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ABSTRACT 

 

PROPAGATION PREDICTION OVER RANDOM ROUGH 

SURFACE BY ZEROTH ORDER INDUCED CURRENT DENSITY 

 

SEPTEMBER 2014 

 

NARAYANA SRINIVASAN BALU 

B.Tech., NATIONAL INSTITUTE OF TECHNOLOGY, TRICHY, INDIA 

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Ramakrishna Janaswamy 

 

Electromagnetic wave propagation over random sea surfaces is a classical problem of 

interest for the Navy, and significant research has been done over the years. Here we 

make use of numerical and analytical methods to predict the propagation of microwaves 

over random rough surface. The numerical approach involves utilization of the direct 

solution (using Volterra integral equation of the second kind) to currents induced on a 

rough surface due to forward propagating waves to compute the scattered field. The mean 

scattered field is computed using the Monte-Carlo method. Since the exact solution 

(consisting of an infinite series) to induced current density is computationally intensive, 

there exists a need to predict the propagation using the closely accurate zeroth order 

induced current (first term of the series) for time-varying multiple realizations of a 

random rough surface in a computationally efficient manner. The wind-speed dependent, 

fully-developed, Piersen-Moskowitz sea spectrum has been considered in order to model 

a rough sea surface, although other partially-developed roughness spectra may also be 

utilized.  An analytical solution based on the zeroth order current density obtained by 

deriving the mean scattered field as a function of the range and vertical height by directly 

using the Parabolic Equation (PE) approximation method and the resulting Green's 

function has been utilized for a comparative study. The analytical solution takes into 

account the diffused component of the scattered field.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Background and Motivation 

 

Radiowave propagation over rough surfaces has been a problem of interest since the 19
th

 

century when Lord Rayleigh studied the scattering of sound waves from sinusoidal 

surfaces 
[1]

. The real progress was motivated by its applications in military with the 

inventions of radar and underwater sonar in the mid-20
th

 century. The problem is of 

special interest to the Navy in ship to ship communication and radar detection of low-

flying targets over the sea surface. In order to reliably predict the radar coverage within 

an ocean environment, one must accurately account for the effects of the wind-driven 

ocean roughness on radar propagation. The ability to predict the interaction of fields with 

rough surfaces has significant impacts on applications like remote sensing, oceanography, 

communications, material science and optics. 

 

A number of methods like the physical optics, small perturbation, integral equation, 

modal analysis etc. have been employed to study the scattering and propagation over 

rough surfaces. Each has its own advantages in specific situations, but the complex time-

varying surface profile poses a challenge in computing the scattered field in an efficient 

manner. The exact solution is interpreted in the sense that no matrix inversion techniques 

are used and for example, an infinite series solution to the scattering from a PEC sphere 

is considered exact. 

 

The Monte Carlo method 
[2][3]

 is employed to average the scattered fields due to 

individual surfaces over an ensemble of realizations. Scattered fields are computed for 

each surface, and then combined to yield an average scattering cross section or 

amplitude. As the ensemble size increases, the results converge to a desired statistical 

moment. Studies have examined the convergence of the Monte Carlo method as a 
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function of the number of realizations
 [4]

, as well as the possibility of neglecting unlikely 

but important surface features due to a finite number of realizations 
[5]

. With the Monte 

Carlo method, there is a lower limit on the length of each surface realization relative to 

the correlation length of the rough surface. Ten correlation lengths is a common 

prescription 
[6]

. Shorter lengths can yield acceptable results with more surface 

realizations; although multiple interactions between long-wavelength components may be 

neglected. 

1.2. Overview 

In this work we model a rough surface which is a statistical surface with gently varying 

slopes (with small slope angles). Propagation over this surface is primarily governed by 

the forward traveling waves that make small angles with respect to the mean surface. In 

this case, a Parabolic Equation (PE) method, which is an approximation of the Helmholtz 

equation, is employed. In the PE method, it is assumed that paraxial waves travel in a 

unidirectional manner in the range coordinate. The resulting Green's function from the PE 

method is used to derive a new Volterra integral equation of the second kind 
[7]

. The 

induced currents on the rough surface are calculated using this integral equation assuming 

perfectly conducting (PEC) rough surface and horizontal polarization. 

 

Chapter 2 presents the necessary theoretical background and method to model a statistical 

1-D rough surface in order to compute the induced surface current and the scattered field 

resulting from the current. It describes the signal processing and probability concepts 

required to model the rough surface. Chapter 3 briefly explains the formulation of the 

integral equation for the exact solution to current density and the integral for zeroth order 

current density 
[7]

. 

 

Chapter 4 contains the derivation of the expression that solve for the scattered field along 

a vertical line 
[8]

 for a given maximum horizontal range where the receiver would be 

located. The chapter contains the procedure wherein, the induced current and rough 

surface would be segmented into small discrete parts and a linear approximation would 

be applied to the segmented parts to solve for an integral equation. The analytical 

expressions to solve for the zeroth order asymptotic propagation factor would be 
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presented in Chapter 5, wherein, an expression for the non-specular, diffused scattered 

field based on the zeroth order induced current has been formulated. 

A comparison of the zeroth order solutions with the exact solution 
[7]

, Miller-Brown 
[9]

, 

Ament 
[10]

 and asymptotic expression 
[11]

 gives us an idea of the validity of zeroth order 

solution. Also, a comparison of the propagation factors for varying surface roughness (i.e. 

wind-speed), frequency of incident wave and horizontal range will be analyzed and 

presented. 
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CHAPTER 2 

 

RANDOM ROUGH SURFACE 

 

This chapter describes the method for modeling a rough surface as a random process 

using basic signal processing concepts and statistical theory. Rough surfaces can be either 

deterministic, as in the case of an irregular land terrain, where the surface profile is 

approximately a constant with respect to time and can be expressed as an analytical 

function or statistical, as in case of sea surface which exhibits a complex time varying 

random surface profile.  It is crucial to model the rough surface accurately in order to 

account for the incidence and scattering at every sampling interval of the surface. When 

the normal distances of the transmitter and the receiver points relative to the mean surface 

is a small fraction of the separation distance between the source and observation points, 

the rough surface is gently varying and the electromagnetic propagation is primarily 

governed by the forward travelling waves that make small grazing angles with respect to 

the mean surface.  

 

2.1.Rough Surface as a Random Process 

 

We consider time-harmonic propagation of 2-D microwaves over a one dimensional 

random rough surface. For simplicity in boundary condition, the surface is considered to 

be a PEC (Perfect Electric Conductor), although a similar formulation can be done for a 

finite impedance surface. The typical conductivity of ocean water is around 4.8 S/m at 

20
o
 C and acts nearly like a PEC for our analysis, particularly when the grazing angles 

are small. 

 

A random process, in its simplest term is a collection of time varying random variables 

which take on a set of possible values associated with a probability density function. A 1-

D random rough surface can be treated as a random process, which at a given instant of 

time depends on the horizontal range x in meters. The random rough surface can be 

obtained by specifying two functions that define a random process: the power spectral 

density function (psd) that characterizes the roughness spectrum and the probability 
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density function (pdf) for the height statistics. The psd defines the correlation between 

adjacent points on the surface since the auto-correlation function can be obtained by the 

inverse Fourier transform of the psd. The pdf determines the variation in the amplitude 

levels of the rough surface.  

In our case, we consider the psd to be Piersen-Moskowitz spectrum (PM spectrum), 

where the root mean square (RMS) surface height h depends on the wind speed U 

blowing at a height of 19.5m over the mean sea surface. We also consider the pdf of the 

random variables to be Gaussian distributed with zero mean (μ=0) and standard deviation 

h. 

The PM spectrum is defined as follows
 [12]

: 

  ( )   
 

     
      

      Eq. 2.1.1 

where κ is the surface wave-number,     √       
  is the wave number at which the 

spectrum has a peak and           ,               m/sec
2
. The RMS surface 

height deviation,     √ √   ⁄  and the RMS correlation length of the surface    

   √   . The PM spectrum for U =
 
10 m/sec would look like Figure 1 below. The 

corresponding correlation function C(x; kp) shown in Figure 2 can be obtained by taking 

the inverse Fourier transform of W(k) or by evaluating the integral
[11]

 in Eq. 2.1.2: 

  (    )  ∫
      

 

  

 

 

   (√       )    Eq. 2.1.2 

 

Figure 1: PM Spectrum for varying wind speeds 
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Figure 2: Correlation function for the PM spectrum for varying wind speeds 

 

The correlation function C(x; kp) depends on the wind-speed through wave-number   . 

By truncating with an appropriate finite upper limit for y, the integral in Eq. 2.1.2 can be 

numerically evaluated by taking into account: 

    
   

     
 

  
   Eq. 2.1.3 

The Gaussian pdf p(x) in this case takes the form below: 

  ( )   
 

  √  
 

 (   ) 

   
 

 Eq. 2.1.4 

In accordance to the procedure outlined in [13], one can arrive at the random one 

dimensional surface function g(x) with zero mean (µ=0) and root mean square (RMS) 

height σh by making a change of variables from the time domain t, to the horizontal range 

domain x, and correspondingly from angular frequency domain ω, to the wave-number 

domain k. In other words, the spatial domain bears similarity with the time domain and 

wave-number domain k/2π, with the frequency domain f. 

 

Let us assume g(x) is the real random process which we would like to obtain for the 

rough surface that extends from x=0 to x=Xmax. If W(k) is its power spectral density, then 
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  ( )      
      

〈  ̃( )  〉

    
 Eq. 2.1.5 

where, “〈 〉” symbol represents the ensemble mean and  ̃( ) is the Fourier transform of 

g(x). 

Let us define h(x) such that  

  ( )   ( )   ̅ Eq. 2.1.6 

where,  ̅ is the mean of the random process defining the rough surface. In our case, the 

random process is a zero mean process, but we will show the expressions without loss of 

generality. If H(k) is the power spectral density of h(x), then 

  ( )   ( )   ̅  ( ) Eq. 2.1.7 

Hence, for the random process g(k), we set 

  〈  ̃( )  〉       ( )   
 ( ) Eq. 2.1.8 

The phase of  ̃( ) can be specified subject to the condition: 

      ( ̃(  ))        ( ̃( ))        Eq. 2.1.9 

so that a real valued process is generated. If σh denotes the RMS surface height, then 

   
  〈(   ̅) 〉 Eq. 2.1.10 

be the variance of the random process h(x). Random variables are incorporated in the 

wave-number domain according to the following set: 

  ̃(   )  

{
 
 
 
 

 
 
 
  (   ) (

(     ̅)   (     ̅)

  √ 
)         

 

 
  

 ̃ (   )                                             
  

 
       

 ( )
    ̅

  
                                                                   

 (
   

 
)
      ̅

  
                                                     

 

 }
 
 
 
 

 
 
 
 

 
Eq. 

2.1.11 

where the symbols   ,    ,    ,      are independent random variables generated from 

the pdf p(x). The reason for choosing real values at n = 0 is to ensure the phase condition 

is met according to Eq. 2.1.9 for k = 0 and real value at k = N/2 is to ensure periodicity is 

satisfied by  ̃(     )   ̃(      ). The actual real random process in the x domain 

can be obtained by taking the discrete Fourier-inverse of Eq. 2.1.11. 

In order to prevent aliasing and to ensure the sampling intervals are reasonably sufficient 

in either domain, we set the following conditions based on the sampling theorem. 



8 

 

 

     
 

  
 

     
  

    
 

        
  

 
 

    
       

 
 

 

Eq. 2.1.12 

A single realization of the rough sea surface with PM spectrum and Gaussian height 

statistics is shown in Figure 3 for a wind speed U=10 m/s. 

 

Figure 3: Single realization of random rough sea surface using Gaussian height statistics & PM spectrum, 

U=10m/s, σh=0.53m, ρc=25.6m, Np=512, Δx=0.88m 
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Figure 4: Random rough surfaces at varying wind speeds 

 

In order for the discretized random process to satisfy the sampling rate theorem, the 

condition that needs to be satisfied is: 

         
  

 
 Eq. 2.1.13 

where    
    

 
,     

   

 
 and            .The quantity    is the cut-off wavenumber 

for the PM spectrum and N is the number of points in the discrete version of the random 

process. If the spectrum or the maximum horizontal range is too narrow, a step size in 

one domain may make the step size in other domain too large according to Eq. 2.1.13.  

This would result in poor resolution in that domain. To avoid this, the spectrum W(k) or 

the spatial domain signal g(x) can be padded with zeroes to artificially increase    or 

Xmax. If one of    or    is fixed by the aliasing requirement, the other can be obtained for 

a given N. The step sizes are adjusted such that N = 2
n
 for some integer n. This is also a 

requirement of standard FFT algorithms for its implementation. 
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CHAPTER 3 

 

INDUCED CURRENT DENSITY 

 

The chapter describes the essential steps to formulate and compute the induced current 

density on the surface due to incident waves as a function of the horizontal distance. This 

is done using the PE equation, the properties of Green’s function and applying suitable 

boundary conditions. The boundary under consideration here consists of the rough 

surface, the z axis (x=0) containing the transmitter antenna, a vertical line parallel to the z 

axis at some horizontal observation distance from the origin and the infinite space above 

the surface. 

3.1.Direct & Exact Solution 

 

A Volterra Integral Equation of the second kind 
[7]

 derived using the properties of 

Green’s function that satisfies the Parabolic Equation (PE) is used for the solution to the 

unknown current density J(x). Since the slopes of the rough surface are small, the back-

scattering of the waves is ignored and waves travelling within  10
o
-17

o 1
 to the 

horizontal axis can be accurately modeled in this method. A time harmonic dependence 

of       is considered and suppressed throughout. Hence, the reduced field   

         satisfies the standard parabolic equation for a wave travelling in the positive x 

direction. The fields are assumed to be generated by a vertically polarized magnetic 

source placed in the y-z plane, resulting in a mode with non-zero field components of Ey, 

Hx and Hz, where E and H denote electric and magnetic field respectively. The rough 

surface is described by z=g(x) and the medium above it is taken to be vacuum with 

permittivity ε0 and permeability µ0. 

                                                

 

 

 

 
1 Based on comparison of cos ψ and 1-(sin2 ψ)/2, where ψ is the grazing angle and assuming 0.1% 

tolerance. 
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The theory and procedure outlined in [7] is followed using Green’s function that satisfies 

the PE equation and Volterra integral equation of the second kind to obtain the total field 

above rough surface. Let us denote the total field above the rough surface at any point x, z 

as U(x, z).  (   )      (   )    (   ), where Uinc and Us are the incident and 

scattered fields respectively. It can be shown that: 

 

 (   )  ∫   ( )  (       )   
 

  

 
 

   
∫  ( )
 

 

  (       ( ))    

Eq. 3.1.1 

hence, 

     (   )  ∫   ( )  (       )   
 

  

 Eq. 3.1.2 

   (   )   
 

   
∫  ( )
 

 

  (       ( ))    Eq. 3.1.3 

where G0(x, z: ξ, g(ξ)) is the Green’s function evaluated at x=ξ and z=g(ξ) and satisfies 

the PE equation. It is given by: 

   (       )  
  (   )

√(   )
   [

   
 

(   ) 

(   )
] Eq. 3.1.4 

where   √
  

   
 and  ( ) is the unit step function. In its integral form, the Green’s 

function can also be expressed as: 

   (       )  
 (   )

  
∫     (   ) 

 
    

 

   
(   )

    

 

  

 Eq. 3.1.5 

The quantity U0(η) is the initial field at x = 0 produced by the transmitter antenna of 

height Ht which is assumed as having a source field Gaussian distributed with amplitude 

A and standard deviation σz. The quantity g0=g(x) when x=0, η is a variable along the z 

coordinate and   along the x coordinate. Free space wave-number is denoted as k0 = 2π/λ. 

The initial field then takes the form: 

   ( )   
 

√    
 
 
(    )

 

   
 

 Eq. 3.1.6 

Based on properties of the free-space Green’s function, the following can be derived:  
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   ( )

 

   

   
  
[       ( )]   (   )    (   )  [   ( )    ( )] 

Eq. 

3.1.7 

 

The following Volterra integral equation of the second kind providing exact solution to 

current density can then be obtained by using Eq. 3.1.7 in Eq. 3.1.1. 

  ( )    ( )   ∫
  (   )

√   
 ( )   

 

 

 Eq. 3.1.8 

where Ji(x) is the incident current density dependent only on the initial conditions at x=0 

and source field distribution U0(η). K0(x; ξ) is the kernel of the integral and is defined as:  

   (   )    (   )   [   (   )  
 (   )  ] Eq. 3.1.9 

where   (   ) is given as: 

   (   )  
 ( )   ( )

   
 Eq. 3.1.10 

  (   )    ( ), which is the first order derivative function of the rough surface. 

An integral equation for J(x) may be formulated using ( )  
   

  
 , by differentiating Eq. 

3.1.1 with respect to z and applying the limit
[14]

    
   ( )

[  ]. Using properties of Green’s 

function, the incident current density is then given as 

   ( )    ∫   (

 

  

 )
 

  
  [   ( )    ]    Eq. 3.1.11 

and depends only on the initial source field distribution and surface profile function g(x). 

Using the source field specified in Eq. 3.1.6 and the integral in Eq. 3.1.11, we obtain the 

incident current density as 

   ( )  
 (    ( ))

(         )   
√
 

 
   [ 

(    ( ))
 

 (         )
] Eq. 3.1.12 

Eq. 3.1.12 is valid for (     )    . 
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3.2.Zeroth Order Solution 

 

As we can see from Eq. 3.1.8, the unknown quantity J(ξ) is part of the integrand, which 

makes it an integral equation whose numerical solution would be computationally 

intensive. Since the Volterra integral equation of the second kind as in Eq. 3.1.8 solves 

for the current at a given point in terms of the current at all previous points, a marching 

procedure needs to be adopted due to its causal nature. This becomes laborious especially 

at very large horizontal ranges. Hence, we use zeroth order current density solution J
(0)

(x) 

which is a good approximation of the exact numerical current density and involves 

computing an integral wherein the integrand is now a function of the known incident 

current density Ji(x) and can be obtained from Eq. 3.1.12. The zeroth order current 

density is given by: 

  ( )( )    ( )   ∫   ( 
 )
  (   

 )

√(    )

 

    

    Eq. 3.2.1 

In order to remove the weak singularity that exists in Eq. 3.2.1 at x’ = x, an alternate form 

of the equation with change of variables is used. 

  ( )( )    ( )    √ ∫   (     
  )  (       

  )    
   

   

   Eq. 3.2.2 

A comparison of the absolute values of exact numerical current density (J
num

) with the 

zeroth order solution (J
0
) is shown in Figure 5 for a single realization of a random rough 

surface. Figure 6 compares the phase of J
num

 and J
0
 and it can be observed that zeroth 

order solution matches reasonably well with the exact solution barring a few peaks and 

troughs. 

The exact solution to Eq. 3.1.8 can be expressed in the form of an infinite series 

expansion using the theorem pertaining to Volterra integral equation of the second kind 

as shown below: 

  ( )   ( )( )  ∑   
 

   

∫  (   )

 

 

 ( )( )    Eq. 3.2.3 

where the kernels   (   ) satisfy the recurrence relation 

   (   )  ∫   (   )    (   )           

 

   

 Eq. 3.2.4 
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It is to be noted that for any t > x, the kernels   (   )    for n=1, 2, so forth. 

Computation of the exact solution from the infinite series expansion involves computing 

the zeroth order current density from Eq. 3.2.2, solving for the kernels from Eq. 3.2.4 and 

then using these in Eq. 3.2.3. The amount of computational labor depends on the number 

of terms used in the series, the nature of the rough surface, the maximum range, and the 

integration scheme employed. 

 

 

Figure 5: Comparison of absolute Jnum and J0 for a wind-generated PM random rough surface at 1 GHz, λ 

=0.3m, Ht=3m, U=10m/s, σh=0.53m, ρc=25.6m, Np=512, Δx=0.88m, σz=4λ/3, max. absolute slope αg=0.14 
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Figure 6: Phase (degrees) of Jnum and J0 for a wind-generated PM random rough surface at 1 GHz, λ =0.3m, 

Ht=3m, U=10m/s, σh=0.53m, ρc=25.6m, Np=512, Δx=0.88m, σz=4λ/3, max. absolute slope αg=0.14 

 

The surface properties for which the current densities are computed are as follows: wind 

speed (U=10m/s), RMS height of surface (σh=0.53m), correlation length of surface 

(ρc=25.6m), maximum absolute slope of the surface (αg=0.14), number of points N 

considered for the sampling of surface (N=512), maximum horizontal range (X=450m) 

and distance between adjacent samples on the surface is Δx=0.87m. The frequency of the 

incident wave is f=1 GHz and antenna height Ht=3m. The RMS surface height per unit 

wavelength σh/λ = 1.77 and surface correlation length ρc/λ = 85.33. Since for the PM 

spectrum the ratio of σh/ρc is a constant, we consider the parameter σh/λ for our further 

analysis. We observe that the zeroth order solution agrees well with the exact numerical 

solution in this case. Implementing the routine in Matlab with a system having 3.2 GHz, 

3
rd

 generation Intel quad-core processor, it is determined that while the computation time 

for J
num

 is 24.06 sec, J
0
 takes 0.46 sec which is about 50 times faster, without 

significantly compromising on the accuracy of the solution. 
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CHAPTER 4 

 

PROPAGATION FACTOR 

 

Once the induced current densities are determined from the steps outlined in Chapter 3, 

we then analyze the computation of scattered field that arise due to these currents. The 

propagation factor is the ratio of the total field above the surface to the incident field. 

This factor is a more intuitive parameter that helps us understand the pattern of wave 

propagation in free space over a rough surface. The propagation factor accounts for the 

effects of multipath and shadowing, subject to the forward propagation approximation. In 

real-world situations, path loss effects should also be considered
 [15]

. 

4.1.Scattered field along a vertical line 

 

Using the exact numerical solution to induced current density (Eq. 3.1.8) and zeroth order 

current density (Eq. 3.2.2), the corresponding scattered field at along a vertical line (z) at 

the maximum horizontal range (X=450m) is computed using Eq. 3.1.3. We adopt the 

approach outlined by Lai 
[8][8]

, wherein the surface function g(x) and current density J(x) 

are both linearly approximated in a given sample interval (xn , xn+1) as follows 

  ( )     
(    )(       )

  
 Eq. 4.1.1 

  ( )     
(    )(       )

  
 Eq. 4.1.2 

 

where     (  ), the surface function value at a point xn for        , N being 

the total number of sample points on the surface, and           . Similarly we 

assign     (  ). We use a discretized version of Eq. 3.1.8 corresponding to the 

scattered field Us(x, z) which can be expressed as a sub-integral as follows: 

     √
 

    
∫

 (  )

√(    )
   { 

  
 

    (  )  

    
}     

    

  

 Eq. 4.1.3 

 

Using the linear discretized version of J(x), g(x) and making appropriate change of 

variables, the sub-integral then becomes: 
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√
     

   
∫ (

  
  
 
  
  
)

   

   

  
    

     Eq. 4.1.4 

This can be integrated by parts and expressed in terms of Fresnel integrals. These sub-

integrals are summed over         to solve for the scattered field (Us(x, z)) at a 

given point (x, z) above the rough surface. 

 

    
    

 
√
     

   
{ (     

   
 
) [  (   )    (   )]

 
 

   
(    

    
 
 
  
    
 )  

      
   

 
 

   
(    

    
 
 
  
    
 )  

      
   } 

Eq. 4.1.5 

Where  

      (    )[(    )   (    )(       )   ] Eq. 4.1.6 

      (    )[(       )   ] Eq. 4.1.7 

     √     [ (    )] Eq. 4.1.8 

     √     [ (      )] Eq. 4.1.9 

       (     )(       ) Eq. 4.1.10 

        (       ) (   ) Eq. 4.1.11 

Ϝ+ and Ϝ- are the Fresnel integral and its complex conjugate respectively. In takes the ‘+’ 

sign for      and ‘-’ sign for      respectively. 

 

Let us denote the scattered field computed using J
num

 as Us
num

 and using J
0
as Us

0 

respectively. The incident field at any point (x, z) is denoted by Ui(x, z), can be computed 

using the Fourier transform of the initial field Uo(η). If Uo(kz) is the Fourier transform of  

Uo(η), then the incident field corresponding to Eq. 3.1.2 is given by
 [14]

: 

     (   )  
 

  
∫   (  ) 

    
  

       (    )   
 

  
   Eq. 4.1.12 

and takes the form 

     (   )  
   

√         
    [ 

(    )
 

 (         )
] Eq. 4.1.13 
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Although the limits of kz in the integral of Eq. 4.1.12 extend to infinity, in reality the 

angular limitation of PE equation truncates the limits to the order of k0*sin(θmax), where 

θmax is approximately 15
o
 grazing angle.  The propagation factor (PF) is defined as the 

ratio of the total field to the incident field.    (  )         ( 
       

    
 ) For 

x=Xmax=450m, the propagation factor is plotted as a function of z for a single realization 

of a random surface with the same characteristics used in Figure 5. 

 

Figure 7: PF for a single realization of a PM surface 

 

The mean propagation factor is obtained by determining the current densities (both Jnum 

and J0) for a single realization of a surface, computing the scattered field (for each of 

Jnum and J0) for that realization, repeating the process for Nr=400 realizations of the 

rough surface and taking the mean scattered field of these “Nr” Us values. The value of 

Nr is taken as 400 after analyzing the mean field for various incremental values of Nr 

starting from 100 in accordance to the Monte-Carlo method and concluding that the mean 

propagation factor converged to a reasonable statistical moment for Nr=400. 

The mean propagation factor (PF) based on the mean field is equal to 

       ( 
〈  〉     

    
 ), where 〈  〉 is the ensemble average of the complex scattered field 

of all surface realizations. 
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Figure 8: Mean PF for 400 realizations of PM surface 

 

We observe the agreement between the propagation factors generated using J
num

 and J
0
 is 

better in the mean field computation rather than the single surface realization as expected. 

The mean scattered field is small compared to the incident field at large heights due to 

smaller diffused non-specular components and hence the PF converges to the incident 

field.  Specular reflection occurs up to a height when the angle of incidence is equal to 

the angle of reflection from the mean surface for a wave incident from the lower half 

beam of the transmitting antenna. This height is denoted as Hmin. The height up to which 

we have direct incidence from the upper half beam of the transmitting antenna (see 

Figure 9) is denoted as Hmax. 
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Figure 9: Schematic depicting the specular reflection and direct incidence 

 

From laws of reflection, we can arrive at the equations for Hmin and Hmax taking maximum 

horizontal range X=450m. 

                Eq. 4.1.14 

                Eq. 4.1.15 

 

The half beam angle of the transmitting antenna is determined by the standard deviation 

σz of the Gaussian distribution of its source field
 [13]

. The half-power beam-width of the 

transmitting antenna is denoted as Δψ=2θ0. 

          (
     

√     
) Eq. 4.1.16 

where  

       
  (

 

    
) Eq. 4.1.17 

Thus for         and λ=0.3m, the half power beam width of the antenna, Δψ=11.34
o
 

and θ0=5.67
o
. For an antenna height Ht=2m and X=450m, Hmin=42.67m and 

Hmax=46.67m. Thus beyond 46.67m, the field is only composed of the non-specular 

reflections. 

 

 

 

θ0 
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4.2.Zeroth Order Asymptotic Expression 

 

Since the zeroth order results are in good agreement with the exact solution, we use an 

asymptotic form of the specular mean scattered field derived using zeroth order induced 

current density J
0 [11]

. The scattered field given by Eq. 3.1.3 is considered. The induced 

current density J(ξ) is replaced with zeroth order current density J
0
. Using the statistical 

properties of the Gaussian surface and Beckmann’s mean value theorem 
[16]

 in Eq. 4.2.1 

for random variables as exponents, the mean scattered field is determined. This 

asymptotic mean scattered field is denoted as 〈  
 〉  〈   

 〉  〈   
 〉 . 

 

〈   
 〉 is the mean scattered field due to incident current density Ji, the first term of zeroth 

order induced current density in Eq. 3.2.1. This term corresponds to the specular 

reflections from the surface and yields the Ament roughness reduction factor in Eq. 

4.2.15. The 〈   
 〉 term takes into account the correlation function of the surface through 

the second term of Eq. 3.2.1. 

 

 〈 ( )   (  )〉    
  (      ) Eq. 4.2.1 

where C is the correlation function of the surface as specified in Eq. 2.1.2. 

 
〈   
 〉    √

  
    

  (        )    [  (         )
 ]    [   ( 

   )        ] 

Eq. 4.2.2 

 

where,  

   (  )    (  ) 
       Eq. 4.2.3 

 

U0(kz) is the Fourier transform of the source field distribution in Eq. 3.1.6.  

       
(    )

 
 Eq. 4.2.4 

An asymptotic form of the incident field Ui(x, z) in Eq. 4.1.13 can also be written as 
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      √
  
    

  (       )    [   (    )        ] Eq. 4.2.5 

 

where       
(    )

 
 Eq. 4.2.6 

The expression in Eq. 4.2.2 only takes into account the specular reflection. In order to 

present the complete scenario, the diffused components corresponding to the zeroth order 

approximation should also be added to give the total mean scattered field. Using the 

Beckmann’s mean value theorem 
[16]

 and statistical properties of Gaussian surface as well 

as the correlation function corresponding to the PM spectrum, the mean diffused 

scattered field 〈   
 〉 can be found as: 

 

〈   
 〉   

√   (    )
 

(  ) 
∭ ( 

  

  
    

  )  (
  (   )

 
) 

 [   (    )    (    )]
 

 
 

(   ( ))

[(    ) (   ( ))     ]
 
 

    [
  (    )

 ]

 
    

       
             

Eq. 

4.2.7 

 

In order to make the three dimensional integral limits finite in all the domains and for 

ease of numerical computation, we convert the integration space to cylindrical co-

ordinates by making a change of variables as       ( ) and       ( ) and rewrite 

the equation as: 

 

 

    
   

 
√   (    )

 

(  ) 
∭  (   ( )

    

      

     ( ))  (
   (   ( )      ( ))

 
) 

    [    ( )(    )     ( )(    )]
   

Eq. 

4.2.8 



23 

 

(   ( ))

[(    ) (   ( ))     ]
 
 

   [
     (  ) (    )

 ]

   ( )
  

    
       ( )    

       ( )          

The function    bears the same definition as in Eq. 4.2.3. C(x) is the normalized 

correlation function corresponding to the PM spectrum as defined in Eq. 2.1.2. The 

quantity      
    

 
 is a constant for a given maximum range and       

 

 
 

The quantities   
  and   

  are defined as follows: 

   
  

(    )
 

 
(   ( ))  

 

 
(    ) Eq. 4.2.9 

   
  

    
 

 (  
    

 )
 
 

 
(  

  
 

  
    

 ) Eq. 4.2.10 

 

where    [   ( )](    )
  and is always greater than or equal to zero. 

Hence, the total mean scattered field corresponding to the asymptotic zeroth order 

expression is: 

 〈  
 〉  〈   

 〉   〈   
 〉   Eq. 4.2.11 

  

The propagation factor with these asymptotic field expressions would then be    (  )  

       { 
〈  
 〉   

  
 } 

A comparison between the mean propagation factors computed using J
num

, J
0
, zeroth 

order asymptotic expressions, Miller-Brown 
[9][15]

 and Ament 
[10]

 is shown in Figure 10.  

In case of Miller-Brown and Ament formulae, we use the image of the source field 

representation           (   ) i.e. incident field due to image of the source antenna 

about the mean surface (x=0 in this case) to compute the reflected field      using the 

corresponding roughness reduction factor (RRF). 

           (   )  
   

√         
    [ 

(    )
 

 (         )
] Eq. 4.2.12 



24 

 

Note the change in sign to +Ht from -Ht from the expression in Eq. 4.1.13 to denote the 

image of the source. The reflection co-efficient Γ is equal to -1. Hence, the mean 

reflected field 〈    〉 is given as: 

     (   )                  (   ) Eq. 4.2.13 

 

The RRF in case of Miller-Brown is given as 
[9]

: 

         
    

   
     ( )  (   

   
     ( )) Eq. 4.2.14 

where,   is the grazing angle and    is the zeroth order modified Bessel function of the 

first kind. 

 

The RRF in case of Ament is given as 
[10]

: 

           
    

   
     ( ) Eq. 4.2.15 

which is the same as Miller-Brown without the Bessel function. 

Hence, the total field above the surface is       (   )      (   )      (   ) and the 

propagation factor (dB) is equal to        { 
      

  
 }. 

 

Figure 10: Comparison of Mean PF for 400 surface realizations, λ =0.3m, Ht=3m, U=10m/s, σh=0.53m, 

ρc=25.6m, Np=512, Δx=0.88m, σz=4λ/3, max. absolute slope αg=0.14 
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The PF computed from the direct solution to the numerical induced current density and 

the zeroth order solution agree well with each other for the entire range of height 

represented above. Miller-Brown, Asymptotic zeroth order and Ament all seem to agree 

well at low heights up to about 20m, while the asymptotic zeroth order solution matched 

exactly with the Ament formula. It has been mentioned in prior literature that Miller 

Brown expression models the propagation more accurately than Ament, but only serves 

as a reference in this context. 

 

The Miller-Brown and Ament solutions show good match with the numerical and zeroth 

order solutions at low heights, but flatten relative to the exact numerical solution at large 

heights implying almost zero contribution to the propagation factor from scattered field. 

This could be attributed to the fact that both Miller-Brown and Ament solutions are valid 

in regions where well-defined specular reflected waves exist and multiple scattering from 

shadowed portions of the surface are ignored. As can be seen from Figure 10, the 

specular reflection occurs up to a height Hmin=41.67m and direct incidence at a height 

Hmax=47.67m. Beyond Hmin, we see that Miller-Brown and Ament are no longer accurate 

and predominantly constitute of incident field only. 
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CHAPTER 5 

 

ZEROTH ORDER SOLUTION IN HIGHER FREQUENCY BANDS AND WIND 

SPEEDS 

 

We now know that the zeroth order current density solution works almost as accurately as 

the exact solution at 1 GHz and low RMS height of the surface i.e. at wind-speed of 

10m/s. It would be interesting to know how well the zeroth order solution agrees with the 

exact solution at higher wind speeds and surface roughness. We can then define the 

bounds of validity of the zeroth order solution based on the resulting data analysis. 

 

Further analysis is performed to identify the validity of zeroth order solution at higher 

frequency of incident radio-waves and wind-speeds (i.e. increased roughness of the 

surface) for the PM spectrum. The maximum horizontal range is taken as 450 m and 

maximum vertical height 100 m. One representative mid-band frequency in each of 

‘L’,’S’,’C’ and ‘X’ bands is considered and wind-speeds of 5m/s, 10m/s, 15 m/s and 20 

m/s at each of these frequencies is analyzed. 

5.1.Mean Signal PF using Monte-Carlo simulations 

 

As before, the scattered field along a vertical line at maximum horizontal range is 

computed for each realization of the random surface and an ensemble average is taken to 

yield the mean signal PF        ( 
         

    
 ). In order to quantify the mismatch 

between the mean PF due to Jnum and J0, a mean phase error is computed and 

normalized to the maximum vertical height. Let us denote this quantity as φmean
 
and is 

expressed as: 

       
 

    
∫      ( )    ( )    

    

   

 Eq. 5.1.1 

where     and   are the unwrapped phase in degrees of the quantities 
   

         

    
 and 

   
       

    
 respectively. It is observed that the phase mismatch between the exact 

numerical solution and zeroth order is prominent only in the nulls appearing in the mean 
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PF and diminish when the PF converges to the incident field. Thus, a more useful 

parameter would be to normalize the mean phase error φmean with the number of nulls that 

are less than 3 dB down from the incident field. The results have been presented and 

summarized below. 

 

 

 

Figure 11: Monte-Carlo mean signal PF of 400 surface realizations at 1 GHz, 

λ=0.3m, Ht=3m, U=5m/s, σh=0.13m, ρc=6.41m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 12: Monte-Carlo mean signal PF of 400 surface realizations at 1 GHz, 

λ=0.3m, Ht=3m, U=10m/s, σh=0.53m, ρc=25.6m, Np=512, Δx=0.88m, Xmax=450m 

 

 
Figure 13: Monte-Carlo mean signal PF of 400 surface realizations at 1 GHz, 

λ=0.3m, Ht=3m, U=15m/s, σh=1.19m, ρc=57.73m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 14: Monte-Carlo mean signal PF of 400 surface realizations at 1 GHz, 

λ=0.3m, Ht=3m, U=20m/s, σh=2.13m, ρc=102.6m, Np=512, Δx=0.88m, Xmax=450m 
 

 
Figure 15: Monte-Carlo mean signal PF of 400 surface realizations at 3 GHz, 

λ=0.1m, Ht=3m, U=5m/s, σh=0.13m, ρc=6.41m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 16: Monte-Carlo mean signal PF of 400 surface realizations at 3 GHz, 

λ=0.1m, Ht=3m, U=10m/s, σh=0.53m, ρc=25.6m, Np=512, Δx=0.88m, Xmax=450m 
 

 

 
Figure 17: Monte-Carlo mean signal PF of 400 surface realizations at 3 GHz, 

λ=0.1m, Ht=3m, U=15m/s, σh=1.19m, ρc=57.73m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 18: Monte-Carlo mean signal PF of 400 surface realizations at 3 GHz, 

λ=0.1m, Ht=3m, U=20m/s, σh=2.13m, ρc=102.6m, Np=512, Δx=0.88m, Xmax=450m 

 

 
Figure 19: Monte-Carlo mean signal PF of 400 surface realizations at 5 GHz, 

λ=0.06m, Ht=3m, U=5m/s, σh=0.13m, ρc=6.41m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 20: Monte-Carlo mean signal PF of 400 surface realizations at 5 GHz, 

λ=0.06m, Ht=3m, U=10m/s, σh=0.53m, ρc=25.6m, Np=512, Δx=0.88m, Xmax=450m 

 
Figure 21: Monte-Carlo mean signal PF of 400 surface realizations at 5 GHz, 

λ=0.06m, Ht=3m, U=15m/s, σh=1.19m, ρc=57.7m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 22: Monte-Carlo mean signal PF of 400 surface realizations at 5 GHz, 

λ=0.06m, Ht=3m, U=20m/s, σh=2.13m, ρc=102.67m, Np=512, Δx=0.88m, Xmax=450m 

 

 
Figure 23: Monte-Carlo mean signal PF of 400 surface realizations at 10 GHz, 

λ=0.03m, Ht=3m, U=5m/s, σh=0.13m, ρc=6.41m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 24: Monte-Carlo mean signal PF of 400 surface realizations at 10 GHz, 

λ=0.03m, Ht=3m, U=10m/s, σh=0.53m, ρc=25.6m, Np=512, Δx=0.88m, Xmax=450m 

 

 
Figure 25: Monte-Carlo mean signal PF of 400 surface realizations at 10 GHz, 

λ=0.03m, Ht=3m, U=15m/s, σh=1.19m, ρc=57.7m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 26: Monte-Carlo mean signal PF of 600 surface realizations at 10 GHz, 

λ=0.03m, Ht=3m, U=15m/s, σh=1.19m, ρc=57.7m, Np=512, Δx=0.88m, Xmax=900m

. 
Figure 27: Monte-Carlo mean signal PF of 400 surface realizations at 10 GHz, 

λ=0.03m, Ht=3m, U=20m/s, σh=2.13m, ρc=102.67m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 28: Monte-Carlo mean signal PF of 600 surface realizations at 10 GHz, 

λ=0.03m, Ht=3m, U=20m/s, σh=2.13m, ρc=102.67m, Np=512, Δx=0.88m, Xmax=900m 

 

 

Wind 

Speed 
σh/λ      (deg) 

No. of 

Nulls < -

3dB (NL) 

     
    

1 GHz (L-band) 

5m/s 0.44 0.85 5 0.17 

10m/s 1.77 1.6 3 0.53 

15m/s 3.96 1.35 2 0.68 

20m/s 7.1 1.06 1 1.06 

3 GHz (S-band) 

5m/s 1.33 1.78 13 0.14 

10m/s 5.33 1.9 3 0.63 

15m/s 11.99 1.41 2 0.71 

20m/s 21.33 1.15 1 1.15 

5 GHz (C-band) 

5m/s 2.21 2.2 14 0.16 

10m/s 8.88 1.86 4 0.47 

15m/s 19.98 1.44 2 0.72 

20m/s 35.55 1.24 1 1.24 
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Wind 

Speed 
σh/λ      (deg) 

No. of 

Nulls < -

3dB (NL) 

     
    

10 GHz (X-band) 

5m/s 4.43 2.33 14 0.17 

10m/s 17.76 1.96 3 0.65 

15m/s 39.96 2.3 1 2.30 

20m/s 71.1 2.6 1 2.60 

 

 
Table 1: Monte Carlo Mean Signal PF at different frequencies and roughness at Xmax = 450m 

 

It can be observed that as the frequency increases, the number of nulls in the interference 

pattern of the PF also increases at lower wind speeds and the agreement between the 

mean PF computed using Jnum and J0 is best at a speed of 5m/s at all frequencies in 

consideration. Also, at large heights, for e.g. beyond 70m in the 3 GHz-20m/s (Figure 18) 

and 5 GHz-20 m/s (Figure 22) case, the scattered field gets larger and exhibits noisy 

interference pattern.  Based on these results, a subjective threshold value of 
     

  
     

and          is determined where the Monte-Carlo zeroth order solution seems to have 

reasonably good agreement with the Monte-Carlo exact solution (cases highlighted in 

green in Table 1). At 10 GHz and wind speeds of 5m/s and 10m/s (Figure 23 and Figure 

24 respectively), the agreement is good, but at 15m/s (Figures 25, 26) and 20m/s (Figures 

27, 28), the PF shows noisy pattern, which may be attributed to the following reasons: 

1. Since the Monte-Carlo solution error convergence rate is inversely proportional to 

the square root of number of realizations, the current number of realizations (i.e. 

400 surfaces) may not be adequate. 

2. Limitations on the accuracy of number of significant digits that can be processed 

by the software (i.e. Matlab in this case) running the computation. 

3. The diffused components of the scattered field are significantly high that any 

meaningful interference pattern cannot be visualized. 

 

In order to verify that the phase of the integrand in Eq. 3.2.2 corresponding to the zeroth 

order current density is accurately sampled with respect to the integration variable theta 

(θ), the unwrapped phase (in degrees) of the integrand is plotted against theta (θ) at two 
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different values of x = 111.8m and 450m for a wind-speed of 10m/s and an incident 

radio-wave frequency of 10 GHz. The figures are shown below: 

 

Figure 29: Phase of integrand for J0 solution w.r.t. integration variable at x=111.8m 

 

 
Figure 30: Phase of integrand for J0 solution w.r.t. integration variable at x=450m 

 

The maximum phase difference between two successive points of the integrand is less 

than about 19
o
 at 10 GHz, which shows that the zeroth order solution is numerically well 

computed with adequate phase sampling. 

A plot of magnitude of Jnum and J0 (Figure 31, Figure 32) as well as the phase (Figure 

33, Figure 34) overlay on a single realization of rough surface in comparison with its 

slope and curvature shows that at 10 GHz, the agreement between Jnum and J0 (both 

magnitude and phase) is better at 5m/s than at 10m/s. This gives an exact picture of the 

current distribution over the rough surface and its variations in the peaks and troughs. 
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Figure 31: Overlay of surface with |Jnum| and |J0| at 10 GHz, 5m/s 

 
Figure 32: Overlay of surface with |Jnum| and |J0| at 10 GHz, 10m/s 



40 

 

 
Figure 33: Overlay of surface with Phase of Jnum and J0 at 10 GHz, 5m/s 

 
Figure 34: Overlay of surface with Phase of Jnum and J0 at 10 GHz, 10m/s 
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5.2.Mean Power PF using Monte-Carlo simulations 

 

The mean signal propagation factor takes into account the phase of the scattered field for 

each surface realization, which is then averaged over many realizations using Monte-

Carlo simulations. In case of power PF, the phase information in the scattered field is not 

considered since the square magnitude of the scattered field is averaged over many 

surface realizations. Hence, this PF can also be known as non-coherent power PF and is 

given as                 {〈|
       

    
|
 
〉}. Thus for a single realization of the surface, 

the squared absolute scattered field is considered and then averaged over many surface 

realizations. 

If we denote the power scattered from the surface as Ps, then        
  and the mean 

power PF can be expressed as: 

                       [  
〈  〉

       
       (

〈  〉

  
)] Eq. 5.2.1 

 

In order to provide a comparison with a known analytical solution to the mean scattered 

power, Kirchhoff’s approximation method for a Gaussian spectrum as outlined in 

Beckmann 
[16]

 has been used as reference. For this, a rough surface with Gaussian 

spectrum and Gaussian height statistics is used. 

 

From Eq. 4.1.12 for the incident field, one of the exponent terms of the integrand is 

     
       which is the only factor governing the incident field as a function of x. Let us 

denote    √  
     . Then, 

 
  
 

   
    √  

      Eq. 5.2.2 
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Figure 35: Schematic depicting the propagation of radio-waves and angle of incidence, reflection according 

to Beckmann 

 

Since the incident wave is hitting the rough surface in the direction shown at an angle    

taken anti-clockwise from the normal to the mean surface, we need to make a change of 

variable from kz to -kz, when we realize that the integrand actually represents a 2-D plane 

wave.           The amplitude of this plane wave would be   (   ), which is the 

Fourier transform of the initial source field, but with a change of sign in kz.  

 

Using Eq. 5.2.2 in Eq. 4.1.12, we can rewrite the incident field as: 

     (   )   
    ∫   

 

  

(   ) 
  (      (    ))     Eq. 5.2.3 

 

We multiply the amplitude of the plane wave i.e.   (   ) with E20, which is the specular 

scattered field from a perfectly smooth flat PEC surface for the same incidence, source 

field strength, same distance and surface dimensions as the rough surface. Let us denote 

the scattered field from a rough surface as E2. The Kirchhoff’s scattering co-efficient is 

then given as   
  

   
 

The mean scattered power is given by: 

                           
   〈   〉 Eq. 5.2.4 

where from 
[16]

, 

     
     

       (   )    
   

 Eq. 5.2.5 

The quantity    is the distance of the observation point along the vertical z line from the 

origin. Note that E20 represents the scattered field outside the region encompassing 
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scattering surface, which is assumed to lie between (0, Xmax). Hence, there is no problem 

that E20 goes to zero in the far-zone outside (0, Xmax). 

 

 
〈   〉  [  

  
√    

    
∑

  

  √ 
    

      

 

   

]     

 

Eq. 5.2.6 

The parameters in the above equation are defined as follows: 

        (
      
 

) Eq. 5.2.7 

      (           ) Eq. 5.2.8 

      (  )
     (     )

           
 Eq. 5.2.9 

   {
   

 
(           )}

 

 Eq. 5.2.10 

The parameter T is the same as ρc in case of PM spectrum; the correlation length of the 

surface. In our case, we consider a Gaussian surface at 3GHz, with RMS surface height σ 

= 1.19m and T = 57.7m, Xmax = 450m. 

 

Figure 36: Comparison of mean scattered power from Jnum, J0 of Monte-Carlo with Kirchhoff's solution 

outlined in Beckmann 

 

The comparison with Kirchhoff’s solution with Monte-Carlo mean scattered power at 3 

GHz shows that the solutions are in good agreement, though the analytical Kirchhoff’s 



44 

 

solution converges at about a height of 60 m compared to the Monte-Carlo method, it 

matches well with Monte-Carlo solution at low heights, closer to the surface. 

 

As before, one representative mid-band frequency in each of ‘L’,’S’,’C’ and ‘X’ bands is 

considered and wind-speeds of 5m/s, 10m/s, 15 m/s and 20 m/s at each of these 

frequencies is analyzed for the mean power PF. The results have been presented below. 

 
Figure 37: Monte-Carlo mean power PF of 400 surface realizations at 1 GHz, 

λ=0.3m, Ht=3m, U=5m/s, σh=0.13m, ρc=6.41m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 38: Monte-Carlo mean power PF of 400 surface realizations at 1 GHz, 

λ=0.3m, Ht=3m, U=10m/s, σh=0.53m, ρc=25.6m, Np=512, Δx=0.88m, Xmax=450m 

 

 
Figure 39: Monte-Carlo mean power PF of 400 surface realizations at 1 GHz, 

λ=0.3m, Ht=3m, U=15m/s, σh=1.19m, ρc=57.73m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 40: Monte-Carlo mean power PF of 400 surface realizations at 1 GHz, 

λ=0.3m, Ht=3m, U=20m/s, σh=2.13m, ρc=102.6m, Np=512, Δx=0.88m, Xmax=450m 

 

 
Figure 41: Monte-Carlo mean power PF of 400 surface realizations at 3 GHz, 

λ=0.1m, Ht=3m, U=5m/s, σh=0.13m, ρc=6.41m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 42: Monte-Carlo mean power PF of 400 surface realizations at 3 GHz, 

λ=0.1m, Ht=3m, U=10m/s, σh=0.53m, ρc=25.6m, Np=512, Δx=0.88m, Xmax=450m 

 

 
Figure 43: Monte-Carlo mean power PF of 400 surface realizations at 3 GHz, 

λ=0.1m, Ht=3m, U=15m/s, σh=1.19m, ρc=57.73m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 44: Monte-Carlo mean power PF of 400 surface realizations at 3 GHz, 

λ=0.1m, Ht=3m, U=20m/s, σh=2.13m, ρc=102.6m, Np=512, Δx=0.88m, Xmax=450m 

 

 

 
Figure 45: Monte-Carlo mean power PF of 400 surface realizations at 5 GHz, 

λ=0.06m, Ht=3m, U=5m/s, σh=0.13m, ρc=6.41m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 46: Monte-Carlo mean power PF of 400 surface realizations at 5 GHz, 

λ=0.06m, Ht=3m, U=10m/s, σh=0.53m, ρc=25.6m, Np=512, Δx=0.88m, Xmax=450m 

 

 
Figure 47: Monte-Carlo mean power PF of 400 surface realizations at 5 GHz, 

λ=0.06m, Ht=3m, U=15m/s, σh=1.19m, ρc=57.73m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 48: Monte-Carlo mean power PF of 400 surface realizations at 5 GHz, 

λ=0.06m, Ht=3m, U=20m/s, σh=2.13m, ρc=102.6m, Np=512, Δx=0.88m, Xmax=450m 

 

 
Figure 49: Monte-Carlo mean power PF of 400 surface realizations at 10 GHz, 

λ=0.06m, Ht=3m, U=5m/s, σh=0.13m, ρc=6.41m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 50: Monte-Carlo mean power PF of 400 surface realizations at 10 GHz, 

λ=0.06m, Ht=3m, U=10m/s, σh=0.53m, ρc=25.6m, Np=512, Δx=0.88m, Xmax=450m 

 

 
Figure 51: Monte-Carlo mean power PF of 400 surface realizations at 10 GHz, 

λ=0.06m, Ht=3m, U=15m/s, σh=1.19m, ρc=57.73m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 52: Monte-Carlo mean power PF of 400 surface realizations at 10 GHz, 

λ=0.06m, Ht=3m, U=15m/s, σh=1.19m, ρc=57.73m, Np=512, Δx=0.88m, Xmax=900m 

 

 
Figure 53: Monte-Carlo mean power PF of 400 surface realizations at 10 GHz, 

λ=0.03m, Ht=3m, U=20m/s, σh=2.13m, ρc=102.6m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 54: Monte-Carlo mean power PF of 400 surface realizations at 10 GHz, 

λ=0.03m, Ht=3m, U=20m/s, σh=2.13m, ρc=102.6m, Np=512, Δx=0.88m, Xmax=900m 

 

 

It can be seen that the mean power PF breaks up and gets very noisy and unreliable at 10 

GHz for the 15m/s and 20m/s cases (Fig. 51-54). We also see that the mismatch between 

Jnum and J0 is significantly large at 3 GHz (Fig. 44) and 5 GHz (Fig. 48) for the 20m/s 

case. These results are consistent with the validity exhibited in the mean signal PF plots 

and hence, the conclusion stands the same as before with the mean signal PF. Another 

observation is that the mean power PF generated using Jnum seems to increase and 

diverge more rapidly than J0. This may be attributed to the rest of the terms of Jnum 

other than zeroth order term contributing more significantly to the magnitude rather than 

the phase of the scattered field. As to why the mean non-coherent power PF does not 

converge to the incident power at large heights while the mean signal PF does converge, 

remains an open avenue to be investigated. 
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5.3.Asymptotic Zeroth Order Solution 

 

Since the asymptotic zeroth order solution in Eq. 4.2.11 has good agreement with Ament, 

we consider analyzing its validity in each of the frequency bands. Due to its complex 

nature and 3D integral, its numerical computation can be laborious, but the cylindrical 

representation offers better numerical implementation than Cartesian coordinates. In 

order to obtain reasonably accurate results, the sampling along the ‘ρ’ domain is 

important and it is determined that in order to have a maximum phase difference of π/4 

between successive points of the integrand, the step size in ‘ρ’ should be at least λ/4z, 

where maximum value of z=100m. 

A representative speed i.e. 15m/s at each frequency is considered for comparison with the 

Monte-Carlo Jnum, Monte-Carlo J0, Miller-Brown, Ament and the results are shown 

below. 

In each of the cases, the diffused field component 〈   
 〉 is very small compared to the 

dominant 〈  
 〉 term and hence the overall mean scattered field is not affected 

significantly. 

 

Figure 55: Comparison with asymptotic zeroth order at 1 GHz, λ=0.3m, Ht=3m, U=15m/s, σh=1.19m, 

ρc=57.73m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 56: Diffused component of asymptotic zeroth order solution at 1 GHz, 15m/s 

 
Figure 57: Comparison with asymptotic zeroth order at 3 GHz, λ=0.1m, Ht=3m, U=15m/s, σh=1.19m, 

ρc=57.73m, Np=512, Δx=0.88m, Xmax=450m 
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Figure 58: Diffused component of asymptotic zeroth order solution at 3 GHz, 15m/s 

 

 
Figure 59: Diffused component of asymptotic zeroth order solution at 5 GHz, 15m/s 
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Figure 60: Comparison of asymptotic zeroth order solution  

at 5 GHz, 15m/s with Ament 

 

 

We can observe that the diffused component increases slightly with frequency, but is at 

least 40 dB down from the dominant specular component and hence, does not 

significantly impact the overall mean PF. The diffused component exhibits higher 

magnitude closer to the surface since the multiple non-specular reflections and 

diffractions are dominant closer to the surface. At 10 GHz, the resolution along the ρ 

domain for accurate results in diffused component requires to be about Δρ =7.5x10
-5

, 

which results about 30,000 points for the 3D integral computation. This gets quite 

cumbersome for computation and the resulting mean PF is quite noisy. Hence, we 

represent our analysis up to 5 GHz. 
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CHAPTER 6 

 

Summary and Conclusions 

 

Although there is extensive literature on theoretical and numerical techniques for the 

rough surface scattering problem, there is relatively little work done on the analysis of the 

zeroth order solution (both Monte-Carlo and analytical), which is the core component of 

this thesis. Predicting the mean propagation factor using the exact solution to current 

density and comparing it with zeroth order solution is an integral part of the work. 

Scattering of electromagnetic waves from one-dimensional perfectly conducting large 

rough surfaces at low grazing angles is considered. Since, the Monte-Carlo simulation for 

large rough surfaces requires significant computational time investment; an asymptotic 

solution based on the zeroth order current density is formulated and compared with the 

numerical techniques. Both the mean coherent and non-coherent propagation factors i.e. 

signal and power respectively were computed and analyzed for the scope of the zeroth 

order solution. In all numerical simulations, the surface height is assumed to have a 

Gaussian probability density function and the surface spectra to be the ocean-like 

Pierson-Moskowitz spectrum, although the current technique would work just fine for the 

Gaussian spectrum, periodic surfaces like the sine surface and other partially developed 

sea-spectra. 

 

Based on a subjective quantitative analysis of the phase mismatch between the exact and 

zeroth order solutions, it is predicted that mean Monte-Carlo simulation using the 

Volterra integral equation of the second kind is reasonably accurate up to about RMS 

surface height equal to 20 wavelengths of the incident electromagnetic wave and a 

normalized mean phase error < 1 degree relative to the number of nulls which are 3 dB 

below incident field. The cause of noisy pattern at certain frequencies and wind-speeds 

may be attributed to the following reasons: 

1. Since the Monte-Carlo solution error convergence rate is inversely proportional to 

the square root of number of realizations, the current number of realizations (i.e. 

400 surfaces) may not be adequate. 
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2. Limitations on the accuracy of number of significant digits that can be processed 

by the software (i.e. Matlab in this case) running the computation. 

3. The diffused components of the scattered field are significantly high that any 

meaningful interference pattern cannot be visualized. 

 

The diffused component corresponding to the non-specular reflection terms of the 

asymptotic zeroth order solution is significantly smaller compared to the dominant 

specular reflection term. Although the results shown are limited to 450m horizontal 

range, the grazing angles reduce at farther distances and hence the accuracy of the 

solutions would be slightly better. Increasing sampling resolution on the rough surface 

seems to have little effect on improving the zeroth order accuracy. 

 

The thesis can be summarized as follows. Chapter 1 presents an introduction to the thesis, 

the necessary technical background and motivation to pursue such a topic of interest. 

Chapter 2 explains the essential steps for modeling a random rough surface based on 

signal-processing concepts and probability distribution of random variables. Chapter 3 

describes the integral equations and their derivation for computing the induced current 

densities based on PE approximation and Green’s function and its properties. This results 

in a new Volterra integral equation of the second kind which is solved exactly without 

any matrix inversion 
[1]

. The chapter entails the expressions for the first term of the 

infinite series solution known as the zeroth order solution. 

 

Chapter 4 presents the steps required to compute the scattered field along a vertical line. 

This process involves discretizing the Volterra integral equation, expressing it as a sum of 

sub-integrals and applying a linear approximation to the current densities and surface 

profile to result in expressing each sub-integral in terms of Fresnel integrals, which are 

numerically feasible and attractive technique to solve for the scattered field. The chapter 

also demonstrates the use of an analytical expression for the asymptotic zeroth order 

solution that saves the time required in case of Monte-Carlo simulations. Analysis of 

specular and non-specular reflection is done to compare existing techniques with the new 

methodology. 
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Chapter 5 illustrates and analyzes the validity of the zeroth order solution in terms of both 

Monte-Carlo simulations and asymptotic expressions. A quantitative analysis is done to 

predict the scope and bound of the zeroth order solution at varying frequencies and 

surface roughness. 

 

Core contributions of this thesis are as follows: 

 Mean propagation factor prediction and computation using Monte-Carlo 

simulations based on a novel Volterra integral equation of the second kind 
[1]

 and 

analysis of zeroth order solution 

 Analysis and computation of an analytical asymptotic zeroth order solution 
[11]

 for 

the mean propagation factor resulting in significantly less time investment 

compared to Monte-Carlo simulations 

 Investigation of the scope and validity of the Monte-Carlo simulations and 

analytical solutions at varying frequencies and surface roughness parameters 

based on quantitative analysis 

 Mean non-coherent power propagation prediction using Monte-Carlo simulations 

and comparison with a known analytical approach 

 

It is hoped that the analytical expression based on the asymptotic zeroth order solution 

will be useful in propagation modeling for radar detection and in wireless 

communication. One future scope of this work would be to extend the methodology to 

surface modeled by impedance boundary conditions and to 3-D propagation over 2-D 

rough surfaces. 
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