
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

2016

Variation Aware Placement for Efficient Key
Generation using Physically Unclonable Functions
in Reconfigurable Systems
Shrikant S. Vyas
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

Part of the Digital Circuits Commons, Hardware Systems Commons, and the VLSI and Circuits,
Embedded and Hardware Systems Commons

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been
accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Vyas, Shrikant S., "Variation Aware Placement for Efficient Key Generation using Physically Unclonable Functions in Reconfigurable
Systems" (2016). Masters Theses. 452.
https://scholarworks.umass.edu/masters_theses_2/452

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/260?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2/452?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

VARIATION AWARE PLACEMENT FOR EFFICIENT
KEY GENERATION USING PHYSICALLY

UNCLONABLE FUNCTIONS IN RECONFIGURABLE
SYSTEMS

A Thesis Presented

by

SHRIKANT VYAS

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

September 2016

Electrical and Computer Engineering

c© Copyright by Shrikant Vyas 2016

All Rights Reserved

VARIATION AWARE PLACEMENT FOR EFFICIENT
KEY GENERATION USING PHYSICALLY

UNCLONABLE FUNCTIONS IN RECONFIGURABLE
SYSTEMS

A Thesis Presented

by

SHRIKANT VYAS

Approved as to style and content by:

Russell Tessier, Co-chair

Daniel Holcomb, Co-chair

Wayne Burleson, Member

Christopher V. Hollot, Department Chair
Electrical and Computer Engineering

ACKNOWLEDGMENTS

Thanks to Professor Tessier and Professor Daniel Holcomb for their guidance on

this thesis document. I would also like to thank Naveen Dumpala for his expertise in

the system design and Aftab Usmani for his design in the key generation section.

iv

ABSTRACT

VARIATION AWARE PLACEMENT FOR EFFICIENT
KEY GENERATION USING PHYSICALLY

UNCLONABLE FUNCTIONS IN RECONFIGURABLE
SYSTEMS

SEPTEMBER 2016

SHRIKANT VYAS

B.Tech., NMIMS UNIVERSITY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell Tessier and Professor Daniel Holcomb

With the importance of data security at its peak today, many reconfigurable

systems are used to provide security. This protection is often provided by FPGA-

based encrypt/decrypt cores secured with secret keys. Physical unclonable functions

(PUFs) use random manufacturing variations to generate outputs that can be used

in keys. These outputs are specific to a chip and can be used to create device-tied

secret keys. Due to reliability issues with PUFs, key generation with PUFs typically

requires error correction techniques. This can result in substantial hardware costs.

Thus, the total cost of a n-bit key far exceeds just the cost of producing n bits of

PUF output.

To tackle this problem, we propose the use of variation aware intra-FPGA PUF

placement to reduce the area cost of PUF-based keys on FPGAs. We show that plac-

ing PUF instances according to the random variations of each chip instance reduces

v

the bit error rate of the PUFs and the overall resources required to generate the key.

Our approach has been demonstrated on a Xilinx Zynq-7000 programmable SoC us-

ing FPGA specific PUFs with code-offset error correction based on BCH codes. The

approach is applicable to any PUF-based system implemented in reconfigurable logic.

To evaluate our approach, we first analyze the key metrics of a PUF - reliability

and uniqueness. Reliability is related to bit error rate, an important parameter with

respect to error correction. In order to generate reliable results from the PUFs, a

total of four ZedBoards containing FPGAs are used in our approach. We quantify

the effectiveness of our approach by implementing the same key generation scheme

using variation-aware and default placement, and show the resources saved by our

approach.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1. INTRODUCTION . 1

1.1 Trends . 1
1.2 Thesis Overview . 2
1.3 Thesis Outline . 2

2. BACKGROUND . 4

2.1 Arbiter PUF . 4
2.2 Butterfly PUF . 6
2.3 Ring Oscillator PUF . 6
2.4 Analysis of Delay based PUFs . 7

3. A PHYSICAL UNCLONABLE FUNCTION NATIVE TO THE
XILINX ARCHITECTURE . 9

3.1 Xilinx Virtex 7 Architecture . 9
3.2 Anderson PUF Design . 10
3.3 Anderson PUF Operation . 12
3.4 Experimental Validation . 13

3.4.1 Uniqueness . 14
3.4.2 Reliability . 15
3.4.3 Constant Switching . 15

3.5 Results and Analysis . 17

vii

4. SYSTEM DESIGN . 22

4.1 Device Specific Location of Unreliable PUF Instances 22

4.1.1 Pearson Coefficient . 25
4.1.2 Spatial Autocorrelation of PUF Location BERs 25

4.2 Error Correction . 26

4.2.1 PUF Based Keys . 27
4.2.2 Cost versus Bit Error Rate . 28

4.3 Implementation . 30

4.3.1 Per Device Placement . 31

4.4 Key Generation . 32

4.4.1 Analysis of PUF outputs at different frequencies 35
4.4.2 Analysis of PUF outputs over increasing time intervals

between successive trials . 36

5. TWO PARAMETER MODEL FOR ERROR CORRECTION 39

5.1 Fixed Error Rate . 39

5.1.1 Two Parameter Model . 40
5.1.2 Fitting the Distribution . 41
5.1.3 Key Failure Rate . 42

6. PUF SELECTION USING MULTIPLEXERS . 49

6.1 Multiplexer Selection . 49
6.2 Results . 51

6.2.1 Fixed Error Rate . 51
6.2.2 Two parameter model . 53

7. CONCLUSION . 55

BIBLIOGRAPHY . 56

viii

LIST OF TABLES

Table Page

3.1 Mean Within Class Hamming Distance & Between Class Hamming
Distance obtained with standalone PUFs vs PUFs with Toggle
Flip Flops . 21

4.1 Number of PUF instances and code blocks to produce a 256 bit key
from 127-bit block size BCH codes . 30

4.2 Breakdown of LUT counts by function. 33

4.3 Comparison of the number of blocks required to generate respective
sized keys . 33

6.1 Area utilization (in LUTs) of variation aware, variation agnostic, and
multiplexer select approaches . 54

ix

LIST OF FIGURES

Figure Page

2.1 Arbiter PUF [23] . 5

2.2 Butterfly PUF [14] . 5

2.3 Ring Oscillator . 6

2.4 Ring Oscillator PUF using multiple ring oscillators and a counter
[24] . 7

3.1 SLICE Details . 10

3.2 Anderson PUF design for Xilinx architectures [2] . 11

3.3 Flip flop used to capture carry chain glitch . 12

3.4 PUF design surrounded by Toggle Flip Flops . 16

3.5 Between class Hamming distances for two different 128 bit PUFs 17

3.6 Between class Hamming distances for two different 128 bit PUFs with
surrounding flip flops . 18

3.7 Between class Hamming distances for 128 bit PUFs that occupy the
same locations . 18

3.8 Between class Hamming distances for 128 bit PUFs that occupy the
same locations with surrounding toggle flip flops 19

3.9 Within class Hamming distances between the same 128 bit PUF
instances . 20

3.10 Within class Hamming distances between the same 128 bit PUF
instances with surrounding toggle flops . 20

4.1 Figure shows the BER of PUF instances placed at different locations
on each chip . 23

x

4.2 Percentage of BERs achieved by selecting the best PUF locations 24

4.3 Respective BERs of same location PUFs on two different chips 25

4.4 One time key enrollment . 28

4.5 Key generation . 29

4.6 Implemented system of AES-GCM authenticated encryption using
PUF based key generation. The specific configuration shown uses
a BCH code with n = 127, k = 64 and t = 10. Four code blocks
are used to generate an overall 256-bit key. Each code block
generates 64 key bits from 127 bits of helper data and the outputs
of 127 PUF instances; a total of 508 PUF instances and 508 bits
of helper data are used to generate the 256-bit AES key. The
127-bit blocks of helper data are loaded from block RAM in 4-bit
words. 32

4.7 Number of ones in a trial of 2,048 PUFs . 34

4.8 Locations of the PUFs flipping to a 1 . 36

4.9 Hamming weights at varying clock frequencies . 37

4.10 Number of ones in a trial with an extended time delay between trials
of 600 ms . 38

5.1 Good fit of the PUF statistics obtained using λ1 = 0.0801 and
λ2 = −0.0346 . 42

5.2 Block failure distribution for variation agnostic selection 44

5.3 Block failure distribution for multiplexer selection approach using 2:1
selection . 45

5.4 Block failure distribution for variation aware selection 46

5.5 Key failure distribution for variation aware selection 46

5.6 Key failure distribution for multiplexer selection . 47

5.7 Key failure distribution for variation agnostic selection 47

5.8 Process flow to generate the key failure distribution using a chosen
BCH code and fitted parameters λ1 and λ2 . 48

xi

6.1 Multiplexer selection of the PUFs . 50

6.2 Effect of MUX size on the BER. Selection is taking place across 2,080
total available PUFs . 52

6.3 Effect of MUX size on number of PUFs. Selection is taking place
across 2,080 total available PUFs . 53

xii

CHAPTER 1

INTRODUCTION

1.1 Trends

A novel approach for device authentication and identification of electronic devices

has emerged over the past few years. Physical unclonable functions or PUFs can

extract unique secret information from the physical characteristics of a device using

a challenge and response procedure. This method for device authentication which is

based on physical characteristics is extremely hard or impossible to reproduce [3].

Field-programmable gate arrays (FPGAs) are used for an increasingly large num-

ber of applications which require security. Bitstream encryption and secure encrypt/

decrypt cores which are implemented with the user’s design are often used to pro-

tect FPGAs. These cores require secret keys that are often customized on a per

device basis. PUF-based keys are uniquely tied to each device and are generally safe

from side-channel attacks. Although the logic needed to create PUFs is modest, the

amount of circuitry needed to create consistent keys repeatedly can be significant. We

tackle this problem in our work to show a reduction in the hardware costs. The work

described in this thesis is applicable to any PUF-based FPGA key implementation.

The specific contributions of this thesis are as follows:

• We analyze the spatial randomness of unreliable PUF instances across multi-

ple FPGAs and propose a novel system of per-device configuration to generate

cryptographic keys. This spatially-aware key generation helps reduce the im-

plementation costs of the entire system.

1

• We implement an FPGA-based PUF which was previously targeted to a Virtex

5 architecture to a more contemporary Xilinx Virtex 7 architecture [2]. We

quantify the PUF’s uniqueness and reliability in the new device architecture.

• We target our approach to a data-processing applications which require security

keys. This analysis strengthens our claim of cost reduction in terms of area.

1.2 Thesis Overview

In this thesis we propose a novel approach for device specific placement of PUFs

based on device-level reliability. PUFs are needed in applications requiring high se-

curity. However, the security of PUF-based keys comes at a high hardware cost. This

hardware cost is primarily due to the unreliability of PUF outputs which require error

correcting codes to detect and correct errors in the PUF outputs. Highly unreliable

PUFs produce an output which requires more error correction thereby increasing the

area for error correction compared to more reliable PUFs. In this work, we analyze

all possible PUF locations on a chip in terms of their reliability. The idea behind

this approach is to use the most reliable PUFs on a chip to reduce the size of error

correction hardware and the overall required area of the key generation circuitry.

1.3 Thesis Outline

In Chapter 2, we review different types of PUFs that have been developed and

implemented on FPGAs. Chapter 3 covers the design of the PUF used in this work.

Detailed analysis about the uniqueness and reliability of PUFs is covered. Chapter

4 focuses on the core idea behind the research. The advantages of performing device

specific placement of the PUFs is discussed. Also, a detailed description of error

correcting codes is covered and our system implementation with encryption cores is

presented. Insights into the keys generated by well-positioned PUFs are also explored.

Chapter 5 discusses a new model for BCH code generation. The codes are used

2

for the PUF data set. Chapter 6 discusses an approach to obtain the benefits of

variation-aware placement without performing device-specific placement. Chapter 7

summarizes the thesis work and offers directions for future work.

3

CHAPTER 2

BACKGROUND

Physical unclonable functions (PUFs) produce chip specific signatures at runtime.

Different types of PUFs have been designed and implemented in FPGAs. In this chap-

ter, background is provided about various types of PUF implementations, primarily

the Arbiter PUF [23], Butterfly PUF [14] and the Ring Oscillator PUF [3].

2.1 Arbiter PUF

An Arbiter PUF, like other PUFs, produces its output due to the process vari-

ations on a chip which lead to different delays on two identical paths. Figure 2.1

illustrates an Arbiter PUF. The circuit consists of a pair of symmetric interconnects

and measures any delay mismatch that may occur on the paths. The delay difference

between the two paths is not fixed beforehand. This difference forms the crux behind

Arbiter PUF operation. Figure 2.1 illustrates a PUF delay circuit based on MUXes

and an arbiter which is primarily an edge-triggered D-Flip flop. The key generated

by the Arbiter PUF is based on a challenge which produces a specific response. The

circuit has a multiple-bit input X and a 1-bit output Y based on the relative delay

difference between two paths with the same layout length [18]. The output of the

design is 1 if the input to the D port of the flip flop have a smaller delay and 0

otherwise.

4

Figure 2.1: Arbiter PUF [23]

Figure 2.2: Butterfly PUF [14]

5

Figure 2.3: Ring Oscillator

2.2 Butterfly PUF

The Butterfly PUF tries to match the startup behavior of an SRAM cell [14]. The

structure of the Butterfly PUF (BPUF) is shown in Figure 2.2. The PUF consists

of a cross coupled combinational loop using latches created in the FPGA logic. The

latches contain preset and clear signals. An excite signal triggers the preset signal of

one latch and the clear signal of the other. The BPUF works by bringing the design

to an unstable state using the excite signal and allowing the circuit to settle to one

of the two stable states that are possible.

The BPUF reaches an unstable state due to the cross coupling of the outputs.

When this signal is made low after a few clock cycles, the BPUF starts to attain a

stable state. This state depends on the differences in the delays of the symmetric

paths which are imparted during manufacturing.[14].

2.3 Ring Oscillator PUF

The Ring Oscillator PUF (ROPUF) is based on delay loops (ring oscillators) and

counters rather than arbiters or cross coupled latches. A ROPUF, shown in Figure

2.3, consists of N similar ring oscillators, two counters, two N-bit multiplexers and a

comparator [19]. Every ring oscillator oscillates at a different frequency due to process

variations. By counting the number of oscillations of a pair of PUFs selected using

the challenge as inputs to the select line of the multiplexers, the ROPUF produces a

0 or a 1 based on the output of the comparator.

6

Figure 2.4: Ring Oscillator PUF using multiple ring oscillators and a counter [24]

2.4 Analysis of Delay based PUFs

According to [18], every path consists of two delay components: a static delay

component and a random delay component which is present due to process variations.

Ideally, the PUF output should only be dependent on its process variation. Hence,

out of the two components, for a PUF, the random delay component should be the

significant factor. Arbiter, Butterfly and Ring Oscillator PUFs produce results on the

assumption that the static delay involved in the symmetrical paths cancel out [14].

dN = dS + dR (2.1)

In Equation 2.1 from [18], dS and dR refer to the static delay component and the

random delay components of a path, respectively. The delay differences between two

paths can be expressed by Equation 2.2 [18]. This equation suggests that the delay

difference between two paths is primarily the sum of the difference of the individual

components.

∆d = dS1 − dS2 + dR1 − dR2 = ∆dS + ∆dR (2.2)

7

In an ideal case, the static delay differences ∆dS would tend to 0 and the delay

comparison between the two net delays would be a function of the random delay

component. Even a slight contribution by the static delay component can result in

a biased PUF output. If dS > dR, then the effect of random variation on the output

will be insignificant and the bits generated by the PUF will be biased.

For an Arbiter PUF, timing analysis results performed by [18] indicate that the

difference in the static delays between the two paths is much higher than expected

and overshadows the difference in delays due to random variations. The primary

reason for such an observation is that the net routing to a clock input of a flip flop

requires sending the signal through multiple additional components to reach the clock

port whereas the route to the D input of the flip flop is comparatively simple. The

results produced by [18] show that there is a difference in factor of almost 12 between

the two delay components due to such routing.

For a Butterfly PUF, it can be safely assumed that the two latches used in the

design are identical. However, the major issue observed is the symmetry of the

interconnection nets. Similar to the arbiter PUF, the timing analysis performed on

the Butterfly PUF by [18] showed that ∆dS is an order of magnitude higher than

∆dR.

Ring Oscillator PUFs have the same requirement of symmetric routing as the prior

two PUFs in order to keep the various ring oscillators in the design to be identical.

However, they do not suffer the same drawbacks as the Arbiter and Butterfly PUFs.

According to [23], the RO PUFs are easier to implement in FPGAs. However, they

are slower, larger and consume more power than Arbiter PUFs. This Ring Oscillator

PUF disadvantage, which results in a higher number of elements needed to generate

an output bit, proves to be of significance in our research. The goal of our work is

to reduce the area consumed by the PUFs and error correcting codes. Hence, a Ring

Oscillator PUF, in spite of being highly reliable, does not suit our requirements.

8

CHAPTER 3

A PHYSICAL UNCLONABLE FUNCTION NATIVE TO
THE XILINX ARCHITECTURE

In this chapter, a detailed operational description of the Anderson PUF [2] used in

this work is provided. This PUF has been shown to work effectively in Xilinx FPGAs.

The PUF overcomes the drawbacks of the delay-based PUFs described in Chapter 2

by avoiding the need for careful symmetric routing. The PUF uses internal component

connections with fixed delays inside logic clusters. The primary advantage of using

Anderson PUFs for our work is the lack of design dependence on delay variations due

to programmable interconnect.

This chapter explains our analysis of the PUF in terms of reliability and unique-

ness on a Virtex 7 chip. Detailed analysis of the circuit output shows a between class

(across chip) Hamming distance of approximately 62 for a 128-bit output generation

and an average within class (same chip) distance of 5.59. To understand the correla-

tion of the PUFs on separate chips, the Pearson coefficient [25] for all chip pairings is

computed. The coefficient for all pairings falls between -0.035 and 0.040, indicating

highly uncorrelated output bits.

3.1 Xilinx Virtex 7 Architecture

A Configuration Logic Block (CLB) in the Xilinx Virtex 7 architecture is com-

prised of two logic slices and each slice consists of a combination of lookup tables

(LUTs) and registers (flip flops). CLBs are arranged in a two-dimensional array on

the FPGA chip and are connected to each other through a programmable interconnec-

tion matrix. The LUTs in a slice can be configured to implement any logic function

9

or, in some cases, to serve as a small memory. As we will describe in the next section,

our design uses shift registers configured from LUTs which implement the memories.

About 25% of the LUTs in the Virtex 7 architecture can be implemented as memories.

These LUTs are present in the slices termed SLICEM where ’M’ indicates memory

[2].

Figure 3.1: SLICE Details

Figure 3.1 shows the Virtex 7 CLB structure of a SLICEM which is of interest. It

consists of MUXs connected as a carry chain and 4 LUTs whose outputs act as the

select lines of the multiplexers. Each multiplexer receives one of its inputs from the

output of the multiplexer directly below it. The output of the top multiplexer can

either be used as an input to the multiplexer in the next slice above the current one

or can be directed to a flip flop. In our design, both possibilities have been explored.

3.2 Anderson PUF Design

As mentioned in Chapter 2, an Arbiter PUF or a Butterfly PUF can be difficult

to implement in FPGAs. The PUF design proposed by Anderson produces an output

which is more clearly based on random interconnect delay variations and does not suf-

fer from the problems faced by the other PUFs which require the use of programmable

interconnect in FPGAs.

10

Figure 3.2: Anderson PUF design for Xilinx architectures [2]

Figure 3.2 shows the core of the PUF design. Two LUTs (D and C) are used

to implement shift registers with alternating outputs of 0 and 1. The bits generated

from the shift registers are applied to the select lines of the adjacent carry chain

multiplexers. This connection between the LUTs and the carry chain is fixed and not

programmable. The carry chain output is connected to a SLICEM flip flop. Figure

3.3 shows four multiplexers between the two shift registers. This gap is necessary to

produce a signal delay wide enough to trigger the preset port of a flip flop if a glitch

is generated during the shift register transitions. This flip flop captures the glitch

produced by the carry chain and the shift registers.

11

Figure 3.3: Flip flop used to capture carry chain glitch

3.3 Anderson PUF Operation

As mentioned in the previous subsection, two LUTs, D and C, are used in a 16-bit

shift register mode. The shift registers need to be pre-initialized as follows:

LUT D: 0101010101010101

LUT C: 1010101010101010

We need to make sure that the initialization bitstrings of the two shift registers

are complementary to each other. The shift register output drives the select line of

the multiplexers in the carry chain. The ”0” data inputs of all design multiplexers

are tied to logic 0 while the bottom carry chain multiplexer has its ”1” input tied to

logic 1 [2].

Initially, the output of LUT D is logic 0 while that of LUT C is logic 1. The output

of the top multiplexer is at logic 0 while the output of the bottom multiplexer is set to

logic 1. At the next rising edge of clock signal, the output of the LUT D shift register

transitions from 0 to 1 while the output of the LUT C shift register transitions from

1 to 0. Due to random process variations, the two transitions occur with different

delays. This property is exploited for generating the PUF output. The case in which

12

the LUT D transition is slower than the LUT C does not alter the output from the

previous state and hence the output of the top multiplexer will remain at logic 0.

If the output of LUT D transitions from 0 to 1 with a smaller delay when compared

to the transition of LUT C from 1 to 0, a short positive glitch (spike) will appear on

the top multiplexer until the LUT C transition from 1 to 0 reaches the mux. This

glitch is used to determine the PUF bit which acts as the preset signal to a flip flop

show in Figure 3.3. The flip flop is initialized to 0 and its output is fed back to its

input. The width of the glitch signal needs to be sufficiently large to trigger the flip

flop to change its output from 0 to 1. Care needs to be taken that the glitch is not

always too wide or too narrow such that it causes the output of the flip flop to always

transition to 1 or remain at 0, respectively. Hence, to create a meaningful PUF, the

position of the bottom shift register should be considered.

In our experiments, we observed that the position of the top shift register should

be in LUT D while the bottom shift register should be in LUT C. This gap provides

a total of four multiplexers in between the multiplexers of the corresponding shift

registers. Due to an increase in the number of multiplexers between the two registers,

the width of the glitch can be increased to produce an unbiased output. The select

lines of all the multiplexers in between are tied to 1 thereby propagating the signal

generated by the bottom shift register.

3.4 Experimental Validation

A research goal is to determine if there are locations on the FPGA chip which are

more favorable to PUF performance than others. PUF performance is defined by two

primary factors, uniqueness and reliability.

For our analysis, we instantiated our PUF design at all possible locations in a

target FPGA. We evaluated the design using four ZedBoards which include a Xil-

inx XC7Z020-1CLG484C Zynq-7000 AP SoC. Each board has approximately 4,200

13

SLICEM’s and each PUF circuit uses two slices to generate a bit. Hence, a total of

around 2100 bits can be generated. In this section, we describe the experiments used

to analyze these parameters. We quantify the two properties by dividing all the PUF

instances into blocks of 128 PUFs to generate 128 bits across the chip for all four chip

instances. In total, we implement 16 disjoint 128-bit PUFs on each chip.

3.4.1 Uniqueness

PUFs are primarily used for secret key generation and device identification. Hence,

the outputs of a PUF-based key must be able to identify a device uniquely. It is

important that no two devices give similar responses. The difference between the

responses of two devices can be formalized by their Hamming distance (HD) using

Equation 3.1 from [6].

HD(Ri, Rj) =
n∑

t=1

ri,t
⊕

rj,t (3.1)

Here, Ri = ri,1, ri,2...ri,n and Rj = rj,1, rj,2...rj,n are the two responses from device

i and j respectively for all bits n.

For a comparison between m devices, the average Hamming distance is called as

inter distance or between class Hamming distance given by Equation 3.2 from [6].

Ideally, the between class Hamming distance is half the output size. In this case, half

the bits between the two responses are different. Since we consider 128-bit outputs,

the ideal inter Hamming distance in our case is 64.

HDinter =
1(
m
2

) m−1∑
i=1

m∑
j=i+1

HD(Ri, Rj) (3.2)

To study uniqueness, we consider two different variants of between class Hamming

distance in our analysis. In the first case, we analyze the Hamming distance between

the outputs from two different randomly selected 128 bit PUFs. Comparisons of

two different PUFs from the same chip and on different chips were performed at

14

random. Over 10,000 comparisons, the mean distance obtained was 63.60. This value

is close to the expected ideal value of 64. The second case of between class Hamming

distances were confined to only compare PUF pairings that occupy the same locations

on different chips. This case could show a reduced Hamming distance if PUF output

values were significantly influenced by deterministic bias instead of device-specific

process variations. A mean Hamming distance of 61.22 was obtained, indicating that

the implemented PUFs produce highly unique outputs even when positioned at the

same location on different chips.

3.4.2 Reliability

For any PUF circuit, it is of importance that the responses in each chip are within

an acceptable error limit. Reliability refers to the repeatability of PUF outputs

over time. This property is measured as the Hamming distance between several

responses for the same device and location. The intra Hamming distance or within

class Hamming distance over k trials and j responses is defined in Equation 3.3 from

[6]. Our results are based on a total of 10000 trials and 1000 responses.

HDintra(i) =
1

k − 1

j∑
l=2

HD(Ri1, Ril) (3.3)

The ideal value of the within class Hamming distance is 0, however, slightly larger

values are acceptable and error values can be rectified with the help of error correcting

schemes. In our experiments, within class Hamming distance values were generated

using two randomly selected output trials from the same 128-bit PUF. Over 10,000

within class comparisons with randomly selected PUFs trials and chips, an average

distance of 5.59 was observed.

3.4.3 Constant Switching

In the previous experiments to validate the strength of the PUF design, no switch-

ing activity was considered in the evaluation. However, in a real application, the area

15

around the PUF might undergo constant switching. This can adversely affect the

properties mentioned above. In order to verify the uniqueness and reliability of our

design, we try to mimic this switching of real scenarios by placing toggle flip flops in

the same CLB as the PUF. Specifically, a total of 5 toggle flip flops have been placed

around each PUF in order to study the behavior of the PUF.

Figure 3.4: PUF design surrounded by Toggle Flip Flops

Figure 3.4 depicts our visualization of the switching around the design. We can

see that our approach implements toggle flip flops in the LUTs above and below the

shift registers of the PUF. Based on our analysis, the within class Hamming distance

remained similar and we obtained an average distance of 5.29 over 10,000 comparisons.

Similar experiments to compute the between class Hamming distance were performed

on the same boards used in our previous analysis. The average between class hamming

distance spanning over all locations across all chips over 10,000 comparisons was seen

to be 62. This again is close to the ideal value of 64. On the other hand, the average

16

between class Hamming distance across the same locations between different chips

over the same number of comparisons was around 58.63. By this analysis, we can

conclude that the PUF produces a very unique and reliable output even in a practical

scenario where switching takes place. It shows that the PUF design is not affected

by other parts of the design which can be implemented alongside the PUF.

3.5 Results and Analysis

Figure 3.5: Between class Hamming distances for two different 128 bit PUFs

The between class Hamming distance obtained by comparing two randomly se-

lected 128 bit PUFs from random chips and randomly selected output trials over

10,000 iterations is shown in Figure 3.5. The same analysis with the presence of

toggle flip flops is shown in Figure 3.6.

17

Figure 3.6: Between class Hamming distances for two different 128 bit PUFs with
surrounding flip flops

Figure 3.7: Between class Hamming distances for 128 bit PUFs that occupy the
same locations

18

Figure 3.8: Between class Hamming distances for 128 bit PUFs that occupy the
same locations with surrounding toggle flip flops

The between class Hamming distance obtained by comparing two 128 bit PUFs

in the same locations from random chips and randomly selected output trials over

10,000 iterations is shown in Figure 3.7 while the result with constant switching is

shown in Figure 3.8.

19

Figure 3.9: Within class Hamming distances between the same 128 bit PUF
instances

Figure 3.10: Within class Hamming distances between the same 128 bit PUF
instances with surrounding toggle flops

The within class Hamming distance which compares the measurements from the

same 128 bit PUF instance over time is shown in Figure 3.9 and Figure 3.10 which

shows the results based on the design including switching around the PUFs. From

20

the experimental results, we can conclude that the PUF produces a unique output

with almost 50 percent of the PUF bits being different. A low within class Hamming

distance supports the reliability of the PUFs. Table 3.1 tabulates the results that we

have obtained for the Hamming distances with the PUFs standalone as well as the

PUF design with the toggle flip flops.

Table 3.1: Mean Within Class Hamming Distance & Between Class Hamming Dis-
tance obtained with standalone PUFs vs PUFs with Toggle Flip Flops

Design Within Class Hamming Distance

Between
Class
Hamming
Distance
(all
locations)

Between Class
Hamming
Distance (same
locations)

PUF 5.59 63.60 61.22
PUF with
Toggle
Flip Flops

5.29 62 58.63

21

CHAPTER 4

SYSTEM DESIGN

In this research, we propose the idea of per-device placement of PUFs. In this

chapter, we provide evidence to support our approach by calculating the reliability

of the PUFs on all the locations of a chip and observing the spatial correlation of the

unreliable PUFs with respect to other chips. This chapter gives a detailed description

about the error correcting codes used in our work along with a full system design to

generate a key by utilizing encryption cores along with process variation dependent

bits generated by the PUF corrected by error correcting codes.

4.1 Device Specific Location of Unreliable PUF Instances

The work in Chapter 3 quantified the uniqueness and reliability of our implemen-

tation of the Anderson PUF. In this section, we quantify key generation using the

bit error rate (BER) metric which signifies the probability that a PUF will produce

an incorrect output. We observe the BER of every PUF instantiated on the chip to

select the most reliable PUFs or the PUFs with the lowest BER values. PUF selection

based on BER directly relates to the size of the required error correcting code. This

metric is related to hardware cost.

A PUF bit placed in a specific location produces an error when its output differs

from what is expected. The BER of a location is the percentage of computation trials

where a location produced an error. Figure 4.1 for a single chip shows the BER of

2,080 PUF instances according to their locations. These values were obtained using

the bits produced by each location for 1,000 trials. Darker areas on the heat map

22

(a) Heatmap of Chip 1 (b) Heatmap of Chip 2

(c) Heatmap of Chip 3 (d) Heatmap of Chip 4

Figure 4.1: Figure shows the BER of PUF instances placed at different locations on each
chip

correspond to higher BER (a more unreliable location) while lighter areas correspond

to higher reliability. The lack of a clear pattern in the figure gives an indication that

the unreliable PUFs are likely to be random.

Following the approach used to obtain the within class Hamming distance in the

previous chapter, the BER can be obtained by dividing the number of incorrect output

trials with the total number of trials. In Figure 4.2, the Y-axis denotes the percentage

of the BERs of the PUFs while the X-axis denotes the number of most reliable PUFs

out of 2,080 total PUF instances. From the figure we can observe that by using the

23

most reliable PUFs, we are faced with a smaller BER and hence fewer errors need to

be corrected. This decreases the size of the error correcting code needed and results

in substantial area savings.

Figure 4.2: Percentage of BERs achieved by selecting the best PUF locations

Our approach of a per-device placement of PUFs considers the lack of spatial

correlation of PUFs placed in the same location across devices. Figure 4.3 shows the

BER correlation for a single pairing of chips. Each point on the plot represents one

of the 2,080 possible PUF instances and its X and Y coordinates indicate its BER

when instantiated on chips on two different boards. Correlated BERs would produce

a majority of points along the diagonal which is not the situation in our case. More

formally, the correlation of per-location BERs among all the pairs of chips is analyzed

using the Pearson coefficient.

24

Figure 4.3: Respective BERs of same location PUFs on two different chips

rx,y =

∑2080
i=1 (xi − x)(yi − y)√∑2080

i=1 (xi − x)2
√∑2080

i=1 (yi − y)2
(4.1)

4.1.1 Pearson Coefficient

For two chips x and y, the Pearson Coefficient rx,y[25] is computed using Equation

4.1. Here, xi represents the BER of PUF location i on chip x and x represents the

mean BER of chip x. A value close to 0 indicates that the BERs across the chips

are uncorrelated. We observed that the Pearson coefficients for all six pairings of the

four chips fall between -0.035 and 0.040. This result indicates that the locations of

unreliable PUF instances are largely unique to each chip.

4.1.2 Spatial Autocorrelation of PUF Location BERs

While the previous subsection has showed that unreliable PUF locations are un-

correlated across chips, it is important to also consider whether they are correlated

25

spatially within each chip, as spatial correlation could imply a common cause for

unreliability, instead of random per-device variations. The heatmap of Figure 4.1

shows, for a single chip, the reliability of 2,080 PUF instances according to their loca-

tions. Informally, the lack of a clear pattern in this figure gives some visual indication

that the unreliable PUFs are likely to be random and chip-specific. To formalize the

apparent lack of spatial correlation in Figure 4.1, we use Moran’s I as a metric to

quantify the spatial autocorrelation in the BER of PUF instances. For any single chip

instance, Moran’s I is computed using Equation 4.3, where Bi and B̄ are the BER

of PUF instance i and the mean BER of the chip respectively. Computing Moran’s

I requires a spatial weight wij to indicate which PUF locations should be considered

local to each other. For PUF locations i and j, we compute the weight wij as shown

in Equation 4.2, where ri and ci are row and column indices of the ith PUF loca-

tion. Restating this, the weight is set to 1 if the Euclidean distance between the row

and column indices of two PUF locations is less than 10. Moran’s I can take values

between -1 and 1, where 1 indicates high spatial autocorrelation, and 0 indicates no

spatial autocorrelation. The range of values of I obtained on any of the 4 chips is

in between 0.013 and 0.017, indicating that the unreliable PUFs do not tend to be

highly clustered.

wij =


1 if

√
(ri − rj)2 + (ci − cj)2 < 10

0 otherwise

(4.2)

I =
N∑

i

∑
j wij

∑
i

∑
j wij(Bi − B̄)(Bj − B̄)∑

i(Bi − B̄)2
(4.3)

4.2 Error Correction

In this section, we explain the importance of error correction codes and their use

with PUF-based keys. The process of key enrollment and generation with the help

26

of error correction codes is described along with a detailed analysis of system area is

affected by unreliable PUFs.

4.2.1 PUF Based Keys

The generation of cryptographic keys from PUFs should be repeatable over time.

The bits generated by a PUF are generally noisy and cannot be used directly as keys

without error correction. Fuzzy extractors [5][13] derive reliable key values from noisy

data. When a key is first derived from a PUF, the fuzzy extractor generates helper

data to facilitate generation of the same key at a later time. When the key is later

generated in the field, the helper data and the PUF are used to derive the key. The

generated key matches the enrolled key as long as the PUF values used at enrollment

are within a configurable Hamming distance of each other. The reliability of the key

stems from the fuzzy extractor’s use of error correcting codes. The security of the

key relies on an adversary’s inability to guess the PUF output. We use a code-offset

fuzzy extractor [5] construction with BCH codes for error correction in this work. In

BCH codes, each code is described by a tuple (n,k,t); parameter n is the block size,

parameter k is the number of information bits, and parameter t is the number of

correctable errors.

In Figure 4.4, k bits are enrolled using n PUF instances. A larger key is generated

by splitting up the key into k-bit blocks and using a series of n PUF instances to

enroll and generate each key block. The key enrollment is a one time process. During

key enrollment, the ith key segment is chosen as a k-bit string Xi and encoded into a

n-bit BCH codeword C(Xi): Xi can be decoded from any n-bit string that is within

Hamming distance t of coded word C(X i). The codeword is offset using XOR with

an n-bit PUF output Wi and the result is stored as helper data Hi.

During key generation, from Figure 4.5, the helper data Hi is offset by the PUF

output observation that may slightly differ from the Wi used during enrollment. This

27

Figure 4.4: One time key enrollment

produces a corrupted codeword that is the original codeword C(Xi) offset by a value.

The corrupted codeword can be decoded to generate the enrolled value Xi as long as

the corrupted value is within Hamming distance t. In other words, the key bits Xi

are generated correctly if the difference between the PUF values used at enrollment

and generation does not exceed the maximum number of errors that can be corrected

by the BCH code used.

4.2.2 Cost versus Bit Error Rate

The costs associated with error correction are the number of PUF instances and

the complexity of the BCH decoder used to correct the errors. These costs increase

sharply with the bit error rate of the PUFs. The former cost translates to area while

the latter cost is incurred in power and either area or latency. For a given block size

(n), there is a tradeoff between the number of information bits encoded (k), and the

number of correctable errors (t). For example, for a 127-bit block size, there can

be two different codes used. One could correct five errors and carry 92 information

bits while another could carry only 36 information bits but correct up to 15 errors.

28

Figure 4.5: Key generation

So, a 256-bit key generated from the above two codes would require 3 and 8 blocks

respectively.

In our analysis, we denote the bit error rate as pbit and the probability of incorrectly

decoding a block as pblock. The latter is computed using Equation 4.4 which shows

the probability of finding more than t erroneous bits among n codeword bits when

the bit error rate is pbit. The probability of incorrectly generating the 256-bit key is

denoted by pkey and denoted by Equation 4.5.

pblock =
n∑

i=t+1

 n

i

 pibit(1− pbit)n−i (4.4)

pkey = 1− (1− pblock)[256/k] (4.5)

Table 4.1 shows the number of PUF instances and code blocks required to generate

a 256-bit key using various 127-bit BCH codes. We can see that a code capable of

correcting more errors requires a larger number of code blocks and associated PUF

29

Table 4.1: Number of PUF instances and code blocks to produce a 256 bit key from
127-bit block size BCH codes

BCH Code PUF instances and Code p {bit}
n k t helper data size Blocks

127 113 2 381 3 0.0001
127 106 3 381 3 0.0004
127 99 4 381 3 0.0010
127 92 5 381 3 0.0020
127 85 6 508 4 0.0032
127 78 7 508 4 0.0048
127 71 9 508 4 0.0088
127 64 10 508 4 0.0112
127 57 11 635 5 0.0135
127 50 13 762 6 0.0190
127 43 14 762 6 0.0221
127 36 15 1016 8 0.0248
127 29 21 1143 9 0.0466
127 22 23 1524 12 0.0541
127 15 27 2286 18 0.0703
127 8 31 4064 32 0.0870

instances, but tolerates a higher BER. For example, a reduction of BER from 0.06 to

0.03 can reduce the number of code blocks from 18 to 9, and reduce the number of

PUFs required from 2,286 to 1,143.

4.3 Implementation

Our complete system implements several encryption schemes using PUF-based

keys1. We implemented authenticated encryption using AES in Galois Counter Mode

for 256-bit and 128-bit keys and DES in Electronic Code Book mode. The three

primary components of the system are the PUF instances, the BCH decoder for

error correction and the encryption blocks. Publicly available Verilog code is used to

implement the BCH decoder [4], and the encryption blocks [1][11].

1Some of the results in this subsection were generated by Mr. Naveen Dumpala.

30

4.3.1 Per Device Placement

To determine the benefits of placing PUFs in low-cost positions, we consider two

cases. For variation-aware PUF placement, per-chip PUF behavior is characterized

and low-cost PUFs are used. In variation-agnostic PUF placement, PUF locations

are randomly selected. In this section, we compare the costs of variation-aware per-

device placement approach to variation-agnostic placement. In variation-agnostic

placement, the PUFs are placed arbitrarily by the tool and the same placement is

used for all chips. This approach is the typical use case for designers today.

To determine PUF locations where maximum reliability can be achieved, the BER

of each PUF for every chip location was computed. Assuming the BER to be 0.010

for half the PUFs for a 256-bit key requires an n = 127, k = 64, t = 10 BCH code and

four code blocks. With four code blocks, a total of 508 PUF instances are required.

We constrain the tool to use the 508 lowest BER PUF instances on the chip.

In variation agnostic placement, we assume the mean BER of the PUFs to be

0.042 based on an analysis of our results. The generation of a 256-bit key requires a

more robust BCH code and a larger number of PUFs. For this BER, an n = 127, k

= 29, t = 21 BCH code is needed, with 9 code blocks used. Relative to variation-

aware placement, this represents a 125% increase in the number of PUFs and helper

data bits, and a 78% increase in the size of the BCH decoder to implement the more

complex code.

The system architecture is shown in Figure 4.6. The helper data is stored in the

block RAM and transferred into a 127-bit register sequentially in 4-bit words. In

variation aware placement, the BCH decoder operates on a 127-bit block and corrects

the errors in the lower 64 bits to produce 64 bits of key. Operating on four blocks in

sequence produces the entire 256-bit key from 508 bits of helper data and 508 PUF

outputs.

31

ctrl

+
[507:0]

Block
RAM AES-GCMkey

auth
data

BCH
Decode

auth
tag

plain-
text

cipher-
text

How wide is the port to BRAM? Show this as individual blocks?

block

block

key
block

helper
data

Key
register

[63:0]
[127:64]
[191:128]
[255:192]

PUF registers

[126:0]

[507:381]

[253:127]
[380:254]

HD Register

[3:0]
[7:4]

[126:124]

…

{block,nibble}
nibble

Figure 4.6: Implemented system of AES-GCM authenticated encryption using PUF
based key generation. The specific configuration shown uses a BCH code with n =
127, k = 64 and t = 10. Four code blocks are used to generate an overall 256-bit key.
Each code block generates 64 key bits from 127 bits of helper data and the outputs
of 127 PUF instances; a total of 508 PUF instances and 508 bits of helper data are
used to generate the 256-bit AES key. The 127-bit blocks of helper data are loaded
from block RAM in 4-bit words.

Variation agnostic placement extracts only 29 bits of key from each block requiring

a total of nine blocks. From Table 4.2 we can see that the variation aware placement

scheme uses fewer LUTs for the PUFs and the error correcting code hardware.

Table 4.3 provides information about the number of blocks needed for variation-

aware placement when compared to the variation agnostic scheme for the three types

of encryption cores.

4.4 Key Generation

Based on the results of Section 4.3, we can confidently claim the benefits of our

approach. By analyzing the chip for reliable locations and thereby constraining the

PUFs to specific locations to achieve optimum reliability, substantial area savings

32

Table 4.2: Breakdown of LUT counts by function

PUF BCH Core Total
Variation Agnostic AES 256 2569 2219 6312 11100
Variation Aware AES 256 1143 1249 6308 8700

Variation Agnostic AES 128 1397 2160 4771 8328
Variation Aware AES 128 508 1292 4770 6570

Variation Agnostic DES 56 889 2055 250 3194
Variation Aware DES 56 254 1082 292 1628

Table 4.3: Comparison of the number of blocks required to generate respective sized
keys

Variation-agnostic Variation-aware
PUF BER used in analysis 0.034 0.010

BCH code parameters (n,k,t) (127,29,21) (127,64,10)
Code blocks for AES 256-bit key 9 4
Code blocks for AES 128-bit key 5 2
Code blocks for DES 56-bit key 2 1

can be gained as per Table 4.2. In this section, we analyze the key obtained by using

these most reliable locations for PUFs.

The results obtained for the variation aware and variation agnostic schemes depend

on the BCH code that has been used. The size of the BCH code is determined by the

BERs of the PUFs that are being used in the design. For our analysis, an average

BER of all the PUFs has been taken into consideration to determine the size of

the BCH code needed. Chapter 5 provides a detailed explanation on the drawbacks

of this single parameter based BER and introduces a new model to decide on the

number of errors that need to be corrected in a block. Our underlying assumption of

having an equal number of 1s and 0s in a block of PUFs holds firm until the point of

selection of the most reliable PUFs. On selecting the most reliable PUFs on a chip

i.e the locations which flip the least from their most frequently produced outputs, we

observed that a large number of these locations produce a 1.

33

Figure 4.7: Number of ones in a trial of 2,048 PUFs

To understand this PUF behavior, an understanding of the nature of the output

bits of each PUF on every trial is required. Figure 4.7 illustrates the bits produced

by the PUFs. Every point in the figure relates to the total Hamming weight of all

the PUFs in a trial on the y-axis and the trial number on the x-axis. By observation,

we can see a high number of PUFs flipping on every trial, leading to a large number

of spikes. The direction of the spikes provides evidence that a number of PUFs flip

from a 0 to a 1.

Due to the 0 producing PUFs flipping to a 1, the BER of these PUFs increases

while that of the 1 producing PUFs remains low. Hence our approach of generating

a key by selecting the most reliable PUFs based on the BER of the PUFs leads to

the selection of a large number of 1s.

To observe if the locations that exhibit this behavior are localized or similar on

multiple trials, the most frequently flipping locations must be identified. Figure 4.8

34

represents the locations of the PUFs which typically produce a 0 but flip to a 1

on occasion. The four plots in the figure are from the four trials that exhibit the

highest number of flips. A point on each plot indicates if a location has flipped or

not. Colored points represent the locations that have flipped in the particular trial.

The lack of a clear pattern or common locations on the four plots indicates that there

are no specific locations or areas on the chip that indicate a concentration of PUFs

that flip to a 1.

To understand this PUF behavior, we varyied the clock frequency and time interval

parameters of our design to calculate the Hamming weights of every trial during

experimentation. By varying the clock frequency of our design and changing the

time interval between successive trials, variations in PUF behavior can be observed.

Sections 4.4.1 and 4.4.2 provides details about these experiments and the results

observed.

4.4.1 Analysis of PUF outputs at different frequencies

Clock frequency can be considered in evaluating our PUFs. Our PUFs contain

two shift registers which output their data based on a clock signal. Clock skew may

affect PUF behavior. To understand the clock behavior of our PUFs, the input clock

frequency was varied. Ideally, PUF outcomes should remain consistent across input

clock frequency. To achieve a comprehensive data set, we ran our design at three

different clock frequencies: 10 MHz, 50 MHz and 100 MHz. The results for each

of the frequencies are shown in Figure 4.9. By observation we can state that the

outputs of the PUFs over the 1000 trials remain approximately constant. Hence,

PUF behavior is not affected by the input clock frequency.

35

Figure 4.8: Locations of the PUFs flipping to a 1

4.4.2 Analysis of PUF outputs over increasing time intervals between

successive trials

Our analysis thus far has involved computing the outputs of 2,080 PUFs over

1,000 trials. Every trial involves a reprogramming of the FPGA with a time interval

of 200 milliseconds between successive trials. To eliminate the possibility of this

time interval as the cause of errors, we increased the interval to 600 milliseconds.

Figure 4.10 depicts the Hamming weight of the PUFs in a trial. Similar to the results

observed in Section 4.4.1, the change in time interval between trials does not affect

the PUF outcomes.

36

(a) 100 MHz (b) 50 MHz

(c) 10 MHz

Figure 4.9: Hamming weights at varying clock frequencies

Based on the results in Section 4.4.1 and 4.4.2, we can observe that the PUFs

produce approximately the same number of spikes. Additionally, Figures 4.10 and

4.9 indicate a reduced number of spikes when compared to those obtained in Figure

4.7. On inspection, it was found that the results from the two sections were produced

using PUF statistics generated by Xilinx Vivado version 2016.2 while the results

in Figure 4.7 were produced using Xilinx Vivado version 2015.3. At this time, no

specific reason has been identified for the differences across Vivado versions. The

routing differences generated by the two versions likely are the cause, although this

remains to be confirmed.

37

Figure 4.10: Number of ones in a trial with an extended time delay between trials of
600 ms

38

CHAPTER 5

TWO PARAMETER MODEL FOR ERROR
CORRECTION

The security benefits of PUF usage are accompanied by post processing. In ad-

dition to reliability and uniqueness, efficiency also plays are important part in PUF

based system. To understand the PUF behavior in terms of reliability, an accurate

model that closely fits the statistics of a PUF is required to better predict the num-

ber of errors to be corrected [15]. This chapter primarily focuses on predicting an

accurate BCH code depending on our PUF behavior using a more robust model as in

[15].

5.1 Fixed Error Rate

The commonly used PUF reliability model used in previous sections considers a

fixed error rate. In this approach, the response bit of each PUF is assumed to be

equally prone to errors. Hence the approach suggests computing the average BER of

all PUFs used in the application to determine the BCH code size. A comment on such

an approach in [15] is: ’Many details are lost by reducing the reliability behavior to

a single average-case parameter’. Specifically, there is a possibility that the average

PUF BER increases due to a small number of highly unreliable PUFs or decreases

due to a small number of highly reliable PUFs. The limitations of such an approach

is that it does not take into account the randomness of the enrollment value (i.e. the

value of the PUF taken for comparison) to determine if the PUF output is correct or

not. Additionally, by considering all the PUFs to be equally prone to errors, it does

39

not take into account the exact behavior of each PUF. Hence, such an approach does

not accurately predict the number of errors that need correction. This observation

motivates the use of another model to predict the strength of the required BCH code

required by considering actual PUF behavior.

5.1.1 Two Parameter Model

To obtain a better estimate of the number of errors to be corrected in a block

of PUFs and hence utilize a more realistic BCH code for our PUFs, we refer to the

model implemented by [15]. This model considers the error variation of each PUF

and assumes that every PUF has its own error probability.

The behavior of an evaluation j of a PUF i as described in [15] is defined by the

following variables.

1. The one probability (pi): The probability of a cell i returning a ’1’ during a

random evaluation.

2. The error probability (pe,i): The probability of a PUF to produce an output

different from an earlier recorded output during enrollment.

PUF behavior is determined by the physical processes involved in making the

circuit. The two factors that dominate the output of a PUF are as follows:

1. The process variable (mi): This factor determines the effect of process variations

on a PUF outcome which is imparted during manufacturing. It is sampled once

upon device creation [15].

2. The noise variable (nj
i): This factor determines the effect of random noise on

the outcome of a PUF during evaluation. The noise variable is sampled at every

evaluation.

40

5.1.2 Fitting the Distribution

Equation 5.1 [16] can be used to represent PUF statistics. Here, λ1 = σN and

λ2 = (t−µM)/σM where µM & σM represent the mean and standard deviation of the

process variable, µN & σN represent the mean and standard deviation of the noise

variable, while t represents a threshold value. If the combined effect of the process

and noise variables is above this threshold, it cause a PUF to produce an incorrect

output. Non-linear optimization is performed over (λ1, λ2) to minimize the mean

square error of Equation 5.2 using the Levenberg-Marquardt algorithm. Here F (x)

represents the empirical probability of a PUF producing a 1 on x fraction of trials.

Keeping in mind that our PUF produces unknown spikes in random evaluations, the

algorithm produces an accurate fit at λ1 = 0.0801 and λ2 = −0.0346. Figure 5.1

shows that the model yields a close fit to the PUF statistics.

cdfp(x) = φ(λ1φ
−1(x) + λ2) (5.1)

cdfp(x)− F (x) (5.2)

By using the values of λ1 and λ2 in Equation 5.1, a one probability distribution

can be obtained.

pdfpe(x) = λ1(1− x)
ϕ(λ1φ

−1 + λ2) + ϕ(λ1φ
−1(x)− λ2

ϕ(φ−1(x))
(5.3)

Equation 5.3 from [15] gives the probability distribution function of the error

probabilities where ϕ(x) and φ−1(x) refer to the probability density function of a

normal distribution and the inverse of the cumulative distribution function of a normal

distribution. For our analysis, we sampled 1000 points of this distribution by varying

x from 0 to 0.999 in steps of 0.001.

41

Figure 5.1: Good fit of the PUF statistics obtained using λ1 = 0.0801 and
λ2 = −0.0346

5.1.3 Key Failure Rate

Key generation fails if the number of errors observed in a block of PUF bits

exceeds the error correcting capability t of the BCH code. The block failure rate pfail

is the failure probability. With the fixed error model, each PUF is equally prone to

error and hence the number of errors in an n-bit response is binomially distributed.

In the new model with random error-probabilities, the number of errors is Poisson-

binomially distributed [15]. The Poisson binomial distribution, FPB(t; pne), can be

calculated using Equation 5.5 [15] where t refers to the number of errors that can

be corrected by the BCH code, n refers to the block size and pne refers to the error

probabilities of n PUFs.

pfail(p
n
e) = 1− FPB(t; pne) (5.4)

42

FPB(t; pne) =
t+ 1

n+ 1
+

1

n+ 1

n∑
i=1

1− C−i(t+1)

1− C−i

n∏
k=1

(pe,kC
i + (1− pe,k)) (5.5)

C = e
j2π
n+1 (5.6)

For our analysis, a block size of 127 bits is chosen. To compute the block failure

rate, a random sample of 127 points of pe from the distribution described by Equation

5.3 is chosen. By using this computed value, the failure rate of the block is generated

using Equation 5.4. This procedure is performed 1,000 times to obtain the distribution

of the block failure rate.

We performed the above steps for the variation agnostic, multiplexer selection

(described in Chapter 6) and variation aware placement schemes using the following

selection approaches:

1. Variation Agnostic: Random sampling of blocks of size 127

2. Multiplexer selection: Pairwise selection of 127 points from blocks of size 254:

In this approach, 254 points of pe are sampled instead of 127. The 127 points

from these points are obtained by selecting, from every pair, the point with a

lower value of pe.

3. Variation Aware: Global optimum selection of 127 points from blocks of size

254: Similar to the previous approach, a total of 254 points are sampled from

pe. By sorting the points based on their values, the lower 127 points are using

in this approach.

Our goal is to obtain a key failure rate of lower than 1e−6 on at least 99% of the

keys. Since keys are made up of multiple blocks, it is essential to look at individual

blocks. Figure 5.2 gives information about the block failure distribution for the vari-

ation agnostic approach. In this plot, the block failure distribution for BCH codes

capable of correcting 23, 27 and 31 errors can be observed.

43

Figure 5.2: Block failure distribution for variation agnostic selection

Figure 5.3 provides information about the block failure distribution for the multiplexer-

selection scheme for BCH codes capable of correcting 23, 27 and 31 errors.

Figure 5.4 shows the failure rate distribution of a block for the optimum approach.

In this approach, the optimum 127 from a random sample of 254 points are selected.

The figure indicates a BCH code able to correct just 23 errors is needed for the

optimum approach compared to 31 for the agnostic and 27 for the multiplexer scheme.

This reduction would save area for the BCH error correction hardware.

As previously stated, the key failure rate is dependent on the blocks that make

up a key. For example, to generate a total of 128 information bits, the BCH code

requirements of each scheme would require a total of 16, 9 and 6 blocks, respectively,

based on the BCH codes obtained above. Since keys are made of multiple blocks, the

failure rate of each block needs to be considered to generate a key failure rate that

meets our requirements. Equation 5.7 shows pkeyfail, the probability of a key failure.

Here pfail refers to the probability a block can observe more errors than it can correct

which can be computed using Equation 5.4. This probability needs to be taken into

account to predict the key failure rate and the strength of the BCH code.

44

Figure 5.3: Block failure distribution for multiplexer selection approach using 2:1
selection

pkeyfail = 1−
n∏

i=1

1− pi,fail (5.7)

Figures 5.5, 5.6 and 5.7 illustrate the key failure distribution of each of the three

schemes. The variation aware and multiplexer selection schemes need BCH codes of

(127,22,23) and (127,15,27), respectively, to meet the requirements. The variation

agnostic approach would require a stronger code than the one considered to compute

the block failure distribution. A stronger code can be used in the future by allowing

a larger block size to be considered. By using a BCH code capable of correcting 31

errors for the variation agnostic scheme, only 1% of the PUFs have a failure rate lower

than 1e−6.

The process flow of generating the key failure rate distribution using the 2 param-

eter model is shown in Figure 5.8. It provides a high level view of the steps involved

in obtaining the key failure for a particular BCH code.

45

Figure 5.4: Block failure distribution for variation aware selection

Figure 5.5: Key failure distribution for variation aware selection

46

Figure 5.6: Key failure distribution for multiplexer selection

Figure 5.7: Key failure distribution for variation agnostic selection

47

Generating val-
ues for model

Compute the distribu-
tion Error probabilities

pe using Eq. 5.3

Sample the error
probabilities of PUFs

Compute the block fail-
ure rate pfail for a given
BCH code using Eq. 5.4

Repeat for
multiple
blocks

Repeat for
multiple
keys

Compute the key failure
rate using Equation 5.7

End

λ1, λ2 using Eq. 5.2

Error probability distribution using Eq. 5.3

Block failure rate

Distribution of key failure rate

Figure 5.8: Process flow to generate the key failure distribution using a chosen BCH
code and fitted parameters λ1 and λ2

48

CHAPTER 6

PUF SELECTION USING MULTIPLEXERS

In Chapter 4, it was shown that variation aware placement reduces area con-

sumption by 21% for AES cores and about 50% for DES cores compared to variation

agnostic placement. In the former case, PUFs are constrained to locations which

are highly reliable. In the latter case PUF locations are randomly selected without

considering their reliability. The reliability difference impacts BCH code hardware

size. Although variation aware placement is effective, it requires an FPGA to be

recompiled for every chip.

In this chapter, we propose a new placement method which strikes a balance

between the two schemes discussed so far, while eliminating the need for per-device

recompilation.

6.1 Multiplexer Selection

Variation-aware placement requires the following steps

1. An FPGA design is created such that PUFs are placed at all locations on the

chip.

2. The outputs generated by the PUFs are evaluated to get an estimate of relia-

bility.

3. The FPGA design is recompiled to only include PUFs in locations which demon-

strate high reliability along with other design logic.

49

Figure 6.1: Multiplexer selection of the PUFs

The third step above requires FPGA design resynthesis for every chip. Since

companies often ship thousands of copies of the same product, each holding the

FPGA design, such recompilation may not be practical since our designs required

about 20 minutes to fully compile. Note that the variation agnostic approach does

not have this issue. The PUFs can be located at the same locations on every chip.

To overcome the drawbacks of the variation aware scheme but allow for rapid per-

device PUF selection after place-and-route, we propose an alternative scheme. Figure

6.1 depicts the multiplexer selection approach. Each pair of PUFs has an associated

multiplexer. This multiplexer selects the PUF with the lower BER among the pair.

The selection bits on the multiplexers can be selected on a per-FPGA basis without

the need to recompile the device. In our experimentation, the Zynq processor on a

Xilinx ZedBoard is used to configure the multiplexers after the FPGA configuration

is loaded. The select lines of the multiplexers are driven from writable registers inside

the FPGA that are accessed by the Zynq. Consider the generation of 128 information

50

bits from a BCH code of (127,64,10) just for illustrative purpose. To generate 128

bits, the number of standalone PUFs with this BCH code would be 254 (two blocks).

Since in this approach one PUF is selected from a pair of PUFs, a total of 508 PUFs

are needed to generate the required number of information bits. The steps of this

scheme are as follows:

1. 508 PUFs are placed on the chip. The locations of the PUFs are determined by

the FPGA place and route tool.

2. The outputs of these 508 PUFs are analyzed to determine which PUF among

the pair has lower BER.

3. The FPGA is now programmed with the user design which includes design logic,

the 508 PUFs, and the select logic.

4. The values of the multiplexer select lines in the loaded design are written to

on-chip registers to select 254 PUFs. A serial port and Xilinx SDK is used.

The selected 254 PUFs provide reliability which is between the variation agnostic

and variation aware cases.

6.2 Results

6.2.1 Fixed Error Rate

The results obtained in this section assume a fixed error rate model, i.e single

parameter of average BER. The BER values of the PUF with different sizes of mul-

tiplexers are shown in Figure 6.2. This figure considers all the PUFs on the chip.

The figure also indicates the average BER of variation agnostic selection, i.e using

all the PUFs on the chip. For the variation agnostic approach where no selection is

done, the BER is 0.042. By using multiplexers, the BER associated with the PUFs is

reduced. A 2-to-1 multiplexer selects one PUF out of two and the associated BER of

51

Figure 6.2: Effect of MUX size on the BER. Selection is taking place across 2,080
total available PUFs

the selected PUFs is 0.006. Lower BERs are observed by increasing the multiplexer

size to 4-to-1 where one out of four PUFs is selected. A better BER value compared

to the agnostic placement can be achieved which leads to a smaller BCH code and

lower area utilization.

There is a drawback of the selection scheme. Figure 6.3 indicates the total number

of usable PUFs obtained with the multiplexer selection scheme. It provides informa-

tion on the number of PUFs available using different sized multiplexers. With a total

of 2080 PUFs on a chip, a 2-to-1 multiplexer scheme would provide a total of 1040

usable PUFs. Similarly, a 4-to-1 will provide a total of 520 usable PUFs out of 2080

PUFs. Hence, by using the approach, the total number of usable PUFs decreases. By

increasing the size of the multiplexer, a BER reduction of the selected PUFs is also

observed.

52

Figure 6.3: Effect of MUX size on number of PUFs. Selection is taking place across
2,080 total available PUFs

6.2.2 Two parameter model

In Chapter 5, a more accurate model to predict the number of errors that need

to be corrected based on our PUF statistics than averaging was developed. Section

5.1.3 gives us the BCH code to be used with a 2-to-1 multiplexer scheme to meet

our criterion of 1e−6. Using the BCH codes obtained from Section 5.1.3, Table 6.1

lists the area utilization of our system in terms of the PUFs, error correcting codes

(BCH) and a DES 56 core for variation agnostic, variation aware, and 2:1 multiplexer

selection. The table shows that the size of the BCH code is reduced from a variation

agnostic approach.

53

Table 6.1: Area utilization (in LUTs) of variation aware, variation agnostic, and
multiplexer select approaches

Configuration PUF BCH DES 56 Total Failure Rate
Variation
Agnostic
(127,8,31)

2,286 2,902 251 5,439 99% <1e−2

2:1
Configuration
(127,15,27)

2,520 + 690 (MUXes) 2,555 249 5,994 99%<1e−6

Variation Aware
(127,22,23)

889 2,235 249 3,373 99% <1e−6

54

CHAPTER 7

CONCLUSION

Our work examines PUF placement in FPGAs based on PUF reliability (variation-

aware placement). Our results are compared with random PUF placement (variation

agnostic placement). We also examine a PUF selection approach which allows for

post-configuration selection of PUFs. Although this latter approach reduces BCH

error correcting hardware, the overhead of the PUFs and selection logic is significant.

We have implemented three cryptosystems using different PUF-based key sizes and

have demonstrated that our variation-aware approach can save between 21% and 49%

of area in these systems compared to a variation-agnostic approach.

Future work could consider improving the multiplexer scheme by using bit masking

of PUFs. New approaches to PUF implementation in FPGAs could also be considered.

55

BIBLIOGRAPHY

[1] Basic DES crypto core. http://opencores.org/project,basicdes, 2010.

[2] Anderson, Jason H. A PUF design for secure fpga-based embedded systems. In
Proceedings of the 2010 Asia and South Pacific Design Automation Conference
(2010), IEEE Press, pp. 1–6.

[3] Cherkaoui, Abdelkarim, Bossuet, Lilian, and Marchand, Cédric. Design, evalua-
tion and optimization of physical unclonable functions based on transient effect
ring oscillators. Tech. rep., Cryptology ePrint Archive, Report 2015/623, 2015.

[4] Dill, Russ. bch verilog. https://github.com/russdill/bch_verilog, 2014.

[5] Dodis, Yevgeniy, Reyzin, Leonid, and Smith, Adam. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. In Advances in
cryptology-Eurocrypt 2004 (2004), Springer, pp. 523–540.

[6] Feiten, Linus, Spilla, Andreas, Sauer, Matthias, Schubert, Tobias, and Becker,
Bernd. Analysis of ring oscillator PUFs on 60nm FPGAs. European cooperation
in science and technology .

[7] Gassend, Blaise, Clarke, Dwaine, Van Dijk, Marten, and Devadas, Srinivas. Sil-
icon physical random functions. In Proceedings of the 9th ACM conference on
Computer and communications security (2002), ACM, pp. 148–160.

[8] Guajardo, J, Kumar, S, Schrijen, GJ, and Tuyls, P. FPGA intrinsic PUFs and
their use for IP protection. Cryptographic Hardware and Embedded Systems
(2007).

[9] Holcomb, Daniel E, and Fu, Kevin. Bitline puf: building native challenge-
response PUF capability into any SRAM. In International Workshop on Cryp-
tographic Hardware and Embedded Systems (2014), Springer, pp. 510–526.

[10] Hori, Y., Yoshida, T., Katashita, T., and Satoh, A. Quantitative and statistical
performance evaluation of arbiter physical unclonable functions on fpgas. In 2010
International Conference on Reconfigurable Computing and FPGAs (Dec 2010),
pp. 298–303.

[11] Hsing, Homer. tiny aes AES core. http://opencores.org/project,tiny_aes,
2015.

56

[12] Hu, Kekai, Wolf, Tilman, Teixeira, Thiago, and Tessier, Russell. System-
level security for network processors with hardware monitors. In 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC) (2014), IEEE, pp. 1–
6.

[13] Juels, Ari, and Wattenberg, Martin. A fuzzy commitment scheme. In Proceedings
of the 6th ACM conference on Computer and communications security (1999),
ACM, pp. 28–36.

[14] Kumar, Sandeep S, Guajardo, Jorge, Maes, Roel, Schrijen, Geert-Jan, and Tuyls,
Pim. The butterfly PUF protecting IP on every FPGA. In Hardware-Oriented
Security and Trust, 2008. HOST 2008. IEEE International Workshop on (2008),
IEEE, pp. 67–70.

[15] Maes, Roel. An accurate probabilistic reliability model for silicon PUFs. In Inter-
national Workshop on Cryptographic Hardware and Embedded Systems (2013),
Springer, pp. 73–89.

[16] Maes, Roel, Tuyls, Pim, and Verbauwhede, Ingrid. A soft decision helper data
algorithm for SRAM PUFs. In 2009 IEEE International Symposium on Infor-
mation Theory (2009), IEEE, pp. 2101–2105.

[17] Majzoobi, Mehrdad, Koushanfar, Farinaz, and Devadas, Srinivas. FPGA PUF
using programmable delay lines. In 2010 IEEE International Workshop on In-
formation Forensics and Security (2010), IEEE, pp. 1–6.

[18] Morozov, Sergey, Maiti, Abhranil, and Schaumont, Patrick. An analysis of delay
based PUF implementations on FPGA. In Reconfigurable Computing: Architec-
tures, Tools and Applications. Springer, 2010, pp. 382–387.

[19] Rahman, Tauhidur, Forte, Domenic, Fahrny, Jim, and Tehranipoor, Moham-
mad. Aro-puf: An aging-resistant ring oscillator PUF design. In Proceedings
of the Conference on Design, Automation & Test in Europe (3001 Leuven, Bel-
gium, Belgium, 2014), DATE ’14, European Design and Automation Association,
pp. 69:1–69:6.

[20] Rührmair, U., and Holcomb, D. E. PUFs at a glance. In 2014 Design, Automa-
tion Test in Europe Conference Exhibition (DATE) (March 2014), pp. 1–6.

[21] Shrikant Vyas, Naveen Kumar Dumpala, Russell Tessier Daniel E. Holcomb. Im-
proving the Efficiency of PUF-Based Key Generation in FPGAs using Variation-
Aware Placement. FPL (2016).

[22] Simpson, Eric, and Schaumont, Patrick. Offline hardware/software authentica-
tion for reconfigurable platforms. In CHES (2006), vol. 4249, Springer, pp. 311–
323.

57

[23] Suh, G Edward, and Devadas, Srinivas. Physical unclonable functions for device
authentication and secret key generation. In Proceedings of the 44th annual
Design Automation Conference (2007), ACM, pp. 9–14.

[24] Suh, G. Edward, O’Donnell, Charles W., and Devadas, Srinivas. Aegis: A single-
chip secure processor. IEEE Design & Test of Computers 24, 6 (2007),
570–580.

[25] Wikipedia. Pearson product-moment correlation coefficient — wikipedia, the
free encyclopedia, 2016. [Online; accessed 20-April-2016].

[26] Xu, Xiaolin, and Holcomb, Daniel. A clockless sequential PUF with autonomous
majority voting. In Proceedings of the 26th Edition on Great Lakes Symposium
on VLSI (New York, NY, USA, 2016), GLSVLSI ’16, ACM, pp. 27–32.

58

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2016

	Variation Aware Placement for Efficient Key Generation using Physically Unclonable Functions in Reconfigurable Systems
	Shrikant S. Vyas
	Recommended Citation

	tmp.1471557134.pdf.vCUTW

