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ABSTRACT

ADACORE: ACHIEVING ENERGY EFFICIENCY VIA
ADAPTIVE CORE MORPHING AT RUNTIME

SEPTEMBER 2015

NITHESH KURELLA

B. E., VISVESVARAYA TECHNOLOGICAL UNIVERSITY

M. S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Israel Koren and Professor Sandip Kundu

Heterogeneous multicore processors offer an energy-efficient alternative to homo-

geneous multicores. Typically, heterogeneous multi-core refers to a system with more

than one core where all the cores use a single ISA but differ in one or more micro-

architectural configurations. A carefully designed multicore system consists of cores

of diverse power and performance profiles. During execution, an application is run

on a core that offers the best trade-off between performance and energy-efficiency.

Since the resource needs of an application may vary with time, so does the opti-

mal core choice. Moving a thread from one core to another involves transferring the

entire processor state and cache warm-up. Frequent migration leads to large per-

formance overhead, negating any benefits of migration. Infrequent migration on the

other hand leads to missed opportunities. Thus, reducing overhead of migration is

integral to harnessing benefits of heterogeneous multicores.

This work proposes AdaCore, a novel core architecture which pushes the hetero-

geneity exploited in the heterogeneous multicore into a single core. AdaCore primarily
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addresses the resource bottlenecks in workloads. The design attempts to adaptively

match the resource demands by reconfiguring on-chip resources at a fine-grain granu-

larity. The adaptive core morphing allows core configurations with diverse power and

performance profiles within a single core by adaptive voltage, frequency and resource

reconfiguration. Towards this end, the proposed novel architecture while providing

energy savings, improves performance with a low overhead in-core reconfiguration.

This thesis further compares AdaCore with a standard Out-of-Order core with capa-

bility to perform Dynamic Voltage and Frequency Scaling (DVFS) designed to achieve

energy efficiency.

The results presented in this thesis indicate that the proposed scheme can improve

the performance/Watt of application, on average, by 32% over a static out-of-order

core and by 14% over DVFS. The proposed scheme improves IPS2/Watt by 38%

over static out-of-order core.
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CHAPTER 1

INTRODUCTION

1.1 Objective

Microprocessor design over the last few decades leveraged semiconductor indus-

try’s ability to pack more transistors on chip to extract higher performance. The

higher performance obtained is due to the extraction of instruction level parallelism

(ILP) in a superscalar Out Of Order (OOO) processors. The limited availability of

ILP coupled with quest for efficient use of available resources led researchers to ex-

plore multiple processors on the same chip. Thread level parallelism was exploited in

applications by dividing the workload execution amongst multiple copies of the same

processor [29]. However, in recent years the need for energy efficient high performance

computing has continuously increased. In data center space, the energy efficiency of

processors directly translate to operating costs. Meanwhile, in the mobile phone

space, energy efficient processors lead to improved battery life. Correspondingly, as

the transistor feature size has reduced to nanometer regime, the operating voltage

did not reduce proportionally [13]. These factors therefore have called for a renewed

search for energy efficiency in processor design.

Heterogeneous multi-core processors (HMPs) have been proposed as an alterna-

tive to regular multi-cores to improve energy efficiency. HMPs comprise of cores that

implement the same ISA but differ in performance and energy characteristics due to

varying sizes of micro-architectural resources. Previous research on HMPs have iden-

tified multiple opportunities for exploiting heterogeneity in the multi-core paradigm.

Kumar et al. proposed using a mix of cores with different power and performance
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characteristics, so that a program phase of an application is mapped to a core which

achieves the best energy-efficiency [22]. For example, if a program phase exhibits low

Instructions Per Cycle (IPC), it can be mapped to a small core for greater energy

efficiency. In such a case, boosting the frequency of the smaller core (within power

dissipation constraints) may achieve both higher performance and higher energy ef-

ficiency. In another use case, the serial sections of a multi-threaded program may

be sped up [2] by using a big core, while parallel executions are run on moderately

resourced cores to improve overall performance within a power budget. The focus of

this research is on the former use-case, where the goal is to design an architecture

that improves energy efficiency of a single thread without significant sacrifice to its

performance.

Some HMP design references feature a high performance OOO core combined

with a smaller low performance and energy efficient In-Order (InO) core. ARM has

designed such an AMP which they call big.LittleTMwith the above mentioned core

types [11]. In such an HMP, compute intensive phases of an application are run

on a high performance core while low performance phases such as memory intensive

phases are executed on an InO core resulting in improved energy efficiency. However,

a workload’s performance on a particular core type depends on larger set of processor

features since workloads are diverse in nature. Workloads could be highly memory

intensive or may exhibit high dependency between instructions. Some workloads may

experience higher rates of branch mis-prediction, while some exhibit large exploitable

instruction level parallelism. Often a workload might stall due to lack of adequate

resources in load-store queue (LSQ), re-order buffer (ROB), issue queue (IQ) or exe-

cution resources. Thus, a diverse set of cores are needed that could address varying

resource needs at various program phases of an application.

Kumar et al. considered HMPs appropriate for various program phases [23].

Navada et al. explored non-monotonic HMP cores which are specifically designed

2



to address bottlenecks that result in poor performance [28]. Common performance

bottleneck in cores arise from cache misses, limited execution resources or execution

width, large amounts of instruction dependencies, or inherently low instruction level

parallelism. Thus, if the designed core types explicitly address such bottlenecks and

with effective runtime mechanisms, performance and energy efficiency of a workload

can be improved. Accordingly, Navada et al proposed a set of distinct core types

consisting of narrow core which suits applications with low ILP, a large window core

for application phases that have window bottlenecks (reorder buffer, issue queue),

and a wider core for phases that have width bottlenecks (fetch and issue width), and

an average super-scalar OOO core to target most common scenarios [28].

Assigning the application to the most efficient core in an HMP is usually accom-

plished by a process termed as sampling. The application is briefly run on each of the

available cores and then assigned to the core that best suits the performance needs of

the workload [22]. Migrating an application from one core to another involves signifi-

cant overhead as the complete state of the application must be transferred to the new

core. It is to be noted that in sampling, state has to be transferred as many times

as the number of additional cores. To reduce the impact of this overhead, thread

migration in HMP is usually done at a coarse grain instruction granularity, typically

measured in tens to hundred of millions of instructions [16]. This approach works

well when the program phases last for millions of instructions.

Recent research has shown that energy saving opportunities can often be found

in much shorter time scales, typically measured in thousands of instructions. If these

relatively short phases could be mapped to the most energy efficient core, the overall

energy efficiency would improve. To support such fine grain switching, Lukefahr et al

proposed a morphable architecture where an OOO core dynamically morphs into an

InO core at runtime [17, 27]. In these fine grain morphable core designs, the workload

continues to execute on the same core, and as a result, the overhead associated with

3
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Figure 1.1: Performance of a 4-way, 2-way and 1-way OOO core relative to the 4-way
core for various workloads from the SPEC 2000, SPEC 2006 and SPLASH-2 suites.

transferring the entire state of the workload to another core is eliminated. This allows

morphing to take place at finer instruction granularities (∼1000 instructions) which

reportedly results in significant energy savings at a small loss in performance [17, 27].

However, this approach has the following shortcomings:

1. Core Alternatives: Morphing was considered only between two extreme archi-

tectures, i.e., a wide issue OOO core and an InO core. However, as discussed

previously, the resource bottlenecks or excesses can be quite diverse, and as a

result important power and performance optimization opportunities, may be

missed.

To study the potential benefits of having more core types, we experimented

with three OOO cores with varying execution widths, frequencies and resources

scaled appropriately for each width. We call these cores the 4-way, 2-way and 1-

way cores, indicating the respective execution widths. In Figure 1.1 we present

the performance of these three options, relative to that of the 4-way core, for

workloads from the SPEC 2000 [39], SPEC 2006 [5] and SPLASH-2 [44] suites.
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It can be seen that there are some workloads that would benefit from the 4-way

core but there are other workloads for which a 2-way or 1-way core provides

adequate performance. The 2-way and 1-way cores do not need the same level

of resources as the 4-way core. Hence, for such workloads there is a potential

for power savings by running them on the reduced fetch width core, resulting

in better performance-per-power. This shows that a collection of intermediate

architectures may provide considerable benefits.

2. Hardware Complexity: The complexity of previously proposed morphing schemes

is high. Lukefahr et al [27] proposed incorporating two execution backends in

the same core. Khubaib et al [17] proposed converting an OOO into a highly

threaded in-order simultaneous multi-threaded (SMT) execution. Both designs

entail substantial changes to the micro-architecture to make a super-scalar OOO

core to turn into an InO core.

Navada et al. [28] have performed a complete core design exploration and came up

with a set of non-monotonic core types that can improve the performance/power of a

single threaded processor. We rely on these core design configurations and incorporate

all of them in a single core to devise a morphable architecture.

This thesis presents AdaCore, a novel morphable architecture in which the core

adaptively morphs by switching between several OOO core modes where each mode

may differ from the other in fetch and issue width, buffer sizes (IQ, LSQ, ROB)

and clock frequency. We term this morphable architecture as AdaCore considering

the architecture is constantly adapting. AdaCore can seamlessly switch between

one core-mode to another at a fine grain instruction granularity. This simplifies the

implementation as the transition is from one OOO core-mode to another and does

not involve significant micro-architecture changes.

This thesis also attempts to investigate whether other energy efficient design tech-

niques such as scaling processor voltage and frequency dynamically at a fine grain

5



granularity can achieve similar energy efficiency as AdaCore. For example, applica-

tion phases which are memory bound or phases with large branch mis-predictions may

not gain much in performance with a higher frequency. In such scenarios, Dynamic

Voltage and Frequency Scaling (DVFS) can potentially improve energy efficiency. Fur-

thermore, the ability to scale the voltages and frequencies at fine grain granularity

may provide an improved chance of tending to short-lived phases thereby extracting

energy efficiency at a fine grain. To this end, we design a runtime scheme to scale

voltage and frequency on a standard OOO core and compare the energy efficiency

achieved by such a design to that of AdaCore.

1.2 Contributions

The major contributions of this work include:

• A morphable core architecture that is capable of switching between various

OOO core-modes. The mode switching is fast, allowing us to address applica-

tion’s varying resource demands at a fine grain granularity while mapping the

application to the most energy efficient core.

• A simple online mechanism that can estimate the application performance and

power across all available core modes. The decision to switch can be made at fine

grain instruction granularity that can not be accomplished using conventional

sampling based techniques.

• An energy efficiency comparison of the morphable core to an OOO superscalar

core with DVFS.

6



CHAPTER 2

PRIOR RESEARCH

In this chapter, a brief summary of the relevant prior research related to asymmet-

ric multi-core processors, morphable core architectures, application to core assignment

and dynamic voltage and frequency scaling is presented.

2.1 Dynamic Voltage and Frequency Scaling

DVFS is a technique traditionally used in processors with single and multiple cores.

It is used as a means to keep the processor running at maximum possible frequency as

long as it is possible. The moment a processor hits a thermal threshold, the voltage

and in turn frequency of the processor are reduced to protect the processor from

crossing the power dissipation limits [26]. Such throttling of frequency and voltage

at runtime due to thermal emergencies is one of the important applications of DVFS.

The performance of certain sections of a workload can be improved by increasing

the frequency of the processor. To increase the frequency, the voltage may also have

to be increased. Intel implements a similar DVFS scheme to boost the frequency

of the processor as high as 3.2GHz to speed up parts of the application for a short

period of time [7].

Another application of DVFS is to achieve energy efficiency by scaling the voltage

and frequency down at the expense of performance [36]. Researchers have proposed

several runtime procedures the processor can follow in order to perform DVFS. The

proposals range from the traditional method of relying on the operating system to

perform DVFS, to using the compiler to predict the need for and trigger DVFS [45].

7



Several schemes include DVFS decision based on hardware performance counters

[1],[41]. Annamalai et al. use a regression analysis based approach to use performance

counters to estimate performance and power [1]. The estimations are in turn used to

make the decision for triggering DVFS. The voltage and frequency scaling is performed

within a asymmetric multi-core system. They conclude that a combination of thread

swapping in asymmetric multi-cores and DVFS results in improved energy efficiency.

2.2 Heterogeneous Multicore Processor (HMP) Designs

Heterogeneous multi-core systems include at least one core that differs from the

rest in its configuration. Such a system may help multi-threaded, multi-programmed

and even a single threaded applications to achieve energy efficiency or gain perfor-

mance or both. To improve the performance of a multi-threaded application within

a power dissipation limit, researchers have proposed HMP designs which include a

single large OOO processor and multiple moderately resourced OOO processors [2].

Similarly, authors in [42] use a large OOO core to improve performance during serial

portions of a multi-threaded application. The parallel sections of the same work-

load were assigned to several smaller cores to make the execution of the light-weight

threads energy efficient.

A single threaded workload may exhibit several phases during the course of its

execution. To ensure that each of the application phases is executed in the most

energy efficient core, Kumar et al. proposed an HMP design [22] consisting of cores

with diverse power and performance characteristics. Each application program phase

is executed on the most energy efficient core [22]. For example, if an application is

experiencing low performance on a large OOO core, the frequency of the processor

can be increased to improve performance. However, it may not be the most energy ef-

ficient. Such phases, if executed on a small core, may achieve higher energy efficiency.

The authors observed that scaling the frequency of the smaller core (within power

8



budget) may achieve both higher performance and higher energy efficiency. Kumar

et al. extended the proposal to multi-programmed workloads and designed a HMP

system which can improve performance [24].

Grochowski et al. [12] propose a mix of asymmetric cores coupled with voltage and

frequency scaling to consume the least amount of energy per instruction. Navada et al.

in [28] consider accelerating single threaded workload by designing a set of cores that

solve various application performance bottlenecks. They performed a complete design

space exploration and identified a set of heterogeneous cores that would maximize

performance. Their research suggested that with N core types, the optimal set of

heterogeneous cores for single threaded performance would contain an average core

(i.e., best homogeneous core) and (N − 1) accelerator core types that target specific

bottlenecks encountered during a program execution.

The above described HMP architectures make thread scheduling decisions at

coarse grain instruction granularity or granularity of phase change in application

(about 100 million instructions). An attempt to make the thread to core mapping at

a finer granularity incurs a larger thread swapping penalty in terms of performance

and power.

2.3 Morphable Core Architectures

There have been few proposals advocating dynamic reconfiguration of cores during

runtime. Such reconfigurations enable cores to adapt according to the workload and

improve performance and/or power efficiency. Several other publications consider a

multi-core system in which a number of small cores fuse together to form a large

OOO core on demand [18, 33]. These approaches introduce additional latencies in

the pipeline due to the combining of resources from various cores.

Recently, morphable architectures have been proposed to support fine grain con-

figuration switching and improve performance/Watt. In the architecture proposed
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by Khubaib et al. in [17], a traditional OOO core is morphed into an in-order SMT

core when the application enters the parallel sections of the workload. The authors

observe that a multi-threaded in-order core can achieve higher energy efficiency than

a superscalar OOO core for certain multi-threaded application phases. However, their

design requires significantly complex hardware changes to the micro-architecture to

construct an in-order core (that can support SMT) from an OOO core.

Lukefahr et al. [27] proposed a morphable architecture where an OOO core can

morph into an InO by switching between two execution back-ends in the same core but

inlcude a common front-end. One of the back-end engines is used in the OOO mode

while the other in the InO mode. They term this architecture as a Composite Core.

With their composite core architecture, the core can switch between OOO and InO

modes at fine grain instruction slices. As a result, even short low performance phases

are executed in the energy efficient InO mode. The approach therefore, provides the

application an option to search for improved performance or energy efficiency between

the two modes which have highly different characteristics. However, the two modes

may not cater to the demands of all the single-threaded application phases.

2.4 Application Scheduling

Scheduling the application threads to the most energy or performance efficient

cores or core modes in HMP or morphable cores, respectively, require an efficient

scheduling mechanism. Several researchers utilize offline workload analysis to under-

stand application behavior. Observations from offline methods such as regression-

based analysis are used to schedule threads in heterogeneous multi-core systems

[16, 37]. The scheduling based on such offline analysis involves studying the workload

behavior offline. The knowledge obtained prior to the application execution is applied

at runtime to achieve optimal scheduling. However, offline analysis schemes are not

10



always the most practical. This is due to their inability to schedule new applications

whose behavior may not have been analysed previously.

A better and viable solution to the application scheduling problem would be an

online learning mechanism. Such a scheme can learn the characteristics of the ap-

plications during their execution. It can use the obtained behavioral observations

to make an informed thread scheduling decision. An online learning scheme may

rely on phase classification to identify the application phase coupled with sampling

techniques to identify the best schedule [3, 22, 35, 43]. Whenever the mechanism

identifies a change in the application phase, the application is sampled on all the

available cores in the HMP. The efficiency of each of the cores during the sampled

period is observed and the application is assigned to the best core. Such a mechanism

which samples application on multiple cores to decide on the best core, causes a large

performance penalty. Therefore, sampling based schemes can not be applied at fine

grain instruction granularities.

Ability to perform thread scheduling at a fine grain granularities can provide a

better opportunity to execute the application on the most efficient core or core-mode.

To this end, estimation-based runtime scheduling mechanisms were proposed by re-

searchers. In such schemes, the performance and/or power of an application phase on

each of the available configurations is estimated in runtime. The estimation mecha-

nism uses statistics such as cache misses and pipeline stalls recorded on the current

core configuration to extrapolate the performance and power on the other configura-

tions [8, 21, 27, 34, 40]. Since the performance estimations can be performed at any

desired granularity, estimation-based online schemes outperform profiling/sampling-

based online schemes described above.
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CHAPTER 3

PROPOSED ARCHITECTURE

For the reasons explained in Chapter 2, the efforts of this thesis have been fo-

cussed on designing a core architecture with capability to dynamically match the

application’s resource demands. A core with such a capability would belong to the

morphable core category of core design described in Chapter 2. Before we venture

into the reconfigurablity of the proposed core, we first need to determine the modes

of execution that should be present in the AdaCore.

3.1 Selection of Core-Modes

Heterogeneous multi-core architecture typically contains cores of different types

such that each core-type can satisfy a specific application phase resource demands.

Each phase in an application has a certain degree of ILP. The thermal dissipation of

a package (TDP) limits the overall power dissipation. Thus, a core cannot feature

the largest possible microarchitectural resources for all structures, yet operate at the

highest possible frequency. To support a core with a high ILP, the size of the small

on-chip buffers that extract the ILP should be increased or the width of the pipeline

stages should be resized. These changes might require additional circuits which in

turn, will affect core frequency due to the TDP limit. Thus, designing the right mix

of cores for HMP that caters to demands of all application phases requires careful

balancing.

Navada et al. chose core-types for a heterogeneous multi-core design similar to a

scenario described above. They do so by performing in-depth RTL based design space
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exploration using a genetic algorithm based approach [28]. Core parameters such as

fetch width, issue width, load store queue, physical register file, L1 I and D caches and

clock frequency were extensively explored by them resulting in 13,966 design points.

Their key finding was that if there is only one core-type, then the best core type

(named the average core) resembles an existing commercial super-scalar OOO core,

where the core parameters are chosen to strike a balance between achieving sufficient

ILP and frequency. The alternate cores in an HMP would be designed to relieve

bottlenecks that arise in the average core. Their choice of core design parameters

obtained from design space exploration is summarized in Table 3.1 which shows a set

of non-monotonic core-types with unconstrained power.

We observe from Table 3.1 that, along with the average OOO (AC) core, the

design choices include a narrow core (NC) that has smaller fetch/issue width and

lower frequency, a larger window core (LW) that has increased window sizes, and a

wider width core (WC) that relieves width bottleneck. In their scheme, Navada et

al. switch a program from one core to another during the course of its execution

to improve performance and energy efficiency at a coarse grain granularity. Since

the cache contents cannot be migrated easily, core hopping cannot be performed

frequently [28]. We observe further that the featured wider core in [28] has a bigger

I-Cache to overcome I-cache bottleneck. However, it has been reported in [15] that

even with cache size of 32KB for L1, instruction misses are rather infrequent, except

for a few SPEC 2006 benchmarks. Consequently, we have chosen I-cache and D-cache

sizes of 64KB.

In this work, the interest lies in designing a morphable core architecture that would

enable the core to cater to application phase demands at a fine grain granularity.

Therefore, the proposed AdaCore consists of all the core-types proposed by Navada

et al. as core-modes in a single reconfigurable core.
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Table 3.1: Micro-architecture parameters of selected core-modes.

Mode ClockPeriod (ns) Buffer size Width
(IQ,LSQ,ROB) (fetch,issue)

AC 0.6 32,128,128 3,4

NC 0.5 32,64,64 2,2

LW 0.7 48,128,384 4,4

WC 0.7 32,128,128 6,6

3.2 Adaptive Core Morphing

In the proposed scheme, we only have one processor core whose resources are

banked; they can be turned on or off and the frequency can be raised or lowered to

configure the core to any of the available core-modes shown in Table 3.1.

The baseline core-mode is the average OOO core that would adaptively morph

into three other core-modes, namely, wider core-mode, narrow core-mode or larger

window core-mode at runtime. The four distinct core-modes have different buffer

sizes, fetch and issue width and also run at different frequencies. However, they all

have the same cache size. This will allow the resources to be resized dynamically

leaving the content of the cache intact which in turn enables fast switching between

core-modes creating opportunities to explore frequent switching between modes.

Fine grain switching may take advantage of an opportunity for energy savings or

performance enhancement with a probability higher than that of coarse grain gran-

ularity. Figure 3.1 shows the high level micro-architecture of AdaCore architecture.

The shaded structures denotes the micro-architecture units that need to be reconfig-

ured dynamically to morph from one core-mode to another.

The buffers that are adaptively resized are re-order buffer, load/store queue and

issue queue. Fetch width and issue width are also dynamically resized. Decoding

units are subsequently powered on/off when fetch and issue width are resized.

14



L1 I-Cache

Fetch BP Decode

Reg

File

ROB LSQ L1 D-

cache

Front End

Backend End

L2

cache

Baseline OOO mode

IQ

INT FUs FP FUs

Figure 3.1: High level view of the AdaCore Micro-architecture (shaded units represent
reconfiguration at run-time).

3.3 Adaptive Storage Buffers

Buffers present in processor store instructions temporarily to overcome timing de-

pendencies that may occur in different stages of the pipeline and also increase the

window of instruction to take advantage of instruction level parallelism. The pro-

posed architecture seamlessly moves between four different core configurations thus

taking advantage of heterogeneity within. Previous works in [9, 32] have presented

adaptive buffer design and have shown significant energy savings when buffers are

sized up/down based on the resource requirements of individual applications. How-

ever, these works consider individually modifying each buffer wherein they need a

independent control mechanism for every buffer.

In this thesis, some of the adaptive buffer schemes presented in [9, 32] are used.

The average occupancy in LSQ, ROB and IQ changes rapidly throughout the program

execution [9] thus making it difficult to make the right decision on buffer sizing. The

scheme implemented in this work is much simpler, since occupancy of LSQ, ROB and

IQ are not monitored independently. Determining the transition from one core-mode

to another is guided by a function that estimates the power and performance in all

core-modes based on performance counter values in the current core-mode where the

program is being executed. The AdaCore chooses to switch core-modes only when a

significantly higher performance/Watt is predicted for another core-mode.
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ROB, IQ and LSQ are each implemented in a banked architecture similar to the

scheme described in [32]. Each banked unit can be independently controlled. The

banks have their own set of input/output drivers, precharger and sense amplifiers.

A dynamically re-sizable buffer can be formed by stacking more than one of these

partitions together. Figure 3.2 shows how the issue queue is partitioned into multiple

banks. The bus line and bit line connections running along multiple banks in the issue

queue can be connected through the through line via the switch control. This switch

control block helps in adding the partition to the current IQ and thereby enabling

an increase in the size of the issue queue. To deallocate any partition within the IQ,

the switch control could turn off a partition. To simplify the resizing circuitry of the

IQ, the IQ needs to be downsized by turning off the partition which has the highest

address. Also, before downsizing, we must wait until the existing instructions in the
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target partition are issued before switching that particular bank off. Unallocated

partitions are powered down which helps in reducing leakage power.

The LSQ and ROB have circular FIFO structures and thus need to be resized

carefully. We explain the resizing scenario for ROB shown in Figure 3.3. The head and

tail pointers in ROB give us information about the next instruction to be committed

and the location of the next addition to ROB, respectively. The pointer current

indicates the current upper-bound size for ROB. The New indicates the upper bound

size for ROB after allocation and deallocation of the partition is done in ROB.

In the ROB deallocation scenario shown in Figure 3.3 (a), both the ROB tail and

head pointers are located in the place where the partition is going to be deallocated.

So the deallocation will be stalled until the ROB tail pointer becomes equal to the

new pointer and ROB head pointer wraps around itself such that it points to 0.

Another case scenario of deallocation is shown in Figure 3.3 (b) when deallocation

can happen immediately as both ROB head and tail pointers are not in the bank to

be deallocated. While sizing the ROB up, we need to ensure that the head pointer

value is below the tail pointer value as shown in Figure 3.3 (d). Allocation is deferred

till the ROB head pointer reaches 0 as shown in Figure 3.3 (c).

The partition size for ROB, LSQ and IQ needs to be determined carefully. Deter-

mining the optimal partition size is important since too small a partition might result

in larger partitioning overhead in terms of layout area and cost. Thus, the partition

size for ROB and LSQ is set to be 16 and for IQ the partition is set to be 8 based on

[9].
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CHAPTER 4

RUNTIME MODE SWITCHING IN ADACORE

In the proposed AdaCore architecture, one of the most important design decisions

to be considered is when to switch from one core-mode to another. In morphable core

architectures, the state of the program does not have to be rebuilt on every switch

as it would on a heterogeneous multi-core architecture. Therefore, decision to switch

between core-modes could be performed at a very fine grain granularity.

Since the core parameters that are modified as part of morphing between core-

modes are not restricted to buffers, switching decisions taken based on resource uti-

lization may not be completely accurate. This thesis proposes an online mechanism

which estimates power and performance on each of the available core-modes to deter-

mine the most efficient core-mode for the phase of application that is currently being

executed.

A wrong decision to switch may have a large impact on performance while not

contributing enough towards energy savings. Therefore, a switching decision taken

based on accurate power and performance estimations is preferred. We present in the

next subsection a performance counters (PMCs) based scheme to estimate the power

and performance of each of the chosen core-modes with reasonable accuracy.

4.1 Power/Performance Estimation Based on Performance

Counters

The decision to select the most appropriate core-mode for the current application

phase is made by computing the performance and power for each of the core-mode
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and switching the application to run on the core-mode that provides the highest

IPS2/Watt where IPS is Instructions Per Second which is a product of IPC and

frequency. Reasons for choosing IPS2/Watt as our performance/Watt metric is ex-

plained in Section 5.1.

To calculate IPS2/Watt, we use PMCs to estimate the power and performance

in each of the core-modes. The first step is to find a set of counters that could be

used for estimating power and performance and then identify a subset of counters

that could be used to estimate both power and performance in runtime. Following

are the counters that were considered for performance and power estimation.

1. IPC : The IPC provides the most basic observation point to estimate the

amount of power consumed.

2. Cache activity : Lowering the number of cache misses improves the perfor-

mance of a processor. This applies to both L1 (I/D) and L2 caches. The

performance in turn corresponds to power as a miss in the cache leads to addi-

tional cycles spent dissipating power. Therefore cache hit/miss/access statistics

at level 1 (L1h, L1m) and level 2 (L2h, L2m) are important.

3. Branch activity : Since inability to predict branches with reasonable accuracy

causes performance loss, Branch mis-prediction statistics (Bmp) are considered

towards estimation.

4. Instructions Committed : The mix of instructions in a given period of time

are good indicators of the set of resources utilized. Thus, hardware counters

which count the number of Integer (INT), Floating-point (FP), Load (L), Store

(St) and Branch (Br) instructions committed serve to estimate the performance

and power consumption.

5. Buffer-Full stalls : Instructions may spend a considerable amount of time

in the OOO pipeline due to unavailability of buffer resources (ROB, IQ, LSQ).
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Since the time spent stalling in these scenarios impacts performance and in turn

power, the stall counters are candidates for the estimation mechanism.

Though in theory, all of the counters described above could be used to obtain per-

formance and power estimations, all of them may not be required to achieve sufficient

estimation accuracy at all scenarios. If we could determine the smallest set of coun-

ters that would allow us to estimate power/performance accurately on each of the

core-modes, some amount of area spent on on-chip counters and computation time.

As we consider 4 different core-modes, each core-mode needs to estimate power and

performance on all the other 3 core-modes using the hardware counters in the present

mode. Power also needs to be estimated on the current core-mode since runtime

power measurement is not possible.

For example, if the current application is running on the AC mode, we need to

estimate the power of AC mode and the power and performance on the other core-

modes that include the narrow core, wider core and larger window core, using the

PMCs of the AC mode. Thus, each time a core switching decision is made, the

current core-mode needs to make a total of 7 estimations to calculate IPS2/Watt

which would in turn guide the thread to be run on the most efficient core-mode.

To select the PMCs that exhibit the highest correlation with the required esti-

mates (of power and performance) and then obtain the corresponding expressions

(using linear regression), we chose a training set of 7 SPEC2000 benchmarks [39]

which includes swim, equake, ammp, applu, twolf. mcf, bzip, where each of these

workloads have application phases that prefer one of the four different core-modes.

The workloads were run on all four core configurations for 2 billion instructions after

fast forwarding 1 billion instructions. The values of the above described counters are

tracked at fine grain instruction granularity, i.e., after every m instructions commit-

ted during the execution of the workload. The sensitivity study to choose the value

for m is presented later in this chapter.
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Figure 4.1: R2 as a function of number of performance counters chosen while esti-
mating power/performance. PMC AC => Power NC, denotes using the performance
counters of the AC-mode to estimate the power on the NC-mode.

To find the right counter subset, we iteratively explore all possible combinations

of counters to choose the ones that give the highest correlation to the estimated

power or performance. At each iteration the counter selection algorithm picks one

counter that provides, together with the previously chosen counters, the best fit for

estimating power/performance. A linear regression model was used for the counter

selection where the best fit was determined by the R2 correlation coefficient. As

shown in Figure 4.1, the R2 value saturates after a sufficient number of counters is

selected and thus, extra counters are no longer added once the value of R2 starts to

saturate.

The number of power/performance calculations made at each decision point is 7.

When estimating the power in other core-modes, the R2 value tends to saturate after

adding more than 4 counters. It can also be seen in Figure 4.1 that estimating power

in the same core gives a higher R2 value than in other core-modes indicating higher

estimation accuracy. For IPC estimation we need a minimum of four counters to

21



Table 4.1: Power (P) and performance (IPC) estimation for the other three modes using
the performance counters values in the AC mode.

Estimated Param Expression

AC ⇒ Power AC 0.31· L1h + 11.10 · IPC
+3.40·10−2 · St−2.28·10−2 ·Bmp+0.29

AC ⇒ Power NC 0.12 ·Bmp + 0.65 · L1m
-0.35 ·Br + 1.45·10−1 · St +0.64

AC ⇒ Power LW −2.3 · L1m
+0.12 ·IPC−3.42·10−2 ·Bmp+0.35

AC ⇒ Power WC −1.03 · L− 0.76 ·Bmp
-4.50× 10−2 · L2h + 0.11

AC ⇒ IPC WC −1.25 · L1m + 1.35 · IPC
-1.20× 10−2 · L2h + 0.23 ·Bmp +0.26

AC ⇒ IPC LW 0.14 · IPC − 0.18 · L2h
+0.029 · St + 0.11 ·Br +0.56

AC ⇒ IPC NC −0.12 ·Bmp + 0.8 · IPC
−0.12 · St−0.11 · L1h+2.12

estimate the IPC on the WC-mode and NC-mode but R2 saturates at five counters

for the LW mode.

The selected sets of counters for the estimations are not identical for all the core-

modes as shown in Table 4.1. To avoid the need for separate estimation algorithms

efforts were made to find a common set of counters which could be used for esti-

mating both performance and power on the AC-mode for the other core modes with

reasonable accuracy. Similar analysis was carried out for the estimations on other

core modes. We finally arrived at a common set of counters that could estimate

performance and power for each of the core modes with reasonable accuracy.

4.1.1 Accuracy of Power/Performance Estimation

The accuracy achieved by our scheme is shown in Figure 4.2. The evaluation of

our scheme was performed on a set of 15 workloads which contain a mix of SPEC2000

and SPEC2006 workloads. Due to larger set of estimation scenarios, we show only

the average error in estimating the power and IPC on each of other core-modes using

the PMCs of the current core-mode. It could be observed from Figure 4.2 that the
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Figure 4.2: Average error in estimating power and IPC for each core-mode.

average error in estimating power is around 8% which is significantly lower than the

average error in estimating IPC which is around 16%.

Though the overall estimation error is low, the scheme implemented could make

wrong decisions if the estimation error at runtime is high. An analysis of the distri-

bution of error is shown in Figure 4.3. As IPC had higher average error than power,

for sake of brevity, we only show the error in estimating IPC in all other core-modes

using the PMCs of the current AC-mode in Figure 4.3. We can see that deviation

of error from the mean is low for majority of sample points with 80% of sample

points lie between tolerance level of 10% from the mean. Thus, we can conclude that

we can predict both power and performance with adequate accuracy for each of the

core-modes.

Using the power and performance estimated online, we compute IPS2/Watt for

each of the core-mode. The decision to select the core-mode is based on the core-mode

which provides us the highest IPS2/Watt. But while taking the decision to switch,

it is important that we remain in a particular core-mode for sufficient amount of time

before switching back to another core type. Since frequent switching would result in
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Figure 4.3: Distribution of error in estimating IPC in different core-modes using the
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increased overhead and negate the benefits of the proposed scheme. Therefore, it is

important to determine the confidence of the decision as described in the following

section.

4.2 Decision Granularity

The decision to morph into any of the three available four core-modes or to remain

in the current core-mode is taken every time a certain number of instructions are

committed. This threshold on the number of instructions committed per decision is

termed as ’window’. The window length is denoted by l. Since an overhead is involved

in mode switches which affects processor performance, a switch in the core-mode takes

place only if the same decision to switch is repeated for k successive windows termed

as ’history depth’. Therefore, a decision to switch is taken only if the decision is

consistent over a period of time during which m instructions are committed where,

m = k × l. For example, if for the past m committed instructions, the decision to

move from the current mode (AC-mode) to NC-mode was repeated for k successive
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Figure 4.4: Improvement in IPS2/Watt of AdaCore over baseline AC for multiple
window length, l and m combinations

windows, a prediction that the workload has entered a phase where NC-mode provides

higher IPS2/Watt is made. The window size and value of k need to be determined

experimentally. A sensitivity study has been conducted to quantify the impact of

window length and k on the achieved benefits.

The l and k combination that yields the highest IPS2/Watt for the entire program

execution would be the best choice. A window length from 250 to 1000 instructions

in steps of 250 has been experimented with. For a particular window size, the value

of k is varied from 2 to 10 in increments of 2. To determine the best l and k, we ran

a set of 10 workloads. We computed the percentage increase in IPS2/Watt of our

proposed core over running the application on the baseline AC core-mode.

As observed from in Figure 4.4, window length, l of 500 and k of 4 provide the

highest improvement in IPS2/Watt.

4.3 Adaptive Voltage and Frequency Scaling in AdaCore

In AdaCore, each of the core-modes runs at different voltage and frequency levels.

Thus, while switching from one core-mode to another, we need to make sure that
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overhead due to voltage and frequency scaling is not large enough to negate the

benefits obtained from our proposed morphing scheme.

Whenever there is change in processor frequency, the PLL needs to re-lock to

the new frequency which would result in halting of the processor. This overhead in

Intel’s processor is claimed to be 5 µs [30]. There is also additional overhead involved

when scaling up voltage/frequency as the processor operates at lower frequency till the

voltage has scaled up to the newer value, resulting in performance loss. This overhead

is estimated to be around 25µs for the range of voltage/frequency considered based

on the work in [30]. Thus, to reduce the high overhead, frequency scaling has been

applied in the past only at coarse grain instruction granularity in the order of millions

of processor cycles.

In our proposed scheme, we morph from a core-mode with a particular volt-

age/frequency(v/f) setting to a core-mode with a different (v/f) values at a fine-grain

instruction granularity. Recently, Kim et al. studied the use of an on-chip regulator

that would allow scaling voltage on the order of tens of nanoseconds or hundreds

of processor cycles [19], [20], [25]. Their observation was that with the help of on

chip regulator, voltage and frequency scaling could be performed at fine-grain at the

order of hundreds of processor cycles. Hardware based fine-grain voltage and fre-

quency scaling mechanism with an on chip regulator was implemented by Eyerman

et al where switching v/f modes was made possible upon individual off chip memory

access [10].

Thus, in this work, fine grain voltage and frequency scaling is used in transition

from one core-mode to another with an estimated overhead of 200 cycles.

4.4 Decision Controller and Overheads

To enable morphing between different core-modes, we need a controller that inter-

acts with the core and helps the core to make smooth transition from one core mode
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Figure 4.5: AdaCore Decision Controller framework

to another. As shown in Figure 4.5, the controller consist of power/performance es-

timator which receives the performance counters (PMC) values sampled at fine-grain

instruction granularity from the core. Once it receives the PMC values, it computes

power and performance on each core-mode, using the trained expressions obtained

offline as explained previously. The computed values are then fed into the coordi-

nating controller which then computes IPS2/Watt on each of the core-modes and

determines the best core to morph into.

If the computed IPS2/Watt value on the other core-mode is greater than the

mode it is currently executing and the difference is greater than a fixed determined

threshold, the controller initiates the morphing in AdaCore. When core reconfigura-

tion is initiated, core parameters of the currently executing core consisting of ROB,

LSQ ,IQ, fetch and issue width are resized. The coordinating controller also needs to

interacts with fine grain v/f controller to change the core voltage and frequency only

when a decision to switch is initiated.

If the controller determines that the best core-mode for next interval of execution

is the current core-mode, the fine grain v/f controller need not be initiated as there

is no change in voltage or frequency. Previously proposed morphable architectures

use a similar kind of controller based feedback technique to guide the core to the

27



right mode where overhead on each performance and power estimation to compute

IPS2/Watt was estimated to be 30 cycles [27].

The fine-grain voltage and frequency scaling overhead is assumed to be 200 clock

cycles as mentioned earlier. Overheads associated with power-gating/power-up of

banks of ROB, LSQ, IQ and partial powering on/off of fetch and decode units are

also taken into account. When power gating individual units/banks, no dynamic

energy is consumed and the static energy consumed by these idle units is low. Power-

gating/power-on of all the blocks simultaneously may lead to a sudden power surge

and therefore, we assume staggered power gating where only a single bank is gated

in a given clock cycle. Powering off a single bank is expected to take tens of clock

cycles [40]. The bank selected to be turned off is the one with the smallest number

of used entries. If the selected bank is not empty we must wait until all its entries

are vacated before switching it off. Taking into account all the individual overheads

we, conservatively, estimate the total overhead to be 500 cycles. As the frequency of

core reconfiguration is not high (as will be shown in the next section), even a higher

morphing overhead will have a negligible impact.
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CHAPTER 5

EVALUATING ADACORE

In this chapter, an evaluation of the proposed morphable architecture, AdaCore

is presented. We use gem5 as our cycle accurate simulator with integrated McPAT

modelling framework to compute power of the cores and L1 caches [4, 38]. We evaluate

our proposed scheme with SPEC2006 [5] and SPEC2000 [39] benchmark suites. The

benchmarks were compiled using gcc for Alpha ISA with -O2 optimization. All the

evaluations were carried out by running benchmarks for 2 billion after skipping the

first 2 billion instructions. Below, we discuss the evaluation metric and compare to

various other morphable architectures.

5.1 Selection of Switching Metric

Switching from one core-mode to another is based on the energy-delay product

metric (EDP). The EDP metric tries to capture the importance of both energy and

performance in a single expression. Since each of the modes uses a different frequency,

we try to minimize the energy-delay product at each window interval by morphing

into a core-mode that would provide the highest IPS2/Watt for that interval. If we

increase the weightage of the performance in the metric as in IPS3/Watt (related

to energy × delay2) or IPS4/Watt, these metrics would try to find core-modes that

provides best performance. Since our objective is to maximize the energy efficiency

without considerable performance loss or may be even with performance gain, we

select IPS2/Watt as our switching threshold metric. Thus, the decision to morph

from the current core-mode to another is taken if the IPS2/Watt computed for each
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Figure 5.1: IPS2/Watt improvement for AdaCore architecture with online mode
management scheme over baseline single OOO core as a function of switching thresh-
old.

of the other core-mode is greater than that of the current mode by atleast a certain

threshold that needs to be determined. Figure 5.1 shows that the improvement in

IPS2/Watt over the baseline is largest when the switching threshold is 7%. If more

than one core-mode is predicted to gain more than 7% of IPS2/Watt, the mode with

highest IPS2/Watt is chosen as our core-mode which we would morph into.

5.2 Performance/Watt of AdaCore

The percentage of time spent by various workloads in each of the core-modes

is shown in Figure 5.2 which justifies the need for a four-core-mode morphable ar-

chitecture that can address varying resource demands in diverse application phases.

At fine-grain granularity when low performance phases exist, these phases could be

mapped to a core-mode which is suited to target these low ILP phases.

The percentage improvement in IPS2/Watt of the proposed AdaCore when com-

pared to the baseline where application is run completely in OOO core is shown in

Figure 5.3. On average, we achieve an IPS2/Watt improvement of 39% and per-
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Figure 5.2: Time spent in each of the AdaCore modes by SPEC workloads.

formance improvement of 10% when compared to the baseline. Benchmarks which

are memory intensive or have high branch mis-prediction rates such as mcf, soplex,

astar, ammp achieve higher improvement in IPS2/Watt due to presence of more

low performance unstable phases that exist at fine grain granularity which could

take advantage of the proposed morphable AdaCore architecture. Compute intensive

benchmarks such as hmmer, bzip2, h264ref also take advantage of AdaCore and pro-

vide substantial benefits using core-modes that can relieve bottlenecks present in the

application phases. Figure 5.4 shows the average performance gain obtained in Ada-

Core fine-grain sampling, AdaCore coarse-grain and AdaCore with Oracle prediction

schemes for different values of the thread switching overhead. Even if the overhead of

mode switching is to increase from 500 cycles to 5000 cycles, the average performance

gain is reduced by only 4% for the proposed reconfiguration scheme.

The key difference between AdaCore and existing morphable architectures with

two core-modes consisting of OOO/InO [27] is that, the latter is more useful to

applications which have more memory intensive phases or phases with high branch

mis-prediction rates. For example, benchmarks such as mcf, astar, soplex which
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Figure 5.3: IPS2/Watt improvement achieved by the AdaCore architecture with
online mode management scheme over the baseline single OOO core.
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contain these phases can be mapped to energy efficient in-order core. The energy

efficiency obtained in mapping to in-order core comes with performance loss. Compute

intensive benchmarks benefit very little from these morphable architectures as they

have very few phases with low performance that could be mapped to the in-order

core, thus resulting in insignificant gain in energy efficiency.

For morphable architectures like AdaCore, a diverse set of application phases such

as memory intensive phases, phases with high branch miss-prediction or compute

intensive phases, can benefit from having core-modes designed to resolve application

performance bottlenecks. The proposed morphable architecture is also able to extract

energy saving opportunities available at fine grain granularity. Figure 5.5 indicates

that AdaCore achieves a 35% improvement in energy savings over a static OOO core.

5.3 Comparison with other schemes

A comparison between the proposed AdaCore and various other schemes or archi-

tectures is presented below.

5.3.1 Fine-grain AdaCore vs Coarse-grain AdaCore

AdaCore being a morphable architecture can alleviate processor bottlenecks faster

than an HMP architecture which requires transfer of state to another core. Therefore,

AdaCore was originally envisioned to switch at a fine-grain granularity. However, an

important question to consider is, would switching modes at a coarse grain granularity

provide the same amount of benefits as switching at fine-grain?.

To this end, we implement two versions of AdaCore, i.e., Fine-grain AdaCore vs

Coarse-grain AdaCore. For coarse grain switching, a sampling based technique has

been used. To model sampling based algorithm we use two parameters, the switching

interval and sampling interval as introduced in [28]. To make a decision regarding

mode switching, after every switching interval the application is sampled on all of
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Figure 5.5: Energy savings over baseline for variants of AdaCore

the available modes. The best core-mode which is determined during the sampling

interval is the mode where the application is run for the next switching interval. The

switching interval is taken to be 1M with sampling interval of 10K instructions [28].

Energy savings obtained by the schemes over a static baseline OOO core are

shown in Figure 5.5. AdaCore-coarse grain provides 25% energy savings which is

10% less than our AdaCore with four core-modes and a fine-grain scheme guided

by performance counters to make switching decision. Lower energy savings obtained

from sampling based schemes arise due to incorrect decision in finding the right core

mode and inability to take advantages of opportunities that occur at finer granularity.

5.3.2 AdaCore vs HMP with Non-monotonic core-types

In this section, AdaCore architecture is compared with the HMP architecture

proposed in [28] consisting of non-monotonic core types as shown in Table 3.1. Navada

et al. [28] identify bottlenecks in the current core using performance counters and

transfer the current application to the core that can relieve this bottleneck. Since the

cores are independent, upon each swap of application from one core to another they
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Figure 5.6: Improvement in IPS2/Watt over baseline OOO core for multiple AdaCore
schemes.

need to account for register transfer overhead and L1 cache misses. As a result their

architecture does not allow to perform thread switching at a fine granularity. Their

decision to switch is taken after every 10K instructions.

Our proposed morphing scheme can achieve 15% more improvement in IPS2/Watt

over an HMP with identical core-types. Higher IPS2/Watt is achieved due to more

reconfigurations that take place at lower instruction granularity as shown in Figure

5.7 for AdaCore with four core-modes. At lower granularity there is potential for more

lower performance phase intervals thus providing more opportunities to use energy

efficient mode resulting in increased switching activity as shown in Figure 5.7. For our

instruction length of 2K we obtained about 500 more switches/million instructions

when compared to the 10K interval resulting in a higher performance/Watt. For the

switching threshold of 7%, for every 10M instructions committed, it was found that

AdaCore switches modes with a probability of 17 percent.
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Figure 5.7: Number of switches per ten million instructions for a range of instruction
granularities.

5.3.3 AdaCore Oracle vs AdaCore PMC

In the AdaCore Oracle scheme, an oracle is used to steer the application to the

right core-mode. Switching between core-modes is performed at instruction granu-

larity of 2000 as determined earlier. Thus for every 2K instruction granularity, the

oracle chooses the core that best suits the application. Energy savings obtained from

the oracular scheme is shown in Figure 5.5. The oracular scheme provides 12% more

energy savings than our PMC-AdaCore. It was observed that 6% of all the switches

made by AdaCore PMC differed from switches suggested by the Oracle. Further

analysis revealed that for 2.5 percent out of the 6 percent, AdaCore PMC switched

to a mode which was not suggested by the oracle while the remaining 3.5 percent

of switches were not required at all. As this scheme is not practical, it provides an

upper-bound for maximum energy savings that could be achieved from a morphable

architecture with four core-modes.
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CHAPTER 6

COMPARATIVE STUDY WITH DYNAMIC VOLTAGE
AND FREQUENCY SCALING MECHANISM

Several DVFS schemes which achieve multiple and wide range of objectives were

presented in chapter II. In this chapter, we study whether a superscalar OOO proces-

sor can achieve energy efficiency similar to that of the morphable architectures while

losing as little performance as possible by efficiently utilizing DVFS at a fine grain

granularity.

The trigger to scale the frequency and/or voltage in the processor could vary

depending on the objective of the scaling. The applications running on a standard

processor may not exhibit the same behavior during the entire execution. Their

behavior, resource demands and performance may vary over time. A workload section

exhibiting similar characteristics over a short period of time is termed as a phase.

Therefore, an application may include multiple phases over the entire benchmark

execution. Individual phases may perform best at distinct voltage and frequency

points.

Researchers have found that the applications in SPEC 2000 and SPEC 2006 bench-

marks display wide range of behavior at a small granularity of very few thousands

of instructions [31]. Therefore, AdaCore and the DVFS scheme that we compare,

attempt to respond to changing application phases by switching a core mode or (v/f)

mode every few thousand instructions. The core considered to use DVFS is identical

to the Average core (AC) from Table 3.1. The frequency is varied from 1.2GHz to

2GHz in steps of 200 MHz. It is to be noted that the voltage and frequency points
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Table 6.1: Voltage and Frequency modes considered.

Frequency(GHz) Voltage(V)

1.2 0.8

1.4 0.8

1.6 0.9

1.8 1.0

2 1.1

picked in Table 6.1 are taken considering 32nm CMOS process technology. The volt-

ages for the corresponding frequencies were selected in accordance with Intel’s 32nm

datasheet [14].

Traditionally, scaling the operating voltage is performed by using off-chip regu-

lators. The overhead of using off-chip regulators often run into tens of thousands

of cycles [6]. Such high overhead limits the granularity at which DVFS can be per-

formed. Clearly, scaling voltage and frequency dynamically at finer granularities can

provide greater energy efficiency for processors with very small overhead for scaling.

Therefore, Kim et al dedicated research efforts into designing a low overhead on-chip

voltage regulator [20]. The overhead to switch the v/f mode at runtime was reduced

to 200 cycles [10]. The average additional latency in case of AdaCore was assumed

to be 300 cycles in addition to the 200 cycles for DVFS scheme alone. As mentioned

previously, the outcome of DVFS or morphable architectures is highly dependent on

the mechanism which determines the mode switching in either scheme. The runtime

switching mechanism considered in both schemes are described in the next section.

6.1 Runtime V/F Mode Selection

6.1.1 Simulation and Oracular Study

To simulate the DVFS described above, the baseline AC core with DVFS capability

is simulated using gem5 [4]. The power over a period of workload execution is obtained

using the McPAT power simulator [38]. A set of 15 SPEC2000 and 2006 workloads
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were run through the cycle accurate simulator for 2 billion instructions after fast

forwarding a billion instructions. The window length and m from Section 4.2 were

used. Then, performance and power over the execution of each of the workloads were

collected. An oracle steering algorithm is utilised to arrive at the best v/f mode to

run on at each instant of time. The oracle is aware of power and performance of

the OOO core in each of the v/f modes and it chooses the mode that achieves the

best value of the decision metric. Following is a study which was used to choose the

decision metric.

To compare the DVFS scheme with AdaCore, the proposed DVFS scheme is to be

designed to achieve the highest power efficiency while losing only little in performance.

Therefore, the decision metric used to drive the DVFS needs careful consideration.

The DVFS enabled core is capable of scaling the frequency and voltage to any of

the modes mentioned in Table 6.1. The decision to scale the frequency is performed

based on the decision metric IPSn/Watt where n is a positive number. To determine

the value of n, several DVFS experiments with an oracle steering algorithm were

conducted. In each of the experiments, the oracle determined the best v/f mode

based on the decision metric IPSn/Watt where n is a value between 1 and 3. The

IPS/Watt, IPS and power improvement normalised to the baseline are presented in

Figure 6.1 for selected values of n.

It is observed from Figure 6.1 that for n=1, we obtain a 38% improvement in

power efficiency measured by IPS/Watt but incur a performance loss of about 16%

over the baseline mode. We observe that the IPS/Watt gain for n=2 is 26% with 6%

loss in performance. Since we see minimal benefits for n=3, we search for a value of n

between 2 and 3. The aim is to obtain the highest IPS/Watt while losing minimum

performance. From the points shown, we find n=2.2 to be the pareto optimal point

and therefore choose n=2.2 which provides 20% improvement in power efficiency with

only 3.5% loss in performance.
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Figure 6.1: Performance, energy savings and performance/Watt improvement over
baseline OOO for decision metric IPSn/Watt

6.1.2 Performance and Power Prediction

To compute IPS2.2/Watt, for each of the v/f modes, the performance and power

on the corresponding modes has to be estimated. The performance and power es-

timations are similar to that of the AdaCore described in Section 4.1. Performance

counters collected on the current v/f mode are used as a means to estimate the per-

formance and power in all the other v/f modes using the statistical method explained

in Section 4.1.

We use a training set of seven SPEC2006 and SPEC2000 benchmarks to be run on

each of the v/f modes. The training set is fast forwarded for 2 billion instructions and

run for 2 billion instructions during which the above listed performance counters are

collected at a certain instruction granularity. Along with the performance counters,

power and performance for each of the runs were also collected through our simulation

framework. A linear regression model is used to extract the equations needed for the

estimation. The counters selected for prediction are similar to those presented in
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Figure 6.2: Comparison of Fine Grain DVFS scheme with other schemes

Section 4.1. Performance and power estimation equations similar to Table 4.1 were

extracted for transitions from each of the modes in Table 6.1.

6.1.3 Fine-Grain DVFS vs Coarse-Grain DVFS

As explained above, given the low overhead of on-chip regulators, processors can

afford to switch modes quite frequently. Therefore, the DVFS runtime mechanism

considered in this study can afford to switch v/f modes at a very fine instruction

granularity. However, an important question to consider is, would switching v/f modes

at coarse grain granularity achieve the same power efficiency as fine-grain granularity.

To this end, two versions of the proposed DVFS, i,e., fine-grain and coarse grain

DVFS have been implemented and an evaluation of power efficiency for switching v/f

modes at both coarse and fine granularities was performed. In coarse grain DVFS,

the decision to switch v/f modes is taken every 1M instructions, while in fine grain

granularity, switching decisions are made every 2000 instructions similar to the Ada-

Core evaluation. Figure 6.2 shows that while using both oracular steering algorithm
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Figure 6.3: Performance/Watt comparison between FineGrain DVFS and AdaCore

or a PMC based runtime mechanism, the fine-grain DVFS outperforms coarse grain

DVFS in terms of IPS/Watt by 5%.

6.1.4 DVFS vs AdaCore

The AC core with features to scale voltage and frequency at runtime at a fine

grain granularity was simulated. Multiple v/f modes were selected and a DVFS steer-

ing mechanism was developed to improve processor power efficiency. An important

question is whether a processor with fine-grain DVFS capability can achieve power

efficiency comparable to that of a reconfigurable architecture such as AdaCore.

To this end, Figure 6.2 shows the power efficiency (IPS/Watt) achieved by Ada-

Core and Fine-Grain DVFS scheme. It is observed that AdaCore outperforms Fine-

Grain DVFS by 14%. Higher performance/Watt is achieved by AdaCore due to

resource reconfiguration at lower instruction granularity.
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A benchmark comparison of the fine-grain DVFS and AdaCore is shown in Fig-

ure 6.3. It illustrates that memory bound benchmarks such as mcf, libquantum and

soplex exhibit a large IPS/Watt improvement over the baseline as predicted. Higher

frequency may not provide high performance gains for memory bound benchmarks.

Therefore, they benefit in terms of IPS/Watt when they are run on the low frequency

modes. However, we notice a larger IPS/Watt improvement for AdaCore as recon-

figuring the resources contributes to larger IPS/Watt than fine-grain DVFS alone.

In case of branch intensive workloads like astar, gobmk, swim and sjeng, we also

see a greater than 15% improvement in IPS/Watt for fine grained DVFS. The Ada-

Core achieves a larger improvement for as its smaller resource modes improve power

efficiency as was in case of memory bound applications. The compute bound applica-

tions like hmmer, equake and h264ref however, gain less than 15% in power efficiency

through DVFS as compared to greater than 20% observed for AdaCore.
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CHAPTER 7

CONCLUSION

Since applications experience diverse phase behavior during their execution, they

can take advantage of a morphable core architecture.

A morphable architecture has been proposed in this thesis where a single OOO

core morphs or reconfigures into three other OOO modes with capabilty to address

various processor bottlenecks. The proposed morphable core can adapt to a spe-

cific core-mode depending on phase resource demands. The decision to reconfigure is

taken at runtime thereby alleviating the loss in performance while also saving energy

where there is lack of demand for certain resources, by using aggressive power gating

and DVFS techniques. This research work proposes aggressive mode switching at a

fine-grain granularity to address the resource demands or lack thereof, to save energy

while not losing performance. Therefore, we also provide an efficient run time perfor-

mance counters based switching decision mechanism that can map the application to

the right core-mode at fine grain granularity, thus providing high performance/Watt

throughout the application execution.

Multiple versions of the proposed morphable architectures have been considered

for comparing with the proposed AdaCore with a runtime control mechanism based

on performance counters. A comparison evaluation of power efficiency with AdaCore

and fine-grained DVFS schemes was performed. Our results indicate that we can

achieve average performance/Watt benefit of 32% over executing on a static OOO

core with performance gain close to 10% and almost 14% performance/Watt over

fine-grained DVFS.
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