a.

Figure 4.5: Effect of boundary surface roughness on the electron transport in silicon.
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potential (Eq. 4.27), thermoelectric parameters are calculated. Here a donor concen-

tration of ND = 4×1019 cm−3 is used which corresponds to a Fermi level of 0.0072eV

above conduction band edge EC (Ec is set to zero) with a barrier height of V0 = 1kBT .

Fig. 4.6a shows the decrease in the Seebeck coefficient with an increase in the period

of the potential barrier. This behavior can be attributed to the reduction in tunneling

and energy filtering playing a major role with an increase in period lengths. On the

other, hand electrical conductivity also decreases with barrier height as shown in Fig.

4.6b. To understand these effects, energy dependence on electrical conductivity and

Seebeck coefficient is calculated which is shown in Fig. 4.7.

Fig. 4.7a and Fig. 4.7b shows the contour plot for energy dependence on conduc-

tivity, potential profile (red dotted line) and the quantum weight (white dotted line)

to the Wigner contribution with respect to the position in the material. At lower

periods of the potential barrier, there is conduction of electrons due to tunneling

along with the electron filtering. But, moving from Lp = 3 nm to Lp = 9 nm this

conduction due to tunneling of electrons at low energies is restricted. This results in

a decrease in electrical conductivity with increase in barrier width even though the

effect of electron filtering doesn’t change due to constant barrier height. This trend

in electrical conductivity is consistent even with the change in the barrier height as

observed in Fig. 4.7c and Fig. 4.7d.

Coming to the effect on Seebeck coefficient, as explained before at lower barrier

width tunneling dominates the electron conduction which results in higher Seebeck

coefficient. But as we move to higher widths Seebeck coefficient is only effected by

electron filtering due to the barrier (i.e conduction is only over the barrier and no

tunneling as shown in Fig. 4.7b). The position dependence of Seebeck coefficient

(dotted line) and their energy dependence (shown as contour) at different barrier

widths is shown in Fig. 4.7e and Fig. 4.7f, which shows maximum contribution near

the peak of the potential barrier. But, there is a small shift in that peak and the
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(a) Seebeck variation due to the change in the period length (Lp) of the potential barrier
showing the transition from tunneling dominant transport at lower periods to just energy
filtering due to the barrier at higher periods.

(b) Electrical conductivity reduction due to the increase in period length which restricts
electron transport across the barrier.

Figure 4.6: Effect of period length Lp on thermoelectric parameters ND = 4 ×
1019 cm−3 and V0 = 1 kBT at T = 300K for silicon.
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(a) σ(E) at V0 = 1 kBT and Lp = 3nm (b) σ(E) at V0 = 1 kBT and Lp = 9 nm

(c) σ(E) at V0 = 0.4 kBT and Lp = 3 nm (d) σ(E) at V0 = 0.4 kBT and Lp = 9 nm

(e) S(E) at V0 = 1 kBT and Lp = 3 nm (f) S(E) at V0 = 1 kBT and Lp = 9 nm

Figure 4.7: Energy dependence of Seebeck coefficient (S) and electrical conductivity
(σ) with ND = 4× 1019 cm−3 at T = 300K for Silicon.
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contribution from low energy carriers after the barrier decreases as we move from

low to high barrier widths due to the restricted tunneling, resulting in lower Seebeck

coefficient. Also near this maximum contribution position, S(E) has two peaks which

are also reported in [35].

4.5.3.2 Effect of potential barrier height (V0)

Next, we investigated the influence of barrier height (V0) on the thermoelectric

coefficients. Fig. 4.8 show the variation in Seebeck coefficient and electrical conduc-

tivity at a donor concentration of ND = 4×1019 cm−3 with a different barrier heights.

Seebeck coefficient (S) shown in Fig. 4.8a and Fig. 4.8b increases with increase in

barrier height as expected, due to the increase in the energy filtering and S depends

on the average energy of carriers that participate in transport. This can be seen

in Fig. 4.7a and Fig. 4.7c, whereas we increase the V0 there is an increase in the

contribution from high energy electrons i.e electron filtering towards transport even

though there tunneling due to thin barriers (Lp = 3 nm). At wider barrier widths

(Lp = 9 nm), there is an increase in S (Fig. 4.8b) only due to the energy filtering

which can be observed in 4.7b and Fig. 4.7d.

Now moving to electrical conductivity (σ), it shows different behavior depending

on the barrier width as shown in Fig. 4.8c and Fig. 4.8d. At thin barrier width

(Lp = 3 nm) as seen in Fig. 4.7a and Fig. 4.7c, tunneling dominates so with an

increase in the barrier height (V0) we are making the barrier thinner near its peak

which, in turn, facilitates for more tunneling. This results in the increase in electrical

conductivity we see in Fig. 4.8c. But at wider barriers (Lp = 9 nm) there is a

combination of energy filtering and tunneling effects that control the conductivity. At

short barrier heights, energy filtering plays a major role and restricts more electrons

from participating in the transport as we increase the barrier height. But, after

that, as we increase the barrier height the effective width of barrier decrease near
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(a) S at Lp = 3 nm (b) S at Lp = 9 nm

(c) σ at Lp = 3 nm (d) σ at Lp = 9 nm

Figure 4.8: Effect of barrier height (V0) on thermoelectric parameters along with the
periodic length to show the interplay between energy filtering and tunneling effects.
Here simulation is done with ND = 4× 1019 cm−3 at T = 300K for silicon.

its peak facilitating tunneling. This results in an increase in the conductivity from

V0 = 0.6 kBT after the initial decrease.

4.5.3.3 Effect of potential barrier smoothness (β)

Till now we have studied the effect of period length and height of a smooth cosine

shaped potential barrier, but here we examine the effect of barrier smoothness i.e.,
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moving from a sharp square shaped potential to smooth cosine shape. To do that we

used the parameter β that control the smoothness of a square potential as shown in

Eq. 4.24 and solved for the perturbation in distribution function using the quantum

evolution Eq. 4.23. As shown in the Fig. 4.9, Seebeck coefficient increases with

Figure 4.9: Variation in Seebeck coefficient (S) with smoothness of the potential
barrier (β) showing the increase in quantum reflections that increase the electron
filtering with sharper barriers (higher β).

increase in β i.e., moving to sharper square barriers from smooth ones. This is due to

the additional quantum reflections that are introduced in the quantum operator as

shown in Eq. 4.23 when compared to the smooth cosine barrier as in Eq. 4.27 which

introduces more energy filtering at the barrier. This energy filtering increases with β

due to the increase in quantum weight to the quantum evolution which increases the

contribution of these quantum reflections.
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4.6 Conclusion

Electron filtering is one of the approaches that has been used to improve ther-

moelectric efficiency. Seebeck coefficient (S) is calculated in Silicon with periodic

potentials using the potential operator in Wigner approach. Rode’s iterative method

is used to calculate the perturbed distribution function (gi) due to the applied electric

field and the quantum evolution due to the rapid varying potentials. Thermoelectric

parameters of bulk silicon are calculated to validate the model by comparing it with

the literature. Then the confinement or boundary effects are simulated which showed

a reduction in conductivity of electrons at low dimensions of silicon and no effect of

surface roughness on transport. Then the thermoelectric parameters are calculated

for square potential with smoothening and perfectly smooth cosine potential. The

effect of tunneling and the energy filtering along with the interplay between them

when the potential period and barrier height is changed. Along with that the effect

of smoothening is also studied which showed an increase in quantum reflections due to

barriers thereby providing more energy filtering. Thus we studied the effect of rapid

varying periodic potentials and their shape parameters on thermoelectric parameters

in semiconducting nanostructures.
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APPENDIX A

SCATTERING RATES

The scattering rates that have been used in our calculations are:

A.1 Acoustic phonon scattering

Acoustic phonon scattering rate (Γ3d
acs) in Bulk or 3D material is given as:

Γ3d
acs =

2πE2
adefkBT

~v2ρ
DOS(E) (A.1)

Acoustic phonon scattering rate (Γ2d
acs) in a 2D material is given as:

Γ2d
acs(kx) =

2πE2
adefkBTe

2

~v2ρ
Ξnmζ (A.2)

where

Ξnm =

∫ ∫
| ψn(x, y) |2| ψm(x, y) |2 dxdy (A.3)

ζ =

∫
δ(kx − k′x + qx)δ(E − E ′)dz (A.4)

where Eadef is acoustic phonon deformation potential, ρ is density, v is velocity,

DOS(E) is density of states and ψ is the electron wave function.
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A.2 Intervalley optical phonon scattering

Intervalley optical phonon f -type out-scattering rate (Γ3d
iop) in bulk or in a 3D

material is given as:

Γfiop =
q(Z − 2)D2

kf (N
f
po + 1

2
±1

2
±f±f )

ρωf
DOS(E ± Ef ) (A.5)

where Ef is f -type optical phonon energy, ff is Fermi-Dirac statistics for electron,

N f
po is the Bose-Einstein statistics for f -type f -type optical phonons, Dkf is f -type

optical phonon coupling constant, ωf is frequency of f -type optical phonons and Z is

the number of symmetry directions. ’+’ denotes absorption of phonon and ’-’ denotes

emission of phonon, the corresponding change in energy of electron are taken care

through Fermi-Dirac statistics.

Intervalley optical phonon g-type out-scattering rate (Γ3d
iop) in bulk or in a 3D

material is given as:

Γgiop =
qD2

kg(N
g
po + 1

2
±1

2
±f±g )

ρωg
DOS(E ± Eg) (A.6)

where Eg is g-type optical phonon energy, fg is Fermi-dirac statistics for electron,

N g
po is the Bose-Einstein statistics for g-type phonon,ωg is frequency of g-type optical

phonons and Dkg is g-type optical phonon coupling constant.

Intervalley optical phonon out-scattering rate (Γ2d
iop) in 2D material is given as:

Γ2d
iop =

πD2
kf |kg

ρωf |g
(Npo +

1

2
±1

2
)Ξnmζ (A.7)

where

Ξnm =

∫ ∫
| ψn(x, y) |2| ψm(x, y) |2 dxdy (A.8)

ζ =

∫
δ(kx − k′x ± qx)δ(E − E ′ ± ~ωf |g)dz (A.9)
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’±’ shows that there is both emission and absorption mechanisms corresponding to

f -type and g-type optical phonons.

A.3 Deformation potential optical phonon scattering

Deformation potential optical phonon out-scattering rate (Γ3d
dop) in Bulk or 3D

material is given as:

Γ3d
dop =

πD2
0(Npo + f±def )

ρω
DOS(E ± Eodef ) (A.10)

where D0 is deformation potential of the optical phonon.

A.4 Impurity scattering

The impurity scattering rate that has been implemented here is derived by Conwell-

Weisskopf as

Γimp =
Z2e4NI

16
√

2πε2m∗1/2E
3/2
k

log

(
1 +

Ze2N
1/3
I

4πεEk

)
(A.11)

where NI is the number scattering centers created due to the impurities, m∗ is effective

mass of the material and Ek is the energy of carriers.

A.5 Boundary scattering

The boundary scattering rate where there is confinement of material with width

L and velocity of carriers perpendicular to the boundary vzis given as:

Γboundary =

(
1− p
1 + p

)
v

L
(A.12)

where the specularity parameter p is calculated by

p = exp(−4k2∆2cos(φB)) (A.13)
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and k is the wave vector of the electron, ∆ is the surface roughness and φB is the

angle between the incident electron with the normal of the boundary.
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APPENDIX B

DERIVATION OF WIGNER POTENTIAL AND
POTENTIAL OPERATOR

B.1 A square potential with smoothening

A periodic fast-varying potential can be written as

Vq(r) =
∞∑

n=−∞

Vp(r − nLp) (B.1)

where Vp is the potential and Lp is the period length. The Wigner potential as shown

in Eq. 4.5, is

Vw (r, k) =
2

π}
Im{e2ikrV̂q(2k)

∞∑
n=−∞

e−2inLpk} (B.2)

where V̂q(2k) is the Fourier transform of Vq and it can be written as

Vw (r, k) =
2

π}
Im{e2ikrV̂q(2k)

∞∑
m=−∞

δ(k −mπ/Lp)} (B.3)

The quantum evolution term (Eq. 4.3)is obtained as

Qfw (r, k) =
2

π}

∞∑
m=−∞

Im{e2imπr/LpV̂q(2mπ/Lp)}fw(r, k −mπ/Lp)

=
∞∑

m=−∞

Wm(r)fw(r, k −mπ/Lp)

=
∞∑
m=1

Wm(r) [fw(r, k −mπ/Lp)− fw(r, k +mπ/Lp)]
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where the quantum weight Wm(r) is

Wm(r) =
2

π}

∞∑
m=−∞

Im{e2imπr/LpV̂q(2mπ/Lp)} (B.4)

For a periodic potential of period Lp with a square potential of height V0 with

smoothening factor β and width 2a of form

Vq(r) =
V0
2
{−erf [β(r − a)] + erf [β(r + a)]} (B.5)

and Fourier transform of Vq(r) is

V̂q(k) =
2V0
k
e−k

2/(4β2)sin(ka) (B.6)

The quantum weight is obtained as

Wm(r) =
2V0
π}m

e
−m2π2

β2Lp2 sin

(
2πma

Lp

)
sin

(
2πmr

Lp

)
(B.7)

B.2 Cosine potential

For a cosine potential of form Vq(r) = A cos(K0r), the Wigner potential (Eq.

4.5)is obtained as

Vw (r, k) =
2A

}π
Im{e2ikrV̂q(2k)}

=
A

}π
Im{e2ikr [δ(2k −K0) + δ(2k +K0)]}

=
A sin(2kr)

π~
[δ(2k −K0) + δ(2k +K0)]

54



The potential operator or force term corresponding to potential variation is

Qfw (r, k, t) =

∫
dk′Vw (r, k − k′) fw (r, k)

=

∫
dk′

A sin(2(k − k′)r)
π~

[δ(2(k − k′)−K0) + δ(2(k − k′) +K0)] fw (r, k)

=
A sin(K0r)

π}

[
fw

(
r, k − K0

2

)
− fw

(
r, k +

K0

2

)]
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