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ABSTRACT

AUTOPLUG : AN AUTOMATED METADATA SERVICE
FOR SMART OUTLETS

SEPTEMBER 2017

LURDH PRADEEP REDDY AMBATI
B.E., CHAITANYA BHARATHI INSTITUTE OF TECHNOLOGY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST
Directed by: Professor David Irwin

Low-cost network-connected smart outlets are now available for monitoring, controlling,

and scheduling the energy usage of electrical devices. As a result, such smart outlets are

being integrated into automated home management systems, which remotely control them

by analyzing and interpreting their data. However, to effectively interpret data and control

devices, the system must know the type of device that is plugged into each smart outlet.

Existing systems require users to manually input and maintain the outlet metadata that

associates a device type with a smart outlet. Such manual operation is time-consuming

and error-prone: users must initially inventory all outlet-to-device mappings, enter them

into the management system, and then update this metadata every time a new device

is plugged in or moves to a new outlet. Inaccurate metadata may cause systems to

misinterpret data or issue incorrect control actions.

To address the problem, we propose AutoPlug, a system that automatically identifies

and tracks the devices plugged into smart outlets in real time without user intervention.

AutoPlug combines machine learning techniques with time-series analysis of device energy

data in real time to accurately identify and track devices on startup, and as they move
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from outlet-to-outlet. We show that AutoPlug achieves ∼90% identification accuracy

on real data collected from 13 distinct device types, while also detecting when a device

changes outlets with an accuracy >90%. We implement an AutoPlug prototype on a

Raspberry Pi and deploy it live in a real home for a period of 20 days. We show that

its performance enables it to monitor up to 25 outlets, while detecting new devices or

changes in devices with <50s latency.
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CHAPTER 1

INTRODUCTION

The U.S. Energy Information Administration estimates that commercial and resi-

dential buildings account for 41% of U.S. energy usage, and over 75% of its electricity

usage [24]. As a result, gathering detailed energy usage from buildings to optimize their

energy consumption is critically important. Due to the high price of networked sensors,

prior researchers have focused on analyzing power data from a single building-wide energy

sensor to disaggregate it and estimate the energy usage of individual devices [19]. Unfor-

tunately, such energy disaggregation, which is also known as Non-Intrusive Load Moni-

toring (NILM), is often highly inaccurate even in buildings with only a small number of

devices [4]. However, recently, low-cost network-enabled energy sensors and switches have

become widely available to consumers. The presence of these sensors can both aid in dis-

aggregation or remove the need for it entirely. For example, many commercially-available

smart power outlets cost <$50, including the Belkin WeMo [34], Insteon iMeter [20], and

Z-Wave Smart Energy Switch [1]. In addition, research prototypes now exist that cost

less than $20 [13]. These “smart” sensors and switches have the potential to enable deep

visibility and control of the energy usage for each individual electrical device in a build-

ing. Ultimately, smart sensors and switches are the foundation of “smart” buildings that

collect energy usage data from devices, combine it with external data on the environment,

forecasts, energy prices, user occupanncy and comfort, etc., and analyze it to coordinate

control of devices to optimize for energy usage, cost, user comfort, etc.

Smart energy sensors and switches may either be embedded into a device itself, or be

attached externally to the device, e.g., as part of a power outlet. Embedding sensing and
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switching functions into devices enables users to perform a one-time association between

a device’s unique identifier, e.g., its MAC or other layer-2 address, and its building man-

agement system (BMS). While this association is often done manually, given well-defined

standards, resource discovery protocols could also be developed to automate the device’s

initial configuration with the BMS. However, embedding such functions into devices is

likely only feasible for devices that are large enough to warrant the additional complexity.

The numerous miscellaneous electrical loads (MELs), which comprise a rapidly growing

portion of building energy usage [15], are likely too small and inexpensive to warrant their

own embedded sensing and control functions. In addition, existing appliances that do not

have smart functions will continue to operate for many years. Further, this approach re-

quires BMSs to interact over the network with untrusted devices that visitors may bring

into the building, e.g., to register them with the BMS, which is a security concern both

for the BMS and for visitors.

Thus, a more general approach is to separate the energy sensor/switch from the de-

vices, often by embedding these functions into each building outlet. This approach re-

quires instrumenting only a building’s outlets, rather than its devices. As a result, the

BMS need only be configured once based on the unique identifier associated with each

outlet, and also its location (which is generally not available from device-level sensors).

In addition, since the outlets are part of the building’s administrative domain, they can

be trusted by the BMS, alleviating it from interacting over the network with untrusted

devices from visitors. However, such external sensing poses a significant metadata chal-

lenge: since the sensors are built into outlets, rather than devices, users must manually

associate the outlet with the respective device that is plugged into it. Further, users must

alter this device-to-outlet mapping every time devices are unplugged or move to a new

outlet. While some devices, such as a refrigerator, rarely if ever move, other devices,

such as laptops, frequently change outlets. Companies typically provide smartphone or

desktop apps to configure and monitor smart outlets, as well as schedule remote control

2



of devices, e.g., to turn them on or off at specific times or based on custom triggers. These

applications also provide basic energy data analytics, such as a device’s energy consump-

tion. The market for smart outlets and other home automation devices is expected to

grow by 60% from 2012 to 2018 [12].

Energy data recorded by smart outlets is much less useful to a BMS if the data is not

correctly associated with a device, as it prevents a BMS from providing an accurate per-

device breakdown of energy usage and also may result in incorrect remote control actions,

e.g., by switching the wrong devices on or off. The configuration of current applications

for controlling smart outlets and collecting their energy data is manual, and typically

based on the outlet and not the device. Thus, users can only view the energy usage of

outlets or automate the control of specific outlets, and not devices. Providing such energy

data and control for devices, regardless of the outlet they are plugged into, is more natural

for users, as energy-efficiency optimizations are based on devices not outlets.

To address the problem, we design AutoPlug, an automated metadata service for smart

outlets, which can automatically identify and track the devices plugged into smart outlets

based on their energy data in real time. We present our system as a service, deployable in

a wireless gateway that communicates with smart outlets, and has the ability to identify

the appliance plugged into the outlets. This gateway maintains a record of both previously

identified devices, as well as a real-time record of the smart outlet→device mappings. This

gateway could be incorporated into hubs like the Amazon Echo [3] and Google home [18].

For example, the Amazon Echo can already communicate with Belkin Wemo, ZWave, and

Zigbee sensors and switches.

AutoPlug assumes a smart building that is equipped with smart outlets capable of

recording and wirelessly transmitting their power consumption in real-time, e.g., at a 1Hz

resolution, to a centralized gateway. The outlets may also be remotely controlled by the

gateway, e.g., switched on or off. Our hypothesis is that combining machine learning

techniques with analytical time-series models of device usage will result in accurate iden-

3



tification and tracking of devices on startup, and as they move from outlet-to-outlet in

real time.

1.1 Contributions
In this thesis, we make the following contributions:

• Real-time tracking: We design AutoPlug to be a real-time system that identifies

when a device moves from one outlet to another. Prior work [9] has not emphasized

real-time identification and tracking of changing outlet metadata, and has instead

focused narrowly on identification via classification over long time windows. Our

basic approach is to combine time-series pattern matching techniques to recognize

when the pattern of energy usage of an outlet changes, which indicates a new device

has been plugged in.

• ML Feedback: AutoPlug uses the device tracking information to improve the

offline machine learning techniques by enabling them to accurately configure the

time period over which they analyze the data. If a device change has been detected

in an outlet, then AutoPlug dynamically re-configures the analyzing time period

such that it considers the time since the device change. Prior work [9, 2] generally

performs the classification over a static time period, e.g., every 24 hours, which may

result in inaccuracy if the device plugged into the outlet changes one or more times

within the 24 hour period. We show that our approach is more accurate than the

prior work [9] for device identification.

• Implementation and Evaluation: We implement AutoPlug prototype on a Rasp-

berry Pi and deploy it live in a real home for a period of 20 days. We evaluate

AutoPlug’s accuracy on multiple data sets and in addition, we also evaluate its per-

formance in terms of latency on multiple platforms. Prior works [9, 2] focus only

on offline machine learning analysis, and ignore performance considerations. Our
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results show that AutoPlug achieves ∼90% identification accuracy on real data col-

lected from 13 distinct device types, and is also able to accurately detect when a

device changes outlets with accuracy >90%. In addition, we show that AutoPlug is

able to monitor up to 50 outlets on a Raspberry Pi 2 while detecting new devices

or changes in devices with only a 100s latency.

1.2 Problem Statement
We define AutoPlug’s outlet metadata problem as a combination of two distinct, but

interlinked sub-problems. The first sub-problem is to identify the device D that is plugged

into a smart outlet Oi over a period [tstart, tend], given time-series power data P (t) from

[tstart, tend]. This problem is similar to the machine learning classification problem explored

in prior work [9, 27], where the task is to map a given feature vector, which is based on

processed time-series data, to a device label. As in prior work, AutoPlug processes the

time-series power data to form a feature vector based on the data’s statistical metrics.

We then use well-known feature vectors from representative devices with known labels as

training data to the classifier. After building the model, the classifier outputs a device’s

label based on an input feature vector. One notable difference between prior work and

AutoPlug is the selection of the interval [tstart, tend] over which the classification occurs.

Prior work generally performs this classification over a static time period, e.g., every 24

hours, which may result in inaccuracy if the device plugged into the outlet changes one or

more times within the 24 hour period. In this case, the feature vector represents a variety

of different features from multiple different devices. Instead, AutoPlug dynamically sets

the interval based on the sub-problem below.

Our second sub-problem is to identify when a device is newly plugged into an outlet

or changes from one outlet to another. MELs are often plugged into and out of outlets,

especially in shared spaces such as living rooms or kitchens. We call this sub-problem

“swap” detection using the same terminology from prior work, which first identified this
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problem [27]. However, prior work only applied the same classification techniques as

above to detect such swaps. Unfortunately, the machine learning classification problem

above is not well-suited to dynamically detecting such changes in outlets in real time, as

these classifications are trained based on device features, rather than the “features” of a

change. That is, they attempt to simply map features over a given time period to a single

device label. Thus, prior approaches cannot accurately detect the presence of multiple

devices over a time period. Given a smart outlet Oi and time series power data P (t), swap

detection is the problem of determining the time tchange when a new device is plugged into

an outlet and is turned on. Swap detection has two key metrics: the accuracy of tchange

and the latency to detect a change has occurred.

1.3 Application areas
Potential applications of our system include device resource discovery, device activity

recognition, energy attribution, etc. First, Homes with many smart outlets deployed may

use the system to discover the status of the outlets and identity of loads1 plugged in. The

system would maintain the mapping of the smart outlet and its host appliance and these

mappings can be accessible to users through a dashboard or a smartphone application.

Without the accurate outlet-appliance mappings, it is fairly difficult for a user to spatially

locate the devices (assuming the smart outlet’s position is fixed).

Second, our system aids in device activity recognition, for example, it can provide

information like when was the last time a coffee maker was active, when was the microwave

oven last active etc. If we configure the AutoPlug to notify a user of certain events like

garage door opening/closing, toggling coffee maker etc., then AutoPlug can notify the user

in the case of a respective event happening. From the dashboard application perspective,

this feature/aspect can be important as this can track the device as well as its activities.

1In this document, we use terms "load", "device" and "appliance" interchangeably

6



Third, it can be used to detect fault appliances. Since the AutoPlug analyzes the

time series power data of each appliance, a faulty appliance can be identified as either

an appliance which draws significantly more power than average that appliance used to

draw or an appliance whose power consumption increases over time. In such a situation,

AutoPlug notifies the user regarding the deteriorating device. The system could even

compute and notify how long the device will be operational before complete breakdown,

if the user takes no action to replace the device. An example of such a devices is generally

those which are less energy efficient over their lifetime or which operate continuously over

long periods of time like a refrigerator, air conditioner etc.
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CHAPTER 2

BACKGROUND

In this chapter, we will discuss various existing techniques which aim to disaggregate

a smart meter data into individual appliance energy consumption, techniques which deal

with identifying the appliances based on the data or tags given by building managers and

device modeling. We first describe non-intrusive methods for load monitoring. We then

move onto the device modeling and techniques addressing the problem of identifying the

devices plugged into the smart outlets/plugs.

2.1 Non Intrusive Load Monitoring (NILM)
The goal of Non-Intrusive Appliance Load Monitoring is to break down the aggregate

energy consumption of household into individual appliance energy consumption. Hart

(1992) introduced this field in his seminal work [19], which outlined a set of principles

NILM algorithms should follow, a taxonomy of the potential approaches, a set of features

that such approaches could use to distinguish between appliances and the use of finite

state machines to model appliances. NILM techniques require the prior knowledge of

the accurate appliance model. These models are required to track the appliance’s load

signature in the given aggregated energy consumption data of a household. There exist

various techniques of NILM in the literature.

First one is Hart algorithm [19] for NILM, it is a model driven approach. In this

approach, each appliance is modeled as a finite state machine. This approach first detects

the edges in smart meter data, where an edge refers to a power surge or drop in power

by a large margin in the data, for example, a +180W power change and -130W power
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change due to the refrigerator will be detected as edges. After detecting all the edges

in the data, clustering is used to cluster together similar changes in power between two

steady states. After this On-off pairs of each appliance are grouped together i.e. similar

power changes are grouped together. Next, simultaneous changes will be separated for

example if a step change of +700 W is observed, this can be due to +500 W and +200

W appliances turning on. Finally, based on the finite state machine of each appliance

model, On-off pairs can be identified as which appliance they belong to. Limitation of

this approach is its performance degrades as we consider low power consuming appliances

and it is best suited for on-off appliances only.

Second is Combinational Optimization (CO) [10] for NILM. CO is a topic that consists

of finding an optimal object from a finite set of objects. At any given time, an appliance

can only be in a single state. CO assigns each load a state and calculates the total power

drawn by all the appliances in a household. Error in this assignment is the difference

between the actual power drawn by all the appliances and power calculated above. CO

seeks to minimize this by finding an optimal combination of the appliance in different

states which will minimize the error term.

Apart from these approaches, there have been prior works which took a different

approach to track/monitor the loads in a smart meter data. Powerplay [7] is a model

driven approach for monitoring an individual electrical load’s energy usage by analyzing

a building’s smart meter data. It takes an online tracking approach and employs a feature

driven approach for tracking the loads. Powerplay tracks the individual device events in

the real time by continuously tracking the device as a smart meter generates new data.

In the recent work [23], energy disaggregation of smart meter data is done by applying

neural networks. Neural nets described in this approach once trained, they do not need

ground truth appliance data from each house. Also, this approach requires substantial

training data as the deep neural nets use large number of parameters.
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2.2 Device Modeling
Accurate modeling of electrical loads characterizes the device usage and behavior,

which is key in interpreting the energy data. Modern electrical appliances demonstrate

complex energy usage pattern, that is hard to characterize using simple on/off model.

It is particularly important when the only data available is aggregated, as is typically

the case with a single energy meter providing energy data from the entire house. NILM

techniques depend on accurate models to disaggregate the smart meter data, inferring

occupancy patterns [25], and reducing peak demand by opportunistic load scheduling [8].

In the past, Sean Barker et al. [6] proposed an empirical or analytic modeling of elec-

trical loads based on fundamental electrical characteristics (e.g., resistive, inductive, or

non-linear loads). In this work, authors developed a framework to characterize/describe

the energy use of modern devices that is more accurate than simple on-off models. Re-

cently, Srini Iyengar et al. [21] developed an automated modeling framework(NIMD) for

residential electrical loads, this work is similar to aforementioned work. NIMD enables

simple construction of highly detailed power traces for any devices from given sample

data. It was shown that generated traces closely approximate the ground truth data.

Such a framework can be used for wide range of applications like generating training data

for NILM algorithms, or for classification based techniques like NILI [9] etc.

Most prior works in modeling devices have been in the context of NILM (improving

its accuracy). A recent work [2] aims to track the devices plugged in smart plugs in real

time uses device modeling techniques to detect the devices, where they aim to infer the

appliance energy consumption model from the given input time-series and identify the

appliance as belonging to one of the defined appliance models.

2.3 Identifying appliances plugged into smart outlets
This section discusses the existing approaches to identify the devices plugged into the

outlets and to track the devices which move from one outlet to another outlet frequently.
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All the approaches described below assume a home where it is instrumented with smart

outlets and smart outlet data is measured at a constant interval.

There have been several works proposed in the recent past that address the problem

of identifying the appliance plugged into a smart outlet based on outlet data. Few of

the works were based on the voltage/current data, other were based on the power data.

These works are in the context of a home, the spatial location of the outlets is ignored in

these approaches.

The fundamental approach of these techniques involves transforming the outlet data

into a compact set of features, which characterize the energy consumption of the outlet.

And then the off-the-shelf classifiers are trained on those feature vectors and are used

to label the outlets. Usually, substantial amount of training data is required for these

classifiers to accurately identity/predict the outlet’s label.

Sean Barker et al. [9] address the problem of automatically identifying the devices

plugged into the outlets. The approach presented in this work is based on the extracting

the features from the input time-series power data, these features include statistical,

and histogram based values to represent the device energy consumption. The proposed

system uses a C4.5 classifier for classification and the data window is a day long and the

data resolution is 1 second. The evaluation results show an accuracy of 93% in the case

of "observed" devices. However, this approach doesn’t take into the account the outlet

changes.

Leonardi et al. [27] proposed a similar approach to the above work, apart from that

this work presents a novel approach for detecting the new devices plugged in (new devices

introduced in the respective house/environment) and detecting the swap of devices in a

smart outlet. In this work, authors consider only the statistical features as part of the

feature vector. The approach to detect new devices or swap of a device is to check if the

energy usage pattern fits one of the existing models (classification model). However, this

11



approach doesn’t take into account that appliance can operate in multiple modes, as such

appliances like microwave oven, washing machine etc. have multiple operational modes.

The above approaches discussed share a common drawback; all of the works are offline

analysis and ignore the performance aspect of the system as the machine learning and

statistical techniques used in those approaches have high computational overhead.
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CHAPTER 3

DESIGN

We distill AutoPlug’s two sub-problems of outlet metadata maintenance—device clas-

sification and swap detection—into the two design pipelines in Figure 3.1. The device

classification sub-problem includes feature extraction from time-series power data, as a

pre-processing step, followed by model building based on training data from existing de-

vice energy usage traces, and then load classification based on the learned model, which

provides the output AutoPlug uses to update its device-to-outlet mapping, i.e., by mod-

ifying the database that stores the mapping. In contrast, the swap detection pipeline

has only two stages: the active period extraction as a pre-processing step followed by

time-series similarity matching. In active period extraction, AutoPlug divides the input

time-series power data into distinct device active periods, which represent contiguous time

periods where a device is active and consuming electricity. Note that if there is no energy

consumption by an outlet, AutoPlug cannot determine whether a device is unplugged or

whether it is simply not turned on.

3.1 Device Classification and Labeling
For device classification and labeling, similar to prior work [9], we first perform feature

extraction by transforming a given window of time-series power data into a reduced set

of statistical features, called a feature vector, that serves as input to a classifier. Auto-

Plug extracts features from both the raw data, as well as processed data consisting of a

new time-series of energy deltas that represent the difference between consecutive power

readings in the raw data. We use the latter time-series because changes in power are
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Figure 3.1: AutoPlug Design Block Diagram

often more identifiable than the raw power level of a device. Below, we briefly review the

specific features AutoPlug’s classifier employs for model training and device identification.

Note that these features are similar to features used in prior work [9, 27].

3.1.1 Statistical Features

We compute a simple set of statistical features for the two time-series above. Common

features include the average, maximum, minimum, and standard deviation over each

input time-series. These statistical features provide the classifier model characteristic

and discriminative information for a specific device. In addition, we also compute an

additional metric for our feature set: the number of energy deltas greater than a threshold

value ∆OSC . This metric gives insight into the dynamic behavior of the device’s energy

consumption, i.e., the frequency and magnitude of its variations in power, as shown in

the equation below (where pi is the average power of ith outlet, and δ>(x, y) = 1 if

|y − x| > threshold and 0 otherwise).
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∆OSC =
N∑

i=2
δ>(pi(ti), pi(ti + 1)) (3.1)

pi is average power of ith outlet

where δ>(x, y) = 1 if |y − x| > threshold, O otherwise

The threshold value depends on the input time-series data and varies across the ap-

pliances and appliance models.

3.1.2 Duty cycle

The duty cycle is the fraction of time a device has been active during a given window

of time. This feature is useful in distinguishing continuously running devices from devices

that run for shorter periods. The duty cycle feature indicates if an outlet’s device is idle

or active in the recent time-series window. We compute the duty cycle as the number of

power readings greater than a threshold value divided by the total number of readings.

This threshold value varies depending on the input time-series data.

3.1.3 Histogram Features

Devices also exhibit patterns of energy usage that are not captured by aggregate statis-

tical metrics. Similar to prior work [9], to capture this, we separate the energy delta values

of a device’s time-series power data into separate bins of a histogram, which indirectly

captures a device’s energy usage pattern as a set of features amenable to classification.

The selection of bin sizes is configurable, and affects the model’s accuracy. We use 8

different overlapping bins spanning from 10W to 2500W. Each overlapping bin width is

X to 5X, where X represents the starting power value for a bin. For example, our first

bin is 10W-50W. Bin starting values are 5, 10, 25, 50, 100, 200, 300, 400, and 500.

For each bin, we calculate two features: a) a bin size, which represents the number

of values that have populated the respective bin and b) an average time interval between
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the energy deltas in each bin. Thus, for 8 bins, there will be a total of 16 features that

characterize the waveform of the time series data.

3.2 Database Schema
We maintain a table of seen devices and their key characteristics 1. AutoPlug updates

the table whenever it updates an outlet’s label. Each device entry in the table has a name

field, outlet name, peak power, average power, energy consumed, and last active time.

The table is initialized when the user deploys AutoPlug and users can set the expiration

time for each device record (or can manually erase the database/table entry).

3.3 Detecting Outlet Changes
As discussed earlier, classification is not sufficient to accurately identify devices that

change outlets in real time. In this case, the feature vector from an outlet’s time-series

energy data may represent a combination of two or more devices. The classifier, however,

will provide only a single label, which may not match any of the devices plugged in, as

the aggregate features above may significantly diverge from the individual features of any

single device. Thus, detecting outlet changes is critical to the consistent maintenance of

outlet metadata. Since standard classification is not well-suited to detect such real-time

swaps, we design the detection technique below.

3.3.1 Active Period Extraction

First, to detect a device change in a smart outlet, we extract the active periods from

the outlet’s time-series power data. Each device alternates between active periods, where

it consumes significant energy, and inactive periods, where it does not. Since some devices

consume a small amount of standby, or vampire, power when inactive, we assume a device

1In this thesis, we use terms "sequence", "trace" and "time-series" interchangeably
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is inactive if its power usage falls below a small threshold. Based on empirical data across

a wide set of devices we set this threshold to 5W. The active period is then a continuous

time period where the device operates over a power greater than this threshold. We

delineate separate active periods if the inactive period is greater than a separation time

threshold, e.g., one minute. That is, if there is an inactive period of greater than one

minute we consider there to be two active periods before and after the inactive period. If

the inactive period is less than one minute, we discard the inactive period and assume it

was part of a brief lull in operation of a device’s active period.

Note that we have tried more advanced techniques for extracting the active period,

one was change point detection to find the change points in the input power data, where

a change can correspond to the device being ON or device going to idle state. Unlike

the thresholding method, where we need to calculate the threshold for each input, change

point detection doesn’t require setting the threshold for each input. We have observed

that both change point detection and thresholding yield similar output, and thresholding

is more computationally efficient than change point detection. Considering the fact that

thresholding is faster and computationally cheaper, we use thresholding in our work.

3.3.2 Time-series Matching

After we extract each active period from the input time-series power data in real

time, we then compare it with the previous active period to determine if the device has

changed outlets. In each case, AutoPlug signals a change in the device if the new active

period is significantly different than the previous active period. We combine two different

approaches to perform this comparison.

• Time-series Distance. There are multiple functions available to compute the

distance between two time-series, such as Euclidean distance or Dynamic Time

Warping (DTW) [30]. DTW finds an optimal match between two time-series which

allows for stretched and compressed sections of the sequences. DTW improves on
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Figure 3.2: Demonstration of active period extraction for a refrigerator trace

Euclidean distance, as it is less sensitive to slight differences in the alignment and

shape of the time-series pattern, i.e., it is able to slightly “warp” each time-series to

better align them and reduce the distance. Thus, DTW is robust to data sequences

of different lengths unlike with Euclidean distance [30], as traces are “warped” non-

linearly in the time dimension to compute a measure of their similarity. However,

the DTW algorithm is expensive, as it has O(n2) time complexity, where n is length

of longest data sequence. Thus, the longer the sequence in length, the more time

it takes for AutoPlug to compute the DTW distance, which may not scale well

on embedded devices like a Raspberry Pi or Arduino, commonly used as gateway

devices. As we show in our experiments, we coarsen our data (from 1Hz resolution

to 0.2 Hz resolution) before applying DTW to improve performance. Thus, in this
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approach, we compute the DTW distance between two consecutive active periods

and signal a change when it exceeds a specified threshold.

• Curve Fitting. Another approach is to fit a function to the data, e.g., such as a log-

arithmic growth function, and then compare the parameters of the best fit function

for both active periods. In this case, we signal a change if the percentage difference

between the parameters exceeds a threshold, which we determine empirically. Curve

fitting is a method to construct the best fit of a mathematical function for the input

data sequence, given the curve type or reference mathematical distribution. In this

approach, we compute the parameters of the best fit logarithmic growth function to

the active period, as prior work shows that this function approximates the energy

usage pattern on startup for a wide range of devices [6].

p(t) =


pbase + λ ∗ ln(t), 0 < t < tactive

poff , t > tactive

Using the logarithmic growth function, curve fitting on a given data set computes

two parameters pbase and λ. pbase is the starting power level of the best curve fit and

λ is growth parameter. In our approach, we compute parameters for both the active

periods and then we compare the respective pbase parameters, and finally compute

similarity S as the percentage difference in pbase of the both, where pbase1 and pbase2

are parameters for the active periods, respectively.

S = |pbase1 − pbase2|
max(pbase1, pbase2) ∗ 100 (3.2)

• Approach Selection. We use the DTW approach and Curve fitting approach

above in different circumstances. Specifically, if the length of an active period

is short, e.g., less than three minutes in our experiments, then we compare two

sequences using the second approach, since the logarithmic growth characteristic of
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many devices is generally short-lived. In contrast, if one of the active periodś length

is long, e.g., greater than three minutes, we use DTW, as longer active periods tend

to exhibit more variations in power usage that do not permit a single curve fitting.

Refrigerator TV Microwaveoven Vacuum cleaner
Appliance
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Figure 3.3: Strip plot of DTW distances between sequences of the same appliance, broken
down by appliance

AutoPlug signals a change if the similarity score or DTW distance exceeds a thresh-

old, which we determine empirically. As an example, we measure the DTW distance

between two active periods for four device types and illustrate the results in a strip-

plot in Figure 3.3. The figure shows that the DTW distance for the refrigerator and

TV are well below 10 (with few exceptions), but that the microwave and vacuum

have DTW distances scattered in the range of 0 to 50. Thus, selecting the DTW

threshold for the microwave and vacuum is more difficult than for the refrigerator

and TV. However, this is due largely to the shorter operating cycle of the microwave

and vacuum, which in this case is below our threshold of three minutes. The Fig-

ure 3.4 shows that the curve fitting approach’s similarity for the microwave oven

and vacuum cleaner are well below 10 (with few exceptions). Thus, AutoPlug uses
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Figure 3.4: Strip plot of Curve fitting distances between sequences of the same appliance,
broken down by appliance

curve fitting for these shorter active periods, as the DTW distance threshold is more

variable for these periods.

3.3.3 Window Size and Update Frequency

AutoPlug adapts the data window size and frequency at which it runs the classification

problem above. Prior work [9] uses a static window size of 24 hours and updated the

classification offline once per day. Instead, AutoPlug sets the window size and update

interval dynamically when it detects a change in the outlet. That is, the window size

for the classification of an outlet starts from the last change detected to the current

time. In addition, after a change AutoPlug periodically re-runs the classification, as the

classification accuracy increases as more data is collected after a device swap. The period

at which AutoPlug re-runs the classification based on new data is frequent, e.g., every

15 minutes, as new data significantly improves classification immediately after an outlet

change. AutoPlug stops re-running the classification when the "confidence" in the labeling

both reaches a specified threshold and does not significantly improve with new data. Here,
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"confidence" refers to the probability assigned by classifier to the output label. Note that

this approach results in AutoPlug potentially mis-labeling a device immediately after a

change, as there is not much data, and then correcting itself as it collects more data.

22



CHAPTER 4

IMPLEMENTATION

We have implemented Autoplug in python using the Scikit-learn [29] and Scipy [28]

stack. Scikit-learn is an open-source machine learning library for python, which has a

collection of classification, regression and clustering algorithms. SciPy has a collection

of powerful scientific computing libraries for data processing and visualization, as well

as modules for performing curve fitting. We use the implementation of Dynamic Time

Warping from a standard machine learning library for python. AutoPlug maintains a

simple database table where each row stores a device label, an outlet label, a start time

for the association, and the duration of the association.

4.1 Data Sets
For the classification technique, for training and initial evaluation we use device-level

data from a public data set - Tracebase [31] and the data collected from real a home

through eGauge equipment [14].

4.1.1 Tracebase Repository

The Tracebase repository was set up by a group at Darmstadt University, and contains

individual appliance data from an unspecified number of households in Germany. The

repository contains a total of 1883 days of power readings, recorded at 1 second intervals,

across 158 appliance in- stances (e.g. a Bosch Logixx KSV36AW41G refrigerator), of 43

different appliance types (e.g. refrigerator) in 2012. Since the core aim was to create an

appliance database, no household aggregate measurements were also collected.
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Since the Tracebase repository contains many examples of different appliance instances

of the same type, it provides an ideal data set from which to investigate the diversity of

appliances within an appliance type.

4.1.2 eGauge Data

We have collected the data from a real home using the eGauge equipment. eGauge

is an affordable, flexible, secure, web-based electric energy and power meter. eGauge

provides XML API, using which we collect the data at 1 second resolution. The data

collected from this home contains 30 days of recorded data from 6 devices belonging to

these categories: washing machine, refrigerator, lamps, dish washer, freezer, and TV.

4.1.3 Reference Energy Disaggregation Data Set

The Reference Energy Disaggregation Data set(REDD) [26] was collected by a group

at MIT from 6 households in the Greater Boston area, MA, USA. The data set contains

both household and circuit-level data over various durations. Current and voltage data are

recorded at high frequency (15 KHz) for mains circuits, while device-level or circuit-level

data was recorded at low frequency(3-4 sec interval), of 30 different appliance types.

4.1.4 Miscellaneous

Apart from the above data sets, we have collected the data from the devices that users

upgrade from time to time like TV, laptop etc. Table 4.1 shows the list of device’s data

we incorporate into the complete data set.

4.1.5 Virtual Data Set

We generate virtual data sets using Tracebase repository data and real home deploy-

ment data, such that the virtual data set resembles the appliance usage as in a real home

environment. In a real home environment, some devices, such as a refrigerator rarely if

ever move, other devices such as laptops frequently change outlets. So, we manipulate
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Device List
Coffee maker
Dish Washer
Freezer
Lamp
Laptop
Laundry Dryer
Microwave Oven
Printer
Refrigerator
Toaster
TV
Washing Machine
Vacuum Cleaner

Table 4.1: List of Devices that AutoPlug can identify

the Tracebase data to reflect such behavior, such as laptop/lamp device data will have

outlet changes, refrigerator/microwave oven data will not outlet changes etc.

These virtual data set contains data of Refrigerator, TV, Microwave oven as the static

outlet data and as far as dynamic outlets are concerned, they host lamp, laptop, and

vacuum cleaner data.

4.2 Classifiers
In this work, we investigate three classifiers and pick the best classifier that yields high

labeling accuracy. We evaluate the classifiers based on the accuracy calculated by using

cross validation algorithm. Cross validation technique is a assessing/bench marking tech-

nique for classification/regression, where it estimates the performance of the algorithm.

4.2.1 Random forest classifier

Random forest classifer is an ensemble classifier based on bagging technique, that

operates by constructing a multitude of decision trees at training time and outputting the

class that is the mode of the classes. Bagging description:
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Given a Training Set Tr (with corresponding labels Lr), bagging randomly sub-samples

from it K times (sampling with replacement) to form K train sets - (Tr1, ..., T rK). Each of

these sets are used to train a independent instance of same regressor/classifier to obtain K

different regression functions - f1(x), ..., fK(x). After training, predictions for the unseen

samples can be made by averaging the predictions from all the model trained previously.

Random forest classifiers are fast and accurate, are robust to outliners in data. Ran-

dom forest classifiers have limitations that all decision tree have, is the danger of over-

fitting when you have many high-cardinality categorical variables.

4.2.2 Support Vector Machine

We also consider a classifier using the support vector machine (SVM), a discriminative

classification algorithm that maps the input feature space into second, linearly separable

feature space using a kernel function.

Support vector machines are effective in high dimensional spaces. But, they are slow

due to mapping the input feature space to higher dimensional space and re-mapping to

original feature space.

4.2.3 Naive Bayes

Finally, we consider Naive bayes for classification due to its simplicity and its efficiency.

Naive bayes algorithm assumes that all the features are conditionally independent of each

other. Naive bayes classification algorithm assigns probability to each label for the given

input and outputs the label which has highest probability.

Naive bayes yields high accuracy in case of the data/features where the features are

orthogonal to each other, if not the accuracy can be poor.

4.3 Live Deployment
We have implemented an AutoPlug prototype system on a Raspberry Pi 2, and de-

ployed it in a real home. We instrument the home with four Belkin Wemo Insight
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Switches [34]. The Belkin Wemo Insight Switches are WiFi-enabled smart outlets, which

are programmatically accessible via the ouimeaux python API [22]. The Raspberry Pi

acts as a gateway to gather outlet power data, using the ouimeaux API to poll each outlet

for its energy usage at a 1Hz resolution, and implement AutoPlug’s techniques from the

previous section.

Raspberry Pi 2 acts as a gateway to switches and using ouimeaux API gateway polls

each outlet at a regular interval of 1 second respectively. Gateway updates the outlet

mappings at a dynamic interval, taking latest two hours of data as input and updates the

database with the corresponding classification output.
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CHAPTER 5

EVALUATION

In this chapter, we evaluate AutoPlug’s accuracy on our multiple public data sets,

on data collected during the live deployment, and on the virtual datasets we construct

from real data. In addition, we also evaluate its performance, in terms of the average

computation time per update, i.e. latency, on multiple platforms, including a Raspberry

Pi and Macmini.

5.1 Accuracy
AutoPlug operates in an online fashion by continuously polling each smart outlet

every second, such that it updates the smart outlet’s label at a dynamic interval based

on the detection of a swap. We evaluate both classification accuracy and swap detection

accuracy. As we discuss, there is a trade-off between the latency of detecting a swap and

its accuracy.

5.1.1 Classification Accuracy

We divide our dataset into blocks of two hours each, and then we transform each data

block into a feature vector as described previously, which we use for initial classification.

Similar to prior work [9], we consider two scenarios of evaluation for the classification:

identifying previously observed (or “seen”) devices and previously unobserved (or “un-

seen”) devices. Identifying seen devices is the case where respective device data is already

in our training data, where with unseen devices the classifier predicts the label of a device

whose data is not in the training data.
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Classifier Accuracy(%) Training-
Time(sec)

Naïve Bayes 69.23 0.165
Support Vector
Machine

76.60 260.23

Random Forest
Classifier

89.94 1.670

Table 5.1: Accuracy of different classifiers on our dataset.

• Identifying Seen Devices: We evaluate AutoPlug’s device identification accu-

racy when we train and test the classifier on the complete dataset. We use this

experiment to evaluate the accuracy of multiple classifiers, including Random For-

est, Support Vector Machine, and Naïve Bayes. We perform 5-fold cross validation

on the complete dataset to measure the model accuracy of above classifiers.

Table 5.1 shows that the accuracy is highest for the Random Forest Classifier. Its

accuracy of 90% is similar to the 93% accuracy presented in prior work on NILI,

which addresses a similar problem [9]. However, NILI only works on a dataset size

that includes 24 hours of energy data, which results in more information in each

instance and apart from that, the respective data set was missing common appliance

data like microwave oven, toaster, vacuum cleaner and laptop charger. In addition,

NILI only updates each outlet’s label once per day, while our approach performs an

update at least once every 2 hours, and is dynamically determined. Table 5.1 is for

static devices that do not change outlets. If we insert a change in outlet for each

device, AutoPlug with the Random Forest Classifier maintains an accuracy of 89%,

while NILI accuracy drops to 79%. (For this experiment part, we train the classifier

on the both the Tracebase and live deployment data, and we test it on the virtual

data sets we generate.)

• Identifying Unseen Devices: In general, training data for devices is not known

a priori, and thus identifying previously unobserved devices is also important. For

this experiment, based on our results above, we train the Random Forest Classifier
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on the complete dataset and then compute testing accuracy for the data collected

during the live deployment, which includes devices not in the training data. Note

that the live deployment also included devices changing outlets. We observe that

overall AutoPlug accuracy in this live deployment is close to 76% where the Auto-

Plug correctly labels 236 instances out of 310 instances. In comparison, the NILI

approach that assumes devices never change outlets yielded an accuracy of only

64%. Figure 5.1 shows the per device break down of the accuracy.
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Figure 5.1: Detailed identification evaluation per device for unseen devices with random
forest classifier

Finally, Table 5.2 shows the confusion matrix for the classification of previously

unobserved devices. We see some devices exhibit worse accuracy than others(i.e.

bars representing lamp and laptop in Figure 5.1). For example, every instance of

toaster was correctly identified, which is understandable given the energy profile

of toasters are similar in data set and unobserved toaster. The same holds true

for Refrigerator, Vacuum cleaner, and Microwave oven, wherein accuracy is high

in comparison to lamp and laptop. The lamps, on the other hand are frequently
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mislabeled as TV-LCD, due to the fact that in the live deployment, the lamp’s

power output was 70W, while in the training data set the lamp data in some cases

was 120W and higher. As a result, the Random Forest Classifier fails to classify the

70W lamp correctly. Similarly the laptops were mislabeled as lamp. Regardless, we

see that Random Forest Classifier was able to accurately predict the device types

with unique energy characteristics(refrigerator), and high power consumption with

respectable accuracy.

Coffee Maker Dishwasher Lamp Laptop MW Oven Refrigerator TV-LCD Toaster V Cleaner
Lamp 0 0 10 0 0 0 15 0 0
Laptop 0 0 15 10 0 0 0 0 0
MW Oven 3 2 0 0 20 0 0 0 0
Refrigerator 0 0 2 0 0 165 18 0 0
Toaster 0 0 0 0 0 0 0 25 0
V Cleaner 3 0 0 0 0 1 0 0 12

Table 5.2: Confusion Matrix for the classification of "unseen" devices.

5.1.2 Detecting Outlet Changes

Since the output of swap detection is a binary classification, e.g., either a swap is de-

tected or it is not, we evaluate its accuracy based on the false positive rate, false negative

rate and the Matthews Correlation Coefficient (MCC) [5]. A false positive represents the

number of instances in which AutoPlug detects a swap that is incorrect. Similarly, false

negatives represent instances where the AutoPlug fails to detect a swap. Similarly, the

MCC is a quality measure of binary classification that takes both the false positives and

false negatives into account, and represents a balanced measure of a binary classifier’s

performance. The MCC’s value is between −1 and +1, where +1 indicates a perfect pre-

diction, 0 indicates a random prediction and −1 indicates a total mismatch of observations

and predictions.

False Positive rate is calculated as:

FPR = FP

(TP + FP ) (5.1)
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False Negative rate is calculated as:

FNR = FN

(TN + FN) (5.2)

MCC can be calculated as:

MCC = TPxTN − FPxFN
2

√
(TP + FP )(TN + FN)(TP + FN)(TN + FP )

(5.3)

where FP denotes false positives, FN denotes false negatives , TP denotes true positives,

and TN denotes true negatives.

To evaluate swap detection, we compute the above metrics for our live deployment

data and virtual data sets assembled from the Tracebase [31] and eGauge [14]. During

the live deployment, we plug in six different devices into smart outlets, such that three

of them operate in the living room and the other three operate in the kitchen. We then

swap one device with other that operates in the same room.

Our false positive rate and false negative rate will depend on the threshold values

for swap detection. To find the optimal threshold value for both of our swap detection

approaches, we consider our DTW approach’s threshold from 2.5 to 15 and our curve

fitting approach’s threshold from 2.5 to 15. We then compute the MCC, false positive,

and false negative rate for each set of threshold values. Figure 5.2(b), and (c) shows that

the false positive rate increases as the threshold values decrease, while the false negative

rate decreases as the threshold values decrease. Thus, a threshold combination of 10 and

10 for both the approaches respectively is a suitable choice as this keeps the false positive

rate and false negative rate relatively low and maximizes the MCC value, shown in (a).

As the figure shows, the false positive and false negative rates of AutoPlug with optimal

threshold values are 5.2% and 7.5%, which translates to 92% swap detection rate.

Figure 5.2(a) shows that AutoPlug’s MCC for swap detection is near 0.8. We also

compared this with an approach that detects changes solely based on classification, as in
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Figure 5.2: Swap detection evaluation over different threshold values

[27], and not detecting changes in the pattern of time-series data. For this classification-

based approach, we compare the output classification label of an outlet from the present

data window to previous data window. If the labels do not match then we signal that

a device has changed outlets; if they do match, then we signal a device has not changed

outlets. This classification-based approach yielded an MCC of 0.31 and a false positive

rate of 16%. This approach differs from AutoPlug in that the classification requires much

more data to accurately re-classify a device, while our time-series-based approach is able

to re-classify as soon as it recognizes that the pattern does not match the data pattern.

Since such classification is done over data features that are aggregate statistical metrics

of the data, more data results in a higher classification accuracy.
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5.1.3 Dynamically Setting the Window Size

Recall that, unlike prior work, AutoPlug dynamically sets its window size and update

frequency for classification based on its swap detection. AutoPlug automatically starts

a new window after detecting a swap and then continuously updates the classification

as new data becomes available. AutoPlug stops the classification when the confidence

level for the device reaches a threshold and stops improving. The confidence level is the

probability assigned to the output label from the probability distribution over the set

of labels considered by the classifier (Random forest classifier implementation provides

these probability values for each prediction). If the confidence level is over 50%, then it

indicates that the classifier output is likely correct, and less likely if under 50%.

We compute the confidence levels for four devices: a lamp, laptop, microwave oven

and refrigerator over three data window sizes (0.5 hours, 1 hour, and 2 hours) after a

change. We then compute confidence levels over multiple active periods of the device and

average those values, respectively. Figure 5.3 shows the results, which indicate that the

microwave oven can be clearly labeled in 0.5 hours, but refrigerator and laptop need more

time for accurate detection. Note in the laptop and refrigerator cases, when data window

size was 0.5 hours, the classifier failed to assign their correct label, but AutoPlug corrects

itself once more data becomes available.

5.2 Performance
We next measure the average computation time per update i.e. latency, to evaluate

AutoPlug’s performance. Since AutoPlug stores only recent two hour power data per

outlet, I/O is negligible, and computation time will depend on a) the number of out-

lets being monitored and b) the computational overhead of the swap detection process,

especially the DTW approach given its high overhead. Here, we configure AutoPlug in

two configurations—A and B—such that A is the default configuration and B adds a

processing step that reduces the resolution of the active periods by a factor of five be-
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Figure 5.3: Confidence Level versus data window size for different devices.

fore applying DTW, e.g., from 1Hz resolution to 0.2Hz resolution. Note that, we have

evaluated accuracy of system in configuration B.

We first investigate how the latency varies for AutoPlug running on different platforms.

For this experiment we implement AutoPlug on a Raspberry Pi 2 running Ubuntu Linux,

as well as a Macmini running OSX. From Figure 5.4(a) we see that the latency is modest

in the case of Macmini, but increases for Raspberry Pi 2, particularly when AutoPlug is

in configuration A, due to the computational overhead of DTW. Next, we measure the

latency of the AutoPlug for varying number of smart outlets. We conduct this experiment
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with AutoPlug in simulation (using configuration B) implemented on a Raspberry Pi 2.

Also, for this experiment we assume that all the outlets are active. From Figure 5.4(b),

we see that the latency increases as the number of outlets increases. When the number

of active outlets increases beyond 25, there is a sharp increase in latency relatively, due

to the CPU nearing saturation.
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Figure 5.4: Performance evaluation of AutoPlug, in a) A and B indicates configurations
of AutoPlug
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Figure 5.5: Accuracy and latency for two AutoPlug configurations.
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Finally, Figure 5.5 shows the trade-off between AutoPlug’s latency and swap detection

accuracy. Here, we configure AutoPlug on a Raspberry Pi 2 monitoring four smart outlets.

We see that latency varies by a large margin from configuration A to B, but accuracy

in both the configurations is above 92% with configuration A being marginally higher,

as expected due to the higher data resolution. However, the increase in accuracy over

configuration B, which reduces the resolution of the data to reduce DTW overhead, is not

significant, indicating the benefit of this optimization.
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CHAPTER 6

CASE STUDY - ENERGY ATTRIBUTION

The electricity utility companies provide monthly report to users, a report that pro-

vides aggregate household energy usage and comparative details like how efficient one’s

energy usage compared to their neighbors. The aggregate energy usage details doesn’t

provide per-device energy usage or breakdown of energy usage per device. Often, it is

desirable to have per device energy usage or the percentage of energy use attributable to

certain devices. The access to such information can be key to:

• Identifying the inefficient devices or the devices that are running for a longer time

than actually needed. For example, even when there are no occupants in a house

and if lamps are active in that respective house, then switching off lamps will save

energy resources.

• Detecting faulty or malfunctioning device, especially continually running devices

like refrigerator. For example, a faulty refrigerator can be identified as either an

appliance which draws significantly more power than average that refrigerator used

to draw or whose power consumption increases over time.

The Non intrusive load monitoring(NILM) analysis on smart meter data disaggregates

the house-level smart meter trace into energy usage data for individual devices. The

disaggregated data can provide above benefits, but NILM algorithms have accuracy issues

and require prior knowledge of the accurate appliance model (ground truth device level

data). The poor disaggregation accuracy might result in inferring wrong conclusions

about energy consumption, and hence the benefits provided by NILM analysis is limited.
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Autoplug can address this issue, as it can monitor devices at circuit level(i.e. per plug)

and combined with its high accuracy in detecting the appliances as well as tracking them.

6.1 Methodology
For every time window, Autoplug updates smart outlet’s label and for each time

window, AutoPlug computes energy consumed in kWH(kilo watt hour), last active time

etc for the corresponding label and updates the sqlite database (that AutoPlug maintains

and regularly updates). So, the database provides the details of each appliance like energy

consumed, last active time, total active time duration etc over a period.

6.2 Experiment
In this case study evaluation, we compute the energy attribution error (per device) as

the difference between the estimated energy consumption (database provides this value)

and the ground truth data per device in the test data, and we compute the average of

those errors as the average error.

For this experiment, based on the evaluation results in previous chapter, we train the

Random forest classifier on complete dataset and set the optimal threshold values for

both of our swap detection approaches and then perform the experiment on the two data

sets, data collected from live deployment and REDD data set. We use the REDD [26]

data set(device-level data) because it is widely used in NILM papers [17] and we want to

compare (the state of the art) NILM algorithm’s disaggregation accuracy with AutoPlug’s

energy attribution accuracy. In REDD data set we use House-1 data and devices we

consider are refrigerator, dish washer, washing machine, lamps, and micro wave oven.

6.3 Results
Table 6.1 shows the energy estimation of live deployment data using AutoPlug. Some

devices exhibit worse accuracy than others and results are comparable in terms of accuracy
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with classification accuracy we reported in the last chapter. Autoplug estimates energy of

high power devices like toaster, micro wave oven with high accuracy. But for the laptop,

the accuracy is poor as laptop is frequently mislabeled as lamp. Average error for the

experiment was 18%.

Devices Estimated(kWH) Ground
Truth(kWH)

Error(%)

Lamp 2.01 1.635 18
Laptop 0.70 1.319 -46
Microwave Oven 1.273 1.213 5
Refrigerator 4.53 5.168 -12.34
Toaster 0.8 0.8 0.0

Table 6.1: Energy Estimation of Live Deployment Data.
Devices Estimated(kWH) Ground

Truth(kWH)
Error(%)

Dishwasher 9.5 15.18 -37
Lamp 11.719 18.6 -36
Microwave Oven 12.5 11.57 8
Refrigerator 23.1 21.05 9.26
Washing Machine 23.59 25.139 6.16

Table 6.2: Energy Estimation of REDD Dataset
Second, table 6.2 presents the experiment results on REDD dataset. Here, the energy

attribution error was high for lamp and dish washer. REDD dataset is 3 second interval,

where as AutoPlug was designed for analyzing 1 second resolution data, this affects the

waveform features in the feature vector. Suman Giri et al . [17] proposed NILM framework

requires training on the test data and also inputting the device events like switch on and

off time to generate the models . On the other hand, AutoPlug is easy to configure

and doesn’t require training on the test data. There model/framework achieves 77%

energy attribution accuracy in the case of REDD data set and in comparison, Autoplug’s

accuracy was 81% accurate. Note that the NILM algorithms performance degrades as we

consider low power consuming appliances, on the other hand AutoPlug can identify and

track low power consuming appliances as well, given that we include similar device’s data

in training data set.
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CHAPTER 7

RELATED WORK

This chapter lists and briefly discusses the related works addressing the problem of

the identifying the devices plugged into the smart outlets published in the literature.

In the recent past, several works have been published which deal with the classification

of devices on the basis of their power consumption. In NILI [9], authors address the

problem of device identification by transforming the energy time-series data into a set

of features and then use a classifier to identify the appliances. A.Leonardi et al. [27]

take a similar approach for labeling the smart outlets, apart from this they describe a

methodology to detect new devices introduced in a home and to detect swap of devices.

These works [32], [35] try to address the device identification problem and follow the

approach of training the off-the-shelf classifier and applying it to label the outlets, but

not evaluated extensively especially in the case of unseen devices. What distinguishes

our work from the approaches described above is that we employ time series and device

modeling techniques to detect device swaps, moreover our approach frequently updates

the smart outlets at an interval less than 2 hours, dynamically determined. Apart from

that, above works focus only on offline analysis, and ignore performance considerations,

where as in this work we investigate the performance of AutoPlug in terms of latency.

One of the recent works, Muhammad Aftab et al. [2] proposed a different solution to the

problem that we addressed. There proposed solution uses device modeling techniques

to identify the loads as well as for tracking the loads in the real time, where they aim

to infer the appliance energy consumption model from the given input time-series and

identify the appliance as belonging to one of the defined appliance models. Their work
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differs from our approach of combining machine learning and statistical techniques, and

was published after our work [33].

Further, the problem of automated metadata in the context of the commercial build-

ings was addressed in these recent works [16, 11]. In Jungkun et al. [16], authors develop

a framework to automatically infer a sensor label based on its time-series data using

off-the-shelf classifier. Bhattacharya et al. [11] present a syntactic and data-driven ap-

proach to parsing sensor names to common name spaces. These works target building

automation/management systems and the commercial building space where metadata as-

sociations seldom change, on the other hand, AutoPlug targets home automation systems

and the residential home space where metadata association in the context of smart outlets

change frequently.
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CHAPTER 8

CONCLUSION

In this work, we present AutoPlug, a system for identification and tracking loads

plugged in a smart outlet in real time. We now summarize the work and give the directions

for the future work.

8.1 Conclusion
We first defined the problem statement of AutoPlug in chapter 1. We identified two key

requirements that must be fulfilled to address the problem of identification and tracking

of loads plugged into the smart outlets. The requirements were device identification and

device swap detection. Further, we have stated the potential application of our system.

We then presented the background of existing techniques in the field of the Non in-

trusive load monitoring for smart meter data, device modeling and of existing works in

automatically identification of devices plugged into smart outlets based on the time-series

data. We have showed that the existing works in the “automatically identification of

devices plugged into smart outlets”, are related to offline analysis, ignore performance

metrics. Apart from that, these works doesn’t address the issue of device swap in a smart

outlet.

We then described the design of the AutoPlug. AutoPlug design consists of two

pipelines. One is for the device identification and another is for the device swap detection.

In device identification pipeline, first we transform the input time-series power data into

a feature vector (compact set of features) and use these feature vectors as input to the

machine learning classifier, which then outputs the device label based on the input feature
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vector. Device swap detection involved extraction of the active periods as preprocessing

step. We then use pattern matching to compare these active periods with each other to

detect a swap. Finally, we defined the size of the data window and update interval, which

is dynamic based on the swap detection output.

Chapter 4 presented the implementation details of the AutoPlug. We have briefed

about the data sets we have used in our system for training and testing of device iden-

tification and swap detection process. We then described live deployment details like

AutoPlug prototype and the real home where it is deployed.

In the chapter 5 we evaluated the system on our multiple data sets and live deployment

data. We first evaluated the accuracy of the AutoPlug. We have shown that AutoPlug

achieves 90% identification accuracy on real data collected from 15 distinct device types,

and is also able to detect device changing outlets with accuracy >90%. And then we

evaluated the performance of AutoPlug in terms of latency. For which we show that its

performance enables it to monitor up to 50 outlets, while detecting new devices or changes

in devices with 30s latency.

Chapter 6 presented the case study application on AutoPlug, which is energy attri-

bution. The goal of this application is to provide the energy breakdown by appliance

i.e. per appliance energy consumption over a period in a household. We performed the

experiment on live deployment data and REDD dataset . We have shown that AutoPlug

was able to yield an accuracy of 82% and 81% for the both data sets respectively. In the

latter experiment, we compare our results with a NILM algorithm results, and we show

that AutoPlug is more accurate and also easy to configure.

8.2 Future Work
Future work will focus on the exploring the case studies and implementing applications

based on the AutoPlug work. We aim to realize the useful end-user applications to take
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advantage of the AutoPlug’s capbailities in identifying and tracking the loads. The work

so far presented is a prerequisite to the end-user applications.

1. Smart device scheduling or load deferral : Energy grid companies provide real time

electricity pricing i.e. per hour or per 5 minutes electricity price per KWh. This can be

used to suggestion for deferring the heavy loads like washing machine, dish washer etc to

decrease the overall cost of electricity for house holds. Such suggestions do not prevent

the household occupant from performing there desired task, but instead provides useful

information for reducing the electricity bill.

Apart from these we aim to implement the functionality of swap identification, where in

the AutoPlug identifies the swapped devices based on the database/table that it maintains.

Furthermore, we aim to improve the accuracy and reduce the latency of the system by

optimizing the techniques that we use or by using new techniques.

45



BIBLIOGRAPHY

[1] http://aeotec.com/z-wave-plug-in-switch.

[2] Aftab, M., Chau, C., and Khonji, M. Real-time Appliance Identification using Smart
Plugs. In e-Energy (June 2017).

[3] Amazon. http://www.amazon.com/Amazon-Echo-Bluetooth-Speaker-with-WiFi-
Alexa/dp/B00X4WHP5E.

[4] Armel, K., Gupta, A., Shrimali, G., and Albert, A. Is disaggregation the holy grail
of energy efficiency? the case of electricity. Energy Policy 52, 1 (January 2013).

[5] Baldi, Pierre, Brunak, SÃÿren, Chauvin, Yves, Andersen, Claus A. F., and Nielsen,
Henrik. Assessing the accuracy of prediction algorithms for classification: an
overview. Bioinformatics 16, 5 (2000), 412–424.

[6] Barker, S., Kalra, S., Irwin, D., and Shenoy, P. Empirical Characterization and
Modeling of Electrical Loads in Smart Homes. In IGCC (June 2013).

[7] Barker, S., Kalra, S., Irwin, D., and Shenoy, P. PowerPlay: Creating Virtual Power
Meters through Online Load Tracking in Smart Homes. In BuildSys (November
2014).

[8] Barker, S., Mishra, A., Irwin, D., Shenoy, P., and Albrecht, J. SmartCap: Flattening
Peak Electricity Demand in Smart Homes. In PerCom (March 2012).

[9] Barker, S., Mushtag, M., Irwin, D., and Shenoy, P. Non-Intrusive Load Identification
for Smart Outlets. In SmartGridComm (November 2014).

[10] Batra, N., Kelly, J., Parson, O., Dutta, H., Knottenbelt, W., Rogers, A., Singh, A.,
and Srivastava, M. Nilmtk: An open source toolkit for non-intrusive load monitoring.
In e-Energy (June 2014).

[11] Bhattacharya, A., Hong, D., Culler, D., Ortiz, J., Whitehouse, K., and Wu, E.
Automated Metadata Construction To Support Portable Building Applications. In
BuildSys (November 2015).

[12] Brennan, M. House of the future:How automation tech is transforming the homes.
in Forbes (October 2013).

[13] DeBruin, S., Ghena, B., Kuo, Y., and Dutta, P. PowerBlade: A Low-Profile, True-
Power, Plug-Through Energy Meter. In SenSys (November 2015).

46



[14] eGauge Energy Monitoring Solutions. http://www.egauge.net/, 2013.

[15] Analysis and Representation of Miscellaneous Electric Loads in NEMS. Tech. rep.,
U.S. Energy Information Administration, December 2013.

[16] Gao, J., Ploennigs, J., and Berges, M. A Data-driven Meta-data Inference Framework
for Building Automation Systems. In BuildSys (November 2015).

[17] Giri, S., and Berges, M. An energy estimation framework for event-based methods
in Non-intrusive Load Monitoring. Energy Conversion and Management 90 (2015),
488–498.

[18] Google. https://madeby.google.com/home/.

[19] Hart, G. Nonintrusive Appliance Load Monitoring. Proceedings of the IEEE 80, 12
(December 19 92).

[20] iMeter Solo. http://www.insteon.net/2423A1-iMeter-Solo.html.

[21] Iyengar, S., Irwin, S., and Shenoy, P. Non-Intrusive Model Detection: Automated
Modeling of Residential Electrical Loads. In e-Energy (June 2016).

[22] Jones, Eric, Oliphant, Travis, Peterson, Pearu, et al. SciPy: Open source scientific
tools for Python, 2001–.

[23] Kelly, J., andW.Knottenbelt. Neural Nilm: Deep Neural Networks Applied to Energy
Disaggregation. In BuildSys (November 2015).

[24] Kelso, J., Ed. 2011 Buildings Energy Data Book. Department of Energy, March 2012.

[25] Kleiminger, W., Beckel, C., Staake, T., and Santini, S. Occupancy Detection from
Electricity Consumption Data. In BuildSys (November 2013).

[26] Kolter, J. Zico, and Johnson, Matthew J. REDD: A public data set for energy
disaggregation research. In SustKDD (August 2011).

[27] Leonardi, A., Ziekow, H., and D. Konchalenkov, A. Rogozina. Detecting Smart Plug
Configuration Changes in Smart Homes. In Smart SysTech (July 1-2, 2014).

[28] McCracken, Ian, et al. ouimeaux: Open source control for belkin wemo devices,
2013–.

[29] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[30] Ratanamahatana, C.A., and Keogh, E. Three Myths about Dynamic Time Warping.
In SIAM International Conference on Data Mining (April 21-23, 2005).

47



[31] Reinhardt, A., Baumann, P., Burgstahler, D., Hollick, M., Chonov, H., Werner, M.,
and Steinmetz, R. On the Accuracy of Appliance Identification Based on Distributed
Load Metering Data. In SustainIT (October 2012).

[32] Ridi, A., Gisler, C., and J.Hennebert. Automatic identification of electrical appliances
using smart plugs. In WoSSPA (May 2013).

[33] Venkatesh, J., Aksanli, B., Rosing, T., Junqua, J., and Morin, P. HomeSim: Com-
prehensive, Smart, Residential Energy Simulation and Scheduling. In IGCC (June
2013).

[34] Belkin wemo insight switch. http://www.belkin.com/us/p/P-F7C029/, February
2016.

[35] Zuffrey, D., Gisler, C., Khaled, A., and Hennebert, J. Machine learning approaches
for electric appliance identification. In ISSPA (July 2012).

48


	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2017

	AutoPlug: An Automated Metadata Service for Smart Outlets
	Lurdh Pradeep Reddy Ambati
	Recommended Citation


	tmp.1506617760.pdf.QeAtr

